
 
 

The Faculty of Science and Technology 

Department of Geology 

 

Sedimentological and Stratigraphic study of glaciomarine clays and 
postglacial beach deposits exposed in a raised coastal section beyond the 
Tromsø Lyngen (Younger Dryas) end moraine at Spåkenes, Lyngen, 
northern Norway 

 

 
Rebekah Harries 
 
Master thesis in geology, GEO-3900 
May 2014 

 



 
 

 



1-1 
 

Acknowledgements 

 

I’ve run out of time to write any proper thank you’s but know I am sincerely grateful to all 

those who have made my time here in Tromsø so wonderful. 

I would especially like to thank my supervisor Geoff Corner from whom I have learnt so 

much over this past year. 

Many thanks to Graham Austick, Elizabeth Braathen and Pernilla Persson for taking me in 

whilst on field work and special thanks to Laura Robinson and Steve Newson for looking after 

me and keeping me sane whilst I spent my days wallowing in mud. 

Also Trine Dahl, Edel Ellingsen and Ingvild Hald, thank you for the time you spent helping me 

in the lab and answering my strange requests. Simon Jenson, Jan Svere and Stephan Bergh,  

Erlyour advice was very useful so thank you very much. Special thanks to Matthias Forwick 

who very kindly dedicated much time helping me with XRF scanning. 

Thank you Karin Rottgers, Helen Jennings and Alida Midtbø being my little rays of sunshine 

and I thank you in advance for all the times your going to have to listen to me practie my 

presentation. 

I could not be here without the love and support from my family, so to you I am always 

eternally gratful 

And last but certainly not least, someone I cannot thank enough, Aldo Dyvik, for the countless 

times he has come to my rescue. I could not have got through the last weeks of writing without 

his brilliant optimism and faith.  

 

Tusen Takk! 

  



1-2 
 



1-3 
 

Abstract 

 

Thick succession of suspension settled muds, deposited from meltwater plumes, which are 

frequently interbedded with sandy mass flows deposits. Between conformable beds, discrete 

units have been in intensely deformed, often into large recumbent folds with complex 

structure. Suspension settled muds are observed in three distinct structural facies, namely 

massive clays, rhythmically banded muds and rhythmically laminated muds with sands or silts. 

The coarser grained deposits, attributed to mass flows, are indentified as complex structured 

turbidites and massive debrites.  

From detailed sedimentological analysis of grain size distributions and rhythmic bed structures 

it is interpreted multiple meltwater plumes were active in loading the water column with 

suspension settling sediments and that different meltwater sources were dominant in loading 

the water column under different facies regimes. Prevailing conditions of meltwater plume 

deposition, responsible for depositing thick successions of colour banded mud, are thought to 

have occurred under a weakly stratified water column where plume integrity was extremely 

low. Episodic high discharge events are thought to be responsible for the deposition of 

laminated facies. Sedimentation rates are interpreted to have been extremely high, such that 

it is postulated that the entire cliff section was deposited in less than one year and 

predominantly within one meltwater season. 
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1. Introduction 

 

The rapid advance of outlet glaciers during the Younger Dryas culminated in the depostion of 

arguably the most prominent ice front accumulations in fjords across Norway (Anderson et al, 

1968; 1975; 1982; 1995; Rasmussen, 1981). Following rapid retreat of ice in the warming 

Allerød period, intense climatic cooling resulted in a glacial advance of at least 30km in major 

fjords (Vorren and Plassen, 2002; Eilertsen et al, 2005), reaching stable ice front conditions in 

the early Younger Dryas. Constraint on the timing of this event in Troms, cumulated from 40+ 

radiocarbon dates from predominantly shell bearing glaciomarine clays but also deltaic and 

lake deposits (Marthinussen, 1962; Andersen, 1968; 1975; 1982; Rasmussen, 1981; and 

Corner (unpublished) has founded general agreement in approximating 10,500 C14 years BP 

(12,000-12,500 cal years BP) as a minimum age for these deposits; termed the Tromsø-Lyngen 

substage (Andersen, 1968; Vorren and Plassen, 2002; Femreite et al 2000). Anderson et al 

(1995), however, note the Tromsø-Lyngen ice front complexes often comprise two parallel 

main moraine ridges, dating an additional early glacial phase in Troms between 11,100 and 

11,300 C14 years BP.  

During these times the glaciers were highly active in depositing extensive lateral moraines 

along the sides of fjords and in discharging large volumes of sediment at their terminus; 

forming end moraines, which may also be pushed, and extensive ice contact fans and ice 

contact deltas which grade laterally into successions of glaciomarine muds (Andersen et al, 

1995; Dahl and Sveian, 2004; Olsen et al, 2005; Lyså and Vorren, 1997; Vorren and Plassen, 

2002;) It is also well established that these deposits formed contemporaneously with the 

development of a stable raised S0 or Main shoreline, which graded ice front deltas and eroded 

shore notches into bedrock down fjord (Marthinussen, 1960; Andersen, 1968). 

Subsequent rapid retreat of ice from these sites associated with climatic warming in the 

Preboreal is thought to have been marked by several small glacial front oscillations before ice 

free conditions in the inner valleys were achieved by 9100 C14 years BP (Corner, 1980). In the 

Lyngen-Storfjord area, proximal to the Tromsø-Lyngen moraine, Corner (1980) identifies at 

least three climatically induced events at 9800-9900 C14 years BP, 9500-9600 C14 years BP and 

a minor event at 9400 C14 years BP. Falling sea levels, associated with isostatic uplift following 
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ice mass wasting, were only significantly interrupted by the Tapes transgression, which eroded 

shore notches or terraces and deposited beach ridges across Norway (Marthinussen, 1960; 

Hald and Vorren, 1983).  Hald and Vorren (1983) estimate Early Holocene sea level regression 

prior to this time averaged a rate of at least 1.25m/100 years, where following Tapes 

transgression, fell much slower at around 0.5m/100years.  

 

Figure 1.1:  Quaternary map of the Lyngen region showing the position of 

marginal moraines crossing the fjord (Dahl & sveian 2004).  
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1.1. Study Area - Geology 

 

The Tromsø-Lyngen ice front accumulations are situated close to the mouth of Lyngenfjord, 

the longest fjord system in the district of Troms, northern Norway. As shown in Figure 1.1 this 

is a N-S orientated fjord where glacial excavation has exploited bedrock weakness along major 

fracture zones (Hansen et al, 2008).  On the western side of fjord, Caldonian ophilites form the 

steep sided and currently glaciated, high mountains of the Lyngen peninsula; maximum 

elevation 1833m a.s.l. These are predomiantly composed of gabbro (Zwaan et al, 1998) where 

to the east, lower and gentler mountains comprise granitic gneiss, mica schists and 

metasediments; meta-arkose to feldspathic quartzite (Zwaan et al, 2006).  

Ajoining fjords of Kåfjord and Storfjord form a large dendritic drainage area which fed large 

quantities of ice and till into the main fjord over the last deglacial. Glaciers occupying these 

fjords discharged vast volumes of sediments into various sub basins (Lyså and Vorren, 1997); 

the thickest sequences fill basins either side of a bedrock ridge associated with the ice 

accumulations at Spåkenes.  

 

The study site is a north 

facing coastal cliff on the 

eastern side of the fjord, 

located on a protudence 

extending out into the 

fjord, west of Slottet and 

North of Djupvik. 

  

Figure 1.2: Tectonic map of onshore and offshore fault patterns in the Lofoten–
Vesterålen area  (Hansen et al. 2008) 
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1.2. Study Area - Quaternary geology 

 

The exact configuration of the ice front at Spåkenes is poorly resolved, as unlike the 

accumulations in other fjords, the ice front is highly irregular. This may well have been a result 

of markedly different bedrock morphologies on either side of the fjord; the western side is 

bounded by extremely steep cliffs of gabbro that form the Lyngen alps (Hansen et al 2008), 

the submarine counterpart equates with a very steep edge of sea floor, upon which grounding 

line fans and moraine ridges could not form (Lyså and Vorren, 1997). In the centre of the fjord 

and to the east, sediment thickness are in excess of 320m, where the sediment volume 

incorporated into these marginal deposits is also one of the largest in northern Norway; 

attributed to the glaciers in this fjord being responsible for draining one of the greatest areas 

of ice under the Younger Dryas drainage pattern (Lyså and Vorren, 1997). 

Figure 1.3: Sketch modifed from Lyså and Voren (1997) showing 
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As found in other fjords of northern Norway, this Tromø-Lyngen complex is thought to 

incorporate two ice front positions. Quaternary mapping of terrestrial glacial deposits, present 

only on the eastern side of Lyngenfjorden, identifies an inner, more conspicuous promontory 

assumed to be an end moraine, lying at a somewhat oblique angle to the fjord axis, and a very 

prominent terminal moraine, in front of the latter and orientated more perpendicular to the 

fjord axis.  

Lyså and Vorren (1997) map the submarine extent of these deposits using seismic profiling 

and interpreted a moraine ridge running diagonally across the eastern side of the fjord, 

following a bed rock promontory, in front of which, well developed ice contact fans are 

identified with internal seismic character that suggests slump and slide morphology. The 

authors correlate these deposits with the similarly aligned inner end moraine. Figure 1.2 is a 

simplified sketch of their interpretation.  

Figure 1.4: Simplified Quaternary map of the ice-front accumulation at Spåkenes (Dahl & Sveian 2004). 

Other quaternary deposits associated with these ice accumulations are shown in figure 1.3. 

These include a glaciofluvial delta, located between the end moraine ridge and the valley side 

to the east, which is graded to main shoreline ~65-66m a.s.l. (Lønne, 1993). A gravel pit section 

in the delta reveals delta topsets containing syngenetic fossil frost wedges at different heights 
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above sea level. Overlain by gravel, it is likely that the delta and ice wedges formed during an 

early Younger Dryas stage (Pers. Comm. Corner, 2014).  A prominent beach ridge and lower 

shore notches formed a front of delta correspond with the level of Tapes transgression and 

subfossil pine stumps (late Holocene) are reported in a bog immediately north of ice front 

delta. 

Thick glaciomarine clays containing numerous slide scars are found both beyond the ice front 

delta and in front of the moraine promontory at Spåkenes. Marthinussen dated Portlandia 

arctica found between 4.5 and 9m a.s.l. in the clays on Spåkenes, attaining a minimum 

corresponding with the closing stage of the Yonnger Dryas. The glaciomarine clays here are 

truncated by a broad shore platform, which has cut into the prominent moraine on the 

seaward side and extended around the moraine at level of mid Holocene tapes shoreline (Pers, 

comm, Corner, 2014).  
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1.3. Aims 

 

The primary aim of this study is investigate the processes and dynamics of glaciomarine 

deposition beyond the Tromsø-Lyngen ice front in Lyngenfjord, so to gain better 

understanding of the timing and stages of thr Tromsø-Lyngen event with respect to main 

shoreline development; assessing their relation to the other terrestrial and submarine 

landforms incorporated into the ice front complex. Further this study will also investigate 

postglacial environments with respect to local and regional relative sea level change.  

This will entail a sedimentological and stratigraphical study of a coastal cliff section exposing 

glaciomarine and overlying postglacial deposits at Spåkenes, west of Slottet, in front of 

Tromsø-Lyngen moraine, north of Djupvik. These methods will aim to describe, date and 

interpret depositional processes and develop a glacial and sea level history. This will involve: 

 A detailed lithostratigraphical study of the glaciomarine deposits; documenting 

lithological, rhythmical and structural trends. 

 A detailed granulometric analysis of glaciomarine lithofacies  

 Analysis of rhythmic bed structures in sample cores  

 Development of a stratigraphical chronology constrained by radiocarbon dating of 

fossils/subfossils 

 Interpretation of depositional processes and environment from which sedimentation 

rates are interpolated 

 Elucidation of the association between these glaciomarine sediments and the other ice 

front depoits incorporated in to the Tromsø-Lyngen complex 

 A sedimentological and stratigraphical study of postglacial deposits, documenting 

lithological character and fossil-subfossil content.  

 Interpretation of depositional environments and their relationship to 

contemporaneous sea level.  
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1.4. The Glaciomarine environment  

 

The glaciomarine environment represents one of the most complex depositional settings 

encountered in nature (Lønne, 1995). The area in front of marine tide water glacier receives 

sediment input from supraglacial, englacial and subglacial dumping of meltout material, which 

forms ridges of moraine or submarine ice contact fans that may prograde out into proximal 

basins. Ice rafting may also be can important process, delviaring grains of all sizes, melting and 

depositing their load along trajectories through fjords as they drift under the influence of 

currents. Ice contact or outwash deltas may also prograde from the sides of valleys or where 

outwash fans have built to sea level and perhaps the largest volume of fine sediments are 

delivered to basins by subglacial meltwater streams and transported to great distances within 

meltwater plumes (Elverhøi et al, 1983).  

Meltwater plumes are essentially streams of meltwater, laden with sediment that emenate 

either directly from the glacial front or from delta slopes where cold, fresh meltwater enters 

the saline, marine environment. The density contrast between these two water bodies allows 

the meltwater mass to maintain intergrity, bouyed up either as an overflow of interflow plume 

(Kollman, 1980). The most competent meltwater plumes emanate directly from subglacial or 

englacial effluxes. As streams, their momentum carries them horizontally through the water 

column where turbulence between stratified boundaries holds sediment grains in suspension. 

These streams or jets can be capable of carrying grains as coarse as medium sand to distal 

areas before grains fall out from suspension (Syvitski et al, 1987) though the competence of 

the plume decreases rapidly with distance from the glacier as water masses become 

increasingly mixed and stratification boundaries are broken down. Consequently, the 

maximum grain size and indeed the sedimentation rate from meltwater plume deposition 

decreases exponentially down fjord (Cowen and Powell, 1990), depositing the finest muds 

potentially several kilometres from the glacial terminus. The steepness of this exponential 

curve, however, is inherently influenced by the spatial extent of the plume, controlled both 

by glacial dynamics and plume interactions with the marine environment, and are likely to 

vary considerably over time.  
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First and foremost, the volume discharge, or less formally the strength, of the meltwater 

plume is greatly influenced by seasonality, both in the production of meltwater from glacier 

surface melt and in the transference of melt water to the base of the glacier by englacial and 

subglacial conduits (Chu et al, 2009; Shepherd et al, 2009). In subpolar and polar systems, the 

winter season is marked by a significant reduction in meltwater plume activity and activity 

may in fact cease all together (Fountain and Walder, 1998; Chu e al, 2009); when glacier 

surface melt is minimal and such, percolation of water to the base of the glacier is prevented 

by impermeable ice. The onset of plume activity in modern environments is typically abrupt, 

following the onset of melt (Chu et al, 2009) and the establishment of hydraulically efficient 

pathways (moulins) capable of channelling water from the surface to base of the ice (Shepherd 

et al, 2009). Chu et al (1990), in studying the Kangerlussuaq Fjord outlet of the Greenland ice 

sheet, record melt area and plume area as a decline gradually through September, across melt 

seasons between 2000-2007. They also ascribe a hysteresis between meltwater supply and 

plume area as a result of sediment supply exhaustion. This leads to very high short term 

deposition rates during this time (Cowen and Powell, 2001; Syvitski, 1989) 

 

Figure 1.5: Taken from Chu et al (2009), the onset and deline of meltwater plumes through melt seasons from 2000-2007. 
Daily measurements of remotely sensed melt area (gray line) and plume area (solid circles).  

 

Both the volume of meltwater and the volume of the sediment load have an influence on the 

spatial extent of the plume. Under higher discharges, the plume will reach a higher neutral 

buoyancy in the water column, closer to the surface (Gilbert, 1983), and under greater 

momentum from streams exiting englacial and subglacial channels, the plume will travel with 

a greater centreline velocity before spreading radially as a gravity current (Morten et al, 1956; 

Powell, 1990; Mugford and Dowdeswell, 2011). Turbulence in the boundary layer between 
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the plume and ambient sea water effectively keeps grains in suspension more competently 

over larger distances, though as velocity decreases with distance, this layer becomes more 

diffuse and the plumes integrity is eventually diminished. During periods of high runoff, mixing 

between plumes and the water mass is shown to be minimal (Syvitski and Murray, 1981). 

Plumes deposit their coarsest load very rapidly as they rise from an efflux, only transporting 

further, grains that do not fall fast enough to escape the confines of the plume. The fine 

sediment is carried to the surface and then dispersed laterally where it is modelled that grains 

with highest settling velocities fall out from suspension first (Mugford and Dowdeswell, 2011). 

Flocculation of cohesive clay particles is also an active processes that may take place in the 

brackish boundary layer, coalescing clays and colloids to form floccs that consequently fall at 

a greater settling velocity (Curran et al, 2004; Gilbert, 1983; Hill et al, 1998).  

Marine influences on meltwater plumes can also have a significant role in altering their 

trajectory as well as their competence. Both the tides and winds have the potential to alter 

the radial spread of the plume through increasing vertical and horizontal turbulence in the 

water column (Cowen and Powell, 1991) as well as initiating currents that are under the  

influence of the Coriolis force and so deflect stream flow; especially in high latitude settings. 

The strength of the tidal influence in fjords, however, is modulated by the strength of 

outflowing currents; if outflowing currents have a larger amplitude than the intruding tide 

then the tidal wave cannot propagate and oscillatory motion is not felt (Svendsen, 1995). The 

influence of tides may, therefore, only periodically influences plume trajectories at times 

when water stratification is high (Cowen and Powell, 1991).  

Taking into consideration the wide range of environmental factors that have the potential to 

influence spatial and temporal patterns of sedimentation, it is not surprising that proximal 

glaciomarine deposits are often inherently complex. Facies often possess rhythmical 

structures reflecting the cyclicity of sedimentation processes, typically observed as couplets 

of coarse and fine grained lamina. Mackiewicz et al (1984) identifies two distinct facies types 

from their lithology; cyclopels and cyclopsams comprise silt and mud, and sand and mud 

lamina couplets, respectively and Cowen and Powell (1990) demonstrate the texture of the 

coarse lamina reflects proximity to the glacial front, with respect to the competence of 

meltwater plumes. There are many factors that may distrurb or prevent laminated facies from 
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being preserved, for example reworking by currents may also be an important influence in 

some fjords; these currents are often identified from a coarsening of grains on shelves and 

sills with respect to fine grains in basins (Syvitski and MacDonald, 1982). Furthermore, bed 

scouring by icebergs has a significant role in distrupting these deposits (O’ Cofaigh and 

Dowdeswell, 2001) as do the deposits of icebergs, which effectively dilute meltwater plume 

fines and prevent fine structure from being resolved. This sets the scene for the type of 

rhythimically structured facies that might be expected in any glaciomarine deposit out of the 

line of major currents and iceberg drift.  
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2. Materials and Methods 

 

A >1m wide section dug down the entire 

depth of a coastally exposed cliff face 

forms the basis of this study, supported by 

a macroscale stratigraphic study of the 

horizontal extent of the cliff face in 

conjunction with a morphostratigraphic 

study of paleobeach facies and associated 

landforms.  

Fieldwork was carried out between … -… 

of September 2013. Conditions on the cliff 

face were extremely waterlogged, 

particularly at the start of field work 

following several days of moderate 

rainfall. Mud slump deposits cover much 

of the lower portions of the slopes leaving 

better exposed sections in their slide scars. The 

steepest, continuous slope with less mud slide material on its slope and at its base was 

however chosen for excavation so to reduce the amount of digging required to expose the 

true stratigraphy and encourage horizontal correlation of distinct units in section across at 

least this area of the cliff face.  Care was taken to establish the deformation structures 

observed in section were not a result of deformation related to its more recent exposure. This 

was done through observation of the lateral continuity of macroscale stratigraphic structures 

and assessment of the structures bracketed by conformable beds. 

For health and safety reasons the section had to be cleared and logged from the base up and 

split into three sections, A, B and C on figure 2.1, to avoid falling boulders from the uppermost 

units and unstable slopes with a high mudslide potential. A ladder was used to gain better 

access to the steeper section B; its base stabilised on a naturally occurring ledge formed at a 

stratigraphical boundary, laterally continuous for some distance. Collapse of poorly 

Figure 2.1: Overview of the cleared section. 
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consolidated and the most water logged units within the section occurred frequently and 

resulted in the formation of steps, which sometimes inhibited true observation of bed 

structure. As a north-facing cliff, the section received less than an hour of direct sunlight, in 

the early evening; therefore most structures were observed and photographed in relatively 

dull light conditions and with a high moisture content. 

Stratigraphic control was established vertically using a meter stick and hand level to mark 

height above high tide level; recognised as the most landward extent of drifted seaweed. A 

handheld GPS with a 1-2m horizontal resolution was used to mark the position of the sections 

and track the cliff face and other morphological aspects.  

 

2.1. Sampling  

 

Approximately 50g samples of sediment were collected from units that were representative 

of the major deformed facies and from conformable units of interest. These samples were 

taken for later investigation in the lab and for the purpose of calibrating field observations of 

granulonomic texture. An effort was made to extract samples from the centre of beds so to 

avoid cross boundary contamination. They were 

extracted using a knife and trowel and stored and in 

air tight plastic bags and apart from in travel, were 

kept relatively cool and out of direct sunlight before 

storage in the cool room at UiT. 

2.2. Coring 

 

Two types of coring methods were used to try and 

collect well preserved sections of rhythmically 

structured units for later lab analysis of chemical and 

magnetic variability with respect to bedding 

character.  
Figure 2.2: Core sampling method. 
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The first method utilised thin metal rods that were pushed up into a bed, open face up and at 

an angle parallel to the slope. The corer was dug out and the open side levelled, leaving a few 

mm extra sediment that could be removed when the surface was to be cleaned back in the 

lab. It was often not possible to collect sediments in the entire length of the core as the 

interbedded silt-sands were not as well consolidated as the muds between; resulting in 

sediment drop out upon core retrieval if the core terminated too close to silt-sand unit 

boundaries. An effort was made to avoid terminating in such units, however pushing the corer 

into the dense mud layers was extremely difficult and sometimes beyond capability after a 

certain length of core had been inserted. Four cores were successfully retrieved, each secured 

with plastic film and labelled top and bottom with height above high tide level. These cores 

were to be used for XRF scanning. 

A second method attained 10 shorter and wider core samples; better for structural 

observation. These were collected in plastic sampling trays of variable width and length. A tray 

was pressed, open side down, into the sediment and the section removed by sliding a spade 

from top to bottom beneath the tray, slowly lifting the core from the slope and rotating to the 

horizontal. It was difficult to attain complete cores for the longer sampling trays given they 

exceeded the length of the spades blade, making continuous sliding and securing of the core 

with the spade a little more awkward. For the most part, the cores maintained good 

preservation of structures on the cleaned open surface, with disturbances only influencing 

core ends.  
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2.3. Shells 

 

Three almost complete shells and several shell fragments were carefully extracted from the 

glaciomarine sediments, and four complete and best preserved Mya truncate? were chosen 

from the beach facies. Appropriately stored in seal plastic bags they were labelled with their 

height above high tide and referenced in the log. Their positions were also marked with a GPS 

point. 

 

2.4.  Laboratory Analysis 

 

Sample material collected in the field was analysed for several parameters, to explore the lines 

of investigations outlined in the following chapters. The short cores were first cleaned, 

photographed and their magnetic susceptibility logged. A single long core and two short cores 

were also element logged using an XRF scanner and photographed at high resolution when 

the material was much drier. These analyses used for… 

Sediment samples were then run for grain size analysis using a mass spectrometer and a few 

select samples were also wet sieved and studied and photographed under a light microscope 

for analysis of….  

Finally, analysis of the total organic and inorganic carbon content of diffuse banded silty clays 

was made using a LECA oven to establish the cause of the colour banding. 
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Figure 2.3: Flow-diagram of lab methods. 

 

2.5. Magnetic Susceptibility 

 

Each short core was logged using a Bartingon MS3 magnetic susceptibility meter with a 

handheld MS2E core logging sensor. This instrument sensed changes in an emitted low 

frequency, low intensity AC magnetic field when in contact with a sample; effectively 

determining how easily a material is magnetised. Readings are dimensionless, converted to SI 

units of magnetic susceptibility to a resolution of 2 x 10-6 SI units (Bartington, URL). On the 

probe, a rectangle just 3.8mm x 10.5mm in diameter is responsible for receiving 50% 

maximum response (Bartington, URL). With such a small sensitive area, measurements can be 
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taken at a very high resolution, employed here at either 0.1, 0.2 or 0.5mm intervals, depending 

on the thickness of sedimentary structures to be logged. Measurements were taken along a 

down core transect, following a line that best avoided discontinuities in the sediment. With 

the long axis of the sensor orientated perpendicular to the long axis of the transect, the probe 

was moved adjacent to a plastic ruler laid on the surface of the sediment. Preliminary 

experimentation to define the shortest measurement period required to produce replicable 

results signified. 5 seconds was sufficient and such was used for all core measurements.  

To minimise the influence of temperature drift on readings, all cores were allowed to fully 

equilibrate with room temperature before measurements began and blank air measurements 

were taken prior to and following core logging for subsequent correction. Preliminary results 

showed no significant drift type trends, further promoted by the fact the sensor itself was 

temperature compensated and the time taken to log each core only average 45-60minutes.  

An aspect of human error is induced by this method, as with any hand held probe, precise and 

stable positioning of the sensor at such small intervals can be problematic, especially when 

navigating the probe across cracks that had a certain degree of vertical offset. This resulted in 

small inaccuracies in the size and positioning of measured intervals. However, several cores 

were logged twice at different interval resolutions and results were well replicated, suggesting 

this error was not significant for the level of accuracy required. Discontinuities or cracks in the 

sediment were noted in a table alongside magnetic susceptibility readings and in some cases 

could be correlated with reduced magnetic susceptibility values. However many cracks had no 

significant effect on the readings, perhaps because the reduction in magnetic susceptibility 

correlated with an equal increase in susceptibility in the lithology, but most likely because the 

cracks were too slight to cause any perturbation.  

 

 

2.6. Grain size Analysis 

 

The grain size of bulk samples was analysed using a Beckman coulter LS 13 320 laser diffraction 

particle analyser. This measures the size distribution of particles suspended in liquid using 
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principles of light scattering. Working on the theory that a particle of a particular size has a 

characteristic angle at which it scatters light, the scatter pattern of grains in a sample cell, as 

a function of angle and light intensity or amplitude, can be summed to form a composite of 

particle size and volume, respectively. This instrument is set up to measure grains 0.4-2000um 

in diameter using a monochromatic laser diode (wavenlength 750nm), focused through a 

spatial filter and then scattered though a Fourier lens. The light is reflected off grains falling 

from suspension in a sample cell and collected by an array of photo-detectors recording a 

running average so when the measurement time has been long enough to attain a replicable 

flux pattern, the true particle size distribution is yielded. For particles sized between ~0.4 and 

0.017, which are beyond good resolution of diffraction pattern determination, a secondary 

system of Polarising Intensity Differential Scattering (PIDS) is employed which uses tungsten-

halogen monochromatic light source, projected through a set of filters transmitting three 

wavelengths (450 blue, 600 orange, 900 near infrared) through two orthogolonly orientated 

polarizers at each wavelength. Here the difference between scattered intensity of vertical and 

horizontal polarizations as a function of angle for the three wave lengths is combined with a 

measure of the intensity of unscattered light or obscuration to achieve volume percentages. 

These two methods are combined, with the latter increasing resolution up to 0.8um, to output 

continuous distribution curves of grain size in microns against their percentage volume.  

In pursuing this method, only a small sample of sediment was required and processing time 

was relatively quick. The sediment was treated to remove any organic material that may bind 

particles together and a sample representative of the bulk could be attained following a 

procedure that efficiently dispersed and maintained all grains in suspension whilst a small 

sample was removed via pipette. The following procedure details a specific method. 

 

1) A spoonful of wet sediment from each sample was placed in a plastic beaker with 

60ml of water. 

2) Two drops of calgon were added to each.  

3) Samples then shaken on a mechanical shaker for approximately 30minutes, followed 

by 10 minutes in an ultrasound bath. 

4) A magnetic stirrer was then employed to continuously suspend grains in solution for 

at least 10 minutes, before approximate 10ml samples were pipetted from beaker to 

test tube and loaded into the grain size analyser carousel. 
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It is important for the volume of suspended sediment in each sample to be kept relatively 

constant and imperative to regulate obscuration and PIDS values at the start of each 

measurement to achieve accurate and precise measurements. Monitoring of these values 

simply involved ensuring sediment concentration did not fall below….; above …, 

concentrations are too high and the internal system dilutes the sample itself. 

 

2.7. X-ray Fluorescence Scanning 

 

The elemental composition of three sediment cores was investigated using an Avaatech XRF 

core scanner under the guidance of Matthias Forwick. This scanner also took high resolution 

images of each core for comparison with the elemental logs. 

XRF scanning works on the principle that each element emits different fluorescence energies 

and wave length spectra when exposed to incident radiation. Electrons in their inner atomic 

shells are excited and thus ejected when exposed, creating vacancies that are filled by 

electrons falling back from higher energy shells; emitting surplus energy as a pulse of 

secondary x-radiation. The incident radiation in the Avaatech XRF scanner is generated 

through colliding electrons with a rhodium anode, consequently emitting Rh-radiation which 

fires through a chamber filled with helium before interacting with the sediment surface. The 

helium chamber also houses the secondary radiation detector, which acts to reduce frictional 

drag on the incoming radiation so to improve detection, most notably for the lighter elements.  

The secondary x-radiation is read as a ‘count’ which is essentially a measure of intensity. 

Readings do not therefore yield values of element abundance as the strength of intensity is 

also a function of the amount of surplus energy emitted by each element, which is significantly 

higher for the heavier elements such as iron.  

For all three cores the analysis was run using a 10kv voltage and 1000uA current source with 

no filter, suitable to achieve high and so reliable counts of elements ranging from Magnesium 

to Cobalt. The measurement time was set to 60 seconds, which was preliminary tested to be 

sufficient in obtaining strong enough counts. Measurements were taken from a 3mm x 0.5mm 
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rectangle, long axis perpendicular to core transect, at intervals of 0.5mm down core; following 

a transect chosen from the high resolution core images to best avoid discontinuities and 

uneven surfaces. Taking measurements from uneven surfaces and across cracks can 

effectively reduce counts, particularly for the lighter elements, as the x-radiation is exposed 

to a greater degree of friction in passing through air.  

To prevent contamination of successive measurements by the transfer of sediment particles 

at the base of the helium chamber, the sediment surface is covered in a 7um thick foil. All 

cores were relatively dry and were allowed to equilibrate to room temperature within the XRF 

container for 24 hours prior to scanning to avoid matrix effects described by Tjallingii et al 

(2007). 
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2.8. Sieving and Microscopy 

 

The mineralogical content of 2 bulk samples and 4 samples taken from short cores were 

investigated under a light microscope. Approximate 15g samples were first wet sieved through 

63um, 100um and sometimes 125um sized mesh and filtered through … um paper, depending 

on the grain size distribution of the sample. The dry weight percentage of each fraction was 

calculated following heating at 40degreesC for >24 hours. Each fraction viewed under the 

microscope was analysed for its composition, identifying and estimating volume percentages 

of minerals, and for mineral shape defined by its degree of roundness and sphericity.  

 

2.9. Total Organic Carbon/Total Carbon analysis  

 

To discern if organic content is the cause of colour banding in diffuse banded silty clays 

measured total organic content and organic content of 6 samples, 3 from dark bands and 3 

from light bands. – colouration of bands changed from field to lab, reddish bands became dark 

bands and blueish grey became light bands. Once completely dried there was very little 

distinguishable colour difference so reference photos were used to confirm/ locate original 

banding. 

Testing was carried out using the LECO CS-200 which uses infrared absorption to measure the 

quantity of carbon dioxide generated by combustion of the sample in an induction furness in 

a pure oxygen environment. 

Approximatly 2g of sample sediment were extracted from a dark and light band in sample 

cores Ad, Ae and Af. 
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3.  Stratigraphic Succession and Facies   

 

3.1.  Introduction 

 

The sedimentary succession at Spåkenes is first and foremost divided into deglacial 

glaciomarine and postglacial units as depicted in figure 3.1. The first, a thick succession of 

muds interbedded with silt-sands, much of which are intensely deformed, form the bulk of 

the cliff exposed as Spåkenes. These sediments are further divided into 6 informal 

stratigraphic groups based on structural and lithological trends. AMS radiocarbon dating of 

two shells of a Portlandia arctica and a Nuculana tenuis found in the same stratigraphic unit 

within the cliff confirms this ice front accumulation was deposited in the early Younger Dryas. 

The postglacial unit, which caps the very top of the section, is further divided into two groups 

that reflect discrete stages of reduced glacial input, both of which are traced in several log 

Figure 3.1: Above - Sketch of the cliff including, position of main sections A, B and C with stratigraphic groups, the locations of 
postglacial sections (marked by their waypoints) and the location of dated materials. Below – Photographs of cliff showing grey 
glaciomarine clays capped by postglacial sands and soils. 
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profiles across the cliff. Radiocarbon dating of a Mya truncata shell taken from the first sub 

unit of emergent coastal deposits ties these sediments to the Tapes shoreline transgression. 

A morphostratigraphical relationship is established between these deposits and an apparent 

wave cut platform and ridge topography of the cliffs surface. A final radiocarbon date, 

acquired from a sample of Birch wood, marks strictly terrestrial deposition of the second 

subunit that marginally predates the Little Ice Age.  

 

3.2. Framework 

 

The muds and sands of this succession are divided into the facies types described in table 3.1, 

based on grain size and either bed structure or deformation structure. Stratigraphical units 

are assigned in grouping beds that are similarly deformed or undeformed and subsequent 

analysis will group these units stratigraphically and apply facies interpretations to discuss 

dynamic environmental change.  

 

 Structure 

code 

Facies/ 

subfacies 

types 

Description Interpretation 

 a Ma Massive clay Suspension settling from 

distal meltwater plume 

Rhythmi

c  

b Mb 

 

Diffuse banded silty clay 

which may also comprise 

silt-mica sand laminations 

Suspension settling from 

meltwater plume  

M/Zb 

 p M/Zp 

 

Rhythmical laminasets of 

planar laminations that 

grade in thickness, maintain 

sharp basal boundaries and 

are internally graded.  

Cyclopel 

 

 

M/Zp2 

 

Disturbed cyclopel 
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M/Sp 

 

Cyclopsam 

Reworke

d 

m Sm 

 

Massive sand 

 

Debris flow 

 c SZc 

 

Silt-sands with complex bed 

structure 

Turbidity flow 

Deforme

d 

d M/Sd1 

 

Large recumbent fold 

 

 

Load induced large scale 

recumbent folding of sands 

in mud. 

  M/Sd2 

 

Small slump folds Slumping as a result of large 

scale recumbent folding 

  Mmd Massive, fractured mud Internal deformation by 

sediment slumping and 

delayed hydrofracturing as a 

result of large scale 

recumbent folding 

  Mbd Banded mud deformed into 

an anticline or monocline. 

Uplift by faulting in massive 

muds below. 

Highly 

Deforme

d 

f M/Sf 

 

Foundered sand bodies in 

banded mud 

 

Excessive extension and  

overturning  of recumbent 

folds 

 g M/Sg Fractured and sheared 

recumbent folds 

Brittle deformation of well 

stratified sand bodies 

 h M/Sh Highly extended recumbent 

folds 

 

Highly fluidised folding 

 

  q M/Sq Questionably deformed Undetermined mechanism 

 

Table 3.1: Structural codes and facies types of the glaciomarine unit 
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A stratigraphical log (scaled 2:1) is presented in figures 3.2, 3.3, 3.4 and 3.5. Sediments of the 

glaciomarine facies are very poorly sorted and difficult to categorise. Here, the dominant 

fractions, first derived from field evaluation and modified by subsequent grain size analysis, 

are utilised to assign the following divisions. 

L – colloidal clay    sZ – sandy silt 

zL – silty clay       zS – silty sand 

lZ – clayey silt      S – very fine sand 

Z – silt       FS – fine sand  

These divisions aim to assign discrete size categories to a continuous scale of sediments 

increasing grain size, in line with the Udden-Wentworth scale. The dominant grain size 

(capitalised) is determined as the fraction that is estimated to be abundant in >67% i.e. 

dominant in a ratio 2:1 (Folk, 1954). A minor lithology (lower case) warrants descriptive 

inclusion if it is in >10% abundance (Corner, 1977). This scale is shown to have been 

appropriate from subsequent grain size analysis. 

The log itself incorporates a sketch of the entire section, where silt-sands are coloured so to 

highlight complex and discontinuous structures within the drawing. This also aids the 

distinction between beds deposited by different sedimentary processes. Sedimentary 

structure is included in the drawing, as well as the position of dropstones, shells and shell 

fragments. An additional interpretive column logs several structural aspects that have proven 

important for interpretation. This includes recording the thickness of rhythmic banding where 

present; best visualised as relative and qualitative change in thickness, as thinner banded 

muds are shown to be typically more complex than assumed in the field. The thickness of each 

line, however, also corresponds with a size category of band made from field and photograph 

observation. Soft sediment deformation sequences are highlighted in blue with interpretative 

lines that allude to the mechanism of plastic movement. Brittle deformation usually occurs as 

a consequence of soft sediment deformation, therefore is only depicted within the section 

drawing itself as fault lines or shear planes, coloured red.  
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Log 1  
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Log 2 
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Log 3 
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Log 4  
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3.3. 3.2 Glaciomarine Unit 

 

The basal contact of the glaciomarine unit was not fully exposed, logged from 88cm AHT to 

1175cm AHT, where the upper limit of glaciomarine deposition is marked by a sharp and 

continuously traced boundary with postglacial sands. The poorly sorted sediments include 

grain sizes ranging from colloidal clay to very fine sand and characterise muds deposited 

directly from suspension settling of turbid meltwater plumes and silt-sands deposited by 

reworking mass flows.  

The glaciomarine unit presents the greatest challenge for subdivision as an estimated 70% of 

all sediments studied in section have undergone some form of insitu soft sediment 

deformation. Deformed units typically comprise a succession of ductile and brittle structures 

that reflect the progressive development of soft sediment deformation. The identification of 

deformation sequences has identified two facies that characterise sands and muds that are 

highly deformed and extremely deformed, respectively. These facies incorporate subfacies of 

structures that are typically found within a deformation sequence though may also occur 

individually in smaller scale units that are less intensely deformed. Each deformation sequence 

will later be discussed in terms of their developmental history. 

Between discrete deformation sequences, relatively undeformed, flat lying or undulating units 

comprise muds with rhythmic bed structure and interbedded silt-sands. Rhythmically 

structured muds are separable as two distinct facies, each of which comprise facies types 

subdivided based on their lithology. Silt-sand interbeds are interpreted as either turbidites or 

debris flow deposits and are categorised based on characteristic structures.  

The primary source for fine grained sediment in the glaciomarine environment are meltwater 

plumes (Hoskin and Burrell, 1972; Hoskin et al, 1978; Syvitski and Murray, 1981; Gilbert, 1982; 

Farrow et al, 1983; Elverhøi et al, 1983). Turbidities and related gravity flow deposits have 

been reported from glacial fjords (Holtedahll975; Gilbert 1982).   
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3.4. Rhythmic facies  

 

3.4.1. Facies b - Diffuse banded silty clay with silt-sand lamina 

 

Description 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.6: a) Planar diffuse bands with silty lamina 
associated with sharp reddish-grey band in couplet. 
Photo of bands in  Subunit 2. b) Undulating diffuse 
bands overlying planar diffuse bands and silt-sand 
interbed. Note reddish black band in coupley. Photo of 
bands in subunit 3. c) Core photograph of simple bands 
from subunit 3. d) Core photograph of complex bands 
from subunit 2.   
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Silty clay is the most abundant lithology, found throughout the section with a distinct colour 

banding in flat lying and also undulating beds. Banding is also preserved within plastically 

deformed muds. Colour bands typically comprise couplets of alternating reddish-black or 

reddish-grey and blue grey mud with occasional yellowish grey silt or sandy silt lamina. Their 

thickness ranges between ~1 and 7cm up section, and varies more subtly within beds.  

 A second banded facies type (M/Zb) contains additiona fine silty lamina or finely laminated 

sandy-silty interbeds, which associate with reddish-grey bands. In the field and in section 

photographs (figure 3.6) band boundaries appear relatively diffuse or the base of reddish-grey 

bands may appear slightly sharper, notably where coarser silts interlaminate. In core section, 

where the true nature of the boundaries is revealed from drying out of the sediment, bands 

with boundaries that appear sharper are in fact distinct and highly loaded. Others that lack 

laminated silts are indeed more diffusely graded, at least with respect to colour.  

The magnetic susceptibility of these sediments is higher than what would be expected for 

their grain size, correspondingly, their iron content is also interpreted to be greater than other 

sediments in core section. With respect to individual colour bands, there appears to be slight 

grain size variation between the reddish grey and blue grey bands, whereby the former has a 

higher volume of coarser grains. Clear fluctuation in magnetic susceptibility and elemental 

ratios highlight notable chemical differences, whereby the reddish grey bands have a lower 

magnetic susceptibility and higher abundances of iron and sulphur. There is no apparent 

correlation between the organic carbon, inorganic carbon and sulphur concentrations with 

band colour; constituting less than 0.1% of the sample. A trait that should be noted is the 

alteration of colour upon drying out of the sediment. Reddish-grey bands become dark and 

almost black, blue-grey bands on the other hand are light, very much like the interlaminated 

silt-sand sediments. 

Interpretation 

In the light of results from TC, TOC and TS analysis, the organic content does not appear to be 

likely responsible for differential colouring. Therefore, in connection with measured variation 

in iron content and magnetic properties, a difference in mineralogy is reasoned.  
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An abundance of magnetic minerals within sediment samples is arbitrarily detected from the 

mass of sediment that adhered to magnetic stirrers prior to grain size analysis. Magnetic 

susceptibility values are within the range of haematite and reddish grey bands that degrade 

to black bands with long air exposure, do contain more iron, in line with what would be 

expected for their colour association with haematite. However, these reddish-grey bands also 

possess a lower magnetic susceptibility than the blue-grey bands, suggesting a greater 

abundance of a more magnetic mineral in the blue-grey bands. Analysis of the mineralogical 

composition of the silt fraction of both bands under the microscope reveals the reddish-grey 

bands contain a higher percentage of dark mineral grains (identified as…), which alone could 

explain the colour distinction. From this it may be inferred the greater magnetic susceptibility 

of the light bands rather correlates with a greater abundance of magnetic minerals in the clay 

fraction.  

Such an apparent link with grain size suggests colour banding may have formed in line with 

suspension settling theory. The reddish grey bands comprise metallic silt size grains, which 

have a higher specific gravity with respect to quartz and mica mineral grains that compose 

much of the sediment, and bands are also slightly coarser grained; also associating with silt 

laminae and thin silt-sand beds. Blue-grey bands are characterised by grains with a lower 

specific gravity and so naturally, the sediments that form these bands would have settled from 

suspension more slowly than those that are concentrated in reddish grey bands.  

Having concluded these bands are the result of gravitational sorting by suspension settling, 

each couplet can be ascribed with a wax and wane of energy levels in the environment, 

depositing reddish-grey and blue-grey bands, respectively. The rhythmicity, so obvious in 

these sediments, clearly relates deposition to cyclical processes, which in the context of 

meltwater plume dominated environments, can relay through diurnal and seasonal variation 

in meltwater flux and wind vectors but also with influence from the tides on a semi-diurnal, 

diurnal and fortnightly spring-neap cyclic scale. The identification of dynamic facies 

associations and the clear influence of loading on boundaries and sequence stratigraphy, is a 

strong indication that these sediments were deposited very rapidly and most likely, therefore, 

correspond with diurnal fluctuations in meltwater discharge. A higher order of cyclicity, most 

likely related to seasonal variation in meltwater discharge, is observed with increasing 

thickness of diffuse bands up section. More complex diffuse banded sequences, which include 
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fine laminations of silt and silt sands, may record the influence of wind direction and or wind 

strength at a time when the meltwater plume was further reaching or simply fluctuations in 

sediment supply. 

 

3.4.2. Facies p – Rhymically laminated muds and sands 

 

3.4.2.1. Facies type M/Sp - Very finely-finely laminated mud and sand 

 

Description  

Laminations of fine sand and clay form 2-3 rhythmic sets in one unit, grading cyclically from 

clay with sand laminae only one grain thick, to clay with sand laminae ~0.3mm thick. Basal 

boundaries of the sand lamina are sharp and where sand lamina are thick enough, internal 

normal grading to clay can be observed. These lamina sets do not associate with diffuse 

banding, being lithologically distinct as a 

better sorted silty sand and colloidal clay. 

 
Figure 3.7: Unit 5 - Two lamina sets, defined by mud to mud bounded cycles. 
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3.4.2.2. Facies type M/Zp – Finely laminated mud and sandy silt 

 

Description  

Cyclical grading between mud with very fine sand laminae and sand with very fine mud 

laminae form rhythmic laminasets. Couplets of sandy silty and mud average ~2mm thick with 

a sharp basal contact and internal grading. 

 

Interpretation 

Several workers report very similar structures in rapidly deposited glaciomarine sediments 

(Molnia, 1983; Mackiewicz et al, 1984; Andrews, 1998; Stewart, 1998; Cowen and Powel, 

1990).  

Cowen and Powel (1990), in studying glaciomarine sediments at the tidewater terminus of the 

McBride glacier, report their formation in relation to the interaction between meltwater 

plumes and cyclical, diurnal tides. They model suspended sediments being only periodically 

released from turbid meltwater plumes at low tide, when horizontal current velocities and 

vertical eddies are reduced. Upon release, coarse grains fall most rapidly and so deposit the 

first lamina, succeed by a layer of flocculated mud. Each couplet, formerly termed a cyclopsam 

(clay and sand) or a cyclopel (clay and silt), would be repeated twice a day under semi-diurnal 

tides.  

Such laminations are also reported in Pleistocene deposits of the high Arctic, Antarctic and at 

temperate latitudes on Ellesmere Island in Arctic Canada (Stewart (1998), Antartica (Barrett 

and Hambrey (1992) and on Whidbey Island in Wahington State (Dormack), respectively. 

However, given the micrtidal regimes operating at these sites, laminations are not thought to 

be tidally related. The authors suggest daily and seasonal variations in sediment discharge are 

most likely responsible. 

Given that the tidal range in Lyngenfjord falls under a mesotidal regime, it is possible these 

sediments in study were tidally influenced. Rhythmically laminated sequences are not 

frequent in section; they are observed in only three small units. Therefore, in order the 
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meltwater plume to become tidally influenced, it would require a rapid and short lived 

alteration in environmental conditions, in the frame of the relatively high sedimentation rate.  

Differences in the grain size of coarser lamina between facies M/Sp and M/Zp correspond with 

cyclopsam and cyclopels, respectively, which normally correlate with distance down fjord 

from the glacial terminus; the coarser grains being deposited more proximally, where plume 

competence is greatest (Mackiewicz et al, 1984). 

 

3.5. Re-worked Facies 

 

3.5.1. Facies c - Interbeds with complex internal structure 

 

Description 

In the field, these interbeds are identified with non-rhythmic medium to thick laminae 

predominantly in silt-sand and are usually graded. Close examination of these deposits in 

sediment cores reveals far more complex bed structure, comprising a variable succession of 

subunits with planar, wavy and disrupted laminations, mud lenses and reverse and normal 

grading. Their lower and upper boundaries are sharp though typically possess load structures.  

Interpretation  

The complex bed structures of these deposits allude to flow related deposition and not simply 

suspension settling. Studying the base subunits of two such interbeds in core section reveals 

structure that is comparable with turbidite sequences generalised by Bouma and Stow for 

coarse and fine grains, respectively. Turbidity flows are reported for modern glaciomarine 

settings within two capacities. First, through the sinking of very dense, sediment laden 

meltwater plumes which form currents that hug the floor of the basin. Secondly, as triggered 

by load induced slope failure. 
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 Given the strong indication of bed slope instability throughout the section, referencing 

sediments that are intensely deformed or have clearly migrated laterally, it is appropriate to 

assume the latter scenario is most likely. 

The non-uniform sequence of bed structures, comparable between cores Ad and Af, is 

generally recognised, with these kind of deposits, to result from differences in distance from 

source. 

 

3.5.2. Facies m – Massive silt-sand interbed 

 

Thick, planar silt-sand interbeds, approximating 15cm thick where undeformed, punctuate 

beds of conformable sediments. Their lower boundaries are sharp and may include rip up 

clasts, however the sediment was so poorly consolidated and water logged that true 

observation of the boundaries was extremely difficult due to persistent collapse of the 

structure. Internally, these beds appear to have no other distinct structure; confirmed from 

analysis of the upper part of the bed in core section Af.  

Interpretation 

These beds have clearly been very disturbed, to the extent that no original bed structure is 

observed. Such re-organisation of grains most likely occurred during a cohesive debris flow, 

whereby muddy sands, moving as a slurry, are internally mixed. These flows may erode the 

bed and rip up clasts from the substrate below, and such possess gradational welding basal 

contacts (Benn and Evans, 2010). Such cohesive debris flows have been identified on glacially 

influenced submarine slopes (Laberg and Vorren, 2000; Dowdeswell et al, 2008c) produced by 

down slope disintegration of subaqueous slumps and slides. 
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3.6. Deformed Facies  

 

3.6.1. Facies d – Deformed muds and sands 

 

3.6.1.1. Subfacies M/Sd1 – Recumbent folding of mud and sand beds. 

 

Description  

Units of banded mud with silt-sand interbeds are deformed into meso or macro scale 

recumbent folds, such that fold axial planes are almost parallel to bedding. Beds appear 

repeated in vertical succession and, in some instances, fold limbs have been laterally displaced 

with respect to one another, effectively separating limbs and disintegrating the hinge zone. 

Each fold limb, termed lower and upper in relation to their vertical position, possess different 

secondary deformation structures. The upper limbs typically comprise secondary slump 

structures of facies type M/Sf2 and disturbed muds overlying the folded structures described 

by facies type Mmf.  The lower limbs, however, are often less internally deformed though may 

be fractured where mud is the dominant folded lithology; either with meso-scale fractures, 

highlighted as yellowish-grey dyke-like veins, or microfractures with a thrust sense of shear, 

offseting diffuse bands. 

The base of a folded unit is often sharp and corresponds with a lithological boundary, with an 

overlying sand. Internally, the original bed structure is typically well preserved, at least in the 

outer trace of the fold. Orthorhombic parasitic folds are common, especially influencing bed 

structures of the inner fold. It is notable that all folds described by this facies type have an 

approximate axial plane orientated west to east in cross section. 
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3.6.1.2.  Subfacies M/Sd2  - Chaotic slump folds of mud and sand 

 

These smaller scale recumbent folds, here named secondary folds, occur predominantly on 

the upper limb of some macro-scale, primary folds; mixing discrete silt-sands and mud bed 

components. The original, internal bed structure is no longer distinct, though some 

laminations can be discontinuously traced. Slumping is also evident in mud dominated units, 

only traceable due to type folds in silty sand lamina.  

In relation to the primary fold, the first secondary recumbent fold has an axial plane 

approximately orientated in the opposite sense. Away from the hinge zone, folding becomes 

more chaotic. 

 

3.6.1.3. 3.3.5.3. Subfacies type Mmd– deformed massive mud 

 

Description 

Muds that possess no diffuse banding, such that they appear structureless and are often 

dissected by dyke-like veins of yellowish-grey mud that correlate with mesoscale fractures. 

These muds are found in association with folded and slumped sand bodies, often forming thick 

units overlying upper limbs of recumbent folds. Fractures are typically orientated on two 

planes, dipping to the east and west respectively and prominent fractures are observed to 

create topography in the overlying units. 

 

3.6.1.4. 3.3.5.4. Subfacies type Mbd – deformed banded mud 

 

Description 

These are banded muds that are uplifted into anticlines or monoclines in association with 

faults in deformed massive muds below. They may also contain micro trust fractures observed 

as small off sets in one of more bands.  
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Facies Interpretation  

The subfacies observed in this facies sequence are primarily initiated by meso-macro scale 

recumbent folding in mud encompassing sands. These folds have axial planes orientated 

parallel to bedding, dipping in cross section to the east. From the character and setting of 

these recumbent folds, a form of load induced mass movement is expressed. Similar to those 

described for continental slope settings (Heezen and Drake, 1963), such folds are generated 

in an instance when pore fluid pressure is in excess, grain to grain contacts are significantly 

reduced, enabling sediments to behave momentarily like a thixotrophic liquid; slumping until 

grains reorganise and excess water is expelled. The sediment mass moves coherently as an 

increasingly overturned fold, under the influence of frictional drag, acting on the frontal base 

of the slumping mass (France).  

The oldest sediments are, therefore, contained within the core of the fold and the original, 

internal bed structure is generally well preserved. Slide planes, or decollments, are identified 

at the base of the fold, correlating with weaknesses at lithological boundaries. Gravitational 

gliding may also have been a factor in eroding some boundaries DeJong and Scholten, 1973) 

however, it is not possible to distinguish any indicative structures in section.   

In the instance of folding, the lower limb is more intensely compacted under the weight of the 

overturning fold above and may be subsequently fractured by mesoscale loaded faults. The 

upper limb, on the other hand, is typically characterised by further ductile deformation in the 

form of smaller scale slump folds with axial planes in the opposite sense to the original 

recumbent fold (M/Sf2) and massive muds that are clearly internally deformed from their lack 

of banded structure (Mmf). Further horizontal translation of these thick deformed units is 

apparent in inducing microscale thrust faulting and sharpening of basal lithological contacts. 

Finally, fracturing of overlying deformed mud unit (Mmf) occurs and it appears fluid escape 

may have resulted in these fractures being filled as clastic mud dykes. The dykes stem from 

slumped sand units and may have sequenced from large pressure gradients leading to 

hydrofracturing and injection of materials bursting from confined aquifers (Le Heron and 

Etienne, 2005; O Cofaigh, 2003). Offsets in banded muds typically overlying these units suggest 

faulting occurred subsequent to further loading under slow sedimentation rates. Fracturing is 

limited almost exclusively to these units, which has implications on the competence of mud 
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units in refraining from fracture when their structures are disturbed and mechanically 

weakened.  

 

3.7. Highly deformed Facies 

 

3.7.1. Facies f – Sheared and foundered sand bodies in banded mud 

 

Description 

Discrete, irregularly elongate sand bodies are found within banded mud that has been 

deformed. Sand bodies range between 10 and 50cm in vertical diameter and are distorted 

horizontally. Their internal structure is somewhat disturbed; laminations are coherently visible 

in some areas though deformed in a wave-like manner. Folds may be tracable, following the 

shape of the outer form. Encompassing the sands are banded muds whose bed structure is 

deformed around the sand bodies, where above the sand bodies, bands are flat lying. Bands 

may be offset by thrust microfaults and deformation may also deform underlying units.   

Interpretation 

Excessively overturned recumbent folds have been sheared laterally and foundered into 

banded muds. In accommodating these sand bodies, not only the banded mud, but also 

underlying thick sand beds below have been similarly plastically deformed, furthermore 

offsets in diffuse bands reveal microfaulting related to thrusting in the direction of inferred 

sheared foundering. The silt-sands incorporated into these forms clearly originate from an 

interbed within the banded facies given that flat lying diffuse bands overlie those that are 

deformed. 
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3.7.2. Facies g – Fractured and sheared recumbent folds 

 

Description 

Repetition of rhythmically laminated sand beds in vertical succession. This facies is identified 

twice in section, in one unit, the beds appear to have been previously joined, i.e. folded, and 

a horizontal fracture disturbs of the hinge zone. The lower sand beds are relatively 

undeformed with low amplitude undulations. The upper sand bed may be considerably more 

deformed in form and in internal sedimentary structure; laminations may be truncated, tilted 

and take on a stepped, wave-like appearance, which may associate with microfaulting.   

Interpretation 

Large scale recumbent folding of a rhythmically laminated sand bed accompanied by 

subsequent horizontal shearing along the axial plane of the fold caused hinge disintegration 

and perhaps separation of the individual limbs. The strong stratification of bed structures in 

these units may have promoted the preservation of their structure and influenced the 

mechanism by which they deformed; the higher sand content of these deformed units may 

have promoted brittle fracturing where the more plastically deforming interlaminated muds 

exerted control on bed folding. 

 

3.7.3. Facies h - Highly extended recumbent folds 

 

Description 

Undulating high amplitude recumbent folding in banded muds between and encompassing 

discontinuous sand bodies. In unit 35 these form a succession of vertically stacked folds 

roughly 20cm thick. Boundaries are sharp and most likely sheared.  
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Interpretation 

Fluidised recumbent folding of mud and thinner encompassing sands. Folds in the mud appear 

to be sandwiched between sand beds, suggesting lithological boundaries acted as slide planes 

for horizontal translation of these folds. 

 

3.7.4. Facies Q 

 

This facies is reserved for structures that are clearly deformed, but the mechanism of such 

deformation could not be interpreted. These include units 4, 10 and 23. 

 

3.8. Discussion and Interpretation of Stratigraphical units 

 

All muds that have not undergone internal ductile deformation possess rhythmic bedding 

structures either in the form of diffuse bands or laminations with silt-sands. Diffuse banded 

silty clay in particular is a facies that occurs persistently throughout the section, either as 

conformable flat lying units or incorporated into macro/meso-scale folds. Silt and sand grade 

sediments, on the other hand, are found in distinct beds and although they possess 

lamination, these repetitions are not rhythmic. High resolution study of some of these coarser 

deposits in core samples reveals these beds are in fact a sequence of subunits with flow 

related, chaotic structures, clearly relate such beds with turbidity or debris flow processes.  

Extending this interpretation to all units that are lithologically identical and possess the same 

loaded or sharp boundaries is not farfetched; coarse silt-sand sediments are only transferable 

into this environment via mass transport processes that redisperse sediments originally 

deposited much closer to the glacier terminus by melt water plumes. This assumption is 

supported by grain size analysis (chapter 4) and the low abundance of coarse silt-sand 

fractions with more diffuse contacts in the rhythmical beds deposited directly from suspension 

settling, underlining the inability of the meltwater plume to transfer such coarse grains thus 

far. In the light of this interpretation, all silt-sand beds that have undergone soft sediment 
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deformation are also inferred to be mass transport deposits. Furthermore, rhythmic 

sedimentation of muds is assumed to the norm and any absence of rhythmic structure in muds 

is an indication of post primary depositional disturbance.  

The stratigraphy of rhythmical muds and interbedded mass transport deposits can be 

differentiated into several facies associations that identify with relative changes in the 

sedimentation rate and such the influence of rapid loading and lithology on the degree of soft 

sediment deformation can be discussed.  

 

3.8.1. Group 1 – units 1-6 

 

These units that form the base of the succession have undergone considerably less meso-

macroscale soft sediment deformation than the rest of the section. Their mud beds are 

dominated by colloidal clays of facies Ma and mud banding is far less common. Rhythmic facies 

types M/Sp and M/Zp are described for two units, 1 and 5. Turbidite facies c are frequently 

interbedded and often possess load structured boundaries, often with flame structures and 

sometimes with pseudonodules. Debris flow facies m are very common in this subunit as 

conformable, undeformed beds.  

One unit of facies c stands out as being unique in this subunit and is discussed below. This unit 

associates with apparently fluidised mud; massive in structure with an erosive basal and well 

defined, loaded upper boundary. Depicted in sequence 1.0, such a structure is also seen on a 

mm scale, interrupting laminated facies in sample core Ad. 
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Figure 3.8: Pictures and sketch of deformation sequence 1. 

 

Deformation sequence 1.0 

This unit is interpreted as a turbidite sequence of particularly erosive flows that most likely 

occurred consecutively as part of a load induced mass movement.  

A sandy turbidite, composed of two normally graded units with continuous laminations of 

variable thickness, eroded and truncated an underlying diffuse banded facies with a 

somewhat inherent undulating topography. This bed is subsequently eroded by a seemingly 
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massive, fine mud, clearly truncating laminations of the underlying turbidite. An overlying thin 

and normally graded sand bed has a distinct loaded basal boundary with this underlying mud. 

There is a clear topographical control on the structure of these two former units, which is 

telling of how these lithologically distinct masses flowed. The mud bed is significantly thinner 

within the topographic depression, indicating the gravitational influence on fluidised mud 

moving downslope encouraged this unit to flow faster and overcome the depression. The 

loaded sand unit, on the other hand, is laminated over high relief and becomes more 

turbulently mixed down slope. Basal load structures are also most well developed within the 

depression where the bed is slightly thicker and sands are coarser. In this instance, the sand 

unit is greater influenced by turbulence, perhaps in the wake of the fluidised mud, and 

deposition is focused within the depression, implying frictional contacts between grains were 

much higher and reduced flow speed significantly. In line with ebbing turbulent flow, the sand 

bed grades diffusely into banded mud facies, and successive mud units continue to fill the 

depression, though with some ambiguous structure, until regular flat lying banded muds 

resumes.  

Analysis of grain size distributions and core data correlations of the laminated facies type 

M/Sp indicates the mud fraction involved is purely colloidal clay with very little input of the 

silty fraction present in the banded clays, Mb. The dominance of colloidal clay in all sediments 

in this subunit would suggest a weak meltwater source where sediment is being transported 

further or less energetically to reach this site of deposition. Occasional diffuse bands of silty 

clay may suggest episodic input from a secondary and more competent meltwater plume, 

effectively diluting the colloidal clay influx. Conversely it may also correspond with an increase 

in the competence of the same plume transporting colloidal clays.  
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3.8.2. Group 2 – units 7 to 15 

 

A change in the depositional environment is marked by the onset of regular banding in silty 

clays (Mb), in relatively thick units. Bands appear thin and regular from field observation; 

although study of sample cores show some, but not all, of these units are in fact more 

complexly bedded. Between units of Mb, with the deposition of silt-sands ambiguously 

associated with mass flows of facies c and m, thick sequences of muds and sand are intensely 

deformed (facies d).  

Meso-macroscale tight recumbent folds incorporate silt-sand beds, deforming them 

plastically within muds that still possess diffuse banding structure. Further progressive 

deformation of these structures, most likely in response to fold related loading where axis 

parallel to bedding effectively repeats beds, has resulted in slumping, water escape and micro-

faulting. One ambiguous deformation unit in this succession is not easily deciphered, however 

others can be understood in terms of their progressive formation mechanisms. 

Deformation sequence 2.0 

Above the coarser grained units of a turbidite bed, a sand interbed is folded within a seemingly 

massive mud. The sand bed in the lower limb has a highly sheared upper and sometimes lower 

contact, indicating lateral slip. The same sand bed in the upper limb comprises slump 

structures; mixing with the adjacent mud. These secondary recumbent folds have axis’s 

orientating in the opposite sense, closest to the primary folds axis.  
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Overlying muds, first incorporated into the slumps, continue to be massive in structure and 

are apparently fractured at bisecting angles, here no doubt exploited as mechanisms for water 

escape. This clearly very disturbed mud (Mmd) is overlain by banded mud (Mb), which has 

undergone postdepositional disturbance in relation to a clear mesoscale fracture in the 

disturbed mud below; the bands are uplifted into an anticline, with associated micro-scale 

thrust faults off-setting bands in the nappe of the fold. This suggests post soft sediment 

deformation fracturing, accommodated in the lower massive mud alone, was delayed and was 

perhaps initiated by subsequent loading of the banded muds and overlying coarser silt-sands. 

If these are in fact hydrofractures then excessive loading may have been responsible for 

further increasing the pressure gradient in these rapidly compacted and unstratified 

Figure 3.9: Deformation sequence 2.0 
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sediments to a threshold fit for bursting aquifers confined by fold structure. Fluid escape may 

be evident from the clastic veins that define these fractures. 

The boundary between this unit and the following, very ambiguous unit is somewhat unclear 

due to unresolved correlation across a step in the section, though Mb deposition was resumed 

prior to subsequent and unrelated deformation of the next. 

Deformed sequence 2.1 

This sequence is describe by the facies Q, in being difficult to decipher. Three lithologically 

distinct sediment masses are identified and appear to have behaved relatively discretely with 

very little mixing. Unit A, a body of laminated silt, appears not to have been extensively 

deformed by soft sediment processes. Its base is sharp and most likely erosive, internally it is 

very finely laminated in a band at its base but otherwise coarsely laminated, becoming 

convolute towards its exposed edge. This unit appears to have been eroded at its upper 

boundary and side by unit B, a fluidised mud, which has further incorporated some of unit A’s 

sediment into streaky lamina as flow departed from the top of the unit to erode its side. Sandy 

unit, C, appears to have moved over or within unit B as a frictional mass, eroding it and also 

incorporating it into sub-horizontal lamina. Conformable deposition of very fine banded muds 

successively caps this deformed unit 

It may be interpreted that Unit A first moved as whole sediment mass along a slide plane and 

here in section the head terminus of the mass movement is represented. Shock of such a 

movement could have liquefied overlying mud layers causing it to flow and transport overlying 

sand beds; a fluidised complex mass that overshot the end of the slide. The mechanics of this 

Figure 3.10: Deformation sequence 2.1. 
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mass movement are left unresolved however it is clear that this is a feature of load induced 

mass movement and was not formed by iceberg scouring given the planar basal contact of the 

unit. 

Deformation unit 2.2 

The structure of this unit easily identifies it as a large scale recumbent fold, described by 

subfacies M/Sd1; deforming two sand beds within a mud that is still obviously banded. Only 

the upper limb of the second sand bed included in the fold is visible in section, the lower limb 

is not traced though may coincide with the same sand bed as the first or incorporate the lower 

turbidite bed, facies c.  

 

 

 

 

 

 

 

 

Figure 3.11: Deformation sequence 2.2 
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Deformation sequence 2.3 

This final, sequentially deformed unit holds many similarities with deformation unit 2.1. 

Primary macroscale folding of sand interbeds within banded mud resulting in increased 

compaction of the sediments in the lower limb and secondary plastic recumbent folding in the 

upper limb, are characteristic of both sequences. In this case, however, there appears to have 

been a significant degree of lateral migration, causing sand masses in the lower limb of the 

fold to roll and deform into irregular shapes. Associated with these deformed sand bodies are 

meso-scale fractures, likely utilised as water escape structures. Close to the hinge in the lower 

Figure 3.12: Deformation sequence 2.3 
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limb, offsets in diffuse bands highlight microfaulting. Orthorhombic parasitic folds can be 

traced as mud laminations within the axial sands. 

 

Figure 3.13: Pictures of deformation sequence 2.3 

 

he secondary recumbent folds (subfacies M/Sd2), which mix the discrete sediment of the 

upper limb, follow the same trending structure as in deformation sequence 2.1, with axes 

oriented in the opposite sense to the primary fold closest to the hinge. The gentle topography 

created by these recumbent folds is inherited by an overlying complex sequence of turbidite 

sediments, facies c; interpreted from laminated sand and mud beds with sharp, planar basal 

contacts and variable grading. Perhaps related to this mass movement, beds above have been 

deformed in response to basal sliding. The position of the slide plane is inferred for the sharp 

contact between a thin sand bed and overlying banded mud, which is subtly deformed. Most 

of the deformation is accommodated firstly, within a less competent silt-sand unit possessing 
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an imbricated convolute slump bed structure, and secondly, within an overlying massive mud, 

comprising a layer of discontinuous and distorted silt-sand bodies that appears to reflect a 

progressively more disturbed convolute bed structure.  

The more regular appearance of mud bands in formable beds, bracketed by thick intensely 

deformed units is likely indicative of a much higher sedimentation rate on a steep slope, 

compared with the previous subunit. There is a notable link between the deposition of facies 

c and m and the units that are subsequently deformed. Colloidal clays are far less abundant, 

and perhaps somewhat diluted by the increased volume of silt. 

 

3.8.3. Group 3 – units 16-24 

 

The muds of this subunit are characterised by M/Zb facies, whereby banded muds do not form 

thick continuous, uninterrupted units, but instead associate with frequent thin to medium silt-

sand interbeds, in addition to several large and deformed mass flow silt-sands of facies c or 

m. Intense, meso-macro scale soft sediment deformation is focused in the much thicker silt-

sand units. Mud bands are also thickest at the top of this unit, therefore with an additional 

influx of coarser silts and the more frequent interbedding of mass flows, it may be interpreted 

that these units reflect higher sedimentation rates from more competent meltwater plumes 

on an increasingly less stable slope. The same fold-slump-fracture pattern observed in the 

lower unit is also observed here. 
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Deformation sequence 3.0  

The lower most deformed silt-sand bed in this sequence is described by facies g. Well 

preserved, coarse laminations in the lower most deformed bed elude to two distinct phases 

of plastic and then brittle deformation. First, a recumbent fold overturned the bed, orientating 

the axial plane parallel to bedding, along then which shearing occurred; sliding one limb 

laterally, relative to the other. The shear fracture is visible in section and associates with a 

localised disturbance of sedimentary structure. The upper and lower limbs are of similar 

thickness; the lower being slightly thinner, most likely due to compaction. Similarly, 

laminations in the lower limb appear less contorted than those of the upper limb. 

Interestingly, this recumbent fold is orientated in the opposite sense to those of the other 

units. Shear related folding is also apparent from ambiguous structures within deformed 

banded clay in the top of the unit.  

Figure 3.14: Photographs of deformation sequence 3.0. 
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Flat lying banded muds succeeds shortly 

before a thick sequence of rapidly 

deposited turbidites, facies c, with slide 

related flow structures ensues, leading up 

to a thick, deformed bed of silt-sand 

(facies M/Sd1). The thick sand bed 

possess recumbent fold character, though 

internally, its core is far more disturbed; 

much of the original bedding character is 

lost and individual limbs are indistinct. A 

minor secondary slump fold, facies 

M/Sd2, within mud astrides the upper 

limb, close to the hinge. Primary folding 

also incorporates discontinuous banded 

mud and disjointed sand bodies with 

sheared contacts, in the upper limb. 

Upward the mud becomes massive and 

fractured (facies Mmd) before thick mud 

banding recurs. Mud bands are deformed into 

a monocline as a result of movement on relatively large fracture in the massive mud beneath. 

Much like deformation unit 2.1, this implies time lapse between deformation events with 

fracturing and uplift of the muds occurring as a result of excessive loading on weakened mud 

strata.  

 

 

 

 

 

Figure 3.15: Sketch of deformation sequence 3.0 
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3.8.4. Group 4 – units 26-28 

 

This unit comprises a somewhat ambiguously deformed thick sand unit (facies q), over lain by 

M/Zp folllowed by M/Zp2. The latter two facies naturally divided into two sub units. A lower 

unit, comprising continuous planar laminations and an upper unit in which the same type 

laminations have been disturbed. A set of planar laminations is observed to become  

 

Figure 3.16: Pictures of group 4. 

disturbed laterally across the section, which supports determination of their original structure. 

Disturbance of these sediments may have occurred due to lateral displacement along a slip 

plane whereby the transient shock of movement caused slight reorganisation of grains and 

dewatering of the sediment. A massive, apparently fluidised mud layer, which does not follow 

the undulating topography of the undisturbed sediments below, may have acted as a slip 

plane for this sense of movement. Similarly, a secondary slip plane may be further identified 

up section as a fluidised mud in sharp contacted with sand.  

As interpreted for this facies, this unit represents a period of rapid sedimentation, most likely 

related to an episode of high meltwater discharge. 
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3.8.5. Group 5  - units 29-32 

 

The penultimate period of recorded glaciomarine deposition at this site is marked with an 

intense sequence of highly deformed, folds that have undergone a significant degree of 

horizontal translation and shear related distortion. Medium and thick silt-sand beds with thick 

banded mud characterise the discrete units incorporated into this succession. The degree of 

deformation increases up section and will be discussed as one deformation sequence. 

Notably, the sand interbeds incorporated into this sequence comprise a greater proportion of 

sand than silt.  

 Deformation sequence 5.1 

Highly fluidised recumbent folding and soft sediment sliding is thought to responsible for a 

consecutive sequence of high amplitude folds of facies h and a shear related foundering of the 

bodies of excessively overturned recumbent folds. All disturbed structures in this sequence 

preserve laminations with a unique wavy form in cross section and a zigzag form in plan 

section, clearly a characteristic unique to the mechanical properties of the sediment and 

intrinsic to this type of deformation.   

The most striking structures in this sequence are discrete, irregularly elongate sand bodies 

that appear to have foundered into and deformed a very thick bed of diffuse banded mud. In 

accommodating these sand bodies, not only the banded mud, but also underlying thick sand 

beds below have been similarly plastically deformed, furthermore offsets in diffuse bands 

reveal microfaulting related to thrusting in the direction of inferred sheared foundering. The 

silt-sands incorporated into these forms clearly originate from an interbed within the banded 

facies given that flat lying diffuse bands overlie those that are deformed. 
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Figure 3.17: Sketch of deformation sequence 5.1 
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Figure 3.18: Pictures of deformation sequence 
5.1 

 

 

 

 

 

 

Successive beds are interpreted as facies f, followed by facies h. The first is not obviously 

folded but inferred from the repetition of a rhythmically laminated sand bed in vertical 

succession. The lower sand bed is relatively undeformed with low amplitude undulations. The 

upper sand bed is considerably more deformed in form and in internal sedimentary structure; 

laminations are truncated, tilted and take on a stepped, wavy appearance, which may 

associate with microfaulting.  In this case the hinge of the fold or related thrust fracture should 

be located to the left, off section. Consecutive folds deform much thinner, discontinuous sand 

interbeds within clear folds of diffuse banded mud. Folds in the mud appear to be sandwiched 

between sand beds, suggesting lithological boundaries acted as slide planes for horizontal 

translation of folds. All boundaries in this succession are sharp and seemingly erosive in line 

with the discrete movement of sand bodies within mud.  
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3.8.6. Group 6 – unit 32 

 

The final glaciomarine sediments recorded in this section comprise muds that are not banded 

and are predominantly colloidal clay; facies Ma. A transition to such occurs across a unit of 

discontinuous, discrete sand and silts that are apparently slumped and subsequently faulted 

into subangular forms. These sands also contain a very unique form of zigzag lamination, 

shown in figure 3.19 which is most likely a result of relatively intense brittle faulting.  

 

Figure 3.19: 
Pictures of 
group 6 

 

 

 

 

 

 

 

 

The over lying thick clay is devoid of any observable structure and is interbedded with thick, 

discontinuous and deformed units of laminated clayey sand; perhaps here folded, clear slump 

structures are present in a second profile photographed and logged. A loaded upper boundary 

with laminated medium sands marks the transition to postglacial sedimentation. The return 
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of very fine clays, devoid of 

banding, in this final unit is 

suggestive of a reduced 

meltwater input. 

 

 

 

 

Figure 3.20. Picture of group 6. 
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3.9. Postglacial Unit 

 

  The first stage associates a diverse range of gravely, sandy and muddy facies that are variably 

rich in ice rafted diamictions and macro fauna, including the arctic species, Mya truncata. A 

second stage encompasses very organic rich silty soils and buried birch tree trunks, a facies 

that also associates with grey, silty mineral soils. The thickness of each facies varies greatly 

across the cliff face and somewhat correlates stratigraphically with morphological features on 

top of the cliff. Most prominent is a ridge ~1m wide, oriented semi-perpendicular to the cliff 

line. Correlating with gravelly facies in section this ridge is interpreted as a beach ridge 

associated with a wave cut platform. 

Distinct units of clay and clayey sand, which mark the end of active glacial input, can be traced 

across the whole of the cliff section, both in sediment logs, taken regularly along the top of 

the cliff, and through tracing beds laterally, easily picked out from an obvious change in colour.  

Overlying these units are the post glacial facies that are highly variable in terms of their 

sedimentology but can easily be cross correlated between profiles. The lowest stratigraphical 

units represent that of an emergent beach, containing large volumes of ice rafted detritus: the 

coarse fraction of diamictions ranging from gravel to large boulders.  

 

Figure 3.21: Picture of cliff 
showing the overlying glacial 
deposits. 
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In part, there is an apparent morphostratigraphical relationship between these facies and the 

topography of the cliff. Below a ridge, ~1m wide, running roughly perpendicular to the cliff 

cut, the stratigraphy is dominated by very poorly sorted gravels with a very small fine fraction. 

Interpreted as a beach ridge, these fines were most likely winnowed by currents that eroded 

its form. Either side of the ridge sediments diamictions comprise predominantly more sand 

and fines as well as abundant shells. Further north along the ridge, towards the main section, 

facies become predominantly sandy, subtly planar laminated and lack larger inputs of gravel 

and boulders. They are also largely depleted in micro and macro fauna.  

In the main section studied, the beach facies first comprise increasingly muddy sediments, 

thickly laminated from fine sands. Above which lies a gravelly mud with very abundant Mya 

truncata shells, closed and in full form. All shells were approximately orientated with their 

long axis parallel to bedding, as found in life position. Since gravely mud type sediments are 

typical of the habitats these species are usually found in modern sediments, it is likely that 

these shells are buried insitu. This is important to establish for control over a sample shell that 

was radiocarbon dated.  

Given that morphological features indicate the top of this cliff represents a wave cut platform 

it is likely that much beach stratigraphy was subsequently removed, notably those facies 

associated with a regressive shoreline. Directly on top of these beach facies, a sharp boundary 

identifies a switch to strictly terrestrial deposits. In the central parts of the cliff, these are very 

organic rich silty sediments, the top of which comprise very well preserved birch trees, a 

sample of tree trunk was extracted for radiocarbon dated. Profiles logged either side of these 

cliff central deposits correlate organic rich layers with thin layers of grey clayey silt. A 

transition to modern day accumulations of organic soil is difficult to identify above the organic 

rich facies, however, it is evident as a sharp boundary between the grey silts and overlying 

soils that conclude this section. 
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Figure 3.22: Log section of post glacial deposits taken at points along the cliff (fig. 3.1 for locations),  
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4. Chapter 4: Sediment Analysis 

 

4.1. 4.1 Introduction  

 

To truly understand the nature of sediments studied in section it is very important to study 

them at their most fundamental level. The mineralogical composition and granulometric 

texture are two inherent properties that are very revealing in aspects of determining sediment 

provenance, transport history and depositional processes. Ultimately, it is the mineralogy as 

a function of structural shape and hardness that has a major influence on which grain sizes 

are entrained, transported, deposited and reworked to form a final deposit. An imprint of each 

of these mechanical processes is therefore recorded, to some degree, in the grain size 

distribution of a sediment; often complicating analysis of genetically similar sedimentary 

systems. Mixing of sediments from different provenances or transport pathways also clearly 

introduces more complex character.  

Based on the analysis of approximated normal grain size distributions, distributions that 

typically infer high textural maturity, average grain size and degree of sorting, long utilised as 

paleaohydraulic indictors for current strength (Folk, 1980) and sediment reworking 

respectively, are statistically derived. In the glaciomarine environment, fine sediment 

distributions are notorious for being poorly sorted with distinct fining tails that distort 

approximations of a normal distribution. This makes statistical calculations, at least using 

graphical methods, far less reliable, falling short of truly representing the sediment as a whole. 

Using the average grain size as a hydraulic indicator becomes ineffective as the average is 

moved with negative skew to compensate for such a large fining tail. The fine grained 

distributions in this study are further complicated by a polymodality, defined either by a clear 

and well developed separation between modes or by modes that are spaced closer together 

and so merge to become less easily distinguishable. The nature of these sediments clearly 

requires alternative methods of description in order to better interpret their history. 

 



1-76 
 

4.2. Aims 

 

The primary aim of this sedimentological investigation is to investigate the granulometric 

texture of the facies types so to gain a better understanding of the processes that influenced 

their deposition. Before such analysis is carried out, an alternative method for analysing 

distinctly non-normal grain size distributions is explored, in an aid to grain a better grasp of 

the controls on granulometric texture in an environment where meltwater plumes are 

assumed to have an effective role in transporting and gravitationally sorting fine sediment 

through suspension settling.  This will be done though establishing a technique for effectively 

separating out modes in all grain size distributions to effectively resolve artificial skew and 

evaluating their geological significance. This grain size analysis has also been used to calibrate 

field log. 

 

4.3. Granulometric Analysis 

 

To describe sediment distributions through a set of directly comparable, standard statistical 

quantities, workers have refined methods to describe the average size (mean or median) with 

the spread (standard deviation or dispersion), symmetry (skew) and concentration of grains 

(kurtosis) about the average (Folk and Ward, 1957). These values may be approximated 

graphically, extracting at least 4 percentiles from cumulative frequency polygons (Folk and 

Ward, 1957; Blott and Pye, 2001; Wachecka-Kotkowska and Kotkowski, 2011), or determined 

mathematically using a method of moments (Krumbein and Pettijohn, 1938; Friedman and 

Johnson, 1982).   

An alternative method of analysis, which avoids imposition of standardised statistical 

categories, compares curve shapes of log probability to a normal, Gaussian distribution 

(Spencer, 1963; Kloven, 1966; Visher et al, 1965; 1967; 1969; Moss, 1962; Glaister and Nelson, 

1974; Middleton, 1976). These analyses recognise non-normal distributions are essentially a 

mix of a number of log normal subpopulations and imply large skewness values or measures 

of sorting, are in fact a measure of the degree of component population mixing.  In such a 
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case, it is the mixing of populations that causes variation in the mean and sorting values 

(Spencer, 1963). On these graphs, log normal populations are typically characterised by a 

straight line, and inflection points mark the existence of more than one overlapping log normal 

population (Visher 1969). Populations that are spaced very close together are highlighted in 

these probability curves as curvature changes rather than points (Harding, 1949). In frequency 

distributions, Folk and Ward (1957) illustrate that when more than one normal distributions 

is present, and when these distributions are less than one standard deviation apart, their 

bimodal character is not fully developed and the distributions effectively sum to develop an 

apparently unimodal grain size distribution with a marked skew or kurtosis. 

- Graphical explanation 

- Populations more than 1ᶲ standard deviation apart appear as separate peaks. 

However, if populations are more closely spaced, the peaks sum together and a 

distinct kurtosis or skew develops and the populations are less distinguishable 

Folk and Ward (1957) take this relationship into consideration and hence suggest the use of a 

greater number of percentiles to compensate for distinctly more non-normal distributions and 

indeed this does improve statistical description. However, in striving for statistical and 

standardised continuity, this method does not consider the sedimentological importance of 

these component populations. Workers that have identified populations from probability 

curves have found this extremely useful for sedimentological interpretation. Moss (1962; 

1963) identified three of them to correspond with modes of grain transport described by 

Inman (1949) and Bagnold (1956); surface creep, saltation and suspension efficiently sorted 

discrete size ranges of sand. In noting these transport mode populations, successive workers 

have applied factor analysis to identify sedimentary environments as defined by their domain 

transport mechanisms in an effort to genetically group, based on their size distributions 

(Kloven, 1966; Passega, 1957; 1967; Mason and Folk, 1958; Glaister and Nelson, 1974). 

Sediment reworking by winnowing currents has also been shown to alter size distributions of 

parent materials through preferential removal of specific grain size ranges (Schlee, 1973; 

Mclaren and Bowles, 1985). Another highly influential aspect in the development of 

subpopulations is a sediments mineralogy, firstly, with respect to sediment provenance and 

sediment maturity (Folk and Ward, 1957, Kile and Eberl, 2000) and secondly, as derived by the 

mixing of sediments from different sources or hydrological pathways. These relationships are 
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of course site specific and beyond external generalisation, however, need to be considered if 

the hydrological processes operating the environment to be studied are to be truly 

understood.  

It is clear, therefore, that investigating these populations may prove very useful for 

environmental interpretation of facies types and the distinct modality of the distributions in 

this study may be of geological significance. 

 

4.4. Sampling Bias 

 

Before any analysis is presented, the geological significance of these grain size distributions 

must first be discussed. From samples collected in the field, 30 were chosen for grain size 

analysis to best represent all facies. Care was taken to ensure samples were extracted from 

within bed structure, so to minimise contamination across obvious boundaries. Sampling 

across lithological boundaries both between beds and across bed structures would more than 

likely present as modality in a grain size distribution. Similarly, the same response could be 

introduced by very fine sedimentary structures that were not observed by eye. Such fine 

structures were observed in sediment cores, therefore 14 further samples were also obtained 

from cores. These sampled individual coarse and fine lamina of facies M/Sp, reddish-grey and 

blue-grey bands of facies Mb as well as sampling couplets of each, so the effect of sampling 

across bed structure could be evaluated. Units of reworked facies Sc and Sm were also 

sampled, though at the time of sampling, cores were still relatively moist and fine bed 

structure that was later apparent in the dry core was not readily observed at the time, so there 

is low confidence that these samples reflect single bed structures.  

 Despite the potential for cross contamination, it does not seem that this has significantly 

influenced grain size distributions. Figure 5.3 presents all grain size distributions attained and 

note all distributions fall into 5 distinct groups, with a final group reserved for distinctly 

polymodal distributions. The strength of these groups and the fact that each corresponds with 

a facies type, is evidence to suggest that, when plotted on a log scale (ϕ), any cross 

contamination that presumably would introduce variable degrees of skewness, across 
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distributions of different samples, is not significant. The distributions are likely to be already 

very poorly sorted and any cross contamination has a minor influence on the overall shape of 

the distribution. The effect of sampling across visible structure is noted in the ability to 

distinguish between facies of banded mud and of banded mud with silt-lamina, the presence 

of a distinct coarsening tail in the latter being very distinct from a sharp truncation in the 

former distribution. This however, was predetermined and once again there is distinct 

similarity between samples of the same group. 

On a metric scale, however, distributions are not as uniform in their tails; the phi scale has the 

effect of equalising the emphasis placed on variance in the fine and coarse grain size extremes 

(Krumbein, 1934). Such variance in the tails of distributions is welcomed as complete 

uniformity would suggest some form of measurement error considering the high potential for 

cross contamination of fine bed structures. However, the fact that the differences between 

distributions is not the truncation or severe reduction of tails but slight variation in the 

strength of modes, even with more precise sampling, suggests that these deposits are 

inherently poorly sorted and this is not a function of strong sampling bias. Given this 

evaluation, employing the following method should yield results that are of geological 

significance.  

 

4.5. Statistical Method 

 

From studying the modality of the grain size distributions on both phi and metric scales, it is 

apparent that significant data resolution is lost and modes or component populations become 

indistinct when a log scale is introduced. It appears these populations are spaced too closely 

and are too many to be precisely resolved by cumulative probability methods (Visher et al, 

1969 and others). A new method, therefore, aims to separate out and define populations 

whilst working on a metric scale.  

This method involves fitting each identifiable mode with a normal distribution so that the 

whole grain size distribution is effectively modelled, and any artificial skew is resolved, as a 

set of normal distributions. This was carried out for all samples using excel, whereby the 
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following standard formula for a Gaussian distribution was used to synthesise a curve that 

could be visually altered using the parameters of peak amplitude (A), modal particle size (b) 

and a standard deviation (c).  

f(x) =Aexp (-(x-b)2/2c2)  

The primary mode was fit first, with successively smaller modes being added only as required 

by the data. Each modal particle size, amplitude and standard deviation could be modelled 

either from a clear separation of modes or from following the falling contour of a peak or 

descending limb as successive modelled curves were subtracted. As successive normal 

distributions are idenfied and modelled they may then be summed together to emulate the 

original grain size distribution of the whole samples. This practice is depicted in figure 5.2 

where the primary mode has been removed to reveal the residual populations. 

Using standard sampling theory (Dell et al, 2002) it can be shown that there is a 95% 

confidence level in positioning the modal or mean grain size of the primary mode in these 

distributions to within 0. 5µm. This error of course increases with each new curve applied and 

broader peaks with large standard deviation values also increase the uncertainty in locating 

the position of modes. However, those curves with large standard deviations are incidentally 

located in areas of the distribution that comprise a larger number of data points, so their 

validity is somewhat increased in that respect.  

In applying this procedure, the principles of Occam’s Razor are employed, whereby a model 

with the fewest number of parameters is statistically the most accurate representation 

(Blumer et al, 1987; Mackay et al, 2003). Consequently, the aim was to reproduce the data 

with the smallest number of normal distribution curves that are statistically required to model 

the data. 

.  
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This method of analysing the data works under the assumption that each individual grain size 

population can be modelled by a normal distribution that possesses no degree of natural 

skewness or kurtosis. This is unlikely to be strictly true (Rogers and Schubert, 1963) but due to 

the polymodal nature of the distributions it is statistically not possible to separate out such 

values for each mode. Some degree of natural skew is normally removed by other workers 

studying coarser grains though prior filtering of grains size categories, in line with the phi scale. 

With such fine grains in this study, however, much of the deposit is beyond effective filtering 

and any natural skew is left unresolved. Determination of how significant such natural skew is 

in these deposits may be discussed in relation to the finest and most robust bimodal grain size 

distribution, represented by sample A7. 

In such cases where a clear separation of modes is apparent, it is found that introducing a 

degree of skew into the data does not yield consistent results. For example, sample A7 displays 

two clear modes at 0.3 and 1.7µm (figure 4.2d). Inspecting the mode peaked at 1.7µm, a slight 

negative skew is observed. Conversely, the mode peaked at 0.3µm associates with a very 
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Figure 4.1: A graphical explanation of how the number of modes and their statistical parameters were determined for a range of 
typical grain size distributions. Having subtracted the primary mode, subsequent modes are clearly identified in the remaining 
distribution. These are subsequently modelled so that summation of all modes formulates the original grain size distribution. Dotted 
lines represent the area of the distribution left with the subtraction of successive modes. 
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significant positive skew, suggesting opposing skews acting on the different particle sizes. A 

much simpler solution is to include a smaller normal distribution with a mode at 0.7µm. 

Summation of these three non-skewed normal distribution modes readily yields an acceptable 

fit to the observed data. Since the data in these cases can be modelled without any degree of 

skew or kurtosis, this procedure is adopted throughout all datasets to ensure statistical and 

experimental consistency. 

In applying this method to all sample grain size distributions, each can be described by a set 

of populations where each population is defined by a grain size mode, peak amplitude and a 

standard deviation. The volume (v) of each population can be calculated by multiplying the 

peak height by its standard deviation, i.e.  

V=Ac √2π 

Grain size distributions may first be analysed from the modal grain size of their primary 

population and inclusion of their minor modes can supplement description. These can be used 

in addition to calculations of mean and sorting to discuss environmental interpretations. 
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4.6. Results and Interpretation 

 

4.6.1. Grain size distribution description 

 

All distributions have been grouped into lithofacies based on the grain size of their primary 

mode and the shape of their distribution and are displayed in figure 5.3. When plotted on a 

phi scale (ϕ) the distributions are strikingly similar, only one grouping of all polymodal 

distributions less closely approximate each other. Each sample in each lithofacies is found to 

be from the same structural facies type; naturally the laminated facies M/Sp do not form a 

distinct group and their respective coarse and fine distributions fall into the other groups, 

namely groups 1 and 5. Three lithofacies are derived from distributions that share the same 

grain size of their primary mode and these are further subdivided based on the distribution 

shape. Lithofacies 2, comprising silty clays is subdivided into lithosubfacies 2a, b and c, based 

on variation in the volume of grains incorporated into a positive tail or skew, which are 

equivalent to respective facies type structures. Lithofacies 3 comprising silt-sand dominated 

distributions is also divided into lithosubfacies 3a, b, c and d from discrete variation in the 

degree of sorting, or the proportion of grains composing the primary mode, relative to the 

tails. 

Each lithofacies is assigned a descriptive name derived from their volume proportion of clay, 

silt and sand, whereby the grain size of the primary mode essentially provides the dominant 

grain size and the presence of >10% coarser or finer grains warrants descriptive inclusion (Folk, 

1957; Corner, 1977). In figure 5.3, supplementary information regarding facies types, such as 

discernable bed structures are also included.  

The populations derived from grain size distribution modelling are listed as a number of phi 

modes. Given the similarity between distributions of the same lithofacies the modal grain size 

of each population in each distribution were able to be grouped to within 0.5ϕ of each other 

and averaged to produce a set of modal populations that characterise a lithofacies. Of course, 

modelling was carried out on a metric scale and here the arithmetic grain size of each modal 

population has been converted to a phi unit for comparison with the grain size distributions, 
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also presented in phi space. The data has been presented in such a way so that it becomes 

apparent how much data resolution is lost in analysing log distributions. The number of modes 

identified in modelling on the metric scale exceeds the number that are identifiable in the log 

normal grain size distributions. 

Standard statistical parameters of mean and standard deviation are also included; calculated 

arthmically from percentiles taken from cumulative frequency plots as described by Blott and 

Pye (2001). Values are converted to phi for graphical comparison and are assigned a 

descriptive sorting parameter (Blott and Pye, 2001).  

 

  

Lithofacies 1 

Colloidal clay 

3 modes -  0.39, 0.7, 1.7 

Phi – 11.3, 10.3, 9.2 

(15 samples) 

 

Mean: 9.5ϕ 

St.dev: 0.63ϕ 

Sorting: 

moderately well 

sorted 

Lithosubfacies 2c 

Silty clay 

8 modes – 0.4, 0.7, 

1.7, 3, 5, 9, 13 

Phi -11.2, 10.3, 9.2, 

8.3, 7.6, 6.7, 6.2 

Diffuse banded mud 

(6 samples) 

Mean: 6.7ϕ 

St.dev: 7.9ϕ 

Sorting: extremely 

poorly sorted 
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 Lithosubfacies 2a 

Clayey silt 

Diffuse banded  

Phi – 7.4, 6.3, 5, 3.4 

(5 samples) 

Mean: 4ϕ 

St. dev. 4.3ϕ 

Sorting: Extremely 

poorly sorted 

Lithosubfacies 2b 

Clayey silt with silt  

Phi – 7.3, 6.2, 5.1, 

3.7, 3 

(3 samples) 

Mean: 3.4ϕ 

St. dev: 4ϕ 

Sorting: Very poorly 

sorted 

 

 

Lithosubfacies 3a 

very fine sand 

6 modes – Phi – 6.2, 

5.1, 4.2, 3.6, 3.2, 2.8 

(3 samples) 

Mean: 3.5ϕ 

St. dev: 4.7ϕ 

Sorting: extremely 

poorly sorted 

Lithosubfacies 3b 

silty sand 

Phi – 11.4, 9.1, 7.9, 

6.2, 4.8, 4.2, 3.5, 3, 

2.4 

(4 samples) 

Mean: 3.8ϕ 

St. dev: 4.9ϕ 

Sorting: extremely 

poorly sorted 

 

 

Lithosubfacies 3c 

Silty sand 

Phi – 11.4, 9.1, 7.3, 

6.2, 5, 3.7, 2.7 

(3 samples) 

Mean: 3.6ϕ 

St. dev: 4.3ϕ 

Sorting: Extremely 

poorly sorted 

Lithosubfacies 3d 

Silty sand 

Phi – 11.4, 9.2, 6.7, 

6.2, 5.3, 4.1, 3.8, 3.3, 

2.9, 2.7, 1.8 

(5 samples) 

 

Figure 4.2: All grain size distributions of sampled glaciomarine sediments categorised into distinct lithofacies, described by an 
average for both modelled parameters (left of cell) and standard statistical parameters (right of cell). Standard statistics are 
not calculated for the polymodal distributions of lithosubfacies 3d given the dissimilarity between distributions. Reference text 
for detail.   
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4.6.1.1. Grain populations  

 

In comparing the distributions as a set of grain size modes, it is apparent that several modes 

reoccur in several lithofacies. Notably, the dominant modes in lithofacies 1 are present in the 

tails of all distributions, except lithofacies 3a whose tail is not well developed. In order to 

access the geological significance of these modes, further work now treats each normal 

distribution as a population of grains, rather than a modal grain size, there by taking into 

consideration a population’s volume. 

The volume of each population in each sample was plotted against its respective grain size 

and the axis’ were logged to better observe spread in the data. In doing so, two relationships 

have been established. The first that populations with the same grain size mode are also 

consistently found in the same approximate volume, and second, that several groupings of 

populations can be identified with similar grain size modes, conversely there are grain sizes 

where modes are consistently absent. 

 

Figure 4.3: A log/log plot of the modal grain size and volume of all modelled populations.  Each sample distribution is coloured 

differently. The populations of lithofacies 1 are represented by three circle centres.  

Groupings of populations are most distinct in the silt grade where three can be easily identified 

and each group is also associated with a step increase in volume. These groups fall into 
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categories of coarse silt, medium silt and fine silt and, for descriptive purposes only, an 

average of the volume and grain size mode of each group is calculated with a +- error. The 

groupings are as followsin volume. The groupings fall as follows:  

Coarse silt - 53.5µm +- 3µm in volumes 273 µm2 +-106.5 µm2 

Medium silt - 31.5µm +- 7.5µm in volumes 114.1 µm2 +- 94.2 µm2 

Fine silt - 13.25µm +- 1.25µm in volumes 33.5 µm2 +-21.5 µm2 

Other groupings of populations may be discernable in fractions finer than silt and coarser than 

64 µm, however they are much more dispersed. For the finer fraction, certainly in modelling 

these distribution on a metric scale, some degree of resolution was lost at the extreme ends 

of the scale when most data was focused at the coarse end of the scale. This may account for 

some scatter in the data and could be resolved through filtering out coarse grains prior to 

modelling. 

The populations can also be investigated with respect to sorting, given by their standard 

deviation. A scale of sorting is observed across the subfacies of lithofacies 4; whereby a 

reduction in the peak height corresponds with an increase in grains incorporated into the tails. 

This relationship, however, is not established for their constituent populations, where 

generally the volume of each population is proportional to its amplitude. Analysis of the grain 

size distributions of a coarse and fine lamina from unit 5 make an example of this trend. Figure 

4.5 presents the grain size distributions of a coarse and a fine lamina sampled from core Ad, 

below, the populations modelled for each distribution are compared. Note that the same 

populations are present in all samples and the volume of each is reduced only with respect to 

the amplitude of the peak; the standard deviation of each population remains relatively the 

same. This suggests that these populations have a relatively consistent degree of sorting, 

alternatively put, they consistently comprise the same size range of grains. 

This has implications on the nature of grain populations. Detailed investigation of these 

findings is beyond the scope of this study. However, a compelling argument for mineralogy 

being the underlying influence in discriminating populations is made from a study of a small 

number of samples from which grain size analysis has already been performed. 
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Figure 4.4: top) Grain size distributions of a coarse grained (solid line) and fine grained (dashed line) lamina. Bottom) Modelled 

very fine silt to sand populations for both lamina with solid and dashed lines, respectively.  
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4.6.2. Populations of Minerals 

 

The mineralogy of the sand and silt fractions of four samples was investigated following sieving 

at 63um, 100um and where applicable, 125um; two examples are presented here for 

discussion, sample A26 and A30. Grains smaller than fine silt were beyond the resolution of a 

light microscope and thus theory can only be extended thus far.

 

Figure 4.5: Correlation of mineral abundances with mode populations. 
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Figure 4.6: Correlation of mineral abundances with mode populations. 

 

As seen in figures 4.5 and 4.6, and as true for all samples observed, there is a clear 

mineralogical difference between the fine sand fractions and the silts. From the photographs 

it is shown that the coarsest fraction in A30 (>100µm) and in A26 (125µm) are composed 

almost entirely of platy mica. In the respective finer fractions mica grains are all but absent 

and the fractions are largely dominated by quartz grains, estimated between 70 and 90% of 

the assemblage. The quartz grains are not uniformly rounded, with mixed fractions of well 

rounded, sub-rounded and angular grains. Several other minor minerals are also present. In 

the fine fraction, <63µm, of A26 there is an increase in the concentration of other minerals 

that are distinctly elongate or ‘rod’ shaped, some of these are thought to comprise amphibole 

and garnet is also present. Most abundant in the silt fraction of A30 is an assemblage of black 

metallic grains which have not been identified. 

In comparing the approximated proportion of these minerals in each sieved fraction to the 

grain populations derived from modelling, crude correlations may be made. The populations 

of fine sand are convincingly assigned to mica, in the absence of any other significant minerals. 
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Subsequent fractions in the silt grade, defined as populations of medium and coarse silt are 

associated with quartz, given its unequivocal dominance. More than one population of quartz 

is suggested under the observation that grains are present with more than one degree of 

roundness.  

In both samples, additional minerals are obviously left unaccounted for. If it is to be assumed 

that these minerals can indeed be correlated with mode populations then clearly some modes 

have not been identified by this method. This is not hard to conceive given that these 

populations are in minor abundance and that the modelling processes used here, in order to 

be statistically reliable, actively seeks to fit the minimum number of modes possible.  This 

impies that the method is statistically only significant in estimating the contribution of 

minerals present in large abundance. Incorporating further population into the model would 

require grain counting and measuring to correctly place it within the distribution.   

 

4.6.3. Discussion 

 

The very high abundance of quartz mineral grains in these sediments is usually indicative of a 

high degree of sediment maturity and such, of long distance transport, whereby other mineral 

grains that are not as hard are formerly eroded to clay. The ability, however, to identify more 

than one population of quartz with different degrees of roundness and note that these 

populations present as a polymodality in the grain size distribution, is evidence that these 

populations most likely originate from different sources. Grain roundness has long been 

directly associated with the distance travelled and such the degree of exposure to abrasion 

(Folk, 1951). The rounded nature of quartz grains is therefore expected if a long transport 

distance is inferred. It may be suggested that the more angular quartz grains originate from 

the same source or transport pathway that supplied the assemblage of minor minerals 

composing the finer silts, given that the presence of softer minerals is also indicative of little 

erosion. This may consequently relate the fine silt population to the sub-angular quartz 

fraction.  
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Given the immaturity of one of these mineral assemblages it is likely that these sediments 

were not mixed, much before entering the suspension settling environment. It may be 

hypothesised that the rounded quartz grains were previously transported and abraded by 

subglacial meltwater streams. The angularity of grains in a glacial environment is typically 

associated with till and perhaps suggests transport either supraglacially or englacially before 

reaching the glacial terminus. The assemblages may have entered the glaciomarine 

environment at separate effluxes as part of overflow or interflow plumes or it is possible the 

more immature assemblage was winnowed from the large terminal moraine abutting the 

glacial front.  

A third and very distinct mineral assemblage is that of the colloidal clays, present both as 

distinct facies but also deposited in lower volumes in coarser sediments. These sediments may 

well reflect contributions from another, more distal, meltwater source. Alternatively, in being 

the finest fraction, they may well be segregated as a discrete size fraction inherited from the 

process of mechanical erosion of specific mineralogies, most intensely ground at the base of 

the glacial. Further, it may be loosely postulated that the two very distinct modes in the clay 

and colloid fractions correlate with a fine fraction each associated with one of the two mineral 

assemblages defined above. Their deposition in lower volumes with coarse fractions may be 

a result of dilution by coarser grains, reduced input from a different supply source, or result 

simply from energy levels in the environment being too high for such fine muds to efficiently 

settle.  

 

4.6.4. Settling velocity of minerals 

 

The most striking relationship between the grain size and volume of grain populations is 

graphically presented also in figure 4.5. For silt and sand sized grades, a progressive increase 

in the modal grain size of each population correlates with an increase in its respective volume. 

In the sand grade, however, there is also a down turning trend where a grouping of coarse 

populations are present in lower volumes. As a function of depositional processes, the major 

linear trend is ultimately in line with what is theorised for suspension fall out where 

gravitational sorting favours settling of coarser grains and such they are present in 
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progressively higher abundances. Where these populations are defined as quartz in the 

samples studied, those populations in the sand grade that are of lower abundance are 

correlated with mica. It appears the distinct mineralogical difference between the silt and sand 

grades has had a major influence on their respective abundance. Mica grains, due to their 

platy shape, settle much slower than a spherical grain of equivalent weight; their much larger 

surface area to weight ratio allows them to drift like feather in air and so are transported to 

much greater distances (Doyle et al, 1983; Komar et al, 1984; Burroughs, 1985). Consequently, 

it would be expected that their abundance would be significantly lower than expected for their 

grain size, with respect to quartz. The assumption is therefore made that all sand populations 

that fall short of the linear trend are populations of mica grains.  

In making such interpretations, the trend identified in figure 4.5 is effectively read as a profile 

of settling velocity, where settling velocity is not only a function of grain size but also of 

mineral shape and such, of specific gravity. In line with experimental data, the grain size of 

settling quartz populations have an almost linear relationship with settling velocity (Baba and 

Komar, 1981). The mica populations, on the other hand, have a settling velocity that is 

apparently equivalent to those of medium silt sized quartz. This is in line with findings of Doyle 

et al (1983) investigating continental shelf and slope deposits and subsequently Komar et al 

(1984) for a graded turbidite. However, the former paper is contested by Burroughs (1985), 

and supported by references therein, in the light that erosion and entrainment of such grains 

is likely to have a significant effect on mineral grain abundance; instead claiming a settling 

velocity equivalent to clay. It appears here however, that mica is in much higher abundance 

than clay, in both suspension settling and mass flow deposits, despite the role flocculation 

may have played in increasing the settling velocity of clay. 

Intermittent transport and winnowing appear not to be processes that influenced these 

suspension settled deposits given the persistence of a fine grained tail; they quite simply, 

entered the environment suspended in a plume, from which they persisted to rain out and be 

deposited. This allows a true hydraulic equivalence to be determined between fine sand sized 

mica and medium silt, where hydraulic equivalence is defined by grains having an equivalent 

settling velocity (Rittenhouse, 1943). It may be further suggested that turbulence in the water 

column, that would otherwise have promoted the suspension of mica, was relatively low.  
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This theory can be further applied when studying figure 4.5 the distributions of a reddish-grey 

band, blue-grey band and band couplet comprise populations finer than medium silt as well 

as a mica sand population, but lack an intermediate coarse silt population. The absence of a 

coarse silt suggests this grain population was previously deposited, falling most rapid out of 

suspension closer to the plume efflux. The mica sand population, able to drift much further 

and fall at a much slower rate are so deposited seemingly at the same rate as medium silt, 

such that in figure 4.7, they are shown to be present in similar volumes. 

This compelling argument reflects the importance of grain shape on the settling rate of grains. 

Conversely, grain roundness appears not to have much of an effect on settling velocity when 

considering the strictly linear relationship between grain size and volume of angular and 

rounded quartz populations, in line with experimental findings (Baba and Komar, 1981). 

Theoretical implication that a hydraulic equivalence may also be applicable to populations of 

the finest silt grains that are tentatively linked to an abundance of rod-shaped minerals, is 

enticing given that grain sphericity is shown to have a significant effect on settling velocity (Le 

Roux, 1996). However, significant spread in these data gives poor constraint to such an 

assumption 
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4.6.4.1. Group dispersion 

 

The greater degree of data dispersion among mineral population groupings of mica sands and 

also of rod-shaped fine silts compared with the quartz populations is notable and could well 

be attributed to the method used for grain size analysis. Laser spectroscopy measures the 

concentration of grain sizes from grains falling in suspension, based on theory that a particle 

of a particular size has a characteristic angle at which it scatters light. For grains that do not 

approximate spheres, upon rotation, more than one axial face will refract light, effectively 

producing a spectrum of measured grain sizes for a single grain. Muhlenweg and Hirleman 

(1998) show that measuring grains that deviate from an assumed spherical form can introduce 

a significant 10-15% error, which would present as a broadening of the grain size distribution 

at its base relative to its height. These attributes are identified in the populations inferred to 

be composed of mica; possessing large standard deviation values relative to their low 

concentrations. If such an error is applied only to the mica populations here, there would be 

a considerable reduction in the volume of the respective populations, groupings may appear 

less dispersed and the downward curve would be affirmed. Furthermore, in reducing the 

apparent positive skew of the entire distribution, more precise positioning of the modelled 

normal distributions can be achieved, which may further reduce group dispersion. This should 

not, however, have too great an implication on the established hydraulic equivalence of these 

grains with medium silt given the volume range this grain size covers.  

Other causes for group dispersion may be of geological significance. In the finest silts, data 

dispersion may occur due to the fact that they are around the size limit that silt grains become 

no longer hydrodynamically sortable; where sediment behaviour becomes predominantly 

cohesive (McCave et al, 1995). This would effectively prevent mineral populations from 

separating out, making them poorly defined and most likely introduce a significant degree of 

natural skew.  
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4.6.5. Environmental Interpretation 

 

4.6.6. Statistical Parameters 

 

A relationship between grain size and melt water plume competence has been derived 

through an established link between the volume of grains (predominantly quartz) of each 

grain size, and settling velocity. Grains that are less easily held in suspension and settle much 

more rapidly and are so present in greater volumes. This trend, however, is somewhat 

discontinuous as there are several grain sizes that are consistently absent, most notably in the 

silt grade. The distinct mineral populations derived from the mixing of several sediment 

sources has, to some extent, enforced thresholds in this relationship, whereby specific 

populations are abruptly absent in a deposit, or at least insignificant, under incessant flow 

fluctuations. This may well have promoted the distinctly similar shapes of the distributions 

within facies. This implication being that flow competence may in fact be higher than 

suggested by the most voluminous grain size, but a lack of corresponding grain sizes in the 

environment has prevented such a level being recorded. Of course a variation or switch in 

sediment supply or local variation in grain dispersal patterns may also alter the populations 

that are present. This could equate for complex bedding structure in the diffuse banded 

sediments and variation in shape of lithosubfacies 2 distributions. But, clearly this does not 

apply to the variation between lithofacies given that the same mineral populations are present 

in the tails of the respective distributions.  

Despite these constraints, the median of the primary mode, or the mode that is present in the 

highest volume, is clearly the best indicator, in this environment, for flow competence. Taking 

a measure of the mean for each distribution, despite the use of multiple percentiles, would 

not achieve as accurate a representation. In this mind set, lithofacies will now be discussed 

with respect to flow competence, in reference to figure 4.2. 
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4.7. Description and Interpretation of Lithofacies  

 

4.7.1. Lithofacies 1 

 

Lithofacies 1 is defined as a discrete grouping of strongly bimodal colloidal clays. Sampling the 

finest muds at the base and at the top of the section, formerly described as facies association 

1 and 6, respectively, these deposits are interpreted to reflect meltwater plume deposits at 

their most distal extent, deposited in the lowest energy environment. Such a close 

resemblance between all distributions of this size may be considered unusual and perhaps by 

this term, poor resolution at this end of the spectrum, where measurements are made using 

Polarization Intensity Differential Scattering (PIDS) instead of analysing individual grain 

assemblages, may be suggested. However, it is likely these distributions are of some geological 

significance. Clearly defined peaks, at ~9 ϕ and 11ϕ, may be correlated with contribution from 

two separate sources, as also indicated by the mineralogy of the silt-sand fractions. 

Alternatively, it may be the modes represent platy disintegration and decomposition products 

(micas) and a colloidal population of crystallized materials (such as authigenic quartz). In 

keeping with the modelling process, a third minor population is also modelled to resolve the 

significant degree of opposing skews between the major modes. Confirming the 

sedimentological significance of these populations was not possible for such fine a fraction. 

The extremely fine grain size of this lithofacies naturally suggests that these sediments were 

deposited at a time when meltwater plume activity was at its least competent. It is likely these 

sediments represent the most distal extent of plume deposition. It should be noted that these 

populations are also evident in the fining tails of almost all coarser distributions. The fact that 

these strong bimodal distributions do not significantly change when incorporated into the 

coarser deposits suggests the clay fraction was not gravitationally sorted (Gorlich, 1986 

pp462). Furthermore, these populations are found to be present in volumes that generally fall 

in in line with the linear trend of the effective settling velocity profile for spherical quartz 

grains. The fact that these grains sizes are not more abundant may suggest that flocculation, 

a process that effectively increases the settling velocity of clay and colloidal particles through 

forming heavier cohesive clusters in the presence of electrolytes (Syvitski et al, 1987), was not 
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intensive. In depositing the pure colloidal clays of lithofacies 1, it is more likely flocculation 

played a greater role in settling. 

 

4.7.2. Lithofacies 2 

 

Lithofacies 2 comprise the highest volume of grains in the fine silt grade, sampled from the 

diffuse banded subfacies, bM.  Lithosubfacies 2b and 2c are distinct from 2a in that they 

possess a large positive tail of mica sands and some lesser contributions of medium quartz 

silts, in contrast to the sharp positive limb of 2a, shown in figure 4.9. The former lithosubfacies 

were sampled from cores where bands were interlaminated by slightly coarser sandy silts, 

where lithosubfacies 2a sampled so called ‘simple’ banding that lacked coarser input. The fact 

that mica sands are present in distributions that also contain small abundances of medium silt 

size quartz, but are absent in those that do not, may further corroborate the hydraulic 

equivalence of mica sands with medium silts in this low energy environment. 

The large volume of grains incorporated into the finer populations of these distributions, or 

the poorly sorted nature of these sediments, is evidence that these deposits were not 

significantly reworked by currents, which would have otherwise preferential removed finer 

fractions and improved sorting. A greater uncertainty in parameterising populations of the 

finer silts when modelling these distribution, especially for lithosubfacies 2a where no obvious 

modal peaks are presented, may be due to the fact that around this size limit, silt become 

cohesive and difficult to sort.  

With this in mind, it would appear these deposits are the result of sediments simply settling 

out of suspension from a meltwater plume with a moderate degree of hydrodynamic 

competence, placing this site perhaps more centrally within the radial dispersion of the plume. 

With the inclusion of medium quartz and mica sands in some distributions associated with 

more complex bed structure, it would appear plume competence also fluctuated over time.  
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Figure 4.8: Three distributions chosen from each subfacies of lithofacies 2 to show correlation of their primary modal peaks 

and note the differences in distribution shape. 

 

4.7.3. Lithofacies 3 

 

Lithofacies 3 comprise samples taken from silt-sand interbeds throughout the section; beds 

directly interpreted as turbidite and debris flow deposits. A division of four subfacies is applied 

to reflect discrete variation in the degree of sorting. However, note that the grain population 

present in the highest abundance in all subfacies is that of coarse silt-very fine sand. These 

sediments were transported to this depositional site by mass flows sourced much closer the 

glacial terminus. The fact that all samples share very similar peak grain sizes indicates first of 

all that meltwater plume strength was consistently only competent in transporting very fine 

sands as its maximum size limit to the site of mass transport initiation. Secondly, mass 

transport deposits therefore originated from very similar areas, defined by distance from the 

glacial terminus. Furthermore, mass movement was initiated in meltwater plume deposits and 

was not related to slope failure in glacial moraine. Finally, the variation in the degree of sorting 

and polymodality between lithosubfacies is most likely related to mechanical properties of 

type mass flows and the area of the bed sampled. These lithosubfacies are much better sorted 

than he diffuse banded lithofacies 2, indicating significant reworking and further cements the 

argument for these deposits originating from mass flows and were not directly deposited from 

suspension at the site in study. 

In addition to mass transport deposits, the grain size distribution of a sampled coarse grained 

lamina from subfacies l M/S unit 5 also falls into lithosubfacies 3a.  The fact that these coarse 

lamina are much better sorted than those deposited by suspension settling, typified by 
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lithofacies 2, highlights the influence of currents in shaping these rhythmically laminated 

subfacies.  

 

4.8. The glaciomarine environment 

 

When it is considered that lithofacies 1, 2 and 3 are interpreted to be originally deposited by 

a weak, intermediate and strong meltwater plume, respectively, a plume profile can be 

extrapolated and the site can be placed within a relative distance from the glacier. It is shown 

in modern glaciomarine environments that meltwater plume competence, or strength, 

decreases exponentially with distance from the meltwater plume efflux (Elverhoi et al, 1983; 

Gorlich, 1986).  

 

Directly over the site, the meltwater plume was both weak, depositing the finest colloidal 

clays, but for most part, moderately strong, depositing silty clays and clay silts with mica sands. 

Coarser silt-sands, deposited at greater proximity to the glacial terminus, were only brought 

to the site via mass flows. In distinguishing lithofacies 1 and 2 as very distinct groupings, it is 

obvious that no transitional forms are sampled; forms that would be expected with the waxing 

and waning of the plume. Given that mineral populations are present for this size range, in 

the tails of the coarser distributions, and are abundant in line with what is expected for their 

settling velocity, these findings must be related to the rapidity of change in plume energy 

levels. Failure to sample beds at which these transitions occurred is very plausible given that 
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it was not possible to distinguish these boundaries in the field. A lack of transitional forms 

between lithofacies 2 and 3 is to be expected given that lithofacies 3 is out sourced and beds 

are not continuous.  

At least two sediment sources are identified. One of very well rounded quartz grains and 

another of sub-angular quartz grains and fine silt sized, softer minerals. The former, clearly 

having undergone extensive erosion, is thought to have been transported by subglacial 

meltwater. The latter, being more akin to the degree of angularity associated with glacial till, 

is suggested to have been winnowed from the large terminal moraine located directly in front 

of the glacial terminus. The poorly sorted nature of particularly the diffuse banded lithofacies 

2 is evidence for no significant degree of reworking by currents, which would otherwise have 

preferentially removed the finer fractions (Folk, 1980). This indicates the sediments were 

beyond the depth of tidal influence and further, fjord circulation was very poor. Conversely, 

the variably better sorting of lithofacies 3, interpreted as debris and turbidity flow deposits, is 

further evidence that these deposits were influenced by currents. It is also mad evident that 

ice rafting played no significant role in depositing sediments over this site. 

4.9. Evaluation 

 

This method of analysing grain size distributions by their counterparts deviates somewhat 

from the classic approach. Grain size distributions are often analysed without much 

consideration of true sediment composition, which is shown to be a great oversight given the 

wealth of information such investigation has provided in this study. Of course the environment 

studied here is one that is apparently very simple and promotes ease of interpretation; fine 

sediments were transported into this glaciomarine environment, have fallen out from 

suspension to be gravitationally sorted and had only been reworked with respect to mass 

flows. However, gaining a better textural control over sediments in any depositional system 

in time and space ought to be revealing in aspects of sediment entrainment, transport and 

deposition. 

Resolving abnormalities in non-normal distributions here has ultimately allowed a 

comprehensive palaeoreconstruction of the glaciomarine environment; locating the study site 

within the profile of a meltwater plume that experienced rapid fluctuations in strength. It has 
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further lead to a greater understanding of the control mineralogy of the sediment load has on 

the resultant texture of the deposit. Revealing grain sizes that were consistently absent or in 

low abundance in the sediment and therefore, in the water column. The fundamental role of 

grain shape on the settling rate of grains is also highlighted; establishing a hypothesis of 

hydraulic equivalence for fine mica sands and medium silt sized quartz.  

Describing the sediment as series of subpopulations has somewhat discredited the typical 

descriptive terms applied to grain size distributions, such as mean and skew, which are not 

particularly useful in the textural analysis of such non-normal grain size distributions, other 

than for the purposes of categorisation. It is suggested, that a better estimation of energy level 

in this environment may be derived from the median value of the most voluminous mode as 

a more precise palaeohydraulic indicator than the mean. Describing sediment on their degree 

of sorting, defined as the degree of mixing of sediment populations or the level of sediment 

reworking, is a useful characterisation and in this case relates to depositional process with less 

of an influence from the maturity of the sediment load.  

From these results, it can therefore be concluded that such a modelling technique is effective 

in separating out grain populations, which are so clearly defined in the polymodal 

distributions. Performing volume calculations of each has proven invaluable for interpreting 

depositional processes. The modelling process itself has its limitations. Working on a metric 

scale, the finest fractions of the coarser sediments are poorly resolved and clearly fitting the 

minimum number of normal distributions to each has not accounted for all mineral 

populations. However, the strength of the population groupings is evidence alone for its 

effectiveness in portraying the polymodality that is so obvious in many of the sediment grain 

size distributions. A measurement induced error, which was not considered prior to analysis, 

is likely to have increased the uncertainty in parameterising certain populations; most notably 

the sand size mica. However, good constraint on the silt sized quartz populations, which are 

also, incidentally best constrained by a large sample size, promotes precise location of the 

median of the primary mode.  
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5. Chapter 5: Core Analysis 

 

5.1. Introduction 

 

Rhythmical bed structures are observed throughout the section, predominantly as facies of 

banded silty clays and banded silty clays with silty lamina, but also in units of finely laminated 

facies comprising sands and clay or silts and clay. As described by Otto (1938 p575) each 

lamination, or each band, represents an alteration of a physical condition on the smallest 

scale. Each lamination can essentially be considered a sedimentation unit that relates to a 

certain physical condition and repetition in sets indicate rhythmic repetition of a prevailing 

condition.  In a seasonally dominated environment, influenced by not only glacier dynamics 

but also interactions with the marine environment, with tides, currents, and also winds, any 

proximal glaciomarine sequence is likely to be structurally complex. In addition, the fact that 

suspension settling sediment may also contain contributions from more than one meltwater 

source, and that these sources have their own intimate relationship with their ambient 

environment, both the lithology and mineralogy of rhythmic sequences may vary considerably 

between facies types and indeed within facies types. A dominant bed structure is of course 

useful for elucidating the predominant environmental control on deposition, however minor 

structures may also be present that indicate influences that are further useful for 

environmental interpretation. 
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5.2. Aims 

 

It has been previously shown, through granulometric analysis and observation of the 

mineralogical content of sediment samples, that grain size fractions are associated with 

populations of minerals that are elementally distinct. These minerals have accumulated as a 

result of more than one meltwater source contributing to the sediment load. It may well be 

that any bed structure that records grain size variation may also be reflected in their 

physicochemical properties and that this will also reflect the variable contribution from 

different sources. This may present a means of studying not only visible bed structures but 

also those that are too subtle for the eye to see. 

The primary purpose of this core analysis, therefore, is to investigate methods of recording 

variations in bedding structure and also fine detail that is not readily observed in section or in 

sample cores. This will utilise X-ray Flourescence scanning (XRF) and magnetic susceptibility 

(MS) measurements in producing automated records for comparison with core photographs. 

It will analyse the effectiveness of combining different element ratios in recording different 

sedimentary structure and in doing so an analysis will be made of the usefulness of these 

methods in providing additional sedimentological information that is both precise and rapidly 

obtained. In doing so, an analysis will also be made of the elemental and magnetic properties 

of respective lithologies incorporated in rhythmical facies structures which may help elucidate 

to links between depositional sources 

 

5.3. Method  

 

A comparison was made between photographs of semi dry and dry cores in which visible bed 

structures could be observed and logged. These were then compared against continuous 

records of magnetic susceptability and element ratios formulated from XRF element counts; 

taken as discrete measurements along the same down core transect. The transects were 

chosen to best avoid surface disturbances, though cracks perpendicular to the core axis were 

unavoidable. A total of 10 cores were measured for magnetic susceptibility, two of which were 
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also scanned using XRF and will form the basis of this analysis; these cores are named Ad and 

Af. An additional long core that sampled the same unit as core Ad was also XRF scanned to act 

as a control measure so to improve the reliability of any established trends.  

In line with standard procedure, ratios of element counts were formulated for means of 

analysis. This is the most effective data processing technique for reducing instrumental and 

environmental noise, working under the assumption that any matrix effects introduced by 

through air measurements, if the sediment surface is uneven or cracked, or through water 

measurements if the sediment is moist, will be reproduced equivalently in the spectra from 

each element (Tjallingii et al, 2007). These background anomalies can therefore be removed 

by recording multiple fluorescent spectra simultaneously and presenting them as elemental 

ratios (Weltje and Tjallingii, 2008). 

Choosing those elements that combine usefully to reflect core sedimentary structure and 

character was achieved through comparison core photographs with several different possible 

ratios; assessing the structure of the automated data at different orders of magnitude. The 

same method is also applied in determining which element should be the numerator or the 

denominator in these ratios that are distinctly asymmetric, i.e. A/B or B/A.  

 

 

  



1-106 
 

5.4. Results from X-RF scanning 

 

The elements present in highest and, therefore, reliable abundances in all three cores were 

Iron, Calcium, Silicon and Potassium with minor contributions from Sulphur and Titanium. 

Table 5.1 displays the maximum count of each of these elements in each core respectively, in 

addition to their atomic mass; it must be noted that these counts are measurements of 

intensity and do not discern element abundance from their respective fluorescence yield, 

which is dependent on the elements atomic number. 

Element Atomic 

Number  

Ad counts Af counts 5c counts 

Iron 26 63,000 80,000 72,000 

Calcium 20 39,000 37,000 33,000 

Silicon 14 29,000 33,000 30,000 

Potassium 19 17,000 19,000 20,000 

Sulphur 16 8000 14,000 5000 

Titanium 22 5000 7000 6,000 

Other   <2000 <2000 <3000 

Table 5.1: The maximum element counts of the most abundant elements, with their respective element atomic numbers, in 
cores Ad, Af and 5c. Counts are said to be reliable if greater than 10,000.  

Naturally, counts of heavier elements appear higher than the lighter elements actually present 

in the same abundance. This effect is shown to be significant when the mineralogy of the 

sediment is considered. By far the most abundant mineral, forming >80% of the sediments, is 

Quartz (SiO2), but counts of the silicon are only half as large as that for the much heavier 

element, Iron. Deriving actual abundance values is also further complicated by the local 

environment of the excited atom which further modifies fluorescence yield, since the 

presence of ionic and covalent bonding can affect outer energy levels. 
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5.4.1. Element ratios  

 

Two element ratios have been chosen that usefully appear most responsive to lithology 

changes associated with bed structure; these are iron and sulphur and silicon and sulphur, 

both of which are very asymmetric. Although counts of sulphur are much lower than silicon 

and even more so for iron, this asymmetric relationship has proven most useful for drawing 

out both bed and finer structures. The sulphur is not continuously present in significant 

abundances down core; it is often either present in relatively high abundance or is almost 

entirely absent. Where abundance is high, it is the fluctuation in the sulphur element counts 

that draw out and amplify peaks and troughs in element ratios with iron and silicon, which 

strongly correlate with fine bed structure. Where sulphur is all but absent, fluctuations in the 

element ratios are clearly only a response to variation in iron and silicon and both these 

elements appear responsive to lithological change. Correlating fluctuations in iron with the 

magnetic susceptibility is also extremely useful.  

Ratios of other elements have also been considered with various arrangements of numerators 

and denominators, however none exceed the strength of the above ratios. Both calcium and 

silicon have extremely similar trends and when combined in ratios with sulphur show no great 

difference. Therefore only silicon was used for the purposes of analysis given the notably high 

quartz content in these samples. Ratios involving another abundant element, potassium, 

showed no greater correlation with bed structures, which may result from potassium being 

present in minerals of all lithologies.  

In taking element ratios, anomalously large structure that has clearly been introduced by the 

summation effect of all elements, is effectively cancelled out, clearly highlighting the 

importance of formulating element ratios. However, comparison of element ratios with the 

raw, element counts has also proven useful in determining the cause of peaks and troughs in 

ratios, i.e. whether peaks are a response to high sulphur counts or are primarily due to 

fluctuations in iron. 
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5.4.2. Correlation of discontinuities 

 

Down core discontinuities in the form of layer parallel to sub-parallel cracks interrupt true 

measurement of elemental counts at these interval depths; as they instigate through air 

measurements. Correlation of cracks with reductions in all element counts can be detected 

and therefore used to resolve the orientation of the cracks to measurement depth, with 

respect to the surface trace. In figures 5.1 and 5.2, cracks in the sediment cores are shown to 

correlate with all notable reductions in the element counts of specifically iron, silicon and 

sulphur. It should also be highlighted that many of these cracks correspond with lithological 

boundaries and the reducing effect of cracks on the elemental response cannot be truly 

known. Usefully these cracks allow strong correlations between these X-RF data and records 

of magnetic susceptibility and of course core photographs, giving good depth constraint on 

the true correlations of fine structure. 

The influence of an uneven surface on true measurements is thought to be significant for core 

5C. This core was originally included as a control measure, sampling the same unit as core Ad 

but in longer section, to allow evaluation of the reliability of core correlations between 

sedimentary structure and an automated elemental response. However, the data for the thin 

core 5c, is found to be far noisier than the other wider cores sampled, in that ratios reveal 

little obvious structure in relation to sediment grain size that is so apparent in core Ad. These 

results might have been anticipated given that, despite attempt to even out the surface 

without removing too much sediment, a flat transect was difficult navigate. In any case this 

core may act as a control and suggest the structure found in the wider cores, Ad and Af are 

true and are a result of a sufficiently flat measurement surface. Under these circumstances, 

core 5c will not be further analysed with respect to sedimentological significance.  
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5.5. Results 

 

Cores Ad and Af are analysed from the following figures where photographs of dry and semi 

dry cores are logged and correlated with their records of magnetic susceptibility, element 

ratios and raw element data for the most abundant and useful elements. 

Figure 5.1: Core photographs and core data for core Ad.  
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Figure 5.2: Core photographs and core data for core Af 
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5.6. Core Ad  

 

These cores sample two sets of very fine rhythmic laminations for facies M/Sp described for 

unit 5 in the field log, bracketed by chaotic sandy silts of units 4 and 6, Sc. Figure 5.3 

photographs the area first sampled by the plastic tray corer of Ad and the metal rod core 5c 

in place before extraction (note sediments that fill the base of Ad have dropped following 

coring).  

The three units observed in the field are identifiable from distinct trends in the core data. 

Furthermore, minor structures in the element ratios can also be directly correlated with very 

fine interbeds and may appear to trace individual laminae 

Unit 4 – 0- 7.7cm - Chaotic mud and sandy silt lamina- lenses (Sc) 

Identified as only one unit in the field, these chaotic strata in fact possess a much more 

complex stratigraphy that is only fully differentiated though comparing both moist and dry 

core samples. It is possible to observe three subunits that are also distinguishable from trends 

in the core data, shown in figure 5.1. The first subunit of sandy silt with mud lenses conveys a 

strong response, though interestingly, the magnetic 

Figure 5.3: Left – Photograph of area 
cored, in section. Right: Photograph of 
core when semi dry, taken using DSLR 
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susceptibility values are inverse to those expected for grain size, in that the mud lenses 

correlate with strong peaks in magnetic susceptibility. Furthermore, these data correlate with 

large peaks in the Fe:S ratio with respect to an increase in iron abundance, departing from the 

Si:S ratio which shows little variation.  

The overlying subunit 4.2 has an entirely different character. Following an abrupt reduction in 

the magnetic susceptibility and element ratios, a transition that is distorted in the core data 

by a crack in close proximity to this lithological boundary, all core data maintain low values 

while gradually increasing with no minor fluctuations in element composition. In the moist 

core a distinct boundary is visible below from a colour change and correlates with a marked 

increase in element ratios above the boundary, specifically with respect to increasing iron 

abundance as with the mud lenses of subunit 4.1. This boundary is not as readily visible in the 

dry core; similarly the magnetic susceptibility continues to increase across this limit. A third 

subunit is therefore derived for sediments between this boundary and a much clearer loaded 

boundary observed as a distinct grain size change in the dry core, which correlates with 

relative maximum magnetic susceptibility values and precedes a plateau in element 

composition. This subunit is interpreted to be normally graded, despite increasing magnetic 

susceptibility values; the association of these values with high iron abundance infers 

increasing iron rich mud content is instead responsible for their increase.  

Conclusively, the three subunits derived for this sand-silt bed are as followed 

Subunit 4.1 (0 - 4.5cm) – Sandy silt with mud lenses 

Subunit 4.2 (4.5 - 6.7cm) – Disrupted silty sand laminations 

Subunit 4.3 (6.7 – 7.7cm) – Normally graded with a distinct, loaded lower boundary. 

 

Unit 5a – 7.7 - 13.2cm – Diffuse banded silty clay (Mb) 

This facies is found throughout the entire cliff section and is of particular interest with respect 

to the cause of the colour alternations. Where banding is present, much like the mud lenses 

of subunit 4.1, element ratios are raised, particularly with respect to increased Iron. 

Fluctuations in the element ratios in response to bedding structure are of low amplitude 
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though are shown to be significant through exact correlation of peaks and troughs in the 

magnetic susceptibility. Delineating a common response in the core data to band colour, 

however, is complex, firstly due to the dynamic alteration in appearance these sediments have 

with changing moisture content; revealing differences in not only colour but also bed and 

boundary structure. Furthermore, what would be considered true diffuse colour bands, which 

in fact have distinct boundaries, are here interbedded with atypical muds with poorly defined 

boundaries in both dry and moist cores. Analysing only the few typical blue-grey and reddish 

colour bands, which present as light and dark layers in the dried out core, respectively, it 

would appear the light, blue- grey bands correlate with higher Fe:S ratios and higher magnetic 

susceptibilities. It may also be noted that the boundaries between diffuse bands recorded in 

the magnetic susceptibility are sharp and distinct, where in element ratios, they are more 

gradual.  

A thin interbed of brownish mud is also chemically distinct within this unit. Its base is poorly 

defined but correlates with low magnetic susceptibility values, typical of its grain size, and low 

element ratios with respect to increased sulphur abundance. Upward from this boundary the 

mud layer maintains a high iron content with respect to sulphur and silicon, suggesting this 

mud, which clearly originates from a different source, also incorporates diffuse banded 

sediments.  

Unit 5b – 13.2-25.5cm - Very finely laminated sand and mud (M/Sp) 

Naturally, these coarser sediments associate with higher magnetic susceptibility values and 

maintain the highest values where sand laminae are thickest and dominate the lithology of 

the lamina set. Variation in the magnetic susceptibility of these sediments is subdued in 

comparison with the other units, apparently insensitive to grain size variation between 

laminations; the curve is relatively smooth and lacks low amplitude, high frequency 

fluctuations. Assuming magnetic susceptibility here automates grain size, the bed can be 

shown to be comprised of two lamina sets that are lithologically distinct and show an overall 

reverse grading trend. The first laminaset forms from layered mud and silty sand, the finest 

fraction of the second laminaset has a much higher quantity of silt. Element ratios for this unit 

do not respond as intimately with these grain size trends but do highlight thin clay beds within 

the succession as high amplitude peaks corresponding with high iron and silicon and lower 
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sulphur abundances. The coarser laminaset sediments have typically lower element ratios and 

where distinct, individual coarse and fine grained lamina can be correlated with small 

amplitude peaks and dips in element ratios, respectively. A notable characteristic of this unit 

is the lack of departure between Fe:S and Si:S ratios which is apparent in the muds of the 

lower units, largely due to increase sulphur abundance with respect to iron and silicon.  

Between 24 and 25.2cm depth, a layer that is prominent in the core data as a calcium rich unit 

with iron rich mud type properties is not readily observed as a definite bed structure, other 

than a slight colour mottling in the damp core. 
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5.7. Core Af  

 

This core samples banded mud with thin silty lamina, facies M/Zb, corresponding with unit 8c 

in the sedimentary log. Its base includes sediments from unit 8b; a medium thick bed of poorly 

consolidated fine sand, interpreted to have been deposited by a debris flow. The top of the 

core comprises the base of unit 9; a somewhat chaotic unit of sandy silt and irregular mud 

laminations.  

Diffuse bands are present both with graded boundaries, where interlaminated, and with 

abrupt, loaded boundaries. One distinct and possibly significant trend in the data from this 

core is the nature of the peaks. Each peak, most notably in the magnetic susceptibility but also 

distinguishable in the element ratios, comprises from two 

minor peaks. This automated structure is not readily 

Figure 5.4: Left – Photograph of 
area cored, in section. Right: 
Photograph of core when semi 
dry taken using DSLR 
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observed in core photographs and does not correlate with lamina structures.  

 

Unit 8b –0-2cm - Structure-less fine sand – (Sm) 

Core data suggests this unit may in fact be reverse graded toward the top of the bed. In line 

with increasing magnetic susceptibility, element ratios increase but with higher frequency, 

low amplitude fluctuations that do not correlate with any visible bedding structure. 

Interestingly, this unit maintains the lowest magnetic susceptibility values for the whole core, 

despite comprising the coarsest sediments.  

Unit 8c -2-22cm Banded silty clay (Mb) 

Analogous with the diffuse banded silty clays of core Ad, there is a much greater response in 

the Fe:S ratio relative to the Si:S ratio, suggesting a greater abundance of iron in these 

sediments, and such the magnetic susceptibility appears consistently higher than would be 

expected for their grain size. In contrast, however, the colour banding here correlates with 

much greater amplitude fluctuations in element ratios, and when resolved with respect to Fe 

and S abundance and compared with magnetic susceptibility, the true chemical parameters 

of the diffuse bands are much better defined. Dark bands associate with low element ratios 

resulting from increased abundances of all elements, but notably sulphur. The lighter bands 

are formed from two alternating layers that are chemically different but both cause peaks in 

the element ratios. Most likely these layers correspond with grain size differences, 

differentiating silty beds, which associate with the reddish-grey silty clay bands, and blue-grey 

bands. The first light layer type is characterised by peaks in predominantly iron and sulphur, 

but also silicon, abundances that correlate with reduced magnetic susceptibility values. The 

second possesses low iron, sulphur and silicon abundances but high magnetic susceptibility 

values, inferred as the coarser grain size of the two. It is not easy to discriminate between 

these light layers from the core photographs, only the presence of faint, very fine laminations 

correlates with the siltier layers. 

Up core, between approximately 17.5 and 22cm there is a gradual increase in the abundance 

of sulphur with respect to iron and silicon, which correlates with a brown colouring of the 

sediments in the damp core. This trend is not emulated in the magnetic susceptibility. Dark 
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diffuse bands are visible and confirmed by strong characteristic troughs in the element ratios 

and low amplitude peaks in the magnetic susceptibility. 

Unit 9- 22-28cm – Chaotic sandy silt with irregular mud laminations (Sc) 

The much more detailed stratigraphy revealed in core section for this bed reveals a type 

sequence that correlates with units of Bouma and Stow turbidite facies model for a source 

proximal setting; dividing the bed into suboridinate units of a normally graded sand followed 

by a laminated silt-sand with reverse and then normal grading: grain size trends are well 

established through an intimate link with magnetic susceptibility. A sharp boundary is denoted 

as a sharp increase in magnetic susceptibility; a crack in proximity to this boundary is marked 

only as a small inflection in the curve. Element ratio trends are more subdued and are inverse 

to magnetic susceptibility; whereby the finer sediments have high iron abundance with 

respect to sulphur. However, erratic, high frequency, low amplitude fluctuations, which do 

not appear to correlate with visible bed structure, are integrated into both element ratios by 

variation in sulphur abundance. Iron abundance alone appears to much more closely follow 

bed structure and as such correlates closely with magnetic susceptibility. 

 

5.8. Discussion  

 

In correlating visible bed structures with the core data of both cores, the same lithologies can 

be observed to give the same elemental response. An important and identifiable feature for 

both these cores is observed when comparing Fe:S ratios with Si:S ratios. In figures 5.1 and 

5.2, this trend is most visually expressed by noting where the Fe:S ratio is raised higher than 

the Si:S ratio, and similarly where the ratios do not depart from one another. This trend 

effectively differentiates mud facies from the silt-sands and can be best understood by 

comparing elemental ratios with raw element counts.  

In banded muds, the Fe:S ratio is raised highest due to a greater abundance of iron; sulphur is 

only variably present and this is also true for the Si:S ratio and so does not account for the 

departure noted between ratios. In the laminated sands of facies M/Sp however, there is a 

significant abundance of sulphur, which is responsible for drawing out the fine structure 
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associated with laminae, and given the lack of departure between Si:S and Fe:S, there is also 

an apparent reduction in iron. This relationship, however, is likely not so simple. The 

alternation of sulphur rich and sulphur poor lamina, noted as dark and light lamina that 

correlate with peaks and troughs in the raw sulphur counts, which translate as troughs and 

peaks in the element ratios, respectively, is a characteristic that is also found by Galman et al 

(2009) in studying varves. They found darker laminae, associated with higher sulphur 

abundance in the form for Iron sulphide, were interlaminated with lighter laminae rich in Iron 

oxide, specifically Fe(OH)3. Their interpretation of oxygen poor and oxygen rich environments 

being responsible for this alternation, however, may not be so applicable here given the rapid 

nature of deposition that is implied by the stratigraphy in this study. Varying abundances of 

iron compounds are frequently utilized by workers studying varved lake sediments, where 

variations reflect seasonal changes either in the nature of the accumulating material, in being 

minerogenic or organic (Renberg, 1982; Odegaard et al, 2003; Bostick et al, 2005; Shchukarev 

et al 2008), or in diagenetic mineral cycling within the sediment (Ojala et al, 2000; Renberg, 

1982; Galman et al, 2009). The cause of the fluctuating iron abundance in the cores of this 

study is likely to reflect the detrital mineralogy given the very low organic content. 

In identifying two distinctly different magnetic susceptibilities within the bands it is possible 

to infer the presence of a magnetite type mineral in the iron rich banded muds and associated 

light laminae of facies Mb and M/Zb. Indeed an abundance of iron with a high magnetic 

susceptibility is implied by the fact that the mud has a greater iron response and a magnetic 

susceptibility that is comparatively higher than would be expected on the basis of grain size. 

A similar trend is also noted in the cyclical grading of laminasets from thin dark to thick dark 

laminae in M/Sp, though the larger grain size of the Iron sulphur layers, having a much weaker 

magnetic moment, appears to have masked finer fluctuations in the magnetic susceptibility 

and has instead created a distinctly uniform response.   

The apparent raised abundance of iron in the banded muds compared with the laminated 

sands, visualised as the departure between Fe:S and Si:S ratios, may, therefore, result not 

from the presence of more iron rich minerals, but from the greater number of iron atoms 

bound in the form of magnetite in the muds, relative to the number of iron atoms bound as 

an iron sulphide in the laminated sands. Of course, the interpretation of iron being abundant 

in more than one oxidation state has implications on the raw element counts themselves, as 
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the presence of ionic and covalent bonding can influence the outer energy levels of an atom 

and so modify the fluorescence yield. 

There is also a correlation between mud banding structure and strong fluctuations in Fe:S ratio 

that are apparently controlled by the presence or absence of sulphur; again sulphur is here 

responsible for revealing fine structure and where sulphur is present, in relation to the 

reddish-grey bands, the magnetic susceptibility is comparatively lower. This suggests that 

although all mud banding contains greater abundances of a highly magnetic iron, abundance 

varies between bands and is reduced in the reddish-grey bands, and in addition, reddish-grey 

bands also comprise sulphur most likely in the form of Iron sulphide. Percavil et al (2003), who 

also investigate very similar colour banding in mud, find the same variation in the magnetic 

iron content of individual bands related to fluctuation in the abundance of magnetite (Fe3O4) 

and the appearance of haematite (Fe2O3) in reddish-grey bands. It is therefore possible that 

the highly magnetic iron oxide in these cores also corresponds with magnetite, with the less 

magnetic layers being a mixture of iron sulphide and/or haematite. Results from the analysis 

of the organic and inorganic sulphur indicate no great difference in the sulphur content 

between bands, finding total sulphur content forms <0.08%, with average organic sulphur 

content of <0.06%. 

In summery of these findings, it is interpreted that: 

 Facies M/Sp contains laminations of an Iron oxide, probably magnetite, and Iron 

sulphide 

 Banded muds, Mb and M/Zb are enriched in iron, where reddish-grey bands have a 

relatively lower content than the blue bands and also contain smaller amounts of Iron 

sulphide. 

It is likely that the different iron compounds incorporated into these facies, reflect 

contributions from different sources. In making this assumption analysis can also be made of 

mass flow facies Sc and Sm where both Iron oxides and Iron sulphides are incorporated in 

variable proportions and may well have implication on the source of the mass flow deposits.  

In addition to observable structures, automated structure apparent in the magnetic 

susceptibility and also element ratios of Af and also other sample cores, may record fine detail 
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that is not readily seen by the naked eye. Where each peak is formed of two minor peaks, it 

could be postulated that this reflects a sequence in which grains of different mineralogy’s fall 

out of suspension, where each band may be expected to be very subtly graded in minerals 

with different elemental compositions. Alternatively, and perhaps more likely, this may reflect 

a more intricate cyclicity further imposed on the deposition of banded mud.  

5.8.1. Conclusions 

 

The ability to directly correlate magnetic susceptibility and elemental ratios in describing 

uniform responses to respective lithologies across both cores is evidence that these data are 

very reliable. Cracks at intervals down core prove very useful in correlating records across the 

depth, more so than lithological boundaries given their often diffuse or heterogenic nature. 

This has promoted good correspondence between the observed sedimentary structure and 

structure in the automated records and may have highlighted sediment structures that are 

not readily observable by the naked eye. It is likely that very low amplitude fluctuations in 

elemental ratios may translate as noise stemming from slight irregularities in the surface of 

the measured transect. Similarly, magnetic susceptibility readings may be subject to the same 

form of noise, and perhaps further amplified by irregularity in the vertical depth (core 

thickness) given the probe measures susceptibility over a greater sediment thickness. These 

potential sources of error, however, appear not to have significantly influenced the results. 

Furthermore, instrumental and air drifts appear not to have been substantial.  

The elemental ratios, naturally, are much better at highlighting fine structures than 

measurements of magnetic susceptibility, largely due to the fact that the latter is also 

inherently influenced by grain size. This relationship is obvious in unit 5b, facies M/Sp, of core 

Ad where magnetic susceptibility only records large scale grading trends and is otherwise 

relatively smooth, and conversely low amplitude peaks and troughs in elemental ratios 

highlight individual laminae but fail to respond dramatically to grading. This highlights the 

usefulness of attaining both records for a more comprehensive view of sedimentary structure. 

Due to the resolution of the XRF data, determining rhythmicity in the laminations would not 

be reliable as in some instance it can be seen that where lamina are spaced closer than 0.5mm 
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apart, their peaks sum to form a single trace in the elemental ratios. Similarly, internal 

structure of individual lamina is not confidently discerned.  

The use of an asymmetric element ratio in drawing out fine structure and a method of 

comparing element ratios that both share a common element has proven very successful in 

gaining insight into the compound nature of the respective elements, which has given good 

control for facies characterisation and offers potential for determining sediment sources and 

underpinning relative source contributions related to respective depositional processes. 

Comparing photographs of cores when semi-dry and dry has also proved useful for 

distinguishing colour boundaries from subtle grain size boundaries, which are important for 

correlation and interpretation of core data. Furthermore, it is evident that there is much fine 

bed structure in facies Sc that was not visible in the field. The moisture content of the sediment 

and the ambient lighting clearly here playing an important role in making the structures 

visible. Without these cores, it would not have been possible to confirm interpretation of 

facies Sc and Sm as turbidity and debirs flows. 

It is concluded that, as a means of automating rhythmical sedimentary bed structure, attaining 

and combining XRF and magnetic susceptibility datasets is an extremely useful and precise 

method for recording lithological variations, where fine and coarse fractions are 

mineralogically distinct or sources are highly variable. It has also proven valuable in 

highlighting structures that are not necessarily visible to the naked eye. In further study, XRF 

measurements taken at higher resolution may be further able to discern variations in lamina 

thickness and character that has not here been possible. 
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6. Environmental Interpretation 

 

The glaciomarine unit is described as a thick succession of suspension settled muds, deposited 

from meltwater plumes, which are frequently interbedded with sandy mass flows deposits. 

Between conformable beds, discrete units have been in intensely deformed, often into large 

recumbent folds with complex structure. Suspension settled muds are observed in three 

distinct structural facies, namely massive clays, rhythmically banded muds and rhythmically 

laminated muds with sands or silts. The coarser grained deposits, attributed to mass flows, 

are indentified as complex structured turbidites and massive debrites.  

The fine grained nature of these deposits, and that fact that there appears to be no quartz 

coarser than very fine sand in any of the lithofacies suggests firstly, that these deposits were 

deposited distally from any ice contact systems and secondly,  that mass flows were initiated 

from slide scars in suspension settle deposits and not from coarser tills. There is also perhaps 

an implication of a palaeoslope given the frequency of mass flows and the degree of insitu soft 

sediment deformation. Such a slope may relate to that of a prodelta, alternatively it may also 

be a result of localised irregularities introduced by underlying bedrock or till (pers. comm. 

Corner, 2014).  

Several mud units have abundances of drop stones, indicating some degree of ice rafting, 

which could also be responsible for introducing additional fine material; though evidently, 

from the lack of significant diamict texture, such processes were not a dominant influence in 

shaping these deposits. These deposits are, however, very poorly sorted. Grain size analysis 

reveals strong fining, and sometimes coarsening, tails in most distributions and a distinct 

polymodality or skewness. It is postulated that such poor sorting is a result of mixing of mineral 

populations, derived from different meltwater sources. Certainly, from core analysis it appears 

facies can be associated with different element compositions, indicating variation in the 

mineral assemblages that where introduced into the water column, under different facies 

regimes. The interaction of more than one meltwater source may well be expected given this 

is typically observed for modern glaciomarine environments (Chu et al, 2009).  
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It may also be derived from such analysis that different sediment sources were dominant in 

the deposition of at least two of the three mud facies types. The nature of the rhythmic facies 

will now be discussed with respect to depositional regimes, responsible for the dissimilarity in 

rhythmic structures, before sediment sources are discussed further.  

 

6.1. Rhythmic facies 

 

Sediment fallout from meltwater plumes appears to have been influenced by two different 

regimes of suspension settling, responsible for producing either rhythmically banded muds 

(Mb) or finely laminated sets of muds and silt/sands (M/Sp). Banded muds clearly dominate 

rhythmical sedimentation of the glaciomarine unit. Laminated facies are present in only three 

small units, each consisting of 2 or 3 cyclic laminasets. This suggests a prevailing condition of 

mud banding with episodic events of laminated deposition, most likely associated with higher 

sedimentation rates; as laminated deposits typically are (Pers. comm. Corner, 2014).  

In modern environments, episodes of increased meltwater discharge are frequent throughout 

a melt season; caused by the frequent and sudden catastrophic drainage of supraglacial lakes. 

These drainages are shown to cause localised acceleration of ice over short time scales 

(~24hours) (Das 10 et al., 2008; Hoffman et al., 2011), through speeding the transition 

between subglacial cavity and channel configurations, as described by Schoof (2010). Chu et 

al (2009), in studying the response of meltwater plumes to lake drainage by their areal extent 

for the Greenland Ice sheet, concludes not all lake draining events directly influence meltwater 

plumes, which may explain why laminated facies are not more common in this area. Further, 

Chu et al (2009) also find, when there is a plume response, draining events usually equate to 

heightened plume strength lasting a few days. This increase is imprinted onto daily 

fluctuations in the meltwater supply that are established through strong coupling between 

the surface of the glacier and the base of the glacier with the establishment of hydraulically 

efficient pathways, during the melt season (Shepherd et al, 2009). As the laminated facies 

typically comprise two or three laminasets, it may be suggested these short term increases in 

meltwater supply had a longevity, conceivably, of 2-3 days.  
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Mud banding, however is not as common in 

glaciomarine sediments. Percival et al (ed. 

2003) report mud banding in the Leda clays of 

Canada in a prodelta setting of a deglacial 

sequence. Though they offer no explanation as 

the cause of this diffuse structure, they do 

investigate as to the cause of the colour 

differentiation. As postulated in this study, 

they find reddish-grey bands enriched in 

haematite and trace amounts of magnetite in 

the blue-grey bands. Other workers have 

reported banding through personel 

communicaton in both marine and fresh water 

environments though all share a same 

common factor, in being related to temporary 

deglacial water bodies (Percival et al, ed.2003). 

A proposed mechanism for the formation of 

these bands may be that these deposit relate 

to suspension settling through a weakly 

stratified water column, in which sediment 

rain out was almost continuous; as sediment is 

allowed to diffuse between the plume and the 

ambient water column, with no obstruction 

from large density contrasts (Kollman, 1980; Abraham, 1965). Laminated sequences are 

typically associated in modern environments with well stratified water columns, in which 

sediments are held in suspension and only periodically released. This results in improved 

sorting and a distinct separation of sands or silts from a layer of flocculated mud. (Syvitski and 

Murray, 1981) find an increase in plume strength results a plume with better integrity, which 

further supports an argument for laminations deposited under increased flow conditions. 

Furthermore, incorporation of a greater proportion of sands into the laminated facies type is 

further evidence for a more competent plume. 

Figure 6.1: Lønne (1995) 



1-126 
 

Such a diffuse plume could be associated with a prodelta setting, the same environment from 

which Percival et al (ed. 2003) report banded muds. Lønne (1995) present figure 6.1 and 

highlight the nature of plumes emanating from different efflluxes. Note the broader zone of 

meltwater plumes emanating from the delta fronts compared with the direct ice efflux. A 

broader zone of meltwater streaming may conceivably result a localised dilution of saline 

waters, breaking down any strong stratification and potentially establishing a wide zone of 

brackish waters.  

 

6.2. Mass flows and Soft sediment deformations 

 

There is an intimate relationship between rapid loading from mass flows and subsequent soft 

deformation; where mud units devoid of mass flow deposits are left entirely undeformed. This 

alludes to episodes of rapid deposition being the trigger for soft sediment deformation in 

slopes that are critically unstable, most likely a result of longer term high rates of 

sedimentation. It may also highlight the influence of changing physical properties of the 

sediment on bed stability. Clearly, lithological boundaries have acted as weaknesses, forming 

decollments along which slump sliding has occurred; primarily between a sand unit and an 

underlying mud. Both muds and silt-sands have deformed plastically, though some disruption 

of the internal structure of sand beds has likely come about through friction contacts between 

silt and sand grains (Ben and Evans, 2010). Undulations apparent in the beds of some banded 

muds may have served as nick points exploited for the initiation of folds. (France). 

Rapid sediment loading clearly had a major influence on boundary and large scale deformation 

sequences, though other triggers of both mass flows and sediment slumping may also be 

considered. The influence of rapid sea level fluctuations associated with the tides may have 

periodically exacerbated sediment loading. Earthquakes associated with isostatic rebound 

could also have triggered slope failure. In this quiet fjord setting, oceanic waves are not 

thought to have been significant; though potential shock waves created by iceberg calving 

could have occurred.  
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6.2.1. Spatial and Temporal patterns of sedimentation  

 

Major wax and wane of meltwater plume strength, interpreted from a coarsening of muds 

from colloidal clay to silty clay at the base of the section, and a fining at the top of the section, 

is evidence to suggest that all glaciomarine sediments exposed in the cliffs at Spåkenes may 

have been deposited within one year, and for the most part, within one intense meltwater 

season. Meltwater plume activity is significantly reduced, if not entirely ceased, in the winter 

months (Chu e al, 2009) of subpolar and polar systems.  Whether the colloidal clays at the 

base of the section reflect reduced winter plume activity or the beginning of the melt season 

following cessation is unclear.  

Good connection between the surface and base of the ice during melt season is shown to 

allow rapid translation of diurnal fluctuations in surface melt to ice velocity (Shepherd et al, 

2009, Fountains and Walder, 1998; Mitchell and Brown, 2007; Anderson et al, 2003) and the 

areal extent of meltwater plumes (Chu et al, 2009). Rhythmical sedimentary sequences related 

to diurnal fluctuations in meltwater plume strength would therefore be expected in their 

deposits, once good connection is established.  

Rhythmicity is chiefly recorded in this study by diffuse bands in silty clay, found throughout 

the section and thought to correlate with subtle alternations in melt water plume strength. 

Associating these bands with diurnal fluctuations, it may be interpreted that the colloidal clays 

at the base of the section, which also feature occasional diffuse bands, may correspond with 

increased meltwater supply but with less well established englacial and subglacial hydrological 

pathways. The onset of true diffuse banding resulting from better developed pathways and 

perhaps subglacial channelized flow (Werder et al, 2013). Conversely, at the top of the section, 

final glaciomarine deposition before complete cessation is marked by a much sharper 

transition from diffuse bands into purely colloidal mud.  

The thickness of diffuse bands increases significantly up section, reaching their thickest around 

the onset of cyclopel deposition of facies association 4, thought to relate with greater plume 

integrity and a higher meltwater flux with respect to sediment load. This trend suggests 

meltwater delivery increased gradually through the melt season, reaching its maximum before 

a relatively rapid decline. This trend is also reflected in the coarsening upwards of mass flow 
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deposits through the section, culminating in the deposition of fine sands up to the abrupt 

transition into colloidal clay. This obvious saw-tooth trend is entirely dissimilar from what is 

typically observed in modern melt season dynamics. Chu et al (1990), in studying the 

Kangerlussuaq Fjord outlet of the Greenland ice sheet, record melt area and plume area as a 

decline gradually through September, across melt seasons between 2000-2007. They also 

ascribe a hysteresis between meltwater supply and plume area as a result of sediment supply 

exhaustion. Neither of these trends are implied here, there appears to be a stepwise reduction 

in plume strength, which is neither, indicative of gradual sediment exhaustion or of a gradual 

reduction in surface melt and a closing of hydrological pathways associated with seasonal 

reductions in air temperature and precipitation. Instead this melt season has diverged entirely 

from being climatically controlled, meltwater volume continued to increase before an abrupt 

shut down, most likely coinciding with a dramatic reduction in ice volume and a retreat of ice 

from behind the terminal moraine. Vast amounts of meltwater are inferred not only from the 

thickness of these glaciomarine deposits and the incredibly high sedimentation rate, but also 

from the textural nature of the terminal moraine itself, in being rich in fine grains it is 

characteristic of a meltwater laden deposit (REF).  

Well established connection between the surface and base of the glacier, capable of 

depositing diurnal bands is therefore not far-fetched given the vast amount of meltwater 

being released. Shepherd et al (2009) report relay times of just 2 hours between peak surface 

melt and maximum ice velocity for the Greenland Ice Sheet; such an order of magnitude may 

be extrapolated here as opposed to the 6 day relay time reported by McGrath et al, 2010 

between ice ablation and a meltwater plume response.  

Of course there are other factors that may have had an influential role in depositing the 

sequence of diffuse banded muds, causing them to deviate from their diurnal ties and 

introduce complex banding structure. The delivery of surface melt water to the base of the 

glacier and to its terminus integrates numerous poorly constrained processes, including 

meltwater refreezing and englacial and subglacial water storage (McGrath et al, 2010), which 

alter the residence time of meltwater transport and delays or prolongs a plume response. 

Furthermore, there may be processes operating in very rapidly deglaciating ice that are not 

considered.  
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The presences of very fine laminae within a single diffuse band is also evidence to suggest 

rapid alternations in the plume environment, perhaps on the order of hours. Such short term 

fluctuations may be related to changes in the strength and direction of winds in influencing 

the plume trajectory or integrity (Stumpf et al, 1993; Whitney and Garvine, 2005). Fjord 

circulation is thought to not have been a factor in influencing the deposits at the study site, 

since there is no suggestion of winnowed fines and further, the indication of such poor water 

column stratification implies no sharp density differences, required to set up circulatory 

motion.  

 

6.2.2. Spatial and Temporal patterns in slope instability  

 

With the identification of facies associations, there is also apparent temporal variation in the 

frequency and nature of mass flows as well as in the nature of soft sediment deformation. 

Such variation may be linked to the progressive increase in structural instability ensued by the 

continuous rapid loading of sediments on a slope.  

The most influential factor controlling the deformation structures that develop appears to be 

the rate of sediment loading on the slope. Extremely rapid loading, inferred for the top of the 

section, group 5, appears to associate with highly plastic flow forming markedly extended 

recumbent folds and extreme overturning of recumbent folds that resulted in the detachment 

and subsequent foundering of sand bodies into mud. A slightly lesser degree of loading, 

though still high, typifies most structures observed in section, with a distinct facies of 

progressively deformed units that all present with the same ductile and brittle characteristics. 

Such lower slope instability is somewhat inherited from instability in the upper slope when an 

intimate link between rapid sediment loading from mass flows and soft sediment deformation 

is established.  Distinct from other groups in being relatively undeformed, the base of the 

section is characterised by a relatively low sedimentation rate of colloidal clay from a weak 

meltwater plume, such that thick mud units are absent between mass flow deposits. Instability 

up slope from the study site, where a plume load was clearly deposited, is inferred from the 

occurrence of mass flows of sandy silt. 
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There is an implication here of higher sedimentation rates up section in line with increased 

thickness of bands perhaps not only through over loading of slopes but also through increasing 

slope gradient so the critical angle of muddy sands was more frequently reached.   

 

6.2.3. Timing of Deglacial event  

 

Radiocarbon dating of two shells, a Portlandia arctica and a Nuculana tenuis, both extracted 

from the same unit, 7, conveniently found at the onset of regular diffuse banding, has yielded 

dates of 11,259 ± 38 BP and 11,040 ± 36 BP, respectively. Given these dates were attain from 

shells in the same stratigraphic location in suspension settled sediments, a  

Figure 6.2: Møller (1987). 

 

minimum error of ~145years between these dates is likely to have been introduced. 

Plotting these dates on a shoreline displacement curve, modified from Corner and Haugane 

(1993) where Holocene sea level curve is based on coring of isolation basins and 
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supplemented by radiocarbon dating of shells at Aspvatnet, it can firstly be seen that these 

dates marginally predate the onset of Lo main shoreline development. This is slightly earlier 

than a radiocarbon date attained by Marthinussen (1962) for a Portlandia arctica shell from 

the same cliff section, between 4.5 and 9.0mASL. His date of 10,790 ± 300 C14yrs BP (+440 

years from published date to reverse precalibration subtraction there applied) places this 

deglaciation event contemporaneous with early Main shoreline development. The 

development of more precise AMS radiocarbon dating techniques utilised in this study and 

the fact that two dated shells corroborate, within a close error margin, the same dated interval 

before main shoreline development, suggests these news dates are most accurate.  

 

6.2.4. Sedimentation rate  

 

From the same shoreline displacement diagram, it is shown that the shells were deposited at 

a time when sea level was ~62m above present, assuming extrapolation between the heights 

of beach ridge and abrasion sediment terraces for the Skarpenes and main shorelines. The 

dated shells were retrieved from a height, ~2.60m AHT, indicating water depths must have 

resided around ~60m, which reduced to ~50m in depositing the final glaciomarine sediments, 

11.7m AHT. 

In this consideration it may be possible to calculate a settling velocity for spherical silt-very 

fine sand grains. For a laminated sequence, when plume buoyancy is thought to best 

approximate an overflow plume or at least flow closest to the surface, the release of coarse 

silt-very fine sand grains into a 60m and 50m water column, as plume integrity becomes 

reduced, would yield a settling time of 1.7 and 1.4hours, respectively, assuming these grains 

fell with a settling rate of 1cm/sec (Baba and Komar, 1981) and were not significantly affected 

by vertical turbulence in the water column. Turbid mud floccules, settling at rates between 

2.5 and 10.9m/hr (Cowen and Powel, 1990), would then be deposited between 24 and 5.5 hrs 

and 20 and 4.6hrs respectively. Given the time between semi-diurnal low tides is only 12 

hours, the clear separation between sand and mud laminations suggests the settling rate of 

floccules much more closely approximated the latter estimate of 10.9m/hr. This could, 
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therefore, be an indication of a larger flocc size forming, which inevitably would have helped 

maintain high sedimentation rates of mud.  

Assuming this deglaciation sequence took places over the course of a typical melt season, 

lasting from June to September, dividing the 11m thick sediments by 4 months yields average 

sedimentation rates of 0.38cm/hour. Of course these sediments represent both slow, 

continuous deposition and rapid episodic deposition of mass flows. If only the thickness of 

beds of undeformed banded mud are considered, ~3.2m of suspension settling mud deposited 

over four months yields rates of 0.11cm/hr, or 2.64cm a day which closely approximates the 

averaged thickness of diffuse bands.  

6.2.5. Postglacial development 

 

 With the significant retreat of all fjord glaciers, synchronous with climate warming, sea level 

fell rapidly to within 18m water depth of this deglaciation surface, in just ~2000 years before 

the establishment of a second prominent shoreline associated with the Tapes transgression. 

This shoreline is visible as a distinct eroded terrace in the seaward side of the Spåkenes 

marginal moraine. Radiocarbon dating of a shell of a Mya Truncata dates postglacial 

sediments, rich in ice rafted detritus, to 5946 ± 30 C14yrs BP, postdating the Tapes shoreline 

by ~1100years. Plotting this shell on the shoreline displacement curve at their height above 

sea level, ~11.7m, places these shells in the intertidal zone, ~5m below mean SL. This is habitat 

these shells are typically found in modern environments (REF), supporting the view that these 

relatively dense shells are found insitu and have not been involved in sediment reworking. 

Emergent facies deposited below this shelly horizon, are described in all sections logged across 

the cliff as having a sharp boundary with underlying and sometimes deformed, glaciomarine 

muds.  This boundary is traceable almost continuously across the much cliff face and is 

associated with the gravel units morphostratigraphically linked a beach ridge, which suggest 

these deposits associate with a wave cut platform, most likely established around the time of 

the Tapes transgression.  

Deposited directly on top of this shelly horizon, are organic rich deposits that have been 

radiocarbon dated from Birch tree material found towards the top of the layer,  yielding an 

age of 865 ± 23 C14yrs BP. There is clearly a significant age gap between the emergent facies 
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and establishment of a fully terrestrial environment, which may be attributed both to the 

rapidity of sea level fall, refraining from leaving any significant coastal deposits in a strictly 

erosional regime, and also the distance of this site from any other major sediment 

depocentres; situated in the centre of the fjord in an area that is raised relative to the 

surrounding land masses. Consequently, organic rich soils and Birch wood are not only 

established at a height ~10.7m ASL at ~865 C14yrs BP. This wood predates climate cooling 

associated with the Little Ice age in northern Norway by ~250 cal yrs (Winkler, 2003). It may 

be inferred that the Little Ice age was responsible for the demise of the birch trees at this 

altitude, resulting in boggy conditions that have persisted until present day.  

6.2.6. Implications for deglaciation of Lyngenfjorden 

The Tromso-Lyngen marginal ice front deposits in Lyngen fjord describe 2 prominent ‘stages’ 

of deglaciation. A highly unstable ice front following relatively rapid sea level fall, followed by 

prolonged ice front stability in association with prolonged stable sea levels.  

The first event described here in study is that of a catastrophic deglacial event, huge meltwater 

out pouring initiated by onset of a runaway melt season. Significant retreat from behind this 

moraine most likely occurred within one year, glacial sediment input to the site was 

significantly reduced following this event. This event marginally post dates the onset of stable 

sea level associated with the main shoreline.  

The next significant ice front deposits are the submarine ice front deposits that are mapped 

on seismic data and dated to 10,700-10,300 C14yrs BP (Vorren & Elvsborg 1979, Fimreite et al. 

2001). These deposits are indicative a stable glacial front accumulating in excess of 320m in 

the centre of the fjord. This stable glacial front corresponds in time with stable sea levels i.e. 

which in the past has established T-L events contemperanous with main shoreline. Successive 

rapid sea level fall and gradual glacial retreat of ice front from region. 
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7. Conclusions 

 

From the diffuse structure of the most abundant rhythmic facies of banded mud, it is 

interpreted that the water column over this site, at the time of deposition, was very weakly 

stratified, most likely as a result of large volumes of meltwater emanating from a site of 

multiple effluxes. Literature suggests such a setting may occur in relation to a delta front 

where plumes stem from multiple, closely spaced delta channels (Lønne, 1995). Such banding 

is also found in relation to a prodelta environment of a deglacial sequence in the Leda clays of 

Eastern Canada therefore a tentative correlation is made.  

Small, infrequent units of laminated fine and coarse grains facies are correlated with episodic 

events of high meltwater discharge resulting in a more integral plume. It is thought these 

events may correlate with supraglacial lake draining events resulting in high meltwater fluxes 

lasting over the period of a few days. 

The nature of these deposits, here studied in detail, are extremely poorly sorted and it is 

expressed that this may be the result of multiple meltwater sources loading the water column 

with populations of minerals, reduced to their terminal grade. 

From an alternative method of grain size analysis, whereby the distinct modality or skew of 

these poorly sorted distributions is resolved through separating out modes and attaining their 

volume, a relationship is found whereby populations of the same size are consistently present 

in approximately the same volumes. From this relationship as well as the fact that these 

populations seem not to be influenced by sorting, has led to a hypothesis for these populations 

being ones of minerals and that the size as well as the shape of these minerals has had an 

influence on the volume that they are present in. A graphical presentation of this relationship 

is thought to translate as a profile for settling velocity and suggestions for hydraulic 

equivalences between minerals of certain size grades are implied.  

Investigation of fine rhythmic structures in sediment cores has revealed different meltwater 

sources are likely responsible for loading the water column under different facies regimes. 
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