APM

POSEIDON HOUSE « CASTLE PARK « CAMBRIDGE CB3 ORD UNITED KINGDOM
+44 1223 515010 « Fax +44 1223 359779 « Email: apm@ansa.co.uk « URL: http://www.ansa.co.uk

ANSA Phase Il

FlexiNet - QoS Investigation

Oyvind Hanssen

Abstract
In this report we investigate what are the main concepts and issues in the support of Quality of Service, focusing
at open distributed computing and middleware platforms. We study how these issues are being addressed in
research on QoS support related to middleware.

QoSis about non-functional propertiesin general, but research has been centred around communication protocols
and multimedia. The main issues of QoS, related to each RM-ODP viewpoints are discussed. |mportant issues are
QoS specification, QoS provision and how to deal with changing conditions. Research in QoS in middleware
platformsis mainly centred around ODP, ANSA and CORBA architectures.

APM.1977.01.00 Approved 02 June 1997
Technical Report

Distribution:
Supersedes:
Superseded by:

Copyright © 1997 APM Limited

TABLE OF CONTENTS

1 INTRODUCTION
1.1 Goals
1.2 Report summary

1.3 Acknowledgements

2 CONCEPTS AND ISSUES

2 .1 Enterprise viewpoint

2 .2 Information Viewpoint

2 .3 Computational Viewpoint
2 .4 Engineering Viewpoint

2 .5 Technology viewpoint

2 .6 Summary

3 MIDDLEWARE QOS RESEARCH
3.1 IMAC - Multimedia extensions to ANSA
3 .2 RM-ODP related research
3 .3 ANSA research
3 .4 CORBA Objects and adaptability

3 .5 Summary

4 QOS ARCHITECTURES

4 .1 Overview

5 CONCLUDING REMARKS

N = =P

© o 3 a9 A~ W W

11
11
12
14
15
18

21
21

25

1

INTRODUCTION

1.1

In a distributed system, when considering interactions between clients and
server-objects, we sometimes need to be aware of properties which are not
part of the object’s interface (non-functional properties). Non-functional
properties can be as crucial for the usability and correctness of a distributed
application as the functional ones. There are many different examples of such
properties: For instance in real-time or multimedia systems, the timing and
synchronisation of flows or operation-invocations are regarded as important
In database systems, atomicity is regarded as important.

Standardisation effort for open distributed computing (ANSA, ODP, CORBA)
currently hides away non-functional properties behind the object interfaces.
This is in some cases too restrictive. There is a need of platform support for
controlling non-functional aspects (Quality of Service) of distributed
applications. This has often to be done in an ad hoc manner, which can be
difficult and error prone.

Goals

1.2

The goals of this report is (1) to investigate what are the main concepts and
issues in Quality of Service (QoS) support, when focusing on open distributed
computing and middleware platforms and (2) how these issues are being
addressed in research on QoS support related to middleware. We are also
interested in identifying scope for further research on QoS.

Report summary

This report uses the concepts and terminology of the ISO/ITU Reference for
Open Distributed Processing [RM-ODP]. In section 2, we look at relevant
concepts and issues in each of the five RM-ODP viewpoints. QoS is about
non-functional properties in general, but research has been centred around
communication protocols and multimedia. QoS is an aspect of bindings, but it
depends on support from object and interface implementations, to be
instantiated. The main issues discussed are related to QoS specification
(information viewpoint), QoS provision and how to deal with changing
conditions (computational and engineering viewpoint).

In section 3 we look at some of the most significant research in QoS in
middleware platforms. This is centred around ODP, ANSA and CORBA
architectures. This research mostly take a language based approach to QoS

1.3

specification. They address issues of explicit binding, QoS reservation and
negotiation, support for change (scaling, adaptation) and engineering
support.

In section 4 we briefly summarise state of the art in QoS architecture
research, which aims to provide an integrated view of QoS (end-systems,
networks, protocols). Good surveys on QoS architectures exist
[Aurrecoechea96, Campbell96].

Acknowledgements

The author of this report is seconded to the ANSA Phase III programme by
the University of Tromso and is supported by a NATO Science Fellowship
through the Norwegian Research Council grant no. 116590/410.

Thanks to Andrew Herbert, Billy Gibson, Richard Hayton and Zhixue Wu for
valuable advice and comments.

2

CONCEPTS AND ISSUES

2.1

In this chapter we look at what are the main concepts and issues related to
QoS in open distributed computing. Here it is useful to use the RM-ODP
viewpoints to look at different aspects of QoS:

Enterprise viewpoint

211

2111

In the enterprise viewpoint we are interested in what QoS is all about, i.e.
the purpose of QoS in a IT-system and who are involved in QoS.

What is QoS about

Generally, we say that the term Quality of Service capture non-functional
properties such as security, dependability, synchronisation, presentation,
performance, etc.

However most research on QoS focus on properties related to real-time and
multimedia communications like performance and synchronisation.
Therefore this investigation will be focused at multimedia related issues.

I nterfaces and bindings

QoS are related to bindings, i.e. bindings with different properties may be set
up for the same interface, because of different client requirements or
different service provided from the network.

However, those properties of bindings must be supported by the object -
implementation, interface implementation or even the client implementation.
E.g. transactional bindings are not possible if the object-implementation
doesn’t have transaction support (logging, stable storage, etc.). Therefore,
QoS specification may involve all these. The figure below illustrates how
different components participating in a binding (object, interface, client) can
have QoS specifications attached to them, i.e. what QoS they are able to
support. A required QoS may be instantiated (i.e. a binding established) if
the QoS can be supported by all relevant parties.

¢ ¢

2.1.2 Application vs. system level

2.2

When focusing at middleware platforms, it is useful to distinguish between
two levels of QoS specification and provision as the figure shows:

¢ Application level - QoS provided by middleware, to application
programs.

¢ System level - QoS provided by operating system and network, to
middleware.

Application level QoS-+ é ----- }

| S|

middleware

System level QOS -« T 'X_‘

0O.S./network

The role of the middleware is to provide abstractions and transparencies to
applications programmers, for Quality of Service. The middleware should
provide the required properties by controlling resources and their QoS at the
system level. There is, however a possible conflict between the use of high
level abstractions and transparency, and the need for a flexible and tight
control of resources. Operating systems research has addressed related
issues for a while (see [Hanssen97]). Some researchers [Engler95] even
argue that abstractions should be removed from the O.S. kernel to give
applications full control over hardware devices.

Information Viewpoint

In the information viewpoint we are interested in the information flowing
between QoS users and QoS providers, i.e. the main issue is how QoS is
specified.

The purpose of QoS specification is to capture application level QoS
requirements and management policy. QoS specification is declarative in
nature and is used to select, configure and maintain QoS mechanisms. When
focusing at the domain of multimedia flows, it is useful to look at
[Campbell,95] which has identified the following five areas of QoS
specification:

¢ Flow synchronisation

¢ Flow performance. The metrics may vary from one application to
another. They can be things like throughput, delay, jitter, loss rates.

¢ QoS commitment policy, i.e. to what extent should the QoS be
guaranteed? The choices could e.g. be between deterministic,
predictive, adaptive and best effort.

¢ QoS Management policy, i.e. the degree of QoS adaptation to tolerate.
The policy may incorporate scaling actions.

¢ Cost of service. High degrees of performance or commitments may
have a significant cost in resource usage. If cost is a QoS parameter,
applications are able to make a trade-off between cost and
performance, when negotiating QoS.

2.2.1 Key issues in specification

When analysing a concrete model or system we are interested in how the
problem of declarative QoS specification is addressed. First the QoS
requirements at the application level should be application-oriented rather
than system-oriented. This means that the metrics used should be related to
user perception or the abstractions application programmers deal with. One
could for instance talk about the invocation- or frame-rate, or about CD-
Quality versus Phone-Quality. System-oriented means that metrics are
related to system resources and their properties. Here, one could for instance
talk about bandwidth in terms of bit per second rate or have a choice
between a ISDN B-channel versus an ATM connection. A common approach
to this is provide mechanisms for mapping application-oriented QoS to
system level QoS. This is closely related to QoS transparency, i.e. the
application programmer should deal with declarative QoS and not bother
with the selection and configuration of mechanisms and resources for QoS
provision.

Another issue is what type of parameters that describe the QoS. One choice
is between qualitative and quantitative parameters. Qualitative parameters
can be simple and intuitive to use. It is typically a choice between predefined
qualities, for instance between ‘slow’, fast’ or ‘very fast’ or between ‘Voice’,
‘Audio’, and ‘CD-Quality-Audio’. At the other hand there seems to be a need
for quantitative specifications (especially for multimedia flows) which may
be more concise and more flexible (one could for instance say something like
“speed > 50 and jitter < 5).

An approach to this (see section 3.4) is to use qualitative parameters at the
application level (region names), which are mapped to quantitative QoS
parameters, which could be accurately measured, or which could be easily
mapped to system level QoS and resource allocation. An advantage of this
approach, is the separation of QoS specifications (i.e. the defining the
meaning of region-names) from application programs. The idea is illustrated
in the figure below.

Region definition

Region name

capacity > 100 Kb/s

Application jitter <5 ms
-------- "CD audio"
program q H delay<1s

A related problem is how to deal with the complex and heterogeneous
parameter space. The possible dimensions for describing QoS and the choice
of metrics in a given situation can be very numerous. Different parameters
may be needed in different situations and the same problem-domain can even
render different QoS metrics (if different people are dealing with them). An
approach to this problem is to standardise the parameters and metrics used
in given situations. For example as QoS domains or classes that define a set
of related parameters/metrics and (possibly) a set of related mechanisms
[LiOtway94].

When trying to answer the question how QoS is specified, we may divide the
research effort into the following categories:

¢ User/application centred approaches which typically are motivated
from the desire to provide manageable abstractions for application
programmers and end-users. This is mainly what has been discussed
above.

¢ Network/technology centred approaches which typically are motivated
from the need to be able to control QoS of specific technologies. Much
effort is based on ATM networks and aims to develop architectures
that support the provision of end-to-end QoS guarantees. A well known
example is the XRM/XBIND architecture [Lazar95]. QoS is here
specified as traffic classes and service classes, which represents
statistical models for information streams!, each with a set of class-
specific QoS parameters. Other research based on ATM networks
include [Ferrari96] and [Besse94]. Important work is also being done
in QoS specification based on the Internet [Braden94].

¢ Formal mathematical notations, which serve as more generic models
or languages for specification of QoS constraints. [Blair94a] propose a
QoS constraint language QL, which is based on temporal logic. Other
work include [Plagemann95], which propose to specify QoS
requirements as Vector Minimum Problems, and the University of
Tromso DIME project [Eliassen95], which is developing a formal type
model for multimedia flows that incorporate quality attributes.

I Traffic classes are low level and system-oriented and service classes are more application
oriented (video/audio streams).

2.3

Computational Viewpoint

2.4

In the computational viewpoint we are focusing at the functional
decomposition of system, i.e. how is QoS configured and what main
components and interactions are necessary to establish and manage QoS.

In addition to the application’s objects and interfaces, it is recognised that
(as proposed in e.g. [Blair94a]) bindings need to be visible as computational
objects (with interfaces) and that establishing of binding should be explicit.
This allows one to control the QoS of bindings.

Admission testing may be a part of the binding process. This means that
there is a concept of QoS failure (failure to bind because QoS requirements
cannot be met). To be able to decide if interfaces can be bound, we need to be
able to specify QoS annotations on interfaces to be bound and (possibly) the
objects.

QoS monitors need also to be visible as computational objects that are
attached to bindings.

One issue is where QoS is specified. The TINA QoS Framework [TINA]
supports QoS annotations at: (1) the object, (2) the operational interface and
(3) the stream interface. TINA ODL (which is an extension of OMG IDL for
describing computational objects) provides a service attribute construct to
capture QoS constraints. [Blair94a] proposes QoS annotation at interfaces
that states what is required and what can be provided from the interface.

Engineering Viewpoint

QoS mechanisms are selected according to user supplied QoS specifications,
availability of resources and resource management policy. We distinguish
between static QoS mechanisms which is related to establishment of
bindings (QoS provision) and dynamic QoS mechanisms which are related to
the actual communication phase (QoS control and management).

[Campbell96] has identified three main types of QoS mechanisms:

¢ QoS provision mechanisms, which can involve QoS mapping,
admission testing and resource reservation.

¢ QoS control mechanisms, which do real-time traffic control to maintain
agreed QoS. This include flow-shaping, flow-scheduling, flow-policing,
flow-control and flow synchronisation.

¢ QoS management mechanisms, which could be required to ensure that
agreed QoS is sustained or renegotiated. This could involve QoS
monitoring, maintenance, degradation, signalling and scaling.

241

2.4.2

2.5

QoS provision

How is end-to-end QoS provided, based on the specification? This is mainly
about engineering support like e.g. mappings, resource-management,
protocols and algorithms for doing end-to-end QoS allocation, typically
combined with some negotiation or admission testing.

Many specific mechanisms exist and are being investigated. More generic
engineering models of QoS provision are being proposed within the ANSA
project [LiOtway94] and the TINA framework. [Nicolaou90] investigates QoS
reservation algorithms that incorporates multiple layers and mapping
between them. [Blair94a] propose that QoS monitor objects are reactive
objects. For more information, see section 3.

An issue is how the QoS is communicated with the application program. One
could use an API or a special programming language. There is also an option
of using a negotiation-protocol which match the QoS requirements with the
QoS the underlying system can offer.

Dealing with changing conditions

Resource availability and network quality can change dynamically and users
may have varying requirements. First we need a way to discover that a
significant change has happened. This can e.g. be done by measuring the
traffic to deduce the actual QoS provided (or the usage patterns) like in
[Zinky96].

If violations to the agreed QoS is detected, some action has to be taken. First
one could try to adjust the resources such that the required QoS can be
maintained. If it cannot, some kind of renegotiation and/or scaling is
necessary. Renegotiation means that the parties agree on a new QoS, i.e. if
the new QoS is acceptable for the application-components, it should continue
using the new (degraded) QoS. Scaling can be done by inserting filters in the
flow path or by letting application components (clients, servers) adapt to the
lower QoS levels or resource availability. The use of filters for scaling (see
e.g. [Yeadon96]) can be especially useful in multicast groups where multiple
receivers of a flow has different QoS requirements.

Technology viewpoint

The issue here is what technology exist that support QoS? Technology could
be industry standards or products. Here we should look after

¢ QoS support or support for flexible resource management in operating
systems.

¢ QoS support in ATM switches, FDDI networks or other network
technologies.

¢ QoS support in ORB’s / RT-ORB’s: [Schmidt97] describes the design of
a real-time ORB with (limited) QoS support and has submitted the
results as a RFI response to the OMG SIG on Real-Time CORBA.
Important parts of this effort is the development of a Real-Time Inter-
ORB Protocol (RIOP) and the architecture for a Real-Time Object-
Adapter. The ANSA project has produced the RT-ANSAware and the
DIMMA platform, which present some prototype technology for QoS
and resource management.

2.6 Summary

In this section we have investigated some important concepts and issues in
each of the five RM-ODP viewpoints. QoS is about non-functional properties
in general, but research has been centred around communication protocols
and multimedia. QoS is an aspect of bindings, but it depends on support from
object and interface implementations, to be instantiated.

In the information viewpoint the main issue is QoS specification. Research
effort may be divided into (1) how one provide manageable abstractions for
application programmers and end-users, (2) how to control QoS of specific
technologies and (3) formal notations. We have focused at declarative QoS
parameters. The computational viewpoint is concerned with what main
components and interactions are necessary to establish and manage QoS.
Here, the recognition that bindings should be explicit computational objects
is important. The engineering viewpoint is concerned with how end-to-end
QoS is provided. We need to consider mechanisms for provision, control and
management of QoS. There may be a specific need to deal with dynamically
changing conditions, by using renegotiation or scaling (through filtering or
adaptation).

Technology for supporting QoS could be industry standards or products. We
should look after (1) operating systems, (2) network technologies and (3)
Middleware technology (ORB’s).

10

3

MIDDLEWARE QOS RESEARCH

3.1

Most of the QoS research to date has been done in the context of individual
architectural layers. We may divide this research into the following layers:

¢ Network (much effort in QoS provision from ATM networks).
¢ Transport.

¢ Operating system.

Until recently little work has been done in QoS support for middleware
which we can consider as a fourth layer. The research mentioned here is all
about distributed system platformsZ2.

QoS specifications at the middleware layer should be user-oriented and
declarative rather than system-oriented and imperative. Here QoS is also
fundamentally an end-to-end issue. This is because we are interested in what
is offered to the applications (clients and servers) by the middleware. Users
should be specifying what they require, not how this is achieved. The
middleware should offer abstractions that lets applications control the
relevant QoS parameters and hide irrelevant details.

IMAC - Multimedia extensions to ANSA

There has been some effort in developing experimental QoS-driven
middleware. Early work has been done at Cambridge University in extending
the ANSAware platform with support for multimedia. Another experiment
was done at Lancaster University [Coulson92].

The IMAC architecture [Nicolaou91] is based on the ANSA architecture and
its prototype implementation, based on the ANSA Testbench. It introduces
new concepts and architectural services to deal with multimedia and QoS,
e.g. streams and stream types.

IMAC allows specification of communication-oriented QoS on a per-
invocation basis, i.e. interface operations may specify a set of QoS options
with which they are prepared to be invoked. Those QoS options put
constraints on the underlying communication system. The communication
system is viewed as a QoS provider (or server) and clients specify the services

2 However it may be relevant to also look at multimedia database research, where QoS in
some cases are addressed.

11

3.2

and the resources they require as constraints on the set of available services
and resources. QoS negotiation is the process of matching a particular QoS
constraint to the available set of QoS offers from underlying services and
reserve resources for the chosen options.

The approach to QoS specification is to divide the world into QoS domains,
divide each domain into QoS-layers and provide mappings between layers.
The concept of QoS negotiation is extended to be per layer in this
architecture. In this way IMAC provide method of mapping from declarative
application-oriented QoS to the more communication oriented QoS options.

IMAC takes an out-of-band approach to end-to-end QoS. This means that the
QoS options selected by a client is communicated to the server in a separate
invocation. A bind-interface is provided by each server capsule. This, used
with the per-layer negotiation, realise end-to-end QoS. The figure below
illustrates the algorithm: As a response to a QoS request, the systems try to
reserve QoS at each layer at both sides. If this fails at one layer, every
reservation which has been done has to be cancelled before returning a
failure indication to the user. If reservation succeeds at all layers at both
sides, it is being confirmed (committed to) at each layer before a success is
indicated to the user.

Success Failure QoS request

Confirm Cancel < - - - - Reserve Reserve ----p Cancel Confirm

Confirm Cancel < - - - - Reserve Reserve ---- » Cancel Confirm
Client Server

RM-ODP related research

Researchers at CNET and Lancaster University has done significant work in
providing support for multimedia and QoS in the context of RM-ODP. They
propose an extended computational model for multimedia [Blair94a,
Blair94b], which partly has been adopted by the ODP community. They also
investigate engineering support with focus at the operating system level.

Support for continuos media is provided by adding the concepts of stream
interfaces and stream bindings to the model. Support for real-time
synchronisation is provided by adding the concepts of signals and reactive
objects. To support QoS management the following are added to the model:

¢ The ability to specify QoS annotations on interfaces.

¢ The idea of explicit binding.

12

3.2.1

3.2.2

¢ The idea that bindings are objects which provide interfaces that allows
one to control the behaviour (QoS) of the binding.

¢ The use of reactive objects for dynamic management of QoS.

QoS annotation language

QoS annotations consist of (1) a required clause describing QoS
requirements, i.e. the QoS the interface expects from its environment and (2)
a provided clause describing the QoS the interface offer to its clients. To
allow two interfaces to be bound, they have to be QoS compatible
(requirements is met by the provision).

To provide a language for QoS annotation, a real-time logic, QL is proposed
[Stefani93]. In essence, QL annotations are specified as temporal relations
between signals (emission or arrival of signals at interfaces).

Reactive objects

Reactive objects are objects which guarantee real-time behaviour in terms of
their reaction to incoming events by generating outgoing events. They are
needed in real-time synchronisation and QoS control to provide predictability
with respect to time.

In addition to real-time synchronisation, reactive objects can be used as
Quality of Service monitors. They should react to QoS violations and initiate
re-negotiation of the QoS currently provided. It should be possible to
generate such QoS monitor automatically from QoS annotations in QL. The
figure below illustrates how a QoS monitor object could be attached to a
binding to monitor and manage it.

Reactive

Video object Video

camera display

Binding

To provide temporal predictability, reactive objects should conform to the
synchrony hypothesis [Stefani92] which states that a reaction to external
events takes no time. In practice this means that reactions should happen
within bounded time-intervals and that they should be atomic. This allows
formal reasoning about time and it allows synchronisation specifications to
be written in a time independent manner. To program reactive objects, one
may use synchronous languages like Esterel [Berry88] (that rely on the
synchrony hypothesis).

13

3.3 ANSA research

Significant work has been done in extending the ANSA/ODP computational
and engineering model with support for explicit binding, QoS specification
and provision [LiOtway94]. This to support real-time applications and has
been (partially) implemented in ANSAware-RT and in the DIMMA prototype
platform. Currently, DIMMA supports QoS provision at the engineering

level.

3.3.1 Binding framework

The ANSA team first propose to add explicit binding to the ANSA
computational model, as the implicit binding model isn’t good enough when
interaction between objects become complicated and has QoS requirements.
This will allow specification and management of QoS for bindings.

A binding framework is proposed which define the following components in

the engineering viewpoint:

¢

Binders which creates bindings by using resource managers. Binders
are regarded as transparency mechanisms and has the role of mapping
QoS requirements to a lower level that could be used by resource
managers. Binders may build on other binders to provide higher level
QoS in a hierarchical manner.

Binding managers, which is user programs that manipulate binders.

Resource managers, each which provide QoS for the particular
resource it manages.

3.3.2 QoS Framework

A framework for expression and management of QoS is proposed. It consists
of the following components:

¢

QoS domains associated with specific areas of application or service. A
QoS domain defines a specific set of QoS parameters (dimensions) and
their combinations. Domains can be constructed using other domains.

QoS management which is a set of tasks, associated to each QoS
domain (e.g. QoS provision or negotiation). Tasks can be generic or
domain-specific.

Basic QoS mechanisms i.e. engineering support, associated to each
QoS domain. Each domain have a set of basic mechanisms which can
be different for different QoS domains.

A common language for QoS expression. Either a language or an API
based approach could be chosen for QoS expression. An API based
approach implies a set of programming interfaces for each QoS
domain. A language based is preferred because it provide a high level
of abstraction, it is flexible and it allows the application of automation
tools.

14

3.4

Languages are proposed for defining QoS domains (based on IDL) and for
specifying QoS requirements when doing explicit binding (based on the
trader constraint language).

In this framework, QoS can be associated to bindings, interfaces, objects,
object/interface templates and activities. QoS associated to non-bindings are
regarded as QoS templates which are activated when a particular binding is
established.

CORBA Objects and adaptability

34.1

3411

The QuO project [Zinky97] is motivated by middleware’s (e.g. CORBA) lack
of support for handling environmental variables like Quality of Service. An
observation is that distributed applications tend to be fragile when
environment and usage patterns change (e.g. when migrating an application
from LAN to WAN). The project is driven by a demand for middleware that
can deal with QoS requirements, changing usage patterns and underlying
resources and thereby support adaptability.

An architecture is being developed, QuO (QoS for CORBA objects) to support
QoS at the CORBA layer. It extends the functional interface definition
language (IDL) with a QoS description language (QDL). This capture
application’s expected usage patterns and QoS requirements for clients
connections to objects.

The project aim to solve the problems in four complementary ways. (1) by
defining concepts for integrating knowledge of system properties and QoS, (2)
by masking variance in system properties, (3) by making relevant object
design decisions visible and (4) by providing a framework to reduce
programming effort and support reuse.

QoS Specification

System properties are made first class entities. In this conceptual framework
connections (bindings) may be established between clients and objects. Each
connection is associated to a contract which capture expected usage patterns
and QoS requirements. The concept of QoS regions helps simplify the
problem of dealing with a n-dimensional QoS space. For a given functional
interface there can be multiple behaviours, each bound to a QoS region.

Connections and QoS

To provide end-to-end QoS, system information from both the server, the
communications infrastructure and the client must be reconciled. There are
three places to do this: in the client, the communications infrastructure or
the object. Unlike most others the QuO project does it in the object.

In the QuO approach part of the object’s implementation is moved into
clients address space. At the client side, a stack of layered delegate objects

15

represent the connection with QoS. The connection boundary where the
expected usage patterns and QoS requirements is agreed upon, is then
located in the clients address space. Advantages with this is that there is
virtually no delay between client and the connection object and that a
delegate object will never fail independently of the client. Distribution and
QoS management may then regarded as encapsulated in the object itself. The
figure below illustrates how those “smart proxies” distribute object location
and state.

Client Client

Client

3.4.1.2 QoSregions

To handle divergence between expected and provided system conditions, the
QuoO approach allow specification of two levels of system conditions:

¢ Negotiated regions which reflect the expectations of QoS and usage
patterns.

¢ Reality regions which reflect the actual client usage/object QoS,
measured. For one negotiated region there may be many reality
regions.

A region is defined by a set of quantitative QoS parameters with associated
values or ranges of values. It is then possible to tell if the system is in a
specific region by comparing region-definitions with actual measurements.
Handlers may be called when transitions between regions occur, to inform
the client or connection object so that adaptation or renegotiation can take
place.

3.4 .2 Adaptation and Transparency

Variance in system properties are masked by a layered stack of delegates at
the client side. Each layer exports a negotiated region to the layer above.
Each layer make use of various techniques to mask changing conditions and
maintain QoS.

When a layer cannot maintain the QoS corresponding to the current
negotiated region it has to propagate information about this upwards. Now
each party can try to adapt or if clients expectations cannot be met anymore
renegotiation must be triggered.

16

Objects may use knowledge of its different implementations to adapt. For
example a delegate layer can use compression to mask lower bandwidth from
the layer below. The figure below illustrates this idea.

System interface Functional interface
Qe | |
/v X Client
| X delegate
Masking
pral 4 LN '
\ X Object
| X delegate
Masking :
AR .\ : I

3.4 .3 Making key decisions explicit

The QuO approach has adopted an Open Implementation Approach
[Kiczgales91] to allow object designers to expose key design decisions that
affect Quality of service3. This makes it possible to alter the (non-functional)
behaviour of the application by choosing the object implementation which is
best suited for the situation. Thus the QuO approach offers a framework to
exploit existing solutions to the problem of adaptability.

The meta-data which describe implementations are specified separately from
the functional interfaces. A language, QDL (QoS description language) is
provided to support specification of metadata. The QDL consist of three sub-
languages:

¢ A Contract Description Language (CDL), which defines the expected
usage patterns and QoS requirements for a connection to an object
(QoS regions)

¢ A Resource Description Language (RDL), which abstracts the physical
resources used by the object.

¢ A Structure Description Language (SDL), which defines the internal
structure of an object and how it consumes resources.

3 The Open Implementation Approach also suggest the use of reflective programming, i.e. non-
functional aspects (selection of implementations/policies) are controlled trough the meta-object
interface. Future research in the QuO project may investigate reflection.

17

3.5

Summary

351

3.5.2

When summarising the middleware oriented research, there are two main
questions we aim to answer: (1) How is QoS specification addressed and (2)
how is QoS provision and management addressed?

Declarative QoS specifications

Both the IMAC and ANSA models seems to mix the specification of QoS and
the choice of policy for providing it. For example the choice of protocol,
encoding or scheduling policy can be a part of QoS specifications. The IMAC
and ANSA models offers application-oriented end-to-end QoS specification by
use of negotiation and mapping to lower level QoS. The ANSA model doesn’t
address negotiation or mapping mechanisms, but focus on a model for
defining QoS domains, which IMAC does not go into deeply.

The CNET/Lancaster research has a different approach to QoS specification.
A real-time logic (QL) for bounding temporal relations is proposed. This is
more general approach to specification which allows formal reasoning, but is
restricted to temporal relations. This is also a completely quantitative
approach.

In the QuO architecture the object is responsible for mapping application-
oriented QoS to a lower level QoS, through layered delegate object structure.
Application programs can see QoS as region names, which could be regarded
as simple and qualitative QoS-references. The definition of regions which is
done separately from application programs and functional interface-
definitions, in a special language (QDL), is quantitative and offer full
flexibility. In this way the QoO architecture makes a clean distinction
between qualitative and quantitative QoS-specifications which corresponds
to choice of region and definition of region respectively.

QoS provision and management

In IMAC QoS provision is done by mapping and negotiation which does QoS
reservations at different layers at client and server side. Conformance tests
are done by matching requirements with QoS-offers. Layer specific QoS
reservation is mapped to resource reservation and QoS requirements to
underlying layers. There is no support for dynamic changes.

The ANSA model include explicit binding, where QoS-requirements are
specified in invocations to bind-operations. Each QoS domain should define, a
binding-interface. During binding, a conformance test is carried out.
Resource allocation and resource management is supported by a hierarchy of
binder-objects and resource-managers.

In the CNET/Lancaster approach, there is support for explicit binding and
conformance test by matching requirements with offers. Reactive monitors
can be generated from QL. They could be used to trigger renegotiation if
necessary.

18

3.5.3

The QuO architecture supports generation of QoS monitors and adapter-code
from QDL specifications. Two types of QoS-regions are supported: negotiated
and reality (measured). Change in reality-regions can be met by object-
adaptation and made transparent for the application programs by the
layered delegate object-structure. A change in negotiated region means
renegotiation and application adaptation.

Implications

The different approaches described here are not mutually exclusive when
constructing practical middleware solutions. To some degree, they focus at
different problems, and therefore, some aspects of these may be usefully
combined. Options for future research may be to investigate how those
models and techniques may be combined in practical solutions. When
focusing at how applications simply and cleanly can control QoS of
interactions, the Open Implementation Approach seems promising because of
its clear separation of concern. It remains to see how well this can be
combined with application oriented declarative QoS specification.

19

20

4

QOS ARCHITECTURES

4.1

According to [Aurrecoechea96] most developments in QoS support has been
done in the context of individual architectural layers. Considerable progress
has been made in the separate areas of RM-ODP, end-systems support and
network support, but much less progress has been made in addressing an
overall QoS architecture for multimedia communications. The current state
of QoS research suffer from:

¢ Incompleteness
¢ Lack of mechanisms to support QoS guarantees

¢ Lack of an overall framework

To support end-to-end QoS guarantees, work on QoS driven end-system
architecture needs to be integrated with network configurable QoS services
and protocols. Some researchers try to address these problems by proposing
architectural approaches to QoS. The intention of a QoS architecture is
(according to [Aurrecoechea96]):

"...to define a set of quality of service configurable interfaces that
formalize quality of service in the end-system and network, providing a
framework for the integration of quality of service control and
management mechanisms.”

It is hoped that this approach can help avoid duplication of functions across
layers and maximise efficient QoS management.

Overview

Comprehensive surveys on QoS architecture research can be found in
[Aurrecoechea96] and [Campbell96] Here, we present a short overview over
research going that direction. Some of them are based on ATM networks
[Lazar94, Ferrari96, Besse94]. Others are based on OSI-RM [ISO95], the
Internet [Braden94] or RM-ODP (TINA).

¢ The HeiProject at IBM’s European Networking Centre in Heidelberg
has developed a comprehensive QoS model [Volg96]. This model has
been designed to handle heterogeneous QoS requirements from
different receivers in a multicast group and to support QoS adaptivity
via flow-filtering and media scaling.

21

The University of Pennsylvania has developed the OMEGA
architecture [Nahrstedt95a]. The essence of this architecture is
resource reservation and management of end-to-end resources. A QoS
brokerage model [Nahrstedt95b] is developed to facilitate the resource
management process. This incorporate QoS translation, QoS
negotiation and renegotiation. Resource guarantees are negotiated
during connection establishment by the QoS broker protocol which is
present in both the application and transport subsystems.

The Integrated Services (int-serv) Group of IETF has defined a
comprehensive architecture [Braden94] and a QoS framework used to
specify the functionality of Internet system elements which make
multiple, dynamically selectable QoS available to applications.

The Quality of Service Architecture (QoS-A) [Campbell96] is developed
at the University of Lancaster. It is a layered architecture of services
and mechanisms for quality of service management and control of
continous media flows in multiservice networks. Orthogonally to layers
the architecture is divided into three planes: The protocol plane, the
QoS maintenance plane (which contains a number of layer specific QoS
managers), and the flow management plane.

The COMET group at Colombia University is developing and Extended
Integrated Reference Model (XRM) as a modelling framework for
control and management of multimedia telecommunications networks
[Lazar94].

The Tenet architecture developed at the University of California at
Berkeley [Ferrari96]. It includes a family of protocols which run over
an ATM network. The Tenet architecture also support QoS mapping
between layers and to a form needed by resource reservation protocols.
Media scaling and multicast flows with heterogeneous QoS
requirements are also addressed.

The TINA QoS framework [TINA] is developed for specifying QoS
aspects of distributed telecommunications applications within the
TINA Computing architecture. In the computational viewpoint QoS
parameters are stated declaratively as service attributes. In the
engineering viewpoint QoS mechanisms employed by resource
managers are considered. Computational bindings are mapped to
channels that can be constructed from stubs, binders and protocol-

adapters.

The MASI end-to-end model [Besse94] developed by the CESAME
Project at Laboratiure MASI, Universite Pierre et Marie Curie. This
includes an architecture for multimedia communications which takes
end-to-end QoS support as its primary objective.

22

¢ The End System QoS framework [Gopal94] developed at Washington
University for providing QoS guarantees within the end-system for
networked multimedia applications. The main components are: QoS
specification, QoS mapping, QoS enforcement and protocol
implementation.

¢ The OSI QoS framework which is developed by the WG21 [ISO95].
This framework broadly defines terminology and concepts for QoS and
provides a model which identifies objects of interest to QoS in open
system standards.

23

24

5 CONCLUDING REMARKS

In this report we have investigated what are the main concepts and issues in
Quality of Service support, focusing at open distributed computing and
middleware platforms and how these issues are being addressed in research
on QoS support in middleware. QoS is about non-functional properties in
general, but research has been centred around communication protocols and
multimedia. QoS is an aspect of interaction, and is related to the concept of
bindings, but it may also depend on support from object and interface
implementations to be instantiated.

In the information viewpoint an important issue is how one provide
manageable abstractions for application programmers and end-users. QoS
specification should be declarative. Approaches to a complex and
heterogeneous parameter space may be standardisation through domains or
classes, constructs like regions, layering and mapping. In the computational
viewpoint the recognition that bindings should be explicit computational
objects is important. In the engineering viewpoint we need to consider
mechanisms for provision, control and management of QoS. There may be a
specific need to deal with dynamically changing conditions, by using
renegotiation or scaling (through filtering or adaptation).

We have looked at some important research in QoS in middleware platforms.
This is centred around ODP, ANSA and CORBA architectures. We can
conclude that there is a need of support for controlling non-functional aspects
as well as functional aspects in middleware. Promising progress is being
made in language support for QoS specification as well as engineering
support for resource management.

Separation of concern is important. First the separation of functional aspects
from non-functional aspects, which cannot always be hidden behind
abstractions. Second the separation of declarative QoS requirements from
the policies and mechanisms that realise the required QoS. The Open
Implementation approach and the principle of reflective programming seems
to be promising in exposing implementation issues, separate from the
functional interface.

The option of exploiting reflection to tailor implementations to meet Quality
of Service requirements therefore seems to be a case for further research,
especially how this may be combined with simple declarative QoS
specification. More may be done in investigating how aspects of the different
models and techniques described here may be combined in practical
middleware solutions.

25

26

REFERENCES

[Aurrecoechea96]
C. Aurrecoechea, A.T. Campbell, L. Hauw, “A Survey of QoS Architectures”
Multimedia Systems Journal, special issue on QoS architecture, 1996.

[Berry88]
Berry, G. Gonthier, “The ESTEREL Synchronous Programming Language:
Design, Semantics, Implementation”, INRIA Report No. 842, 1988.

[Besse94]
Besse, L. Dairaine, L. Fedaoui, W. Tawbi, K. Thai, “Towards an
Architecture for Distributed Multimedia Application Support”, Proc.
International Conference on Multimedia Computing and Systems, Boston
May 1994.

[Blair94a]
G.S. Blair, M. Papathomas, G. Coulson, P. Robin, J.B. Stefani, F. Horn, L.
Hazard, “Supporting Real-Time Multimedia Behaviour in Open
Distributed Systems: An Approach Based on Syncronous Languages”, Proc.
ACM Multimedia 1994, San Fransisco, 1994.

[Blair94b]
G.S. Blair, G. Coulson, M. Papathomas, P. Robin, J.B. Stefani, F. Horn, L.
Hazard, “A Hybrid Approach to Real-time Synchronisation in Distributed
Multimedia Systems”, Lancaster University Report MPG-94-21, 1994.

[Braden94]
Braden, D. Clark, S. Schenker, “Integrated Services in the Internet
Architecture: An Overview”, RFC-1633, 1994.

[Campbell96]
A.T. Campbell, “A Quality of Service Architecture”, Ph.D. Thesis,
Computing Department, Lancaster University, 1996.

[Coulson92]
G. Coulson, G. S. Blair, N. Davies, N. Williams, “Extensions to ANSA for
Multimedia Computing”, Computer Networks and ISDN Systems (25), pp.
305-323, 1992.

[Eliassen95]
F. Eliassen, J.R. Nicol, “Polymorphic Typing for Continuous Media Flows
and its Application to QoS Brokerage”, GTE Labs Technical Report,
TR-303-07-95-380, July 1995

27

[Engler95]
D.R. Engler, M.F. Kaashoek, “Exterminate All Operating System
Abstractions”, Proc. 5t Workshop on Hot topics in Operating Systems
(HOTOS-V), IEEE Press, May 1995.

[Ferrari96]
D. Ferrari, “The Tenet Experience and the Design of Protocols for
Integrated Services Internetworks”, Multimedia Systems Journal, 1996.
[Gopal94]
Gopalakrishna, G. Parulkar, “Efficient Quality of Service in Multimedia
Computer Operating Systems”, Washington University Report WUCS-TM-
94-04, August 1994.
[Hanssen97]
O. Hanssen, “FlexiNet - Extensible Kernel Investigation”, ANSA Phase III
draft report APM.2002.00.01, May 1997
[ISO95]
“Quality of Service Framework”, ISO/IEC JTC1/SC21/WG1 N9680, 1995.
[Kiczgales91]
G. Kiczgales, J. J. des Rweres, D. Bobrow, “The art for the metaobject
protocol”, MIT Press 1991.
[Lazar94]
A.A. Lazar, S. Bhonsle, K.S. Lim, “A Binding Architecture for Multimedia
Networks”, Proc. COST-232 Conf. on Multimedia Transport and
Teleservices, Vienna, 1994.
[LiOtway94]
Li, D. Otway, “ANSA Real-Time QoS Extensions”, ANSA draft report
APM.1094.00.06.
[Nahrstedt95al]
K. Nahrstedt, J. Smith, “Design, Implementation and Experiences of the
OMEGA End-Point Architecture”, University of Pennsylvania Technical
Report MS-CIS-95-22, May 1995.
[Nahrstedt95b]
K. Nahrstedt, J. Smith, “The QoS Broker”, IEEE Multimedia, spring 1995.
[Nicolaou91]

C. A. Nicolaou, “A Distributed Architecture for Multimedia Communication
Systems”, Ph.D. thesis, Computer Laboratory, University of Cambridge,
1991.

28

[Plagemann95]
T. Plagemann, A.S. Saetre, V. Goebel, “Application Requirements and QoS
negotiation in Multimedia Systems”, proc. 2nd Workshop on Protocols for
Multimedia Systems, Salzburg, October 1995.

[RM-ODP.1]
ISO/IEC JTC1/SC21/WG7, “Basic reference model of Open Distributed
Processing — Part 1: Overview”, ISO/IEC DIS 10746-1.

[Schmidt97]
D.C. Schmidt, A. Gokhale, T.H. Harrison, D. Levine, C. Cleeland, “TAO: a
High-Performance Endsystem Architecture for Real-time CORBA”, RFI
response to the OMG Special Interest Group on Real-time CORBA. 1997.

[Stefani92]
J.B. Stefani, L. Hazard, F. Horn, “Computational Model for Distributed
Multimedia Applications Based on a Synchronous Programming
Language”, Computer Communications, pp. 114-128, Vol. 15, No. 2, March
1992.

[Stefani93]
J.B. Stefani, “Computational Aspects of QoS in an Object-Based
Distributed Architecture”, 34 International Workshop on Responsive
Computer Systems, Lincoln, USA, Sept. 1993.

[TINA]
TINA-C, “The QoS Framework”, internal report

[Volg96]
C. Volg, L. Wolf, R. Herrtwich, H. Wittig, “HeiRAT - Quality of Service
Management for Distributed Multimedia Systems”, Multimedia Systems
Journal, 1996.

[Yeadon96]
N. Yeadon, A. Mauthe, F. Garcia, D. Hutchison, “QoS Filters: Addressing
the Heterogeneity Gap”, proc. Interactive Multimedia Systems and
Services (IDMS’96), Berlin, March 1996.

[Zinky97]
J.A. Zinky, D.E. Bakken, R.E. Schantz, “Architectural Support for Quality
of Service for CORBA Objects”, Theory and Practice of Object Systems
(Special Issue on the OMG and CORBA), january 1997.

29

