

Faculty of Science and Technology
Department of Computer Science

Controlled Sharing of Body-Sensor Data for Sports
Analytics using Code Consent Capabilities

—
Wei Zhang
[INF-3990] Master's Thesis in Computer Science - May 2014

Abstract
With the advent of body sensor technology, athletes can easily record individ-
ual physiological metrics such as heart rate, steps, and blood sugar. In parallel,
there is an increasing number of web services that use the raw body-sensor
data as input to sports analytics. For the individual athletes, this can yield
valuable insights on their performance and suggestions on individual training
programs, which consequently aid their development.

Once the data is imported into these analytics systems, the athletes are how-
ever left with little control over their data. This thesis presents code consent,
a user-centric mechanism which combines informed consent and capabilities
to enables athletes to share their private data in a more controllable manner.
Furthermore, it gives both the athletes and analytical services the extensibility,
flexibility to delegate the authority across protect domains by chaining keyed
cryptographic hashes.

The action and terms of informed consent are transformed to the reference
to the source code and attributes of a capability. When executing a capability,
the policy of access control to the resource is enforced, and the operation to
the resource is performed in OpenCPU server which is a R sandbox. With a
use case, we demonstrate now a user is able to share with others a graph of his
aggregated data by delegating a capability. This paper details the implemen-
tation of constructing a code consent capability, and verification, delegation,
execution of a capability. The security of the prototype is also discussed when
users revokes capabilities. In the prototype implementation, we also evaluate
the end-to-end latency of executing a capability, which includes the time of
verifying the signature, the time of executing the program code, as well as
downloading the output file. The analysis of the performance guides us to
investigate the optimization of our prototype such as capability cache and
function chaining.

Acknowledgements
I would like to thank my Åge Kvalnes for supervising my thesis. I would also
like to thank Håvard Johansen getting me involved in a paper [1] as a second
author. The experience of doing research and scientific paper writing was of
great value. Thank you for the meticulous guidance and providing numerous
constructive comments and detailed feedback for improving the quality of
the thesis. After the discussion with you, I always get some good ideas that
would speed-up and improve my work a lot. I wish I could co-operate more
and learn more from you in the future.

In addition, I would like to thank Professor Dag Johansen for letting me
study in the iAD group. I would like to thank Joseph Hurley for helping
me set up the experiment environment. You are always kind to help me fix
some implementation issues and review my thesis. Thanks to Erlend Graff,
Kristian Elsebø, Einar Holsbø, Magnus Stenhaug as well as Bjørn Fjukstad
for developing and sharing the latex thesis template with me. I would like to
thank the Department of Computer Science, University of Tromsø, for hosting
me during my master study.

Last, special thanks go to my wife Lu Li for continually encouraging me. In
some sense, my master study could have not happened without your strong
support. I am forever grateful.

You have your share in this work. I would not have made it without all of
you!

Contents
Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Girji . 2
1.2 Problem Definition . 3
1.3 Motivation . 3
1.4 Assumptions, Scope and Limitations 4
1.5 Methodology . 4
1.6 Context . 5
1.7 Outline . 5

2 Background 7
2.1 Body Sensor . 7
2.2 Sports Analytics . 8
2.3 Access Control . 8

2.3.1 Capabilities . 9

2.3.2 Codecaps . 10
2.4 Informed Consent . 10
2.5 Open mHealth . 12

3 Girji’s infrastructure 13
3.1 System Architecture . 14
3.2 Data model . 16
3.3 Service registration subsystem 18
3.4 Data acquisition subsystem 19

3.4.1 Data acquisition from RunKeeper 23
3.5 Requirements of Access Control 25

v

vi CONTENTS
4 Code Consent Capabilities 27

4.1 Design . 28
4.2 Code Consent Object . 30
4.3 Code Consent Capability . 32

4.3.1 Policy Chain . 34
4.4 Reference Monitor . 35

4.4.1 Capability Execution Environment 36
4.5 Capability Revocation . 37
4.6 Implementation Details . 38

4.6.1 Capability Construction 38
4.6.2 Capability Delegation 41
4.6.3 Capability Verification 43
4.6.4 Capability Execution Model 44

5 Evaluation 49
5.1 Case Study . 49
5.2 Experiments . 51

5.2.1 Experiments setup . 51
5.2.2 Data Transfer Time of RunKeeper 52
5.2.3 Capability Execution Time 53
5.2.4 Minimum Overhead for Each Policy Item 55
5.2.5 End-to-end Latency Analysis 56

6 Conclusions 59
6.1 Achievements . 60
6.2 Related Work . 61
6.3 Future Work . 61
6.4 Concluding Remarks . 62

A Informed Consent for TIL players to donate their body-sensor
data 63

B Source Code 67

References 69

List of Figures
2.1 File sharing across domains 9

3.1 Overall Girji architecture . 14
3.2 Analytical Service Registry . 19
3.3 The design of user’s infospace 21
3.4 Data schema . 22
3.5 An example of user’s fitness activity history 24

4.1 Overall design of code consent capabilities 29
4.2 The relationship of CRO, CCO, and capability 31
4.3 Different between proxy-based and component-based design . 33
4.4 Reference Monitor . 36
4.5 The overlay network of capability components 38
4.6 An example of a capability file 41
4.7 Execution flow . 46
4.8 Execution chain . 47

5.1 Output of capabilities . 51
5.2 Data transfer capacity of RunKeeper 53
5.3 Execution time of a capability 54
5.4 Minimum overhead for each item 56
5.5 Latency analysis . 57

vii

List of Tables
2.1 Access Control Matrix example 9

3.1 Body-sensor data sources example 16

5.1 Operations in the code consent object 50

ix

1
Introduction
Capturing and recording athletes’ physiological metrics through sensors is
becoming increasingly prevalent. Physiological data can be obtained through
different body sensors and even mobile applications. For instance, athletes
can obtain their heart rate by wearing a Bluetooth enabled chest belt like the
Zephyr HxM1 and they can record their body weight through a WiFi enabled
scale like the Withings Smard Body Analyser 2. They can also get the Global
Positioning System (gps) distance data through many mobile applications
like RunKeeper [2], Nike+ Running [3]. Professional sports are in particularly
embracing big-data analytics using a wide-range of athletes’ physical data
as input, producing many types of personal and team statistics. With high
level information, coaches are able to find potential performance problems
from large volume of athletes’ raw data and to look deep into metrics to
make adjustments so that the training plan can be better tailored to each
athlete.

A wide range of body-sensor data is leveraged to provide both the coach
and the athlete with more accurate and objective physical development in-
formation of the athlete. For example, Tromsø Idrettslag (til), a Norwegian
professional soccer club, has used Bagadus [4], which is a prototype of sports
analytics application, to quantify both objective performance metrics to aid
the development of athletes. The system uses ZXY Sports Tracking (zxy) to

1. http://www.zehpyr.com
2. http://www.withings.com

1

http://www.zehpyr.com
http://www.withings.com

2 CHAPTER 1 INTRODUCTION

capture a player’s position, step frequency as well as heart rate. With this
tracking information and the videos captured by a camera array, the coach
is able to annotate and playout a particular player’s video stream. At the
core of this technology platform is the zxy system, a proprietary body-area
radio-based sensor network that provides raw, physical data from individual
athletes to a central in-house database [5]. In addition, each player in til
now is wearing a Fitbit Flex Wristband to capture the sleep data to know their
quality of sleep.

There are also many free online Analytical Service (AS), such as RunKeeper
which includes mobile application and cloud-based back-end. RunKeeper mo-
bile application is a data capture client, which uses the sensors built in smart-
phones and records personal telemetry, then uploads the data automatically
to the back-end of the service. The cloud-based service stores users’ telemetry
data and analyzes it. The calculated calories burned and distance will tell
athletes the performance of the exercise. Therefore, the analytics feedback
gives athletes a greater level of their performance.

On one hand, with the data captured from sensors in real time, and the sports
ASs which do analytics on the data, both athletes and coaches can look deep
into metrics to guide for future better training. On the other hand, since body-
sensor data is private and personal data, athletes do not have complete control
on their body-sensor data when the data is imported to ASs. There is no way
for athletes to choose which part of data can be shared. Currently all the
athlete’s body-sensor data is exposed to the corresponding ASs. Plus, athletes
have to rely on the services protecting their highly sensitive data. For instance,
when a user installs RunKeeper mobile application on his mobile phone, every
time he uses RunKeeper to track his running, all the data is uploaded to the
back-end service of RunKeeper. Moreover, many third-party applications can
be connected via OAuth protocol so that the user’s private data, which is his
body-sensor data,may be acquired by third-party applications as long as these
third-parties get the tokens from RunKeeper.

1.1 Girji
In order to build a bridge between sports ASs and body-sensor data, Girji
aims to provide a computation environment for supporting a wide rage of
ASs to perform big-data analytics on body-sensor data. Girji is a computation
environment that is used to host atheltes’ body-sensor data so that various
types of sports analytics operations can be performed collaboratively on the
data. While public or proprietary services host and store athletes’ data at
present, these services may become bankrupt and be shut down. Girji’s long-

1.2 PROBLEM DEFINITION 3
term goal is to store and host athletes’ life-time data so that the data is always
available to public sectors or research institutes for analytics. An analytical
service (i.e., AS) is a computational process to get insights from input data set.
For example, RunKeeper web service is an AS as RunKeeper quantifies a user’s
performance by computing the user’s positional data and calories.

1.2 Problem Definition
Although the emerging health data ecosystem has great potential for both
users and organizations, it also poses a risk for users losing control of their
private data. Existing mechanisms for access control based on service-side
Access Control Lists (ACLs) are just not well suited to control data flow in
this type of computational environment. In addition, the common approach
to sharing one’s private data with others is either by surrendering his creden-
tials, or by copying the data and sending it. Both means are cumbersome in
that the first approach gives others more access rights than they are supposed
to have, and the recipient has to request the data again when it changes.
Those inefficient and insecure way of sharing data hampers the collabora-
tion among researchers in academia and practitioners in industry. This thesis
shall therefore focus on mechanisms for user-centric control of personal data
when uploaded and stored at health related services like RunKeeper andWith-
ings. The goal is to develop a prototype system or mechanism that enables
the users to share their data in a more confined way and to control how it
flows between services. Open systems and initiatives like Ohmage and Open
mHealth3 should in particular be considered in this context. The constructed
system should be evaluated in a scientific context.

1.3 Motivation
Users want to be able to have full control of their body-sensor data, even
though their data scatters around different source services. Meanwhile, users
also want to get insights of their performance by sharing their data with
sports ASs in a more fine-grained manner. They need a system that is able
to provide a user-centric way for users to fully control their data, to easily
grant authority, and also to make it possible for sports ASs to access users’
data which is authorized by the athlete.

This thesis shall design an infrastructure for retrieving users’ data which is

3. http://www.openmhealth.org/

http://www.openmhealth.org/

4 CHAPTER 1 INTRODUCTION

captured by different body sensors, and storing securely in the infrastructure.
When the body-sensor data is hosted in the infrastructure, users are able to
selectively share their private data with analytical services so that ASs can
do analytics on their data. In addition to providing insightful information to
users, ASs should also be able to share the result of the computation to other
subjects, for instance researchers, engineers, or even end-users from another
organization. While the objective facilitates collaboration, it shall not make
users’ sensitive information leaked out. The sharing should be confined so that
ASs are not able to do more than what they are granted. In a sentence, the
motivation of this thesis is to develop a mechanism to make sharing private
data more controllable without giving up security.

1.4 Assumptions, Scope and Limitations
In this thesis, we assume that Girji is completely trusted so that Girji system
itself will not intentionally disclose athletes’ body-sensor data after the data
is acquired from source services. We also assume that the result data must
also be processed in Girji in that after executing a capability, the result data
yielded from the operations can be taken out of Girji which can lead to the
leakage of information. Therefore, all the raw data, and the data resulted
from ASs’ analytics operations, must be kept in Girji.

It is necessary to assume that the capabilities, which a user possesses, are
kept securely, otherwise some other principals can have the capabilities that
he is not allowed to obtain. Furthermore, the principals who gets hold of the
capabilities can not only access the result data of the capabilities but also
process the result data by adding operations to the capabilities and executing
them. In addition, we assume that the state-of-the-art public key certificate
mechanism is deployed to identify legitimate users so that we will not focus
on the user authentication. When a principal presents a capability to Girji, it
means that the principal has been authenticated successfully. Lastly, since the
core of this thesis is to investigate how to enable controlled sharing while not
giving up security, we focus on the authorization mechanism rather than the
network security. Thus, Denial-Of-Service (DoS) attacks are outside of the
scope of this thesis.

1.5 Methodology
According to the final report of the ACM Task Force on the Core of Computer
Science [6], the discipline of computing is divided into the three following

1.6 CONTEXT 5
paradigms:

• Theory is rooted in mathematics and is followed in the development of
a valid and coherent theory. The steps include: characterizing objects of
study, hypothesizing possible relationships among them, determining
if the relationships are true, and interpreting results.

• Abstraction (Modelling) is rooted in the experimental scientific method,
which involves the formulation of an hypothesis, model construction,
prediction, data collection, and results analysing.

• Design is rooted in engineering, which consist of requirements state-
ment, specifications, design, implementation and test.

The thesis is to demonstrate a proof of the concept, which addresses the prob-
lem described in the problem definition. A prototype is built to validate the
design. In addition, the prototype is also evaluated to show its viability.

1.6 Context
This thesis is part of the information Access Disruption (iAD) centre for re-
search. The iAD Centre targets core research for next generation precision,
analytics and scale in the information access domain. Partially funded by
the Research Council of Norway as a Centre for Research-based Innovation
(SFI), iAD is directed by Microsoft Development Center (Norway) in collabo-
ration with Accenture, Cornell University, University College Dublin, Dublin
City University, BI Norwegian School of Management and the universities in
Tromsø (UiT), Trondheim (NTNU) and Oslo (UiO).

1.7 Outline
The rest of the thesis is organized as follows. Chapter 2 provides the overview
of the background of body sensors, sports analytics, informed consent, access
control mechanisms and related work on capabilities. We detail the architec-
ture of Girji in Chapter 3 and outline Girji’s requirements in the context of
privacy. Chapter 4 presents the approach to sharing user’s private data in a
controllable and flexible manner. In addition, we also describe the implemen-
tation of code consent capabilities. Chapter 5 evaluates both the security and
the performance of our prototype with a case study. We conclude and discuss
future work in Chapter 6.

2
Background
From academia and industry, scientists, researchers and engineers are col-
laborating by sharing computation outcomes or dataset resources. In this
manner, the intermediate results or analysis yielded from a few hours or
even days of computations can be used directly by other users. Consequently,
users can learn more, innovate more together. For those valuable resources
or computation results, researchers prefer to share them securely.

2.1 Body Sensor
In the consumer market, wearable body sensors are getting increasingly pop-
ular. With the sensing unit in the sensors, end-user’s physiological data is
captured, recorded. After that, the sensed data is streamed over wireless net-
work to the information system that provides analytics. End-users are able to
get wireless access to their physiological data through the body sensor, which
operates as an interface between end-user and analytics systems. Body sen-
sors can deliver important, real-time physiological information to end-users.
Generally Bluetooth is used to interconnect the smart phone and the sensor.
With the application installed on the smart phone, body sensors can operate
synergistically with smart phones. The monitored data is uploaded on to a
remote server where analytics is performed.

7

8 CHAPTER 2 BACKGROUND

2.2 Sports Analytics
Sports organizations are able to discover, identify, and better improve the
athlete’s performance by applying big-data analytics onto raw physiological
data, heart rate, sleep data, etc. Valuable knowledge is gained by employing
computer science, statistics, and mathematics techniques and models on a
collection of large and complex data sets using massively parallel algorithm
and software. Since big data provides large quantities of samples, analytics
operated on them reveals hidden truth. The insights in turn are used to pro-
vide recommendation, optimization or guide decision. Many soccer clubs are
embracing sports analytics. Based on statistical feedback, sports analytics is
helping trainers and coaches for automate decision and better train adjust-
ment. For example, ZXY Sports Tracking system [7] presents athlete’s speed,
running trail, accumulated distance, fitness graph by using a chest belt captur-
ing position, step frequency, and heart rate. In Bagadus [4], ZXY is integrated
with a camera array video capture system and an annotations system. By
recording the whole game and annotating soccer event, these subsystems
together enable playback of a specific player and performance review.

2.3 Access Control
Authorization determines a principal’s access rights to an object. In addition,
the authority can be shared with and delegated to other principals over net-
work, or even across different administrative domains. The access rights of
principals for each object can be represented by an access control matrix [8].
Every time a principal requests to access an object, the authorization is per-
formed by looking up the principal’s access rights in the access control matrix,
of which an example is depicted in Table 2.1. For instance, 𝑈𝑆𝐸𝑅_𝐴 created
the file 𝐴.𝐶, so that this user has the right of owner (i.e., O), as well as read
(i.e., R) and write (i.e., W). However, none of the users are entitled to execute
(i.e., X) the file 𝐴.𝐶. In practice, ACLs and capabilities are two different kinds
of access control matrix’s implementation. ACLs are the column-wised imple-
mentation. Each object has an ACL which lists all the authorized users along
with their access rights. Capabilities correspond to rows of the access control
matrix. A capability is an unforgeable digital token, ticket, or key that gives
the possessor permission to access an object [9]. In a capability, there are only
two items of information: a unique object identifier and access rights. There is
no user identity in the capability, which means the holder, whoever he is, of
the capability is permitted to perform the operations listed in the capability.
Deploying ACLs for authorization in distributed systems is cumbersome. Each
ACL is associated with an object. If a principal wants to review all the access
rights he has, it is necessary to examine the ACL of each object. If a principal

2.3 ACCESS CONTROL 9
A.C TEMP B.SH HELP.TXT PRINTER

USER_A ORW ORW ORWX R W
USER_B R - - R W
USER_C RW - RW R W

Table 2.1: Access Control Matrix example

File Server

User DB

Alice B

Domain A Domain B

local remote password
...

Alice
Bob B
...

User DB

Figure 2.1: File sharing across domains

wants to delegate his access rights to other principals, all the ACLs, which
correspond the accessed objects, have to be modified. This inconvenience may
incur administrative overhead or high latency. In addition, the principal must
be authenticated every time before looking up an ACL even though principal’s
identity does not change so much. This extra unnecessary step is inefficient.
By contrast, capabilities do not require explicit authentication. Moreover, re-
voking a principal can be painful. All the ACLs, which include the principal,
have to be updated. When authorizing across distinct administrative domains
using ACLs, either a proxy or an exchange of principal account information
is needed. For example, in Figure 2.1, if 𝐴𝑙𝑖𝑐𝑒 wants to grant user 𝐵 access
to 𝐴𝑙𝑖𝑐𝑒’s files, 𝐵 must have a local account (𝐵𝑜𝑏) in domain 𝐴’s user DB. By
this mapping between the remote user identity and associated local account,
user 𝐵 is able to access 𝐴𝑙𝑖𝑐𝑒’s files in the file server. As the size of foreign
users grows large, it becomes increasingly difficult to manage the mappings.
In addition, some accounts may be used for only a few times, which wastes
significantly number of allocated resources.

2.3.1 Capabilities
Capabilities are a dual approach to ACLs [10]. In a capability-based system,
it is easy to review all the access right a principal has by simply examining
the principal’s capability list. When a principal issues a request to the object,
because capabilities are subject-based, the service provider is not interested

10 CHAPTER 2 BACKGROUND

in if the client is known to it, the service provider needs only to check if
the capability is valid and whether the requested operation is listed in the
capability. While each principal carries a certificate, the principal may have
a few number of capabilities. When the principal wants to request an object,
he hands over his certificate to the service provider. The certificate includes
not only authentication information, but also authority information such as
user roles or capabilities. In addition, a capability allows the principal to loan
or delegate capabilities to other principals, which is impossible in ACLs. To
assure transferring rights securely, extra security measures need to be taken.
To guarantee the certificate is genuine and has not been tempered with, it
should be protected by means of a digital signature.

One possible access right to an object is transfer or delegation. A principal
having this right can pass some types of access rights in capabilities to other
principals. For instance, in Table 2.1, 𝑈𝑆𝐸𝑅_𝐴 is the owner of 𝑏.𝑠ℎ, thus he
can then delegate read and write operations by issuing a capability, which
embeds object identifier and operations (e.g., read, write), to 𝑈𝑆𝐸𝑅_𝐶. An
important advantage of capabilities over ACLs is that capabilities naturally
support the property of least privilege in that in ACLs the principal is able to
do anything more that what he means [11]. In addition, in the distributed
systems where there are a set of administrative domains, capabilities can
be reused and transferred among principals, which makes them suitable for
authorization across organizational boundaries [12].

2.3.2 Codecaps

A codecap (code capability) is a novel type of capability. With other capability
based mechanisms, there is a predetermined collection of rights that can be
turned on or off. By contrast, in codecap, the set of rights is not predefined, but
can be evolved as needed. It contains embedded code which can be executed
to check if the entity has rightful access to the resource. For instance, we can
create a time-range right function using JavaScript, defining that the service
is available only from 8:00 AM to 5:00 PM no matter who you are.

2.4 Informed Consent
Informed consent is an individual’s autonomous authorization of a medical in-
tervention or of participation in research [13]. Physicians or researchers must
obtain the informed consent from the patients or subjects prior to perform-
ing any operations. In the consent, the providers (physicians or researchers)
have obligation to tell the subject the procedure of the participation, the po-

2.4 INFORMED CONSENT 11
tential risks, and benefits of the subject. The subject should not be deceived
or coerced, which means the subject has adequately comprehended the con-
sent form. Then he/she intentionally signs the consent. In the health care
context, since athletes’ body-sensor data is regarded as Electronic Health
Records (ehrs), they have the right to be informed any systems that collect,
store, process, stimulate these records, as well as the purpose of the research.
Physicians/researchers must carry the responsibilities to conduct safe practice
even though patients consent to donate their data. Patients still retain the
right to file a lawsuit if physicians/researchers conduct a faulty intervention.
In the health case context, athletes’ body-sensor data is regarded as ehrs,
and ASs are regarded as research practitioners. Thus, if any research is to be
conducted on the athlete, an informed consent must be signed between the
research practitioner and the athlete. The informed consent is legally effective
so that if the research practitioner release the data against the athlete’s will,
the research practitioner is liable to prosecution. There are five components
in the consent [14]:

1. Competence. The subject is capable of making decision. Subjects who
are mentally retarded or receiving mental treatment are not considered
competence.

2. Disclosure. The consent provider should make the subject be aware of
that what type of his/her information will be disclosed, how long the
information will be retained.

3. Understanding. The consent provider should explain both the risks and
benefits of the participation, and let him/her know the discomfort and
side effect. It is free of right for the subject to withdraw the consent.

4. Voluntariness. The subject’s participation and information authoriza-
tion is made intentionally by the subject.

5. Consent. The subject decides to participate the intervention, voluntarily
authorize some personal information to be disclosed.

If we would like players from Tromsø Idrettslag (til) to donate their posi-
tional data for research. An example of informed consent is shown in Ap-
pendix A

12 CHAPTER 2 BACKGROUND

2.5 Open mHealth
Open mHealth [15] is an open software architecture, which collects data by
either mobile applications or on-board wearables, processes a wide range of
data, and displays meaningful insights from the data. Open mHealth is de-
signed to develop more open and modular tools to manage health. One of
the key design goals is that the modules in the architecture must have stan-
dardize application programming interfaces (APIs) so that different health
measures can be easily integrated and combined to provide more accurate
understanding. There are three module units in the architectural abstractions
for Open mHealth:

1. DSU, namely Data Storage Units, which provides a series of APIs to
access data, authenticate. In order for the existing data silos to integrate
with data units, a DSU poses a simple specification onto data stores. In
addition, data is defined in terms of Schema ID so that any complex
data structure can be referenced by a simple Schema ID. In this manner,
different data structures of data silos can be accessed under the Open
mHealth DSU specification.

2. DPU for Data Processing Units. A DPU is a stateless, Hypertext Transfer
Protocol (http) based processing module to make sense of the data.
Since the data structure in DSU is represent using JSON, DPU processes
the JSON data and provides open APIs for accessing.

3. DVU: Data Visualization Units. A DVU takes the data either from DPU
or directly from DSU and makes the data visualized in a readable and
meaningful way.

Ohmage [16] is an open-source mobile data collecting platform, which is
Open mHealth specification compliant. It pushed inquiry-based surveys to
end-users’ mobile phones and captures, stores, analyzes and visualizes data
from feedback of the surveys and the passive data such as geographical data
and time. The feedback collected by Ohmage is sent back to help the doctor
to see how a patient is responding and adjust the treatment. The feedback
loop also helps healthy changes. Ohmage uses OpenCPU 1 to act as DVU and
part of DPU. OpenCPU allows easy interpretation of insights and trends of
how end-users behave. With the modular ohmage as a base stone, a lot of
analysis modules and applications can be built upon it.

1. http://www.opencpu.org

http://www.opencpu.org

3
Girji’s infrastructure
Girji’s long-term goal is to act as a national infrastructure for access to data
for research and soccer club use. The Girji infrastructure is designed to be
a partially trusted broker which sits between athletes that produce body-
sensor data, and analytical services (i.e., ASs) that consume the data then
apply analytics on the data. Thus, there are two design goals for Girji, 1), to
provide an infrastructure that is able to securely store athlete’s body-sensor
data which may reside in different sources; 2), to provide a controlled manner
that enables both athletes and analytical services to share their authorities.
An architectural overview of Girji is shown in Figure 3.1.

To meet the first design goal, Girji should acquire the data from athletes, store
the data and also keep it unexposed in Girji. The reason for storing the data
in Girji is to provide the athlete with an overview of his data acquired from all
available sources. With this overview, the athlete is able to share more com-
prehensive angles of data with analytical service. Consequently, analytical
service can infer more objective information about the athlete. The second
consideration is to make Girji compliant with Open mHealth specifications
such that athletes’ data is easily integrated with external open DPUs and DVUs.
In addition, since Girji is proposed as a neutral and long-standing infrastruc-
ture to store athlete data, the data should be still available even after the
sensor service providers shut down. Therefore, Girji must store the data by
itself. Instead of communicating with different source content providers back
and forth, performance is improved when the data is stored and manipulated
inside the cluster network. For example, since the online services like RunK-

13

14 CHAPTER 3 GIRJI’S INFRASTRUCTURE
eeper and Fitbit have their own cloud storage for users’ data, data is uploaded
to the cloud storage over wireless network (i.e., WiFi, 3G). Generally, the pro-
fessional managed services of Runkeeper and Fitbit support integrations with
other applications through APIs. Girji should support data acquisition via APIs
provided by RunKeeper and Fitbit. After Girji extracts athletes’ body-sensor
data from data silos, the data should be stored in Girji’s infrastructure, which
is designed to be a secure container. Besides that, the athlete’s data should not
be accessible to other athletes. This design consideration makes the athlete
more comfortable with Girji that will be storing his privacy.

Fitbit Web

Service
RunKeeper

Web Service

ZXY

Database

Fitbit

Data

RunKeeper

Data

ZXY

Data

AS1

AS2

AS3

Analytical

Service Store

Validation Layer

Data Acquisition

Download eligibility function

Sign Consent

Girji
CRO

CRO

User’s Data Store

Figure 3.1: Overall Girji architecture

3.1 System Architecture
Girji architecture defines three different subsystems that are data acquisition,
service registration, and code consent management subsystems. The sensors
equipped on the user generate data which is consequently uploaded to the
on-line web services like Runkeeper or proprietary in-house database. The
data acquisition subsystem is in charge of retrieving users’ body-sensor data
from different data silos and securely storing the data in Girji. The reason for
that is to make Girji as the only place to gather and store users’ body-sensor
data. It is also easy for analytical services (ASs) to access the data so that ASs
need not concern about the data extraction from data silos. Each athlete’s
body-sensor data will be stored in Girji in a place which is completely isolated
from other athletes. This data storage design adheres to the isolation security
principle.

3.1 SYSTEM ARCHITECTURE 15
The information about all the analytical services is processed in the service
registration subsystem. Prior to signing the informed consent, the athlete
should first execute the eligibility function to check that if he is eligible to
the service. Besides, the analytical service should also provide the source
code of the operation it is going to perform. After checked to be eligible to
the analytics, the athlete is able to decide whether he would consent the
requested data. Each AS should retrieve only the data that is qualified by the
eligibility function. After the athlete fills out the consent, and both the athlete
and the analytical service sign the consent, the informed consent takes effect.
Both of them will receive a hard copy of the informed consent.

The code consent management subsystem is used to transform the informed
consent to code consent object, and construct the capabilities associated with
the code consent object. If the athlete or the analytical service wants to dele-
gate the capability to others, he attaches a new policy item in the policy chain
and updates the signature. Further, if the athlete modifies the code consent
object over time, all the capabilities created from it will be revoked and then
updated to the capabilities with new policies. When the analytical service
presents the capability, the capability is verified in the reference monitor of
the subsystem. Likewise, capability execution is also involved in the code
consent management subsystem.

In short, Girji connects different data source service providers through data ac-
quisition subsystem and many analytical services through service registration
subsystem. The analytical service’s operation is performed on the athlete’s
data in the code consent management subsystem, in which controlled sharing
is also supported.

The athletes, who generate body-sensor data by the wearing sensors, are the
data producers. In other words, in Girji the athletes are the owners of their
body-sensor data. The athletes decide if they agree to share some part of
data, under what restrictions the data is accessed, and how long the data can
be available to the AS. We introduce the informed consent for the analytical
service to declare its purpose, and for the athlete to share the data with
restrictions. For example, the restrictions are the accessible time period (e.g.,
8:00-17:00), Time-To-Live (ttl), allow delegation, to name a few. Regarding
to the AS, each AS, which wants to access the data stored in Girji, is registered
in the Analytical Service Store. When registration, each AS should provide
an eligibility function to filter out eligible users. For instance, a diet research
project,which requires eligible participants to have a target weight of less than
55 kg over the last year, will register its eligibility function into the analytical
service store so that athletes can download the function and execute to check
if they are eligible for the diet research project before exporting their data
into Girji. The code consent management subsystem generates an access token

16 CHAPTER 3 GIRJI’S INFRASTRUCTURE
Source Type Data
FitBit Flex Armband Steps, calories, sleep
Withings WS-50 Scales Weight, pulse, fat-%
Polar RS800 Watch Heart rate, position, etc.
ZXY Sport Tracking Belt Position, acceleration, effort, etc.
MyFitnessPal App Smartphone Calorie and food intake
RunKeeper App Smartphone Position, calories, etc.
Muithu Smartphone Sleep quality, muscle fatigue, etc.
Nike+ Running App Smartphone Position, pedometer, calories.

Table 3.1: Body-sensor data sources example

which is essentially a capability with access policy in it. The policy is specified
in the informed consent which is transformed into the code consent object.
After that, the access token is sent to the AS so that the AS is able to access
the data which the athlete consents to donate.

3.2 Data model
In Girji we have adopted a simple but effective scheme that captures all the
athlete’s body-sensor data as a data archive 𝑅. The athlete’s data archive com-
prises data sets captured from different body sensor sources 𝑠 = [𝑠1, 𝑠2, . . . , 𝑠𝑛].

𝑅 = {𝑟(𝑠1) ∪ 𝑟(𝑠2) ∪ . . . ∪ 𝑟(𝑠𝑖)}

In the equation, 𝑟(𝑠𝑖) is the set of records from a specific body sensor source 𝑠𝑖.
Since the body sensor source may capture more than one type of body-sensor
data, 𝑟(𝑠𝑖) consists of a collection of different types of sets of 𝑛(𝑠𝑖) records
from the same body sensor source 𝑠𝑖.

𝑟(𝑠𝑖) = [𝑟1(𝑠𝑖), 𝑟2(𝑠𝑖), . . . , 𝑟𝑛(𝑠𝑖)]

For instance, the Fitbit Flex armband is able to capture the heart rate, sleeping
data, apart from step count. Therefore, the set of records 𝑟(𝑠𝑖) (i.e., 𝑟(𝑓𝑖𝑡𝑏𝑖𝑡))
is composed of 𝑟1(𝑠1) (i.e., heart rate records), 𝑟2(𝑠2) (i.e., sleeping data
records), and 𝑟3(𝑠𝑖) (i.e., steps records). An example of different body-sensor
data sources and the types of data each source can capture is given in Table 3.1.

A record captured at a timestamp is the smallest unit of data in Girji. No
matter it is captured by a scale, a smartphone app, or an armband, each
record 𝑟𝑠 is represented by a monotonically increasing timestamp 𝑡, a time

3.2 DATA MODEL 17
offset 𝛿 and a vector of values (⃗𝑣) captured by the body sensor.

𝑟𝑖(𝑠) = [𝑡𝑖, 𝛿𝑖, 𝑣⃗𝑖], 𝑖 = 1, 2, . . . , 𝑛

Here 𝑡 denotes the timestamp when the sample is recorded (e.g., Unix time).
The source 𝑠 = (𝑡𝑦𝑝𝑒, 𝑑𝑒𝑣𝑖𝑐𝑒) identifies the type of record, like “position”
or “pulse” in combination with what device that generated the data, like
zxy.belt or RunKeeper.app. By explicitly stating device names, Girji can
support multiple devices that provide similar type of data. For instance, both
the RunKeeper app and the Polar watch provide positional data. To describe
device names,we have adopted a dot-separated hierarchical notations, similar
to Universal Resource Locations (urls), which enables efficient management
of name spaces with many vendors and devices. The vector 𝑣⃗ = [𝑣1, . . . , 𝑣𝑛]
denotes 𝑛 source specificmeasurement values for the sample, andmay contain
arbitrary data like integers, text strings, or even large binary objects like
images and sounds.

In the data set of records from the same body-sensor data source, not all the
different types of records have the same representation scheme. For example,
weight data and blood pressure data are discrete records while positional data
and heart rate are continuous records which are sampled in every second or
even shorter time. What’s more, for the positional data records, it makes
more sense to capture records in some time span. For this reason, we need
to indicate the start time of the capturing and the end time. Each record 𝑟
include a time offset 𝛿 that indicates the timespan [𝑡, 𝑡 + 𝛿] for when 𝑟 is valid.
For most low-level sensor records, like positional data from a 1Hz gps device,
𝛿 = 1 indicating that the record is valid until the next sample. A value 𝛿 = 0
typically indicates that a sequence of samples are ended. This is important
in order to distinguish time-spans with no samples from time-spans between
two valid samples. We can also use this facility to capture high-level meta-
events that relate to the users. For instance, during a soccer match, we can
capture that for a given timespan the user 𝑎 played in til’s game against
Strømsgodset on November 3rd 2013 by adding:

𝑟 ((events.soccer.match, zxy.app)) =[1383505200, 10800,

(TIL,Strømsgodset)]

Here the date (i.e., Sun, 03 Nov 2013 19:00:00) is transformed to a Unix
timestamp 1383505200 and the game was recorded for two hours which are
10800 seconds in other words.

18 CHAPTER 3 GIRJI’S INFRASTRUCTURE
3.3 Service registration subsystem
For the users, it is difficult to decide which ASs to give authorization of their
data to unless each AS gives users an informed consent which describes the
purpose of the AS and what types of body-sensor data the AS will be using.
For the ASs, not all the users are the eligible participants for the AS’s analytics.
ASs should use the data only from the eligible users. The service registration
subsystem is the bridge to make users and ASs know more information about
each other. To gain access to the body-sensor data, each AS registers a Con-
sent Request Object (cro), containing an informed consent and an eligibility
function, with Girji’s AS registry.

An informed consentwhich is an authorization document permitting the disclo-
sure of protected health information. In order to perform analytics on user’s
body-sensor data, each AS has to register an informed consent onto Girji so
that the eligible users are able to look at the terms and decide if they are
willing to share their data. After each AS registers its informed consent in the
service registration subsystem of Girji, users are able to see what each AS is
about and what types of body-sensor data they are likely to authorize if they
are eligible for the AS. In the informed consent, the AS describes the purpose
of the analytics, and perhaps the risk and benefits of the analytics. The AS
also requests the types of body-sensor data it is going to use. After reading
the informed consent, the user has in his mind what the AS is about, then
he can decide whether he is going to give authorization of access of the data
requested by the AS. In order to enable the user to give the authorization in a
more fine-grained and more controllable way, there is policy that the user can
specify in the informed consent. Rather than only including the constraints
in the policy, the reference of the operation is also incorporated in the policy.
As we know, the operation is performed in terms of the source code. The ref-
erence of the operation is a soft link to the source code. The constraints are
the predicates which will be evaluated before granting the operation. If all
the predicates are evaluated to be true by the reference monitor of the code
consent management subsystem, the operation is performed. The constraints
are as follows:

• access_period, during which time the requested data is accessible to the
AS.

• allow_delegation, which indicates whether the AS is allowed to delegate
its capability to other ASs.

• Time-To-Live (ttl), which is the retention time of the data.

An eligibility function which is used to filter out the users that meet the re-

3.4 DATA ACQUISITION SUBSYSTEM 19
quirements of the AS description of the service. Checking the user’s eligibility
is the prerequisite of the analytics. Before executing the eligibility function,
it is not yet clear whether the user is eligible for the AS. The user’s privacy is
leaked out if the user uploads his sensitive information up to the AS to execute
the function. In order to better protect user privacy, instead of uploading the
user data to the AS to execute the eligibility function, the eligibility function
is shipped to the user’s side to be executed. For instance, the function is down-
loaded to the user’s smartphone or computer to check the user’s eligibility
so that the user’s data is not disclosed to the AS. No data is allowed to be
transferred back to the AS. The execution result of the eligibility function will
tell the user if the user is qualified for the AS’s analytics. This is the first step
for the user to participate in the AS’s analytics. If the user is eligible, after he
signs the informed consent, the data requested by the AS is accessible to the
AS. However, the data will not be exported to the AS. The reason for that is
in our design ASs are not trusted. The source code of the operation applied
to the data is executed in Girji’s sandbox.

When registering with the subsystem, each AS is required to upload an eli-
gibility function and an informed consent file in which TTL, access_period,
allow_delegation, data_range and code_ref fields are included. Each AS will
be given a global unique id after the AS is registered in the subsystem. After
registered, the data structure of analytical service registry is shown in Fig-
ure 3.2. The informed consent is stored as an XML file because it is more
readable whereas the eligibility function is stored as an executable file as it
will be shipped to the user’s smartphone and executed. The access_period,
allow_delegation and TTL fields are specified by the user who is eligible and
also consents to share the data. The reason for storing them in each column is
to enable the subsystem to retrieve the value directly from the registry rather
than extracting from the informed consent file.

consent_file eligibility_file

exe_1

...

xml_1

...

AS_ID

as_1

...

exe_0xml_0as_0
access_period

8:00-17:00

...

8:00-12:00
delegation

false

...

true
code_ref

https://ref1

...

https://ref0
data_range

running(2013.11)

...

weight(2013)

Figure 3.2: Analytical Service Registry

3.4 Data acquisition subsystem
It is common that a user has several body sensor sources such as a RunKeeper
app, a Fitbit armband and a ZXY belt. Meanwhile, all these sources have their
own web services to help the user host and manage the body-sensor data.

20 CHAPTER 3 GIRJI’S INFRASTRUCTURE
Thus a user’s data archive 𝑅 is dispersed in different data silos. Further, the
body-sensor data is stored by different scheme in those data silos. The data
acquisition subsystem is used to retrieve the data from different data silos
and store it in Girji so that Girji is able to provide a uniform access scheme
to ASs. In addition, each AS is relieved from interacting with different web
services by various APIs. ASs can focus more on its analytics job. The body
sensor store in Girji can be considered as a cache for the corresponding data
silo. The AS will access only the data available in Girji. If the AS requests
to access the data which is more updated than what is stored in Girji, the
more updated data will be synchronized into Girji’s data store by the data
acquisition subsystem. After the data is acquired into the Girji infrastructure
where all the ASs’ code generally resides in the same network as the data,
the data can be accessed very fast. There are two ways for Girji to acquire
the user’s data from data silos:

• The user let Girji know his credentials of the web service so that Girji
can retrieve the body-sensor data from the web service, for instance, in
this way Girji can retrieve the body-sensor data in the in-house database
of ZXY.

• The user does not have to share his username and password with Girji
if Girji is connected to the web service which supports OAuth protocol.

A user’s body-sensor data is his/her sensitive data. Thus, the data should not
be disclosed to ASs unless the user gives authorization. In addition, the user’s
data should not be accessible to other users. In Girji’s design, all the data,
which is from different sources, of the same user is stored in the user’s infospace
that is completely isolated from other users’ storage. In the infospace, which
is shown in Figure 3.3, there are many data stores and each store represents
an individual type of sensing data, e.g., positional data, steps, weight, heart
rate. The reason for having each store for each type of data is that the sample
rate of sensing data may be significantly different. Another consideration is
to better reflect the characteristics of each sensing data. For example, the
weight does not change every hour whereas the positional data or the steps
are sampled every ten seconds. Since the primary key is the combination of
the timestamp and device, if one hour of positional data is captured and the
weight value is appended to each row, then the redundant weight value is
stored for 360 times. A user’s infospace can be implemented as a separate
database or be stored in an isolated virtual machine.

Since each piece of body-sensor data is associated with a timestamp and a
source, the piece of data and the timestamp in combination with the source
are stored in each row of the Girji’s body sensor database. Therefore, the
primary key of each table is the timestamp column together with the source

3.4 DATA ACQUISITION SUBSYSTEM 21

devicetimestamp

Withings scale1397952000

weight

60

devicetimestamp

Runkeeper.app1397952000

longitude latitude altitude

devicetimestamp

Polar.chest1397952000

hr

weight

positional

heart rate

distance

…...

User’s infospace

Figure 3.3: The design of user’s infospace

column. Each row of record can be retrieved by SQL query so that each row
is the minimal granularity in Girji. This relation schema makes more fine-
grained sharing possible so that the user is able to share each row of data or
even the same row of data with different policies. For the rows of data which
has an obvious event (e.g., a soccer game), it is natural that all those rows
of data corresponds to one code consent object. Then Girji manages those
rows of data as a whole and the user authorizes either all the rows of data
in a game or none of the rows. It makes sense in some cases, for example,
the data of a game, the data of a workout. Yet, for the data, which has no
specific event to correlate to, such as heart rate or sleep data, it is difficult to
have those rows of data correspond to an event. For example, some ASs may
request the user’s heart rate data captured from 18:00 to 0:00 while some
other ASs may request the data captured from 0:00 to 6:00. We have no idea
what data the AS requests to access. In this scenario, there is no specific event
to associate with the six-hour heart rate data. In order to be able to share the
data, we have to deploy granular access schema.

In the database, there is only body-senor data from sources and no autho-
rization data is stored. The authorization data is stored in another database
in the code consent management subsystem. When acquiring the data from
sources, it is natural that different sources store the data by different schemes.

22 CHAPTER 3 GIRJI’S INFRASTRUCTURE
In order to provide a uniform scheme to ASs, all the different fields will be
appended as individual columns in each row of Girji’s database. By this means,
all the related information is retrieved from different sources and stored in
the same row in Girji’s database, which is illustrated in Figure 3.4. In the
example, since both the runkeeper app and fitbit armband can record a user’s
running activity and they store the data in different schemas, all the column
data is retrieved and stored in Girji’s body sensor database so that each row
of data will have not only altitude, longitude, latitude, and distance
from runkeeper, but also steps from fitbit. This design scheme can provide as
much information as possible that is associated with each row of data. When
sharing, this further enables ASs to have more objective outcomes.

caloriesOut distancedatetime

Fitbit

steps startTime duration

altitude longitudedatetime

RunKeeper

distance latitude duration

calories distancedevice

Girji’s running table

steps startTime duration altitude longitude latitudetypetimestamp

Figure 3.4: Data schema

In short, the data acquisition subsystem is in charge of retrieving the user’s
body-sensor data from different sources either via OAuth or by proprietary
APIs. In the subsystem, all the data of a user will be stored in an isolated
infospace which is not accessible to other users. The data of the same type
resides in the same store in which each piece of data together with the times-
tamp and device is organized as a row of data record. This relation schema fits
better the characteristics of the sensing data, such as positional data sampled
at high frequency whereas weight data at low frequency. With the timestamp
and device as the primary key, Girji is able to support the same type of data
captured by different sensors. The relevant fields, which are returned when
retrieving the same type of data from different silos, are appended to each
row of the associated data store.

3.4 DATA ACQUISITION SUBSYSTEM 23
3.4.1 Data acquisition from RunKeeper
The Health Graph APIs [17] provided by RunKeeper enable Girji to access
body-sensor data like fitness activities,weight, and sleepmeasurements stored
within their services. Access to RunKeeper’s Health Graph API is managed
through the OAuth 2.0 authentication protocol [18], which is commonly used
by other Internet services like Facebook, Twitter, and Google to authenticate
and authorize third-party applications. The benefit of using OAuth is that
users can give third-party applications like Girji access to their RunKeeper
account without having to share their credentials with the applications.

To access data in RunKeeper, we therefore first need to register Girji as an
application in the Health Graph system. After providing RunKeeper with the
name of our application and the url of our web-site, Girji will receive an
identity token (e.g., d28****e91) and a secret (e.g., ec1****24f). When
the user wants to access his health graph through Girji using the OAuth2.0
protocol, the following steps will be executed:

1. The user is directed to the Health Graph API authorization url, with
the request parameters: identity token and Girji’s url. For example, in
our case the http Get request is https://runkeeper.com/apps/authorize,
with parameters

client_id=d28****e91,
response_type=code,
redirect_uri=http://girji.no/main

2. The user is prompted to input his RunKeeper account name and pass-
word. The account and password are not revealed to Girji. After the
user is authenticated by RunKeeper, he is prompted to accept that Girji
is allowed to access his health graph data. If the user permits this,
the Health Graph API will redirect him to the redirect_uri, which
is http://girji.no/main, and one-time code 53c****977 for Girji to get
the access_token afterwards.

3. Girji sends a POST request to https://runkeeper.com/apps/token with
the request parameters one-time code, which was returned in previous
step, grant_type, client_id, client_secret, and redirect_uri. An
example of POST request is https://runkeeper.com/apps/token, with re-
quest parameters

grant_type=authorization_code,
code=53c****977,
client_id=d28****91,

https://runkeeper.com/apps/authorize
http://girji.no/main
https://runkeeper.com/apps/token
https://runkeeper.com/apps/token

24 CHAPTER 3 GIRJI’S INFRASTRUCTURE
client_secret=ec1****24f,
redirect_uri=http://girji.no/main

4. An access token will be included in a response to Girji. This access
token is uniquely associated with this specific user. The token should
be included to each request made by Girji to access the user’s health
graph.

After Girji gets the access token for the user’s health graph, Girji is able
to retrieve the users fitness activity data by sending a http Get request
to http://api.runkeeper.com/fitnessActivities. The RunKeeper web
service will reply with 200 OK together with a list of FitnessActivityFeed
in JSON format. Each item of FitnessActivityFeed represents each fitness
activity’s summary including start time, fitness type, distance and the uri
of the activity which the value of altitude, latitude, longitude of each path
point can be retrieved. The details of an individual fitness activity can be
acquired by sending another HTTP GET request by specifying the uri of the
activity like /fitnessActivities/40. When the user logs into Girji’s por-
tal and clicks Connect to RunKeeper, a summary of the user’s fitness activ-
ity history will be shown. An example of this table is shown in Figure 3.5.
Meanwhile, a fitness.csv file of the user is created and stored in this user’s
directory.

Figure 3.5: An example of user’s fitness activity history

3.5 REQUIREMENTS OF ACCESS CONTROL 25
3.5 Requirements of Access Control
One of Girji’s principal objectives is to enable users to selectively share their
body-sensor data with proper privilege. There are functional properties of
access control specific to private data sharing in Girji. A user should be able
to easily share his private data to others without the intervention of system
administrator as in a large-scale system it is cumbersome for administrator to
be involved in every process of sharing. Apart from the ones registered in Girji,
one should be able to share data with users outside Girji, which means sharing
across administrative domain. In addition to that, Girji also encourages more
collaboration between ASs by sharing their interesting analytics results in
a confined manner. In addition to sharing data, a user should also be able
to delegate access authority to other users in and/or outside Girji. Since a
user’s body-sensor data may change dynamically as he has more activities, it
is desirable that other users are able to get the access right to his updated
data. Lastly, since a user can give access rights to others, we should also be
able to revoke some access rights.

While athletes are the body-sensor data producers, ASs are the data con-
sumers. Operations on the athlete’s data should be granted by the athlete.
Otherwise the operations will be rejected by Girji if the athlete does not give
permission to the AS. Generally, an AS could be either a scientist, a researcher,
or a private company running analytics. Combining different sources of data
and taking it all in the AS analytics can yield more insights. However, athletes’
data might be leaked out by ASs accidentally or on purpose if ASs have access
to all the data. In order to protect user privacy, the AS is allowed to access
only the data which is needed. This requirement corresponds to the principal
of least privilege in information security.

The requirement of fine granularity applies to two aspects i.e., shared data
and access rights. The first aspect is that the access control mechanism should
enable athlete to be able to specify smaller data items to be shared with others.
Yet, an extremely fine-grained authorization can lead to very much admin-
istrator management and low performance, e.g., specifying access control
based on each millisecond makes no sense when access control based on
each second or each day is desired. Therefore, the access control mechanism
should support a flexible level of access granularity of operations and access
context. The other aspect is that principals should be able to confine the ac-
cess rights when delegating. The principal should be able to delegate only a
subset of his access rights to the recipient principal who can access only the
resource specified by the grantor.

Autonomous delegation between principals in different ASs is requiredFor
ASs, there are distinct administrative domains. Some researchers might want

26 CHAPTER 3 GIRJI’S INFRASTRUCTURE
to share their extemporaneous experiments to some ones in different domains
without much interference of administrators. In other words, either athletes
or ASs should be able to delegate their authorities with minimal efforts, even
across domains. No administrator involvement should be required.

In order to mitigate the privacy risks, the mechanism should provide means
for athletes to revoke access rights of the AS that released the data. Since
ASs are not trusted, they could accidentally or intentionally leak out the data.
There is also some other reasons athlete should revoke some access rights.
For example, one should revoke all the access rights of his previous club after
he moves to another club.

The second requirement is that Girji should enable the athlete to set the
policy in terms of the type of the data, the time of retention and delegation.
Moreover, the policy is also enforced in Girji to realize the fine-grained and
user-controllable data access to ASs. The access request from the AS should
always be checked by Girji based on the policy set by the owner of the data.
Last, in case of emergency situations, the athlete should be able to revoke the
AS access to his data at any time. Once accepting the AS’s access right, the
athlete’s sensitive information is always available to the AS. It is possible that
the athlete’s identity might be revealed due to the development of the AS’s
algorithm. Therefore, there should be a mechanism to make the athlete be
able to revoke the access anytime he wants to do so.

Based on different athletes’ privacy needs, the prototype should support poli-
cies of different privacy levels. The athlete should know clearly what type of
data is stored in which system. When the sports analytics system is passing the
athlete’s data to a third-party sports analytics system, the athlete should be
notified to determine interactively whether to grant access to the data or not.
When the timetolive time expires, the analytical service is no longer allowed
to access the data while the data is still stored in Girji. The requirements,
which the access control mechanism should satisfy, can be summarized as
follows:

• More fine-grained data sharing without administrator intervention.

• Least privilege of access rights.

• Easy delegation and revocation across administrative domain.

• Mechanisms to remove data automatically from ASs.

• User-data traceability.

4
Code Consent Capabilities
Based on access-control requirements from Chapter 3, this Chapter will intro-
duce and describe our approach to satisfy these requirements in the context
of Girji. After user’s data is retrieved and stored in Girji, the data is ready to
be shared to ASs. Since the data is highly personal, the data should be shared
in a restricted manner. Moreover, when ASs yield results from the raw data
and want to share them, some access control policy should also be enforced
because the results are derived from user’s data and the user is the owner of
his data. Therefore, the access policies specified by the user apply not only
the raw data but also all the derived results. Meanwhile, the access policies
specified by ASs should not be conflict with the policies specified by the user.
Another consideration of access control is that Girji allows users and ASs to
share the data to others who may not be register in Girji. For sharing data
across administrative domains, capabilities mechanism is chosen over ACLs
by the following reasons:

• Large number of subjects and objects may be frequently added or re-
moved, which makes changes in ACLs is inefficient;

• When an object is created, few subjects have access to the new object.
Thus most entries of ACLs are empty.

• Since access right delegation is very common in Girji, it is with less
difficulty to do delegation with capabilities as the delegation in ACLs
will result in the scan of all ACLs.

27

28 CHAPTER 4 CODE CONSENT CAPABILITIES

• Within ACLs, delegation across domains will not be possible without
proxies.

Furthermore, in a distributed system, it is sufficient to trust a subject with
the credentials. And because the capability is sent along with the request, the
time spent for accessing attributes is much less than the time for searching
an ACL.

4.1 Design
Access control in Girji is managed using self-contained and highly expres-
sive capabilities similar to that of the Codecaps and Macaroons [19, 20]. The
operations and constraints in the capabilities are set from the content in the in-
formed consent. In order to encourage sharing while not compromising user’s
private data, we deploy capabilities to entitle principals to have restricted ac-
cess rights which are represented as a list of combination of operations and
constraints.

After ASs are registered in Girji’s AS store, the consent file in each cro is listed
so that eligible users can review the content of the consent file. If it turns
out that the user is eligible for the AS’s analytics by executing the eligibility
function, the user can review the dataRange, codeRef fields to decide if he
wants to share his data. The user sets some constraints and signs the informed
consent. At the same time, a hard-copy informed consent is generated so that
the paper certifies that the AS is responsible for performing analytics on the
data but is not allowed to intentionally leak out the data. A code consent
object is also created. The purpose of code consent object is that 1), keep in
memory the representation of the informed consent; 2) user for minting the
root capability. The codeRef, constraints fields in the code consent object are
copied to construct a list of policy chain in the capability. After computing the
signature of the policy chain, a root capability is minted and sent to the AS
so that every time AS wants to perform the analytics, it simply presents the
capability to Girji’s reference monitor and executes it. Each capability has to
go through the reference monitor. When the reference monitor receives the
capability execution request, it will first verify the capability, then execute the
policy chain from root to last. During the execution, the AS cannot access any
resource except the result of the execution of the policy chain. Therefore, the
result is returned to the AS. The overall design of code consent capabilities is
shown in Figure 4.1

The first phase is to construct capabilities based on the code consent object or
to delegate capabilities based on existing ones. In the code consent manage-

4.1 DESIGN 29

AS Store

AS1

AS2

Code Consent

Object Store

User

Exe
cute

 fu
nctio

n

Sign co
nse

nt

Reference Monitor

Execution Environment

code, data

CRO

CRO

capability

Exe
cute ca

pabilit
y

result

re
su

lt

Informed consent paper

Figure 4.1: Overall design of code consent capabilities

ment subsystem, a new cco is created every time a user signs an informed
consent. After that, a capability is constructed in accordance with the code
consent object, and then passed to the AS after which the AS has the user’s
authority to access the data specified in the dataRange field of the capability.
However, the AS can only perform the operations specified in the codeRef of
each policy item.

The second phase is to execute the capability so that principal is able to apply
operations which are in the policy chain, and access the result. When a prin-
cipal presents a capability to Girji, the reference monitor will be invoked to
enforce the access control policy. Instead of storing the policy in a database,
the policy is embedded in the capability. Therefore, policy enforcement is
essentially to perform the operation on the data under some constrains. The
operation, data range and constrains are all contained in the capability. After
the reference monitor verifies the capability’s integrity, freshness and evalu-
ates the constrains, if all the checks and evaluation are true, the operation on
the data is granted. Lastly, the operation is performed in an HTTP-interfaced
sandbox (i.e., OpenCPU). In summary, the access control mechanism should
implement the following functions:

30 CHAPTER 4 CODE CONSENT CAPABILITIES

• Mint the capability based on the corresponding code consent object.

• Strictly execute the capability.

• Capability delegation.

• Capability revocation.

4.2 Code Consent Object
A code consent object (i.e., cco) is a data structure representing the informed
consent and used to associate all the capabilities minted from the this code
consent object. After the user specifies the constraints and signs the informed
consent, a code consent object is created. The code consent object consisting
of a CROId, a provider, consenter, CCOId, revoked as well as some fields repre-
senting the terms of the informed consent such as dataRange, codeRef and a
list of constraints. The CROId field identifies the cro which this code consent
is created from. consenter denotes the user who has signed the informed con-
sent while provider is the identification of the AS. Instead of embedding the
source code, the link address of the code is incorporated in the object as the
source code of the analytics may be quite large. Examples of constrains are the
access time period (accessPeriod), whether to allow authority delegation (al-
lowDelegation), how long the AS can retain the data (TTL), which ip address is
allowed to access and so on. The value of the operation (i.e., codeRef), which
will be executed to perform analytics on the range of data (i.e., dataRange),
is passed from the informed consent. Both the dataRange and codeRef are
unmodifiable in that the user has signed the informed consent. What the user
can change over time is the list of constrains. The constrains are a number of
predicates that will be evaluated to restrict operation. When sharing data to
the same AS, different users have different code consent objects in that they
may specify different constraints.

A cco is a in-memory object which is managed by Girji while a capability
will be sent to the AS and kept securely by the AS. Each AS registers only
one cro in Girji. However, after signing the consent files, different ccos are
created for different users in that the consenters for the same cro are different
and they may set different constraints. Consequently, capabilities, which are
minted from different ccos, are not the same. The relationship between cro,
cco and capability is shown in Figure 4.2. An individual cco is identified by
CCOId. In addition, different users (i.e., consenters) may specify different
constraints. The relationship between cro, cco and capability is shown in
Figure 4.2.

4.2 CODE CONSENT OBJECT 31

String: CROId

String: provider

File: eligiFunc

String: consentDesc

String: dataRange

List: codeRef

String: CCOId

String: capId

List: operation

List: constraints

String: signature

String: CROId

String: provider

String: consenter

String: CCOId

Bool: revoked

String: dataRange

List: codeRef

List: constraints

Int: version

String: CROId

String: provider

String: consenter

String: CCOId

Bool: revoked

String: dataRange

List: codeRef

List: constraints

Int: version

String: CCOId

String: capId

List: operation

List: constraints

String: signature

CRO CCO CAPABILITY

Figure 4.2: The relationship of cro, cco, and capability

Code consent object is used to construct the first capability (i.e., root capa-
bility). The capabilities, which are minted or delegated afterwards, are all
associated with the code consent object. After the code consent object is cre-
ated, it is the basis for constructing the root capability because the value of
codeRef and a list of constraints is copied to construct the policy chain in the
capability. After setting the value and computing the signature using Hash-
based Message Authentication Code (hmac), a self-contained capability for
performing operations under some constraints is minted out.

In addition to construct the root capability, code consent object is also used
in the execution of a capability. Every time the reference monitor verifies
the capability, it will check if the revoked field of the code consent object
with which the presented capability is associated. If it is true, this means
the capability has been revoked so that the access is denied. Besides, since
the user can modify the constrains of the code consent object as needed,
the constrains in the capability might not be the latest ones. The reference
monitor will compare the constrains of the capability with the ones of the
code consent object. If the constrains are not identical, which means that
the user has modified the constrains, the constrains of the capability will be
updated to the constrains of the code consent object.

32 CHAPTER 4 CODE CONSENT CAPABILITIES

4.3 Code Consent Capability
A code consent capability is essentially a capability, which has a nonce of
capId, a string of CCOId, a chain of policy items and a string of signature.
The globally unique CCOId identifies one specific cco object stored within
Girji. The signature is generated by computing the hash of the fields of the
capability, and is also used as the key of the hash function for computing the
signature of the delegated capability. The policy list 𝑐ℎ𝑎𝑖𝑛𝑛 is a chain of policy
items

𝑐ℎ𝑎𝑖𝑛𝑛 = [𝑝0, 𝑝1, . . . , 𝑝𝑛]

which corresponds to a chain of combination of operations and constraints.
Under each constraint, the execution environment will execute the operations
from the root policy item (i.e., 𝑝0) to the end policy item (i.e., 𝑝𝑛). Each policy
item 𝑝𝑖, 𝑖 = 0, . . . , 𝑛 is a collection of attributes. A policy attribute is a name-
value pair. We denote by 𝑝𝑖.attr the value of the attribute named “attr” in
the policy item 𝑝𝑖. The operation attribute of the first policy item is set by
AS and constraints are set by the consenter. When delegating capabilities,
which means the grantor is giving the grantee some confined access right,
both operations and constraints are set by the grantor.

The benefit of incorporating the signature and the chain of policies in a capa-
bility is that in a distributed system this design reduces the communication
overhead between capability component and Girji. While there are one or
more capability components to support legacy data sources for capabilities
access control, there is only one execution environment in Girji. The decou-
pling of execution environment and capability components makes Girji easily
scale out. If Girji wants to support another administrative domain, a capa-
bility component is added in Girji so that capabilities of accessing data on
behalf of the domain’s principals are created by that component. The capabil-
ity component is also used to adapted to legacy data source for supporting
capabilities access control. The capability component is able to mint a new
capability based on the preceding capability as the signature of the preced-
ing capability can be used as a hash key for computing the signature for the
new delegated capability and the policy chain is contained in the preced-
ing capability. A capability component manages code consent objects and
constructs new capabilities by building up policy chain and computing sig-
nature. Different capability components manage not the same code consent
objects and the information of ccos will be synchronized among the capabil-
ity components. When a capability component constructs a new capability by
delegating, the value of the signature depends on only the policy chain which
is already contained in the capability. Thus, the capability component need
not communicate with the execution environment. Since the signature of the
capability is used as a hash key for computing the signature of the delegated

4.3 CODE CONSENT CAPABILITY 33
capability, the capability component simply executes hmac function. As for
minting a root capability from scratch, since the operations and constraints
are all included in the code consent object, the values can also be got from the
capability component instead of the execution environment. The difference
between capability component and proxy is that the new capability, which
is created by the component, is executed in Girji’s execution environment
instead of in a proxy. A new capability can be created by a proxy. However,
since a proxy sits between Girji and the principal, every capability is executed
in the proxy and then the proxy in turn presents the resulted capability on
behalf of itself and executes it in Girji. By contrast, the capability minted by
capability component can be executed directly in Girji’s execution environ-
ment. The difference between proxy-based and component-based design is
shown in Figure fig:proxy.

construnction _master execution_master

construnction execution

principal

capproxy

capprincipal capprincipal

capproxy

construnction execution

principal

capprincipal capprincipal

construnction _master execution_master

Girji Girji

capability pass

capability execution

proxy-based component-based

Figure 4.3: Different between proxy-based and component-based design

A policy item consists of a constraint, and an operation field. Operation, which
is the code reference codeRef along with parameters (i.e., param), is what
the principal can do with the input data. constraint is the predicate evaluated
by Girji before the operation is performed. For instance, the restriction [8:00-
17:00] means the operation in the capability can only be performed during
that time period. The value of operation and constraints of the the first policy
item in the policy chain is the value of that of the corresponding cco. When a
user signs the informed consent, there is one cco generated from the content
of the informed consent. However, there may be one or many code consent
capabilities associated with the cco as many capabilities may be delegated
from the root capability. When a principal wants to access the data of a
user, first, the principal extracts the policy chain from the capability; second,
executes the operations in the chain from the root one to the last one. Since

34 CHAPTER 4 CODE CONSENT CAPABILITIES

the operation and constraint are all contained in the capability, what the
principal has to present is only the capability. The primary data-access API
call provided by the Girji has the form

𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙.𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

When this statement is executed is Girji, Girji will first check if the capability
is tampered with. Girji does this check by comparing the signature of the
capability with the value which is calculated recursively using hmac [21]. If
the signature is checked correct, Girji will start executing sequentially the
code in each item of the policy chain. Prior to that, Girji will first evaluate the
restriction to see if the operation is allowed. If the constraints are evaluated to
hold true, the code is executed. Then Girji repeats the constraints evaluation
and code execution for the second policy item, the third one, until the last item
in the chain. Since the code generated by the principal might be malicious,
Girji’s capability execution runtime has to make sure the code is executed in
a secure manner. When executing the code of each operation of the policy
item, a profile is applied to each code execution runtime. The profile lists
what the code can do. For example, a network connection code is executed
failed if a profile, which does not state a network connection is allowed, is
applied to the code execution runtime. Besides that, the code must follow
a input/output invention that is the code can read only from the input file
and should write output only to the output file. The reason for that is that
each code execution should read only the input yielded from the code of the
previous policy item in the chain. This mechanism also restricts the code from
reading someone else’s data.

4.3.1 Policy Chain
A capability is executable in Girji in that the policy chain contains a number of
links to the source code of operations. A key difference between code consent
object and capability is that there is a policy chain in the capability. A policy
chain is a list of policies which are added when constructing or delegating.
Since all the operations are contained in the policy chain and the capability
is stored in principal’s side, Girji need not store or manage capabilities. There
are some requirements for the policy chain. The constraints should be atten-
uated from the root item to the end item because the chain represents more
restricted access control. Moreover, the operations in the chain are executed
in a sandbox so that the presenter can access only the result of the execution
of the whole policy chain. The presenter cannot access the results of the exe-
cution of the policy items. The reason is for security because if the presenter
is able to access the intermediate results, he is able to access more data than
he is allowed to, which may lead to information leakage. When delegating
capabilities, one or more policy items are added to the policy chain to give

4.4 REFERENCE MONITOR 35
grantee confined access control to the processed result which yielded from
the added operations. For the added operations, the input data is the result
of the whole policy chain’s execution of the old capability. Another function
of policy chain is to computer the signature of the capability be ensure that
the capability is not tampered with during transferring.

A signature is a chained of keyed cryptographic digests derived from the
policies. The signature is computed using HMAC functions [21] in a nested
fashion. A signature of a capability is yielded by the following steps:

• Take the first policy item in the policy list.

• The strings of codeRef, constrains are concatenated as a long string.

• The long string is truncated to a fixed length (e.g., 128bits or 256 bits).

• The first HMAC key value is computed by the function HMAC(secret key,
longStrTrunc).

The key is used as the secret key for the second policy item in the policy list
and the second HMAC key is computed as the same way as the first key. By
this nested HMAC function that is applied from the first policy item to the last
one in the policy chain, a chain of HMAC key is also constructed. However, the
final HMAC key is set to be the signature of the capability. This mechanism
is efficient when a principal wants to delegate a capability. The principal
adds a policy item and uses the signature of the capability as the key for the
HMAC function, thus the signature of the derived capability is computed by
taking the previous capability’s signature and the string of policy into HMAC
function. In short, the signature of a capability can be used to ensure that the
capability is tamperproof and used as the key for construction of the delegated
capability.

4.4 Reference Monitor
Prior to executing the code in the capability, a reference monitor must be
invoked to mediate all the operations. A reference monitor is a component that
verifies every capability and enforces the security policy for every access. The
reference monitor concept was introduced to determine what kind of access
is authorized [22]. The reference monitor will perform the signature checking
and constraints evaluation to prevent unauthorized access. Every access to
the data is completely mediated by the reference monitor. The overview of the
reference monitor design is shown in Figure 4.4. When a principal presents a

36 CHAPTER 4 CODE CONSENT CAPABILITIES

capability, the reference monitor will verify the signature of the capability by
comparing it with the hmac value computed by the reference monitor. If these
two values are identical, this means that the capability has not been tampered
with. Second, based on the asId field, the reference monitor searches for
the code consent object in the authorization database and gets the value of
revoked. If it is true, which means that all the capabilities associated with this
code consent object have been revoked, the access is denied by the reference
monitor. Otherwise the reference checks the freshness of the constrains and
evaluates the constrains in each policy item of the policy chain. Meanwhile,
all the events are recorded as logs which are sent to audit trail. If all the
constrains of one policy item hold true, the reference monitor will grant the
operation in that policy. The same procedure is applied to the next policy
item in order. If any policy fails to be verified, the reference monitor will deny
the operation. In short, the reference monitor will do the following checks
sequentially: 1), verifies the signature; 2), checks if capability is revoked; 3),
checks if constrains are updated; 4), evaluates the constrains.

Principal Reference Monitor

Audit Trail

Authorization Database

Execution Environment
capability

log

codeRef

code consent object

data

Figure 4.4: Reference Monitor

4.4.1 Capability Execution Environment
As stated earlier, ASs are not fully trusted by Girji and users. When registering
with Girji, it is likely that the operation function, which the AS provides,
contains malicious code, e.g., some code tries to access other users’ data file or
create a socket. Apart from that, an operation may try to consume all memory
to break down the whole execution environment. This brute operation could
also as an attack. In order to secure the execution runtime, each operation
should be executed in a secure and restricted capability execution environment,
which is essentially a sandbox. In the sandbox, each function can not do any
operations on any files other than what it is allowed to. In addition, each
operation function should not consume all the computation resources of the
execution environment. Besides the constrains evaluated in the reference

4.5 CAPABILITY REVOCATION 37
monitor, when executing the operation function, a profile is applied to execute
the untrusted code. A profile is a file that consists of a set of rules specified
using AppArmor syntax. These policies will be enforced on the process in
which the operation is executed. We can also specify how much memory and
the number of CPU cycles the operation can use. Different profiles can be
applied on different operations. With the profile, the operations in the policy
chain will be executed sequentially and the latter function can read only the
output of the preceding function as its input. As shown below, the example
of the profile specifies that network connection is disallowed, the process is
only allowed to read and write the directory /tmp/**, and the process can
only use virtual memory up to 1 GB.

deny network, #disallow all networking
/tmp/** rw,
RLIMIT_AS = 1024*1024*1024

4.5 Capability Revocation
A scalable revocation service [23] is employed to disseminate the list of capIds
of the revoked capabilities among capability components. After bootstrap, a
mesh is generated among all the capability components by a hash function. As
is shown in Figure 4.5, each capability component has the same role and acts
as a back-to-back agent which receives message from other components while
sending messages to its neighbors. Therefore, each capability component is
connected to more than one components, but not fully connected as fully
connection will not scale.

When a user revokes a capability, a list which includes capId of the revoked
capability, is created by the capability component. This component pushes the
capId list to a set of capability components running fireflies [24] [25] agent.
Then the list is eventually distributed to all the components on the overlay
network. Thus, by gossiping all the components have a list of capIds of all the
revoked capabilities. When receiving new message, if the version number is
greater, which means the list is more up-to-date, the current list is replaced
by the received list. The sending thread periodically picks one capability
component from its view. If the version number of the current list has not
been sent to the component by comparing the version number with the one
which is sent last time, then the current list is sent to the component.

38 CHAPTER 4 CODE CONSENT CAPABILITIES

Sending threadReceiving thread

CCO CCO...

capability

component

capability

component

capability

component

capability

component

capability component

capId list

capId list

capId list

capId list

capId list

Figure 4.5: The overlay network of capability components

4.6 Implementation Details
In our prototype implementation, Girji is able to acquire the body-sensor data
from RunKeeper web service via OAuth 2.0 protocol. Different types of data
are stored in individual Comma Separated Value (csv) files. For instance, all
the data of fitness activities is stored in fitness.csv file. All the Comma
Separated Value (csv) files associated with a user are stored in the same di-
rectory which is the user’s infospace. We have also developed a portal for users
to create, delegate a capability to a user who is even in a different adminis-
trative domain. In addition to that, we have implemented a simple reference
monitor to verify capabilities. With respect to the execution of capabilities,
all the source code of operations is written in R language. Therefore, we use
OpenCPU [26] as a execution environment that executes R package by receiv-
ing HTTP request. We have developed several R packages for the common
operations such as filtering out all the running data of a user, selecting only
the data of the specified columns, aggregating and so on.

4.6.1 Capability Construction
Both users and ASs can construct a capability. When requesting data access,
the AS could set codeRef in the informed consent by selecting the operations
provided by Girji. For example, Girji develops R packages for common opera-
tions e.g., retrieving only the specified activity data from the user’s infospace,

4.6 IMPLEMENTATION DETAILS 39
and retrieving the activity data of the specified year or month, etc. If an AS
wants to acquire the user’s running data in 2014. The AS could specify the
operation by combining the two operations provided by Girji. The value of
codeRef of the informed consent would be a list of links to the corresponding
R packages:

/ocpu/library/girji/activity
/ocpu/library/girji/time

After the user specifies the constraints and signs the consent, a code con-
sent object and the corresponding capability is constructed by the following
steps:

1. The constructed code consent object is shown below.

String CCOId = 69i57j0l52782j0j7;
String provider = testAS;
String consenter = wei@uit.no;
boolean revoked = false;
List operations =

{ {"/ocpu/library/girji/activity", "Running"},
{"/ocpu/library/girji/time", "2014"}

};
int constraints.version = 0;

int constraints.ttl = 12;
String constraints.accessPeriod = "8:00-12:00";

String constraints.allowDelegation = true;

2. Girji initiates a new capability by setting the fields of the capability.
capId, asId are unique in Girji and userId is the user’s account name
in Girji.

capId=get_wei_running_2014;
description="Retrieve wei’s running data in year 2014";
asId=testAS;
userId=wei@uit.no;

3. Since the AS specifies two operations in the informed consent, the policy
list has two policy items. Girji populates the policy list by setting the
operations and constrains as follows.

policy[0]
codeRef="/ocpu/library/girji/activity";
param="Running";

40 CHAPTER 4 CODE CONSENT CAPABILITIES

constraints.ttl = 12;
constraints.accessPeriod="8:00-12:00";
constraints.allowDelegation=true;
constraints.version=0;

policy[1]
codeRef="/ocpu/library/girji/time";
param="2014";
constraints.ttl = 12;
constraints.accessPeriod="8:00-12:00";
constraints.allowDelegation=true;
constraints.version=0;

4. In order to ensure the policies are not tampered by eavesdroppers, a
signature is computed using HMAC functions.

key = HMAC(key, 𝑠𝑡𝑟𝑝𝑜𝑙𝑖𝑐𝑦)

concat is the function that concatenates each string of the policy item.
The HMAC function is executed two times because there are two policy
items in the policy list. First, Girji initiates 𝑠𝑡𝑟𝑝𝑜𝑙𝑖𝑐𝑦0 with of the value
concat(codeRef, ttl, accessPeriod, allowDelegation) Second,
with the secret root key which is only known to Girji, a key is computed
by:

𝑘𝑒𝑦0 = HMAC(root key, 𝑠𝑡𝑟𝑝𝑜𝑙𝑖𝑐𝑦0)

The derived key (i.e., 𝑘𝑒𝑦0) is used as the HMAC key for the next policy
item. Thus, 𝑘𝑒𝑦1 is computed nested using HMAC and is set to be the
signature of the capability since 𝑘𝑒𝑦1 is the final key.

𝑘𝑒𝑦1 = HMAC(𝑘𝑒𝑦0, 𝑠𝑡𝑟𝑝𝑜𝑙𝑖𝑐𝑦1)

5. A capability is created with the file name get_wei_running_2014.xml.
The file’s content is readable and is shown in Figure 4.6. The capability
will be sent to the recipient through email.

Girji provides an HTTP front-end for principals to construct a new capability
or delegate any existing capability. The user has to specify not only constraints,
but also the codeRef field. Girji provides source code of some shared common
operations, such as the operation of retrieving a user’s positional data during
specified time period, and the operation of aggregation of a type of data. With
these operations which come with the Girji service, one is able to construct a
capability simply by clicking few buttons in the Girji portal. However, if one
wants to have customized operation, he needs to write the source code by

4.6 IMPLEMENTATION DETAILS 41

Figure 4.6: An example of a capability file

himself and upload it onto Girji so that he is able to get the codeRef of this
operation.

4.6.2 Capability Delegation
A new capability is derived when a user or an AS delegates an existing capa-
bility to others. Girji provides an HTTP front-end for facilitating capability
delegation. While capability delegation is very much analogous to capability
construction, one needs to add policy items to the policy list and compute
a new signature for the derived capability. Further, one should assign a new
capId to the capability. For example, if a user wants another researcher to
see his monthly aggregated running distance in 2014 in a pdf file, the user
could add one policy item to the policy list by selecting the operation and set
access constraints of the added policy item. After that, the user delegates the
derived capability to the researcher. The user would do as follows:

42 CHAPTER 4 CODE CONSENT CAPABILITIES

1. The user goes to Delegate a capability page in Girji, and assigns a
new unique capId to the new capability. The user can not modify the
asId and dataOwner fields because the original capability is associated
with the code consent object constructed by the AS and the data owner.

2. The user adds one more policy item to the policy list of the original capa-
bility. The access period of this operations is attenuated to 10:00-11:00
and the derived capability can not be delegated further.

codeRef="/ocpu/library/girji/monthly_aggregated_distance_p
df";

param="";
constraints.accessPeriod="10:00-11:00";
constraints.allowDelegation=false;

3. A new signature is computed using HMAC by taking the signature of
the original capability as a key, and the string concatenation of the new
policy item’s fields.

𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑑𝑒𝑙𝑒𝑔𝑎𝑡𝑒𝑑 = HMAC(𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑜𝑟𝑖𝑔𝑖𝑛, 𝑠𝑡𝑟𝑝𝑜𝑙𝑖𝑐𝑦𝑛𝑒𝑤)

4. monthly_aggregated_distance_pdf.xml is created and sent to the
researcher through email.

It is common that a principal just wants others to see the aggregate values
of the data. Or if another researcher wants to access the result of the princi-
pal’s operation, the principal could delegate the capability to the researcher.
The capability delegation is done by creating a new capability, then setting
the operation and restriction and adding the policy item to the end of the
policy chain. After calculating the new signature of the policy chain, a new
capability is derived so that another principal can execute the policy chain
in the capability to access the desired result. One thing to mention, since the
restriction is attenuated from the root policy item to the end item, the new
added restriction should not be looser than the preceding restrictions. Besides
that, if the principal thinks the operation is confidential, it could set the value
of the operation to be the internal link to the code which others are not able
to see it. The most important thing for the other principal is the output of the
operation, not the code of the operation. Let us following the above example,
by executing the capability, 𝑃𝑎 is able to access tom’s running data in 2014.
If another principal 𝑃𝑏 would like to access tom’s aggregate running distance
in each month, 𝑃𝑎 will create a new capability, write code to output the ag-
gregate distance and set the codeRef field to be the link address of the code.
Since 𝑃𝑎 can only access the running data during 8:00-17:00, the restriction
for the new capability should be either the same as the previous restriction or

4.6 IMPLEMENTATION DETAILS 43
tighter that that, for instance 9:00-12:00. After that, 𝑃𝑎 needs to calculate
the new signature by

HMAC(capability.signature, strconcat(𝑟𝑒𝑠𝑡𝑟𝑐𝑖𝑡𝑖𝑜𝑛𝑛𝑒𝑤, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑒𝑤);

With new signature and new capability chain, the process of capability del-
egation is finished. Therefore, 𝑃𝑏 is able to access tom’s aggregate monthly
running distance data in 2014.

4.6.3 Capability Verification
When a principal presents a capability, the reference monitor will perform
verification on the capability. The verification includes 1)signature verification;
2)revocation check; 3)constraints freshness check; 4)constraints evaluation.
For example, after the capability get_wei_running_2014.xml was created,
the user wei@uit.no modified accessPeriod in the code consent object to
9:00-11:00 so that constraints.version was incremented to 1. When the
AS presents the get_wei_running_2014.xml to the reference monitor, the
following verifications are performed.

1. Girji will compute the signature by taking the secret key as the key of
HMAC function. After a chain of nested HMAC calculation, a final key is
yielded. Girji compares this final key with the signature of the capability
(i.e., f01d**4bc5). If two values are identical, this means the capability
has not been tampered with. Otherwise, the AS will be prompted with
a signature verification error message.

2. Girji checks the value of revoked in the code consent object as shown
in Subsection 4.6.1. If the value is false, the capability is still valid.
Otherwise, a message of capability not valid will be shown to the
AS.

3. Girji compares constraints.version with the one in the capability.
Since the usermodified the constraints, the value of constraints.version
is greater than the value of the one in the capability. Girji will update
accessPeriod from 8:00-12:00 to 9:00-11:00.

4. Girji evaluates all the predicates of each policy item. If the results hold
true, the codeRef and param will be executed in the OpenCPU sandbox.
The combination of predicates evaluation and execution are performed
from the root policy item to the last item.

44 CHAPTER 4 CODE CONSENT CAPABILITIES

Prior to the execution of the capability, Girji will validate the capability by
checking if the signature in the capability is identical with one calculated
using its secret. If the values are identical, this means the capability is not
tampered with during transferring. Otherwise Girji will raise validation ex-
ception and stop execution. The reason for validation is that the principal
who holds the capability can modify any field of the capability because the
capability is essentially a collection of string. What’s worse, the principal can
modify the operation to another operation including malicious code. In order
to yield the correct output, the capability validation is performed prior to
execution.

4.6.4 Capability Execution Model
Whenever the principal would like to access the user’s data, the principal
just executes the capability in Girji. What the principal has to present is
only a capability. The primary data-access API call provided by Girji has the
form:

𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙.𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

In order to get the output of the execution of the whole policy chain, The
principal must present the capability with the correct signature to the refer-
ence monitor in Girji. After verifying the capability’s signature, the reference
monitor checks if the capability has been revoked and if the constraints have
been modified by the data owner. The capability verification module is tightly
coupled with the capability execution module, as prior to the execution of
the operation, the reference monitor will evaluate the constraints against the
context.

After the reference monitor performs the capability verification, the capabil-
ity is executed in the OpenCPU server, which is essentially a sandbox. For
the operation in each policy item, the reference monitor will send an HTTP
POST request with the parameters and data file attached in the request body.
OpenCPU will create a separate process to execute the code which is speci-
fied in codeRef. Then it will respond with 201 Created message on successful
POST request. Meanwhile, an execution session is created so that the refer-
ence monitor is able to retrieve any object in the session such as intermediate
datasets, R objects, or output result in different formats (e.g., json, text, html,
pdf, etc). The information of the session can be retrieved by HTTP GET request.
The information of process session 1 in Figure 4.7 is shown as below:

/ocpu/tmp/x0b26c3cf/R/.val,
/ocpu/tmp/x0b26c3cf/source,
/ocpu/tmp/x0b26c3cf/console,

4.6 IMPLEMENTATION DETAILS 45
/ocpu/tmp/x0b26c3cf/info,
/ocpu/tmp/x0b26c3cf/files/output0.csv,
/ocpu/tmp/x0b26c3cf/files/fitness.csv

The output file yielded from the execution is output0.csv. Thus, the refer-
ence monitor retrieves this information by sending a HTTP GET request to
the url of the session. The object will be sent in a 200 OK response message if
the GET request is sent successfully. After receiving the output0.csv, which
is in turn the input file when executing codeRef of the second policy item. The
information of process session 2 is shown as below:

/ocpu/tmp/x0b1438cf/R/.val,
/ocpu/tmp/x0b1438cf/source,
/ocpu/tmp/x0b1438cf/console,
/ocpu/tmp/x0b1438cf/info,
/ocpu/tmp/x0b1438cf/files/output0.csv,
/ocpu/tmp/x0b1438cf/files/output1.csv

The intermediate output files are not accessible to the principal unless they
are the output files of the execution of the last policy item. The result output
file of the capability executed in Figure 4.7 is monthly_distance.pdf as it
is the result of the last policy item. The information of session 3 is shown as
below:

/ocpu/tmp/x0b1420dd/R/.val,
/ocpu/tmp/x0b1420dd/source,
/ocpu/tmp/x0b1420dd/console,
/ocpu/tmp/x0b1420dd/info,
/ocpu/tmp/x0b1420dd/files/output1.csv,
/ocpu/tmp/x0b1420dd/files/monthly_distance.pdf

When executing the codeRef of each policy item, the OpenCPU server will
create a separate process for each policy item. In order to ensure that the code
of each policy item is executed in a limited environment, a profile is applied
on the process. The profile defines what system calls can be performed, what
directories can be accessed, how much memory is available for the runtime
and so on. With this profile, when executing the code trying to access the data
files of any other user, Girji will raise a profile not permitted exception because
the profile did not include any other user’s directory. After executing the policy
chain, the output of the last policy item is the data the principal can access.
The profile specifies what operations can be performed on which files. In
addition, each function can read only the output of the preceding function as
its input. With the combination of the profile and the rule, the function in each
policy item is executed in a secure and restricted environment. If a principle

46 CHAPTER 4 CODE CONSENT CAPABILITIES

wants to execute the capability monthly_aggregated_distance_pdf.xml,
the flow of the capability’s execution is shown in Figure 4.7.

Principal Reference Monitor OpenCPU

execute(capability)

HTTP GET

201

url=/ocpu/library/girji/activity
Body=running, fitness.csv

/ocpu/tmp/x0b26c3cf/files/output0.csv

HTTP POST

200

monthly_distance.pdf

url=/ocpu/library/girji/time
Body=2014, output0.csv

/ocpu/tmp/x0b1438cf/files/output1.csv

url=/ocpu/library/girji/monthly_aggregated_distance_pdf
Body=output1.csv

/ocpu/tmp/x0b1420dd/files/monthly_distance.pdf

HTTP POST

201

HTTP GET

200

HTTP POST

201

HTTP GET

200

Process

session 1

Process

session 2

Process

session 3

Figure 4.7: Execution flow

In the above example, the data that the principal can access is tom’s running
data in 2014. The principal can do whatever operations, but only on the
specified data, because the output of the capability execution is the only
input of the principal’s operation.

In order to demonstrate the reference monitor, we wrote each function in
girji.R, then built it and deployed the package on OpenCPU server. The
name of the package is girji. Figure 4.8 shows an example of the execution
chain of the capability monthly_aggregated_distance_pdf.xml, which has
three policy items in the policy chain. After the signature of the capabil-
ity is verified and the list of constraints are evaluated to be true, the refer-
ence monitor will send the input file (i.e., fitnessActivity.csv) and the
parameter (i.e., ’Running’) to the OpenCPU server and execute the code
specified in the codeRef by sending an http POST. When executing the R

4.6 IMPLEMENTATION DETAILS 47
source code in OpenCPU server, a security profile is applied onto the exe-
cution so that malicious or resource-intensive computation is denied by the
execution. After executing activity function, the output file activity.csv
becomes the input file for the next function (i.e., time) which is specified
in the codeRef of the second policy item. The results of the intermediate
functions are not accessible to the principal. After executing the function
monthly_aggregated_distance_pdf, a pdf file monthly_distance.pdf is
created. Since this function is the operation of the last policy item, as the
result of the execution of the capability, monthly_distance.pdf is accessible
to the principal.

 df <- read.csv(file, header=TRUE)
 df2 <- df[df$type == param1,]

 write.csv(df2, file='activity.csv', row.names=FALSE)

df <- read.csv(file, header=TRUE)

df2 <- df[year(dmy_hms(df$date)) == param1,]
write.csv(df2, file='time.csv', row.names=FALSE)

file = fitnessActivity.csv,

param1 = ’Running’

output=activity.csv

output=time.csv

activity function

time function

file = activity.csv

param1 = 2014

monthly_aggregated_distance_pdf file = time.csv

df <- read.csv(file, header=TRUE)

data <- aggregate(distance ~ date, df, function(x) sum=sum(x))

data <- data[order(data$date),]
cairo_pdf("monthly_distance.pdf")

bp <- barplot(data$distance, main="Distance Plot", xlab="Month",

ylab="Distance",ylim=c(0,1.5*max(data$distance)),names.arg=data$date)

output=monthly_distance .pdf

Figure 4.8: Execution chain

As for the grantor, he shares his aggregated running data with the grantee by
adding a function of aggregating the distance for each month and delegating
the capability to the grantee. Instead of sharing the all the columns of raw data
(i.e., time, distance, calories, duration), the grantor shares the converted data
so that less information (i.e., sum of distance) is disclosed. In other words,
the grantor shares with the grantee only the operation of aggregating his
running distance for each month. This confined sharing ensures the security
of access control to his data. Therefore, the grantor achieves the aim to share
his data in a confined manner. As for the grantee, it becomes much easier to
get access to the grantor’s aggregated distance as the grantee possesses the
capability which entitles him to access the data. Even the grantee is outside

48 CHAPTER 4 CODE CONSENT CAPABILITIES

Girji, he is still able to execute the capability. Since the raw data may change
as the grantor finishes more activities, the grantee can still get the updated
pdf graph by executing the same capability. Therefore, the grantee is able
to access the dynamic result of the capability’s execution with no need of
updating capability.

5
Evaluation
This section details a use case for measuring the end-to-end latency during
the time between the user executes a capability and the user gets the output
in Girji. We also discuss the results of the measurements and identify the
bottleneck of a capability’s execution.

5.1 Case Study
We now examine a specific use case which enables an athlete through capabil-
ity delegation to share his dynamic aggregated running distance with other
persons. The athlete 𝐴’s running activity is captured by the RunKeeper app
and the distance data is stored in RunKeeper web service. In order for Girji
to retrieve the athlete’s runkeeper data, 𝐴 needs to login to Girji and connect
Girji application to 𝐴’s RunKeeper account via OAuth protocol. After Girji has
access to 𝐴’s account, his fitness activities in RunKeeper will be pulled to and
stored in his infospace in Girji. Therefore, 𝐴 is able to give analytical services
access to his data so that analytics can be performed on the data. Since the
athlete 𝐴 wants to get his own information of running distance, 𝐴 needs to
register an analytical service. In this case, 𝐴 is not only the owner of the data
but also the provider of the analytical service. 𝐴 could create a self-signed
code consent object by choosing system-provided operations because Girji
already provides codeRefs of several off-the-shelf operations, such as filtering
out a specific activity from all fitness activities, retrieving the data in the spec-

49

50 CHAPTER 5 EVALUATION

ified year, etc. There are no constraints in the code consent object as 𝐴 is
the owner of the data. A code consent object is constructed after the athlete 𝐴
signs the consent. Subsequently a capability 𝑐𝑎𝑝𝑎 is also constructed from the
code consent object. There are two operations, which is shown in Table 5.1,
in the code consent object as well as in 𝑐𝑎𝑝𝑎.

CodeRef Param
/ocpu/library/girji/activity Running
/ocpu/library/girji/time 2014

Table 5.1: Operations in the code consent object

By executing 𝑐𝑎𝑝𝑎,𝐴 is able to get the detailed information (e.g., specific time,
distance, duration, calories) of his running activity in 2014. As the data owner,
it is fine for 𝐴 to see all the details of the activity. However, if 𝐴 wants to share
the running information with another person 𝐵, who might even not be a user
in Girji, 𝐴’s raw data may be leaked out by 𝐵. To reduce the risk of disclosing
raw sensor data which might contain sensitive information, instead of sharing
raw data,𝐴 can share only the aggregated data by delegating 𝑐𝑎𝑝𝑎 to 𝐵. Since
the output of the execution of 𝑐𝑎𝑝𝑎 is 𝐴’s running information in 2014, 𝐴
could add one more policy item to the policy chain to aggregate the running
distance and generate only a graph. 𝐴 could also specify the constraints in
the policy item to further restrict the availability of the operation. With the
new capability 𝑐𝑎𝑝𝑏 which was delegated from 𝑐𝑎𝑝𝑎, 𝐵 is able to get a graph
by executing the 𝑐𝑎𝑝𝑏 in Girji. Even if the user 𝐵 is not registered in Girji,
which means 𝐵 is from different administrative domain and 𝐵 can not login
to Girji, 𝐵 is still able to execute 𝑐𝑎𝑝𝑏 on the front page of Girji. The output
of 𝑐𝑎𝑝𝑎 and 𝑐𝑎𝑝𝑏 is shown in Figure 5.1. Through 𝑐𝑎𝑝𝑏, 𝐵 is able to access
𝐴’s only aggregated data, not raw data or 𝐴’s other data. After Girji acquires
𝐴’s updated Running activities, 𝐵 is able to get the dynamic graph by simply
executing 𝑐𝑎𝑝𝑏 again.

This use case demonstrates that our prototype implementation complies to
the principle of least privilege. For the user, he can access his own data only
through a capability. If he wants to share some of his data with others who
may be even from a different administrative domain, he can simply delegate
existing capability with additional operations and restrictions, or create a
completely new capability. The operations in the policy chain of the capability
are what the grantee can do. Moreover, with the same capability, the grantee
can get the dynamic result of executing the capability in that the operation
is still the same, only the raw data changes.

5.2 EXPERIMENTS 51

codeRef param

/ocpu/library/girji/activity

/ocpu/library/girji/time

Running

2014

codeRef param
/ocpu/library/girji/activity

/ocpu/library/girji/time

/ocpu/library/girji/

monthly_aggregated_distance_pdf

Running

2014

capa capb
delegate

aggregated

Figure 5.1: Output of capabilities

5.2 Experiments
In order to evaluate the performance of our prototype, we performed several
experiments to examine if our implementation can work in the real world.
We tested the data transfer performance of RunKeeper web service to check
if it is capable of handling Girji’s upload and download requests with large
number of data points. Experiments are also conducted to evaluate the end-
to-end latency of executing a capability. We measured the verification time,
code execution time as well as result download time. By analyzing these three
types of latency, which constitutes the end-to-end latency, we identified the
bottleneck of a capability’s execution.

5.2.1 Experiments setup
The prototype of Girji was tested in a cluster of computers which are in the
same network. Girji consists of two parts: one part, which is the R sand-
box (i.e., OpenCPU), is installed on a Ubuntu 12.04 Server with Intel Core
2 3.00GHz with two cores, and with 4 GB of RAM; the other part, which is
the back-end server, is installed on a 2.4GHz, four core (Intel Core2 Q6600
processor) system with 4 GB of RAM, running Windows 8. All the test cases
are executed ten times to get more objective results.

52 CHAPTER 5 EVALUATION

5.2.2 Data Transfer Time of RunKeeper
It is common that an athlete runs with the RunKeeper app a long distance
which will result in many sequence geographical points along the route. The
reason for doing this experiment is that we would like to see how much time
it takes for Girji to acquire the data from RunKeeper web service after the user
finishes an activity. We evaluated how long it becomes available to users after
Girji uploads an activity which was captured by other sensors for instance
zxy. With the HealthGraph API, we were able to generate JSON files which
have the same structure as that is shown below:

{
"type": "Running",
"equipment": "None",
"start_time": "Sat, 1 Jan 2011 00:00:00",
"notes": "My first late-night run",
"path": [
{

"timestamp": 0,
"altitude": 0,
"longitude": -70.95182336425782,
"latitude": 42.312620297384676,
"type": "start"

},
{

"timestamp": 8,
"altitude": 0,
"longitude": -70.95255292510987,
"latitude": 42.31230294498018,
"type": "end"

}
],
"post_to_facebook": false,
"post_to_twitter": false

}

The path field of the structure is a list of data points captured by RunKeeper
app. We uploaded via http POST the files with the number of data points from
5000 to 30000 and downloaded via http GET the files again. We restarted
the whole system and remove all the intermediate files after each test run. As
can be seen in Figure 5.2, while the download time does not increase much,
the latency of uploading time is significant when the number of data points
increases. If the sampling rate of RunKeeper app is 10Hz, a soccer player will
generate 54000 data points in a soccer game, the upload time of this number

5.2 EXPERIMENTS 53
of data points will be much more than one minute. Further, the precision rate
of consumer-level sensors is much lower than professional ones like zxy that
captures positional data at a rate of 20Hz in real time for all 22 players in
a soccer match. With zxy a player will generate 108000 data points which
are two times more than the number of data points generated by RunKeeper
app. If Girji uploads the activity of a soccer play, it may take hours to finish
it.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 5000 10000 15000 20000 25000 30000

ti
m

e
 (

m
s
)

nr data points

upload
download

Figure 5.2: Data transfer capacity of RunKeeper

Although the uploading incurs high latency, the download latency is relatively
low. As is shown in Figure 5.2, the time of downloading a record with 30000
points is roughly 14 seconds. Girji could have a background-running acquisi-
tion agent periodically pull the data from RunKeeper. Every time the agent
retrieves data from the user’s RunKeeper account, only the updated data is
pulled.

5.2.3 Capability Execution Time
The end-to-end latency of executing a capability is the delay from the time
when the user clicks execute button to the time when the user sees the result.
When executing a capability, Girji’s back-end will first verify the capability’s
signature, then execute the operation in each policy item, finally download
the result file from OpenCPU so that the user can see the result. The last two

54 CHAPTER 5 EVALUATION

steps are performed repeatedly for each policy item in the policy chain of
a capability. Therefore, we would like to examine if the end-to-end latency
is affected by the number of policy items. We generated three capabilities
(i.e., 𝑐𝑎𝑝𝑜𝑛𝑒, 𝑐𝑎𝑝𝑡𝑤𝑜, 𝑐𝑎𝑝𝑏) which have the same functionalities but are split
into different number of parts. Besides, the execution of a capability incurs
network communicate as the back-end and OpenCPU are installed on sepa-
rate machines. We generated several data files with different number of data
records on which the operations will be performed. 𝑐𝑎𝑝𝑜𝑛𝑒 has only one policy
item in the chain because the customized code is written by the user himself.
𝑐𝑎𝑝𝑡𝑤𝑜 has two policy items whose codeRefs are both provided by Girji. After
executing these three capabilities, the same pdf graph will be received. Fig-
ure 5.3 shows the end-to-end latency of executing capabilities with different
number of data records and policy items.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
 (

m
s
)

Number of data records

one operation
two operations

three operations

Figure 5.3: Execution time of a capability

From Figure 5.3, we found that the end-to-end latency increases linearly as
the number of data records increased. For a given capability, the input data
files with different number of records did not affect the latency much and the
latency was stable. However, the overall latency increased as the number of
policy items increased as more operations were executed. While the capability
with fewer policy items reduces the end-to-end latency, the analytical service
providers have to write more customized code. The ideal situation is that
every capability has only one policy item in the chain. Then all analytical

5.2 EXPERIMENTS 55
service providers have to write the source code by themselves. But still, after
delegating, a capability also has more than one policy item.

5.2.4 Minimum Overhead for Each Policy Item
In order to examine the scalability of the implementation, we executed a
test case which measured for each policy item the verification time, code
execution time as well as download time. We generated a dumb function
which essentially did nothing but returned 0.

function ()
{

0
}

There was no input data file to be uploaded and passed to this function. The
reference of this function was set to be codeRef of each policy item so that every
capability with different number of policy items all had the same operation.
Two hundred capabilities were constructed with the number of policy items
from 1 to 200. The test was repeated ten times. In this test case, we did not
restart the service after each test run because OpenCPU supported cache
and we would like to evaluate the overhead when the system was warm. In
Figure 5.4, we found that the following interest results. First, the verification
time for each policy item was about 57 us and the time did not change as
the number of policy items changed. Second, the time of executing code
and download time were stable. At the beginning there was some jitter in the
code execution time and download time as there might be some scheduling in
OpenCPU. The execution and download involved network communication but
the signature verification did not. Another reason is that when the capability
was executed for the first time, the dumb function was not cached in OpenCPU.
Thus, it took more than one hundred milliseconds to execute the function
and about ten milliseconds to download the result file. After the function was
cached, the system became warm and the execution time dropped by an order
of one hundred times. We also observed that the latency of downloading is
higher than that of executing in that the function was cached but the result
was not. Every time a function was executed, a new session was created and
the result was written into a file. When Girji downloaded the result, OpenCPU
had to load the file and sent it to Girji’s back-end.

56 CHAPTER 5 EVALUATION

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4

 0 50 100 150 200

T
im

e
 (

m
s
)

Number of policy items

verification
execution
download

Figure 5.4: Minimum overhead for each item

5.2.5 End-to-end Latency Analysis
To take a deeper look at the end-to-end latency, we conducted another exper-
iment which measured respectively the execution time of a policy item and
download time of a output file as the number of data records increases. As
can be seen in Figure 5.5, we observed that the time of executing a policy item
is significantly more than the download time. Therefore, it is identified that
the bottleneck of the end-to-end latency is the time of executing each policy
item. Meanwhile, the number of data records does not affect the end-to-end
latency much. The average latency of the capability with three policy items
is 200 milliseconds more than the average of the capability with two policy
items.

5.2 EXPERIMENTS 57

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
 (

m
s
)

Number of data records

Execution time
Download time

Figure 5.5: Latency analysis

6
Conclusions
In this thesis, we have introduced Girji, an infrastructure that is able to con-
verge user’s body-sensor data from different sources and securely store the
data in long term. In addition, the data of different users is stored isolated
in each user’s infospace. By providing the computation environment in Girji,
analytical services (i.e., ASs) are able to apply analytics on users’ data from
a wide range of body sensors by writing R source code and uploading the
package to Girji. To address the challenge of controlled sharing, we present
an approach which combines informed consent and capabilities to provide
users with greater and more fine-grained control over their body-sensor infor-
mation disclosure. With code consent capabilities, users are able to share their
data in a more fine-grained way by specifying dataRange. Users are also able
to confine the operations on their data by specifying constraints whose value
will be copied from the informed consent to the capability. The policies in the
capability are enforced when the capability is executed in the reference moni-
tor. The benefit for ASs to use capabilities is that ASs are able to collaborate a
lot more with each other by delegating the capabilities of which the execution
results are reusable to other principals. The capabilities can be revoked very
easily at any time by gossiping among the capability components the list of
capIds of the revoked capabilities.

In our prototype implementation, Girji is able to retrieve a user’s information
in RunKeeper back-end via OAuth protocol. With the capability
wei_running_2014.xml, a user can easily share his fitness activities in Run-
Keeper with the AS which in turn filters out the user’s running activities in

59

60 CHAPTER 6 CONCLUSIONS

2014. By capability delegation, instead of sharing his raw data, the user is
able to share only the graph of his aggregated running distance in 2014. We
also have described a specific use case and executed several experiments to
evaluated the performance of our implementation. We have observed that
the end-to-end latency of executing a capability increases linearly as the num-
ber of data records increase. With the capability delegated in the use case,
the time of executing the delegated capability to generate the aggregated
data from 10000 data records is only 1.5 second. Thus, the performance is
good. By measuring the time of capability verification, code execution, and
file downloading respectively, we identify the bottleneck is code execution
time as the time of data file uploading takes 10 times more that download
time.

6.1 Achievements
The paper about our work has been accepted by the conference IEEE ISSNIP
2014. In this paper,we have focused on designing an access controlmechanism
which makes authorization much easier and more fine-grained. We present
code consent capabilities to provide owners of body-sensor data with a user-
centric control of their data. With code consent capabilities, which reflect
the terms of informed consent, ASs are able to perform the operations in the
policy chain to access the result data. Principals (i.e., users, ASs) can delegate
the authority without the intervention of administrators. The easy authority
delegation relieves their labor a lot particularly in a large system. Moreover,
principals can collaborate with others, who are outside of Girji, by delegating
capabilities so that the recipient principals are able to reuse the result yielded
from the capabilities. We have also addressed the requirement of privilege
confinement. Each principal can add constraints, which will be enforced when
presented in Girji. With the OpenCPU sandbox, all the operations will be
executed in a limited process such that the principal can only access the
result data of the execution of the whole capability. Therefore, authorization
confinement is fulfilled.

The implementation is secure and feasible. First, a user’s body-sensor data is
stored in his own infospace which is completely isolated from others’. In addi-
tion, each policy item in the capability is hashed by hmac with secret keys
to make sure no principal can tamper with it to modify operations in the
capability. Further, by applying a security profile to each process, the proper
sandbox OpenCPU executes the code in a restrictedmanner in terms of system
calls, memory use and CPU cycles. Last, the execution is completely trans-
parent to principal so that only the result of whole capability’s execution is
accessible to the principal. By combining these implementation details, we

6.2 RELATED WORK 61
are able to make the authorization secure. The experiments show that the
end-to-end latency of executing a capability is only at an order of second, so
that the implementation is feasible in practice.

6.2 Related Work
The term capability was first introduced by Dennis and Van Horn in 1966 in
[27] and is known as an unforgeable token of authority. A lot of capability-
based operating systems have been built such as E system [28], EROS [29],
and Amoeba [30]. While there are a lot of capability-based models ([31], [32],
[33], [34]) which focus more on the kernel level, our focus in on the applica-
tion level as same as [35]. The difference is that [35] combines capabilities
with ACLs while we develop a pure capabilities system. In a distributed sys-
tem where there may be different protect domains, Kerberos version 5 [36]
addressed this requirements with the help of a trusted third party. By contrast,
the same requirement is accomplished in Macaroons [20] by discharging a
third-party caveat in a public service rather than a proxy. Personal Data Vaults
(PDVs) [37] uses Granular ACL and Trace-audit to give end-users active and
more fine-grained control on their sensitive data. Our infrastructure is built
on early work to create a more flexible authorization across distinct adminis-
trative domains.

Many of the health care systems (for instance [38]) employ the traditional
ACLs approach tomanage access control to patients’ Electronic Health Records.
A more advanced Role Based Access Control mechanism [39] enables ease of
management as in health care context there are many roles such as health
care takers, nurses, doctors, etc. Although we use informed consent which
is usually in health care context, we decide to employ Discretionary Access
Control mechanism in that there are not many roles in our design.

6.3 Future Work
While the naive prototype has been developed, much needs to be done. First,
the prototype’s implementation now is only able to retrieve user’s body-sensor
data from RunKeeper. Obviously, only one data source is not enough. Since
each player of til is equipped a Fitbit Flex wristband, it is desirable for Girji
to support acquiring data from Fitbit so that til club is able to use Girji to
analyze the players’ data. Both RunKeeper and Fitbit services support OAuth
protocol so that it is not difficult to retrieve data from Fitbit.

62 CHAPTER 6 CONCLUSIONS

Second, function chaining should be investigated as the upload time of each
input data file consumes large amount of time. After executing the function
specified in the policy item, the output file resides on the OpenCPU server.
Right now, we have to download the output file and upload it again as input
to feed into the function in the next policy item. The round trip time leads
to high end-to-end latency. The drawback can be addressed by chaining the
functions of each policy item. When the next function is executed, Instead
of downloading the file then uploading again, it can fetch the file by a link
which is the session link of the preceding function. This way, it eliminate the
necessity of downloading the file as the file is on the same server as where
the next function is executed.

Third, the performance will be improved if common capabilities are cached. It
is much faster to return from cache the results of the execution of some com-
mon capabilities such as the capability of retrieving a user’s specific activity,
fetching the data in specified time. Last, the overview of all the capabilities
associated with a user should be provided to the user. With the graph of user’s
capabilities, better traceability can be achieved.

6.4 Concluding Remarks
We have presented code consent capabilities, which address the requirement
of controlled sharing body-sensor data for sports analytics without giving
up security. By signing the informed consent with users, analytical services
are able to perform analytics on users’ data with code consent capabilities.
We have successfully built a prototype implementing code consent capability
construction, delegation, verification as well as execution. The performance of
the prototype is also evaluated. Analytical services are able to get the benefit
of reuse the intermediate result by receiving delegated capabilities. Thus, the
collaboration between analytical services becomes much easier to get more
valuable insights from users’ body-sensor data.

A
Informed Consent for TILplayers to donate theirbody-sensor data

CONSENT TO PARTICIPATE IN
RELEASING BODY-SENSOR DATA FOR SPORTS ANALYTICS

• INTRODUCTION
You are asked to participate in a research study conducted by
iAD lab at UiT. The research is to help the coach to get a
greater level of athletes’ fitness information and also make
better training plans, by sending some of your body sensor
data to analytical service. You are free to choose which data
can be disclosed. You can withdraw the consent at any time
without any penalty. You should read the information below,
and ask questions about anything you do not understand,
before deciding whether or not to participate.

• PROCEDURE
You voluntarily authorize some of my protected body sensor
data to be used for this research. My body-sensor data
includes:

[Y] Fitness Activities.

63

64APPENDIX A INFORMED CONSENT FOR TIL PLAYERS TO DONATE THEIR BODY-SENSOR
DATA

[Y] Sleep.
[] Nutrition.
[Y] Weight.
[] Diabetes Measurements.
[Y] Calories.
[Y] Positional Data.
[Y] Heart rate.

My protected data will be kept for _1__ year(s).

• BENEFITS
To yourself, you can get recommendations about your sleepness
period by disclosing your sleep data. You can also get average
speed and distance in each month by disclosing your fitness
activities in RunKeeper and Fitbit.

To your coach, he/she will get your ranking of performance by
disclosing your position data in ZXY.

You will be reimbursed for the following out of pocket
expenses that you might have, for example, you will be
equipped with a Fitbit Flex to record your steps, distance,
and sleep data. You will have a free premium account in
RunKeeper.

• POTENTIAL RISKS AND DISCOMFORTS
If the researcher accidentally gives your data to others, you
will be notified in an email which prompts if you consent the
further operations.

SIGNATURE OF RESEARCH SUBJECT
I have read (or someone has read to me) the information
provided above. I have been given an opportunity to ask
questions and all of my questions have been answered to my
satisfaction. I have been given a copy of this form.
BY SIGNING THIS FORM,
I WILLINGLY AGREE TO PARTICIPATE IN THE RESEARCH IT DESCRIBES.

___Magnus Andersen____
Name of Subject

_______________________ ___2013.11.02______
Signature of Subject Date

SIGNATURE OF INVESTIGATOR

65
I have explained the research to the subject or his/her legal
representative, and answered all of his/her questions.
I believe that he/she understands the information described
in this document and freely consents to participate.

___Wei Zhang____________
Name of Investigator

_______________________ ____2013.11.02_____
Signature of Investigator Date

B
Source Code
The attached file source_code.zip contains Java source code for the proto-
type implementation packaged as projects for the Spring Tool Suite IDE.

67

References
[1] Håvard D. Johansen,Wei Zhang, JosephHurley, andDag Johansen. Man-

agement of body-sensor data in sports analytic with operative consent.
In Proc. of the 2014 IEEE Ninth International Conference on Intelligent Sen-
sors, Sensor Networks and Information Processing (ISSNIP). IEEE, April
2014.

[2] FitnessKeeper, Inc. RunKeeper. http://runkeeper.com.

[3] NIKE, Inc. Nike+ Running. http://nikeplus.nike.com/plus/products/
gps_app.

[4] Håkon Kvale Stensland, Vamsidhar Reddy Gaddam, Marius Tennøe, Es-
pen Helgedagsrud, Mikkel Næss, Henrik Kjus Alstad, Asgeir Mortensen,
Ragnar Langseth, Sigurd Ljødal, Østein Landsverk, Carsten Griwodz,
Pål Halvorsen, Magnus Stenhaug, and Dag Johansen. Bagadus: An in-
tegrated real-time system for soccer analytics. ACM Trans. Multimedia
Comput. Commun. Appl., 10(1s):14:1–14:21, January 2014.

[5] INSTICC. Combining Video and Player Telemetry for Evidence-Based De-
cisions in Soccer. SCITEPRESS Digital Library, 2013.

[6] D. E. Comer, David Gries,Michael C. Mulder, Allen Tucker, A. Joe Turner,
and Paul R. Young. Computing as a discipline. Commun. ACM, 32(1):9–
23, January 1989.

[7] ZXY Sports Tracking. http://www.zxy.no.

[8] Butler W. Lampson. Protection. In Princeton University, pages 437–443,
1971.

[9] Henry M. Levy. Capability-Based Computer Systems. Butterworth-
Heinemann, Newton, MA, USA, 1984.

[10] Ravi S. Sandhu and Pierangela Samarati. Access control: Principles and

69

http://runkeeper.com
http://nikeplus.nike.com/plus/products/gps_app
http://nikeplus.nike.com/plus/products/gps_app
http://www.zxy.no

70 REFERENCES
practice. IEEE Communications Magazine, 32:40–48, 1994.

[11] Norm Hardy. The confused deputy: (or why capabilities might have
been invented). SIGOPS Oper. Syst. Rev., 22(4):36–38, October 1988.

[12] Stefan Miltchev, Jonathan M. Smith, Vassilis Prevelakis, Angelos
Keromytis, and Sotiris Ioannidis. Decentralized access control in dis-
tributed file systems. ACM Comput. Surv., 40(3):10:1–10:30, August 2008.

[13] Tom L. Beauchamp and James Franklin Childress. Principles of Biomedi-
cal Ethics. Oxford University Press, 2009.

[14] Meisel A and Roth LH. What we do and do not know about informed
consent. JAMA, 246(21):2473–2477, 1981.

[15] Deborah Estrin and Ida Sim. Open mhealth architecture: An engine for
health care innovation. Science, 32(1):759–760, November 2010.

[16] Nithya Ramanathan, Faisal Alquaddoomi, Hossein Falaki, Dony George,
C Hsieh, John Jenkins, Cameron Ketcham,Brent Longstaff, Jeroen Ooms,
Joshua Selsky, et al. Ohmage: an open mobile system for activity and
experience sampling. In Pervasive Computing Technologies for Healthcare
(PervasiveHealth), 2012 6th International Conference on, pages 203–204.
IEEE, 2012.

[17] FitnessKeeper, Inc. Health Graph API. website http://developer.
runkeeper.com, November 2013.

[18] Dick Hardt. The OAuth 2.0 authorization framework. Request for Com-
ments (RFC) 6749, Internet Engineering Task Force (IETF), October 2012.

[19] Robbert van Renesse, Håvard D. Johansen, Nihar Naigaonkar, and Dag
Johansen. Secure abstraction with code capabilities. In of the 21st
Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, March 2013.

[20] Arnar Birgisson, Joe Politz, Úlfar Erlingsson, Ankur Taly, Michael Vrable,
and Mark Lentczner. Macaroons: Cookies with contextual caveats for
decentralized authorization in the cloud. In of the 21th Annual Network
and Distributed System Security Symposium (NDSS), 2014.

[21] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. Request for Comments (RFC) 2104, Network
Working Group, February 1997.

http://developer.runkeeper.com
http://developer.runkeeper.com

REFERENCES 71
[22] James P. Anderson. Technical report esd-tr-73-51. Computer Security

Technology Planning Study., October 1972.

[23] Milestore project: A secure and scalable revocation service for codecaps.

[24] Håvard Johansen, André Allavena, and Robbert van Renesse. Fireflies:
Scalable support for intrusion-tolerant network overlays. In Proc. of the
1th ACM Eurosys, pages 3–13, 2006.

[25] Håvard D. Johansen,Dag Johansen, and Robbert van Renesse. Firepatch:
Secure and time-critical dissemination of software patches. In Hein S.
Venter, Mariki M. Eloff, Les Labuschagne, Jan H. P. Eloff, and Rossouw
von Solms, editors, SEC, volume 232 of IFIP, pages 373–384. Springer,
2007.

[26] Jeroen Ooms. OpenCPU. website https://www.opencpu.org/.

[27] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multi-
programmed computations. Commun. ACM, 9(3):143–155, March 1966.

[28] The E Language: Open Source Distributed Capabilities. http://erights.
org.

[29] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. Eros: A
fast capability system. In Proceedings of the Seventeenth ACM Symposium
on Operating Systems Principles, SOSP ’99, pages 170–185, New York, NY,
USA, 1999. ACM.

[30] Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert
van Renesse, and Hans van Staveren. Amoeba: A distributed operating
system for the 1990s. Computer, 23(5):44–53, May 1990.

[31] Michael Factor, David Nagle, Dalit Naor, Erik Riedel, and Julian Satran.
The osd security protocol. In Proceedings of the Third IEEE International
Security in Storage Workshop, SISW ’05, pages 29–39, Washington, DC,
USA, 2005. IEEE Computer Society.

[32] Michael Factor, Dalit Naor, Eran Rom, Julian Satran, and Sivan Tal. Ca-
pability based secure access control to networked storage devices. In
MSST, pages 114–128. IEEE Computer Society, 2007.

[33] Andrew W. Leung, Ethan L. Miller, and Stephanie Jones. Scalable se-
curity for petascale parallel file systems. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, SC ’07, pages 16:1–16:12, New

https://www.opencpu.org/
http://erights.org
http://erights.org

72 REFERENCES
York, NY, USA, 2007. ACM.

[34] Benjamin C. Reed, Edward G. Chron, Darrell D. E. Long, and Al C.
Burns. Authenticating network-attached storage. IEEE Micro, pages
49–57, 2000.

[35] Danny Harnik, Elliot K. Kolodner, Shahar Ronen, Julian Satran, Alexan-
dra Shulman-Peleg, and Sivan Tal. Secure access mechanism for cloud
storage. Scalable Computing: Practice and Experience, 12(3), 2011.

[36] J. Linn. The Kerberos Version 5 GSS-API Mechanism. RFC 1964 (Pro-
posed Standard), June 1996. Updated by RFC 4121.

[37] Min Mun, Shuai Hao, Nilesh Mishra, Katie Shilton, Jeff Burke, Deborah
Estrin, Mark Hansen, and Ramesh Govindan. Personal data vaults: A
locus of control for personal data streams. In Proceedings of the 6th
International COnference, Co-NEXT ’10, pages 17:1–17:12, New York, NY,
USA, 2010. ACM.

[38] Mahmuda Begum, Quazi Mamun, and Mohammed Kaosar. A privacy-
preserving framework for personally controlled electronic health record
(pcehr) system. 2nd Australian eHealth Informatics and Security Confer-
ence.

[39] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and
Ramaswamy Chandramouli. Proposed nist standard for role-based ac-
cess control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, August 2001.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Girji
	1.2 Problem Definition
	1.3 Motivation
	1.4 Assumptions, Scope and Limitations
	1.5 Methodology
	1.6 Context
	1.7 Outline

	2 Background
	2.1 Body Sensor
	2.2 Sports Analytics
	2.3 Access Control
	2.3.1 Capabilities
	2.3.2 Codecaps

	2.4 Informed Consent
	2.5 Open mHealth

	3 Girji's infrastructure
	3.1 System Architecture
	3.2 Data model
	3.3 Service registration subsystem
	3.4 Data acquisition subsystem
	3.4.1 Data acquisition from RunKeeper

	3.5 Requirements of Access Control

	4 Code Consent Capabilities
	4.1 Design
	4.2 Code Consent Object
	4.3 Code Consent Capability
	4.3.1 Policy Chain

	4.4 Reference Monitor
	4.4.1 Capability Execution Environment

	4.5 Capability Revocation
	4.6 Implementation Details
	4.6.1 Capability Construction
	4.6.2 Capability Delegation
	4.6.3 Capability Verification
	4.6.4 Capability Execution Model

	5 Evaluation
	5.1 Case Study
	5.2 Experiments
	5.2.1 Experiments setup
	5.2.2 Data Transfer Time of RunKeeper
	5.2.3 Capability Execution Time
	5.2.4 Minimum Overhead for Each Policy Item
	5.2.5 End-to-end Latency Analysis

	6 Conclusions
	6.1 Achievements
	6.2 Related Work
	6.3 Future Work
	6.4 Concluding Remarks

	A Informed Consent for TIL players to donate their body-sensor data
	B Source Code
	References

