
 

 

  

Faculty of Biosciences, Fisheries and Economics (BFE) 

Department of Arctic and Marine Biology (AMB) 

Ungulate population monitoring in a tundra 
landscape: evaluating total counts and 
distance sampling accuracy 

— 
Mathilde Le Moullec 
Master thesis in Biology, BIO-3950 - May 2014 
 



I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Front page and acknowledgement pictures: Mathilde Le Moullec   

 



II 

 

 

 

 

Ungulate population monitoring in a tundra landscape: 

evaluating total counts and distance sampling accuracy 

 

 

Mathilde Le Moullec 

 

 

 

BIO-3950 

Master’s thesis in Biology 

Northern Population and Ecosystems 

May 2014 

 

 

 

Supervisors 

Nigel Gilles Yoccoz, The Arctic University of Norway (UiT) 

Åshild Ønvik Pedersen, Norwegian Polar Institute (NPI) 

Brage Bremset Hansen, Norwegian University of Science and Technology (NTNU) 

 

  



III 

 

  



IV 

 

Abstract 
 

Researchers and managers are constantly working towards decreasing monitoring 

uncertainties in order to improve inferences in population ecology. The solitary and sedentary 

Svalbard reindeer (Rangifer tarandus platyrhynchus) inhabit a high-Arctic tundra landscape 

highly suitable to compare accuracy (precision and bias) of population monitoring methods in 

the wild. The flexible Bayesian state-space model enabled me to assess uncertainties in 

estimates of the abundance of four reindeer sub-population time-series. In this environment, 

Total population Counts (TC) were more precise than Distance Sampling (DS), especially 

when conducted multiple times during a field season (e.g. Sarsøyra, summer 2013: DS 

Coefficient of Variation (CV)= 0.11, only one TC CV= 0.06; four repeated TC CV= 0.03). In 

addition, TC’s bias was assumed low once integrated in the state-space model and related to 

re-sightings of marked animals. Conducting DS alone, without TC as background 

information, would have estimated wrong reindeer population size because the detection 

function was sensitive to sample size. However, the similarity in landscape and methodology 

across the two neighboring DS study sites enabled their observations (n= 143) to be pooled, 

resulting in more plausible estimates, yet slightly higher than those found through TC. DS is 

used worldwide and this study illustrates fundamental issues around the minimum sample 

sizes recommended in literature (n>80) and that the number or length of transects must be 

sufficient to represent habitat structure (in this particular case the proportion of vegetation). 

Furthermore, combining multiple sources of available data in a common modeling 

framework, even with wide standard deviation such as DS, resulted in more precise estimates. 

 

Keywords: Line transects, detection probability, Poisson-Poisson sampling, population size, 

state-space model, Rangifer. 
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Résumé 
 

Aussi bien les scientifiques que les gestionnaires cherchent à améliorer les incertitudes 

inhérentes aux recensements des populations pour ainsi améliorer les inférences en écologie 

des populations. Le renne du Svalbard (Rangifer tarandus platyrhynchus) occupe un habitat 

aux affinités particulières (i.e. grandes plaines, végétation rase) pour pouvoir comparer 

l’acuité (précision et biais) des méthodes de recensements des populations sauvages. Le 

« state-space » modèle Bayesien est flexible et a permis de mesurer les incertitudes de 

comptages de quatre sub-populations de rennes. Il a également permis de montrer que, dans 

cet environnement, la méthode de recensement total de la population (TC) est plus précise que 

celle du Distance Sampling (DS) (e.g. Sarsøyra, été 2013: DS CV= 0.11, un seul TC CV= 

0.06; quatre TC répétitions CV2013= 0.03). En plus d’être précis, les TC sont supposés être 

faiblement biaisés d’après cette étude. Ils m’ont permis de mettre en avant le fait que 

sélectionner le meilleur model du DS en suivant les étapes de sélection, aurait, sans regard 

critique, donné des estimations erronées. La probabilité de détection du DS s’est monté 

particulièrement sensible à la taille de l’échantillon. La similarité des paysages et de la 

méthodologie utilisée dans ces deux sites voisins ont permis de regrouper les observations 

rendant les estimations plus vraisemblables, même si toutefois, elles restent supérieures aux 

TC. Le DS est intensément utilisé à l’échelle mondiale et cette étude illustre l’importance 

fondamentale d’avoir un échantillon de taille minimale (n>80) ainsi que de s’assurer d’avoir 

suffisamment de transectes pour représenter la structure de l’ensemble de l’habitat étudié 

(dans ce cas particulier : la proportion de végétation). Rassembler des données de multiples 

sources dans un model commun, même ayant de large intervalles de confiance comme le DS, 

résulte en des estimations plus précises.  
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Introduction  
 

A core question in wildlife population ecology is: How many individuals are in the system, 

and how many will there be? While there are challenges associated with accurately estimating 

population size and demographic rates, these parameters are essential to identify causes of 

population fluctuations (Gaillard et al. 2001, Abadi et al. 2010, Zipkin et al. 2014). 

Investigation of these underlying causes provide important knowledge of population 

dynamics (e.g. density-dependence; Sæther et al. 2007; Ahrestani et al. 2013), ecosystem 

dynamics (e.g. inter-specific interactions ; Marshall et al. 2014), environmental factors 

(Lindén and Knape 2009) and human influences (e.g. population viability; Brook et al. 2000). 

Robust parameter estimations allow for a well-developed understanding of the system 

dynamics in order to meet scientific objectives,  sustainable wildlife management and 

conservation decisions (Yoccoz et al. 2001, Cressie et al. 2009, Singh and Milner-Gulland 

2011). 

It is essential to take estimated uncertainties into consideration as sources of errors 

influence the measurement of population size and vital rates. These uncertainties, which can 

exist at a number of levels (Lebreton and Gimenez 2012), are related to the process variation 

(demographic and environmental stochasticity) and observational errors (Clark and Bjørnstad 

2004, Buckland et al. 2007). Because observational errors are not part of the process variation 

but inherent to the methodology used, it is important to identify their different sources 

(Ahrestani et al. 2013). Observational errors can arise from the chosen sampling and 

analytical method (i.e. assumptions of the design and model used; Seddon et al. 2003; Poole 

et al. 2013), the observer (Muhlfeld et al. 2006), the sampling time and spatial scale (i.e. 

detection probability may vary with animal’s biological cycle and animal habitat use; 

Pedersen et al. 2012). Although most studies have unacknowledged sources of errors which 

affect the resulting population size uncertainties (i.e. credible interval, standard error), recent 
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works have addressed this issue (Clark and Bjørnstad 2004, Newman et al. 2006, Dennis et al. 

2010, Knape et al. 2013, Ahrestani et al. 2013).  For example, Lebreton and Gimenez (2012) 

pinpointed that for methods studying density dependence, “neglecting uncertainties in 

population size should definitely be abandoned”. Once uncertainties are estimated, the “true 

demographic fluctuation” (the state variable) could be considered free from potential 

confounding effects that camouflage predicted variations of population dynamics (Clark and 

Bjørnstad 2004). Hence, population changes are likely to be detected earlier, which is 

especially important in the context of a warming climate, habitat fragmentation and changes 

in landscape use.  

Comparing accuracy (reflecting both precision and bias; Williams et al. 2002) of 

population monitoring methods in the wild (in situ) requires highly suitable environments 

where assumptions of the chosen methods are met. Systematic bias can only be quantified 

when the real size of the population is known, but in situ this is usually not possible 

(Sutherland 2006). High-Arctic Svalbard (74-81°N, 10-35°E) is home to the wild Svalbard 

reindeer (Rangifer tarandus platyrhynchus). The fragmented and tundra landscape provides 

distinctive traits and characteristics for analyzing precision and sources of errors in reindeer 

population monitoring methods.  Numerous natural barriers to reindeer movement exist, such 

as tide water glaciers, ice caps, steep ridges and more recently, year round open water fjords 

causing fairly stationary and non-nomadic behavior (Aanes et al. 2000). Occasional dispersal 

or migration occurs, but mainly during winter (Hansen et al. 2010b). Wide open areas (Aanes 

2000) and the northern Arctic tundra (Elvebakk 1997) with short, prostrated vegetation 

characterize the lowlands that reindeer inhabit in summer (Hansen et al. 2010b). 

Consequently, high visibility enables good detection of reindeer. Furthermore, in Svalbard, 

reindeer can be closely approached by humans (typically closer than 100 m in summer).  
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There are long time-series of Svalbard reindeer populations that have used Total 

population Counts (TC). Four sub-populations on Brøggerhalvøya, Sarsøyra, Kaffiøyra (West 

coast of Spitsbergen) and in Adventdalen (Central Spitsbergen) are monitored annually 

(Figure 1). In previous studies, TC have been considered to be precise and unbiased 

population size estimates (Aanes et al. 2000, Tyler et al. 2008, Hansen et al. 2013), yet this 

assumption has never been investigated. Worldwide, however, the most common method to 

estimate population abundance of wild animals is Distance Sampling (Buckland et al. 2004). 

Distance Sampling (DS) is a method where surveys are conducted along transects (lines or 

points) and is based on the fact that the probability to detect an animal diminishes with 

increasing distance from the observer (Buckland et al. 2001). Bias and precision can broadly 

vary according to how assumptions of a DS survey are met, as well of course as sample size. 

However, achieving high accuracy using line transects in monitoring of large herbivores is 

difficult (Marques and Buckland 2003, Morellet et al. 2011). Morellet et al., (2007) asserted 

that DS systematic bias (not precision as they termed it) is largely unknown, due to few 

studies assessing performance of DS line transect methods using populations of known size 

(however see Porteus et al. 2011 for such an example).  

The Bayesian statistical framework has made it possible to integrate data collected using 

different methods and thus combine data with different uncertainties. The information 

extracted from the available data  enabled higher precision of parameter estimates and missing 

census can even be estimated (Clark and Bjørnstad 2004, Abadi et al. 2010). Knape et al 

(2013) and Dennis et al., 2010 proposed that one key method to evaluating precision of 

population counts was to perform repeated counts. Further, even if counts repeated within a 

field season are only occasionally conducted along the time series, parameter estimates and 

likelihood functions are significantly improved (Dennis et al. 2010). 
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In this study, I i) estimated Svalbard reindeer abundance using DS line transect data from 

two study locations in summer 2013 and ii) integrated this information with  TC and repeated 

TC (summer 2009 and 2013) to estimate abundance uncertainties. To achieve this, I used a 

Bayesian state-space model for four different reindeer sub-populations. Finally, I iii) 

compared and discussed sources of errors and precision of TC versus DS.  

 

 

 

Figure 1. Map of the Svalbard archipelago (74-81N, 10-35E) and the four study sites. 
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Methods 

Study area and reindeer population 

Svalbard reindeer data was collected from the Northwest and central part of Spitsbergen, 

Svalbard in four study sites (Figure 1). Brøggerhalvøya, Sarsøyra and Kaffiøyra are 

peninsulas separated by tide water glaciers, and are inhabited by three distinct sub-populations 

of reindeer. Adventdalen, close to the settlement of Longyearbyen (78°13’N, 15°33’E), is a 

wide inland valley connected with several side valleys (~175 km2 below 250m) (Tyler et al. 

2008). The other sites were confined below 200m in altitude, which is dominant reindeer 

habitat during summer and moraines and glaciers were excluded. The two northernmost study 

sites, Brøggerhalvøya (~88km
2
) and Sarsøyra (40 km

2
), close to the Ny-Ålesund scientific 

base (78°55’N, 11°55’E ), were described by Hansen et al. (2009). Kaffiøyra (35 km
2
) is 

situated southward of Sarsøyra and both sites are characterized by large plains of tundra 

where the two dominant vegetation types are “pioneer vegetation” (41%, class 8) and 

“established Dryas tundra” (39%, class 14). Vegetation maps were derived from remote 

sensing data (Johansen et al. 2012) (Figure 2).  

Svalbard reindeer were re-introduced in the area of Ny-Ålesund in 1978. Twelve 

reindeer were imported from the Adventdalen valley and released on Brøggerhalvøya (Aanes 

et al. 2003). The Svalbard reindeer is the only large herbivore present on the archipelago and 

population size has been identified to be strongly controlled by the availability of food 

resources (Aanes et al. 2000). During the harsh winter of 1993/1994, the population crashed 

because of heavy icing, “rain-on-snow” events (ROS; Rennert et al. 2009, Constable et al. 

2014) that caused locked pastures and depletion of food resources due to high densities of 

reindeer in a small area. The reindeer population suffered high mortality and emigrated 

southwards to Sarsøyra (1994), and afterwards, to Kaffiøyra (1996). Svalbard reindeer do not 
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experience significant predation (Derocher et al. 2000) and are not hunted in the four sub-

populations. 

Data collection 

Existing time-series of summer TC of Svalbard reindeer, from the four study locations (Figure 

1), were used in combination with repeated TC conducted during the course of a single field 

season (Table 1). Although winter TC did exist from the time of the reindeer re-introduction 

on Brøggerhalvøya (Aanes et al. 2000, 2002, 2003, Kohler and Aanes 2004, Hansen et al. 

2011), I decided to use summer time-series that existed in all study sites with some years 

having repeats. Moreover, uncertainties could be compared across sites as winter and summer 

TC have different sources of error, i.e. reindeer use habitats higher in altitude in winter 

(Hansen et al. 2009a, 2010a). Finally, reindeer from Sarsøyra and Kaffiøyra were also 

sampled by line transects in summer 2013.  

In addition to TC and DS data, I used information on numbers of VHF collared females 

(1999-2000) and marked females (2000) sighted during censuses (see Hansen et al. 2009a; 

Hansen et al. 2010a for details) to support assumptions. 

 

Table 1. Summary of the Svalbard reindeer data available for the four study areas during 

summer. Number of repeats are indicated in parentheses. 

Study area Total Counts Repeated Total Counts Distance Sampling 

    Brøggerhalvøya  1979-present  2009 (2)  

2013(2)  

-  

Sarsøyra  2000-present  2009 (4)  

2013(4)  

2013  

Kaffiøyra  2002-present  2009 (2)  2013  

Adventdalen  1979-present  2001-2007 (2)  -  



9 

 

Total Counts and repeated Total Counts 

 

Total population Counts and repeated TC were performed in the middle of the summer (July-

August). The stationary behavior of reindeer, which experience very low rates of  mortality 

during summer (Reimers 1983), met the assumption of constant abundance inside an area 

during the same field season (no inter-population exchange), so that repeated total counts 

estimated the same population size. Two consecutive counts were separated by a minimum of 

four days to ensure re-distribution of reindeer in the landscape. Sarsøyra and Kaffiøyra 

reindeer were counted by two to four observers, and always by four in the repeated TC, in a 

single day. Brøggerhalvøya required two observers for two consecutive days which were 

separated by a natural barrier i.e. polar desert. Approximately parallel walking routes, 

covering the entire sites were similar between the years and routes were switched between 

observers when performing repeated counts. Individual or groups positions (clusters) of 

reindeer were located on a map. Observers communicated with each other through VHF radio 

to reduce the potential for double counts. The Adventdalen valley demanded four to six 

observers during a week of field work and part of this time-series has been used in Hansen et 

al. (2013). Repeated TC from 2001-2007 were extracted from Tyler et al. (2008) and 

independently and similarly conducted to TC from this study. 

Distance sampling line transects  

 

Distance Sampling data were collected in Sarsøyra and Kaffiøyra along transects representing 

a total line length of 19029m and 14937m respectively. The first principle of DS methodology 

is that detection probability of reindeers on the line (distance = 0) must be certain (assumption 

1). Second, the distance of each observation to the line should be recorded at the original 

position of the animal when detected (assumption 2) and third this should be done with 
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accuracy (assumption 3), avoiding systematic measurement bias (Buckland et al. 2001). Thus, 

it was important that data were not pooled into distance intervals in the field.  

 

 

Figure 2. (a and b) Vegetation maps of Sarsøyra (40 km
2
) and (c and d) Kaffiøyra (35 km

2
), 

with blue horizontal lines representing the distance sampling transects. Each line is divided 

into 3 segments (one segment is interpreted as one transect); black rectangles on each side of 

the line represent the width of the covered area (953 m i.e. 5% of the data truncation). The 

black points represent cluster positions. Each map represents one sampling day. See Methods 

for details on vegetation classes. 
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Study design  

 

The first way to avoid introducing observation error was to randomly sample the study site. 

However, care should be taken if a density gradient in the animal’s distribution exists in the 

landscape. Then the survey should be designed to avoid any gradient parallel to the lines, 

otherwise, precision might be lower (Marques et al. 2012, Barabesi and Fattorini 2013). 

Transects were drawn perpendicular to the potential gradient that could exist, following 

altitudinal flowering plant phenology (Hansen et al. 2009b). Thus, transects were crossing 

from the mountains to the sea, corresponding to an East/West orientation. One latitude was 

randomly chosen and other lines were placed 3km apart North and South from this latitude for 

each DS survey. This was a sufficient distance to avoid overlap and accordingly, avoid 

violation  of independence (Royle et al. 2004). For the same independence requirement, one 

observation does not correspond to a single reindeer but the cluster it belonged to (Buckland 

et al. 2001, Guillera-arroita et al. 2012). One study site was covered in one day.  

Measurements in the field 

 

I performed DS walking at constant speed along each line transect and no stops were made to 

scan surroundings. When a reindeer or cluster was spotted, glances only in its direction were 

made until measurements were finished. The position of the observer was marked for possible 

distance to the line correction. In a cluster, distance was measured on the reindeer that was 

furthest to the left (as observed by the naked eye) with laser binoculars Leica Geovide 

(42x10). In case of calf presence, the distance was measured on the mother. If the reindeer 

cluster were standing further that the maximum distance the laser can measure (~700m) 

positions were marked on a map. Binoculars were not used to search for reindeer and if a new 

reindeer was sighted while using them, or the group was bigger than first counted, those 

reindeer were excluded from further analysis. Finally, the angle toward the animal was 

measured with the stable SILVA JET 5 compass.  
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Data analysis 

Distance sampling analysis 

Since each distance sampling repeat had unique randomly drawn walking routes, data from 

the same study sites were pooled and information at the sample unit (a line) conserved (e.g. 

covariates characteristic of the line). Partitioning each of the transects in 3 equal segments 

decreased habitat heterogeneity and augmented study units (e.g. one partitioned line) 

according to Royle et al. (2004).  A total of 33 transects (Sarsøyra: 15 lines 728-1544m, 

Kaffiøyra: 18 lines 107-1047m) were used in the analysis (Figure 2).The conventional 

distance sampling likelihood from Buckland et al (2001) was adapted to  include habitat 

covariates likely affecting abundance (Royle et al. 2004) and detection (Sillett et al. 2012). 

The proportion of vegetated area (pixel types from class 8 to 18; Johansen et al. 2012) over 

the total covered area (all pixel types from 1 to 18) was extracted from a digital vegetation 

maps (Figure 2). The vegetation proportion predictor was also transformed to the logarithmic 

scale as well as a quadratic polynomial (Sillett et al. 2012). The sampling site (Sarsøyra or 

Kaffiøyra) was also included as a factor. Analyses were conducted in R 2.15.3 with the 

unmarked 0.10-2 package (Fiske and Chandler 2011). The distsamp function was used with 

the multinomial-Poisson mixture (Royle et al. 2004, Fiske and Chandler 2011) to model 

density and detection probability and results predictions used the function predict (Fiske and 

Chandler 2011). GIS computations were completed in R. 

Statistical methods 

 

First the data was checked for possible spatial clumping of animals using the variance 

estimation of the sample size (Buckland et al., 2001) (Appendix I). Spatial distribution of 

reindeer abundance was modeled as a Poisson random variable with expected number of 

animals    in the total study area equal to E[  ] =    and described as:    ~P (  ). Hence, a 

detected cluster could occur at any position in the covered area.   
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Theoretical explanations to get to the statistical formulation of density estimates   
  are 

described in detail in appendix II. Here, (Li) was the length of the transect i and      was the 

probability density function of the perpendicular distance data at distance 0 m where all 

animals are supposed to be detected (Buckland et al. 2001).  

  
  =  

          

     
 clusters/km

2
 

The detection function depended on each observation perpendicular distance    to the 

line  . The half-normal, hazard-rate and uniform key functions were tested as different forms 

of the detection function. The half-normal key g(  |   ) is defined by: 

g(  |  ) =     
   

 

   
 )    where    is the half normal parameter shape of transect   (Figure 3). 

The available covariates    of transect i were related to the detection parameter    and mean 

density parameter    on  a logarithmic scale (Royle et al. 2004, Fiske and Chandler 2011): 

                  
   

                   

Distances were measured on a continuous scale. Pooling data into bins of j distance intervals 

permitted the detection function to integrate cell probabilities     of a transect i over each 

intervals j as multinomial trials (Sillett et al. 2012).     was the number of individuals 

detected at transect i and interval j:                           .  

Objects occurred in clusters, thus, density extrapolation to the total study surface (A) 

took into consideration the expected average cluster size    (common for both sites).  

Abundance was estimated as:     =           . Finally, abundance estimation was repeated 

using 500 bootstrapped replicates to calculate the mean abundance     and the standard 

deviation sd.  
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Model selection         

Different model combinations with abundance and detection covariates analyzed in a half 

normal, hazard rate or uniform detection function, resulted in 63 candidate models (Appendix 

III). From this first list, 37 models did not include the sampling site effect on the detection 

function (Appendix III). The two “model list” followed the three model selection procedures 

as described below:  

(1) I explored several distance interval combinations (equal interval 60m or 130m or 

unequal interval) (Buckland et al. 2001). Model lists were run for each distance 

interval combination and the three best models based on Akaike’s Information 

Criterion (AIC) of each combination were retained.  

(2)  To find the distance interval combination having the best goodness of fit for the 

model, I applied a Freeman-Tukey test for the models selected in (1). This test does 

not require pooling intervals with small expected values together (Brooks et al. 2000, 

Sillett et al. 2012). The Freeman-Tukey statistic    measured difference in fit between 

the observed data     and the expected value     at transect   and interval j as follows: 

          
  

      
  

500 Bootstrap samples were used and the distance interval combination with the 

highest fit (corresponding to the lowest value of   ) was chosen.    

(3) Once the distance interval combination was selected, the last step retained the best 

model ranked by AIC value. The AICC, another model selection criterion widely used 

in ecology, was also calculated for comparison. AICC provides greater penalty for 

additional parameters and account for the sample size. Although Burnham and 

Anderson (2002) recommend to use AICC, the statistical literature is not that clear on 

this topic (Claeskens and Hjort 2008) and AIC was preferred for selecting the model.  
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Table 2. Ranking of the three best detection models for estimating Svalbard reindeer density, 

according to the AIC and relative AIC difference (ΔAIC), for model list 1 (vegetation 

proportion and study site were density and detection covariates, 63 models, see appendix III) 

and model list 2 (the study site was not a detection covariate proposed, 37 models from model 

list 1, see appendix III). Model selection procedure investigated three distance interval 

combinations: Equal intervals every 60 m, equal intervals every 130 m and unequal intervals 

(composed by 10 cut points: 5 60 m + 4 100 m + (DistanceMax + 100 m)). Freemann-Tukey 

test was bootstrapped with 500 iterations. The bootstrap outcome mean statistic value = h
2
, 

standards deviation = sd (h
2
) and P-values are presented. Hn = Half normal key functions, Hz 

= Hazard rate, numbers of models’ parameters = Par. Bolted numbers are related to steppe (2) 

and (3) from the DS model selection section (see text). 

 

 

  

Intervals Model list Model Par h
2
 sd (h

2
) P-value AIC   AIC 

Equal 60 

List 1 

Hn_21 5 128.39 7.34 0.40 633.74 0.00 

Hn_20 6 127.64 7.24 0.37 634.02 0.28 

Hz_38 4 128.15 7.87 0.38 634.07 0.33 

List 2 

Hz_38 4 128.15 7.87 0.38 634.07 0.33 

Hz_39 4 128.37 7.87 0.39 634.35 0.61 

Hz_41 5 128.13 7.24 0.38 635.96 2.22 

Equal 130 

List 1 

Hn_21 5 82.02 5.92 0.19 461.43 0.00 

Hn_20 6 81.85 5.75 0.17 461.71 0.28 

Hn_26 7 80.79 5.90 0.18 462.46 1.03 

List 2 

Hn_8 3 84.39 6.12 0.25 463.34 1.91 

Hn_9 3 83.87 5.32 0.16 463.63 2.20 

Hz_38 4 84.29 5.87 0.26 463.89 2.46 

Unequal A 

List 1 

Hn_26 7 103.10 5.83 0.45 534.94 0.00 

Hn_21 5 104.46 6.21 0.43 534.95 0.01 

Hn_20 6 103.53 6.19 0.38 535.23 0.29 

List 2 

Hz_38 4 104.54 5.89 0.34 535.74 0.80 

Hz_39 4 104.68 5.81 0.37 536.03 1.09 

Hz_41 5 104.37 5.69 0.33 537.63 2.69 



16 

 

Bayesian state-space model 

Reindeer population TC time-series were fitted using a state-space model that simultaneously 

integrated repeated Total Counts (within one season) and Distance Sampling analysis. The 

state-space modeling was performed in a Bayesian framework (Kery and Schaub 2012). 

Likelihood from the census time-series can be decomposed in two distinct components of the 

system: a process and an observation equation. This hierarchical view of the state-space 

model structures the “model building” (Royle and Dorazio 2008). Such a model can deal with 

hidden state variables or missing values (Clark and Bjørnstad 2004).   

The process equation was of Markovian type and linked reindeer population size 

fluctuation through the years: the true abundance      depended on the previous abundance 

   (corresponding to    on the logarithmic scale)(Kery and Schaub 2012). The growth rate   , 

on the logarithmic scale   , were normally distributed with mean     and the process variance 

  
  corresponding to environmental and demographic stochasticity: 

log (    ) = log (  ) + log (  ) 

⇔      =    +     and      Ɲ     ,   
 ) 

The observed equation linked observed data     to the true state of the process    (true 

population size). The sampling distribution was a Poisson sampling (Dennis et al. 2010) 

instead of a binomial sampling which is commonly used (Royle and Dorazio 2008):  

   = P (  ) 

Although  binomial sampling does not allow for false positive counts (Kery and Schaub 

2012), the Poisson sampling does (Muhlfeld et al. 2006). Double counts (false positive) were 

potential sources of error in the system and neglecting to account for these could have 

underestimated population size estimates. However, because the false positive rate remained 

unknown, the Poisson distribution does not allow quantification of the observation process 

(i.e. systematic bias and observation errors) (Clark and Bjørnstad 2004, Newman et al. 2006). 
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Repeated TC were independently analyzed in the same way where   indicates the number of 

repeats (Dennis et al. 2010): 

     = P (  ). 

A Normal distribution was used to integrate Distance Sampling data to the state-space 

model in year 2013:  

    = Ɲ (      , sd) 

Although, one should note that Winbugs used 
 

    to define the standard deviation of a normal 

distribution. The estimator     and its standard deviation sd resulted from the bootstrap 

procedure in Unmarked (see above).  

Priors are usually kept uninformative (Kery and Schaub 2012), however,  as the first 

year was not defined in the process equation, the prior for the initial population size 

corresponded to the logarithm of the first abundance census with a variance of 0.01. Other 

priors were kept vague. Thus, the prior assumed a non growing population with a mean 

growth rate     defined as:    = Ɲ( 0 , 0.001 ), and the prior for the process variance   
  was 

described as:   
  = Unif (0, 1 ). 

Finally, the posterior distribution was obtained using Markovian Chain Monte Carlo 

(MCMC) techniques computed from R2.15.3 to Winbugs1.4.3 software with three MCMC 

chains, 100 000 iterations and 2000 burn-in (first part of the chains discarded). Estimates 

obtained represented a sample from the posterior distribution. In addition, the 2.55
th

 to 97.55
th

 

percentiles of the posterior distribution corresponded to the 95% Credible Interval (CI)  

(Bayesian confidence interval; Kery and Schaub 2012). Nonetheless, to easily compare 

precision with different data input (one to four TC and/or DS or no data included in 2013, 

Table 4), the posterior standard deviation and Coefficient of Variation (CV) were preferred. 

The posterior distributions were plotted (Figure 4) and level of convergence of the chains 

(Rhat) available in Appendix IV.  
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Figure 3. Distance sampling histograms of the number of clusters observed per distance 

interval (numbers are given at the bottom of the bars) and the half normal detection function 

probability from (a) model Hn_8 and (b and c) model Hn_21. Model Hn_8 pooled Sarsøyra 

and Kaffiøyra sites for the detection function estimation while Hn_21 separated them (see text 

for further details). Each observation distance to the line is plotted on the top of the detection 

curve.  

 

 

  



19 

 

Results 

Distance sampling 

Following exploratory data analysis guidelines provided by Buckland et al. (2001), I right-

truncated 5% of the furthest observations from the line (Sarsøyra and Kaffiøyra data pooled) 

resulting in a low variance (Appendix I). Higher truncation percentage did not decrease the 

variance. Accordingly, the furthest observation from the line was at 953m. This distance 

defined the width of the 33 covered area (area surveyed along the lines) where surface 

vegetation was calculated (ranging from 0.43 to 2.89 km
2
). The vegetation maps (see 

Methods, Johansen et al. 2012), indicated that the proportion of vegetation inside the covered 

area (69.6% and 54.1% for Sarsøyra and Kaffiøyra respectively) was slightly higher (from 

about 3.5% times more) than the vegetation proportion of the total study area (66.1% and 

50.5% for Sarsøyra and Kaffiøyra). When study sites were pooled, clustered observations 

amounted to 143 animal groups (n=88 and n=55 in Sarsøyra and Kaffiøyra respectively). 

More than 30 observations in the first distance intervals were close to the line but less than 20 

were, when sites were distinguished (Figure 3).  

The Freeman-Tukey goodness of fit statistics (h
2
) were lowest for the 130m distance 

interval, thus, this was evaluated as being the best cut point combination (<80.8 in model list 

1 and <84.4 in model list 2 for the 3 best models based on AIC; Table 2). Moreover the h
2
 test 

indicated no significant lack of fit (p>0.16 in all models) (Royle et al. 2004). When pooling 

observations from both sites, histograms of the frequency of observations per 130m distance 

interval (Figure 3) had a “well behaved” shape as recommended by Buckland et al. (2001). 

Indeed, the detection probability diminished, with a shoulder around 400m and smoothly 

decreased until 953m (following a “shape criterion” curve; Buckland et al. 2001). When 

detection was separately considered in each site, the patterns were slightly different and 

detection probability was lower on Kaffiøyra (Figure 3). On Sarsøyra, observations decreased 
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in two steps at 390m and 910m, with no decrease between those steps. However, on 

Kaffiøyra, observations decreased earlier (from 130m) and, more regularly until 819m, yet at 

520m, detection dropped more than half (from 10 to 4 clusters detected) (Figure 3).  

 

Table 3. Parameter estimates with asymptotic standard error in parentheses from the selected 

detection models of the distance sampling analysis (Table 2). σ was the detection parameter 

and λ the mean density parameter on the logarithmic scale. The estimated mean abundance    

and its standard deviation were bootstrapped 500 times.  

 

Coefficient Model Hn_21 Model Hn_8 

Density (ln λ) 

 Intercept 

 Vegetation 

 Region (Sarsøyra) 

 

0.16  ± 0.39 

2.09  ± 0.57 

-0.41 ± 0.23 

 

-0.06 ± 0.38 

2.02  ± 0.53 

- 

Detection (ln σ) 

 Intercept 

 Region (Sarsøyra)  

 

5.94  ± 0.11 

0.42  ± 0.18 

 

6.19 ± 0.09 

- 

Abundance (  ) 

 Sarsøyra 

 Kaffiøyra 

 

199 ± 33 

265 ± 40 

 

257 ± 28 

174 ± 19 

 

The most parsimonious model based on AIC was a half normal key function with 

vegetation proportion and sites as additive covariates influencing density, and sites 

influencing the detection function (model Hn_21, Table 2, Appendix III). The best model that 

did not account for the study sites as a detection covariate was also modeled by a half normal 

key function (model Hn_8, Table 2, appendix III). Only the vegetation proportion on normal 

scale influenced the density estimation of model Hn_8. The  AIC between those two models 

was 1.92 (Table 2). However, calculating the  AICc reduced the difference in parsimony 

(AICc for model Hn_21= 463.65 and AICc for Hn_8= 464.17,  AICc = 0.52). The proportion 

of vegetated area strongly influenced the predicted density of reindeer of both model Hn_21 

and Hn_8 (Table 3). Hence, if 50% of the transect surface is vegetated, for example, model 

Hn_8 predicts a density of 2.59 ± 0.38 clusters/km
2
. If 90% of the surface is vegetated, the 
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density increases to 5.80 ± 0.91 (Appendix V). The mean number of reindeer per groups 

observed with naked eyes after data truncation was        . The total abundance estimates 

of model Hn_21 was different and less precise than model Hn_8 (see Table 3). The estimated 

abundance and standard deviation from model Hn_8 were    = 256 ± 27.25 [R package 

unmarked abundance ± sd] and     = 174 ± 18.83 on Kaffiøyra (Table 3 and Figure 4).  

State-space model time-series uncertainty  

The observed total counts and estimated   
  values from the Bayesian posterior distribution 

were rather close (Figure 4), although   
  tended to smooth extreme variations in the observed 

time-series. For example, in summer 2002 on Brøggerhalvøya 65 [49:83] (posterior mean     

[95% credible interval]) reindeer were estimated while 52 were counted, but the estimated 

credible intervals always included the observed TC. One exception of a repeated total count 

outside the CI existed in 2013, on Sarsøyra (estimate = 223 [209:237], 1
st
 out of 4 repeats = 

241 reindeer). Distance Sampling abundance estimates obtained through R package unmarked 

were not included in the credible interval from the Bayesian state-space model, but the lower 

part of the standard deviation was (Figure 4). One should recall that although DS density 

estimates come with a wide standard deviation, one TC alone has no measure of uncertainty.  

The credible intervals were reduced during years when repeated samplings were 

included in the state-space model. This was illustrated by the dashed vertical lines in Figure 4. 

The models were run with different data available in 2013 (Table 4) so that I could explicitly 

compare the precision state estimate. Unreliable estimates were obtained when data was 

missing; especially if consecutive counts were missing such as would be the case on 

Kaffiøyra, if 2013 was removed. Including DS alone sharply improved the precision of the 

estimates. Note that one single Total Count in 2013 gave different, but more precise results 

than one single DS. When repeated total counts were conducted, standard deviation further 

decreased (2009 Sarsøyra 4 repeated TC: 154 ± [142:166] CV=0.04; 2009 Kaffiøyra 2TC: 
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156 ± [140:173] CV=0.05; see table 4 for 2013). Because four TC resulted in very precise 

estimates, adding DS in 2013 on Sarsøyra only improved the precision slightly. Nonetheless, 

the most precise estimates integrated all data available.  

The mean CV over the full Adventdalen time-series was precise (0.04). During the 

seven consecutive years of independent, replicated TC in Adventdalen, the CV was slightly 

improved from 0.03 (mean CV without replicates) to 0.02 (with replicates).       

All four study sites were subject to strong fluctuations in population size. A major 

population decrease happened on Brøggerhalvøya, Sarsøyra and Adventdalen during 2001 to 

2002 (rBrøgger. = -0.95 ± [-1.26:-0.65], rSarsøyra = -0.35 ± [-0.58:-0.13] and rAdventdalen = -0.33 [-

0.40:-0.27] [posterior mean rt : CI]) (appendix IV) when the first count was performed on 

Kaffiøyra with the lowest abundance estimated for that population (96 [78:115]). In all sites, 

large positive growth rate followed straight after the 2002 crash (for 2003: rBrøgger.= 0.62 ± 

[0.31:0.92], rSarsøyra= 0.31± [0.09:0.54], rKaffiøyra = 0.27 ± [0.04:0.50] and rAdventdalen = 0.30 

[0.23:0.37], appendix VI). For example, on Brøggerhalvøya, the population approximately 

doubled (TC: 52 to 125 reindeer, estimated TC: 64 [49:83] to 119 [100:141] in 2002 and 

2003, respectively).   

Only three counts with less than 30 reindeer from 1979-1981 on Brøggerhalvøya were 

followed by seven years without censuses, which prevented MCMC chains to converge with 

the upper bound of the CI up to 8500 individuals. Therefore, the time-series used in this study 

started in 1988 with 194 reindeer. MCMC chains still did not converge for the 5 and 3 

successive TC missing from 1990-1994 and 1996-1998 (maximum lack of convergence 

obtained in 1996, Rhat=0.007, appendix IV). On Brøggerhalvøya, when summer censuses 

were conducted, abundance was high from 1988 to 2001 (Figure 4). After 2003, the 

population size in summer was approximately half the size compared to that before the 2002 

crash. Since then, Sarsøyra has shown two peaks in 2005 and 2013. Kaffiøyra had the 
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strongest oscillating pattern despite data missing in recent years (2011 and 2012); crashes of 

similar amplitudes appeared in 2006 and 2010 (r2006 = - 0.30 ± 0.11, r2010 = - 0. 25 ± 0.10), i.e. 

following winters with extremely poor feeding conditions due to heavy ROS and icing 

(Hansen et al. 2010, 2011). 

Females reindeer with VHF collar were tracked intensively during two field season 

and 97.5% (1 out of 42; 42 correspond to 19 females in summer 1999 plus 23 in summer 

2000) stayed in their respective site. One animal crossed the bay between Brøggerhalvøya and 

Sarsøyra in July 2000. Before the census of august 2000, 27 females (VHF marked) were 

known as present in the study site. All of them were sighted during the TC. During the same 

census, one out of 53 (VHF and marked) animals was counted twice (1.9%).  

 

Table 4. Abundance estimates: mean of posterior distribution    , standard deviation (sd) and 

credible interval (CI) obtained using a Bayesian state-space model fitted with different data 

combinations from three study sites in 2013. The Coefficient of Variation (CV) correspond to 

   divided by sd. NA= count removed from data; TC = Total Count; 1st TC= the first TC from 

the 2013 field season; DS= Distance Sampling. Models with the most TC repeats were used 

for comparison with DS. The full time-series estimates of the bolded row are available in 

appendix IV.  

Study site Data source    (2013) sd CI CV 

Brøggerhalvøya 

NA 93 41 [39:193] 0.44 

1
st
 TC 131 11 [110:154] 0.08 

2 TC 122 8 [107:137] 0.07 

Sarsøyra 

NA 181 57 [96:314] 0.31 

DS 241 27 [189:294] 0.11 

1
st
 TC 237 15 [208:268] 0.06 

DS + 1
st
 TC 242 13 [216:268] 0.05 

4 TC 221 7 [206:235] 0.03 

DS + 4 TC  223 7 [209:237] 0.03 

Kaffiøyra 

NA 171 364 [32:528] 2.13 

DS 171 19 [134:207] 0.11 

1 TC 144 12 [122:168] 0.08 

DS + 1 TC 153 10 [133:174] 0.07 
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Figure 4. Mean Bayesian posterior distribution of estimated population size (blue line) and its 

corresponding 95% credible interval (grey polygons) for summer total counts for the four 

study sites: Brøggerhalvøya (top left), Sarsøyra (bottom left), Kaffiøyra (top right) and 

Adventdalen (bottom right). The TC of reindeer are represented by a black dot (missing for 

Sarsøyra) linked by the black line. Repeated TC is symbolized by a cross and indicated by a 

dashed vertical line. Dashed red segments are the confidence intervals (±1.96   standard 

deviation) associated with the estimated abundance (red dot) from the distance sampling 

analysis in R package unmaked in Table 3.  

 



25 

 

Discussion 

In the present study, I have used time-series of strongly fluctuating sub-populations of high-

arctic Svalbard reindeer to investigate abundance uncertainties, and how uncertainties varied 

between two sampling methods, TC and DS. The Bayesian state-space model made it possible 

to successfully combine TC, repeated TC (within one field season) and DS in a common 

framework. The inclusion of more data, even with wide standard deviation such as DS, 

resulted in more precise estimates (Figure 4). In particular, the Bayesian approach enabled 

direct comparisons of the precision of both sampling methods and showed that TC was more 

precise than DS (Table 4). Having TC estimates as a baseline for comparison (i.e. assuming 

they were close approximation to the “true” population size), emphasized that blindly 

following DS model selection would have led to erroneous estimates. Finally, reindeer density 

was found to be highly correlated with vegetated surface (Table 3), thus illustrating the 

importance that habitat structure of the area covered by DS must be representative of the total 

study site.  

Extreme fluctuations are real fluctuations  

 

Studies based on TC have demonstrated that the population size of Svalbard reindeer 

fluctuates greatly between years (Solberg et al. 2001, Aanes et al. 2003, Tyler et al. 2008). 

Reduced population growth is typically associated with winter “rain-on-snow” events (ROS, 

see Methods) and is also more prominent when reindeer occur at high density, that is, a 

negative first-order density dependence (Aanes et al. 2000, Solberg et al. 2001, Kohler and 

Aanes 2004, Tyler et al. 2008, Hansen et al. 2011). In contrast, strong positive growth rates 

are associated with an absence of ROS events and high quality of the grazing grounds the 

previous summer (i.e. low grazing pressure and large plant biomass production linked with 

high summer temperature; van der Wal and Hessen 2009; van der Wal and Stien in press). 
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Svalbard reindeer have a single offspring, so that when these conditions are met, close to all 

adult female reindeer can have one calf (Øritsland 1985 reported rates up to 95%).  

Nevertheless, extreme positive growth rates, such as those observed from 2002 to 

2003 in Brøggerhalvøya, when the reindeer population more than doubled, were biologically 

impossible if the population was isolated. Actually, partial migration occurred between sites, 

especially during harsh winters (Hansen et al. 2010), influencing growth rates. This study did 

not constrain growth rate or set a first-order density dependence parameter in the statistical 

model, because additional uncertainties associated with the extra parameter would then be 

introduced. These parameters uncertainty are not related to observational errors (Buckland et 

al. 2007), thus is not related to the accuracy of the monitoring data which I concentrated on. 

However it was important to ensure that migration did not impact my closure assumption 

throughout the summer field season. This was supported by the 97.6% of VHF collared 

females, closely tracked (every second-third days) in summer of 1999 and 2000 (Hansen et al. 

2009) staying within their respective study sites. In addition, Hansen et al. (2010b) supported 

that migration mainly occurred during winter. 

The more information, the more precise the abundance estimate  

 

My study is in line with Schaub and  Kéry (2012) which encourages the combination of 

information in hierarchical models to improve inferences in population ecology. Despite 

collecting data with different sampling methods and having different uncertainties, when all 

of the my available data “shared strength” (Schaub and Kéry 2012) in a common model, the 

resulting estimates were more precise (Figure 4; Table 4) (see Gopalaswamy et al., 2012, for 

another example of significantly improved tiger density estimates by combining two sampling 

methods in the same model).  

Long time-series or repeated censuses increase the precision of estimates (Sæther et al. 

2007, Dennis et al. 2010, Knape et al. 2013). Likewise, in Adventdalen, the increase in 
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precision resulting from repeated TC was minimal because single annual count brought 

enough information in the state-space model. Regardless of the length of the time-series, if a 

count was missing, the high annual fluctuation of the reindeer population led to low precision 

of abundance and growth rate estimates. Therefore, annual monitoring is crucial. 

Total Counts accuracy 

 

Total Counts accuracy can broadly vary depending on the studied species, type of landscape 

and observer effort. Loison et al. (2006) calculated an index based on TC repeats of chamois 

(Rupicapra sp.). In their study environment, the index was shown reliable and comparable to 

capture mark recapture if enough repeats were conducted. In my study system, during a 

monitoring census of August 2000, 100% (n=27) of adult female reindeer with VHF collar 

were sighted. These females were tracked before the census and known as present in 

Brøggerhalvøya and Sarsøyra. This demonstrated high detectability of at least adult females 

when using TC. However, some repeated TC had unexpected abundance differences e.g. on 

Sarsøyra in 2013 one repeat was outside the estimated CI (241 reindeer were counted while 

223 [209:237] were estimated). 

The main sources of errors to be accounted for were related to the observer, reindeer 

fur color, and weather variability. Indeed sighting effort and the observer experience could 

matter despite observers switching routes between repeats. Moreover, reindeer kept their 

white winter coats until mid-July, and were easier to detect than with the dark summer fur i.e. 

the count on Sarsøyra previously mentioned was the 1
st
 TC conducted the 7

th
 of July 2013.  

Animals were often scared off during windy days which facilitated detection but made it more 

difficult to keep track of animals position. Reindeer could be missed (false negative) but also 

double counted (false positive) by the same or another observer, or through animal movement 

when the site needed two days (Brøggerhavøya) or more (Adventdalen) to be covered. 

Systematic bias caused by false positive could only be quantified in summer 2000 where only 
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1.9% (n=53) of marked animals sighted during the census were counted twice. Nonetheless I 

expected this error to also be minor other years. In any case, I considered false positive and 

negative issues in our model by integrating TC in the state space model with a Poisson-

Poisson sampling. 

 Ahrestani et al. (2013) analyzed process and observation error in 55 globally 

distributed populations of Cervus and Rangifer (27 and 28 respectively). They showed that 

“more-or-less” closed populations, that have been “carefully” monitored for decades, had low 

process observation error and great precision. Although process observation error cannot be 

quantified in the Poisson-Poisson state-spate model, my study system followed these criteria 

and supports my judgment that TC estimates, especially when repeated TC were combined, 

were precise and could be assumed to have a low bias. I therefore could use TC as a reliable 

baseline for the comparison of DS estimates.  

Distance Sampling sources of errors: detection function  

 

Following DS model selection blindly would have led to biased estimates.  According to the 

model selection, DS detection probability seemed to depend on the study site sampled (Table 

3 and Figure 3. b and c). However, the similarity of landscape characteristics, methodological 

and analytical protocols in the two sites did not suggest such a difference. Availability for 

detection (i.e. the animal is in view) was expected to be similar inside the line transects 

covered area (Buckland et al. 2004) because of the wide plain with prostrated vegetation 

characteristics.  Moreover, perceptibility (i.e. detection of the animal available for detection) 

was also expected similar. Indeed, the same single observer covered both sites and counts 

were stopped if weather prevented good visibility. In Kaffiøyra the last DS survey was 

conducted on the 25-26
th

 of July 2013. At that time the reindeer had their darker summer fur, 

which was harder to spot in the landscape. Although this could explain why fewer animals 

were apparently detected from long distance on Kaffiøyra than Sarsøyra, it should not make a 
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difference in detection probability close to the line. The DS model did not account for cluster 

size influencing detection even though larger groups are expected to be detected at a longer 

distance (Buckland et al. 2004). This problem was reduced by data truncation so that the mean 

group size was low and did not differ between sites (    1.68 group size in Sarsøyra and 

   1.58 in Kaffiøyra with 5% truncation). Certainly, developing models and software that 

consider quantitative covariates at the observation level would improve DS method accuracy 

(see Amundson et al. in press, for an example regarding individual heterogeneity in 

detection).  

However, data quantity could cause differences in the fit of detection curves. Ideally, a 

minimum of 60-80 observations are required to get adequate fit of the detection curve 

(Buckland et al. 2001), which was largely exceeded when both sites observations were pooled 

but not satisfied when Kaffiøyra was separately considered. Although both sites, combined or 

not, displayed uniform distribution of cluster with a low sample size variance (Appendix I), it 

is inherent that if few animal are observed, estimated density will be imprecise. Stochasticity 

of the animal position is more likely to modify the shape of the histogram when sample size is 

low (Figure 3). Additionally, Buckland et al., (2001) claims that the “shape criterion” is to 

some extent an assumption of distance sampling. This means detection function should have a 

“shoulder” shape close to the line, ensuring no movement of the animal toward or away from 

the observer and that detection remains certain over a small distance from the line. This 

assumption was fulfilled when data from both sites were pooled (Figure 3). 

 Royle et al. (2004) outlines that making “a priori judgment” about the most sensible 

way to partition variance (i.e. potential predictor covariates) could minimize the possibility 

that a covariate affects detection and abundance at the same time. Otherwise, the covariate 

effect would be sensitive to model structure. This scenario was similar to model Hn_21 where 

the study site was a covariate of both detection and density. Moreover, this model resulted in 
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a larger number of parameters than model Hn_8 (study site does not affect the detection) 

(Table 4). Accordingly, the  AICc  showed a close to negligible difference between the two 

models. 

These arguments justify why I considered estimates from model Hn_8 (pooled data 

from both regions to estimate the detection function) biologically reliable instead of Hn_21 

(separate regions data set).  

Distance Sampling source of error: habitat structure  

 

Habitat structure could become an important source of bias if not accounted for (Pedersen et 

al. 2012, Sillett et al. 2012). DS results from Hn_8 gave higher abundance estimates than TC 

in both regions. The covered areas contained slightly more vegetated grounds than the total 

study area, with only 3.5 % difference both in Sarsøyra and Kaffiøyra. However, density of 

animals was so strongly linked to vegetation presence (Table 3) that this difference likely 

explained the small overestimation (Appendix V). If the difference in vegetated surface inside 

vs. outside the covered area was larger, the challenge to address both “spatial sampling and 

observation error” would not have been resolved (Yoccoz et al. 2001, Sillett et al. 2012). 

Anticipating such a scenario would avoid the possible need of adaptive distance sampling 

(Buckland et al. 2004).  

Others argue that random placement of the line is reportedly inefficient if the zone of 

high density can be predicted (Buckland et al. 2004, Barabesi and Fattorini 2013). Barabesi 

and Fattorini, (2013) propose a stratified sampling method where random (for an example see 

Aars et al. 2009), or systematic lines (simpler to implement in the field) are placed inside 

congruent polygons that cover the study site. However, systematic design cannot have 

unbiased variance, yet, Fewster et al. (2009) has developed estimators of encounter rate 

variance that promote such design. Definition of stratum is difficult when vegetated and non 

vegetated surfaces occur along the same transect. A simple alternative would be to survey 
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additional transects until the vegetation proportion of the covered area is representative of the 

total study site. 

It could be argued that heterogeneity in habitats introduce bias to the assumption of 

uniform distribution as well as uniform coverage probability (Buckland et al. 2004). However, 

modeling detection and density as a function of habitat covariates overcomes the need to 

separate density estimates into stratum that have low observations (such as non vegetated 

ground) (Buckland et al. 2004). In addition, contrary to Royle et al. (2004), vegetation 

coverage did not affect detectability in the model Hn_8 selected, and similar to their study, 

bootstrap goodness-of-fit did not show any significant lack of fit, concluding that no other 

heterogeneity should affect detection.  

Future implications 

 

The simplicity of the Svalbard tundra ecosystem should give similar count precision 

between both sampling methods. The sensitivity of the DS detection function to numbers of 

observations should serve as a warning to other monitoring programs using this sampling 

method, especially if additional assumptions are not met. I support choosing the upper limit 

outlined by Buckland et al. (2001) with a minimum number of 80 observations (for line 

transect). If enough transects are surveyed to represent the total vegetation coverage, distance 

sampling is a promising method to estimate reindeer density in other open tundra landscape. 

The DS method demonstrated in this study will be proposed to be used by the Governor of 

Svalbard, which manage Svalbard reindeer populations and conduct annual line transects. TC 

might not be possible across large study areas due to high demands for resources and 

logistics. Therefore reindeer abundance assessment across a wider spatial scale of the 

Svalbard archipelago could combine data from sites monitored by TC and others by DS (for 

an example see Aars et al. 2009). In such cases, TC should only be conducted in populations 
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assumed to be closed and with a high sampling effort to achieve the high precision as 

demonstrated in this study.  

More accurate estimates led to easier detection of the effects of environmental drivers 

on population dynamics (Clark and Bjørnstad 2004, Knape et al. 2013), e.g. the effect of the 

temperature increase in the high Arctic (Constable et al. 2014). Investigating uncertainties and 

sources of error in wildlife monitoring with reliable statistical models (Buckland et al. 2007) 

strengthens inferences and, thus, permit to sustainably manage an ecosystem under increasing 

human pressure. The Bayesian state-space model illustrated in the present study and showed 

flexibility (Clark and Bjørnstad 2004, Kery and Schaub 2012) through its adaptation to the 

specificity of my study for estimating sampling methods uncertainties. Applying such analysis 

with the integration of biological parameters and age structure is promising for reindeer 

population dynamic studies under an increasing pressure of ROS events. Furthermore, it 

would improve ecosystem dynamics understanding, and improve our ability to fully explore 

the “early warning system” (Hansen et al., 2013), that is Svalbard in the light of a changing 

climate. 

  



33 

 

Conclusion 
 

The present study assessed uncertainty in population counts of Svalbard reindeer, leading to 

useful population monitoring and management improvements. The open landscape and closed 

study locations (during a field season) resulted in fairly precise abundance estimates when 

monitored by TC. Nonetheless, large annual fluctuations in reindeer population size due to 

environmental stochasticity, density-dependence and migration require that censuses are 

conducted every year. Censuses were precise, yet quantification of counts’ bias was not 

possible. However, bias was assumedly low once TC’s were integrated into the state-space 

model and related to re-sightings of collard animals. Because of sample size issue, reindeer 

population size would have been wrongly estimated using the DS method alone if TC could 

not have been used as background information. Based on the results of this study, I strongly 

recommend that DS line transects conducted in this and other wildlife systems are based on a 

large number of observations (n>80) in order to obtain robust detection functions. Further, 

sufficient transect lines should ensure that the habitat structure surveyed is representative of 

the total study site characteristics. This study has illustrated the flexibility of the Bayesian 

state-space modeling framework that maximizes the use of available data, even with wide CI, 

to increase the precision of population counts. Such simple models greatly improve 

population ecological inferences. 
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Appendix I 
 

Sample size variance 

 

In respect to the Poisson distribution for which              , possible clumping 

distribution of animals was assessed by calculating the sample size variance estimation  
        

    
  

that was expected close to 1 (Buckland et al., 2001; p109).  This corresponded to the 

assumption that reindeers were randomly distributed along the different lines.  

        = L      
  

  

 
    

 

 
   

 

   
           

                  

   represented the length of transect i, k the number of transects,    the number of observations 

per lines and   the sum of all   .  

 

 

 Table I. Sample size variance        and its standard deviation       . 

 

Area 
              

      

 
 

Sarsøyra + Kaffiøyra 206.76 14.38 1.45 

Sarsøyra 124.78 11.17 1.42 

Kaffiøyra 83.96 9.16 1.53 
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Appendix II  
 

Density estimation in Distance Sampling, theoretical explanations.  

 

The detection probability required first that the cluster was available for detection and thus 

situated inside the covered area and then that it was detected by the observer (Pa). The 

covered area (a) in distance sampling corresponds to the area monitored from the lines. If a 

line was of length (L) and its width (ω) (including both sides of the line is of lengths 2ω), 

subsequently the covered area was of 2wL m
2
 (meters is the measurement unit). The expected 

number of clusters    was issued from random and independent observations. The density 

within the covered area of each partitioned line   corresponded to:  

  
 = 

  

            
 = 

  

              
         

Buckland et al., (2001) introduced two related functions: the detection function g(  ) and the 

probability density function f(  ) of the perpendicular distance data    from the line  , related 

by the relation: 

      = 
     

 
           

µ was the probability to detect an animal given that it was located in the ω width and 

corresponded to the area below the detection curve g(  ):  

µ= ω . Pa  and  µ =         
 

 
         

As all observation on the line were supposed to be detected: g(0)=1 

 = 
     

     
 = 

 

    
  and thus       

 

         
 
 

     

Finally (Marques and Buckland 2003),   

  
  = 
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Appendix III 
 

Model list  

Table III. Model list names implemented with the distsamp function in Unmarked R 

package.  Model respective detection key function (Hn= Half normal; Hz= Hazard rate, Unif= 

uniform) and covariates (α = detection covariates; λ= density covariates) are reported. 

Possible covariates were: the study site (site), the vegetation proportion (veg) inside the 

covered area, the logarithm of the veg (ln(veg)) and the quadratic polynomial of the logarithm 

value (ln(veg)2).  Model list 1 corresponds to all 63 proposed models. Model list 2 correspond 

to a subset of 37 models from list 1 which did not have “site” as a possible detection 

covariate; models from model list 2 are highlighted in grey.   

  

 

 

 

 

 

Name Hn Hz α λ 

Hn x  - - 

Hz   - - 

Unif   - - 

Hn_1 x  site - 

Hn_2 x  Veg - 

Hn_3 x  ln(veg) - 

Hn_4 x  ln(veg)2 - 

Hn_5 x  site + veg - 

Hn_6 x  site * veg - 

Hn_7 x  - site 

Hn_8 x  - veg 

Hn_9 x  - ln(veg) 

Hn_10 x  - ln(veg)2 

Hn_11 x  - site + veg 

Hn_12 x  - site + ln(veg) 

Hn_13 x  - ln(veg)2 

Hn_14 x  - site * veg 

Hn_15 x  - site * ln(veg) 

Hn_16 x  - ln(veg)2 

Hn_17 x  site site 

Hn_18 x  site veg 

Hn_19 x  site ln(veg) 

Hn_20 x  site site * veg 

Hn_21 x  site site + veg 

Hn_22 x  site + veg veg 

Hn_23 x  site + veg site 

Hn_24 x  site * veg veg 

Hn_25 x  site + veg site + veg 

Hn_26 x  site * veg site + veg 

Hn_27 x  Veg veg 

Hn_28 x  Veg site 

Hn_29 x  Veg site + veg 

Hn_30 x  veg site * veg 

Name Hn Hz α λ 

Hz_31  x site - 

Hz_32  x veg - 

Hz_33  x ln(veg) - 

Hz_34  x ln(veg)2 - 

Hz_35  x site + veg - 

Hz_36  x site * veg - 

Hz_37  x - site 

Hz_38  x - veg 

Hz_39  x - ln(veg) 

Hz_40  x - ln(veg)2 

Hz_41  x - site + veg 

Hz_42  x - site + ln(veg) 

Hz_43  x - ln(veg)2 

Hz_44  x - site * veg 

Hz_45  x - site * ln(veg) 

Hz_46  x - ln(veg)2 

Hz_47  x site site 

Hz_48  x site veg 

Hz_49  x site ln(veg) 

Hz_50  x site site * veg 

Hz_51  x site site + veg 

Hz_52  x site + veg veg 

Hz_53  x site + veg site 

Hz_54  x site * veg veg 

Hz_55  x site + veg site + veg 

Hz_56  x site * veg site + veg 

Hz_57  x veg veg 

Hz_58  x veg site 

Hz_59  x veg site + veg 

Hz_60  x veg site * veg 
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Appendix IV 
 

Table IV. Results from the  Bayesian state-space model run in Winbugs for every state of the 

time-series of the four sub-populations. These models combined all TC available as well as 

DS estimates (see Table 1). At year t:     = abundance;      = growth rate.    = average growth 

rate and   
  = process variance over the time-series. The mean posterior value is given with its 

standard deviation = sd, 95% credible interval [2.5%:97.5%] and coefficient of variation = 

CV. The chain convergence = Rhat. 

 

  

 
Area Parameter   mean  sd 2.5 % 97.5 % Rhat CV 

Brøgger     1988 195.89 13.89 169.40 224.00 1.001 0.07 

    1989 239.07 15.21 210.20 269.70 1.001 0.06 

    1990 247.28 101.95 109.20 487.60 1.002 0.41 

    1991 254.58 134.98 91.09 579.20 1.003 0.53 

    1992 261.74 143.62 83.07 633.10 1.004 0.55 

    1993 244.88 120.84 90.10 555.80 1.005 0.49 

    1994 220.54 81.74 99.81 421.30 1.006 0.37 

    1995 205.18 14.28 178.00 234.10 1.001 0.07 

    1996 215.10 77.32 101.10 405.50 1.007 0.36 

    1997 220.48 94.12 93.02 451.80 1.003 0.43 

    1998 216.62 82.36 96.91 420.10 1.001 0.38 

    1999 204.49 14.00 177.90 232.80 1.001 0.07 

    2000 215.39 14.24 188.50 244.30 1.001 0.07 

    2001 164.63 12.40 141.30 189.80 1.001 0.08 

    2002 64.28 8.53 48.63 82.06 1.002 0.13 

    2003 118.80 10.50 99.21 140.20 1.001 0.09 

    2004 99.97 9.32 82.50 118.90 1.001 0.09 

    2005 120.74 10.47 101.30 142.30 1.001 0.09 

    2006 96.33 9.18 79.13 115.20 1.001 0.10 

    2007 92.24 8.91 75.57 110.60 1.001 0.10 

    2008 78.71 8.11 63.62 95.36 1.001 0.10 

    2009 73.51 7.82 58.96 89.65 1.001 0.11 

    2010 73.53 7.88 58.87 89.83 1.001 0.11 

    2011 89.61 8.79 73.32 107.70 1.001 0.10 

    2012 91.14 8.89 74.52 109.30 1.001 0.10 

    2013 121.27 7.70 106.70 136.90 1.001 0.06 
    1989 0.20 0.09 0.02 0.38 1.001 - 
    1990 -0.04 0.37 -0.78 0.71 1.002 - 
    1991 -0.01 0.36 -0.72 0.69 1.005 - 
    1992 0.01 0.38 -0.73 0.79 1.009 - 
    1993 -0.04 0.37 -0.83 0.68 1.002 - 
    1994 -0.06 0.37 -0.86 0.64 1.001 - 
    1995 -0.01 0.36 -0.71 0.71 1.006 - 
    1996 -0.01 0.34 -0.70 0.68 1.007 - 
    1997 0.00 0.34 -0.69 0.69 1.003 - 
    1998 0.00 0.35 -0.68 0.68 1.005 - 
    1999 0.01 0.36 -0.71 0.74 1.001 - 
    2000 0.05 0.09 -0.13 0.24 1.001 - 
    2001 -0.27 0.10 -0.46 -0.08 1.001 - 
    2002 -0.95 0.15 -1.26 -0.65 1.002 - 
    2003 0.62 0.16 0.31 0.94 1.002 - 
    2004 -0.17 0.13 -0.43 0.07 1.001 - 
    2005 0.19 0.12 -0.05 0.44 1.001 - 
    2006 -0.23 0.13 -0.47 0.02 1.001 - 
    2007 -0.04 0.13 -0.30 0.21 1.001 - 
    2008 -0.16 0.14 -0.43 0.11 1.001 - 
    2009 -0.07 0.14 -0.35 0.21 1.001 - 
    2010 0.00 0.14 -0.29 0.28 1.001 - 
    2011 0.20 0.14 -0.08 0.48 1.001 - 
    2012 0.02 0.13 -0.25 0.28 1.001 - 
    2013 0.29 0.11 0.07 0.52 1.001 - 
   - -0.02 0.08 -0.18 0.14 1.001 - 
  

  - 0.15 0.08 0.05 0.37 1.002 0.55 
deviance - 147.65 6.55 137.00 162.40 1.001 0.04 
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Area Parameter   mean sd 2.5 % 97.5 % Rhat CV 

Sarsøyra     
    

2000 

2001 

154.25 

166.46 

11.98 

11.98 

132.00 

144.00 

178.50 

190.80 
1.001 
1.001 

0.078 

0.07 

    2002 117.30 10.67 97.45 139.10 1.002 0.09 

    2003 159.29 11.90 137.00 183.60 1.002 0.07 

    2004 152.67 11.46 130.60 175.70 1.001 0.08 

    2005 199.50 13.56 174.10 227.30 1.001 0.07 

    2006 162.20 11.61 140.00 185.70 1.001 0.07 

    2007 161.99 11.75 139.60 185.70 1.002 0.07 

    2008 169.48 12.02 146.90 194.00 1.001 0.07 

    2009 153.37 6.04 141.80 165.50 1.001 0.04 

    2010 127.33 10.56 107.10 148.60 1.002 0.08 

    2011 151.45 30.49 98.28 219.00 1.013 0.20 

    2012 175.46 12.41 151.90 200.50 1.001 0.07 

    2013 222.61 7.20 208.70 236.90 1.001 0.03 
    2001 0.08 0.10 -0.11 0.27 1.001 - 
    2002 -0.35 0.12 -0.58 -0.13 1.002 - 
    2003 0.31 0.12 0.09 0.54 1.003 - 
    2004 -0.04 0.10 -0.25 0.15 1.002 - 
    2005 0.27 0.10 0.08 0.47 1.002 - 
    2006 -0.21 0.10 -0.40 -0.02 1.001 - 
    2007 0.00 0.10 -0.19 0.20 1.001 - 
    2008 0.05 0.10 -0.14 0.24 1.002 - 
    2009 -0.10 0.08 -0.26 0.06 1.001 - 
    2010 -0.19 0.09 -0.37 -0.02 1.001 - 
    2011 0.16 0.20 -0.23 0.57 1.011 - 
    2012 0.16 0.20 -0.23 0.57 1.014 - 
    2013 0.24 0.08 0.09 0.39 1.001 - 
   - 0.03 0.08 -0.13 0.18 1.001 2.71 
  

  - 0.08 0.05 0.02 0.21 1.001 0.69 
deviance - 159.86 5.49 151.20 172.40 1.001 0.03 

 

 
Area Parameter   mean sd 2.5 % 97.5 % Rhat CV 

Kaffiøyra     

    

2002 

2003 

95.26 

124.29 

9.35 

9.97 

77.78 

105.6 

114.50 

144.70 

1.001 

1.001 

0.10 

0.08 

    2004 157.14 11.63 135.60 181.20 1.001 0.07 

    2005 159.90 11.98 137.70 184.60 1.001 0.07 

    2006 118.54 10.25 99.05 139.20 1.001 0.09 

    2007 124.77 10.17 105.40 145.20 1.001 0.08 

    2008 162.81 12.07 140.40 187.70 1.001 0.07 

    2009 155.28 8.50 139.10 172.50 1.001 0.05 

    2010 121.50 10.55 101.50 142.90 1.001 0.09 

    2011 133.52 33.29 77.47 209.80 1.003 0.25 

    2012 144.31 35.41 85.42 226.40 1.003 0.25 

    2013 152.35 10.45 132.40 173.30 1.001 0.07 
    2003 0.27 0.12 0.04 0.50 1.001 - 
    2004 0.24 0.10 0.04 0.44 1.002 - 
    2005 0.02 0.10 -0.17 0.21 1.001 - 
    2006 -0.30 0.11 -0.53 -0.08 1.001 - 
    2007 0.05 0.11 -0.16 0.27 1.001 - 
    2008 0.27 0.11 0.06 0.48 1.001 - 
    2009 -0.05 0.09 -0.22 0.13 1.001 - 
    2010 -0.25 0.10 -0.45 -0.05 1.001 - 
    2011 0.07 0.24 -0.42 0.56 1.004 - 
    2012 0.08 0.24 -0.39 0.55 1.003 - 
    2013 0.08 0.24 -0.39 0.57 1.003 - 
   - 0.04 0.09 -0.14 0.23 1.001 - 
  

  - 0.09 0.07 0.02 0.28 1.001 0.84 
deviance - 93.89 4.59 87.04 104.70 1.002 0.05 
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Area Parameter   mean sd 2.5 % 97.5 % Rhat CV 

Adventdalen     1979 461.15 21.00 421.20 503.00 1.001 0.05 

    1980 647.27 25.50 598.40 698.30 1.002 0.04 

    1981 541.99 22.92 498.10 587.90 1.001 0.04 

    1982 663.25 25.28 615.30 713.90 1.002 0.04 

    1983 760.46 27.49 707.40 815.00 1.001 0.04 

    1984 418.85 20.29 379.70 459.30 1.001 0.05 

    1985 627.10 24.92 579.90 677.40 1.002 0.04 

    1986 457.83 21.24 417.10 500.60 1.002 0.05 

    1987 747.94 27.27 695.20 802.30 1.001 0.04 

    1988 611.14 24.52 564.60 660.70 1.002 0.04 

    1989 713.01 26.34 661.60 765.50 1.001 0.04 

    1990 711.62 26.36 661.10 764.50 1.001 0.04 

    1991 797.44 27.80 743.90 853.20 1.001 0.03 

    1992 790.29 28.01 736.10 845.80 1.001 0.04 

    1993 591.35 24.35 544.30 640.20 1.004 0.04 

    1994 805.45 28.00 751.40 861.70 1.002 0.03 

    1995 675.55 25.68 626.60 727.10 1.002 0.04 

    1996 560.17 22.91 516.00 606.30 1.002 0.04 

    1997 610.82 24.25 563.90 658.60 1.001 0.04 

    1998 650.66 25.43 602.30 702.00 1.001 0.04 

    1999 845.41 28.56 791.10 902.70 1.001 0.03 

    2000 713.61 26.23 662.30 765.30 1.001 0.04 

    2001 986.48 22.23 943.30 1031.00 1.001 0.02 

    2002 707.25 18.74 671.00 744.40 1.001 0.03 

    2003 952.97 21.77 910.40 996.00 1.001 0.02 

    2004 1097.38 23.35 1052.00 1144.00 1.001 0.02 

    2005 1070.25 23.00 1026.00 1116.00 1.001 0.02 

    2006 774.88 19.58 737.00 813.80 1.001 0.03 

    2007 1113.46 23.49 1068.00 1160.00 1.001 0.02 

    2008 740.38 26.81 688.80 793.90 1.001 0.04 

    2009 941.48 30.16 883.40 1002.00 1.001 0.03 

    2010 763.84 27.30 711.30 818.30 1.001 0.04 

    2011 991.04 31.15 931.00 1053.00 1.001 0.03 

    2012 931.94 30.11 873.80 991.90 1.001 0.03 

    2013 1211.04 34.61 1144.00 1280.00 1.001 0.03 
    1980 0.34 0.06 0.22 0.46 1.002 
    1981 -0.18 0.06 -0.29 -0.06 1.001 
    1982 0.20 0.06 0.09 0.31 1.001 - 
    1983 0.14 0.05 0.04 0.24 1.001 - 
    1984 -0.60 0.06 -0.72 -0.48 1.001 - 
    1985 0.40 0.06 0.28 0.53 1.002 - 
    1986 -0.32 0.06 -0.43 -0.20 1.003 - 
    1987 0.49 0.06 0.38 0.61 1.002 - 
    1988 -0.20 0.05 -0.31 -0.10 1.002 - 
    1989 0.15 0.05 0.05 0.26 1.002 - 
    1990 0.00 0.05 -0.10 0.10 1.001 - 
    1991 0.11 0.05 0.02 0.21 1.002 - 
    1992 -0.01 0.05 -0.11 0.09 1.001 - 
    1993 -0.29 0.05 -0.40 -0.18 1.003 - 
    1994 0.31 0.05 0.20 0.42 1.005 - 
    1995 -0.18 0.05 -0.28 -0.08 1.001 - 
    1996 -0.19 0.06 -0.30 -0.08 1.003 - 
    1997 0.09 0.06 -0.02 0.20 1.002 - 
    1998 0.06 0.06 -0.05 0.17 1.001 - 
    1999 0.26 0.05 0.16 0.36 1.001 - 
    2000 -0.17 0.05 -0.27 -0.08 1.001 - 
    2001 0.32 0.04 0.24 0.41 1.001 - 
    2002 -0.33 0.04 -0.40 -0.27 1.001 - 
    2003 0.30 0.04 0.23 0.37 1.001 - 
    2004 0.14 0.03 0.08 0.20 1.001 - 
    2005 -0.03 0.03 -0.08 0.03 1.001 - 
    2006 -0.32 0.03 -0.39 -0.26 1.001 - 
    2007 0.36 0.03 0.30 0.43 1.001 - 
    2008 -0.41 0.04 -0.49 -0.33 1.001 - 
    2009 0.24 0.05 0.15 0.34 1.001 - 
    2010 -0.21 0.05 -0.30 -0.12 1.001 - 
    2011 0.26 0.05 0.17 0.35 1.001 - 
    2012 -0.06 0.05 -0.15 0.03 1.001 - 
    2013 0.26 0.04 0.18 0.35 1.001 - 
    0.03 0.05 -0.07 0.13 1.001 - 
  

   0.08 0.02 0.05 0.14 1.001 0.29 
deviance  404.25 8.62 389.30 423.00 1.001 0.02 
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 Appendix V 
 

Prediction of the density/abundance according to the proportion of vegetation present 

Model Hn_8 issued from R package unmarked showed a strong correlation between density 

of reindeer and the proportion of vegetation present. Using the function predict (Fiske and 

Chandler 2011) it is possible to predict the density of reindeer with different magnitude of the 

covariate. Density was predicted for every decimal from 0 to 100% of vegetation cover in 

Figure V. In Table V, the same procedure was done to obtain density prediction for the total 

study area (0.66 and 0.50 vegetation proportion in Sarsøyra and Kaffiøyra respectively) and 

then was transformed to abundance of reindeer (see Methods).  These estimates were very 

close to the one obtained by TC. It supported my hypothesis that the slight difference (3.5%) 

in vegetation proportion inside versus outside the covered area could explain the small 

overestimation of DS estimates found in my study (Table 3).  Nonetheless, care should be 

taken when comparing these results because no bootstrap where conducted for the predictions 

of this appendix.   

 

Table V: (1) DS abundance predicted according to the vegetation proportion of the total study 

area (not bootstrapped). (2) Results reported from Table 3; DS estimates where density was 

assumed constant inside and outside the covered area. (3) Results reported from TC estimates 

(four repeats for Sarsøyra) available in Table 4 and appendix IV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V: Predicted density of reindeer as a function of vegetation proportion. 

Abundance  Sarsøyra Kaffiøyra 

(1) DS prediction 237 ± 26 150 ± 25 

(2) DS extrapolation 256 ± 27 174 ± 19 

(3) TC  221 ± 7 144 ± 13 
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Supplements 

R script available online for the following topics: 

1) Distance sampling analysis in R package unmarked  

2) Area calculation and extraction of vegetation covariate, spatial analysis 

3) Winbugs script run from R, integration of TC time-series, repeated TC and DS.  An 

example to measure Svalbard reindeer population size uncertainties on Sarsøyra.  

Address: 

 https://www.dropbox.com/sh/m62r702aikgn0kh/AAB5wowezNtWmNGaR4gO8ZQGa 

Articles referenced as “in press” can be requested at the following address:  

mathilde@npolar.no 

 

 

https://www.dropbox.com/sh/m62r702aikgn0kh/AAB5wowezNtWmNGaR4gO8ZQGa
mailto:mathilde@npolar.no

