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SUMMARY 

Empetrum nigrum dominates in alpine and northern part of Norway. It is an allelopathic 

species that can reduce both productivity and biodiversity in ecosystems. The study 

focuses on identifying and determining different cover of E. nigrum by means of remote 

sensing data within two regions of Northern Norway, Ifjord in Finnmark and Troms 

areas. Field data were collected within 50 study points and E. nigrum was cover 

recorded. Field data were compared with Landsat 7 ETM+ and Landsat 8 OLI satellite 

images. Remote sensing is a practical and cost-effective tool to classify land cover and 

study vegetation changes when large areas are measured. Landsat images were chosen 

due to good cover, spatial resolution, free availability and its long history, which allows 

going back in time.  

Besides, small field plots were measured in the Troms area with ASD FieldSpec 

spectroradiometer in order to extract a spectral signature of E. nigrum, in coexistence 

with other common species. Several supervised and unsupervised classification 

algorithms were performed on the satellite data using the ENVI image processing 

software. It resulted that neither the specific features (evergreen appearance with a 

dense cover of tiny leaves with glands producing the allelopathic compound Batatasin-

III, and its dominance over vast land areas) nor the ASD FieldSpec measurements of E. 

nigrum, were suitable for extracting a spectral signature of the species that made a good 

classification. However, the best result was obtained using a spectral unmixing 

classification applied to radiometric corrected images in both areas separately. A 

spectral library created by endmember determination from Landsat data was used for 

this classification. An evaluation (Pearson correlation), was made in both areas 

combined as well as in Ifjord study area and Tromsø study area separately. No-
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correlation between the ground truth data and the data extracted from the spectral 

unmixing analysis was observed when both areas where combined (r = 0.15). Whereas, 

a positive correlation appeared when analysing both areas separately (Tromsø, r = 0.55 

and Ifjord r = 0.57). Landsat has several issues concerning to endmember determination, 

spatial, temporal and spectral resolution, as well as data acquisition problem. However, 

some solutions are proposed. So, it is concluded that Landsat is a good option for E. 

nigrum retrieval. The opinion is that future studies need to include these improvements 

or solutions, in order to achieve an E. nigrum classification with a higher correlation 

coefficient from Landsat imagery. 

KEY WORDS: remote sensing, Landsat, Empetrum nigrum, Northern Norway, spectral 

unmixing classification, ASD FieldSpec, ENVI.  
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INTRODUCTION 

Assessing and monitoring the state of the earth surface is a key requirement for global 

change research. Global climate change has pronounced effects in ecosystems and arctic 

and alpine regions dominated by dwarf shrubs (Walker et al., 2005). These ecosystems 

have been more affected due to a faster warming effect than in other areas (Wookey et 

al., 2009). Elmendorf et al., 2012 studied that global warming has positive effects on 

canopy height and abundance of shrubs in arctic and alpine tundra ecosystems 

(Elmendorf et al., 2012). Additionally, allelopathic species can affect whole ecosystems 

in ways that reduce both ecosystems productivity (Bråthen et al., 2010) and biodiversity 

(Pellissier et al., 2010). This increment of shrub abundance due to global warming, as 

well as E. nigrum being an allelophatic species, makes this plant an important species in 

arctic and alpine areas. Besides, it is both very dominant (Keech et al., 2005) in heath 

vegetation  and very common in tundra in general (Tybirk et al., 2000, Bråthen et al., 

2010). According to Xie et al. 2008 about the importance of vegetation mapping, E. 

nigrum mapping could be an essential tool for assessing natural and land-use changes in 

arctic and alpine environments through quantifying vegetation cover from local to 

broader scales, i.e. alpine tundra, at a given time point to over continuous period.  

E. nigrum has a circumboreal distribution in acidic and nutrient poor soils (Tybirk et al., 

2000, Keech et al., 2005, Nilsson et al., 1998). It dominates in alpine and northern part 

of Norway (Pellissier et al., 2010, Nilsson et al., 1998) and its dominance is related to 

clonal and dense pattern of growth (Pellissier et al., 2010, Tybirk et al., 2000), phenolic 

production to sequester nutrients and Batatasin-III (allelophatic compound) production 

(Bråthen et al., 2010, Nilsson et al., 1998, Keech et al., 2005, Gallet et al., 1999, 

Wallstedt et al., 2005, Mallik, 2008, Wallstedt et al., 2000, Wallstedt et al., 1997, 
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Nilsson et al., 2000). Thus E. nigrum inhibits productivity of these environments 

(Bråthen et al., 2010). 

Remote sensing offers a practical and cost-effective means to classify land cover or 

study vegetation changes, especially when large areas are measured (Xie et al., 2008, 

Reinke and Jones, 2006).  It involves the measurement of the electromagnetic radiation 

(reflected sunlight) from features on the Earth‟s surface (Smith, 2006, Aplin, 2004, 

Goodchild, 1994), providing a basic representation of land cover variation on the 

surface. The satellite sensor captures data about an object‟s spectral signature (Smith, 

2006, Xie et al., 2008) and it can be identified from the imagery according to its unique 

spectral features. Vegetation has specific reflectance curves (Smith, 2006) dictated by 

various plant attributes (Figure 1 (Smith, 2006)). It is possible to distinguish vegetation 

classes at various levels in the hierarchy interpreting specific features of the vegetation 

species such as image colour, texture, tone, pattern, etc. (Xie et al., 2008)  rather than 

taxonomic or floristic criteria (Franklin and Wulder, 2002). E. nigrum has several 

features that indicate it is likely to have a unique way of reflecting radiation 

wavelengths recorded by satellite sensor devices, i.e. unique spectral signature. The first 

feature of E. nigrum is somewhat special because of glands developing on its leaves in 

which a compound called Batatasin-III is produced (Nilsson et al., 1998, Gallet et al., 

1999, Wallstedt et al., 2005). The second one,  E. nigrum is an evergreen species with a 

dense cover of tiny leaves (Tybirk et al., 2000, Lid and Lid, 2007), which is not shared 

by many species. Finally, the third feature refers to its dominance over vast land areas 

(Pellissier et al., 2010, Nilsson et al., 1998). 
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Landsat might have the longest history and widest use in monitoring and land cover 

mapping of the Earth from the space since the first Landsat satellite was launched in 

1972. A series of more sophisticated multispectral imaging sensors, named TM 

(Thematic Mapper), have been added, ranging from Landsat 4 to 7 (Enhanced Thematic 

Mapper Plus, ETM+) and being Landsat 8 OLI , the last launched in 2013 (Xie et al., 

2008). Landsat provides medium to coarse spatial resolution images, i.e. 30 meters in 

multispectral bands (Aplin, 2005, Kerr and Ostrovsky, 2003, Xie et al., 2008). It is often 

used to map vegetation at community level and not at species level even though some 

dominant species can be possibly discriminated (Xie et al., 2008).  

Comparative analyses of old and new satellite images could potentially be a source of 

information about where and to what extent the cover of E. nigrum has actually 

changed. Therefore, it is needed to assess how well and at what accuracy E. nigrum can 

Figure 1. “Reflectance spectra of different types of green 

vegetation compared to a spectral curve for senescent (dry, 

yellowed) leaves. Different portions of the spectral curves for green 

vegetation are shaped by different plant components, as show at the 

top” (Smith, 2006). 
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be classified and cover estimated from remote sensing images. In the case of Landsat, 

its long history can be used for performing time-serial analyses. Hence, it was chosen 

for carrying out this study.  

Image classification is the process of extracting differentiated endmembers or spectral 

classes (Xie et al., 2008) (e.g. vegetation species such as E. nigrum or a forest of Betula 

pubescens). Many classification algorithms are available such as supervised 

classification (Spectral Unmixing and Maximum Likelihood) and unsupervised 

classification (K-Means and Isodata), neural net classification and spectral angle 

mapper (Keshava and Mustard, 2002, Van Der Meer and De Jong, 1999, Smith, 2006). 

However, there is no ideal vegetation classification approach and there are no pixels 

assigned to a single endmember but a proportion of multiple endmembers or classes 

(Franklin and Wulder, 2002, Aplin, 2004, Van Der Meer and De Jong, 1999). These 

make both vegetation classification and extraction a hard and difficult task, reducing the 

accuracy of classification due to the spectral confusion they create. 

The study aim is to evaluate the possibility of mapping different cover degree of 

Empetrum nigrum by means of remote sensing data.  

Within two regions of Northern Norway, E. nigrum cover was recorded inside 50 study 

points. These points were applied as ground truth data and then compared to Landsat 

ETM+ 7 and Landsat OLI 8 images covering these two regions.  

The dominant role of E. nigrum in many northern and high latitude habitats, and its 

ability to prevent other plant species establishment, is partly attributed to leaf glands 

production of the allelophathic compound, Batatasin-III. Hyperspectral studies with 

ASD FieldSpec were applied to test whether Batatasin-III gives a spectral signature that 
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can be traced in plant leaves, and if successful, whether the coverage of E. nigrum can 

be observed based on the spectral library of Batatasin-III. Furthermore small scale 

ground truth data were compared to ASD FieldSpec hyperspectral data.  

In order to accomplish the study aim some questions have to be answered. Firstly, can a 

spectral signature of E. nigrum be extracted from the Landsat channel data as well as by 

ASD FieldSpec spectroradiometer measurements in the laboratory, which could support 

and improve the E. nigrum cover classification? 

Secondly, can an accurate spectral library be created with different predefined classes 

(endmembers) and thus help to achieve a good classification result? 

The main questions are: a) is Landsat remote sensing data suitable for mapping E. 

nigrum cover classes? and b) what is the best classification method for mapping 

different cover of E. nigrum?  In order to answer the two main questions correlations 

between field measurements of E. nigrum and the different Landsat classification results 

were performed.   
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MATERIAL AND METHODS 

Following Hall (1991), the method consisted of five steps (Hall et al., 1991) (1) 

obtaining remote sensing images of a scene, (2) using field observations to determine 

the coverage of ground plots, (3) determining the geographic coordinates in the image 

pixels and locating the pixels corresponding to the ground plots, (4) atmospherically 

adjustment of images, (5) computing the spectral characteristics. For a better 

understanding a flow diagram was created (Figure 2).  

Figure 2. Flow Diagram of every method followed in the study. Scenes from Ifjord 

and Tromsø from U.S. Geological Survey (USGS). In bold, main steps carried out in 

the study. Lighter squares, Landsat scenes of each area. Circle, steps and corrections 

of the images.  Squares, method performed in each step and in each area, 

representing as two columns. Left (in blue): classification methods performed in 

Ifjord scene. Right (in green): classification methods performed in Tromsø scene. 

Number in each methods refers to each section in Ifjord area analyses (Process and 

Results). 
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ASD FieldSpec Analyses 

Batatasin-III calibration with ASD FieldSpec 

In previous spectral analyses, ASD FieldSpec spectroradiomenter was used for 

measuring the spectrum of Batatasin-III in pure form. On top of a green leaf three 

depressions of absorption are shown (Figure 3), 1675 nm, 2150 nm and 2270 nm of 

Batatasin-III (test kindly conducted by Zbynek Malenovsky, University of Zurich). In 

addition, Batatasin-III of E. nigrum leaves were calibrated with spectroradiometer (ASD 

FieldSpec) using a chromatography (HPLC) technique. Pearson correlation was made in 

order to analyse if Batatasin-III content E. nigrum leaves extracted from HPLC 

technique were correlated with the predicted values of Batatasin-III determined by ASD 

FieldSpec means (APPENDIX I). 

 

Figure 3. Batatasin-III (blue), Ficus spp. (red) and Ficus spp. +  Batatasin-III (green) 

spectra (Malenovsky, 2012). 
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Batatasin-III validation with ASD FieldSpec 

ASD Fieldspec spectroradiometer was used to retrieve measurements from small 

circular field plots (approximately 0.05 m
2
) in the beginning of July 2013. The 

measurements were carried out in three different areas of Troms County, Tromsøya, 

Rebbenesøya and Lyfjorden (Figure 4), in order to extract a specific signature of E. 

nigrum in field in coexistence with other common species of the habitat. Therefore, a 

spectral library is created for the later spectral analysis. In total 58 spectra were 

retrieved from plots with varying E. nigrum cover. Within each plot, 3 separate ASD 

Fieldspec spectra were taken at different locations in the plot and then, averaged. Within 

each plot E. nigrum was registered in coexistence with other common species, such as 

Vaccinum myrtillus, Vaccinum uligonosum, Vaccinum vitis-idea, Arctostaphyllus 

alpina, Rubus chamaemorus, Cornus suecica, as well as graminoids, lichens, and 

bryophytes. Moreover, some leaves of E. nigrum were collected and dried during 24 

hours at 35˚C. Then, they were measured in the laboratory with ASD FieldSpec in order 

to get a pure spectral signature of E. nigrum for using afterwards as a part of a spectral 

library. 

Besides, validation of Batatasin-III content in leaves was made. The calibration 

performed with the HPLC technique was used in order to know whether Batatasin-III 

content was dependent on E. nigrum coverage or not. ASD FieldSpec delivered the 

validation for each spectrum and its predictable value for the Batatasin-III content 

(APPENDIX II). The average of Batatasin-III predicted value for each point was then 

correlated with the ASD FieldSpec field measurements of E. nigrum in Tromsøya, 

Rebbenesøya and Lyfjorden, in order to study a correlation between coverage of E. 

nigrum and levels of Batatasin-III. 
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Study Area 

Two sites located within the northern boreal region of Norway were selected for this 

study, i.e. Tromsø, Troms County (69º N, 18Eº) and Ifjord, Finmark (71º N, 27º E) 

(Figure 5). Finmark and Troms County in Norway form the northern boundary of the 

European continent, delineated by the Barents Sea in the north and by birch forests and 

continuous taiga in the south (Pellissier et al., 2010, Bråthen et al., 2007, Bråthen et al., 

2010). The fennoscandic mountain area is classified as erect low-shrub tundra, 

belonging to the sub-arctic mountain tundra. The landscape is heath dominated, with 

mainly E. nigrum (Bråthen et al., 2007, Pellissier et al., 2010, Keech et al., 2005, 

Figure 4. Map from Troms County pointing the 

areas of the ASD FieldSpec measurements. 

Tromsø, Rebbenesøya and Lyfjord. 



Page 15 of 59 
 
 

Shevtsova et al., 2005) by Betula nana, Vaccinum spp., graminoids such as Avenella 

flexuosa, Deschampsia spp., Carex spp., and dichotyleons (Cornus spp.). 

 

Collection of research material 

Remote sensing data 

Landsat 8 OLI and Landsat 7 ETM+ scenes were downloaded from U.S Geological 

survey (USGS) http://earthexplorer.usgs.gov/ (U.S Geological Survey, 2014, Hall et al., 

 

 N 

1 : 42000 

1 : 720000 

69˚ N 18˚E 

71˚N 27˚E 

A 

B 

Figure 5. General map from Norway pointing the study areas in Tromsø (A), green 

squares; and Ifjord (B), pink squares. 

http://earthexplorer.usgs.gov/
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1991).  Landsat 8 OLI scene both path:row are 194:10 from Ifjord area. The scene was 

acquired on the 17
th

 of August of 2013. Landsat 8 OLI has 8 multispectral bands, 2 

thermal bands and one panchromatic band. Landsat 7 ETM+  scene is 197:11 (path:row) 

from Tromsø area. It was acquired on the 9
th

 of September of 1999 and it has 6 

multispectral bands, 1 thermal band and 1 panchromatic band (Table 1). 

 

Table 1. Comparison of bands wavelengths between Landsat 7 ETM+ and Landsat 8 

OLI. 

LANDSAT 7 ETM+ LANDSAT 8 OLI 

BANDS WAVELENGTHS (nm) BANDS WAVELENGTHS (nm) 

Band 1 - Blue 450 - 520 Band 1 - Coastal Aerosol 430 - 450 

Band 2  - Green 520 - 600 Band 2 - Blue 450 - 510 

Band 3 - Red 630 - 690 Band 3 - Green 530 - 590 

Band 4 - Near Infrared 770 - 900 Band 4 - Red 640 - 670 

Band 5 - SWIR 1 1550 - 1750 Band 5 - Near Infrared 850 - 880 

Band 6 (Thermal) 10400 - 12500 Band 6 - SWIR 1 1570 - 1650 

Band 7 - SWIR 2 2090 - 2035 Band 7 - SWIR 2 2110 - 2290 

Band 8 (Panchromatic) 520 - 900 Band 8 - Panchromatic 500 - 1380 

    Band 9 - Cirrus 1360 - 1380 

    Band 10 - TIRS 1 10600 - 11190 

    Band 11 - TIRS 2 1150 - 12510 

 

Ground Truth Data 

According to the method suggested by Hall et al. (1991), 50 study points in total were 

chosen with a homogeneous groundcover of E. nigrum. Ground truth data were 

collected from dispersed locations between the coastal islands towards the continental 

areas of Skibotn in Troms county (Figure 5A), as well as on the Ifjord mountain areas in 

Finnmark county (Figure 5B).  Study points were selected to include areas with 

different degree of E. nigrum cover where the abundances of E. nigrum vary between 

10-100 per cent. Each point was registered by UTM coordinates in the centre (Hall et 



Page 17 of 59 
 
 

al., 1991) of a square representing the pixel size of the remote sensing data and aligning 

the square in the North-South direction. 

Considering the pixel resolution of Landsat data (30 x 30 m), the location of each point 

was selected, within a flat, larger homogeneous area in order to account for 

georeferencing errors in the satellite data. The size of each field sampling location was 

40 x 40 meter, slightly larger than the size of the Landsat image pixel (30 x 30 meter) 

(Kerr and Ostrovsky, 2003). For every meter, either the presence or the absence of E. 

nigrum was recorded. For every study point, a total of 280 recordings were made. 

Finally, the data recorded from the field were transferred and collected in an Excel file 

(APPENDIX III). 

Remote Sensing Analyses 

The reflected radiation from a pixel, as recorded in remote sensing imagery, has rarely 

interacted with a volume composed of a single homogeneous material, because natural 

surfaces composed of a single uniform material do not exist in nature. Usually, the 

electromagnetic radiation observed as pixel reflectance values results from the spectral 

mixture of a number of ground spectral classes present at the surface sensed.  (Van Der 

Meer and De Jong, 1999, Van Der Meer, 1995). This means that E. nigrum reflectance 

value does not appear as a single reflectance value in a pixel, but as mixture reflectance 

spectrum of several compounds that appear in that pixel, such as coexistence species. 

The software used for the study was ENVI (ENVI, 2004), an image processing system. 

The first step made in the scenes analyses was to extract a subset of the Landsat scene 

containing regions that includes the two different study areas (Figure 6 and 7). 

Moreover, both Coastal aerosol band and Cirrus band in Landsat 8 OLI were ignored 

due to the lack of relevant information for the project.  
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Every different preprocessing (raw image data, radiometric correction, masking) and all 

different classification approaches were tried in Ifjord area subset image at first, before 

determining which one would be the best method to use. The methods achieving the 

most accurate result were chosen to be applied in the Tromsø study area (spectral 

unmixing on the radiometric corrected area) (Figure 2). 

 

 

 

1: 42000 

Figure 6. A subset of the Landsat 8 OLI sensor covering the Ifjord study area (path 

194, row 10). 



Page 19 of 59 
 
 

 

 

The next phase was to find out which classification method would be the best for the 

study. Classification took place on three levels of preprocessed satellite data: raw image 

(no preprocessing), radiometric corrected image and radiometric corrected and masked 

image (Figure 2). 

First, in the raw Landsat 8 OLI image, the endmember determination and the different 

classification methods were tried. In the case of endmember determination, the set of 

1: 720000 

Figure 7. A subset of the Landsat ETM+ 7 sensor covering the Tromsø study area 

(path 197, row 11). 
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distinct spectra that constitute the mixed pixels in the scene was estimated (Keshava and 

Mustard, 2002). Selection of endmembers can be achieved in two ways (Van Der Meer 

and De Jong, 1999, Keshava and Mustard, 2002), (1) deriving endmembers from the 

purest pixels in the image, or (2) selecting endmembers from spectral (field or 

laboratory) library.  

 Then, a radiometric correction was performed in each image where the classifications 

algorithms were performed again. Radiometric correction of remote sensing data 

usually involves the process of correcting radiometric errors or distortions of digital 

images (Xie et al., 2008, Hall et al., 1991). An absolute reflectance of the scene objects 

was extracted, requiring an input of simultaneous atmospheric properties and sensor 

calibration found in Metadata file (Franklin and Wulder, 2002, Xie et al., 2008). 

 Finally, a mask was created in the radiometric corrected image. Masking is used to 

eliminate areas of no interest in an image. A mask is a binary image that consists of 

values of 0 and 1. When a mask is used in a processing function, the areas with values 

of 1 are processed and the masked 0 values are not included in the calculations [see 

more (ENVI, 2004)].  

Several analyses were done in order to extract and analyse the cover of E. nigrum (Hall 

et al., 1991). Traditional classification methods were used such as supervised (Spectral 

Unmixing and Maximum Likelihood classification) and unsupervised classification 

methods (Isodata and K-Means).  

Xie et al. (2008) defines supervised classification as “learning an established 

classification from a training set, which contains the predictor variables measured in 

each sampling unit and assigns prior classes to the sampling units”. 
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Spectral unmixing is a technique in which the measured spectrum of a mixed pixel is 

decomposed into a number of spectral components, or endmembers, and a set of 

corresponding fractions, or abundances, that indicate the proportion of each endmember 

present in the image pixel (Van Der Meer, 1995, Van Der Meer and De Jong, 1999, 

Keshava and Mustard, 2002). It assumes linearity, i.e. the individual component 

reflectance is multiplied by their relative proportional amounts (Equation 1). 

The result is an abundance image for each endmember in the mixing model giving the 

relative abundance of a component at every pixel (Van Der Meer, 1995, ENVI, 2004). 

The error image results from the difference between the observed pixel spectrum and 

the spectrum reconstructed from the calculated abundances. It displays how well the 

mixing library can be used to model each observed spectrum.  

𝑅𝑖 =   𝑓 𝑗 

𝑛

𝑗=1

𝑅𝑒 𝑖𝑗 +  ε j 

 

Ri = reflectance of the mixed spectrum of a pixel in image band i 

f j = fraction endmember j („abundance‟) 

Re ij = reflectance of the endmember spectrum j in band i 

ε j = the residual error (difference between the measured and 

modelled digital number (DN) in band i. 

n = number of endmembers 

Constraining assumptions: 

  𝑓 𝑗 𝑛
𝑗=1 = 1              0 < 0 < f j ≤ 1 

 

 

(Equation 1) 
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In the case of Maximum Likelihood, it assumes that the statistics for each band class are 

normally distributed and calculates probability that a given pixel belongs to a specific 

class (ENVI, 2004, Richards and Jia, 1999).  

On the other hand, unsupervised classification (K-Means and Isodata) relies on 

spectrally pixel-based statistics and incorporates no prior knowledge of the 

characteristics of the themes being studied. They calculate initial class means evenly 

distributed in the data space and then iteratively clusters the pixels into de nearest class 

using a minimum distance technique. Isodata unsupervised classification calculates 

class means evenly distributed in the data space, and then, iteratively clusters the 

remaining pixels using minimum distance techniques. Whereas, K-means unsupervised 

classification calculates initial class means evenly distributed in the data space and then 

iteratively clusters the pixels into the nearest class using a minimum distance techniques 

[see more (ENVI, 2004)]. 

However, it is hard to obtain precise classification results using them. The reasons are 

that the same vegetation type on ground may have different spectral features in remote 

sensed images and additionally, different vegetation types may possess similar spectra. 

Due to these reasons, improved classifiers were executed such as Neural Net 

classification and Spectral Angle Mapper. They are very useful in extracting vegetation-

type information in complex vegetation mapping problem (Xie et al., 2008).  

Neural Net Classification and Spectral Angle Mapper were performed. Neural Net 

classification can be computationally demanding when large datasets dealt to train the 

network and sometimes no result may be achieved at all even after a long-time 

computation due to local minimum [see more (Xie et al., 2008, ENVI, 2004, Richards 

and Jia, 1999, Rumelhart et al., 1988)].  Spectral Angle Mapper (Xie et al., 2008, ENVI, 
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2004) identifies the distance between pairs of signatures for classification.  It is a 

physically-based spectral classification that uses an n-dimensional angle, where n is the 

number of bands, to match pixels to reference spectra. It is run on reflectance data and it 

is independent of a multiplicative factor, since it only uses the direction of the vector 

(i.e. the angle), not the vector‟s length. A rule image is produced per endmember 

showing the spectral angle for each pixel spectrum per endmember. 

Statistical Analyses 

Descriptive statistics of field abundance estimation and E. nigrum abundance extraction 

from the spectral unmixing were performed (mean, variance, standard deviation and 

range). Pearson correlation test was used in both areas combined as well as in Ifjord and 

in Tromsø area separately. They were plotted where the predictor value was the field 

abundance estimation of E. nigrum. Additionally, residual errors were calculated and 

plotted. Each model was conducted in both areas together and in each area separately 

using R (R_Development_Core_Team, 2013).  

Some study points of the Tromsø study area were not used in the statistical analyses 

because they are either shaded or snowed areas (1209_02, 1209_03, 1209_12, 1209_13, 

1209_17) in the image as well as outliers (1209_05, 1306_31). 

Finally, logarithmic transformation was made in order to force both of the scales to 

become linear in the correlation plot between „Field Abundance estimation‟ of E. 

nigrum and E. nigrum „Abundance extraction‟ from the spectral unmixing. 
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PROCESS AND RESULTS  

ASD FieldSpec Analyses  

Regarding with the Batatasin-III calibration using ASD FieldSpec spectroradiomenter, 

the preliminary results in R showed an r of 0.81 with a p value < 0.01.Thus, ASD 

FieldSpec spectroradiometer can be used as an analytical quantitative tool for Batatasin-

III concentrations in E. nigrum leaves (Figure 8) (APPENDIX II).  It confirmed 

Batatasin-III could potentially be measured through remote sensing image data, i.e. 

Landsat satellite images. 

 

 

 

 

 

 

 

 

 

 

Regarding with the ASD FieldSpec measurements in the field and its predicted value of 

Batatasin III in their leaves, it is obtained r (Pearson correlation coefficient) of 0.15. The 

Figure 8. Batatasin-III calibration with ASD FieldSpec 

spectrometer. Predicted value of Batatasin-III (y axis) against 

measured values of Batatasin-III by HPLC technique (x axis). 
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result showed that the E. nigrum coverage in field is not dependent with the abundance 

of Batatasin-III (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

Ifjord Area Analyses 

For a better comprehension, this part will be divided in the different steps that were 

followed to find out which method was going to be used. 

Figure 9. Empetrum nigrum coverage in Tromsøya, Lyfjord and 

Rebbenesøya field plots (x axis). Batatasin-III predicted value from 

the validation made with ASD FieldSpec spectroradiometer (y 

axis). 
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1. Raw Image Data 

1.1. Supervised Classification 

1.1.1. Spectral Unmixing 

First, spectral unmixing is performed. In the raw Landsat image, an endmember 

determination was made.  

As the simplest spectral unmixing, three endmembers were taken, „Empetrum presence‟ 

„water‟ and „clouds‟ (Figure 2 and Table 2, Spectral Unmixing 1). In ENVI, it is 

necessary to create vector layers of each endmember. For „Empetrum presence‟, pixels 

with high E. nigrum coverage were selected. They were corresponded to those 

georeferenced pixels in which study points with higher E. nigrum coverage were placed, 

i.e. 1306_34: 97.50%; 1306_43: 97.50%; 1306_46: 98.33%. In the case of „water‟ and 

„clouds‟ vector layer, Spectral Profile tool was used in order to check each endmember 

spectral signature. Thus, it was possible to verify the selected pixels for the vector 

layers corresponding with the spectral signature of such targets as well as to distinguish 

them in the scene due to the known area. Then, each vector layer was converted into 

Region Of Interests (ROI) with Convert Vector to ROI ENVI tool and created a Spectral 

Library with the ROIs or endmembers required. Spectral Unmixing is performed. A unit 

sum constraint of 0.003 was set as theory says that this value needs to be approximately 

10 times larger than variances observed in certain channels (ENVI, 2004). The results of 

spectral unmixing appear as a series of grey-scale images, one for each endmember, i.e. 

„Empetrum presence‟ „water‟ and „clouds‟, plus a root-mean-square (RMS) error image. 

Higher abundances (and higher errors for the RMS error image) are represented by 

brighter pixels. The results are dependent on the input endmembers and will change if 

the endmembers are changed (ENVI, 2004). In RMS error image, the better spectral 
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unmixing, the lesser geometric pattern in the image. The final step was to extract the 

values of each study point in digital numbers from „Empetrum presence‟ image. In this 

part, ArcGIS (geographic information) system was used (Johnston et al., 2001). A 

simple correlation was made calculating its R
2
 between percentage of E. nigrum 

abundance extracted by the spectral unmixing (value 255 in digital numbers correspond 

to 100%) and the percentage of E. nigrum abundance in field (ground truth data). 

As it was written previously, the results are dependent on the endmembers. Therefore, 

more endmembers were added for improving the results, i.e. „Empetrum presence‟ 

„water‟, „clouds‟, „background‟ (bare soil and rock) and „roads‟ (Figure 2 and Table 2, 

Spectral Unmixing 2). Every endmember was selected as before including the new 

endmembers, „background‟ and „roads‟, which were selected as „water‟ and „clouds‟ 

endmembers. The following steps were done in the same way as in the first spectral 

unmixing made. 

1.1.2. Maximum Likelihood Classification 

Before executing any Maximum Likelihood classification, it is necessary to collect 

endmembers. Endmembers of „water‟, „road‟, „clouds‟, „background‟ and „vegetation‟ 

were compiled as in Spectral Unmixing 2, and used (Figure 2 and Table 2, Maximum 

Likelihood 1). The probability threshold was set as 0.25, this means pixels with 

probabilities lower than 0.25 will not be classified (ENVI, 2004). Next step was to use 

Classification to vector tool in ENVI for creating a new vegetation vector layer and use 

it as ROI. Then, a class image from vegetation ROI is created. It is possible to use that 

vegetation class image and make the spectral unmixing using two endmembers, 

„Empetrum presence‟ and „Empetrum absence‟. For „Empetrum presence‟, pixels were 

selected as in the first spectral unmixing. However, for „Empetrum absence‟, pixels with 
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high grasses abundance were selected. It was a trivial case because the pixels were 

selected regarding the knowledge of the study area and using Spectral Profile tool. 

Then, they were compared with a normal vegetation spectrum (Figure 1).  

1.2. Unsupervised Classification 

For unsupervised classification, Isodata and K-means algorithms were used. Once the 

unsupervised classifications were done, which of the classes belongs to the vegetation 

class was decided. Afterwards, as in Maximum Likelihood Classification, „water‟, 

„roads‟ and „background‟ endmembers were collected. However, the vegetation class 

obtained in the unsupervised classification was taken as „vegetation‟ endmember. 

Finally, new spectral unmixing was performed (Figure 2 and Table 2, Isodata 1 and K-

Means) 

2. Radiometric Correction 

Radiometric correction was performed in order to correct radiometric errors in the 

images.  

2.1. Supervised Classification 

2.1.1. Spectral Unmixing 

Endmembers from spectral (field or laboratory) library were selected (Van Der Meer 

and De Jong, 1999, Keshava and Mustard, 2002). For this, spectra from ASD FieldSpec 

were used. The goal was to create new spectral libraries, one spectral library with ASD 

Fieldspec data from field measurements and add endmembers such as „clouds‟, „roads‟ 

and „water‟ to each one (Figure 2 and Table 2,  ASD Data 1). It was necessary to 

convolve ASD Fieldspec data into Landsat data. Spectral Library Resampling tool can 

convert ASD Fieldspec data into a Landsat format with the option Predefine filter 
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function. In addition, a radiometric correction was necessary to convert Landsat dataset 

into reflectance values as ASD FieldSpec dataset.  

ENVI software is also used in this step. Apply Gain and Offset tool is performed to 

apply a simple gain and offset correction to a set of bands. ENVI multiplies the selected 

bands by an input gain value and adds a predefined offset value (ENVI, 2004). 

Moreover, Dark Substraction (Franklin and Wulder, 2002, ENVI, 2004) is made to 

apply atmospheric scattering correction to the image and reduce atmospheric effects in 

the scene. The result is an image in scaled reflectance values. Once that radiometric 

correction is done, the spectral library can be created for running another spectral 

unmixing.  

Having improved the image with a radiometric correction, new classifications and 

spectral unmixings were done. First, three different spectral unmixings taken as 

endmembers, (1) „background‟, „Empetrum absence‟ (grasses) and „Empetrum 

presence‟ (Figure 2 and Table 2, Spectral Unmixing 3; Figure 10); (2) „background‟, 

„roads‟, „clouds‟, „water‟, „Empetrum absence‟ and „Empetrum presence‟ (Figure 2 and 

Table 2, Spectral Unmixing 4); (3) „background‟, „roads‟, „clouds‟, „water‟, „Empetrum 

absence‟, „Empetrum_70-75%‟, „Empetrum_75-80%‟, „Empetrum_80-86%‟, 

„Empetrum_89-91%‟, „Empetrum_91-95%‟ and „Empetrum_95-100%‟ (Figure 2 and 

Table 2, Spectral Unmixing 5). Here, a complete endmember determination was tried to 

get the better result in the E. nigrum cover extraction. Second, spectra from the ASD 

Fieldspec spectral library were selected, one with 100% of E. nigrum, Reb01, and 

another with the lowest percentage of E. nigrum in field, Tro54 (Figure 2 and Table 2, 

ASD Data 2). 
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2.1.2. Maximum Likelihood Classification 

In the case of the Maximum Likelihood classification (Figure 2 and Table 2, Maximum 

Likelihood 2), with new endmembers determination, i.e. „background‟, „roads‟, 

„clouds‟, „water‟, „Empetrum absence‟ and „Empetrum presence‟ the algorithm was run 

after the radiometric correction. However, in the case of „Empetrum presence‟ 

endmember, the program requires a minimum number of pixels selected for creating a 

new endmember. Therefore, not only the pixels representing the study point with the 

higher abundances were taken (1306_34: 97.50%; 1306_43: 97.50%; 1306_46: 98.33) 

but some pixels surrounding the study point pixel. These pixels coincide with the pixels 

taken in the raw image. 

2.2.  Unsupervised Classification 

Unsupervised classifications (Figure 2 and Table 2, Isodata 2 and K-Means 2), were 

performed again with the radiometric corrected image.  

2.3. Neural Net Classification 

For the Neural Net classification (Figure 2 and Table 2, Neural Net), six vector layers 

were created, i.e. „background‟, „roads‟, „clouds‟, „water‟, „Empetrum absence‟ and 

„Empetrum presence‟. Then ROIs were made from the vector layers for a new spectral 

library. Neural Net Classification was performed in ENVI and Default settings were 

used. The result in Neural Net classification is a rule image from each endmember and a 

RMS error image. 

2.4. Spectral Angle Mapper 

A spectral library with Batatasin-III absorbance data from Zbynek was created. 

Endmembers were „Batatasin-III‟, „Ficus leaf‟ and „Batatasin-III+Ficus leaf‟. Spectral 

Angle Mapper classifier (Figure 2 and Table 2, Spectral Angle Mapper) was performed 
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using the new spectral library. The purpose of executing this method was to determine 

whether Batatasin-III was observable as E. nigrum feature by remote sensing or not. 

However, it resulted in a complete black image from the Batatasin-III endmember 

indicating that Batatasin-III cannot be extracted from the image. 

3. Masking 

Masking was tried as a final step for improving the results in the spectral unmixing. 

From Isodata unsupervised classification, classes that are not vegetation were 

reclassified to 0 such as water, roads and clouds and vegetation to 1. 

3.1. Supervised Classification 

3.1.1. Spectral Unmixing 

With a radiometric corrected and masked image, new spectral unmixings were tried. (1) 

Spectral unmixing where the endmembers selected were „background‟, „Empetrum 

presence‟, „Empetrum absence‟ (Figure 2 and Table 2, Spectra Unmixing 6); another (2) 

spectral unmixing in which the spectra from the ASD Fieldspec spectral library were 

selected with the highest and the lowest E. nigrum cover in field (Figure 2 and Table 2, 

ASD Data 3). 

3.1.2. Maximum Likelihood Classification 

„Empetrum presence‟, „Empetrum absence‟ (grasses) and „background‟ were selected as 

endmembers for the Maximum Likelihood classification (Figure 2 and Table 2, 

Maximum Likelihood 3). 

3.2. Unsupervised Classification 

Unsupervised (Figure 2 and Table 2, Isodata 3 and K-Means 3) classifications were 

performed after making a radiometric correction and masking in the image. 
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Once the different methods were performed, R
2
 calculated in Excel in each different 

classification method (Table 2) were compared in order to identify which steps were 

needed to get a better result. The same steps were made in the Tromsø scene.  

Table 2. Steps followed with the different remote sensing classification methods and its 

R
2
. 

Steps Classification method R² 

Raw Image Data 

Spectral Unmixing 1 0,00 

Spectral Unmixing 2 0,00 

Maximum Likelihood 1 0,01 

Isodata 1 0,04 

K-Means 1 0,04 

Radiometric Corrected Data 

ASD Data 1 0,04 

Spectral Unmixing 3 0,05 

Spectral Unmixing 4 0,32 

Spectral Unmixing 5 0,00 

ASD Data 2 0,04 

Maximum Likelihood 2 0,01 

Isodata 2 - 

K-Means 2 - 

Neural Net 0,12 

Spectral Angle Mapper - 

Masked Data 

Spectral Unmixing 6 0,04 

ASD Data 3 0,03 

Maximum Likelihood 3 - 

Isodata 3 - 

K-Means 3 - 
 

Tromsø Area Analyses 

The first step was to perform a radiometric correction as in the Ifjord scene. The best 

result obtained in Ifjord image occurred when carrying out a spectral unmixing (Spectral 

Unmixing 4, see Table 2) determining „background‟, „roads‟, „clouds‟, „water‟, 

„Empetrum absence‟ and „Empetrum presence‟ as endmembers (Figure 10). In Tromsø 

image, the endmembers determination was more difficult than in the Ifjord area. One of 

the reasons was that the subset region was larger than in Ifjord region. To ease the task, 
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the image was virtually divided in smaller areas surrounding the study points and the 

endmembers determination was made depending on these virtual areas, i.e. 

Kvaløya_Sommarøy, Kavaløya_Tromsø_Håkøya, Kvaløvågen_Risvik_Lyfjord, 

Rebennes_Skogfjord_Hansnes, Road91_Svensy, Skibotn_Kilpis (Figure 11). 

  

 

 

 

 

 

Figure 10. Endmembers collection from Ifjord Area used in Spectral Unmixing 4. X 

axis is the wavelength in micrometer and Y axis is the reflectance values in percentage. 
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Endmembers were selected in the same way as in the Ifjord image. The result was a 

spectral library with several endmembers of the same classes, i.e. several endmembers 

covering water class. Hence, endmembers selected in Tromsø were „water and 

shadows‟, „forest‟, „clouds‟, background‟, „snow and clouds‟, „grasses and forest‟, 

„clouds and snow‟, „grasses‟, „clouds and urban‟ and „Empetrum presence‟ (Figure 12). 

For „Empetrum presence‟ endmember, pixels with high E. nigrum abundance were 

1: 720000 

Figure 11. Troms area and endmembers selection areas. Kvaløya_Sommarøy (red); 

Kavaløya_Tromsø_Håkøya (orange); Kvaløvågen_Risvik_Lyfjord (yellow); 

Rebennes_Skogfjord_Hansnes (green); Road91_Svensy (purple); Skibotn_Kilpis (blue). 
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selected as in Ifjord area. Those pixels were corresponding to some study points with 

the higher E. nigrum abundance determined by the ground truth data. Due to the large 

subset region taken in Tromsø scene, more ground study points were selected than in 

Ifjord (1209_01, 1209_03, 1209_04, 1209_05, 1209_06, 1209_07, 1209_08, 1209_09, 

1209_10, 1209_11, 1209_14, 1209_15, 1209_16, 1209_18, 1209_19, 1209_20, 

1209_21 and 1209_22). Seven study points were not taken into account because there 

was either a cloud or a shade area where the study point was placed. Finally, the same 

steps as in Ifjord area were done, setting the unit sum constraint as 3800 because, as it 

was explained in Ifjord Analyses section, the theory says that this value needs to be 

approximately 10 time larger than the variances observed in certain channels (spectral 

bands) (ENVI, 2004). 
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Images Results 

Figure 13 and 14 show „Empetrum presence‟ endmember image resulted from the 

spectral unmixing in both Ifjord and Tromsø area respectively. The lighter pixels 

represent the highest abundances of the endmember, whereas the darker pixels show the 

lowest abundances of the endmember (Van Der Meer, 1995), in this case E. nigrum. 

The values extracted from the image using ArcGIS in each image are shown in 

APPENDIX IV as well as the descriptive analysis for the Total area, Ifjord area and 

Tromsø area. 

Pearson rank correlation coefficient test (r) between the field abundance estimation and 

the E. nigrum abundance extraction from the spectral unmixing of both study areas 

Figure 12. Spectral signature of endmember classes collection from Tromsø area. X 

axis is the wavelength in micrometer and Y axis is the reflectance values in percentage. 
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combined results in a r of 0.15 and a p-value 0.35, being no significant (p>0.05) (Figure 

15A). Analysing the two study areas separately, the Tromsø area achieved an r of 0.55 

and a p-value 0.01 and in Ifjord area, the r is equal to 0.57 and its p-value ≤ 0.01 (Figure 

15B and 15C). In Ifjord area and Tromsø area both p-values are less than 0.05 and a 

positive linear trend in observed in each plot. 

 

 

 

 

 

 

 

 

1: 42000 

Figure 13. 'Empetrum presence' endmember image resulted from the spectral unmixing 

classification in the Ifjord study area. High: 255 is a 100% cover of Empetrum nigrum 

and Low: 0 is a 0% cover of Empetrum nigrum. 
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1: 720000 

Figure 14. 'Empetrum presence' endmember image resulted from the spectral 

unmixing classification in  the Tromsø study area. . High: 255 is a 100% 

cover of Empetrum nigrum and Low: 0 is a 0% cover of Empetrum nigrum. 
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The residual error plots are shown in Figure 16A, B and C. Values are shown in 

APPENDIX V. Regarding the three plots, it can be observed that there is no pattern in 

none of the areas separately and in Total area. 

 

 

A 

C 

B 

Figure 15. Correlation between field abundance estimation of Empetrum nigrum and 

spectral unmixing extraction of 'Empetrum presence' endmember (Logarithmic 

transformation) and trend line. A) Both study areas (Ifjord and Tromsø) combined. 

B) Ifjord study area. C) Tromsø study area 
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A 

C 

B 

Figure 16. Residual error plot. X axis: field abundance estimation of E. nigrum in 

percentage. Y axis: residual error. A) Both study areas combined. B) Ifjord study area. C) 

Tromsø study area. 
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DISCUSSION 

The aim of this study was to determinate how well different covers of Empetrum 

nigrum can be classified by means of remote sensing data. Thus, an E. nigrum spectral 

signature was required to create an accurate spectral library with not only E. nigrum 

classes but other predefined classes, or endmembers, found in the images. These 

endmembers were retrieved from the Landsat images. Moreover, a spectral library was 

created with ASD FieldSpec in the field. E. nigrum in coexistence with other common 

species was measured in order to create this spectral library.  

Different supervised and unsupervised classification techniques were used for this aim. 

The best result was achieved when performing a spectral unmixing classification. The 

most accurate endmember determination was achieved in the spectral library when 

analysing the Ifjord and Tromsø areas separately. The correlation tests in both areas 

independently, determined not a perfect spectral unmixing of the endmembers, but good 

enough, r value of 0.57 in Ifjord and a r value of 0.55 in Tromsø, whereas in both areas 

combined, the r value was 0.15; knowing that several improvements, explained later in 

this section, could be done, i.e. imagery used, ancillary data, etc..  

In the following a discussion on what might explain these low correlation coefficients is 

provided and a final section where some solutions are proposed for improving the 

spectral unmixing approach. 

1. Endmember determination problem 

The result of the spectral unmixing classification is highly dependent on the endmember 

determination (ENVI, 2004). As it is presented in results, Ifjord study area is smaller 

than Tromsø study area. Hence, endmembers that can be taken into account in Ifjord 
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area are fewer than those in Tromsø area, making it easier to include all of them in the 

spectral library. So, as it is shown previously, the spectral library in Tromsø has more 

endmembers than the spectral library in Ifjord.  

Although Tromsø area has a higher number of endmembers in its spectral library, Ifjord 

classification is slightly more accurate with a higher correlation coefficient. One of the 

causes is related to the study area size in Tromsø, where there exists a challenge in 

covering all endmembers (classes). A lot of shaded areas and mixed targets on the 

image appear, i.e. clouds with urban areas, snow and clouds, shadows and snow, etc. as 

well as different types of rocks and vegetation that give different spectral signatures. 

This makes it more difficult to create a perfect spectral library with pure endmembers.  

2. Spatial resolution problem 

In the case of spatial scale or resolution, the question would be “could Landsat spatial 

resolution capture the cover variability of E. nigrum in field?” Cover variability of E. 

nigrum does not appear at 30 meters scale as the spatial resolution of Landsat. Although 

E. nigrum appears as homogeneous vegetation at this scale, being very dominant in 

arctic tundra (Tybirk et al., 2000, Bråthen et al., 2010), it appears in intimate 

coexistence with other vegetation such as Betula nana, Vaccinum spp., graminoids and 

dichotyledons. This creates difficulties in distinguishing E. nigrum in the spectral 

unmixing classification. Theoretically, the spatial resolution of the image must be 

higher, hence the pixel size should be smaller than the size of the feature being 

classified to fully cover the classified objects (Domaç and Süzen, 2006), in this case, E. 

nigrum. Thus naturally mixed pixels as our study points, would always create problems 

and they will reduce to some extent the accuracy of classifications due to the spectral 

confusion they create (Domaç and Süzen, 2006). In case of the species studied, the 
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typical length-scale or gradient would be much more smaller (centimetres), since it co-

habits with several shrub species (Tybirk et al., 2000), creating  the difficulty to extract 

E. nigrum class or endmember by itself. 

3. Temporal resolution problem 

Regarding with temporal scales or resolution, the principal concern is the spectral 

variability of species features as a function of time. This was not taken into account in 

the study. There was a time frame to develop the field work, during September and 

June, avoiding the snowy period, regardless of the variability of species features. 

Moreover, not only the field work period but also, the image acquisition date, which is 

explained later on in “Data acquisition: Study points and imagery”. 

4. Spectral resolution problem 

On the other hand, even though a significant but not strong correlation was achieved in 

each study areas separated, the spectral resolution is still an issue.  

Landsat has low spectral resolution (Xie et al., 2008), i.e. 6 bands were used in the 

study. There are three bands covering the visible part where the chlorophyll feature 

appears. Nonetheless, there is a lack of bands for pigments and cell structure that appear 

in Near Infrared and Infrared part of the spectrum (Figure 1 and Table 1) (U.S 

Geological Survey, 2014). As it was written previously and several authors say (Domaç 

and Süzen, 2006, Xie et al., 2008), Landsat is often used to map vegetation at 

community level, e.g. forest, grasslands, etc. but not at species level.  

Moreover, ancillary data with high spectral resolution, ASD FieldSpec spectra,  was 

used to increase the accuracy of the classification (Aplin, 2004). The measurements 

made with ASD FieldSpec did not work when using them as endmembers for 
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performing the spectral unmixed classification. R
2
 of 0.04 in ASD Data 1 and ASD 

Data 2 classifications, and R
2
 of 0.03 in ASD Data 3 were obtained (Table 2). It is 

thought that the main reason was related to different study areas. Some common species 

existed, i.e. Vaccinum myrtillus, Vaccinum uligonosum, Vaccinum vitis-idea, 

Arctostaphyllus alpina, Cornus suecica and also graminoids, lichens, and bryophytes, 

but not all of them were shown in all areas, whereas, neither the association nor the 

coverage of these species was in coexistence with E. nigrum as in the ground truth study 

points. Besides, when the ASD FieldSpec measurements were taken, the weather was 

cloudy and rainy, and no radiometric correction was done afterwards. 

5. Data acquisition: Study points and imagery 

When doing basic biological research, there is usually a lack of information about how 

many study points are needed for the study, and the temptation may be either to use the 

biggest sample size that it can be afforded or a similar sample size as other researches 

(McDonald, 2009). During the field sampling period, the maximum number of study 

points possible were acquired, i.e. 50 study points, knowing that the general rule of 

thumb is no less than 50 study points for a correlation test (VanVoorhis and Morgan, 

2007). Besides, the sampling was restricted by the snowy season. 

The last problem is related to the imagery acquisition. Field work was carried out at 

different time than the acquisition of Landsat images, i.e. Ifjord scene is from August 

2013 and Troms scene from September 1999. A significant feature for the large-area 

Landsat TM coverage problem is the use of imagery acquired at different times of the 

year or even in different years (Franklin and Wulder, 2002). Here, the temporal 

resolution problem appears again. The coverage and abundance of E. nigrum could have 

changed from 1999, despite its slow growing (Nilsson et al., 1998, Tybirk et al., 2000, 
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Elmendorf et al., 2012), as well as other disturbances in the ecosystem that could have 

occurred, e.g. new roads or paths. For solving this, the more images acquired the better 

discrimination. However, another problem appears, and it is to find image without 

clouds or shaded areas. 

6. Solutions 

Firstly, as Franklin and Wulder, 2002 said, “an ideal classification approach does not 

yet exist”; there might be a compromise within the information classes that are desired, 

the spectral information content of the imagery and the method used. Considering this, 

some ideas are given to solve the problems identified in this study. 

Regarding the endmembers determination issue, several techniques were tried, (all of 

them explained in the methods on spectral analysis). Despite all of the different systems 

tried to acheive an accurate spectral library with the perfect endmembers in the 

laboratory, some could be better done in field. For instance, a better understanding of 

the area could be achieved. In the case of Ifjord, the study area was smaller, so the 

known area was relatively good. However, to determinate the endmembers in Tromsø 

area, virtual subareas were created (Figure 11), thus some classes could have been lost. 

This can be one of the reasons why the correlation coefficient is higher in Ifjord than in 

Tromsø. 

Concerning the spatial resolution question, a spatial model is needed, establishing some 

rules about E. nigrum growth. For instance, it is known that E. nigrum is susceptible to 

fire, cutting, and trampling, and it does not have high sensitivity to acidification and/or 

eutrophication, tropospheric ozone, change UV:B radiation, global warming, or heavy 

metals as compared to coexisting species (Tybirk et al., 2000). Moreover, it is relatively 

resistant to environmental changes, but the long-term effect is not well known. Taking 
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into account these peculiarities of E. nigrum, a spatial model could be created. On the 

other hand, a Landsat peculiarity is its advantage in large areas studies (Xie et al., 2008, 

Reinke and Jones, 2006). In the case of ecosystems where E. nigrum is dominating, 

Landsat might not be suitable in every area though, i.e. uneven terrain with high 

changes in elevation, due to its spatial resolution. So, not only the dominance of E. 

nigrum, but the terrain, has to be taken into account when choosing the study area. 

An improvement related to the temporal scale concern would be to perform a study of 

the variability of a specific feature of E. nigrum, i.e. evergreen feature, and the co-

existence species throughout the growth study season. As an explanation, e.g. Figure 17, 

the arrow shows the highest spectral feature difference in a period of time and the 

circles represent no spectral difference between both species at that time. Hence, it will 

be possible to find the exact time of the year when the maximum difference between 

vegetation endmembers occur. 
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Figure 17. A theoretical example of spectral feature variability as a 

function of seasonal growth (time) of Empetrum nigrum and an ericaceous 

shrub species. 
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In the case of the spectral resolution problem, it was already explained the use of 

ancillary data with high spectral resolution (ASD FieldSpec spectroradiometer), to 

increase the classification accuracy. In the study, a specific signature of E. nigrum in 

field in coexistence with other common species of the habitat in Tromsøya, Lyfjord and 

Rebbenesøya was extracted. An improvement would be to have a spectral signature for 

E. nigrum and spectral signatures for each coexistence species. Moreover, taking the 

measurements in the same areas as the ground truth data would have been an advantage. 

In this way, a perfect spectral library could have been created.   

So, both in temporal and spectral resolution issues, the solution would be the use of 

ASD FieldSpec spectrometer for measuring, not only E. nigrum spectral signature but 

coexisting species spectral signatures. Thus a temporal (seasonal) E. nigrum growth 

model is created as well as coexisting species growing models. 

Finally, for solving the data acquisition problem, in the case of the study point, would 

be to have more time, thus more study points could be sampled. Regarding imagery 

acquisition, the more images acquisition, the better discrimination. However, it appears 

that the problem of finding images without clouds or shaded areas. 
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CONCLUSION 

Endmembers determination was the key for E. nigrum classification. The spectral 

signatures of E. nigrum extracted from ASD FieldSpec spectroradiometer 

measurements in the laboratory were not satisfactory in order to use them in the 

classification. Thus, Landsat data were used to extract endmembers from the purest 

pixels, being one of them E. nigrum endmember, which has a specific spectral signature 

in Landsat images. 

A spectral library was created with endmembers from the purest pixel in Landsat image, 

as well as, the spectral measurements taken with ASD FieldSpec. The most accurate 

spectral library used for the study was obtained through endmember determination from 

Landsat data. Then, the best result was achieved performing a spectral unmixing 

classification with such spectral library. The Pearson correlation tests between, the field 

abundance estimation of E. nigrum and the E. nigrum abundance estimation from this 

spectral unmixing classification, result in a r of 0.57 in Ifjord and a r of 0.55 in Tromsø.  

Landsat is good option as a first attempt to determinate and classify E. nigrum. It is the 

only sensor that allows going back in time since 1972, it has good spatial cover, also at 

high latitudes and it is freely available data.  

However, several improvements already explained can be done for getting an accurate 

spectral library and an accurate E. nigrum classification. These improvements are the 

previous study of the annual variability of E. nigrum and coexistence species, use of 

ancillary data and E. nigrum spatial model.  
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The opinion after developing this E. nigrum classification is that future studies need to 

include these improvements or solutions, in order to achieve an E. nigrum classification 

with a higher correlation coefficient from Landsat imagery.  
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APPENDIX I 

Table 1. "FieldSpec measurements taken in the laboratory in a previous ASD FieldSpec 

analyses (Ibarrola et al. unpublished data). Sample: name of the sample; Predicted 

value: the predicted value of Batatasin-III acquired after performing the validation with 

ASD FieldSpec; mg Batatasin-III: content of Batatasin-III in milligrams after being 

extracted from HPLC technique. 

Sample Predicted value mg Batatasin-III 

EM_BV-104-09-H_1.spc 30,77 37,98 

EM_BV-104-09-H_2.spc 29,09 37,98 

EM_BV-104-09-H_3.spc 33,09 37,98 

EM_BV-112-09-H_1.spc 17,65 16,57 

EM_BV-112-09-H_2.spc 18,96 16,57 

EM_BV-112-09-H_3.spc 19,72 16,57 

EM_BV-121-09-H_1.spc 23,62 21,09 

EM_BV-121-09-H_2.spc 18,98 21,09 

EM_BV-121-09-H_3.spc 25,33 21,09 

EM_BV-122-09-H_1.spc 25,81 24,78 

EM_BV-122-09-H_2.spc 31,39 24,78 

EM_BV-122-09-H_3.spc 25,34 24,78 

EM_BV-123-09-H_1.spc 26,47 9,98 

EM_BV-123-09-H_2.spc 13,38 9,98 

EM_BV-123-09-H_3.spc 22,35 9,98 

EM_BV-135-10-V_1.spc 22,67 32,59 

EM_BV-135-10-V_2.spc 30,08 32,59 

EM_BV-135-10-V_3.spc 24,97 32,59 

EM_BV-145-10-V_1.spc 30,10 19,04 

EM_BV-145-10-V_2.spc 29,09 19,04 

EM_BV-145-10-V_3.spc 29,70 19,04 

EM_BV-146-10-V_1.spc 5,28 5,00 

EM_BV-146-10-V_2.spc 15,35 5,00 

EM_BV-146-10-V_3.spc 8,02 5,00 

EM_BV-166-10-H_1.spc 39,21 22,32 

EM_BV-166-10-H_2.spc 35,25 22,32 

EM_BV-166-10-H_3.spc 35,26 22,32 

EM_BV-175-10-H_1.spc 43,01 41,67 

EM_BV-175-10-H_2.spc 43,78 41,67 

EM_BV-175-10-H_3.spc 46,66 41,67 

EM_BV-180-11-V_1.spc 23,40 27,04 

EM_BV-180-11-V_2.spc 21,59 27,04 

EM_BV-180-11-V_3.spc 13,18 27,04 

EM_BV-181-11-V_1.spc 18,15 13,78 

EM_BV-181-11-V_2.spc 15,74 13,78 

EM_BV-181-11-V_3.spc 14,48 13,78 

EM_BV-192-11-V_1.spc 28,50 31,14 

EM_BV-192-11-V_2.spc 32,88 31,14 

EM_BV-192-11-V_3.spc 25,14 31,14 

EM_BV-206-11-H_1.spc 36,89 34,09 

EM_BV-206-11-H_2.spc 34,27 34,09 



 

ii 
 

EM_BV-206-11-H_3.spc 41,49 34,09 

EM_BV-209-11-H_1.spc 47,12 45,71 

EM_BV-209-11-H_2.spc 40,81 45,71 

EM_BV-209-11-H_3.spc 39,31 45,71 

EM_BV-211-11-H_1.spc 45,25 36,71 

EM_BV-211-11-H_2.spc 45,04 36,71 

EM_BV-211-11-H_3.spc 36,29 36,71 

EM_BV-212-11-H_1.spc 39,76 40,95 

EM_BV-212-11-H_2.spc 38,72 40,95 

EM_BV-212-11-H_3.spc 41,80 40,95 

EM_BV-216-11-H_1.spc 36,56 29,21 

EM_BV-216-11-H_2.spc 36,37 29,21 

EM_BV-216-11-H_3.spc 36,27 29,21 

EM_BV-222-11-H_1.spc 21,67 23,19 

EM_BV-222-11-H_2.spc 23,57 23,19 

EM_BV-222-11-H_3.spc 20,22 23,19 
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APPENDIX II 

Table 2. ASD FieldSpec data. Batatasin-III predicted value extracted from Empetrum 

nigrum leaves taken in Troms area (Tromsø, Lyfjord and Rebbenesøya). ID: name of 

the each sample/study place; Coverage: coverage of Empetrum nigrum estimated in 

field; Predictable ASD FieldSpec value: predicted value of Batatasin-III extracted by 

ASD FielSpec spectroradiometer. 

ID Coverage Predictable ASD FieldSPec value 

Tro58 10 2,17 

Tro54 10 2,20 

Tro55 15 2,01 

Tro50 15 1,96 

Tro49 15 1,95 

Tro45 15 2,28 

Tro52 20 2,04 

Lyf13 25 1,23 

Tro51 30 3,00 

Tro46 30 2,06 

Tro41 30 2,72 

Tro37 30 1,94 

Lyf12 30 0,00 

Reb09 35 14,41 

Reb07 40 31,82 

Lyf26 40 26,01 

Lyf16 40 7,31 

Tro47 50 2,64 

Reb08 50 29,07 

Lyf20 50 35,41 

Lyf25 55 13,07 

Tro42 60 1,79 

Lyf21 60 28,89 

Lyf17 60 11,36 

Tro40 70 1,55 

Tro36 70 2,09 

Lyf18 70 13,25 

Lyf14 70 16,49 

Lyf11 70 0,00 

Reb06 80 23,52 

Lyf30 80 10,51 

Lyf29 80 10,68 

Lyf23 80 9,04 

Lyf24 84 4,64 

Lyf27 85 4,29 

Lyf19 85 0,73 
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Tro44 90 1,48 

Tro39 90 1,98 

Tro34 90 2,36 

Lyf10 90 8,94 

Tro38 95 2,51 

Tro33 95 1,32 

Tro31 95 2,48 

Reb05 95 9,58 

Reb04 95 28,57 

Tro35 97 1,56 

Tro32 97 2,03 

Reb03 100 18,09 

Reb02 100 30,98 

Reb01 100 17,04 
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APPENDIX III 

Table 3. Data recorded during field work in Tromsø and Ifjord study areas. ID: name of the sample/study point; Area: area where the study point 

was sampled; County: name of the area where the study point was placed, either Troms of Ifjord; zone: UTM zone of the coordinates; x: x UTM 

coordinate of the study point; y: y UTM coordinate of the study point. Coverage (%): coverage of Empetrum nigrum estimated in field. 

ID AREA COUNTY zone x y Coverage (%) 

1209_01 Kvaloya-Tromso Troms 34W 416885 7734157 85 

1209_02 Kvaloya-Lyfjord 1 Troms 34W 417041 7740334 85 

1209_03 Kvaloya-Lyfjord 2 Troms 34W 417158 7740388 35 

1209_04 Kvaloya-Risvik Troms 34W 419341 7748562 80 

1209_05 Kvaloyvagen 1 Troms 34W 416712 7750051 87 

1209_06 Kvaloyvagen 2 Troms 34W 415153 7749257 30 

1209_07 Kvaloya-South Tromso/Hakoya Troms 34W 414188 7725754 50 

1209_08 Kvaloya-South Tromso/Hakoya (Dogs' Center) Troms 34W 414216 7725626 65 

1209_09 Kvaloya (Area 2) 1 - Up hill Troms 34W 401303 7728953 75 

1209_10 Kvaloya (Area 2) 2 - Down hill Troms 34W 401766 7728953 80 

1209_11 Kvaloya-Sommaroy Troms 34W 384517 7721348 65 

1209_12 Road 91/Station 1 - Middle hill Troms 34W 431471 7718635 53,75 

1209_13 Road 91/Station 2 - Up hill Troms 34W 431486 7718479 66,25 

1209_14 Lyngen-Svensy 1 Troms 34W 456781 7723078 77,5 

1209_15 Lyngen-Svensy 2 Troms 34W 456635 7723454 80,83 

1209_16 Skibotn 1 Troms 34W 482698 7680922 63,3 

1209_17 Skibotn 2 Troms 34W 482701 7680736 48,33 

1209_18 Kilpis 1 Troms 34W 488362 7674153 80,41 

1209_19 Kilpis 2 Troms 34W 488115 7674190 42,08 
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1209_20 Skogsfjord 1 Troms 34W 433218 7761203 85,41 

1209_21 Skogsfjord 2 Troms 34W 433228 7761334 82,5 

1209_22 Skogsfjord 3 Troms 34W 433282 7761495 83,3 

1306_23 Ifjord 1_23 Ifjord 35W 513085 7814048 85,42 

1306_24 Ifjord 2_24 Ifjord 35W 513241 7814452 85,83 

1306_25 Ifjord 3_25 Ifjord 35W 513138 7814261 70,83 

1306_26 Ifjord 4_26 Ifjord 35W 512980 7813828 89,58 

1306_27 Ifjord 5_27 Ifjord 35W 513399 7813889 92,08 

1306_28 Ifjord 6_28 Ifjord 35W 511321 7814956 81,67 

1306_29 Ifjord 7_29 Ifjord 35W 511556 7814390 77,08 

1306_30 Ifjord 8_30 Ifjord 35W 511462 7814257 93,75 

1306_31 Ifjord 9_31 Ifjord 35W 511437 7814184 15,42 

1306_32 Ifjord 10_32 Ifjord 35W 511881 7815068 79,58 

1306_33 Ifjord 11_33 Ifjord 35W 511842 7815490 90,00 

1306_34 Ifjord 12_34 Ifjord 35W 513352 7815076 97,50 

1306_35 Ifjord 13_35 Ifjord 35W 513468 7815506 94,58 

1306_36 Ifjord 14_36 Ifjord 35W 518202 7814353 82,50 

1306_37 Ifjord 15_37 Ifjord 35W 517916 7814075 90,42 

1306_38 Ifjord 16_38 Ifjord 35W 518078 7813959 94,58 

1306_39 Ifjord 17_39 Ifjord 35W 519841 7813168 78,75 

1306_40 Ifjord 18_40 Ifjord 35W 511063 7814016 79,17 

1306_41 Ifjord 19_41 Ifjord 35W 510802 7813900 92,92 

1306_42 Ifjord 20_42 Ifjord 35W 510926 7813885 73,75 

1306_43 Ifjord 21_43 Ifjord 35W 511198 7814115 97,50 

1306_44 Ifjord22_44 Ifjord 35W 513040 7815495 92,08 

1306_45 Ifjord23_45 Ifjord 35W 513319 7815744 74,17 

1306_46 Ifjord24_46 Ifjord 35W 513281 7815008 98,33 
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1306_47 Ifjord25_47 Ifjord 35W 513154 7814860 90,83 

1306_48 Rebbenes Troms 34W 414585 7770360 94,17 

1306_49 Hansnes_1 Troms 34W 446502 7768905 96,25 

1306_50 Hansnes_2 Troms 34W 446635 7768669 85,00 
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APPENDIX IV 

Table 4. Extracted values of Empetrum nigrum from the spectral unmixing classification performed in ENVI. ID: name of the sample/study 

point; Area: area where the study point was sampled; SUM Extraction: Spectral Unmixing extracted values of Empetrum nigrum; SUM % 

Extraction: Spectral Unmixing extracted values of Empetrum nigrum in percentage; % Field Coverage: coverage of Empetrum nigrum estimated 

in field. 

ID AREA 
SUM 
Extraction 

SUM % 
Extraction % Field Coverage 

1209_01 Kvaloya-Tromso 229 89,453125 85 

1209_04 Kvaloya-Risvik 195 76,171875 80 

1209_06 Kvaloyvagen 2 148 57,8125 30 

1209_07 Kvaloya-South Tromso/Hakoya 107 41,796875 50 

1209_08 Kvaloya-South Tromso/Hakoya (Dogs' Center) 181 70,703125 65 

1209_09 Kvaloya (Area 2) 1 - Up hill 127 49,609375 75 

1209_10 Kvaloya (Area 2) 2 - Down hill 188 73,4375 80 

1209_11 Kvaloya-Sommaroy 202 78,90625 65 

1209_14 Lyngen-Svensy 1 154 60,15625 77,5 

1209_15 Lyngen-Svensy 2 235 91,796875 80,83 

1209_16 Skibotn 1 255 99,609375 63,3 

1209_18 Kilpis 1 255 99,609375 80,41 

1209_19 Kilpis 2 134 52,34375 42,08 

1209_20 Skogsfjord 1 255 99,609375 85,41 

1209_21 Skogsfjord 2 181 70,703125 82,5 

1209_22 Skogsfjord 3 249 97,265625 83,3 

1306_23 Ifjord 1_23 113 44,140625 85,42 

1306_24 Ifjord 2_24 107 41,796875 85,83 

1306_25 Ifjord 3_25 57 22,265625 70,83 
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1306_26 Ifjord 4_26 112 43,75 89,58 

1306_27 Ifjord 5_27 137 53,515625 92,08 

1306_28 Ifjord 6_28 126 49,21875 81,67 

1306_29 Ifjord 7_29 124 48,4375 77,08 

1306_30 Ifjord 8_30 140 54,6875 93,75 

1306_32 Ifjord 10_32 86 33,59375 79,58 

1306_33 Ifjord 11_33 134 52,34375 90,00 

1306_34 Ifjord 12_34 136 53,125 97,50 

1306_35 Ifjord 13_35 199 77,734375 94,58 

1306_36 Ifjord 14_36 174 67,96875 82,50 

1306_37 Ifjord 15_37 176 68,75 90,42 

1306_38 Ifjord 16_38 214 83,59375 94,58 

1306_39 Ifjord 17_39 179 69,921875 78,75 

1306_40 Ifjord 18_40 69 26,953125 79,17 

1306_41 Ifjord 19_41 173 67,578125 92,92 

1306_42 Ifjord 20_42 78 30,46875 73,75 

1306_43 Ifjord 21_43 126 49,21875 97,50 

1306_44 Ifjord22_44 179 69,921875 92,08 

1306_45 Ifjord23_45 151 58,984375 74,17 

1306_46 Ifjord24_46 167 65,234375 98,33 

1306_47 Ifjord25_47 167 65,234375 90,83 

1306_48 Rebbenes 242 94,53125 94,17 

1306_49 Hansnes_1 181 70,703125 96,25 

1306_50 Hansnes_2 195 76,171875 85,00 
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APPENDIX V 

Table 5. Residual Error data. ID: name of the sample/study point; Area: area where the study point was sampled; Total Residual Error: residual 

error in both areas combined; Ifjord Residual Error: residual error in Ifjord area. Tromsø Residual Error: residual error in Tromsø area. 

ID AREA 
Total Residual 

Error 
Ifjord 

Residual Error 
Tromsø 

Residual Error 

1209_01 Kvaloya-Tromso 24,33   6,58 

1209_04 Kvaloya-Risvik 11,91   -3,80 

1209_06 Kvaloyvagen 2 2,17   6,83 

1209_07 Kvaloya-South Tromso/Hakoya -17,29   -20,78 

1209_08 Kvaloya-South Tromso/Hakoya (Dogs' Center) 9,03   -0,57 

1209_09 Kvaloya (Area 2) 1 - Up hill -13,79   -27,46 

1209_10 Kvaloya (Area 2) 2 - Down hill 9,17   -6,54 

1209_11 Kvaloya-Sommaroy 17,23   7,63 

1209_14 Lyngen-Svensy 1 -3,68   -18,37 

1209_15 Lyngen-Svensy 2 27,39   11,34 

1209_16 Skibotn 1 38,23   29,32 

1209_18 Kilpis 1 35,27   19,40 

1209_19 Kilpis 2 -5,38   -5,64 

1209_20 Skogsfjord 1 34,41   16,50 

1209_21 Skogsfjord 2 6,01   -10,72 

1209_22 Skogsfjord 3 32,43   15,38 

1306_23 Ifjord 1_23 -21,06 -8,45   

1306_24 Ifjord 2_24 -23,47 -11,24   

1306_25 Ifjord 3_25 -40,42 -14,21   

1306_26 Ifjord 4_26 -22,17 -13,43   



 

xii 
 

1306_27 Ifjord 5_27 -12,83 -6,43   

1306_28 Ifjord 6_28 -15,33 0,77   

1306_29 Ifjord 7_29 -15,32 5,06   

1306_30 Ifjord 8_30 -11,95 -7,10   

1306_32 Ifjord 10_32 -30,60 -12,54   

1306_33 Ifjord 11_33 -13,65 -5,30   

1306_34 Ifjord 12_34 -14,16 -12,81   

1306_35 Ifjord 13_35 10,96 15,03   

1306_36 Ifjord 14_36 3,27 18,61   

1306_37 Ifjord 15_37 2,69 10,64   

1306_38 Ifjord 16_38 16,81 20,89   

1306_39 Ifjord 17_39 5,87 24,70   

1306_40 Ifjord 18_40 -37,17 -18,73   

1306_41 Ifjord 19_41 1,09 6,71   

1306_42 Ifjord 20_42 -32,72 -9,23   

1306_43 Ifjord 21_43 -18,06 -16,71   

1306_44 Ifjord22_44 3,57 9,98   

1306_45 Ifjord23_45 -4,27 18,82   

1306_46 Ifjord24_46 -2,19 -1,61   

1306_47 Ifjord25_47 -0,90 6,67   

1306_48 Rebbenes 27,82   6,34 

1306_49 Hansnes_1 3,64   -18,69 

1306_50 Hansnes_2 11,05   -6,70 

 

 



 

 

 

 


