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Abstract

Lego Mindstorms is a popular tool used by universities for educational and
demonstrational purposes. Lego Mindstorms is a set of buildable and pro-
grammable robotic kits, made by Lego. It allows for a high level of par-
ticipation from the audience, while being easily programmable. However,
for demonstrational and recruitment purposes, it is not without shortcom-
ings. When there is a limited time to talk to people, it is difficult to explain
and change a running Lego Mindstorm program. Typically the program is
explained by looking at the robot’s behavior and base the explanation on
that. Modifying an already running program involves multiple slow steps
that disrupts what the robot was previously doing.

A more interactive approach would be to allow the audience to see what
is happening inside the ”robot’s mind” while it is running. Where changes
could be made on-the-fly without disrupting what the robot was previously
doing.

This thesis introduces RoboMind, a platform for on-the-fly programming and
inspection of behavior-based robot programs. The idea behind RoboMind is
to provide users with an interface where they can both visually inspect and
modify a robots information and behaviors at run-time. Through RoboMind,
users can add or edit existing behavior modules on-the-fly without disrupting
what the robot was previously doing. The interface allows users to inspect
which behaviors are running in addition to the collected sensor samples from
the robot’s run-time.

RoboMind has been thoroughly tested and developed for usage with the
latest generation of the Lego Mindstorms, the EV3. RoboMind offers a
fully featured Python-programming environment for run-time modification
of running EV3 programs with the help of the ev3-python library made by
the author.
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Chapter 1

Introduction

Different robotic platforms has in the last decades been a popular tool used
by universities for educational and demonstrational purposes[16, 15, 12, 17].
At the University of Tromsø, a wide variety of different robots has been
used in multiple recruitment fairs and school visits. One such robotic plat-
form is the Lego Mindstorms[2]. Lego Mindstorms is a set of buildable and
programmable robotic kits, made by Lego. It allows for a high level of par-
ticipation from the audience, while being easily programmable. However, for
demonstrational and recruitment purposes, it is not without shortcomings.

When there is a limited time to talk to people, it is difficult to explain
and change a running Lego Mindstorm program. Typically the program is
explained by looking at the robot’s behavior and base the explanation on
that. Modifying an already running program involves multiple slow steps
that disrupts what the robot was previously doing. Usually the steps in-
volves stopping the running program, uploading the modified program and
restarting the program on the robot.

A more interactive approach would be to allow the audience to see what is
happening inside the ”robot’s mind” while it is running. The mind could
detect any changes in its settings, or source code, which are immediately
applied and used in the running robot. Furthermore, the mind could provide
an environment where programming can be done in a language not only
intended for the Lego Mindstorms.

This thesis introduces RoboMind, a platform for on-the-fly programming and
inspection of behavior-based robot programs. The idea behind RoboMind is

1



2 1 Introduction

to provide users with an interface where they can both visually inspect and
modify a robots information and behaviors at run-time. Through RoboMind,
users can add or edit existing behavior modules on-the-fly without disrupting
what the robot was previously doing. The interface allows users to inspect
which behaviors are running in addition to the collected sensor samples from
the robot’s run-time.

RoboMind has been thoroughly tested and developed for usage with the latest
generation of the Lego Mindstorms, the EV3. However, RoboMind can be
used with other robotic platforms by making library additions in the source
code. RoboMind offers a fully featured Python-programming environment
for run-time modification of running EV3 programs with the help of the
ev3-python library made by the author.

1.1 Problem Definition

From the problem definition of this thesis:

Develop a platform and architecture for on-the-fly inspection and
modification of robot programs, focusing on the behavior system
for the robots. The platform should allow on-the-fly visual inspec-
tion of the robot’s activities and behaviors as well as run-time
modification of the robot code. The platform should also be easy
to deploy and use, both in the lab and when visiting schools and
recruitment fairs.

The required programming should be offered in the Python programming
language. The required robotic platform for this thesis is the third generation
of Lego Mindstorms, the EV3. It launched September 2013, which means
it is still in its early life span. Unfortunately, it was discovered that most
of the development environments on the EV3 are still in early alpha and
beta stages and suffers from bugs. There also did not exist a stable enough
environment to develop Python applications directly on the EV3, back in
the beginning of this thesis. This meant that other alternative solutions on
the EV3 must be made. The solution chosen was to implement a control
program on the EV3 in one of the more stable development environments.
Where a library implemented in Python is offered to the user that is able to
control the program on the EV3.
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1.2 Contributions

The contributions of this thesis are:

• Robo: A server control program, runnable on the Lego Mindstorm
EV3 with the help of the leJOS framework. Robo provides a language
independent control interface, accessible through network. Applica-
tions using the interface have direct control of the provided actions in
an EV3.

• ev3-python: A library made in Python for controlling Robo. It im-
plements Robo’s control interface to give users programmable control
of an EV3.

• RoboMind: A platform for on-the-fly inspection and modification of
behavior-based robot programs. It uses Robo and the ev3-python li-
brary to give users a platform where they can inspect sensor information
and modify behaviors on-the-fly for an EV3.

1.3 Limitations

Because of the limited timeframe for this thesis, the following limitations
were made:

• Security: There has been no focus on removing the potential secu-
rity risks in the system. Through the RoboMind platform, users are
allowed to program code that will be executed directly on the server.
Users could through this method potentially write malicious code and
hack RoboMind. A potential solution could be to run the RoboMind
platform in a virtual machine, where there is no concern if the sys-
tem was compromised. Alternatively, use a sandbox version of Python,
which isolates the potential unsecure code.





Chapter 2

Background

This chapter will first present some background related material to the Lego
Mindstorms, a robotic platform by Lego. It will further present leJOS, the
selected programming environment used on the latest generation of Mind-
storms. The chapter is concluded by presenting the behavior driven pro-
gramming environments offered to the user.

2.1 Lego Mindstorm

Lego Mindstorms[2] is a set of buildable and programmable robotic kits,
made by Lego1. It gives the users the possibility of building whatever robots
are possible through the different kits. The kits provides ordinary Lego
pieces, a brain (also called the intelligent brick, or brick for short), and a
set of modular motors and sensors. The motors and sensors are directly
connected to the brick, which in turn control and collect data from them.
What the brick does with the connected modules depends entirely on the
program written by the user. The motors come in a variety of sizes and
offers mechanical movements through rotations. Motors can pick up data
such as if they are stalled, moving, or how many degrees it has rotated since
the start. The sensors read sample data about the real world and offer it
to the brick. What the sensor can read depends entirely on its type, e.g.,
touch, light, temperature, gyro, and distance. How this data is represented
also depends on the sensor type.

1http://www.lego.com/

5

http://www.lego.com/


6 2 Background

Different Lego Mindstorms kits provide different parts and may vary a lot
depending on the generation and intended use. The different kits can be
placed into one out of three generations[5]. Each generation stays around for
about 5-7 years, before a new one is launched. These are:

• RCX (Robotics Invention System). It launched January 1998. Four
sets came out. One basic kit, one adapted for educational use, and two
upgraded versions of the basic set.

• NXT (as in next generation). It launched August 2006. Three sets
came out. One basic set, an upgrade version of the basic set and a kit
adapted for educational use.

• EV3 (as in evolution 3 ). It launched September 2013. Currently two
kits are out, 31313 (the ordinary kit) and the educational core kit.

The programmable intelligent brick of each generation can be seen in figure
2.1. The bricks represent the biggest change between each generation. Mo-
tors and sensors can to some degree be used between generations. Generally,
the later generation support reuse of motors and sensors from the older ones.
Differences within generations are generally quite small, most variations are
found in the Lego blocks and the included set of sensors.

Figure 2.1: The programmable intelligent brick of each generation. Left RCX,
Middle NXT, Right EV3

Programming software is included with each Lego Mindstorm kit. The soft-
ware enables the users to write programs on their own computer, which can
later be transferred and run on the intelligent brick. Programming is done
through a graphical user interface. Actions on the brick are represented
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through drag and drop blocks. The user drags and drops these blocks to-
gether to make a program. A short program can be seen in figure 2.2 together
with a description. Unfortunately, the brick does not by default allow any
other programming options. To be able to use a general-purpose program-
ming language like Java or C#, the firmware or operating system on the
brick must be exchanged.

Figure 2.2: Shows a short program written in the default programming environment
of the EV3. It is running an infinity loop around all the blocks. The first action
inside the loop waits for the touch sensor on port 4 to be pressed. When pressed,
the connected motor on port A rotates 360 degrees. Then the connected motor on
port D rotates 360 degrees. Then the loop starts at the beginning again, waiting
for the button to be pressed. This continues until the program exits.

2.1.1 EV3

For this thesis only the intelligent brick from the third generation is used
(the EV3), as it was the required platform. Only the educational kit for the
EV3 was available when writing this thesis, but the solution offered should
work for both kits, as the intelligent bricks are the same. The kit contains
one programmable brick, two large motors, one small motor, one ultrasonic
sensor, two touch sensors, one gyro sensor and one color sensor. The set can
be seen in figure 2.3, without the small motor.

The biggest upgrade in EV3 kits is the intelligent brick. In general, it is a
much more powerful machine, with an extended set of functions. The specs
of the EV3 compared the previous generation (the NXT) can be seen in
table 2.1. The EV3 also offers the possibility of booting a secondary OS
installed on the SD-card. This makes replacing the default environment on
the EV3 extremely easy, as it only requires a bootable SD-card. It also gives
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Figure 2.3: Main components in the EV3 education set, without the small motor

the possibility of booting the old default environment, as it is never removed.
Previous generations of Lego Mindstorms required flashing new firmware into
the brick, replacing the old one to allow other programming enviorments[23].

Even though the EV3 still is in its early lifespan, there already exists multiple
open source environments to accommodate other programming languages.
However, most of these are in early alpha and beta stages and suffers from
bugs.

2.2 leJOS

One of the more stable and advanced enviorments available for the EV3 is
leJOS[4]. leJOS is a Java programming environment and offers a release for
each generations of Lego Mindstoms. It utilizes the improved spec on the EV3
to offer a fully features JVM (java virtual machine) over a Linux operating
system. It is now possible to directly control and configure the brick through
SSH. This is an improvement from previous releases as they only offered a
self-written minified JVM and operating system to accommodate the lower
specs[1].

It launched its first beta release 18-april-2014 and have continuously been
updated throughout the period of this thesis. leJOS also offers a vigilant
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EV3 NXT

main processor 300 MHZ 48 MHZ

main memory 64 MB RAM 64 KB RAM

16 MB Flash 256 KB Flash

display LCD LCD

178 x 128 pixel 100 x 64 pixel

usb 1 port (480mb/s) n/a

wifi through external usb dongel n/a

sd-card micro-sd cards up to 32GB n/a

bluetooth yes yes

operation system linux proprietary

Table 2.1: A comparison between the NXT and EV3 brick in specs. Table based
on numbers gotten from [21].

community through its forums, where developers put out news and help
their community by answering questions[3].

2.3 Behavior-based systems

Behavior-based systems[7] is an control type in robotics. Behavior-based sys-
tems focuses on making small behaviors that together through collaboration
can complete complex tasks, without an internal representation of the world.
A single behavior is a control block that is responsible for a particular sit-
uation. The actual movement of a robot is determined via the interaction
between behaviors. The behaviors are often reactive, in the sense that it
contain no internal representation of the world, it only reacts to information
read from a robots sensors. In other words, the robot has no idea where in
the room it is, but its behaviors can react to a wall by seeing it through the
robots sensors and try to avoid colliding whit it.

Reactive behavior-based systems allows for a simple, but efficient design of
robot programs. Through RoboMind, the reactive behavior-based architec-
ture subsumption is offered to the users in its web interface. It is one of the
earliest examples of behavior-based robots and is the typical example used
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in the field.

The underlying library also provides an implementation of the fuzzy-behavior
architecture. It is not used in the RoboMind platform, as it is a much
harder architecture to provide useful feedback back to the user interface. In
fuzzy behavior, some behavior can half run, almost run, not run at all, etc.
raising the difficulty of providing an easy to understand interface over what
is running with the architecture.

2.3.1 Subsumption

Subsumption is an architecture proposed by Rodney Brooks in 1986[8]. It
is an architecture where the complete behavior is decomposed into sub-
behaviors in a bottom-up fashion. Each sub-behavior runs in parallel and
has direct access to the sensors and actuators2. Typically, a sub-behavior has
a sense-act function: they sense something and act upon it. Sub-behaviors
are organized in a hierarchical arrangement, where higher-level behaviors
subsumes (take advantage, or use) the lower behaviors to provide their be-
havior. The lower levels provides the more basic and fundamental behaviors.
The higher levels provides the more complex behaviors by controlling and
using the lower level behaviors. An example is given by Brooks in [8] where
the lowest behavior provides the ability ”avoid objects” and the second lowest
behavior provides the ability ”wander”. For the robot to be able to ”wander”
the robot first be able to ”avoid objects”, in other words the second behavior
subsumes the first behavior to be able to provide its ability. Higher-level be-
haviors also has the ability to access and inhibit the lower behaviors, however
the reverse is not possible.

Subsumption emphasizes on an iterative develop and testing process, where
layers one at a time is completed and thoroughly tested, before moving on
to the next higher level behavior. Completed behaviors is never revisited as
they were perfected the first time.

An important fact in subsumption is that there is no centralization of control.
All sub-behaviors run asynchronously and in parallel to provide the complete
behavior[24].

2Actuator is typically a motor. Something that makes movements possible.
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2.3.2 Fuzzy behavior

Fuzzy behavior[20] share many similarities to subsumption. It also decom-
pose a complete behavior into sub-behaviors with sense-act functions, all
running in parallel. The difference can be found in how fuzzy behavior co-
ordinates the execution of the sub-behaviors. Instead of making the higher
levels responsible for controlling the lower levels outputs, fuzzy behavior re-
moves the hierarchy. It utilizes fuzzy logic to decide what behaviors should
run and fuses the active behaviors control outputs. Fuzzy logic is an ap-
proach where there exists multiple degrees of truth, not just true or false.
For example the statement ”the water is cold” could be 70% true. This can
be used in behaviors to decide to what degree different behaviors should run.
The logic can be expressed in the form:

IF context IS something THEN behavior

The rule expresses that the given behavior should be activated based on the
strength given by the truth-value of the context. Multiple behaviors can
utilize the same context to different degrees to allow running at the same
time. By utilizing fuzzy logic, a system gains the advantage of expressing
partial and parallel activation of behaviors, giving smooth transition between
them. The weighted outputs from the fuzzy logic can then be fused together
to provide the correct control outputs to actuators.





Chapter 3

RoboMind

This chapter will show how the platform RoboMind can be used. First,
some setup details will be explained before presenting how the platform can
be used in a step-by-step fashion. Footage of the same steps with the running
robot can be found with the delivered source code and at [22].

3.1 Setup

The EV3s requires some setup before they can be used in the system. As
described in chapter 2, leJOS is used instead of the default enviorment on
the EV3s. With the help of the leJOS enviorment the author has built a
control program called Robo, that allows external systems to connect and
control an EV3. It is therefore required that leJOS and the program Robo
is up and running on the EV3s before they can be used in the system. The
installation instructions can be found with the source code. When the EV3s
are properly configured, the RoboMind platform can start controlling them
through the ev3-python library.

Full external control over the program Robo is provided through the ev3-
python library built by the author. The library provides users with an ex-
tensive API over the available features offered through the program Robo.
RoboMind uses this library to be able offer the same features in its interface.
The last setup required is how the ev3-python library should connect with
the EV3s. A connection can be established through one out of three chan-
nels: USB, Bluetooth or Wi-Fi. Through USB or Bluetooth the RoboMind

13



14 3 RoboMind

system must be in close proximity with the EV3. Through Wi-Fi, the EV3
and the RoboMind platform can be located anywhere, as long as the EV3
is accessible. Wi-Fi demands some configurations on the EV3, such as pass-
word authentication. The router must also allow external access if the EV3s
is not located on the same network as RoboMind.

Figure 3.1: Screenshot of the initial view in RoboMind

3.2 Connect and configure

RoboMind gives users control over its resources through a web interface. The
web interface can be accessed from anywhere through a user’s web browser,
although the user should have the robot in sight when using the system. In
theory, by adding a web camera that shows where the robots are, users could
easily use the RoboMind from anywhere.

The initial web view can be seen in figure 3.1. It shows an empty web page
with a navigation bar on top. On the navigation bar, there are a couple
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Figure 3.2: Screenshot of the initial view when the user has connected to an EV3

of buttons to allow users to add EV3s to the system and connect to one of
them. The web interface can only have one EV3 connected at a time, since
there is not enough room for the information from multiple connected EV3s.
If a user wants to view the information from multiple EV3s at the same time,
new browser pages can be used with new instances of the web interface.

With an EV3 connected the web interface will be updated with the latest
stored information about that EV3 (see figure 3.2 for the typical view when
connected to an EV3 without any information stored). A user has now full
control over the different aspects RoboMind offers towards an EV3. These
are mainly: Opening of a new sensor, or start editing behavior modules for
the EV3. Unfortunately opening of new sensors is left as a task to the user.
Automatic sensor discovery is rather limited on the EV3. Many of the sensors
utilize the same drivers and offer little or no help when trying to figure out
what type is connected. Automatic sensor discovery is offered to a limited
degree in the underlying library, but it is too limited to be directly used in
RoboMind. Because of this users are imposed the task of opening sensors
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Figure 3.3: Screenshot of the web interface when multiple sensors have been opened

themselves. This can be done through the green button in the navigation
bar. Adding new behavior modules is done by writing module names in the
input field underneath the navigation bar.

A change on a connected EV3 is always stored in the memory of Robo-
Mind. New clients connecting to an EV3 will always receive the latest stored
information about it. This applies to both sensors and behavior modules.
Information is also synchronized between web interfaces. Therefore, if a user
updates a behavior module, the change will be stored in memory and get
pushed to all the other connected clients. When an EV3 gets disconnected
from the RoboMind platform all information about the EV3 is removed and
connected web interfaces will receive an error notification. The main reason
behind removing all the data and not offer a persistent storage of the infor-
mation is because an EV3 may have changed its identifier the next time it
connects. Meaning the platform has no sure way to know if a new or old EV3
has connected. Furthermore, when an EV3 gets disconnected, it is probably
because the Robo program has stopped running. Meaning all state on the
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EV3 is lost and information such as which sensors are connected needs to
be reset. These things could be mended, but since the EV3s offers a lot of
tinkering in its design and is meant to be rebuilt a lot, it made little sense
to persistently store the state.

Figure 3.3 shows the view when multiple sensors has been opened. The
squares represent sensors. The blue part contains the information’s such as
which sensor this is, what mode it is in and what port the sensor is connected
through. The white part contains the last updated sample received on that
sensor. As a step to minimize communication, only a change in the samples
will be sendt from the RoboMind platform to the web interfaces.

If the user wants control over a different EV3, the user must first disconnect
from the currently connected EV3. This can be done by pressing the red
button on the navigation bar.

Figure 3.4: Screenshot of the web interface when multiple behavior modules have
been added and are running
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3.3 Control and Program

The last part offered through the web interface is the behavior programming.
Figure 3.4 shows a view where two behavior modules are running. Users can
add new behaviors by writing names in the input box just underneath the
navigation bar. Underneath the input box each behavior is listed. Behaviors
can be deleted by clicking the close button. Underneath the behavior list
is the code view for the selected behavior. The selected behavior can be
changed by simply clicking on the different behaviors in the behaviors list.
The selected behavior will have a dark blue or dark green color depending
on the setting. Underneath the code view, there are three buttons: Save,
Run and Stop. The save button saves all the changes in behaviors to the
server. Run starts running the behaviors on the server. The currently run-
ning behavior will always have a green background color. Stop stops all the
behaviors on the server. By pressing Run again, the behaviors will resume
where it left of.

Even though it may look like the behavior modules are executed in the web
interface, they are in fact transferred to RoboMind and executed. The web
interface only gets updated by RoboMind telling it what is running. Schedul-
ing of behaviors follows the subsumption architecture (explained in chapter 2)
with a minor tweak, to make it easier to use. Instead of running all behaviors
in parallel, RoboMind schedules behaviors one at a time. Behaviors utilize a
priority queue, where the behavior list represents the priority of the behav-
iors. The behaviors further up have more priority. Scheduling is done in a
non-preemptive fashion, where the behaviors themselves must release control
before a next one can run. When a behavior with a higher priority wants to
run, the currently active behavior receives a suppress signal. It should then
by itself release the control and let the behavior with a higher priority run.

Behavior modules must be programmed in the programming language Python1.
A behavior module must implement the interface shown in listing 3.1 to be
executable.

A behavior module must be implemented in a class that contains the three
methods: check, action and suppress. The class should contain everything
related to that specific behavior. In other words, it should contain all the
necessary code that makes the desired behavior possible.

The method check should check the conditions of the behavior, should it run

1www.python.org

www.python.org
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Listing 3.1: Behavior module interface

class SomeName(Behavior):
"""
Should contain a specific behavior belonging to a robot.
Each Behavior must define the three following functions:
"""
def check(self):

"""
Does this behavior want to start running?
Should then return true.
"""

def action(self):
"""
What should this behavior do while it has control?
Should stop when suppress is called.
"""

def suppress(self):
"""
Should release control by stopping action(),
so other behaviors can start running.
"""

or not? Typically, it accesses the available sensors and checks if the values
correspond to a setting when the behavior should run.

Action contains the action code of the behavior. Typically, it accesses the
actuators on the EV3 and does an action, like rotating the wheels forward.
The behavior has control as long as it is inside the action method and new
behaviors will not be scheduled before the method exits.

Suppress is called when the behavior should no longer run. This method
should stop whatever action the behavior has started and make the behavior
exit the action method. When a behavior exits the action method, the be-
havior releases its control and allows new behaviors to be scheduled instead.

Mistakes found in the code are caught and displayed to the user in the web
interface. The code will not run without fixing the mistakes.

The behaviors modules used in the screenshots and in the video can be seen
in appendix A for a more complete look at a whole example.
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3.4 Responsive Design

The web interface support a wide range of different devices through the use
of responsive web design. It automatically resizes and relocate the different
components within the web interface when a device with a different screen
size is used[9]. Figure 3.5 shows how the web interface typically will look on
a mobile device.

Figure 3.5: Screenshot of the web interface on a mobile device. A look at the
responsive design



Chapter 4

Architecture

RoboMind is a client-server system for on-the-fly programming and inspec-
tion of EV3s. It provides users with a web interface for inspecting and
controlling the available resources at RoboMind. RoboMind utilizes the ev3-
python library made by the author to provide users with its services towards
EV3s. This chapter presents the architecture of RoboMind and the different
components it uses. It will first present the architecture between the program
Robo running on the EV3s and the ev3-python library, before moving on to
the general architecture of RoboMind.

4.1 ev3-python library

The library built enables a user to connect and control an EV3 with the use
of the programming language Python, hence the name ev3-python. Since
Python is an interpreted language, it means that a user through ev3-python
can easily experiment interactively with connected EV3s.

Figure 4.1 shows the architecture of the ev3-python library connected to a sin-
gle EV3. The architecture follows the typical client-server model[18], where
the EV3 acts as the server and the ev3-python library act as the client.
External access to the available resources at the EV3 is provided through
the program Robo. Robo is a server application running in Linux-operating
system of the EV3 with the help of the leJOS framework. External appli-
cations can connect to Robo through three different connection channels:
USB, Bluetooth or Wi-Fi. When connected an application can start control-

21
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Figure 4.1: Architecture of the ev3-python library

ling the EV3 by sending control messages to Robo in the JSON1 format. The
ev3-python library implements the message API of Robo in its underlying
layers to provide users with a usable programming interface. In theory, any
application that implements the message API of Robo can directly control
the program without the need of the ev3-python library.

The architecture between the ev3-python library and an EV3 can be thought
of as a connect-control type instead of a connect-program type. Programming
is offered by using the interface, but in reality, the user is not programming
on the EV3. The connected EV3 only follows the commands given to it by
the server program Robo. The architecture only gives the users an illusion of
programming directly on the EV3 with the Python language. This is done
as there did not back in the beginning of this thesis exists a good enough
enviorment to directly program on the EV3 with the Python programming
language. However, by using a program such as Robo the same result is
provided: to be able to program the EV3 with the Python language and
modify the robot programs and runtime. Robo also provides a platform
where the computational need is removed from the less powerful EV3 to a
more capable computer. Which can be better depending on the application.

The EV3 is chosen as the server since it allows for less cumbersome configu-
ration when redeploying the system. If the roles was reversed and the EV3
was the one who should initialize the connection, the EV3 would need to
be reconfigured each time the ev3-python library switched location. Either
through parameter configuration inside the EV3 program, or using the six
available buttons on the EV3. By giving the EV3, the server role in this

1http://www.json.org/

http://www.json.org/
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relationship the configuration need is given to the ev3-python library, where
it is easier to handle.

External applications are required to stay connected to Robo for the dura-
tion they intend to use the EV3. As long as an external application stays
connected, Robo stores its state for quick access later. Some operations such
as opening of sensors can take up to 5 seconds, keeping opened sensors in
memory saves a lot of time when accessing their operations later. The saved
state is deleted when the connection is shutdown. In other words Robo resets
itself between each connection. Since Robo is a state full server application,
it means inconsistency issues may arise if multiple connected applications
can make changes in its state. To remove the inconsistency issues, only one
connection is allowed at a time. This also increase the efficiency of Robo,
which is already running on very limited resources.

Lastly, streaming services is also offered by Robo and must be activated by a
request. Robo offers streaming of sensor samples and sensor discovery, while
the usual request-response communication can happen as normal. In other
words, Robo can automatically push information on newly connected sensors
and new sensor samples continuously to the client.

4.2 RoboMind

Figure 4.2 shows the architecture of RoboMind. It consists of three main
components: Multiple EV3s and multiple web browser clients connected to a
single Master. Users can connect to the master through their web browsers to
gain access to the web interface in a typical client-server fashion. This is done
by using the REST interface[10] at the master’s web server. Through the web
interface users have direct control over the master and its resources, the EV3s.
The web interface enables users to add, inspect, control and program EV3s
at the master, as shown in chapter 3. Since the master provides users with a
web interface accessible from a web server, users can access the system from
anywhere as long as they have access to the internet, although users should
have in sight the EV3 they want to control through the system.

From a user’s perspective, the master may seem transparent, as the web
interface is built to give the illusion of direct access to EV3s. When in
reality all communication passes through the master. Nothing is directly run
in the web interface. It only provides a view for the user over the available
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resources at the master. Everything is transferred from the web interface
in the form of JSON messages to the master. This also applies to the code
written in the web interface. In fact, the master is the one who runs the code
written in the web interface. The master continuously provide feedback to
web interface as to what part of the code is running and programming flaws
found. The web interface updates it view based on these feedbacks to give
the illusion of code running directly in the web interface. Changes made on
the EV3s or in the behavior code will be stored in the master’s memory until
told otherwise. The information is saved until either a user deletes it, or the
EV3 gets disconnected entirely from the system.

In theory, users could through their web interfaces directly connect and con-
trol EV3s without the need of the master as a middleware. There is two
main reasons why this is not done. The first is the limited resources typ-
ically available in the web page. For security reasons, JavaScript running
from a web page is not granted full access to the resources of a machine[14].
Because of this, it is difficult to provide a full programming environment for
Python. Meaning it will be even more difficult to fully allow usage of the
ev3-python library in a web page. Secondly, only one connection is allowed
to the program Robo. Through the master, this limitation is removed by
sharing the known and updated information about the EV3s. Updates in
the stored information are propagated to all interested web interfaces as a
step to give a consistent view of the current state in an EV3. In other words
if a user makes a change on an EV3, say in what sensors are connected, all
users who are interested in the same EV3 will receive an updated view when
changed

The architecture of RoboMind is module based. It is possible to switch out
the components with different ones as long as they follow the same API, or
use the components in other systems by making minor changes in the code.
Additions in the supported robots could be allowed by extending the set of
libraries used in RoboMind.
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Figure 4.2: Architecture of RoboMind





Chapter 5

Design and Implementation

This chapter presents the design and implementation of the different com-
ponents in the RoboMind platform. It will present the components in a
bottom-up fashion.

5.1 Robo

Robo is a socket-based server program that is runnable on the Lego Mind-
storm EV3s. It allows connected clients to control of a wide variety of actions
on a Lego Mindstorm EV3 through its programming language independent
JSON interface.

Clients can connect to Robo through either Bluetooth, USB, or Wi-Fi with
the use of the appropriate socket. Sockets can either follow the Transmission
Control Protocol (TCP)1 for communication over Wi-Fi or USB, or the RF-
COMM protocol2 for communication over Bluetooth. Both protocols allows
for a reliable communication exchange between the client and Robo.

A connected client is able to control Robo by the exchange of JSON messages.
The communication is typically done in request-response pairs, where each
request from the client will receive a response from Robo. There is one
request-response pair for each action the client wants Robo to execute.

1http://www.ietf.org/rfc/rfc793.txt
2http://developer.bluetooth.org/TechnologyOverview/Pages/

RFCOMM.aspx
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Figure 5.1: Design of Robo

Figure 5.1 shows the design of the Robo program. Messages received from
a client will be received in the communication layer of Robo. The messages
will be parsed and depending on the message invoke one of the action con-
trollers. Action controllers can control things like sensors, motors, etc. After
the action is completed, a response is sent back to the client, telling it if ev-
erything went as expected or not. Streaming services is also offered by Robo
and must be activated by a request. Robo offers streaming of sensor samples
and sensor discovery. Both of these services runs in separate threads.

The sensor discovery thread automatically pushes new sensor information to
the client. The information contains the most accurate description of sensors
connected to the EV3. It will automatically push data when sensors has been
connected or disconnected. When a sensor is connected, it will push data
such as the name of the sensor and what port it is connected to. However,
in some cases it is impossible to automatically tell what sensor is connected.
In these cases, only the sensor type is sent. Note that the streaming service
does not open a connected sensor, it only tells client what has connected and
where. The leJOS framework provides the automatic sensor discovery.

The sensor sampling thread automatically pushes fetched sample data on the
opened sensors. It continuously loops through the opened sensor and fetches
the samples, which are pushed to the client. The service will wait for sensors
to connect if there are not any available.

As explained in chapter 4, Robo only allows one connected client at a time.
The client is also required to stay connected to Robo for the duration it
want access to the EV3. This is done as a step to increase the speed of
some operations. Operations such as opening of sensor can take a lot of
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time, and is intended to stay opened while the program runs. Robo treats
new connected clients as new program starts. Meaning Robo does not have
anything pre-saved between each connection. New clients would have no clue
if a previous client left motors preset with a too slow or too high speed. Robo
simply treats each disconnect as a new beginning and refreshes everything
in its memory before allow a new client to connect. This is also Robo’s fault
tolerance. Non-intended errors causes Robo do disconnect its client, which
refreshes its state.

To ease the use of Robo a few extra services is provided. When Robo is
running and no client is connected, Robo broadcast its unconnected state by
blinking the EV3’s led lights in an orange color. When a client is connected,
the lights stays green. Robo also broadcasts its hostname on the networks
so clients who does not know its address can easier find it. Broadcasting by
Bluetooth is automatically provided by the EV3, while multicast3 is provided
in Robo through the leJOS framework.

5.1.1 Communication

For a request to be valid it must follow the specified JSON interface seen
in listing 5.1. The interface shows the minimal JSON message required to
be a valid request. There may be additional required attribute-value pairs
depending on what type of request is sent.

Listing 5.1: JSON request interface

{
"cla" : "", // type of command, motor, sensor, etc.
"cmd" : "", // the command
"seq" : 0, // sequence number
//... may be extra data depending on the request

}

A response from Robo will always look like the interface given in listing 5.2.
There is no other attribute-value pairs, but some of the pairs may be omitted
if there is no data on them. This is also how a streaming package from Robo
will look.

3http://www.tldp.org/HOWTO/Multicast-HOWTO-2.html

http://www.tldp.org/HOWTO/Multicast-HOWTO-2.html
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Listing 5.2: JSON response interface

{
"msg" : "", // Response message / Type of response
"data" : 0, // Data from motors and such
"seq" : 0, // Sequence number. The same as in request

// If this is a request packages

"sample_string" : "" //When string is needed for the data

//Sensor fields
"sample" : [], //Sample array
"samples" : [ [], [], [], [] ], //Array of all samples

}

The sequence number is Robo’s method to allow multiple data streams run-
ning on the same socket. Each request sent to Robo must contain a sequence
number. The same sequence number is used in the response to that request.
Streaming packages do not use the sequence number. By using a sequence
number Robo allows for both a request-response and streaming communica-
tion over the same socket. It is up to the clients to use the sequence number
the correct way, by either increasing it, or using a pseudo-random number.
As long as it is unique enough for the client to know which response belongs
to what request.

5.1.2 Technologies

Robo is implemented using the Java programming language4 and the frame-
work leJOS. The leJOS framework is used to control the actions of an EV3.
Robo is mainly implemented in Java because it is the only language sup-
ported by the leJOS framework.

For the JSON communication, the Gson5 library is used. Gson is a Java
library for deserialization and serialization of JSON to and from Java objects.
It ease the use of JSON in Java.

4http://www.java.com/
5https://code.google.com/p/google-gson/

http://www.java.com/
https://code.google.com/p/google-gson/
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5.2 ev3-python

ev3-python is a Python library that gives users programmable control of an
EV3 through the Robo program. It has implemented Robo’s control interface
in its lower layers to be able to provide programmable control to the user.

The Python programming language is used since it is a dynamic, interactive
language and easily allows users to experiment interactive with connected
EV3s. It also is a very productive language and familiar to the author.

Figure 5.2 shows the design of ev3-python library. Basic usage consists of
using the API to connect and control an EV3. All communication between
the ev3-python library and the EV3 will first pass through the asynchronous
message handler. The asynchronous message handler runs in its own thread
and is tasked with the sending and receiving of all messages between the ev3-
python library and the program Robo. The asynchronous message handler
keeps track of what requests are waiting for which response and can block
their thread until the response is received. Any action that wants a response
from the EV3 before continuing, like opening of sensors, will be blocking calls
until the response is received. Other actions that does not require a response,
like drive forward can be blocking calls or immediate calls. Immediate calls
does not wait for a response and proceeds with its execution. Blocking is
implemented by using the sequence number in the messages to block requests
threads until their sequence number is received and their response can be
provided.

The user also has the option of starting a subscription on the two different
data streams. In this case, the API will send a message to Robo telling it
to start the streaming services. Streaming messages received will be parsed
continuously in the asynchronous message handler, who will in turn send
these to the subscription module. The subscription module is responsible
for making callbacks back to the user’s program when a streaming message
of the different types is received. The callbacks are executed in their own
separate thread as to not block the rest of the API.

5.2.1 Demonstrational use of the ev3-python API

The use of the library is designed around the connected EV3, the brick
object. Other external components (e.g. sensors and motors) transfer their
commands by uses the brick object as the communication point. The brick



32 5 Design and Implementation

Figure 5.2: Design of ev3-python library

object and the opened components on that brick object is stored in memory,
where reuse of the same connection addresses causes reloading of the same
objects. In other words if a new instances of the brick object is created where
the same connection address as a previous connected brick is used, the same
brick will be loaded from memory. This allows for an easier design in the
RoboMind platform, where behaviors can easily share the same brick object
by using the same address.

The following paragraphs shows how the library can be used by explaining
short code snippets.

Connect to brick and read sensor samples

Listing 5.3 shows how the library can be used to connect to an EV3 and open
two different kinds of color sensors, the Hi-tech and EV3 versions.

After the sensors has been opened, the colorID mode is extracted into sepa-
rate objects. Each sensor in the library has their own set of multiple modes.
Different modes represent entirely new states in the sensor and even the data
size may very between modes. Activation of modes can also take a long time.
Modes are extracted into their own object for this very reason, to make sure
users know what type of mode they are using.

The rest of the code shows how color samples can be extracted from the
mode in a loop.
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Listing 5.3: Color sensor reading

import ev3

brick = ev3.connect_to_brick(address=’10.0.1.1’)

color_sensor1 = ev3.EV3ColorSensor(brick, port=1)
color_sensor2 = ev3.HiTechnicColorSensor(brick, port=2)

colorid_1 = color_sensor1.get_selected_mode()
# same as above
colorid_2 = color_sensor2.get_color_id_mode()

for _ in range(0, 4):
print colorid_1.get_color_id() # prints color name
print colorid_2.get_color_id() # prints color name

Motor control

Listing 5.4 shows how the library can be used to control connected motors.
The code shows how two motors is opened on port ”A” and ”B”. Then a
couple of actions on the motor is invoked, the first one leads to the motor
running forward. When the program terminates the motors will stop.

Subscription example

Listing 5.5 show how the library can be used to subscribe on events. Sub-
scription is handled a little differently than the rest of the components in
the library. Subscription is first initialized by itself where the proper con-
figuration is done, before the brick object uses it. This is done because the
subscription require a lot of configuration to work properly. This way the
subscription object can be used in multiple bricks without requiring new sub-
scription configuration for each new brick. The code shows how subscription
can be activated on the brick and how a callback function can be registered
on the streams received. The code will print samples recived for four seconds
before terminating.
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Listing 5.4: Motor control

import ev3
import time

brick = ev3.connect_to_brick(address=’10.0.1.1’)
a = ev3.Motor(brick, port=’A’)
b = ev3.Motor(brick, port=’B’)

a.forward()
b.forward()

time.sleep(2) # Let the motors dive forward 2 sec
print "Moving?", a.is_moving(), b.is_moving()
print a.get_position(), b.get_position()

Listing 5.5: Subscription example

import ev3
import time

brick = ev3.connect_to_brick(address=’10.0.1.1’)
color_sensor = ev3.EV3ColorSensor(brick, 1)

def print_samples(samples):
print samples

sub = ev3.Subscription(
subscribe_on_sensor_changes=False,
subscribe_on_sample_data=True)

sub.subscribe_on_samples(print_samples)

brick.set_subscription(sub)
time.sleep(4) # stream for 4 seconds
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5.2.2 Technologies

For Bluetooth communication the Pybluez6 library is used. It is required to
have Pybluez installed to use Bluetooth communication in the ev3-python
library. However, it is not required if the Bluetooth part of the library is not
used.

5.3 RoboMind

Figure 5.3 shows the design of the RoboMind platform without connected
EV3s. It shows the master server and a web client connected to it. At
the master server, there are four main components: the Web Server, the
WebSocket Server, the Brick Manager and the Code Manager.

The master server is implemented in Python, while the web interface is im-
plemented in HTML, CSS and JavaScript. Do note that the RoboMind
platform is only a prototype and there are still room for improvements.

Figure 5.3: Design of RoboMind, without EV3s connected

6https://code.google.com/p/pybluez/

https://code.google.com/p/pybluez/
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5.3.1 Web server

The web server is responsible for delivering the static web interface files to
the clients through its REST API. It is also responsible for providing some
additional information between the clients and the brick manager. Such as
what EV3s are available for the client and making the RoboMind platform
connect to new EV3s. The rest of the communication on the platform requires
that the client established a stable connection to RoboMind by the use of
WebSockets7.

Technologies

The web server is implemented using the Flask8 micro framework. Flask is
a web micro framework that ease the implementation of web applications.
Flask comes with its own RESTfull request dispatcher, meaning it delivers
most of the static files automatically without intervention.

For the extra communication needs between the clients and web server there
is provided a JOSN-RPC9 interface on top of Flask. By using JSON-RPC,
adding new communication options between the client and web server can
easily be done, as well as removing some.

5.3.2 WebSocket Server

When clients’ wants to register their interest in an EV3, they connect to
the WebSocket Server and specifies which EV3 they are interested in. Com-
munication about that EV3 will now be pushed between the client and the
RoboMind platform over the connection WebSocket. This involves data such
as behavior code, sensor samples, etc.

WebSockets is used since it easily allows pushing of data between the master
and the web clients. Meaning updates in information will happen more in-
stantly than if the usual polling mechanisms was used. WebSockets also pro-
vides less the latency and requires less resources then the traditional pulling
mechanisms[19].

7http://www.websocket.org/aboutwebsocket.html
8http://flask.pocoo.org/
9http://www.jsonrpc.org/specification

http://www.websocket.org/aboutwebsocket.html
http://flask.pocoo.org/
http://www.jsonrpc.org/specification
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Technologies

The SimpleWebSocketServer10 library is used to provide the WebSocket server.
SimpleWebSocketServer is an open source Python library that easily allows
for implementing WebSocket logic. It takes care of implementing the Web-
Socket protocol in its underlying layers.

5.3.3 Brick Manger

The Brick Manager is mainly responsible for monitoring which clients is
connected to which brick. It can be thought of as a gateway module who
ensure that the communication is sent to the right places.

The brick manager is responsible for directing behavior code to the code
manager and to ensure the all clients has the latest updated code. The brick
manager also sends out updates on what is running from the code manager
to the clients.

The brick manager also ensures that the received data streams from the EV3s
is sent to the interested clients. As a minor tweak to lessen the communica-
tion between the master server and its clients, only an update in the sensor
samples will be sent out. If there are no changes in the received sensor sam-
ples the brick manager will not send the same data to clients who has already
received an identical message.

5.3.4 Code Manager

The code manager is responsible for running the behavior code. It uses the
Subsumption library to continuously run and update the behaviors added by
the clients. Behaviors sent to the code manger is evaluated and extracted by
using Python’s ”exec” function. The Subsumption controller is implemented
by using two threads. One thread run the ”action” method for the active
behavior. The other thread continuously loops through all the behaviors and
checks who one wants to be active. If a thread with a higher priority than the
one currently running wants to become active it calls the ”suppress” method
on the currently active behavior. The Subsumption controller then updates
the active behavior to the new one.

10https://github.com/opiate/SimpleWebSocketServer

https://github.com/opiate/SimpleWebSocketServer
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When a client updates a behavior, it is stored in the code manager and sent
to all other clients. If the behavior updated is the currently running behavior,
it is switched out and the ”suppress” method for the old behavior is called.
This will lead to the running behavior monetarily stopping to allow for a
change.

Behaviors added to the code manager has full access to the ev3-python li-
brary and Python interpreter on the master server. This means the behavior
modules can potentially be huge security risks, but it is simply ignored in
this prototype.

5.4 Web interface

The use of the web interface was shown back in chapter 3. The web in-
terface is a single-page web app executed in the client’s web browser. The
JavaScript11 code is responsible for updating different parts of the web view
based on the received information from the RoboMind master server. To
structure the JavaScript code and make the code more modular the frame-
work Backbone12 is used. Backbone provides a loosely-MVC (Model, View,
Controller) structure to the web application. It is loosely because the View
behaves as the controller and the view.

Technologies

Typically JavaScript files is loaded by inserting a script tags into the HTML
file. This works great for small applications when there are few JavaScript
files. However, when there are many JavaScript files, some depending on
others to work, inserting a script tag for each file and in the right order
can become rather difficult. This is typically the case when it comes to
backbone applications as there is often one file per module and some are
depending on being loaded in the right order. RequireJS13 is used as the
module loader in this web application to remove these issues. RequireJS is
a JavaScript file loader that support nested dependencies. It also provides
a tool to optimize the JavaScript application by minimizing all the files into
one single file, minimizing some of the file loading latency. RequireJS also
removes the naming conflicts in models by splitting different modules into

11http://www.w3schools.com/js/

http://www.w3schools.com/js/
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their own namespaces.

Backbone requires that the Underscore14 library is included in the project to
work properly. It is required since Backbone uses many of its functionalities.
Underscore is also the template engine used by backbone to load HTML file
templates into the web view.

JQuery15 is also a library required by Backbone. It is a small library that
easier allow things like HTML manipulation and event handling.

The code editor in the web interface is provided by the library CodeMirror16.
CodeMirror is a text editor implemented in JavaScript for editing code in a
magnitude of different programming languages.

To easier implement the front-end design the bootstrap framework17 was
used. Bootstrap is a front-end framework that provides multiple HTML,
CSS and JavaScript design components for building web applications. If used
properly the framework automatically provides a responsive web design. The
web view shown in chapter 3 has been built by using the components in the
framework as shown in its examples.

5.5 Behavior library

5.5.1 Subsumption

Implementation of the Subsumption library has been inspired by a solution
found in the leJOS framework. However, since leJOS is a Java framework it
cannot directly be used as in the RoboMind platform, which is implemented
in Python.

13http://requirejs.org/
14http://underscorejs.org/
15http://jquery.com/
16http://codemirror.net/
17http://getbootstrap.com/

http://requirejs.org/
http://underscorejs.org/
http://jquery.com/
http://codemirror.net/
http://getbootstrap.com/
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5.5.2 Fuzzy behavior

Fuzzy behavior was provided as a means to more easily allow parallel behav-
iors and to prove that the ev3-python library provided could be used in other
behavior architectures. Unfortunately running parallel behaviors, and pro-
vide sensible feedback to a use interface, is rather difficult within the limited
timeframe of this thesis, so it was dropped. The library is available with the
source code. The design of the fuzzy behavior code was inspired by examples
of how Pyro18 (Python Robotics) library used it.

With the source, code there is provided an example robot who uses the
fuzzy behavior. The robot drives around and at the same time tries to avoid
colliding with objects. The closer it gets to an object the more it tries to
avoid it by turning.

18http://pyrorobotics.com/?page=PyroModuleBehaviorBasedControl

http://pyrorobotics.com/?page=PyroModuleBehaviorBasedControl


Chapter 6

Evaluation

This chapter begins presenting the test and experiments done on different
components in the system. Then the chapter moves on to a discussion on
what can be improved and issues found during the development.

6.1 Experiments

6.1.1 Experiment environment

The experiments has been run on the author’s own computer. The computer
has the following configurations:

• Operating System: Windows 7

• Memory: 16GB RAM

• CPU: Intel(R) Core(TM) i7-3820 3.60GHZ, Quad Core

The configuration for the used EV3 can be seen in table 2.1. The EV3 uses
leJOS version 0.6.0-alpha. The RoboMind platform has been developed on
version 2.7.3 of Python.

The RoboMind platform has been tested on both windows and Linux and
works as expected on both. The tests presented in this chapter and the use
case presented in chapter 3 shows that the prototype works as designed. The
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latency between the Robo and the ev3-library shows that it is possible to
exchange a couple of hundred messages within one second.

The following subsections contains the information about the different tests
used and what the results was.

6.1.2 Robo

CPU and Memory Usage

Performance measurements of the program Robo has been done with the
Linux program top. The result of the measurements done at different work-
loads can be seen in table 6.1.

CPU Memory

Idle 3% 293%

Multiple-requests 70% 293%

Streaming 87%(max available) 293%

Table 6.1: Robo’s performance during different workloads.

Table 6.1 shows that during idle times the CPU load is relative low around
3%, while it quickly rises when given work. During requests, the CPU stays
around 70%. This is the measured CPU load while Robo receives Ping re-
quests. Robo is only answering these requests with a Pong response message.
Other requests may demand more CPU depending on the implementation.
The application is most CPU intensive when streaming is turned on, where
it takes all the available CPU resources it can get.

Table 6.1 shows that the memory usage stays on 293% at all times. The
number is above 100% since top also takes into account swap memory. The
Results shows that Robo request all available memory it can get during its
runtime and never releases any of it. This also applies to other programs like
the menu, which is also running as a leJOS application on the EV3.
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Time spent on requests

As a step to find where the time went into each request, some measurements
has been done in the Robo program. The different actions in Robo was mea-
sured during a Ping request. The result was then compared to the roundtrip
time for the whole requests. It was discovered that 42% of the roundtrip time
was spent on parsing and marshaling of the JSON messages. The time used
to complete a Ping action on Robo was so small it could not be measured.
The result can be seen in figure 6.1. The rest of the roundtrip time is lost
in the communication latency and in the message receiver at the ev3-python
library.

One can conclude from the results that JSON is a very inefficient message
format to use on the less powerful EV3. A possible improvement could be
to switch out the JSON message format for a less computational demanding
format type, like a raw binary format.

19 %

23 %58 %

Time spend JSON parsing

Time spent JSON marshalling

Time left

Figure 6.1: Distribution of time during a Ping request over USB. Shows that 19%
of the time is spent on parsing the JSON request and 23% of the time is spent on
marshalling the JSON response.
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Streaming improvement

When measuring a request’s roundtrip time during different workloads in
Robo, some performance issues was discovered. During streaming of sensor
samples, the roundtrip time of the Ping requests went up with much more
than expected. When looking into it, it was discovered that the streaming
service had added a minor sleep function as a step to lessen the performance
needed while streaming was running. When removing the sleep function the
roundtrip time improved. The performance cost with the sleep function is in
other words greater than without it.

It appears that a minor sleep functions that only sleeps for a couple of mil-
liseconds adds more performance costs that are gained. The roundtrip times
with the old and new solution can be seen in figure 6.2.
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Figure 6.2: Shows a request’s improved roundtrip time. First column shows the
roundtrip time of a request while Robo is not streaming. Second column shows the
roundtrip time while Robo is streaming and the sleep function is not there. Third
column shows the roundtrip while Robo is streaming and the sleep function is still
there. Both streaming tests only streams sensor samples from a single sensor. All
communication goes through the USB channel in this test
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6.1.3 ev3-python

CPU and Memory Usage

Measurements of the ev3-python library has been done with the tool psutil1

and windows resource monitor2. The result of the measurement at different
workloads can be seen in table 6.3. Two performance measurement tools are
used since psutil only measure CPU use on one core, while windows resource
monitor measure average used over all the cores.

CPU psutil CPU Reosurce Monitor Memory psutil

Multiple-requests 4% 1% 0.071%

Streaming 6% 1% 0.063%

Table 6.2: The ev3-python library’s performance during different workloads.

Table 6.3 shows CPU use during different workloads with the ev3-python
library. During multiple ping requests to Robo, the CPU use is relative low.
Psutil reports CPU usage of 4% while windows resource monitor reports CPU
usage of 1%. When the ev3-python library has more intense workloads like
when it is constantly receiving streaming messages of sensor samples, psutil
report 6% CPU usage while the windows resource manager reports an overall
1%.

Memory usage is low in all cases, under 1% independent of workloads.

Latency

Figure 6.3 shows the roundtrip latency between the ev3-python library and
Robo under different workloads on Robo. Measurements is done by sending
1000 Ping request to Robo and calculating an average across these requests.
The results shows that during no streaming the latency between Robo and
the ev3-python library is on average 0.004 seconds, which means a couple
of hundred requests per second can be made. Of course, this is during an
optimal request where there is minimal delay in executing it on the EV3.

1https://code.google.com/p/psutil/
2http://www.7tutorials.com/how-use-resource-monitor-windows-7

https://code.google.com/p/psutil/
http://www.7tutorials.com/how-use-resource-monitor-windows-7
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Streaming slows down the roundtrip time of requests. However, it seems the
amount of sensors data streamed has no effect on the request’s roundtrip
time.
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Figure 6.3: Average roundtrip time for requests during different workloads on Robo.
Measurements done through the USB channel. Measured in seconds.

Figure 6.4 shows the time taken to receive 1000 packages on the sensor-
sampling stream from Robo through the three different channels. The figure
shows that more sensor opened leads to a longer time. The figure also shows
that the quickest transfer times goes in the order: USB, Wi-Fi, and Blue-
tooth.

6.1.4 RoboMind Master Server

CPU and Memory Usage

Windows resource monitor and psutil was also used to measure CPU and
memory usage on the RoboMind master server. The measured CPU and
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1 2 3 4

Streaming on Bluetooth 5.024000168 5.481999874 6.099999905 6.552999973

Streaming on Wi-Fi 3.262000084 3.75 4.373000145 4.945999861

Streaming on USB 3.093 3.463999987 4.072000027 4.69900012
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Figure 6.4: Time taken before 1000 streaming packages is received on sensor sam-
ples from Robo through the different communication channels. Also shows the
variations in time when 1-4 sensors is opened for streaming.

memory usage can be seen in table 6.3. The table shows the measured per-
formance when there is only one client connected during different workloads.
While the server is only pushing updated sensor data to the client, the CPU
and memory usage is low.

The more code added to the system the more memory it takes, but it is
still small. When the system runs behavior code, the load on one CPU core
spikes to the max. This is logical since the behavior controller continuously
loops through the running behaviors checking which behavior wants to run.
It in other words act as a busy loop. This could be improved by allowing
the system to sleep for a short duration after it has been confirmed which
behavior should run. However, this would lead to a lesser degree of precision
when to switch between active behaviors.
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CPU psutil CPU Reosurce Monitor Memory psutil

Streaming 7% 1% 0.098%

Running Code 100% 12% 0.099%

Table 6.3: Performance on the RoboMind master server during different workloads.

Flask

Performance tests of Flask can be seen in table 6.4. The tool apache bench-
mark3 has been used to test the performance of the Flask server in a local
network. The numbers shows that Flask still has a great performance even
when not properly deployed on a production server. The numbers could be
improved by properly deploying it.

Flask

Transfer rate 293.62 kbytes/sec

Request pr second(mean) 1953.54

Time pr request(mean) 5.119 ms

Time pr request(concurrent) 0.512ms

Table 6.4: Flask performance. 10 000 requests, 10 connections concurrent, 2 bytes
served for each request, a ”OK” message.

6.1.5 Web Interface

The web interface has been tested in the Chrome browser4 and measured with
the tool chrome tool: Task Manager. The measured performance can be seen
in table 6.5. The measured performance goes up when the web interface is
connected directly to the RoboMind server through the WebSocket.

It has been rather difficult measuring the roundtrip latency from web inter-
face to the RoboMind master server through the WebSocket, since both only
pushes data to each other without expecting a response. It has not been
possible to test the latency this within the limited period of this thesis.

3http://httpd.apache.org/docs/2.2/programs/ab.html
4https://www.google.com/intl/en/chrome/browser

http://httpd.apache.org/docs/2.2/programs/ab.html
https://www.google.com/intl/en/chrome/browser
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CPU Memory

Idle, not connected 0% 32100KB

Connected Streaming 3% 35500KB

Running behaviors 3% 35500KB

Table 6.5: Performance of the web interface during different workloads.

6.2 Issues found

Program’s Startup Time

The startup time for programs with the leJOS environment is quite slow on
the EV3. Even a small and non-computational heavy programs demands at
least 20 seconds of idle time before it starts running. Non-surprisingly, this
has been discussed before in the leJOS community, where the old NXT leJOS
environment had an almost instant load time. The developers of leJOS has
responded in [1] that no real effort has been made to optimize program load
so far. Previously leJOS used a custom-built JVM, with less functionality to
be able to cope with the small performance of the NXT. However, on the EV3
a fully featured JVM and Java system is used, which demands additional cost
for more functionality, slowing down the load time of programs.

The first couple of requests to Robo can also sometimes have a slower re-
sponse time then they normally should have. It seems that it takes a couple
of seconds after the Robo has started before everything needed by the pro-
gram is loaded into memory. After the first couple of requests, everything
works in the speed it normally should do during the runtime.

Bugs in leJOS

Since leJOS is still in early development, a couple of bugs has been found in
the framework. The developers of the framework have updated some of the
bugs. The author has fixed others. One such bug found was in the Bluetooth
communication, where it did not allow the connection to be properly shut-
down. This meant that no new Bluetooth connections could be established
after the first one.



50 6 Evaluation

6.3 Improvements

6.3.1 Robo

As already discussed, an improvement that could be made in Robo to switch
out the JSON message format for a less computational demanding format
type, like a raw binary format.

6.3.2 RoboMind master server

The performance of the RoboMind master server could potentially be better
if it was actually deployed on a production server. However, within the
timeframe of this thesis this has not been possible.

Furthermore, the WebSocket implementation could be exchanged for another
long polling mechanism to improve the number of supported browsers, since
WebSockets are generally only supported by the latest versions of browsers.

6.3.3 Web interface

Unfortunately, there was no time to use RequireJS optimization where all
the JavaScript files is bundled into a single optimized file. The roundtrip
latency from the web server could be improved by doing so.



Chapter 7

Related Work

7.1 nxt-python

nxt-python[6] is a Python library for the Lego Mindstorms NXT robots. It
lets users use the programming language Python for programmable control
of the older generation of Mindstorms, the NXT. It provides an extensive
API over the available features on the NXT, together with support for third
party sensors and motors.

The library works by implementing Lego’s command API, the Bluetooth De-
velopment Kit1 in order to control an NXT. In other words, programs using
the library is not executed directly on the NXT, but controls it from an exter-
nal machine. It does this by sending the different binary commands specified
in the Bluetooth development kit in order to control an NXTs actions. The
library connects to available NXTs through either Bluetooth or USB, but it
depends on the user having the proper drivers and libraries installed. Lego
has yet to publicly release such a development kit for the EV3s.

nxt-python share many similarities to the ev3-python library made in this
thesis. Both of them uses a connect-control scheme in its architecture, where
there is no direct programming on the device, only a transfer of commands.
The use of the libraries also shares similarities. Both uses a brick object to
represent a connected device. Other external components (e.g. sensors and
motors) transfer their commands by uses the brick object as the communi-

1www.lego.com/en-gb/mindstorms/downloads/nxt/nxt-bdk (Last accessed
25-May-2014)
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cation point.

This is where the similarities stops as the libraries works in entirely differ-
ent ways. ev3-python works by controlling the program Robo on the EV3
by sending JSON commands. nxt-python works by using the Bluetooth de-
velopment API to control the firmware on the NXT with binary commands,
without running a program in it. nxt-python also doesn’t offer any streaming
support like the ev3-python library provides.

Unfortunately, the nxt-python library cannot be used to directly connect
and control the EV3s. It is however possible to use the nxt-python library
in RoboMind as an addition or replacement to the ev3-python library. This
would allow RoboMind to use NXTs in the system instead or as an addition
to the EV3s.

7.2 Programming on the device

There exists multiple programming environments for the Lego Mindstorm
EV3 device. Some of these includes: ROBOTC (for C users), MonoBrick
(for .NET users), leJOS (for Java users) and the default-programming envi-
ronment that is included in every Lego Mindstorm kit. Unfortunately, all of
these offers a static programming environment, meaning they must be com-
piled and uploaded before they can be run on a Lego Mindstorm device. None
of these programming environments offers a dynamic setting where code can
be added to an already running program.

As for dynamic programming environments for the EV3 there dosn’t exists
many. One found was the the python-ev3 library2. Back in the beginning
of this thesis, python-ev3 were far from complete and littered with bugs. It
was also built with the help of an outdated, unstable version of leJOS. It
was unusable as a direct programming environment for the EV3. The hope
is that more dynamic programming environment, as the python-ev3 will be
fully completed in the future. It would replace the need of programs such
as Robo to offer on-the-fly commanding of EV3s, with real dynamic on-the-
fly programming on the actual device. However, programs such as Robo do
provide a platform where the computational need is removed from the less
powerful EV3 to a more capable computer. Which can be better depending
on the application.

2www.github.com/topikachu/python-ev3 (Last accessed 22-May-2014)

www.github.com/topikachu/python-ev3
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In this thesis, leJOS is used as the programming environment to make the
controllable server program Robo, but any of the other programming envi-
ronments listed could be used instead. leJOS was chosen as it seemed the
more stable and feature rich framework at the start of this thesis.

7.3 The Player/Stage Project

The Player/Stage project[11] describes two development software tools usable
in a multitude of different robotic platforms. The project presents the tools
Player, a robot device server and Stage, a simulator for development of robot
programs.

Player is the software tool provided for running on robots. Player is a server
program that provides external application with direct access to the robot’s
sensors and actuator through its interface. External application connects to
Player over a TCP socket and can configure the device on-the-fly. Player is
runnable on a magnitude of different robotic platforms and can be configured
to support new hardware platforms as the need arises.

Robo uses a similar design to Player. Both programs are robot device servers
and both provide language independent interface accesable through the TCP
network protocol, where Robo also allows for Bluetooth. Differences can
be found in how data is transferred between external applications and the
programs. Player treats sensors and actuators as files, where clients must
open them with the proper access to either read or write to them. Robo
does not do anything similar and only provides a useable interface to the
components. Furthermore, Player allows multiple clients to be connected
at the same time where new commands may overwrite each other. The
developers argue that if multiple clients are connected and commands overlap
it was probably the developer’s intention and solving it would be more of
hindrance then a solution. Robo only allows one connected client at all
times to solve these problems and make it a more fool proof application.

Player could in theory be used instead of Robo in this thesis, but it would
need to be largely reconfigured to work on the Lego Mindstorm platform. A
daunting task within the timeframe of this thesis. Furthermore, Robo offers
some streaming services towards its clients for easier access to continuous
information. No such services is mentioned from Player.

Stage is a simulator application that provides a development platform for
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robot controllers. Stage implements the Player interface to allow users to
first develop the controllers virtually before using them on real world robots
running Player. It offers a full visualization of a 2D virtual world where robot
controllers can be thoroughly tested before deployed in the real world.

RoboMind has never been developed with the intention of simulating run-
ning robots. It is made for real world robot usage, where programs can be
developed on-the-fly and be updated while the robots runs. Stage is an ap-
plication where development is done in simulations, where code is thoroughly
tested and compiled before run in the real world. Stage doesn’t offer any live
updating of already running code. Furthermore, there is no guarantee from
the developers of Stage that robots will works the same way they did in the
simulations.

7.4 REAL

REAL (Remotely Accessible Laboratory)[13] is a system that provides users
with remote access to a programmable robot. The objective behind REAL
is to remove users need for expensive equipment to test their robotic code
and algorithms, by providing remote access to a free robotic platform.

Access to REAL is granted through a user’s web browser. Only one user
is allowed control over the robot at a time, so users must first go through
an access page. When a user is granted control of the robot a magnitude
of possibilities opens up. The robot can now be directly controlled either in
a point and click fashion, or the user can supply their own runnable code
to the robot. Togheter with the control interface two live video streams is
provided over the running robot.

Code written must follow the manufacturer C specific interface to work on the
robot used in REAL. Code must be written on the users own device before
transferring it as files to the server at REAL. REAL compiles the code and
allows users to specify when to start executing it on the robot. After the
execution the users has the option of downloading the log files from robot,
where information such as program flow and sampled sensor values can be
inspected.

REAL shows how the addition of web cams to a system may aid students
and researchers with access to expensive equipment they could not afford
themselves. The same idea can be applied to RoboMind to provide the same
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access. REAL also shows how direct programming on a robot may be offered
through a web interface, where code is shipped and compiled at the server
before used on the robot. It does not however, provide any real time access to
sensor information and program flow. It does neither provide any tweaking
in already running programs. Programs must be entirely stopped before
recompiled and restarted.





Chapter 8

Conclusion and Future Work

This chapter concludes the work of this thesis and presents the contributions,
concluding remarks and future work.

8.1 Contributions

This thesis describes the architecture, design, implementation and evalua-
tion of RoboMind, a platform for on-the-fly programming and inspection of
behavior-based robot programs. Through RoboMind, users can add or edit
existing behavior modules on-the-fly without disrupting what the robot was
previously doing. The interface allows users to inspect which behaviors are
running in addition to the collected sensor samples from the robot’s run-time.

RoboMind has been thoroughly tested and developed for usage with the lat-
est generation of the Lego Mindstorms, the EV3. The tests confirm that
RoboMind works as intended. RoboMind offers a fully featured Python-
programming environment for run-time modification of running EV3 pro-
grams. This is provided with the help of the ev3-python library, which con-
trols the EV3s through the control program Robo, both is implemented by
the author.
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8.2 Concluding remarks

In this thesis, a lot of effort went into figuring out the quirks of leJOS. leJOS
allows for a wide variety of different actions through its extensive API, but
using it for development can be a cumbersome process. Programming is done
on an external computer, where a program must first be compiled before it
can be sent over to the EV3. This takes time, even with the proper scripts
it requires at least two seconds of idle time before it was ready to run on the
EV3. Including external jar libraries was even harder, where many not so
obvious configurations must be made. The programs also have a slow starting
time, where even small and non-computational heavy programs demands at
least 20 seconds of idle time before it actually starts running. Furthermore,
in the leJOS environment there exists bugs. It is not a stable environment,
which means some is spent on fixing these bugs to be able to use all the
available features in the API.

8.3 Future Work

The prototype works as designed, but there is always room for improvements.
The following features was could further improve the system and was not
implemented because of the limited timeframe of this thesis:

• More can be done on Robo’s API to allow for more functionality. Po-
tentially redesign the control interface to use a less computational de-
manding communication format.

• A more descriptive and feature rich web interface. There are a lot of
room for improvements here as only some basic features are in place.
The web interface should be more intuitive for new users, so it can
automatically be taken in use without explaining all the features. Fur-
thermore, more features in the web interface could be implemented.
Like persistent saving of code and settings and a better editor for be-
havior programming.



References

[1] Forum discussion on the alpha-0.6.0 release. http://www.lejos.
org/forum/viewtopic.php?f=18&t=5822&start=15. [Online;
accessed 22-Feb-2014].

[2] Lego mindstorms homepage. http://www.lego.com/en-us/
mindstorms/?domainredir=mindstorms.lego.com. [Online;
accessed 08-May-2014].

[3] The lejos forum page. http://www.lejos.org/forum. [Online;
accessed 08-May-2014].

[4] The lejos homepage. http://www.lejos.org/. [Online; accessed
08-May-2014].

[5] Summary of mindstorms history. http://www.lego.com/en-us/
mindstorms/gettingstarted/historypage/. [Online; ac-
cessed 07-May-2014].

[6] nxt-python homepage. https://code.google.com/p/
nxt-python/, 2012. [Online; accessed 22-May-2014].

[7] R.C. Arkin. Behavior-based Robotics. Bradford book. MIT Press, 1998.

[8] R.A. Brooks. A robust layered control system for a mobile robot.
Robotics and Automation, IEEE Journal of, 2(1):14–23, Mar 1986.

[9] Jay Bryant and Mike Jones. Responsive web design. In Pro HTML5
Performance, pages 37–49. Apress, 2012.

[10] Roy T. Fielding and Richard N. Taylor. Principled design of the modern
web architecture. ACM Trans. Internet Technol., 2(2):115–150, May
2002.

59

http://www.lejos.org/forum/viewtopic.php?f=18&t=5822&start=15
http://www.lejos.org/forum/viewtopic.php?f=18&t=5822&start=15
http://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com
http://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com
http://www.lejos.org/forum
http://www.lejos.org/
http://www.lego.com/en-us/mindstorms/gettingstarted/historypage/
http://www.lego.com/en-us/mindstorms/gettingstarted/historypage/
https://code.google.com/p/nxt-python/
https://code.google.com/p/nxt-python/


60 References

[11] B. Gerkey, R. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In 11th Interna-
tional Conference on Advanced Robotics (ICAR 2003), Coimbra, Portu-
gal, June 2003.

[12] L.M. Grabowski and P. Brazier. Robots, recruitment, and retention:
Broadening participation through cs0. In Frontiers in Education Con-
ference (FIE), 2011, pages F4H–1–F4H–5, Oct 2011.

[13] E. Guimaraes, A. Maffeis, J. Pereira, B. Russo, E. Cardozo, M. Berger-
man, and M.F. Magalhaes. Real: a virtual laboratory for mobile robot
experiments. Education, IEEE Transactions on, 46(1):37–42, Feb 2003.

[14] O. Hallaraker and Giovanni Vigna. Detecting malicious javascript
code in mozilla. In Engineering of Complex Computer Systems, 2005.
ICECCS 2005. Proceedings. 10th IEEE International Conference on,
pages 85–94, June 2005.

[15] T. Karp, R. Gale, L.A. Lowe, V. Medina, and E. Beutlich. Generation
nxt: Building young engineers with legos. Education, IEEE Transac-
tions on, 53(1):80–87, Feb 2010.

[16] Jennifer S. Kay. Robots as recruitment tools in computer science: The
new frontier or simply bait and switch? 2010.

[17] Tom Lauwers, Emily Hamner, and Illah Nourbakhsh. A strategy for
collaborative outreach: Lessons from the csbots project. In Proceedings
of the 41st ACM Technical Symposium on Computer Science Education,
SIGCSE ’10, pages 315–319, New York, NY, USA, 2010. ACM.

[18] Haroon Shakirat Oluwatosin. Client-server model. IOSR Journal of
Computer Engineering (IOSR-JCE).

[19] Frank Greco Peter Lubbers and Kaazing Corporation. Html5
web sockets: A quantum leap in scalability for the web.
http://www.websocket.org/quantum.html. [Online; accessed 28-May-
2014].

[20] Alessandro Saffiotti. Fuzzy logic in autonomous robotics: behav-
ior coordination. In Sixth IEEE Intl. Conference on Fuzzy Systems
(FuzzIEEE’97, pages 573–578, 1997.

[21] Xander Soldaat. Comparing the nxt and ev3
bricks. http://botbench.com/blog/2013/01/08/

http://botbench.com/blog/2013/01/08/comparing-the-nxt-and-ev3-bricks/
http://botbench.com/blog/2013/01/08/comparing-the-nxt-and-ev3-bricks/
http://botbench.com/blog/2013/01/08/comparing-the-nxt-and-ev3-bricks/


References 61

comparing-the-nxt-and-ev3-bricks/. [Online; accessed
07-May-2014].

[22] Alexander Svendsen. Robomind: A youtube movie. http://youtu.
be/76abq0vTG5A. [Online; accessed 31-May-2014].

[23] Laurens Valk. Ev3 and nxt: Difference and compatibility. http://
robotsquare.com/2013/07/16/ev3-nxt-compatibility/.
[Online; accessed 07-May-2014].

[24] M. Wilson and B. Dupuis. In From Bricks to Brains: The Embodied
Cognitive Science of LEGO Robots, AU Press Series, pages 199–221.
AU Press, 2010.

http://botbench.com/blog/2013/01/08/comparing-the-nxt-and-ev3-bricks/
http://botbench.com/blog/2013/01/08/comparing-the-nxt-and-ev3-bricks/
http://botbench.com/blog/2013/01/08/comparing-the-nxt-and-ev3-bricks/
http://youtu.be/76abq0vTG5A
http://youtu.be/76abq0vTG5A
http://robotsquare.com/2013/07/16/ev3-nxt-compatibility/
http://robotsquare.com/2013/07/16/ev3-nxt-compatibility/




Appendix A

Behavior Example

The next sections shows how the behaviors used as the example in chapter 3
works. The first behavior has the biggest priority and always gets to run if it
wants to. It only wants to run when the ultrasonic sensor in the front of the
robot has discovered something in close proximity (less than 0.25 cm). The
second behavior always wants to run if it got the chance. The Lego robot
used for this example can be seen in figure A.1

Figure A.1: Picture of the robot wanderer used in this behavior example
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64 A Behavior Example

A.1 Behavior: AvoidColliding

This behavior wants control when the robot is near colliding with something
in front of it. When the behavior has control, it starts turning 90 degrees
to the left. It then releases control so other behaviors can start running.
However, if the robot is again close to colliding with something this behavior
will again regain control. The behavior module can be seen in figure A.1.

Listing A.1: AvoidColliding Behavior Code

class AvoidColliding(Behavior):
def __init__(self):

self._brick = ev3.connect_to_brick(’10.0.1.1’)
self.left_motor = ev3.Motor(self._brick, ev3.

MOTOR_PORTS.PORT_D)
self.right_motor = ev3.Motor(self._brick, ev3.

MOTOR_PORTS.PORT_A)
self.ultrasonic = ev3.EV3UltrasonicSensor(self.

_brick, ev3.SENSOR_PORTS.PORT_1).
get_distance_mode()

def check(self):
distance = self.ultrasonic.fetch_sample()[0]
if distance < 0.25 and distance != -1:

return True
return False

def action(self):
self.left_motor.rotate(600, immediate_return=True)
self.right_motor.rotate(-600)

def suppress(self):
pass

A.2 Behavior: DriveAround

This behavior simply drives forward all the time. It wants to run all the time,
but has less priority then the AvoidColliding behavior. Meaning it always
release control when AvoidColliding behavior wants to take over. Before
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releasing control, it will always set the robot back to a stable state. Meaning
it will stop the motors before handing over control. The behavior module
can be seen in figure A.2.

Listing A.2: DriveAround Behavior Code

class DriveAround(Behavior):
def __init__(self):

self.brick = ev3.connect_to_brick(’10.0.1.1’)
self.left_motor = ev3.Motor(self.brick, ev3.

MOTOR_PORTS.PORT_D)
self.right_motor = ev3.Motor(self.brick, ev3.

MOTOR_PORTS.PORT_A)
self._running = True

def check(self):
return True

def action(self):
self._running = True
self.right_motor.forward()
self.left_motor.forward()
while self._running:

pass
self.right_motor.stop(immediate=True)
self.left_motor.stop()

def suppress(self):
self._running = False
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