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ABSTRACT 
 

 

The Vestnesa Ridge is an elongated sediment drift situated at 79o N on the northwest 

Svalbard margin in the Fram Strait. It is one of the northernmost documented oceanic 

gas hydrate provinces. The narrow southeastern part of the ridge is characterized by 

pockmarks that line up along the apex of the crest. Some of these pockmarks are 

continuously venting gas while some are inactive. This study looks at changes in 

morphology of the pockmarks in relation to sedimentary processes, ocean currents and 

fluid flow mechanism, and their role in active fluid venting. Detailed bathymetry and 

backscatter data from different surveys in 2010, 2012 and 2013 are studied. Comparing 

the surfaces reveals relatively less sediment deposition in the pockmarks. The 

pockmarks exhibit an elongate shape and asymmetrical profiles, pointing to a strong 

influence by the WSC bottom currents. Backscatter data also reveal possible carbonate 

or gas hydrate deposits inside the pockmarks. These observations, along with apparent 

inactivity in some pockmarks, point to a possible scenario where carbonate or hydrate 

formation leads to self-sealing and eventual relocation of the gas vents through existing 

faults and fractures. 
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1 INTRODUCTION 
 

 

1.1 PURPOSE 
 

The aim of this master thesis is to map and describe morphological changes on the 

seabed of the Vestnesa Ridge along the continental margin west of Svalbard. Swath 

bathymetry gridded to 10 m from three different cruises from 2010, 2012 and 2013 were 

processed using QPS Fledermaus 4D geo-spatial processing and analysis tool for high 

resolution imaging of the seabed. The results will show in changes in the local 

geomorphology that may be related to sedimentary processes, ocean currents and fluid 

flow activity in the area. In addition, backscatter data will also be analyzed using QPS 

Fledermaus Geocoder Toolbox (FMGT) to identify structures or deposits related to fluid 

flow and to classify the different types of sedimentary environment in the study area. 
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1.2 STUDY AREA 
 

The study area is located at the Vestnesa Ridge situated on the northwest Svalbard 

margin in the Fram Strait. The Vestnesa Ridge is a SE-NW to E-W bending elongated 

sediment drift situated at 79o N to the northeast of the Molloy transform fault and to 

the north of the Knipovich Ridge (Figure 1). It is one of the northernmost documented 

oceanic gas hydrate provinces, with active gas leakage at the eastern part on the upper 

continental slope (Bünz et al., 2012). 

 

 

Figure 1: Overview map of the Vestnesa Ridge on the western margin of Svalbard. (modified from Bünz et al., 2012) 
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1.3 FLUID FLOW 
 

Seabed fluid flow involving seepage of free methane gas and/or water with a high 

methane concentration in solution is found in every sea and ocean (Judd, 2003). 

Acoustic and seismic data can reveal seabed fluid flow indicators such as pockmarks, 

mud volcanoes, acoustic chimneys, pingos and authigenic carbonate build up which are 

related to hydrocarbon migration (Hovland and Judd, 1988). These may be present both 

in passive continental margins in areas with rapid sedimentation and undercompaction 

that prevents fluids to be expelled during sedimentation, and on active continental 

margins, where they are mainly related to compressional geological processes (Judd and 

Hovland, 2007). 

 

Pockmarks are craters that commonly occur worldwide on muddy seabed and are 

known to occur on continental slopes with gas hydrates and in association with slides 

and slumps (Hovland et al., 2002). They occur wherever fluid flow is focused and escape 

is from low-permeability, fine-grained surficial sediments (Hovland and Judd, 1988). 

Pockmarks can be subdivided into six morphological classes (Hovland et al.2002) (Figure 

2): 

 

 Unit pockmarks are small depressions typically 1-10 m across and up to 0.5 m 

deep, and probably represent a one-time expulsion event. They are common 

inside and around normal pockmarks.  

 

 Normal pockmarks are circular depressions typically 10-700 m across, and from 

1-45 m deep. Their cross-section varies from a basin-formed (low-angle) shape 

to an asymmetrical and steep-walled feature. Some are even funnel-shaped in 

the center. 

 

 Elongated pockmarks are depressions with one axis that is much longer than the 

other. They occur on slopes and areas of seafloor influenced by strong bottom 

currents. 
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 Eyed pockmarks contain an acoustically high-reflective object or region in its 

central part, which could either be caused by coarse material remaining after the 

erosive process (winnowing), from biological activity (skeleton remains, dead 

and living shells, etc.) or from authigenic carbonate precipitation. 

 

 Strings of pockmarks consist of unit pockmarks or small normal pockmarks 

arranged in curvilinear chains or strings, which may be kilometers in length. They 

are suspected to be a result of fluid focusing along near-vertical faults, flexures 

or weakness zones in the upper sedimentary layer. 

 

 Complex pockmarks occur as clusters of normal pockmarks or amalgamations of 

large pockmarks. 

 

 

 

Figure 2: Illustration of the main morphological classes of pockmarks. (adapted from Hovland et al., 2002) 
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Fluid migration may be detected on seismic data where acoustic masking and its related 

features occur. Acoustic masking is an area on the seismic profile with low seismic 

reflectivity or where the reflections are highly distorted or disturbed. When occurring in 

association with other gas indicators such as bright spots or pull down of underlying 

seismic reflections, they may be interpreted to indicate a scattering of acoustic energy 

caused by interstitial gas bubbles in sediments (Anderson and Hampton, 1980) (Figure 

3). Gas chimneys are detected on seismic data as vertical zones which have been 

disturbed by previous or ongoing gas migration. The acoustic disturbance in the 

chimneys may have been caused by small parcels of gas in the pore space of sediments 

and slightly displaced sediments (Judd and Hovland, 2007). Rapid and strong gas flows 

may cause upward directed structural disturbances of sediment layers and a blow-out 

feature at the sediment surface. Acoustic gas chimneys may show both push down and 

pull-up effects. Pull up may occur in the presence of a high velocity zone in layers of 

authigenic carbonate or gas hydrates. 

 

Pockmarks on continental shelves and slopes, in estuaries and in lakes may be 

considered as valuable monitoring sites for deep fluids (Hovland et al., 2002).  

 

 

Figure 3: (a) Seismic profile showing a zone of acoustic masking, associated bright spots and pull down of underlying 
reflections. (b) Seismic profile showing acoustic pipes interpreted to represent fractures pathways for gas-bearing 
fluids, leading in this case to an interpreted pockmark crater on the buried horizon.  (from Andreassen et al., 2007) 
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1.4 GAS HYDRATES 
 

Gas hydrates are crystalline solids and are similar to ice, except that the crystalline 

structure is stabilized by a gas molecule within the cage of water molecules (Judd and 

Hovland, 2007). Many gases have molecular sizes suitable to form hydrates, including 

naturally occurring gases such as methane and other hydrocarbons, although most 

marine gas hydrates that have been recovered and analyzed are methane hydrates. 

Natural gas hydrates can be found mainly in oceanic and permafrost regions, where the 

pressure and temperature conditions are such that gas hydrates remain stable. In 

addition, there must be an adequate supply of gas molecules and water within the 

sediments (Hovland, 2005, Kvenvolden, 1993). 

 

Gas hydrates may be indirectly detected using seismic methods, where the base of the 

gas hydrate stability zone (GHSZ) is indicated by a BSR (bottom simulating reflector) 

(Figure 4). The base of gas hydrate-bearing sediments follows iso-temperature lines and 

causes a seismic reflection that is parallel to the seafloor. The BSR may be caused by the 

high velocity of the gas hydrate in the hydrate-bearing zone above the BSR, or by the 

low velocity of free gas in the gas-bearing zone below the BSR. In any case, the BSR is 

characterized by being a negative-polarity reflection, indicating a negative reflection 

coefficient. The compressional wave velocity decreases abruptly when the seismic signal 

enters from the hydrated sediments above to gas charged sediments beneath it. Due to 

the velocity drop, the gas hydrate/free gas related BSR shows a phase reversal if 

compared to the sea floor. The true nature of BSR is mostly due to the presence of free 

gas beneath the hydrate sediments (Andreassen et al., 1995). Since the BSR is 

dependent on pressure and temperature, it may also cross-cut the sedimentary bedding 

(Bünz and Mienert, 2004). 

 

Natural submarine gas hydrates are regarded as important because it has a potential of 

being an energy resource – the density of methane hydrates is up to five times greater 

than the energy density of conventional natural gas (Kvenvolden, 2000). Gas hydrates 

may also have a strong influence on the environment and climate because methane is a 

significant greenhouse gas. They may also be a significant geohazard because they alter 
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the seafloor sediment stability – the permeability of the sediment decreases due to gas 

hydrate growth and sediment compaction stops. When continued sedimentation causes 

a deeper burial of gas hydrate, it will then reach a temperature where the gas hydrate 

is no longer stable. The solid gas hydrate will become a liquid gas/water mixture, and 

the basal zone of the gas hydrate becomes underconsolidated and possibly 

overpressured due to newly released gas, leading to a zone of weakness. This zone of 

reduced shear strength and increased overpressure may result in submarine slope 

failures (McIver, 1982). A study of the Storegga slide by Mienert et al. (2004) suggests 

that the hydrate stability zone in the upper part of the Storegga area was significantly 

influenced by variations in ocean temperature since LGM, and that hydrate dissociation 

may also have influenced the position of the headwall of the slide, corresponding with 

the zone of predicted maximal in situ pore pressure build-up. 

 

 

Figure 4: Schematic model for dynamic hydrate/free gas system on the northern flank of the Storegga Slide. (from 
Bünz and Mienert, 2004) 
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1.5 CONTOURITES (SEDIMENT DRIFTS) 
 

Contourites are sediments deposited or substantially reworked by the persistent action 

of bottom currents (Stow et al., 2002). They cover large parts of the ocean floor and 

continental margins, and occur largely in continental rise to lower slope settings. The 

accumulation and geomorphology of contourite deposits are mainly influenced by three 

factors: intensity of deepwater bottom-currents, seafloor topography, and sediment 

supply (Faugères et al., 1993). There are three main types of contourite accumulations 

as proposed by Faugères et al. (2008): 

 

• Sheeted drifts (Figure 5) or contourite sheets are characterized by a wide, 

mounded geometry, covering a large area with uniform thickness. The internal 

seismofacies is typically low-amplitude, discontinuous reflectors. They show a 

predominantly aggradational stacking pattern with no significant migration and may 

comprise or be covered by large fields of sediment waves. Three kinds of sheeted drifts 

are identified: (a) abyssal sheets, which cover basin plains whose margins trap the 

bottom currents; (b) slope sheets, which are spread out across margins where a gentle 

gradient and smooth topography favor a wide non-focused current; and (c) channel-

related patch sheets. 

 

• Mounded drifts (Figure 5) are characterized by their distinctly mounded and more 

or less elongated geometry. They commonly show good parallel to sub-parallel seismic 

reflectors. Three kinds of mounded drifts are identified: (a) giant elongated drifts, 

ranging from a few tens of kilometers to over 1000km long, thicknesses of up to several 

hundreds of meters, and situated parallel or sub-parallel to contours; (b) channel-

related drifts, which are specifically related to narrow conduits (deep channels, 

gateways or contourite moats) where the bottom circulation is constrained and flow 

velocities increased; and (c) confined drifts deposited in relatively small confining basins. 
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• Mixed drift systems involve the significant interaction of contour currents with 

other depositional processes, and characterized by both down-slope and along-slope 

processes, where the normal contourite-drift morphologies and development may be 

markedly modified. 

 

 

 

Figure 5: Summary of the different types of contourite drifts (after McCave and Tucholke, 1986; Faugères et al., 
1999) showing the drift general geometry, migration trend (black arrow) and inferred axis of bottom-current flow 
(dashed arches). (from Rebesco and Stow, 2001) 
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In Northern Europe, from southwest Ireland to offshore central Norway, persistent 

bottom currents have generated drift deposits which mostly have elongated mounded 

geometries with well-layered internal acoustic signatures and composed of sandy and 

muddy contourites, with facies indicating that deposition was dominated by a 

combination of bottom currents, ice-rafting and hemipelagic settling (Hernández-

Molina et al., 2008). Along the Norwegian shelf, there is present winnowing along the 

shelf and upper slope by the inflowing currents of the Atlantic waters, and the 

contourites derived from the winnowing are deposited in lower slope embayment and 

in slide scars (Laberg et al., 2005), whereas deep persistent currents have influenced the 

sedimentation in large parts of the Fram strait at the NW Svalbard margin (Eiken and 

Hinz, 1993). 

 

The study of contourites has considerable impact on three research areas: hydrocarbon 

exploration, climate change and slope stability.  

 

The economic significance of contourites has been recognized due to the advance of 

hydrocarbon exploration toward deeper waters. This demands a better understanding 

of the role of bottom currents and their implications for petroleum systems such as 

reservoir and sealing rocks. Seismic and well-log characteristics of coarse-grained 

contourites can reveal high reservoir potential. Fine-grained drifts can locally and 

regionally develop large and thick accumulations, which have an important seal 

potential for trapping hydrocarbon (Viana et al., 2007). It is also worth noting that along 

the Atlantic passive margin settings, gas hydrates associated with BSRs are mainly found 

in contourite deposits (Dillon and Paull, 1983). In some cases, sediment erosion by 

contour currents can trigger the release of methane from gas-hydrate accumulations 

(Holbrook et al., 2002).  
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2 GEOLOGICAL OVERVIEW 
 

 

2.1 TECTONIC SETTING 
 

The Svalbard archipelago is located on the north-western edge of the European 

continental shelf and bordered by the Arctic Ocean, Fram Strait, Norwegian and Barents 

Sea (Figure 6). Seafloor spreading in the Eurasian Basin and the Norwegian-Greenland 

Sea occurred in the early Eocene times as Greenland and North America separated from 

Eurasia (Demenitskaya and Karasik, 1969; Talwani and Eldholm, 1977; Eldholm et al., 

1987). A rotation in spreading in the early Oligocene terminated the Western 

Spitsbergen Orogeny and forced rifting along the continental transform between the 

Barents Sea and Greenland, leading to oblique spreading along the Knipovich Ridge and 

finally continental separation of Greenland and Svalbard (Talwani and Eldholm, 1977; 

Faleide et al., 1991). After subsidence, the Fram Strait developed as the only deepwater 

passage to the Arctic Ocean, playing a crucial role in ocean circulation processes (Eiken 

and Hinz, 1993). 

 

The forming of new oceanic crust started at about 20 Ma, with a low spreading rate (1,5-

2 cm/yr), resulting in a short distance between the main spreading ridge and the 

continental shelf. A series of transform faults and short spreading centers connect the 

Knipovich Ridge in the most northern part of the Norwegian-Greenland Sea with the 

Gakkkel Ridge in the eastern Arctic basins (Talwani and Eldholm, 1977; Thiede et al., 

1998). West dipping faults are common, formed as compressional to transpressional 

structures during the Western Spitsbergen Orogeny, and then extended during the 

opening of the ocean between Greenland and Svalbard. 
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Figure 6: Structural map of the Svalbard area with plate boundaries, fracture zones and major fault zones according 
to various authors as cited by Winkelmann et al. (2008). BFZ – Billefjorden Fault Zone; HD – Hayes Deep; HFZ - Hinlopen 
Fault Zone; HR - Hovgård Ridge; HSFZ - Hornsund Fault Zone; KR - Knipovich Ridge; LFZ - Lifdefjorden Fault Zone; LT - 
Littke Trough; LV - Lena Valley; MD - Molly Deep; MFZ - Molly Fracture Zone; MoFZ - Moffen Fault Zone; MR - Molly 
Ridge; NLTFZ - North Lena Trough Fracture Zone; SFZ - Spitsbergen Fracture Zone; SLTFZ - South Lena Trough Fracture 
Zone. (from Winkelmann et al., 2008) 

 

The continental margin north of Svalbard is considered to be of non-volcanic nature 

(Geissler and Jokat, 2004). The continent-ocean transition in the area is characterized by 

down-faulted basement rocks rather than by seaward dipping volcanic sequences. Some 

of the faults in the southern Yermak Plateau cutting through the young sediments near 

the seafloor, in addition to sparsely occurring earthquakes (IRIS, 2000) in the area, point 

to recent crustal movements, which are connected with the evolution of the plate 

boundary along the Spitsbergen Fracture Zone. SW-NE structures are dominant 

following the modern continental margin.  
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2.2 OCEAN CURRENTS 
 

Svalbard is dominated by two main surface currents, the West Spitsbergen Current 

(WSC), a shallow northward-flowing warm water branch of the North Atlantic Current 

(NAC), and the cold southward-flowing East Greenland Current (EGC) (Aagaard et al., 

1987). The area between these two surface currents is characterized by mixed waters 

(Swift and Aagaard, 1981). The relatively warm and saline incoming Atlantic Water (AW) 

provides major pathway for heat and water transport into the Arctic Ocean, and an 

integral part of the global thermohaline circulation (Ślubowska-Woldengen et al., 2007). 

 

The Fram Strait is the 2500 m deep channel connecting the Nordic Seas to the Arctic 

Ocean. The North Atlantic Water (AW) flows through the strait along its eastern side as 

the upper 850m part of the WSC (Fahrbach et al., 2001; Schauer et al., 2004) and 

eventually branches out. The largest one, Knipovich Branch (KB), separates from the 

WSC and flows above the Knipovich ridge and the Greenland-Spitsbergen sill, and joins 

the East Greenland Current flowing southwards on the western side of the Fram Strait. 

Further north, at 79°–79°45"N, the remaining WSC splits into the Svalbard Branch (SVB) 

and the Yermak Plateau Branch (YPB) (Figure 7).  

 

 

Figure 7: Map of ocean currents on the west and north of Svalbard. The path of the West Spitsbergen Current (WSC) 
is after Rudels et al. (2005). (from Cokelet et al., 2008) 
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In Fram Strait, the observed depth of the AW core is at 150–200 m and the lower 

boundary of the AW has been observed between 600–715 m (Schauer et al., 2004; 

Cokelet et al., 2008; Aksenov et al., 2010) (Figure 8). The seabed topography affects the 

local current pattern as the current speed intensifies with an increase in steepness of 

the slope (Cokelet et al., 2008) (Figure 9). 

 

 

Figure 8: Water mass type for Section 1 (location on Figure 4) looking downstream in the West Spitsbergen Current, 
Svalbard Branch SVB, from October to November 2001. PW = Polar Water, PIW= Polar Intermediate Water, ASW = 
Arctic Surface Water, AW = Atlantic Water, UAIW = Upper Arctic Intermediate Water, LAIW = Lower Arctic 
Intermediate Water, DW = Deep Water (after Aagaard et al., 1985). (from Cokelet et al., 2008) 

 

 

Figure 9: Geostrophic velocity for Section 1 (location on Figure 4) looking downstream in the West Spitsbergen Current, 
Svalbard Branch SVB, from October to November, 2001. (from Cokelet et al., 2008) 
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2.3 SEDIMENTATION AND SEABED MORPHOLOGY 

 

 

The presence and dynamics of glaciers and ice streams during Plio-Pleistocene 

glaciations have had a pronounced effect on both sedimentation and erosion on the 

Svalbard continental margin. These fast-flowing ice streams scoured cross-shelf troughs 

and pushed large volumes of terrigenous sediments beyond the shelf break during 

glacial times, resulting in shelf progradation and stacked glacigenic debris flow 

deposition on the upper slopes (Ottesen et al., 2005). 

 

The morphology of the Svalbard shelf indicates glacial activity during the Plio-

Pleistocene when glaciers repeatedly reached the shelf break (Solheim et al., 1996; 

Solheim et al., 1998; Vorren et al., 1998), with the last three advances taking place 

during the Weichselian (Mangerud et al., 1998). The shelf is characterized by fjord and 

cross-shelf trough systems, which typically drain into trough mouth fans, separated by 

shallower banks (Figure 10). Submarine morphological evidence, along with 

stratigraphical and chronological data from previous studies (Svendsen et al., 1992 1996 

2004, Andersen et al., 1996, Landvik et al., 1998, Mangerud et al., 2002) show that the 

Late Weichselian ice sheet reached the continental shelf edge west and north of 

Svalbard. This ice sheet was partitioned into fast-flowing ice streams which retreated 

rapidly from the cross-shelf troughs and outer fjords, separated by slower moving ice on 

the intervening shallower banks. Ice calving is thought to have been the main 

mechanism responsible for the rapid mass loss from ice sheets on the deeper cross shelf 

troughs (Ottesen et al., 2007a). 
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Figure 10: Geomorphic map of submarine bedforms on the Svalbard continental margin: Mega-scale glacial lineations 
formed at the base of fast-flowing ice streams, Transverse ridges interpreted as terminal moraines; Recessional 
transverse ridges (and sedimentary wedges) making major and minor stillstands during ice retreat; and Lateral 
moraines formed at ice stream lateral margins. (from Ottesen et al., 2007a) 

 

 

According to Eiken and Hinz (1993), deep persistent currents have influenced the 

sedimentation in large parts of the Fram Strait since the late Miocene, where contourite 

deposits are mainly concentrated on the eastern part of the strait. In postglacial times, 

the uplift of the continental crust of Svalbard and the subsidence of the young ocean 

crust was most likely accompanied by increases in sediment fluxes into the eastern part 

of the Fram strait (Eiken and Hinz, 1993). And in regions between the trough fans, the 

sedimentation is controlled by alongslope currents and hemipelagic deposition 

producing sediment drifts and thick draped sediments (Vogt et al., 1999). 
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Eiken and Hinz (1993) divided the Vestnesa Ridge into three seismic sequences that 

make up more than 2 km of sediments. These are YP-1, YP-2 and YP-3 (Figure 11) that 

show continuous strata with only minor unconformities and are as follows: YP-3: 

Sediment depocenter with a prograding pattern at the outer shelf and a second 

depocenter of circular shape at the Vestnesa Ridge. YP-2: Westward-thickening wedges 

with a migration of the depocenter and a sequence that downlaps to the west. YP-1: 

Lowermost sequence YP-1 with shows a subparallel reflection pattern.   

 

 

Figure 11: Interpretation of seismic line UB 18-81 parallel to Vestnesa Ridge (Eiken and Hinz, 1993). 

 

The western Svalbard margin has been influenced by both downslope and alongslope 

processes (Howe et al., 2008). A sediment drift on the Vestnesa Ridge contains at least 

50m of acoustically well-laminated sediments while the crest of the drift contains fine-

grained silty muds. A sediment core analysis from the crest of the drift (Howe et al., 

2008), suggest Holocene sedimentation dominated by muddy-silty contourite deposits 

from the West Spitsbergen Current, sitting above laminated silty turbidites formed from 

increased sediment supply and lower sea level during the LGM. The calculated high 

sedimentation rates of 105 cm/kyr for the pre-LGM with a decrease to less than 10 

cm/kyr between the LGM and Holocene. The modern mass accumulation rates on the 

Vestnesa Ridge drift is at 0.12 cm/yr (Howe et al., 2008). 

 

More recent studies (Jessen et al., 2010, Consolaro et al., 2014) looking into sediment 

cores from the study area describes of an upper interval of a homogenous hemipelagic 

grey clay (225-0 cm); a fine-grained, structureless, silty mud interval with high 

abundance of diatoms (335-225 cm); and a lower part with high concentration of IRD, 

with a greenish sandy layer (360 cm). 
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2.4 FLUID FLOW AT VESTNESA RIDGE 
 

A 1-3 km wide and 50 km long pockmark field on the crest of the Vestnesa Ridge was 

mapped by Vogt et al (1994) using sidescan sonar. Some of the pockmarks are 100-200 

m in diameter and 10-20 m deep. These pockmarks were hypothesized to have been 

formed by evolution of methane generated by the decomposition of marine organic 

matter in the sediment drift. The rising methane would collect in the ridge-crest trap, 

and intermittently escaping to the sea floor (Vogt et al., 1994). 

 

Several seismic studies revealed the occurrence of a prominent bottom-simulating 

reflector (BSR) along the western Svalbard margin (Eiken and Hinz, 1993, Posewang and 

Mienert, 1999, Vanneste et al., 2005a), indicating that gas hydrates and gas 

accumulations are common in the area (Figure 12). The gas hydrates on the western 

Svalbard margin are suggested to be mainly of biogenic origin (Myhre et al., 1995,  

Vanneste et al., 2005b). 

 

 

Figure 12: Multi channel seismic profile across the NW Svalbard margin from the Molloy Fracture Zone to the shelf 
edge and running E-W through the Vestnesa Ridge. Dashed line marks the identified BST across the margin. (from 
Hustoft et al., 2009) 

 

 

A study in 2008 revealed a gas-hydrate, free-gas and venting system that is exceptionally 

more dynamic than documented elsewhere along the northeastern North Atlantic 
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margin (Hustoft et al., 2009). This study documented an elongated pockmark field 

consisting of more than 100 individual pockmarks up to 600 m wide, along the apex of 

the Vestnesa Ridge. Active degassing was evident from gas flares (750-m-high and 150-

m-wide) observed in the water column (Figure 13). Episodic gas discharge at this site in 

the eastern Fram Strait has probably occurred for thousands of years, and the 

extensional faulting related to the Knipovich Ridge and/or thermal subsidence of the 

basin, may play a key role in the supply and distribution of methane hydrate and free 

gas across the Vestnesa Ridge (Hustoft et al., 2009). 

 

 

Figure 13: Swath bathymetry and profile illustrating the spatial relationship between the topography controlled 
pockmark field and the anticline geometry of the BSR. Inset shows echosounder data of a 750 m tall gas flare coming 
from a pockmark/chimney structure (from Hustoft et al., 2009).  

 

The pockmarks at the western end of the Vestnesa Ridge were studied in detail using 

high-resolution 3D seismic data (Petersen et al., 2010). It was concluded that pressure-

driven focused fluid flow could explain the hydro-fracturing processes that control the 

plumbing system and lead to extensive pockmark formation at the crest. High-amplitude 

anomalies in the upper 50 m of the chimney structures suggest formations of near-

surface gas hydrates and/or authigenic carbonate precipitation while the deeper high-

amplitude reflections above the BSR are associated with the occurrence of hydrate 

layers (Petersen et al., 2010). 
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A more recent study (Bünz et al., 2012) also used 3D high resolution seismic data to 

analyse the active and inactive chimney structures on the Vestnesa Ridge in further 

detail (Figure 14). The data indicates the presence of free gas and gas hydrate based on 

a strong BSR, making it one of the northernmost documented oceanic gas hydrate 

provinces. The focused fluid flow at the crest of the ridge suggests a strong 

topographically controlled fluid migration, with gas hydrates like inhibiting vertical gas 

flow through the flanks of the ridge (Bünz et al., 2012). The study also considers the 

Vestnesa Ridge as unique on Earth, due to its close proximity a mid-oceanic ridge and a 

transform fault, with the hydrothermal circulation system affecting the dynamics of its 

gas-hydrate and free-gas system. 

 

 

 

Figure 14: Top: 3D seismic interpretation of the seafloor showing pockmarks. Bottom: Seismic line showing fluid flow 
structures (shimneys) associated with the individual pockmarks. (from Bünz et al., 2012)   
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The active gas leakage at the eastern part of the Vestnesa Ridge on the upper 

continental slope is more extensive than previously assumed (Bünz et al., 2012). The 

seeps showed continuous gas leakage during survey cruises in 2010 and 2012. In 2010, 

the highest flare reached a height of 930 m (270 mbsl). In 2012, the highest flare reached 

a height of 990 m (210 mbsl) (Figure 15). These flare heights suggest that hydrate skins 

are developing around the bubbles, decreasing gas-dissolution processes during bubble 

rise and allowing bubbles to reach such heights (Smith et al., 2014). Geochemical 

analyses from the area also show that a thermogenic source is supplying methane and 

other light hydrocarbons to the Vestnesa Ridge (Smith et al., 2014) . 

 

 

 

Figure 15: Flares above pockmarks at the Vestnesa Ridge in (a) 2010 and (b) 2012. (from Smith et al., 2014) 
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3 MATERIALS AND METHODS 
 

 

3.1 KONGSBERG-SIMRAD EM300 MULTIBEAM SONAR SYSTEM 
 

The EM 300 multibeam echosounder (Figure 16) is designed to do seafloor mapping from 

10m depth down to more than 5000m depth with swath widths up to about 5000m. It 

includes sensor interfaces, data displays for quality control and sensor calibration, 

seabed visualization, and data logging, as well as integrated seabed acoustic imaging 

capability. 

 

 

Figure 16: Diagram of multibeam sonar scho sounding the seafloor. The sonar illuminates narrow swath elongated 
across the bottom and perpendicular to the path of the boat. (from www.oicinc.com/multibeam.html) 

 

The nominal sonar frequency is 30 kHz with an angular coverage sector of up to 150 

degrees and 135 beams per ping as narrow as 1 degree. On a flat bottom, the swath 

width is normally up to 5.5 times the water depth. The number of beams can be 

maximized by setting the angular coverage sector and beam pointing angles to vary 

according to the achievable coverage. 
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The soundings are fit to a line perpendicular to the survey line, which ensures a uniform 

100% sampling coverage. This transmit fan is split in sectors which are frequency coded 

(30 to 34 kHz). These sectors are all transmitted sequentially at each ping. Sector 

steering, refraction due to the sound speed profile, vessel attitudes and installation 

angles are taken into account when the sounding position and depth is calculated, while 

pulse length and range sampling rate are variable with depth. The ping rate is mainly 

limited by the round trip travel time in the water up to a ping rate of 10 Hz. 

 

The EM 300 transducers are linear arrays with separate units for transmit and receive ( 

Table 1). The arrays are divided into modules with 1 and 2 degrees beamwidths as a 

standard. 4 degrees beamwidth is available for the receive array, with resulting array 

lengths of 0.8 to 3.3 m. 

 

Main operational 

frequency 

30 kHz Frequencies in the range of 30 to 

34 kHz are employed to code the 

different transmit sectorsNumber 

of beams for each ping: 135 

Beamwidths 1x1, 1x2, 

2x2 or 2x4 

degrees 

Other beamwidth cobinations are 

possible in accordance with the 

number of transducer modules 

installed 

Beam spacing Equidistant or equiangle 

Coverage sector Up to 150 degrees 

Transmit beam steering Stablized for roll, pitch and yaw 

Receive beam steering Stabilized for roll 

Maximum ping rate 10 Hz 

Depth range from 

transducers 

10 to 5,000 m 

Depth resolution 1 to 16 m 

Pulse lengths 0.7, 2, 5 and 15 ms 

Range sampling rate 4.5 kHz (17 m) 

 

Table 1: Technical specifications of the multibeam echosounder. (adapted from Kongsberg Technical Manual 2004) 
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Beams are converted into water depth on-site, using accurate sound velocities through 

the water column, as measured from CTD (conductivity-temperature-depth recorders) 

profiles of sound velocity during the survey, after appropriate filtering and editing. These 

profiles record the changing speed of the acoustic pulses with water salinity, 

temperature and depths. The Simrad processors use the sound speed data for 

instantaneous beam forming and ray tracing of each individual beam, at the same time 

as they correct for the vessel attitude. The result is the conversion of range and angle 

data to xyz triplets. A graphical user interface provides control on the data quality and 

runtime parameters used during acquisition. 

 

 

3.1 BATHYMETRIC PROCESSING AND 3D VISUALIZATION 
 

Data processing consisted of cleaning and filtering navigation data, noise reduction, data 

editing and visualization using the QPS Fledermaus software package Pro version 7. 

Fledermaus is a set of interactive 3D visualization tools for data preparation, analysis 

and presentation. It allows for assembling and exploring a virtual 3D of object models 

including surfaces, images, points, lines, and cross-sections, and is tailored for the 

display of geographic data such as digital terrain models of the ocean floor or a 3D 

contour map of a mountain range. The software allows for import of a wide variety of 

data formats, making it possible for producing combined 3D models. Two specific 

programs were utilized for the bathymetric data: Fledermaus, which is the main 

interactive 3D exploration application, and DMagic, the data preparation tool. 

  

The multibeam echosounder data files (.all format) contain a series of datagrams: Water 

column, Position and Heading. The data were gridded, and outliers were identified, 

flagged, deleted in DMagic, resulting in a relatively noise-free grid. The most important 

parameter when gridding data is the cell size, which determines the dimensions of the 

surface to be created. These dimensions are determined by taking the range of the input 

data in the X and Y dimensions, dividing it by the cell size, and rounding up. When 

gridding, the number of neighboring soundings inside a given radius is important – a too 

small radius may not reduce noise from the data, and a too large radius might smooth 
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out the surface characteristics. There are three types of surfaces that can be used from 

irregularly spaced XYZ data: 

 

• Weighted Moving Average – default weighted average algorithm 

• Shallow Biased – minimum value in the cell 

• Median Filtered – median value in the cell 

 

The gridding algorithm allows each grid cell to blend slightly with neighboring grid cells. 

The amount that a given point contributes to any cell falls off linearly with distance from 

the point’s location. The Weight Diameter determines how many cells the area of effect 

will extend over. A value of one will force the point to affect only the cell that contains 

it, while a value of three will affect the contained cell and all eight neighboring cells. A 

value of five extends the effect to the neighbors’ neighbors. Only odd numbers for the 

weight field diameter are used. The Weight Diameter is not relevant when using Shallow 

Biased or Median Filtered gridding. 

 

 

3.2 BACKSCATTER PROCESSING AND VISUALIZATION 
 

Backscatter strength is the intensity of the acoustic response, corresponding to the 

relative amount of energy sent back from target, measured in decibels. The backscatter 

strength depends on the physical nature of the seafloor, structure and the frequency 

and angle used. Acoustic backscatter data are often useful for classifying seafloor 

characteristics (Lurton, 2002). 

 

Backscattering is affected by three factors: geometry of the sensor-target system (local 

slope, local angle of incidence, etc.), the physical characteristics of the surface 

(roughness, sound speed, etc.) and the intrinsic nature of the surface (composition, 

density, etc.) (Figure 17). Slopes facing toward the sonar will produce more backscatter 

and a rougher surface will produce more backscatter. The effect of volume scattering 

should also be taken into account due to a possible acoustic penetration at the 

frequency used (Blondel, 2009). 
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Figure 17: Backscattering from the seafloor is influenced by three factors: A) local geometry of area of ensonification, 
B) roughness of the seafloor at scales comparable to the sonar's wavelength, C) intrinsic properties of the seafloor 
(e.g., rocks vs. sediments). (from Blondel, 2009). 

 

 

Backscatter strengths describe the response of the seafloor at the frequency used and 

for specific conditions of ensonification (mostly the grazing angle). If calibrated and 

expressed in dB, they can also be compared with acoustic backscatter models, providing 

more insights into seafloor processes. Full knowledge of the processing chain and the 

accuracy of the calibrated backscatter strength of a particular pixel on the seabed, 

allows the interpreter to assess whether surface or volume processes predominate, and 

compare the geotechnical properties of this portion of the seabed with known 

quantities. (Blondel, 2009) 
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A study by Johnson et al. (2003) looked into backscatter data in determining the spatial 

distribution of cold seep carbonates and their relationship to subsurface structure and 

the underlying gas hydrate system. High backscatter data was divided into three 

categories (Figure 18): 

 

• Category I - Circular to blotchy with apparent surface roughness. High backscatter due 

to presence of gas hydrates and authigenic carbonate.  

• Category II - Circular to blotchy with no apparent surface roughness. High backscatter 

due likely to authigenic carbonate, with some gas hydrate, slightly buried by hemipelagic 

sediments. 

• Category III - Streaky to continuous with variable surface roughness. High to moderate 

backscatter that coincides with regions of high slope angles, likely derived from deep-

seated fluids but unrelated to destabilization of gas hydrate. 

 

 

Figure 18: Schematic diagrams depicting environments likely responsible for each of the classified backscatter 
categories from a study of the Hydrate Ridge region offshore Oregon. (from Johnson et al., 2003) 
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The Fledermaus Geocoder Toolbox (FMGT) is used to process backscatter data in this 

study. FMGT is a software program designed to visualize and analyse backscatter data 

from multibeam sonars. In processing the source files into mosaics, it is designed to 

perform as many corrections as possible to maximize the information content within the 

backscatter signals. The software can read multiple files of backscatter data, apply 

corrections, and then create a 2D representation of the ocean floor called a backscatter 

mosaic. Once the mosaic has been generated, various statistics can be calculated and 

exported along with the backscatter in a number of different formats. Angle range 

analysis (ARA) can also be performed to attempt to classify the bottom types. 

 

 

3.3 MULTIBEAM DATA 
 

Swath bathymetry and backscatter data were acquired using the Kongsberg Simrad 

EM300 system during surveys in 2010 on R/V Jan Mayen, in 2012 and 2013 on R/V 

Helmer Hanssen. The system operates at a sonar frequency of 30 kHz with an angular 

coverage of 135o. Sound velocity profiles for calibration of beams in the water column 

were extracted from CTD stations acquired during the surveys.  

 

Approximately 40 km2 of swath bathymetry data were acquired on the southeastern 

flank of the Vestnesa Ridge with a height range of –1190 m to –1290 m, located at 79o 

N and 7o E. Bathymetry data were gridded, plotted, cleaned, filtered and visualized using 

QPS Fledermaus software. Backscatter data was processed using QPS FM Geocoder 

Toolbox.  
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4 RESULTS 
 

4.1 SWATH BATHYMETRY 
 

4.1.1 GENERAL DESCRIPTION 
 

The Vestnesa Ridge is a SE-NW to E-W bending elongated sediment drift situated at 79o 

N to the northeast of the Molloy transform fault and to the north of the Knipovich Ridge 

(Figure 19).  At a water depth of 1200m, the ridge is situated between the Kongsfjorden 

Trough mouth fan in the east and the Molloy Ridge to its west. The Vestnesa Ridge is 

approximately 100 km long and 2.5 to 3.5 km long. The ridge widens from southeast 

until it bends towards the west, where it gradually starts to get narrower further 

westward. The mean slope angle of the Vestnesa Ridge is 0.1° from southeast until it 

turns westward where the slope angle gradually increases until it rapidly increases to 6° 

at the most western part of the ridge (Bünz et al., 2012).  

 

More than 100 pockmarks have been identified situated on the crest of the Vestnesa 

Ridge. The interpreted pockmarks are seafloor depressions that have circular to oval 

shapes and are typical seabed expressions of fluid flow (Judd and Hovland, 2007) and 

are indicative of recent fluid flow activity at the crest (Hustoft et al., 2009). Pockmarks 

are present all along the ridge but vary in distribution and morphology along the crest. 

On the western part where the crest gets wider, the pockmarks are distributed over a 

wider area. On the southeastern part of the Vestnesa Ridge, where the crest is narrower, 

the pockmarks line up perfectly along the apex of the crest and are predominantly 

circular to elongate in shape. The pockmarks on the southeastern side of Vestnesa Ridge 

appear to be more numerous and larger compared to the western part. No fluid flow 

features have been observed on the flanks of the ridge, suggesting a strong 

topographically controlled migration of fluids (Bünz et al., 2012). 
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Figure 19: Location map of the study area on the Vestnesa Ridge. (modified from Bünz et al., 2012) 

 

This study will focus on the seabed features along the southeastern part of the Vestnesa 

Ridge (Figure 19), where the pockmarks are larger more evenly distributed. Datasets 

from three different surveys in 2010, 2012 and 2013 will be compared as to account for 

changes in morphology over time. The datasets were gridded to 10m using the WGS 84 

UTM zone 32N coordinate system, cleaned, distance-filtered and visualized on the QPS 

Fledermaus software (Figure 20). 

 

The swath bathymetry covers an area approximately 42 km2, 12 km long and 3.5 wide. 

The mean slope is 0.1o from southeast to northwest along the length of the crest, with 

the highest part on the south-eastern end at -1190 mbsl.  The mean slope from the ridge 

crest to southwest is 1.5o while it is approximately 1.7o on the other side of the crest to 

the northeast. 

 

The ridge crest is interspersed by several large pockmarks that are circular to oval in 

shape and are close to one another that some appear as one pockmark. Some appear to 

have hummocky or mounded texture within. The pockmarks can reach up to 10m deep 

and 700m across. 
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Figure 20: Swath bathymetry of the study area gridded to 10 m, from three surveys in 2010, 2012 and 2013. 
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4.1.2 PROFILING 
 

Morphological changes along the ridge crest can be determined from comparing profiles 

of the different datasets along the same profiler plane (Figure 21). Special interest is 

given to specific pockmarks that have recently been observed to be actively releasing 

gas into the water column (Hustoft et al., 2009, Bünz et al., 2012, Smith et al., 2014). 

These active pockmarks are marked with red arrows on Figure 21. 

 

The profile across the dataset is approximately 6.8 km long and goes through the evenly 

distributed pockmarks that are up to 700m wide and 10m deep. Changes can be 

detected from the shapes of the pockmark profiles, otherwise the general morphology 

remains more or less the same. 

 

 

Figure 21: Profiles across the three different surveys intersecting data on the same plane. The red arrows indicate 
pockmarks observed to be active recently.  
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Superimposing the different profiles gives more information on the changes along the 

ridge crest. The 2010 survey is seen to be offset by about 2-3m and thus cannot be used 

in comparative calculations such as surface difference and volumetric changes. The 

offset might have been caused by recalibration of the multibeam echosounder for yaw, 

pitch, heave and roll, or different sets of parameters logged in the system.  

 

Nevertheless, the 2012 and 2013 survey datasets are compatible and will be used for 

comparative study. In Figure 22, the 2013 profile shows to be generally higher by up to 1 

m in relation to the 2012 profile, indicating deposition of sediments. In some areas, 

especially where the pockmarks are, there appears to be no difference and in some 

parts, the 2013 profile is lower than that of 2012, which could indicate erosional 

processes in the pockmarks. There also appears to be differences in the shapes of some 

of these individual pockmarks, signifying recent activity or processes that alter the 

surface morphology inside these pockmarks. 

 

 

 

Figure 22: Profile overlay for comparison of different surveys. The 2010 survey is anomalously elevated while the 
2012 and 2013 data are more compatible for comparative study. 
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4.1.3 CONTOURING 
 

Contour mapping is one way of determining changes in elevation resulting from 

depositional or erosional processes, as well as changes in relative slope of the surface. 

At 10m contours, the 2012 and 2013 maps show very slight differences but generally 

follow the same contours (Figure 23, upper). At 2m contours, there are more marked 

differences at the crest. While the flanks show evenly spaced contours indicating a 

relatively smooth and undisturbed slope, the contours on the crest show the basins 

corresponding to the pockmarks, and are very uneven. It is at the crest where the two 

contours from 2013 and 2012 show marked differences (Figure 23, lower), indicating 

dynamic changes in and around the pockmarks in a span of one year. In basins where 

the 2013 contours enclose a 2012 contour (blue outside, red inside) could indicate 

deposition while 2012 enclosing a 2013 contour (red outside, blue inside) could indicate 

erosional processes.  

 

 

Figure 23: 10 m and 2 m contours showing smooth and even slopes on the flanks, and an uneven ridge crest. The 2 m 
contours of the 2012 and 2013 datasets show changes on the crest where the pockmarks are.  
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4.1.4 SURFACE DIFFERENCE 

 

Calculating for surface difference, and effectively, the volume change, is another good 

way of determining changes in a depositional environment. In calculating for surface 

difference, a query is applied to the common intersection area of two input surfaces. A 

polygon can be used to constrain the query scope within a certain area, and can be 

selected to account for positive changes or negative changes in relation to the base 

surface, which is usually the older surface. This can be a very good tool for individually 

calculating volume changes in each area covered by the pockmarks.  

 

In determining surface changes for the 2013 and 2012 surveys, the reference surface of 

2012 was subtracted from the 2013 surface and surface objects were plotted as results.  

Figure 24 shows these two surface objects, the first is a plot of the data above the 

reference 2012 surface and the second is a plot of the data below the reference 2012 

surface. The resulting plots show positive changes after 2012 along the crest of the ridge, 

indicating deposition in most parts, while areas with pockmarks show negative changes, 

indicating removal of sediments. 

 

 

Figure 24: Surface difference plots for the 2012 and 2013 datasets. The base 2012 surface is subtracted from the 
newer 2013 surface. (A) Positive difference. (B) Negative difference. The patches on (A) where there is was no 
inferred net deposition are pockmark locations. 
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4.2 BACKSCATTER IMAGING 
 

4.2.1 BACKSCATTER IMAGE OF STUDY AREA 
 

Backscatter intensity is a function of the angle of incidence of each beam, the physical 

characteristics of the surface, the intrinsic nature of the surface and to some extent, the 

frequency and pulse characteristics of the sonar (Blondel and Murton, 1997). One of the 

important effects on the backscatter signal received is the effect due to bathymetric 

slope. Steep seafloor bathymetry sloping toward a passing sonar has enhanced 

backscatter strength compared to those slopes dipping away from the sonar. For the 

study area on the Vestnesa Ridge, the slope across the survey is 0.1o which implies a 

high backscatter to be more likely related to changes in rock and sediment composition 

on the seafloor rather than a bathymetric effect. In effect, the presence of backscatter 

anomalies in the data would indicate a change in the physical properties of the seafloor 

or near sub-surface. 

 

The resulting mosaics of the 2013 survey were gridded at 25m and 10m pixels as 

presented on Figure 25 and Figure 26. The maximum resolution from the data is 25m but 

gridding it to 10m allows for better contrast, nonetheless no additional information or 

details are discernible in gridding it down. Figure 25 is a backscatter mosaic of all the lines 

surveyed on top of the crest. They are overlapping so that the seafloor was imaged 

multiple times, with insonification from opposing directions. There is no data recovery 

directly beneath the trackline (nadir) so the resulting image are the overlapped images 

from the neighbouring tracks. The km wide swaths over the crest were towed NW-SE 

along the axis of the ridge. 

 

Figure 26 shows another mosaic using one continuous line of swaths for imaging. The 

lines along the center of the trackline are also nadirs with no data recovery. The 

backscatter values range from -30 (low) to -19 (high) dB.  The backscatter data show 

predominantly high-to-medium backscatter strength with a mottled texture on the 

gently dipping (0.1o) seafloor, especially on the flanks of the ridge where the values 

appear similar. The backscatter on the crest are more varied. Examination of the survey 
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mosaic on the crest reveals some high (bright) and low (dark) backscatter spots, with 

the rest of the image in varying shades of grey. The low backscatter spots directly 

corresponds to the sites where the pockmarks are situated on the ridge crest. Inside 

these low backscatter spots are relatively brighter patches that corresponds to physical 

mounds inside the pockmarks as visible on the bathymetry. This can possibly be from 

the hummocky sediments or even hydrate/carbonate patches in and around the 

pockmarks. 

 

 

Figure 25: Backscatter mosaic (25m resolution) of the study area using multiple multibeam data. 
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Figure 26: Backscatter mosaic using one continuous line of multibeam swaths. 
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4.2.2 ANGULAR RANGE ANALYSIS 

 

Angle range analysis (ARA) can be performed to attempt to classify substrate types. This 

is a method of seafloor characterization which compares the actual backscatter angular 

response to expected acoustic response curves based on a mathematical model, in this 

case, the Jackson Model (Jackson et al., 1986) (Figure 27). This model generates an 

expected acoustic response curve as a function of grazing angle vs. returned backscatter 

intensity. The goal of the analysis is to attempt to characterize the measured response 

curve from the survey data to a best fit of a modelled curve. This modelled curve takes 

into account sediment properties and acoustic frequency. 

 

 

Figure 27: Jackson Model. Small-scale roughness scattering strength. (from Jackson et al., 1986) 

 

The ARA process is relatively new so there are limitations. More ground-truthing needs 

to be done and the quality of the results is dependent on the system calibration and the 

radiometric corrections applied. The survey environment will also affect the results as 

ARA requires a wide coverage of grazing angles. The process does not work well in 

deeper water where there is often limited grazing angles. Nonetheless, the ARA process 

has been shown to work well for EM3002 sonars (QPS Manual, 2011), but good 

calibration is key. 
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Figure 28 shows the results of the angle range analysis to the backscatter data from the 

2013 survey. The ARA map (Figure 28C) plots the predicted seabed characterization while 

the Patch Analyzer (Figure 28D) shows the Angle vs. Range Analysis dialog which can be 

viewed and edited. The default characterization is shown by the blue line but values can 

be manually selected for adjustments. For the 2013 survey, the resulting seabed 

characterization identifies clayey sand as sparsely covering the crest, muddy sand on the 

flanks to the east, and very fine sand covering most of the study area. This more or less 

agrees with a study that identifies homogeneous hemipelagic grey clay with very little 

amount of IRD as the upper interval of a sediment core retrieved from the western end 

of the Vestnesa Ridge (Consolaro et al., 2014). Another study identifies hemipelagic grey 

sandy mud as the upper interval from the reference core of the western Svalbard margin 

(Jessen et al., 2010). 

 

 

Figure 28: Angle Range Analysis (ARA) as incorporated in the Fledermaus Geocoder Toolbox. (A) Bathymetry (B) 
Backscatter (C) ARA analysis (D) Patch Analyzer dialog box for editing the seabed characterization parameters. 
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4.3 POCKMARKS 
 

4.3.1 MORPHOLOGICAL CHANGES 
 

A quick comparison of the profiles across two pockmarks at the southeastern part of the 

ridge crest show marked differences in their topographies (Figure 29). All three datasets 

have 10 m resolution. These same two pockmarks are among those that have been 

shown to be recently active due to gas flares emanating from them.  

 

 

Figure 29: Profiles across the three datasets for general comparison. 2010 (top), 2012 (middle), 2013 (bottom). 
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As mentioned, the 2010 survey data appears to have had different re-calibration values 

to the multibeam echosounder system than that of the 2012 and 2013 survey data. The 

offset in depth is approximately 2m to as much as 3m (Figure 30). Nonetheless, surface 

changes can still be detected by ocular inspection of the profiles. From Figure 30, it can 

be seen that the pockmark to the southeast has a wider depression than in the 2010 

survey. In most places along this part of the ridge, the topography is preserved whereas 

the pockmarks show to have more dynamic changes. 

 

 

Figure 30: Profile comparison of the 2010 and 2012 datasets. The 2010 show at least 2m offset. 

 

The pockmarks on this part of the Vestnesa Ridge generally appear circular to elliptical. 

They have an average long axis of 570 m and short axis of 540 m, with an average depth 

of 6 m. There are some pockmarks that are too close together that they seem to be 

forming one single pockmark. These pockmarks have especially elongated shapes with 

their long axes almost double their short axes. The long axis of the pockmarks seem to 

prefer a SW-NE orientation and their basin profiles are asymmetrical where the NE side 

is much lower than the SW side. This shape of the pockmarks are possibly influenced by 

the direction of the bottom currents.  

 

Profiles from the 2012 and 2013 surveys are superimposed and compared along the two 

active pockmarks on the southeast (Figure 32). There seems to be a general increase in 

sediments along the ridge, of up 0.5 m on the crest. Inside the pockmarks, there appears 

to be both deposition and erosion. On one of the pockmarks, there is relatively little 

deposition. On both pockmarks there are eroded parts. These erosion surfaces could 

possibly be where the gas flares escape into the water column. Other examples for the 

leaking and non-leaking pockmarks are illustrated (Figures 33-36). 
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Figure 31: Location map of the 2012-2013 profiles on Figure 32. 

 

 

 

Figure 32: Profile comparison of the 2012-2013 datasets. Corresponding arrows indicate possible erosion spots. 
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Figure 33: 2013 (indicated with arrows) and 2012 profiles across a non-leaking pockmark. The new deposits are 
thickest at about 0.5 m. The overlying surface appears smoother and generally follows the shape of the underlying 
surface, implying that this/these pockmark/s must have been inactive for a while. 
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Figure 34: 2013 (indicated with arrows) and 2012 profiles across a non-leaking pockmark. This appears to be two 
elongated pockmarks that formed very near each other. The overlying surface also appears smoother, but the 
pockmarks are deep, implying that they have become inactive relatively not too long ago. 
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Figure 35: 2013 (indicated with arrows) and 2012 profiles across a leaking and a non-leaking pockmark. Profile (a) 
shows a stark contrast of the surfaces between a leaking and a non-leaking pockmark. The leaking pockmark’s 
bathymetry is rough and deep while the inactive pockmark is smooth and shallow. Profile (b) show thicker deposition 
on the stoss side direction of the bottom current. 
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Figure 36: 2013 (indicated with arrows) and 2012 profiles across a non-leaking pockmark. These pockmarks are 
shallow with a funnel-like depression on Profile (c). There is no deposition on the depression and this may be due to 
upwelling or initial fluid activity.   
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4.3.2 VOLUMETRIC CHANGES 

 

Volume change between two surfaces can be calculated from the two survey datasets 

with the 2012 surface data subtracted from the newer 2013 data, to record changes that 

has occurred in the time between the two data acquisitions. This is a good gauge of 

deposition within the pockmarks, especially since the bathymetric features in and 

around the pockmarks were double-checked and filtered, with the surfaces verified to 

be real features. 

 

Figure 37 shows a simple diagram of the major pockmarks on the study area aligned NW-

SE (from left to right), with the recently active ones shaded. At the bottom part of the 

figure are the calculated surface difference for each of these pockmarks. The dark areas 

are positive (deposition) and the blank areas are negative (erosion). The software-

calculated net deposition inside the pockmarks ranges from 5 288 m3 to 62 277 m3. 

Active pockmarks pm2, pm3, pm6 and pm9 also show net deposition, but on their edges 

towards SW, there are blank patches. It is possible that gas escapes on these areas of 

non-deposition. 

 

 

Figure 37: Upper: Diagram of pockmarks along the ridge crest oriented NW-SE (left to right). The pockmarks with 
observed recent activity are shaded red. Lower: Surface difference plots between the 2012 and the 2013 surfaces. The 
plot represents positive difference that indicates net deposition. 
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A combination of different types of data (bathymetry, profile, backscatter, surface 

difference, gas flares) suggest that activity within these pockmarks are localized to a 

specific area. The eroded surface on the bathymetry profile, the low intensity 

backscatter, the negative patches on the surface difference plot, seem to agree with 

earlier observations that gas seeps originate from the SW edge of these two pockmarks 

(shaded area on Figure 38D). This corresponds to earlier observations and studies on the 

gas flares emanating from these pockmarks (Figure 38 inset). 

 

The surface difference plot (Figure 38C) also show negative values to the NE of the 

pockmarks, suggesting erosional processes going in that direction, down the ridge flank 

and further down into the adjacent trough.  

 

 

Figure 38: Different representations of the seafloor with the two active pockmarks. (A) Bathymetry showing the inner 
structure of the pockmarks. (B) Backscatter showing low-intensity dark patches on the SW half of the pockmarks. (C) 
Surface difference (2013-2012) plot showing non-deposition on the SW half of the pockmarks. (D) Interpreted source 
of gas flares from inside the pockmarks, which corresponds to the plotted source of gas flares (D inset) observed in 
earlier studies by Bünz et al., 2012 and Smith et al., 2014. 



62 
 

4.4 POCKMARK FIELD NORTH OF THE STUDY AREA 
 

Backscatter data remains a very useful tool in detecting features on the seafloor that are 

not discernible on bathymetry data. In this example from a pockmark field in the 

northwestern part of the Vestnesa Ridge (Figure 39), high backscatter is detected on the 

pockmarks that are randomly distributed on the seafloor, suggesting the presence of 

carbonates or hydrates. On the other side of the bend, the evenly distributed pockmarks 

along the crest of the ridge to the east are only faintly detected as grey low-energy 

backscatter. This could point to different mechanisms of fluid flow and gas release 

between these two distinct pockmark fields. 

 

 

Figure 39: Bathymetry and backscatter of a pockmark field in the northwestern end of the Vestnesa Ridge. The arrow 
on the inset points to the location of the swath.  High backscatter on the unevenly distributed pockmarks to the NW 
are distinguishable while linear bigger pockmarks to the SE show as faint low-energy backscatter 
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5  DISCUSSION 
 

5.1 Pockmark morphology 
 

 

Elongate shape 

 

Pockmarks are circular to elongated depressions on the seafloor, commonly occurring 

especially on the continental shelf throughout the world (Hovland and Judd, 1988, 

Hovland et al., 2002). Elongated pockmarks commonly occur in areas influenced by 

strong bottom currents capable of eroding the newly formed pockmarks (Hovland et al., 

2002). These elongated pockmarks are often aligned along prevailing current directions, 

which may indicate that the pockmarks were initially circular, but have been deformed 

by sediment transport, deposition, and erosion (Josenhans et al., 1978; Hovland, 1983; 

Bøe et al., 1998). Furthermore, erosion by bottom current will be most significant on the 

downstream side of the pockmark, resulting in an asymmetrical shape where they 

develop deepest upstream (Josenhans et al., 1978).  

 

The pockmarks on southeastern part of the ridge are mostly elongated, with the long 

axis oriented SW-NE. They have asymmetrical profiles (Figure 32) with the steeper part 

upstream. The surface difference of the 2013 and 2012 bathymetry show negative 

values where the erosion of the bottom currents is supposed to have occurred. While 

other processes such as creeping, or other down-slope processes may also occur, it is 

highly likely that very strong bottom currents exist at the crest of the Vestnesa Ridge 

that are capable of eroding or shaping these pockmarks.  
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Presence or lack of infill 

 

Coarse sediment is often found in the center of pockmarks. In some cases, this is due to 

authigenic carbonate in methane seep settings, or may be explained as a winnowed lag 

deposit caused by the expulsion or seepage of fluids. Such lag deposits can also be due 

to currents, as well as to the accumulation of other debris (Hovland et al., 2002). 

Bathymetric data show that there has been deposition in the pockmarks with both low 

and medium backscatter values, with homogenous fine sediments (low backscatter) and 

coarser sediments (medium) as assumed infill. In general, pockmarks that inactive have 

a smoother morphology than those documented to be leaking (Figure 40),  

  

In some places, the pockmarks appear to have no deposition, and with net erosion. 

Hammer et al. (2009) suggested that currents may be deflected by the pockmark in a 

way that produces a positive vertical current component from the pockmark. This 

upwelling phenomenon could lead to reduced sedimentation rate, and winnowing of 

inside the pockmark. This upwelling is an effect of deflected currents, not of expulsion 

of fluids or gas from the seafloor, and is sufficiently strong to prevent the settling of fine 

particles. This reduction in sedimentation rate over the pockmarks (relative to that of 

the flat surrounding seabed) explain the lack of infill in pockmarks even when it is 

inactive. The lower relative sedimentation rate inside the pockmark could even make it 

deepen over time, as was the case in the bathymetric changes in this dataset.  

 

 

 

Figure 40: 10 m resolution bathymetry of a portion of the Vestnesa Ridge. Leaking pockmarks have a more uneven 
morphology, while non-leaking pockmarks are smoother. 



66 
 

Advancing pockmark 

 

A study by Ho et al. (2012) looked into advancing pockmark arrays as a record of paleo-

fluid processes. Buried channels or deep faults provide conduits for fluid flow, with 

degassing most likely occurring along the axis of the buried channel during times of 

lower sea level. The lateral advancement of pockmarks subsequently results from the 

interplay between fluid venting and generation of local depressions in the sediment 

surface, and the perturbation of bottom currents within the depression. For the 

advancing pockmark location, fluid flow variations control the creation of pre-existing 

topography, which in turn controls the location of sedimentary accumulation. The 

lateral migration of the pockmark terminates when fluid venting ceases. Once fluid 

venting stops, new depressions cease to form and are buried by subsequent 

sedimentation (Figure 41).  

 

While this model does not adequately account for the fluid migration on the ridge crest, 

this can explain the truncation of sediments in the pockmarks on the downstream side 

towards the NE. 

 

 

Figure 41: Model for the development of advancing pockmarks. (A) Fine-grained sand on the downstream pockmarks 
sidewall re-suspended by vortex and seepage. A horseshoe-shaped truncated area was formed. (B) The infill phase 
may occur during times of reduced bottom-water current activity. Thus horseshoe-shaped void was filled by the new 
deposits. (C) Stage A repeated after a new layer deposited. (D) Lateral migration by the creation of secondary 
pockmarks, which truncated the downslope flank of the preceding infill sequence. (from Ho et al., 2012) 
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5.2  Backscatter data 

 

 

Backscatter interpretation 

 

Pockmarks on Vestnesa Ridge are characterized by both high and low backscatter 

intensity relative to the surrounding seafloor. The high amplitudes may be indicative for 

precipitated carbonate and/or hydrate formation at or near the seafloor whereas low 

reflectivity reflects soft, muddy sediment probably being altered by fluid expulsion 

(Petersen and Buenz, 2008). 

 

The backscatter data of the study area (Figure 26) show more or less a homogenous 

composition on the flanks of the ridge. The crest is interspersed with low backscatter 

areas corresponding to the pockmarks, with medium-high backscatter inside and around 

the pockmarks. The low backscatter value inside the pockmarks could be interpreted as 

an angle of incidence effect, with the surface facing away from the beam. The SW half 

of the pockmarks generally appear darker than the other half, and this could be due to 

the steepness and depth of the upstream side of the ridge, while the downstream side 

slopes more gently and so has relatively higher backscatter. The backscatter contrast 

could also be due to sediment-property differences between the sediments covering the 

pockmark, e.g. differences in grain size distribution induced by prevailing currents (Todd, 

2005). This scenario is possible since the 2013 data shows net erosion on the part of the 

pockmarks that have low backscatter.  Inside some pockmarks, there appears to be 

material or sediments in the middle that has higher backscatter. This can possibly be 

course sediments or debris reworked by currents, as backscatter is influenced by the 

physical characteristics of the surface, that is, rougher surfaces have higher backscatter. 

The presence of bubbles in the sediments or close to the seafloor can also contribute to 

higher backscatter at this water depth (Fonseca et al., 2002). 
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A more likely explanation for the relatively high backscatter material inside the 

pockmarks on the crest is that it indicates carbonate or hydrate presence. Seabed cold 

seeps may be recognized by distinctive morphological and/or backscatter signatures on 

sonar images. Authigenic carbonates are known to be major contributors to seafloor 

roughness and acoustic impedance contrast in cold seep areas, and thus also to acoustic 

backscatter intensity (Johnson et al., 2003). In particular, a strong difference in 

impedance contrast, small-scale roughness and morphology between carbonate 

precipitates and the seafloor produces elevated backscatter in sonar images from which 

seep carbonates can be identified (Johnson et al., 2003; Holland et al., 2006). This is 

especially true for marine environments with muddy, hemipelagic seafloor sediments 

that are of low backscatter. 

 

In a study by Naudts et al. (2008) of the backscatter patterns in a methane venting area, 

it was observed that methane seeps are in areas with medium- to high-backscatter 

strength, and not in areas with very high and maximum backscatter strength. They 

explained that the absence of active seeps in areas with the highest backscatter values 

supports the model proposed by Hovland (2002), in which AOM-induced carbonate 

formation may lead to self-sealing of fluid pathways by carbonate clogging, followed by 

a relocation of the fluid/gas pathways around the cemented, impermeable areas. They 

concluded that the observed backscatter patterns are the result of ongoing methane 

seepage and the precipitation of MDACs (methane-derived authigenic carbonates) 

caused by AOM (anaerobic oxidation of methane), and the carbonate formation also 

appears to lead to a gradual (self)-sealing of the seeps by cementing fluid 

pathways/horizons followed by a relocation of the bubble-releasing locations (Naudts 

et al., 2008).  

 

The Vestnesa Ridge has methane seeps and is also found to have methane-derived 

carbonates and gas hydrates from gravity and piston cores retrieved  from the around 

the pockmarks of the study area (Smith et al., 2014). It is therefore possible that this 

part of the ridge exhibits the gradual self-sealing of the seeps, albeit in lesser extent 

since there have not been observed high backscatter (massive carbonate precipitates) 
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in the study area, rather, medium backscatter values in and around the pockmarks 

(Figure 42). The medium backscatter is nonetheless characteristic of areas with methane 

seeps. This slightly elevated backscatter have been attributed by  Klaucke et al. (2010) 

to the presence of gas bubbles or even gas hydrate in the shallow subsurface, both of 

which is the case in this area of the Vestnesa Ridge. It can be also be that methane-

derived carbonates acts as seal on the surface or the shallow subsurface, and could likely 

explain the varied backscatter response from the different pockmarks on the crest, and 

ultimately, why some of the pockmarks or some parts of the pockmarks are inactive. A 

clearer relationship between inactive (assumed to be sealed with carbonate 

precipitates) pockmarks on this area and the backscatter response can most likely be 

determined from a better quality backscatter data.  

 

The pockmark field north of the study area (Figure 39) can be interpreted thus as having 

methane-derived carbonate precipitates from the high backscatter observed on some 

of the pockmarks. It is likely that the areas with high backscatter are sealed and no 

methane release is occurring where the carbonate seals are. 

 

 

 

Figure 42: Backscatter of pockmarks that possibly containing gas hydrates or carbonate precipitates. The active 
pockmarks show a high contrast in backscatter value while the inactive pockmark is hardly discernible. 
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Backscatter data quality 

 

The backscatter was processed at 25 m resolution, the best possible for the acquired 

data. The backscatter data was acquired by the same installation as the EM300 

multibeam echosounder. Multibeam systems, however, are optimized for bottom 

detection and not backscatter sampling. Small amounts of noise that have negligible 

effect on bathymetry data quality may have a big effect on the backscatter data. For 

example, a 200 kHz multibeam can be operated simultaneously with a 100 kHz single 

beam echosounder without any measurable interference in the bathymetric data; but 

the interference pattern from the single beam will be clearly visible in the backscatter 

record (Blondel, 2009). 

 

During the surveys, single-beam echosounder data were also acquired using a Simrad 

EK60 system operating at frequencies of 18, 38 and 120 kHz to detect gas bubbles in the 

water column. The interference from the single beam acquisition has likely 

compromised the backscatter record of the EM300 multibeam for the study area. In 

areas where there were no apparent interference, such as the pockmark field further 

north where the ridge bends (Figure 39), the backscatter record was less noisy and the 

resolution is higher at 11 m. In any case, backscatter record from multibeam systems is 

sufficient and even has proven to work well with ARA analysis of seabed characterization 

(Fonseca and Calder, 2005), provided there are no interference and/or operating at high 

frequencies. 
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5.3  Fluid flow controls 

 

 

Faults 

 

The Vestnesa Ridge sits on young oceanic crust where the eastern part is approximately 

20 My and the western part is less than 10 My. The western end of the ridge is about 40 

km away from the Molloy Ridge. Shallow crustal seismicity associated with the mid-

ocean spreading triggers active faulting in the region. 

 

Extensional faulting plays a key role in the supply and distribution of methane hydrate 

and free gas across the Vestnesa Ridge (Hustoft et al., 2009). This extensional faulting is 

a continuous process related to the nearby rifting and/or thermal subsidence of the 

young basin. Hustoft et al. (2009) interpreted several faults beneath the Vestnesa Ridge, 

to a depth extent down to the YP1 unit, which lies at ~-3500 ms (TWT) beneath this part 

of the ridge. These faults are related to the nearby Knipovich Ridge and the Molloy 

Transform Fault Zone and has an SE orientation, approximately strike-parallel to the COT 

that runs SE– NW. The same study also found that peak saturations of both gas hydrate 

and free gas occurring at the crest of the ridge and in immediate vicinity of extensional 

faults, implying a strong relationship between the faults and fluid flow in the ridge.  

 

The apparent activity within the pockmarks as observed in this study, where it is 

assumed that only the SW half of at least 4 of the pockmarks are leaking, can be related 

to the location of the SE oriented fault within the pockmark-chimney system. It is 

possible that the upward migration of gas/fluids is strongly fault-controlled and the free 

pathway for the gases or pore fluids is through a common fault that cuts through the 

ridge. This can explain the preference of the gas leaks to the SW part of the pockmarks. 
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Carbonate/Hydrate seal 

 

The pockmarks on the crest of Vestnesa Ridge are connected to acoustically transparent 

zones in the sediment that extend from the seabed to depths below the BSR. These 

conduits are interpreted as gas chimneys where free gas is migrating through the HSZ 

(Bünz et al., 2012). Seismic data suggest that these chimneys are fed by a critically 

pressured free-gas column beneath the BSR (Hustoft et al., 2009; Bünz et al., 2012). The 

heterogeneous distribution of high-amplitude reflections above the BSR and at 

shallower depth suggests formation of massive hydrate and/or authigenic carbonate in 

the vicinity of multi-fractured fluid pathways (Petersen). Geochemical analyses by Smith 

et al has shown that a thermogenic source is supplying methane and other light 

hydrocarbons to the ridge, and piston and gravity cores recovered gas hydrate and 

carbonates (Smith et al., 2014). 

 

Fluid migration can be influenced by carbonate precipitation (Hovland et al., 2002) and 

the build-up of an internal reservoir (Leifer et al., 2004).  Carbonate precipitation that 

over time cements the migration pathways, gradually reducing fluid escape and leading 

to self-sealing of seeps (Hovland et al., 2002). In other cases, the fluid flow is controlled 

by a capacitor, which is described as a reservoir that has to fill up first before conditions 

for fluid release are met, gas hydrates acting as such capacitor (Klaucke et al., 2010). 

 

Backscatter data has shown a possible gas hydrate or carbonate precipitate inside the 

pockmarks in the study area. Although the backscatter values are not very high, there is 

apparent contrast in backscatter inside the pockmarks. Information from other studies 

(presence of carbonate and gas hydrate in the subsurface, active methane gas leaks, 

fluid migration through faults, gas chimneys, inactive pockmarks), combined with the 

backscatter data and some of the observations in this paper (apparent preferred leak 

location in the pockmarks, influence of bottom currents on the pockmarks) point to a 

mechanism where carbonate formation leads to self-sealing, followed by relocation of 

the fluid pathways, or eventual inactivity. 
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6 CONCLUSION 
 

 

 The pockmarks on the crest of the southeastern part of the Vestnesa Ridge show 

a preferred SW-NE orientation.  

 

 The pockmarks have asymmetrical profiles with the steeper part upstream and 

erosion on the downstream part. 

 

 The orientation and shape of the pockmarks is controlled by bottom currents of 

the West Spitsbergen Current flowing northeast above the ridge. 

 

 Upwelling is likely causing a relatively low deposition rate on the pockmarks. 

 

 Continuous gas release from the active pockmarks is apparent when the 

bathymetric surfaces from 2012 to 2013 were compared. The section of the 

pockmarks where the gas flares originate show no net deposition. 

 

 Backscatter data show a medium backscatter value material, possibly gas 

hydrate or carbonate precipitate, inside the pockmarks. 

 

 Backscatter recording without interference from simultaneous bottom surveys 

yield a higher resolution data. 

 

 Gas leaks has a preferred location of release on the pockmarks that could relate 

to the orientation of faults on the ridge. 

 

 The inactivity in some pockmarks or in some parts of the pockmarks is possibly 

caused by carbonate or hydrate clogging on the surface or the subsurface. 
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