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PREFACE 
 
 
Given the link between the compelling impact of Staphylococcus aureus colonization on the 

risk and outcome of infection, strategies to prevent nasal colonization could be an appealing 

method of fighting infection. The ability of S. aureus to colonize and infect a host is a balance 

between its multitudes of virulence factors and the host immune defence mechanisms. Despite 

the multiple bacterial factors known to be associated with colonization, little is known about 

the relative contribution of the host determinants. This study explores selected molecular 

determinants associated with colonization and/or infection, to present a new insight on S. 

aureus interactions with the human host. In theory, the breakage of the interaction between 

host and S. aureus may open new avenues for developing novel therapeutic strategies. 

However, pursuit of such golden goal merits further investigations. 
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INTRODUCTION 

 

Staphylococcus aureus persistently colonizes the anterior nares of 10%-35% of healthy 

individuals ([146, 216, 217] and references within), and can also be found in a number of 

other anatomical sites [57]. S. aureus numerous adhesive and invasive factors, recruitment of 

resistance to multiple antibiotics, as well as host susceptibility are the main determinants 

associated with colonization and/or infection [291]. Despite developments in medical care, 

mortality due to S. aureus bacteremia in the developed world is 20-30% [294]. Hence, there is 

an urgent need for novel strategies to successfully treat staphylococcal infections. To achieve 

this, increased knowledge and understanding of the molecular determinants involved in the 

complex of host immune system and S. aureus interactions are highly prioritized.  

 

The host innate immune response, as the first line of defense against S. aureus, is an 

imperative factor, highly associated with the outcome of staphylococcal infections. The 

human innate immunity recognizes a wide range of “pathogen associated molecular pattern” 

(PAMP), which are highly conserved among pathogens, through “pattern-recognition 

receptors” (PRRs) such as “toll-like receptor” (TLRs) [139]. In addition, the complement 

system is a crucial and efficient part of the innate immune system which quickly recognizes S. 

aureus and facilitates its handling by phagocytes [253]. Protective immunity against S. aureus 

is not reported and recurrent staphylococcal infections frequently appear [141]. Thus, the host 

innate immune response interference by S. aureus is pivotal for avoidance of prompt 

elimination by the defense system and consequently, establishing a critical population size. 

Therefore, understanding S. aureus immune evasion mechanisms has been an area of intense 

research.  

 

In this project, we investigated selected molecular determinants involved during host-microbe 

interactions, which may be associated with colonization and/or infection.  
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STAPHYLOCOCCUS AUREUS AND COLONIZATION/INFECTION OF 

THE HUMAN HOST 

   

Description of species 

 

Scientific classification of S. aureus is as following [188]:  

Kingdom: Bacteria 

Phylum: Firmicutes 

Class: Bacilli 

Order: Bacillales 

Familly: Staphylococcaceae 

Genus: Staphylococcus 

Species: Staphylococcus aureus 

 

S. aureus is a highly adaptive Gram-positive, non-motile, non-spore forming and facultative 

anaerobe coccus. It is distinguished from other staphylococcal species based on positive 

catalase and coagulase as well as negative oxidase results. The species was named aureus due 

to the golden color of colonies on solid media [110].  

 

Nowadays, the genus Staphylococcus consists of 49 species and 26 subspecies 

(http://www.bacterio.net/staphylococcus.html, accessed 06. Feb. 2014). S. aureus has the 

advantage of growing under high-salt conditions promoting S. aureus colonization on the 

human skin [92].   

 

 

Genome and molecular typing 

 

Genome sequencing of S. aureus has enabled researchers to investigate questions regarding 

resistance, virulence, as well as outbreaks. The genome size of S. aureus varies between 2.5 to 

2.9 megabases (Mb) and possesses approximately 2,400 to 2,800 open reading frames (ORF). 

The S. aureus genome is composed of approximately 80% core and 20% accessory genes 

where the latter mostly consist of mobile genetic elements (MGEs) [86]. The core genome is 

conserved among different lineages and comprised of genes associated with metabolic, 

http://www.bacterio.net/staphylococcus.html
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regulatory, housekeeping, and adhesive functions [170]. A “core variable” (CV) contains 

genes encoding surface proteins and their regulators, as well as virulence genes. It is localized 

within the core genome and makes up to 10 to 12% of the S. aureus genomes [171, 173].  

 

The presence of accessory genes in S. aureus, apart from the core genome, may promote or 

suppress the pathogenic potential of a given isolate [152, 195]. The MGEs in S. aureus consist 

of e.g. bacteriophages, S. aureus pathogenicity islands (SaPIs), plasmids, transposons, and 

staphylococcal cassette chromosomes (SCC). The MGEs approximately encode 50% of the 

known virulence factors and actively contributes to horizontal transfer of DNA among S. 

aureus isolates [86, 173]. Horizontal transfer of genes can induce disparate combinations of 

virulence factors, which may promote host-specific adaptations of clones [115].  

 

Different typing approaches offer the possibility of investigating distribution of clones in the 

community and hospital, particularly during outbreak circumstances. In other words, typing of 

the bacteria is crucial for resolving transmissions routes and infection surveillance [283]. 

Nowadays, typing techniques used for studies of S. aureus population structure include; 

staphylococcal protein A typing (spa typing), Multilocus Sequence Typing (MLST), DNA 

microarrays, and Pulsed Field Gel Electrophoresis (PFGE) [154].  

 

The spa gene is localized in the core variable genome [154]. Spa typing is a sequence-based 

method, where the variable number tandem repeat (VNTR) region of the spa gene is analyzed. 

The VNTR region consists of a variable number of short tandem repeats (24-27 bp), and the 

spa type is determined based on the number and order of these short repeats. The recognized 

spa type is grouped into clusters, spa clonal complex (CC) groups, using the “Based Upon 

Repeat BURST” algorithm. This method has high a discriminatory power for outbreak, as 

well as population investigations [108, 197]. 

 

MLST is based on the sequence of internal fragments of seven housekeeping genes including; 

arcC, aroE, glpF, gmk, pta, tpi, and ygiL [68]. Comparison of sequence variation within these 

housekeeping genes against known alleles provides an allelic profile, which identifies the 

sequence type (ST). Moreover, by using eBURST analysis (WWW.MLST:net), related 

sequence types, can be clustered into CCs [63, 64, 69]. The MLST is frequently used in 

population investigations and evolutionary epidemiology. However, the discriminatory power 

of this method is not sufficient for studies of S. aureus outbreaks [196]. 

http://WWW.MLST:net
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The DNA microarray system is based on the whole genome of S. aureus and can be used for 

population investigations. Multiple smaller DNA microarrays have also been developed that 

detects genes associated with, e.g. virulence, adhesion, or antimicrobial resistance in S. aureus 

[59, 205, 259]. However, the present typing methods are not adequately discriminatory, but 

this challenge is set to convert with the introduction of whole-genome sequencing (WGS) 

technique. The WGS enables researchers to compare the genetic differences between 

organisms with the single base pair resolution. It provides the sufficient discriminatory power 

for studying S. aureus outbreaks, as well as population structure and is becoming faster and 

cheaper (reviewed in [237]).  

 

Based on typing, the population of S. aureus strains can be grouped into different clusters. 

The S. aureus populations, associated with humans, consist of 10 dominant and numerous 

minor lineages. The dominant lineages are often specified by their CC number [173]. The ten 

dominating human S. aureus lineages, CC1, CC5, CC8, CC12, CC15, CC22, CC25, CC30, 

CC45, and CC51 consist of colonizing as well as invasive isolates of methicillin-resistant S. 

aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) [68]. S. aureus population 

structure based on isolates colonizing people in different parts of the world, displays huge 

geographical divergence in the most commonly found CCs [68, 194, 256].  

 

 

Carriage site and host range  

 

S. aureus colonization in humans can occur at multiple body sites including; anterior nares 

[299, 322], skin [322], perineum [249], vagina [97], axillae [49, 249, 322], different part of 

the digestive system including pharynx [10, 249, 322], gastrointestinal tract [250, 322], 

urinary tract [208] and throat [322]. Although, the nares have been known as the main niche 

and reservoir of S. aureus in humans [299, 322], several studies have indicated higher 

prevalence of S. aureus in the throat [104, 164, 186, 215].  

 

S. aureus can also colonize animals e.g. dogs, cats, rabbits, pigs, cattle, horses, parrots, bats 

and chinchillas [207]. Various genetic analyses have shown that animal-associated S. aureus 

is not commonly found in human-associated lineages. This reflects the presence of host 

specific barriers between S. aureus animal and human lineages. Notably, both lineages are 
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closely related to each other and only a few particular genes or gene combinations may 

contribute to host specificity and adaptation [286].  

 

There is an exchange of genes encoding virulence factors between animal- and human-

associated S. aureus lineages. Clearly, acquisition of virulence genes by specific host-adapted 

isolates, that enable them to colonize and infect new hosts, can be dangerous. Previously, it 

has been demonstrated that a dominant livestock-associated methicillin-resistant S. aureus 

(LA-MRSA), ST 398, was adapted to humans by acquisition of additional genetic material 

including, Panton-Valentine Leukocidin (PVL) and phages encoding human specific innate-

immune evasion factors [72]. Several invasive human infections, e.g. endocarditis, 

osteomyelitis, and ventilator-associated pneumonia are caused by ST398 [58, 185]. 

Interestingly, recent whole-genome analysis of ST 398 suggested that this strain originated 

from methicillin susceptible S. aureus (MSSA), crossed species barriers from humans to 

livestock, and is adapting back to humans through acquisition of virulence genes [238]. 

Nowadays, methicillin-resistant S. aureus (MRSA) is increasingly recognized within the 

animal kingdom, and a huge concern has been raised due to its presence in the animal world, 

particularly in pigs, as these may serve as a reservoir for human infection and colonization 

[207, 312].   

 

 

Transmission 

 

The transmission potential of a pathogen is obviously influenced by “transmissibility” and  

“duration of infectivity” [187]. If an individual is a carrier of S. aureus, this can enhance the 

risk of additional individual or surrounding contamination [153]. S. aureus nasal carriers with 

rhinitis, also called “cloud” individuals, are able to disperse a high load of this bacterium to 

the environment [269]. S. aureus can survive for several months on any kind of surface [317]. 

Typical transmission of S. aureus occurs mainly due to direct skin to skin contact, or contact 

with recently contaminated surfaces [50, 202]. Hands play an important role in the 

transmission of S. aureus from surfaces to the nasal niche/other body site and vice versa 

[318]. A strong correlation between hand carriage and nasal carriage has been reported 

previously [274]. Moreover, host determinants, e.g. colonization status [153] and immune 

impairment, as well as capability of S. aureus in colonization on the corneal layer of the skin 

with different properties, e.g. low temperature, low pH, high osmolarity, nutrient restrictions, 
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antimicrobial peptides and interference of commensal microorganisms [203], contribute to 

successful transmission and acquisition of S. aureus. 

 

 

Pattern of nasal colonization 

 

S. aureus frequently colonizes the human skin and mucus, either for long or short periods 

throughout life. “Vestibulum nasi” has been known as one of the major sites for S. aureus 

colonization in humans. Nasal carriage of S. aureus is identified by a subclinical 

inflammatory response, which is inadequate for elimination of S. aureus [44, 242]. The 

presence of S. aureus has been confirmed in the associated keratin and mucous debris, 

cornified layer of squamous epithelium as well as hair follicles in the vestibulum nasi [289]. 

The prevalence of S. aureus nasal carriers varies among various groups as well as different 

age groups [10, 231]. For instance, a high prevalence has been reported in infants [231], white 

people [44, 322], males [65, 322] and among patients with several diseases (reviewed in 

[317]) such as HIV [214], diabetes mellitus [174], atopic dermatitis [321], end stage liver 

disease [29, 31] and in dialysis patients [145]  

 

S. aureus nasal carriers can be classified into persistent carriers and non-persistent 

carriers/non-carriers [297]. This is based on the “culture rule” where at least two nasal swabs 

are required for accurate prediction of carriage status [216]. Within a healthy population, 

approximately 10-35 % are reported to be persistently colonized with a high load of S. aureus 

in the anterior nares, while non-carriers or intermittent carries have low or no detectable 

bacterial load ([146, 216, 217] and references within). The detection of persistent carriers is 

pivotal in determining the risk of subsequent infections. In many cases, persistent carriers are 

colonized by a single isolate of S. aureus over a long time. In contrast, intermittent carriers 

may carry various strains over time [65, 119, 300]. 

 

 

Clinical significance, colonization versus infection  

 

S. aureus is one of the most medically important pathogens, can be the cause of human 

superficial and systemic infections. The pathogen can be detected both in the community 

(“Community-Acquired” (CA)) and in the hospital setting (“Hospital-Acquired” (HA) or 
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nosocomial) [272]. The prevalence of antimicrobial resistance among HA isolates are 

significantly greater than CA isolates, demonstrating that HA isolates are epidemiologically 

distinct from CA isolates. This can imply the presence of a resident microflora in the hospitals 

[239].  

 

MRSA was identified in the 1960s as a nosocomial pathogen [14]. In the 1990s CA-MRSA 

rapidly emerged globally [295], and the MRSA rates have increased worldwide during the last 

decades [282]. MRSA is a significant global public health concern and associated with higher 

morbidity, mortality and financial costs [91]. Although, data from the European Antimicrobial 

Resistance Surveillance Network (EARS-Net) from 2002-2009 show a notable decrease in the 

proportion of MRSA among S. aureus strains in the participating countries, the proportion is 

still over 25 % in more than one fourth of them [81]. Clinical studies describe a high risk of 

bacteremia among MRSA nasal carriers with multiple hospitalizations or central venous 

catheter [107]. 

 

Globally, 39% of skin and soft tissue infections, 22% of bloodstream infections and 20-30% 

bacteremia mortality are caused by S. aureus [54, 294]. S. aureus infections generally involve 

a carrier of the bacteria either through autoinfection or cross-infection [54]. The persistent 

carrier may result in high dispersal of the S. aureus to the surroundings [146, 216, 217]. 

Clinical studies suggest a high risk of bacteremia among nasal carriers [45, 107, 127, 146, 

240] and non-bacteremic S. aureus healthcare associated infections[147, 148, 182, 267].The 

relation between S. aureus carriage and infection is verified by the fact that in more than 80% 

of S. aureus nosocomial bacteremia, carrier strains and infecting isolates have the same 

genotype [304, 316]. However, despite the high risk of infection in S. aureus carriers, only a 

minority of them suffers any detrimental effects of their co-existence. The incidence of 

carriage has been estimated 1,000 times higher than infections [163].  

 

Access to the host’s internal tissues or vasculature is crucial for initiating of S. aureus 

infection. Once inside the host, the bacterium goes through an alteration in gene expression 

leading to the controlled production of virulence determinants that promote infection [292]. S. 

aureus infection principally can be classified into several types: (1) superficial infection, e.g. 

boils, furuncles and lesions, which are localized in the skin or other sites of the body; (2) 

deep-seated infections, e.g. systemic or life threatening infections such as endocarditis, 

osteomyelitis, brain abscesses, meningitis, pneumonia, and bacteremia; (3) hospital-acquired 
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infection, e.g. surgical site infection and infections associated with indwelling medical devices 

such as joint prostheses, cardiovascular devices and artificial heart valves; (4) toxinoses, e.g. 

scaled skin syndrome, food poisoning (release of enterotoxin), and toxic shock syndrome 

(release of superantigens into the blood) [2, 74].  

 

 

 

THE HOST IMMUNE RESPONSES 

 

The skin 

 

The skin is a vital physical barrier, with constitutive innate immune responses, providing the 

first line of defence against pathogens encountered in the environment [156, 211]. The human 

skin structure is composed of two main compartments including epidermis, the outer 

compartment, and dermis, the inner compartment [211].  

 

Epidermis is composed of four different layers including corneal, granular, spinous and basal 

layers, from top to bottom (Fig. 1) and is continuously being renewed. The basal layer 

consists of one row of undifferentiated keratinocytes, which divides frequently. Keratinocytes 

migrate from the basal layer to the corneal layer and simultaneously go through a maturation 

process. The corneal layer consists of dead mature keratinocytes, corneocytes, which are 

devoid of organelles and is highly responsible for the barrier function of the skin. This layer 

does not exist in other epithelium cells that are exposed to the environment such as gut and 

lung [156, 211]. Dermis consists of connective tissue, e.g. collagen and elastin fibers, sweat 

glands, sebaceous glands, hair follicles, and vasculatures [156, 211].  

 

Both dermis and epidermis participate in cutaneous immune responses. The surface of the 

skin has some basic properties such as low pH and temperature [96], corneal barrier [156, 

211], production of antimicrobial peptides by the corneal layer [223, 262], as well as normal 

skin microflora or commensals [95], which protect the host against pathogens. In addition, 

there are numerous immune cells residing both in epidermis, e.g. Langerhans cells, as well as 

dermis, e.g. macrophages, dendritic cells, natural killer cells (NK), plasma cells, fibroblasts,  

B-cells and T-cells, which also contribute in cutaneous immune responses [156, 211].  
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Figure 1. Skin anatomy. Epidermis consists of several layers of keratinocyte cells at various 

differentiation levels. Langerhans cells are found in epidermis whereas, natural killer (NK) cells, 

dendritic cells (DC), plasma cells, mast cells, macrophages, fibroblasts, B-cells and T cells are found 

in dermis. Based on [211]. 

 

 

 

Innate immunity 

 

The immune system has traditionally been classified into the innate, which we are born with, 

and adaptive components, which we acquire. The major distinction between these two 

systems lies in the mechanisms and receptors used for molecular recognition. In simple 

words, the innate immunity comprises the first line of host defense during infection and plays 

an important role in the early recognition of pathogen and subsequent induction of 

proinflammatory responses against invading pathogens [193]. The adaptive immunity is in 
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charge of eradication of pathogens in the late phase of infection, as well as production of 

immunological memory [124].  

 

The innate immune responses are dependent on recognition of microbial conserved structures 

such as the pathogen-associated molecular patterns (PAMPs), mediated through germ-line 

encoded pattern recognition receptors (PRRs), e.g. Toll-like receptors (TLRs) and nucleotide-

binding oligomerization domain (NOD)-like receptors [204]. In addition, the complement 

system can be considered as a humoral “master alarm system” of the innate immunity [151].  

 

In this thesis, the innate immunity is of focus, and TLR signaling and complement system will 

be briefly described.  

 

 

Toll-like receptor signaling 

 

The human Toll-like receptors (TLRs) consist of 10 members (TLR1- TLR10) and play 

crucial roles in induction of human innate immune responses [3, 287]. They can recognize 

various conserved microbial structures [3, 221], collectively called PAMPs [287]. Each TLR 

can recognize a distinct set of PAMPs, derived from a diverse range of microbial pathogens 

such as bacteria, fungi, protozoa, and viruses [4, 287]. Recognition can be either through a 

direct interaction, e.g. TLR1/TLR2, TLR3 and TLR9 [128, 162, 177], or indirectly through an 

accessory PAMP-binding molecule, e.g. interaction between LPS and MD2-TLR4 complex 

[142].  

 

Cellular distribution of Toll-like receptors is diverse. Some of the TLRs, e.g. TLR1, -2, -4, -5, 

-6 and -10, are expressed on the cell surface and are specialized in recognition of PAMPs as 

well as endogenous misplaced proteins. Others, e.g. TLR3, -7, -8 and -9, are mainly localized 

in intracellular compartments such as lysosomes, endosomes and endolysosomes and mainly 

recognize nucleic acids [124, 138, 204] (Fig. 2). TLRs are expressed in most cell types either 

in an inducible or constitutive manner. However, antigen presenting cells (APCs) including 

macrophages, dendritic cells (DCs) and B lymphocytes (B-cells) are constitutively expressing 

the TLR proteins [204]. All members of TLRs, except TLR2, are functionally activated as 

homodimers. TLR2 is able to form heterodimers with either TLR1 or TLR6 to achieve 

specificity for the various bacterial lipoproteins repertoire (reviewed in [67]). 
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Figure 2. TLRs localization and their ligands. Plasma membrane and endosomal localized TLRs 

recognize the indicated ligands. Natural ligand for TLR10 has not been identified yet. Based on [204, 

287] 

 

 

The TLRs are transmembrane glycoproteins composed of an extracellular or luminal ligand 

binding domain, a transmembrane domain and a cytoplasmic region of around 200 amino 

acids, recognized as the Toll/IL-1 receptor (TIR) domain (Fig. 2). The extracellular domain 

contains leucine-rich repeats (LRRs) [221, 275, 287] and the intracellular TIR domain recruits 

appropriate TIR-containing adaptor protein(s) such as myeloid differentiation factor 88 

(MyD88), MyD88 adaptor-like protein (Mal, also known as TIR-associated protein or 

TIRAP), TIR-domain-containing adaptor protein including interferon-β (TRIF), TRIF-related 

adaptor molecule (TRAM), or sterile adaptor α- and armadillo-motif-containing protein 
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(SARM). TIRAP is distinctly known as a bridging molecule for MyD88 in the context of 

TLR2 and TLR4 signal transduction [3, 287]. 

 

The ligand binding to the receptor induces TLR dimerization and subsequently recruitment of 

the cytoplasmic TIR-containing adaptor proteins, such as MyD88 or TIRAP. MyD88 consists 

of an N-terminal death domain (DD), an intermediate domain (ID), and a C-terminal TIR 

domain (TIR), which is associated with the TIR domain of TLRs [287]. The ID and DD of 

MyD88 are associated with the IL-1R-associated kinase 4 (IRAK4) and IRAK1 respectively. 

Binding of IRAK4 leads to phosphorylation of IRAK1 [126, 287]. Activation of IRAKs 

induces recruitment of tumor necrosis factor receptor-associated factor 6 (TRAF6) to the 

receptor complex. Phosphorylated IRAK1 and TRAF6 are dissociated from the receptor 

complex and associates with another complex consisting of transforming growth factor-β-

activated kinase-1 (TAK1), TAK1 binding protein 1 (TAB1) and TAB2. This subsequently 

leads to activation of two different signaling pathways, such as nuclear factor kappa B (NF-

κB) through the I kappa B kinase (IKK) complex and the mitogen-activated protein kinases 

(MAPKs) [4, 137, 138] (Fig. 3). 

 

The IKK complex plays a key role in production of proinflammatory responses through TLR-

induced NF-κB activation. IKK complex is composed of the kinases IKKα and IKKβ as well 

as the regulatory subunit IKKγ/NEMO. TAK1 phosphorylates and subsequently activates the 

IKK complex, which phosphorylates IκB, targeting it for proteasomal degradation. NF-κB is 

then released and translocates into the nucleus where the transcription factor binds to κB sites. 

NF-κB regulates a broad range of genes associated with the host immune responses [100, 138] 

(Fig. 3).  

 

Several members of MAPK kinases (MKKs), e.g. MKK3, -4, -6 and -7, are involved in 

induction of the MAPK signaling pathway. Upon TAK1-mediated phosphorylation of MKKs, 

MKK3/6 and MKK4/7 phosphorylate and subsequently activate p38 and c-Jun N-terminal 

kinase respectively. Ultimately, transcription factor activator protein 1 (AP-1) is activated due 

to induction of MAPK signaling [30, 143]. The TLR induced- NF-κB and -MAPKs play a 

crucial role in induction of pro-inflammatory host responses through secretion of cytokines 

and chemokines [138] (Fig. 3).  
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Figure 3. Schematic view of stimuli- induced TLR2-mediated signaling. TLRs, e.g. TLR2, 

signaling pathway is mainly mediated through MyD88-dependent pathway. TIRAP are sorting 

adaptors used by TLRs such as TLR2 and TLR4. MyD88 recruits and IRAKs and TRAF6 and 

ultimately induces pro- inflammatory responses through activation of MAPK and NF-κB. TIRAP: TIR 

associated protein, MyD88: myeloid differentiation factor-88, IRAK: IL-1 receptor associated kinase, 

TRAF: tumor necrosis factor receptor-associated factor, TAK1: growth factor-β-activated kinase-1, 

TAB: TAK1 binding protein 1, IKK: IkappaB kinase, MAPK: mitogen activated protein kinase, 

NF-κB: nuclear factor kappa B, Ap-1: activator protein 1. Based on [138, 287].  
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Complement system 

 

The complement system is an “upstream arm” of innate immunity [13] and forms a strong 

immune barrier. Upon entrance of pathogens, this system initiates its function immediately 

and produces a regulated and efficient antimicrobial response [332]. The main activities of the 

complement system in innate immunity are (1) labeling of pathogens or immunogenic 

particles with C3b or iC3b molecules to facilitate phagocytosis, (2) attraction of phagocytes 

through production of anaphylactic peptides or chemoattractants such as C3a and C5a, and (3) 

direct lysing of Gram-negative bacteria through the membrane attack complex (MAC) [158, 

310].  

 

The complement system is composed of different (>30) plasma, and cell-bound proteins 

[248]. The system is activated through three distinct pathways including the classical pathway 

(CP), the lectin pathway (LP) and the alternative pathway (AP) [273, 332]. Initiation of the 

CP depends on the presence of a distinct antibody-antigen interaction on the bacterial surface 

[332] and initiates through  activation of the C1 complex. Immunoglobulin M and G (IgM and 

IgG) are the only group of antibodies that are able to activate the CP [15].  The C1 complex 

consists of the recognition protein, C1q, and the serine proteases, C1r and C1s. The complex 

binds to the Fc region of immunoglobulins via C1q molecule. Subsequently, this activates the 

associated serine protease C1r that later triggers activation and cleavage of the C1s molecule. 

Activated C1s cleaves C4 and C2 molecules and generates C3 convertase (C4b2a) [62, 332] 

(Fig. 4).  

 

The LP is activated through attachment of mannose-binding lectin (MBL) or ficolin to an 

array of carbohydrate structures, polysaccharides, on the microbial surface. MBL and ficolin 

form a complex with multiple MBL-associated serine proteases (MASPs) including MASP1, 

MASP2, MASP3 as well as small MBL-associated protein (sMAP), which are the major 

effectors of the LP. Activated MASP2 cleaves C4 and C2 molecules, thereby generating the 

C3 convertase, C4b2a. In addition, MASP1 can cleave central component of complement, C3 

molecule, directly [62] (Fig. 4). 

 

The AP acts as an amplification pathway for both the CP and LP through increasing the C3 

convertase formation and amplification of C3 cleavage. Spontaneous hydrolysis of C3, 

C3(H2O), generates small traces of C3b molecule. Activated C3b molecule binds to activated 
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factor B (Bb), which in turn is cleaved by factor D (D). Consequently, the AP C3 convertase, 

C3bBb is generated [13, 62] (Fig. 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Schematic representation of the three pathways for complement activation including, 

the classical (CP), alternative (AP) and lectin pathway (LP). In the CP, IgG-/IgM-bound bacteria 

are recognized by C1-complex. In the LP, carbohydrate structures on pathogens are recognized by 

ficolin/MBL, while the AP is initiated on the surface of targets without the involvement of recognition 

molecules. The CP and LP trigger the formation of C3 convertase (C4b2a) and further promote C3b 

accumulation. The AP works as the CP and LP amplifier. MBL: mannose-binding lectin, MASP: 

MBL-associated serine protease 1, sMAP: small MBL-associated protein. Based on: [62]. 
 

 

 

The C3 convertases cleave C3 molecules to C3b molecules and a small peptide 

chemoattractant, C3a [62]. The deposited C3b molecules can form new convertases and 
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consequently amplify opsonization. However, a major part of C3b molecules is further 

processed by factor I using factor H as co-factor, into its inactive derivative, iC3b molecules. 

Either the generated C3b or iC3b facilitate eradication of pathogens through being recognized 

by complement receptors on the phagocytes [255, 333] (Fig. 4).  

 

If the activation cascade progresses further, additional C3b molecules bind to the CP; LP and 

AP C3 convertases and consequently generate C5 convertases (C4b2a3b and C3bBbC3b). The 

C5 convertase cleaves C5 molecules to C5a and C5b peptides. The C5a is a strong 

anaphylactic peptide and a potent chemoattractant, whereas C5b fragment is a part of terminal 

complement complex (TCC), which plays an important role in formation of the membrane-

attack complex (MAC). The TCC is important in defence against Gram-negative pathogens 

[332].  

 

 

Phagocytes 

 

Macrophages, dendritic cells, and neutrophils are professional phagocytes [71, 260]. 

Approximately, 60% of the leukocyte population in the blood is composed of neutrophils, 

which are the main phagocytes [6]. Neutrophil-mediated killing is the key host defense 

mechanism, which protects the host against acute bacterial infections, e.g. staphylococcal 

infection [277]. Recruitment of neutrophils to the site of infection is a multistep procedure. 

This procedure is initiated through activation of the endothelial cells, which is followed by 

rolling of neutrophils along the vessel wall. Thereafter, neutrophils firmly attach to the 

endothelial cells and finally transmigrate into the tissue, a process called “extravasation” 

[302]. Upon arrival of neutrophils into the tissue, a chemotactic gradient directs them toward 

the invading source [21]. This gradient is caused by production of chemoattractants either 

through activated host cells, e.g. chemokines or cytokines, or complement derived activation 

products, e.g. anaphylatoxins C3a and C5a, as well as bacterial fragments, e.g. formyl 

peptides and phenol-soluble modulins (PSMs) in the case of S. aureus [277].  

 

Neutrophil mediated phagocytosis depends on opsonization of the target microbe by 

complement or other innate immune components, and/or immunoglobulins. Opsonin-coated 

microorganisms attach to the specific receptors on the surface of phagocytes, e.g. complement 

receptors (CRs) or Fcϒ receptors (FcϒRs), resulting in endocytosis of the pathogen and 
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formation of a phagosome [6, 277]. Thereafter, the phagosome fuses with lysozyme to form a 

phagolysosome (Fig. 5). The phagolysosome contains different antimicrobial agents, such as 

reactive oxygen species, nitrogen intermediates, proteolytic and degradative enzymes, which 

contributes in destruction of the pathogen [53, 71]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5. Schematic presentation of normal skin innate immune mechanisms and neutrophil 

mediated phagocytosis of S. aureus. For simplicity, the epidermis structure is presented as one layer 

of cells instead of several layers. The breakage of the skin barriers increases the risk of staphylococcal 

infection. Neutrophil mediated phagocytosis of S. aureus results in endocytosis of the pathogen and 

formation of a phagosome. AMP: antimicrobial peptide. Based on [203] with modifications.  
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S. AUREUS AND HUMAN HOST INTERACTIONS  

 

The interaction between S. aureus and its human host is crucial during staphylococcal 

colonization in a challenging environment, such as nasal epithelium or epidermal 

keratinocytes, as well as infection [76]. Understanding the mechanisms by which S. aureus 

can colonize, evade the host’s immunity, and survive within the host is essential for further 

development and intervention of novel staphylococcal therapies.  

 

S. aureus tissue infection induces migration of phagocytes to the infection site in order to 

eradicate the bacterium and neutrophils are the most crucial phagocytic cells.  Patients with 

congenital neutrophil deficiencies or abnormality of neutrophil functions, such as chronic 

granulomatosis, suffer from cutaneous, respiratory, periodontal or soft tissue, as well as sever 

fatal infections often caused by S. aureus [6, 203, 277]. S. aureus targets and interferes with 

the neutrophil-mediated host defence, targeting extravasation, chemotaxis, opsonization and 

phagocytosis [53, 277]. Interestingly, once S. aureus enters into the professional phagocytes, 

it uses different strategies to reduce the efficiency of the antimicrobial mechanisms [53]. It 

takes the benefit of these cells for transport through the bloodstream and distribution 

throughout the human body [290]. In addition, S. aureus produces cytolytic toxins and 

proteins, which mediate lysis of the host cells and manipulate death of phagocytic cells [53, 

306]. This causes the release of surviving bacteria and their toxins into the infected tissue, 

which consequently leads to local inflammation an infection [290].  

 

In this section of thesis, the S. aureus virulence factors promoting colonization, as well as 

infection of the human host, will be discussed.  

 

 

S. aureus adhesion during colonization/infection  

 

S. aureus expresses a variety of surface-associated as well as secreted proteins, which 

mediates attachment to mucus, plasma proteins, epithelial cells, endothelial cells, and 

extracellular matrix (ECM), as well as evasion of the host immune responses [279]. 

Staphylococcal adhesins can be structurally classified into “secreted expanded repertoire 

adhesive molecules” (SERAMs) (reviewed in [33]) and cell wall-anchored (CWA) proteins, 
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which are covalently attached to peptidoglycan (reviewed in [77]), as well as non-protein 

materials such as wall teichoic acid (WTA) [114]. 

 

The SERAMs of S. aureus are structurally unrelated secreted adhesins, containing ECM 

binding properties. Some of its proposed members are coagulase (Coa), fibrinogen binding 

protein A (FbpA), von Willebrand factor binding protein, extracellular fibrinogen-binding 

protein (Efb), extracellular adhesive protein (Eap), and extracellular matrix binding protein 

(Emp). SERAMs can either bind to various host ECM components, such as fibronectin and 

fibrinogen or facilitate bacterial adhesion to host cells (Table 1). In addition, some of the 

SERAMs, e.g. Efb, contribute in immune evasion and promote S. aureus pathogenicity [33].  

 

The CWA proteins promote adhesion of S. aureus to the ECM and other molecules on the 

host cell, and may facilitate immune evasion. These proteins have been recently classified into 

four distinct classes based on structural and functional properties including, (1) the microbial 

surface component recognizing adhesive matrix molecules (MSCRAMMs) family, e.g. 

clumping factor A and B (ClfA and ClfB), serine-aspartate repeat (Sdr) C, D and E, collagen 

adhesin (Cna) and fibronectin-binding proteins A and B (FnBPA and FnBpB); (2) the near 

iron transporter (NEAT) family, e.g. Iron-regulated surface determinant A and B (IsdA and 

IsdB); (3) the three-helical bundle, e.g. Protein A and (4)  the G5-E repeat family, e.g. S. 

aureus surface protein G (SasG). These proteins contain an N-terminal secretory signal 

sequence and a C-terminal sorting signal, where the latter is involved in covalent anchoring of 

the protein to the staphylococcal cell wall peptidoglycan due to cleavage of the conserved 

LPXTG motif by sortase  (reviewed in [77]).  

 

Twenty-four different CWA proteins may be expressed by S. aureus (reviewed in [77]) and 

the combinations and expression levels of the proteins may vary among S. aureus strains 

[189]. Some of the CWA genes such as isdA, fnbpA, are present in all 11 lineages of S. 

aureus, whereas others are absent in the majority, e.g. sdrE, cna, or few of the lineages, e.g. 

clfA, clfB, sasG, sdrC, sdrD [189]. Moreover, occurrence of allelic variation in the functional 

domain of the same type of CWA proteins, e.g. FnBP, can influence on the protein-ligand 

binding strengths and subsequently their contribution in colonization and pathogenesis [25, 

179, 181]. Thus, the success of S. aureus adherence to the host interaction partners may 

depend on the correct combination, allelic variation, and the expression level of CWA 
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proteins. In parallel, the proper expression and allelic variation of the human host interaction 

partners are also determinants in colonization [77, 129].  

 

Certain CWA proteins may influence or alter the adhesive properties of other adhesins. SasG, 

for instance, masks the ability of exponentially grown S. aureus cells expressing ClfB and 

FnBPs to bind to cytokeratin 10, fibronectin and/or fibrinogen [46]. An individual adhesin can 

usually interact with several host molecules [279], e.g. ClfB binds to the soluble plasma 

protein fibrinogen [311], cytokeratin K10 [220, 319] and K8 [101], the major components of 

squamous cells, as well as to loricrin [209], which is the main component of the cornified cell 

envelope that is found in terminally differentiated epidermal cells. Another example is IsdA 

that binds to involucrin, loricrin, and cytokeratin K10 [41]. Moreover, one host molecule can 

interact with multiple CWA proteins, e.g. fibrinogen binds to ClfA [191] and ClfB [311].  

 

Several CWA proteins are expressed during colonization [23, 24]. Microarray analysis of S. 

aureus nasal isolates reveals high expression level CWA proteins, which are essential in S. 

aureus adhesion to the squamous cells [23]. For instance, transcriptional analysis of the clfB 

gene has shown elevated expression after several days of colonization [23]. Additionally, 

increased expression levels of SasD and SdrH have been reported among carrier compared to 

non-carrier isolates [210].  

 

 

Different CWA proteins, such as ClfB, IsdA, SdrC, SdrD, SasG and SasX, promote S. aureus 

adhesion to squamous cells [39, 46, 47, 166, 209, 251]. Using an in vivo model investigating 

rodent nasal colonization, ClfB [209, 261] and IsdA [39] were demonstrated to promote S. 

aureus colonization. ClfB also contributed in human colonization [319]. Notably, clfB and 

isdA–deficient S. aureus can still adhere to human desquamated epithelial cells [39], which 

indicates the role of other components of CWA proteins in S. aureus adhesion.  

 

Interestingly, some of the CWA proteins display other functions in addition to adhesion, 

which magnify their role in S. aureus colonization. For instance, IsdA decreases S. aureus 

cellular hydrophobicity, which provides resistance to the innate host bactericidal human skin 

fatty acids [40]. Other bacterial factors, such as WTA [313], transglycolase SceD [280], as 

well as several other virulence factors, contribute in adherence of S. aureus to host cells 

(Table 1). 
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Table 1. A selection of S. aureus virulence factors involved in adhesion to the host  

 

Protein group Bacterial determinant Abbreviation Adhesion to References 

 

CWA-MSCRAMM 

Fibronectin binding protein 

A, B 

FnBPA, 

FnBPB 

Fibrinogen (* FnBPA), 

fibronectin & elastin 

[26, 140, 

228] & 

reviewed in 

[77]  

 

CWA-MSCRAMM 

 

Clumping factor A, B 

 

ClfA, ClfB 

Desquamated epithelial cells 

and cytokeratin  (*ClfB), 

immobilized fibrinogen 

(*ClfA) 

Reviewed in 

[77] 

CWA-MSCRAMM Collagen adhesin Cna Collagen-rich tissue [335] 

CWA-MSCRAMM Serine-aspartate repeat 

proteins C, D  

SdrC, SdrD Desquamated epithelial cells [47] 

CWA-MSCRAMM Bone sialoprotein-binding 

protein 

Bbp Fibrinogen, bone sialoprotein  [301] 

Cell-surface protein  Elastin-binding protein EbpS  Elastin [225] 

 

CWA-NEAT motif 

family 

 

Iron-regulated surface 

determinant A, B, H 

 

IsdA, IsdB, 

IsdH 

Haem, haemoglobin (IsdA, 

IsdB, IsdH) &  

desquamated epithelial cells, 

fibrinogen fibronectin, 

cytokeratin 10, loricrin ( 

*IsdA) 

Reviewed in  

[77] 

CWA- G5-E repeat 

family 

S. aureus  surface protein G  SasG Desquamated epithelial cells [251] 

CWA-structurally 

uncharacterized 

S. aureus  surface protein X SasX Desquamated epithelial cells [166] 

SERAM Extracellular matrix binding 

protein 

Emp ECM [192] 

SERAM Extracellular adhesive 

protein 

Eap ECM Reviewed in 

[109] 

SERAM von Willebrand factor 

binding protein 

vWbP Prothrombin, fibrinogen & 

vW factor 

Reviewed in 

[33] 

Cell- Surface 

protein 

ECM-binding protein 

homologue 

Ebh ECM [38] 

Cell- Surface 

protein 

Plasmin sensitive protein Pls Lipid of the host cells  [120] 

Cell-wall 

component 

Wall teichoic acid WTA Primary nasal epithelial cells [313] 

 

* The interaction to host target is only reported for this protein. CWA: Cell wall anchored protein, 

ECM: Extracellular Matrix, MSCRAMM: microbial surface component recognizing adhesive matrix 

molecule, NEAT: near iron transporter family, SERAM: secreted expanded repertoire adhesive 

molecules. 
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Molecular determinants of nasal colonization 

 

There is a consistent mechanical removal of S. aureus in the anterior nares through shedding 

of squamous epithelial cells and mucus. In order to remain in the anterior nares, the bacteria 

must proliferate and evade the host immune responses [314]. S. aureus nasal carriage is a 

multifactorial process which involves bacterial factors, e.g. bacterial interference with 

commensal organisms [95, 96], absence or presence of adhesins (see previous section), host 

factors, e.g. host genetic factor, variation in number and nature of host nares receptors for 

bacterial adherence (reviewed in  [229, 314]), constitutive properties of the skin, e.g. low pH 

and temperature and corneal layer, (reviewed in [211]), immune responses, presence of anti-

staphylococcal component in nasal secretions and serious underlying diseases (reviewed in 

[229, 314]), as well as environmental factors, e.g. hospitalization [89] (Fig. 6). The relative 

importance of these factors in nasal colonization needs further elucidation. However, it has 

been proposed that host factors play a crucial role while bacterial factors may determine 

which strain is carried rather than carriage status [231].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Host-microbe-environment interplay. Proposed interaction between bacterial, host and 

environmental risk factors associated in S. aureus colonization/infection. Based on [222]. 
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A recent publication based on Danish middle-aged and elderly twins demonstrated that host 

genetic factors had a minor effect on the S. aureus carrier state [7]. However, several single 

nucleotide polymorphisms (SNPs) have been suggested to be crucial determinant for the S. 

aureus persistent nasal carriage [219, 314]. These include polymorphisms in the genes 

encoding TLR2, Mannose-binding lectin (MBL), C-reactive protein (CRP), glucocorticoid-

receptor, vitamin D receptor, defensin, complement factor H, complement C1 inhibitor, as 

well as in the promoter of interleukin 4 (IL-4) [60, 61, 93, 219, 257, 296, 298, 307]. The 

expression of host interaction partners may also contribute in S. aureus skin colonization 

and/or infection. Fibronectin, for instance, is not present in the stratum corneum of healthy 

skin, but is expressed in the skin of atopic dermatitis (AD) patients, which may partly explain 

the high susceptibility of these patients to the S. aureus colonization [35]. Additionally, the 

skin lesions from AD patients show a high level of Th2 cytokines, e.g. IL-4, which increase S. 

aureus mediated fibrinogen and fibronectin attachment [35, 36]. 

 

Nasal fluids contain complement proteins [28], defensins [43], lysozyme as well as 

immunoglobulins (IgA and IgG) and are a part of host defence against S. aureus [134]. S. 

aureus is resistant to lysozyme because of the cell wall modifying enzyme O-acetyltransferase 

(OatA) and WTA [16]. Also, the nasal secretion from carriers was defective in killing nasal 

carrier isolates of S. aureus in vitro [44], even though it contains elevated levels of α-

defensins and human β-defensin 2 [296]. The human β-defensin 3 [201] and cathelicidin LL-

37 [324] kill S. aureus effectively in vitro and the generation of human β-defensin 3 from skin 

and nasal secretion can be induced by the presence of S. aureus [199]. However, its level is 

significantly lower in persistent carriers than non-carriers [328]. Another trait found among 

carriers is presence of hemoglobin in nasal fluids. This may contribute in S. aureus 

colonization via inhibition of agr system [241]. 

 

All these finding demonstrate that several host determinants are associated with nasal 

colonization.  
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S. aureus innate immune evasion  

 

Upon entry of S. aureus into subepidermal tissues in the body or blood, several cellular and 

proteinaceous components of host innate immunity collaborates. Innate immune responses 

against S. aureus thoroughly depend on both complement system activation, as well as 

polymorphonuclear leukocyte (neutrophil) mediated phagocytosis [75, 253]. Neutrophils can 

recognize S. aureus using different receptors such as TLR2 [264] or formylated peptide 

receptor (FPR) that recognizes formylated peptide releasing by growing bacteria [52]. In the 

absence of antibodies, the LP of the complement system is activated by recognizing S. aureus 

through MBL and ficolins, which detect LTA and peptidoglycan [183]. Additionally, the AP 

can be directly activates by peptidoglycan [253]. Accordingly, deposition of the C3 molecule 

on the S. aureus surface, as well as activation of TLR2, FPR and C5a-R signaling pathways 

lead to an efficient neutrophil mediated phagocytosis [253, 277].  

 

However, S. aureus avoid the success of the innate immune components through a hide and 

seek strategy by interfering with TLR recognition, restraining complement deposition or 

activation, as well as the chemotaxis of neutrophils (reviewed in [75, 77, 141, 253]). 

Additionally, several members of CWA proteins such as ClfA [102, 103], Cna [135], SdrE 

[268] and protein A [73, 169, 232], also interfere with innate and adaptive immune responses. 

Moreover, S. aureus produces several secreted proteins with lytic properties towards 

neutrophils (reviewed in [75, 277]).  

 

In the following, S. aureus virulence factors associated with TLR recognition and complement 

evasion will be described. 

 

 

Evasion of TLRs signaling 

 

TLR2 is one of the receptors, recognizing S. aureus derived products [78] and its role in 

defense against S. aureus is pivotal. TLR2- [117, 284, 288] and MyD88-deficient [288] mice 

are hypersusceptible to S. aureus infection. In TLR2-deficient mice clearance of S. aureus is 

slower than in wild-type mice, peritoneal macrophages are insensitive to lipoteichoic acid 

(LTA) [117] and neutrophils are incapable to eliminate S. aureus due to a failure in the 

oxidative burst in response to this bacterium, other than phagocytosis [125]. Patients with 
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genetic defects in TLR signaling pathways, such as MyD88-, or IRAK4-deficiencies, are 

highly susceptible to infections by Gram-positive bacteria [233, 303]. Deficiency of TLR2, 

but not TLR4, enhances colonization of MRSA strains in a mouse model of nasal carriage 

[87]. Additionally, particular polymorphisms in human genes, which encode TLRs or related 

signaling components, can influence host susceptibility to bacterial infections. For instance, 

humans with TLR2 Arg753Gln polymorphisms display high susceptibility to infection with 

Mycobacterium tuberculosis and other Gram-positive bacteria such as S. aureus [27]. All 

these findings suggest that the TLR2-MyD88/IRAK-4 pathway is crucial for defense against 

S. aureus. 

 

Understanding bacterial evasion mechanisms through interference with TLR recognition has 

been an area of intense research. Several studies have been conducted in order to interrupt 

TLR function in bacteria. Most studies have been carried out on Gram-negative bacteria, 

confirming the presence of several bacterial molecules targeting most steps in the TLR-NF-κB 

signaling pathway (Reviewed in [130]). However, our related knowledge on Gram-positive 

pathogens is limited. 

 

Staphylococcal superantigen-like proteins (SSLs), previously called staphylococcal 

enterotoxin-like toxins (SETs) [161], consist of 14 different exoproteins displaying low amino 

acid sequence homologies. The molecular masses of these proteins are approximately 25-35 

kDa. There are some structural similarities and sequence homology between SSL proteins, 

toxic shock syndrome toxin 1 (TSST-1) and enterotoxins. However, they do not display 

superantigenic properties, and their role was long unknown [20, 168, 323]. The SSL1-SSL11 

proteins are encoded by genes located on staphylococcal pathogenicity island 2 (SaPI2), while 

SSL12-SSL14 are encoded by genes located on immune evasion cluster 2 (IEC2) [70, 131]. 

The structure of SSL protein as well as TSST-1 and enterotoxins, is composed of a C-terminal 

β-grasp fold (β-GF), involved in binding to various soluble ligands, and an N-terminal 

oligonucleotide/oligosaccharide-binding domain (OB) associated with nucleic acid 

recognition [1, 8, 9, 224, 323]. The SSLs family is involved in the pathogenesis of S. aureus 

and some of them interfere with the host immune proteins [11, 18-20, 51, 122, 123, 227, 308, 

309]. Recently, SSL3 and to a lower extent SSL4, was found to inhibit activation and 

consequently proinflammatory cytokine production via direct binding to the extracellular 

domain of TRL2. SSL3 significantly suppressed IL-8 production by HEK cells expressing 

TLR1/2 and TLR2/6 dimers [12]. Additionally, SSL3 inhibited tumor necrosis factor alpha 
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(TNF-α) production from murine macrophages in response to heat-killed S. aureus and related 

TLR2 ligands such as peptidoglycan and lipopeptide [326].  

 

 

Evasion of Complement system  

 

S. aureus has developed various mechanisms to modulate the host complement responses at 

different stages of the cascade (Fig. 7). S. aureus modulates complement activation and 

recognition through different strategies including direct targeting of human immunoglobulins, 

MBL, complement components e.g. C1q complex and the C3 molecule [158, 334]. Several 

human immunoglobulin binding proteins are expressed that prevent CP activation, including 

staphylococcal protein A (SpA), second binder of immunoglobulin (Sbi), SSL7, and SSL10 

[20, 111, 123, 330]. The CWA protein Cna, interferes with the interaction of the C1q and C1r 

components through binding to the collagen domain of the C1q molecule, which consequently 

prevents the CP activation [135]. Additionally, staphylokinase (Sak)-mediated plasmin 

deposition prevents S. aureus recognition through inactivating of IgG indirectly [254]. WTA 

binds MBL and blocks the LP activation [133]. S. aureus uses two different mechanisms to 

inactive the complement C3 through enzymatic cleavage [334]. One strategy is to cleave C3 

by use of staphylococcal metalloprotease aureolysin [159]. Alternatively, human plasminogen 

binds to extracellular fibrinogen-binding protein (Efb), Sbi, or triosephosphate isomerase 

(TPI) and is converted to plasmin either by S. aureus itself through Sak, or the human 

activator, upa. The active plasmin may then cleave C3 [17, 22, 80, 150, 157].  

 

Formation of C3 convertases is crucial for activation of complement amplification [332], 

which consequently can influence S. aureus opsonization. Five different proteins that directly 

target C3 convertases, known as C3 convertase inhibitors, are secreted. These includes 

staphylococcal complement inhibitor A (SCIN-A) and its homologues (SCIN-B and SCIN-C) 

[252], extracellular fibrinogen-binding protein (Efb), and extracellular complement-binding 

protein (Ecb) [34, 105, 106, 131, 247]. SCIN-A, -B and -C blocks C3 processing by 

“freezing” the C3 convertase [252]. Efb and Ecb bind to C3 and C3b proteins, resulting in a 

conformational change in the C3b, thereby preventing its binding to Factor B. The net result is 

inhibition of the formation of the C3 convertase [34, 105, 106, 247].  
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The complement regulators down-regulate convertase activity and play an important role in 

protection of host tissues against excessive activities of the complement system [332]. S. 

aureus contributes to complement evasion by recruiting and attracting host regulators to its 

surface. For example, Sbi binds to the human complement regulator factor H and factor H-

related proteins, as well as the C3b protein, resulting in formation of a tripartite complex, 

which consequently blocks the AP activation [113]. Moreover, ClfA and SdrE binds to the 

human C3 protease factor I and factor H respectively, thereby promoting the destruction of 

C3b molecules [102, 103, 268].  

 

S. aureus also produces several proteins inhibiting C5 activation and consequently neutrophil 

migration. For example, SSL7 binds to C5 and inhibits C5a and C5b generation [131, 160], 

while Efb and Ecb are putative inhibitors of C5a-mediated immune responses [131]. 

Additionally, chemotaxis inhibitory protein of S. aureus (CHIPS) also modulates the C5a-

mediated immune responses via high affinity binding to the C5aR and thereby preventing 

recruitment of neutrophils [121, 235, 236]. Panton-Valentine Leukocidin (PVL) also binds to 

the C5a receptor (C5aR) and C5L2, modulating the C5a-mediated immune responses [276]. 

The C5b molecule is involved in formation of the membrane attack complex (MAC) [332], 

which is not assumed to induce lytic action in Gram-positive bacteria due to their thick cell 

wall. Interestingly, SCIN, Efb, Ecb and SSL7 block MAC-mediated erythrocyte hemolysis. 

However, the relevance of MAC inhibition by S. aureus is unclear [158]. Moreover, the three 

human terminal complement regulators vitronectin, β2GP1 and CFHR1 and can be recruited 

to the surface of S. aureus through their binding to extracellular matrix binding protein (Emp), 

Sbi and an unknown protein respectively (reviewed in [334]). The various levels of the 

complement system and S. aureus interference are summarized in figure 7.  
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Figure 7. S. aureus interferes with human complement response on different levels. The host complement 

system can be divided into various levels such as initiation, C3 convertase, C5 convertase and terminal pathway. 

The levels and proteins involved are visualized in black. Strategies of evasion are marked in blue, and 

staphylococcal proteins involved in evasion at the particular levels are visualized in red. Spa: staphylococcal 

protein A, Sbi: Second binder of immunoglobulin, SSLs: Superantigen-like proteins , Sak: Staphylokinase, Cna: 

Collagen adhesin, WTA: Wall teichoiic acid,  SCIN: Staphylococcal complement inhibitor, Efb:  extracellular 

fibrinogen-binding protein, Ecb: extracellular complement-binding protein, SdrE: Serine-aspartate repeat protein 

E, ClfA: Clumping factor A, CHIPS: Chemotaxis inhibitory protein of S. aureus, PVL: Panton-Valentine 

Leukocidin, Emp: extracellular matrix binding protein.  Based on [334]. 
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Internalization and survival of S. aureus in host cells 

 

S. aureus has traditionally been known as an extracellular pathogen. Now, we know that S. 

aureus can be internalized, and survive in professional phagocytic cells, as well as non-

professional phagocytic cells, e.g. fibroblasts, endothelial cells, osteoblasts, keratinocytes 

(reviewed in [82, 271]).  

 

The intracellular life style enhances S. aureus persistence in host tissue as bacteria are 

protected against host antimicrobial components and immune responses [266]. Indeed, 

intracellular S. aureus localization has been found in turbinate- and tonsil-biopsies from 

patients with recurrent rhinosinusitis or tonsillitis, respectively [42, 329] and demonstrated in 

mice experimental models of mastitis and a rat model of endocarditis [112]. Additionally, it 

has been demonstrated that S. aureus use host cells for its conveyance and dissemination from 

the site of infection [290].The intracellular localization of S. aureus in various cells may 

increase the risk of relapsing infection and/or contribute to the establishment of chronic 

infections [82, 234, 293]. During intracellular infection, S. aureus may alter the phenotype 

into small colony variants (SCVs), which increases resistance to intracellular immune 

responses as well as possibility of therapeutic failure [266, 293, 305]. SCVs can rapidly return 

to their wild-type form after leaving intracellular milieu [293].  

 

Internalization of S. aureus into the non-professional phagocytes is mediated through actin-

rearrangement of the host cell (reviewed in [79, 82]). FnBPs on the bacterial surface binds to 

fibronectin that connects bacterial proteins to α5β1 integrins at the host cell surface (Fig. 8), 

which induces a zipper-type uptake of S. aureus [270]. However, internalization into non-

professional phagocytes can also be achieved by several other bacterial-host cell interactions. 

First, FnBP can bind directly to heat shock protein 60 (Hsp60), present on the membranes of 

human and bovine epithelial cells [56]. Second, Eap can contribute to internalization of S. 

aureus Newman into epithelial cells and fibroblasts by an FnBPs-independent mechanism 

[109]. Further, the interaction of staphylococcal autolysin (Atl) with heat shock cognate 

protein (Hsc70) has been shown to be involved in internalization into an endothelial cell line 

[116]. The difference in the bacterial uptake among various cell lines may also depend upon 

the expression and availability of the host cellular receptors (reviewed in [178]). However, 

some of the staphylococcal proteins such as α-toxin interfere with integrin-mediated adhesion 

and internalization of S. aureus by the human host [167, 325].  
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Intracellular degradation of unwanted material, e.g. pathogens, can be carried out via a 

process called autophagy. Thus, pathogens are taken up by host cells in autophagosomes and 

degraded after autophagosomal fusion with the lysosome [165]. S. aureus strains, expressing 

the accessory gene regulator- (agr-) related virulence factors or α-hemolysin (Hla), display a 

clear resistance against autophagic removal by preventing autophagosome maturation. These 

strains escape from the autophagosome into the cytoplasm, leading to death of the host cell 

and bacterial release [263]. The involvement of single virulence factors, such as pore-forming 

toxins in S. aureus intracellular survival, depends on bacterial strains and type of host cell. For 

example, the main target of PVL and phenol-soluble modulins (PSMs) is the neutrophils 

(review in [277]). The α-, β-, δ-toxin and β-PSM target a much broader spectrum of cells such 

as epithelial and endothelial cells in staphylococcal escape from the phagoendosomes [85, 90, 

198, 320]. Interestingly, the role of PSMs in lysing of osteoblasts has recently been 

demonstrated [246]. CA-MRSA displays efficient lysis of polymorphonuclear leukocyte 

(PMN) after phagocytosis in comparison to other strains of S. aureus [149]. Additionally, in S. 

aureus LAC (USA300), a prominent CA-MRSA strain, leukocidin AB (LukAB), also known 

as leukocidin G/H (LukGH), may also have a role in intracellular lysis [55].  

 

S. aureus protects itself against phagocytic killing and can survive inside PMNs with the help 

of various factors that are dependent on the global regulator, sarA, which controls the 

synthesis and secretion of several virulence factors [94]. Several staphylococcal enzymes such 

as staphyloxanthin [175], super oxide dismutase [136], surface factor promoting resistance to 

oxidative killing (SOK) [184], catalase (KatA) and alkyl hydroperoxide Reductase (AhpC) 

[48] contribute to resistance against neutrophil killing. S. aureus survival within PMNs 

depends on the multiplicity of infection (MOI), as well as bacterial growth phase. Notably, the 

number of intracellular viable S. aureus increases when bacteria from the stationary phase of 

growth and high MOI is presented to the PMNs [265].  
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Figure 8. Schematic diagram illustrating proteins involved in initial phase of S. aureus internalization into 

the non-professional phagocytes. FnBPs: Fibronectin binding protein A, B, Eap: Extracellular adherence 

protein.  Based on [82] with minor modification.  
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OBJECTIVES 

 

Molecular studies of S. aureus-host interactions are of importance for better understanding of 

determinants associated with colonization and/or infection. Being a successful colonizer 

and/or invader requires the ability to adhere to the host cells/tissues, and ability to play hide 

and seek with the defense system. S. aureus MSCRAMMs are multifunctional proteins, which 

display a crucial role both in colonization and infection as adhesive and evasive molecules.  

Another immune evasion mechanism has been identified in Gram-negative bacteria, where 

TIR containing proteins negatively interfere with intracellular component of the TLR 

signaling pathway as well as induction of pro-inflammatory responses. However, whether 

Gram-positive bacteria express such mechanisms remain elusive.  

 

The aims of this study were to explore selected molecular determinants associated with S. 

aureus colonization and/or infection and contribute to the knowledge about S. aureus 

interactions with the human host. Thus, the following questions were specifically addressed:  

 

- Can a small subset of S. aureus nasal isolates from healthy individuals, belonging to 

different spa types, induce different responses in the presence of keratinocytes? Are 

certain bacterial traits beneficial for colonization? 

 

- Is the S. aureus TIR domain protein (TirS) expressed? Can this protein interfere with 

host signaling and immune evasion? 

 

 

- Can SdrD of S. aureus NCTC8325 contribute to host cells adhesion, invasion, and 

immune evasion? 
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GENERAL DISCUSSION 
 

 

Colonization by S. aureus occurs when the bacteria exist as a commensal on the surface of the 

skin or mucus without any signs or symptoms of infection. Importantly, breakage of the skin 

barriers promotes transformation of S. aureus from a commensal colonizer to an invading 

pathogen. Studies on S. aureus gene regulation suggest downregulation of virulence genes 

during colonization and upregulation during infection [218]. S. aureus avoids host recognition 

or diminishes the subsequent immune activation for survival in a human host (reviewed in 

[88, 155, 202]). Additionally, the residential flora of the host organ, e.g. anterior nares, is a 

formidable challenge for S. aureus, since the presence of certain bacterial competitors can 

preclude carriage [176].  

 

The presence of an optimal fit and highly specific interactions between S. aureus and the 

human host has been suggested. The huge variations in the combination of virulence factors, 

as well as allelic variations among S. aureus isolates, may determine the bacterial fitness. It 

has been suggested that, the gene combinations crucial for severe infections may be the same 

as those associated with S. aureus colonization [172]. The host factors including the various 

polymorphisms, the expression level of the ligands/receptors for bacterial attachment, as well 

as host immune responses are additional determinants for tolerance or eradication of S. aureus 

(reviewed in [129, 231, 314]). Thus, the host genotype and bacterial factors may be 

determinants of the carriage status and the carrying strain respectively.  

 

In this study, we have investigated the variation of host cell responses to a small series of S. 

aureus nasal isolates (paper I), as well as two determinants involved in S. aureus immune 

evasion including staphylococcal TIR containing protein (TirS) (paper II) and SdrD protein 

(paper III). However, the latter turned out to be multifunctional (paper III).  

 

 

Adhesion/invasion and role in host-microbe interactions  

 

S. aureus expresses several MSCRAMMs that are associated with adhesion and/or invasion of 

non-phagocytic cells through binding to the ECMs (reviewed in [77]). S. aureus 

internalization and survival within the host cells may protect the bacterium from immune 
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responses, antibiotic treatments as well as promoting the establishment of chronic or frequent 

relapse of staphylococcal infection [5, 178, 266].  

 

Microarrays confirmed the presence of several genes encoding CWA proteins such as clfB, 

isdA, sdrD and sdrC in all selected S. aureus isolates (paper I). Additionally, our study 

(paper III) revealed that disruption of sdrD in S. aureus NCTC8325 suppressed bacterial 

attachment, internalization, and survival within human keratinocytes. The promoting function 

of CWA proteins such as ClfB, IsdA, SdrC, SdrD, SasG, SasX, in S. aureus adhesion to 

squamous cells has been demonstrated previously [39, 46, 47, 166, 209, 251]. However, there 

is a considerable functional redundancy between surface proteins in S. aureus. Thus, it is 

challenging to demonstrate the significant role of a single protein in adhesion or evasion. To 

circumvent the problem of redundancy, a single CWA protein can be expressed individually 

in a substitutive host such as L. lactis or S. carnosus (reviewed in [77]). Therefore, we 

included L. lactis expressing SdrD in some of our experiments, which confirmed the role of 

SdrD in adhesion to keratinocytes (paper III).  

 

Our findings in the paper I demonstrated that S. aureus nasal isolates, belonging to different 

spa types, display variability in several traits as well as host cell responses in vitro. The 

genetic background of a given S. aureus isolate, which can be determined by the spa type, can 

predict the magnitude of invasiveness at the cellular level in vitro [315]. Indeed, our results in 

paper I suggested a huge variability among the studied S. aureus isolates in their attachment 

to and internalization into human keratinocytes. The host cell invasion is relying on the 

expression of staphylococcal surface protein, e.g. FnBPs, which engage host cell fibronectin 

and α5β1 integrin [270].  

 

Our results demonstrated that seven out of the eight studied S. aureus nasal isolates were 

positive for either FnBPA/FnBPB or both (paper I). The oligos’ binding sites of the probes 

on the microarray are highly specific. Thus, absence of the fnb or fnbB genes in one of the 

selected isolate may be due to the allelic variation of this gene. This limitation may also be the 

reason for the absence of fnb or fnbB in some of the tested lineages in the previous study 

[189]. However, FnBP-independent invasion of human keratinocytes have been previously 

demonstrated for some of the S. aureus isolates [144]. Presence of SdrD resulted in an 

increased level of internalized bacteria (paper III), but whether the internalization is FnBP-

dependent or -independent remains elusive. The cytotoxic outcome and sub-cellular 
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localization of ingested S. aureus are greatly strain-dependent [83], however, whether the 

eight studied isolates in paper I vary in these properties remain to be investigated.  

 

 

Immune evasion strategies and role in colonization/infection 

 

Structural mimicry of host proteins is an effective strategy for pathogens to manipulate host 

immune responses [281]. TLR-mediated signaling plays a pivotal role in the upregulation of 

host innate immune responses through PAMPs recognition and subsequently induction of pro-

inflammatory responses such as secretion of cytokines and chemokines [4, 124, 137, 287]. 

Bacterial TIR containing proteins have been identified in a wide range of bacteria that 

contribute to evasion of host immune system (reviewed in [245]). Genes encoding the 

bacterial TIR-containing proteins are generally localized within mobile genetic elements. 

Thus, the high possibility of lateral transmission of these genes has been suggested [331]. A 

TIR containing protein was identified in S. aureus MSSA476 through a database search 

analysis, named TirS and investigated further in paper II.  

 

We demonstrated a TirS specific inhibitory effect against stimuli-induced TLR2-mediated 

NF-κB activation, JNK phosphorylation, and cytokine production upon its ectopic expression 

in eukaryotic cells (paper II). One of the major limitations of the ectopic expression study is 

high cytosolic concentrations of the target protein. This is due to constitutive expression of the 

gene of interest by a strong promoter. Thus, the results of ectopic expression of TirS were 

confirmed by an infection experiment using MSSA476 wild type, MSSA476ΔtirS and 

complemented strain MSSA476ΔtirS +pTirS in a transwell system (paper II).  

 

The negative interference of the bacterial TIR protein with the TLR signaling pathway and 

consequently inhibition of NF-κB activation has been reported for several Gram-negative 

bacteria such as Salmonella enterica [212], Escherichia coli [37], Brucella sp. [37, 243], 

Yersinia pestis [244] and Paracoccus dentrificans [180]. Previously, S. aureus interference 

with recognition by TLR2 through SSL3 has been demonstrated [12, 326]. Improving our 

knowledge on bacterial immune evasion strategies triggering TLR-NF-κB signaling pathway 

may be of high medical interest and provide an alternative option for treatment of 

inflammatory diseases in the future [130].  
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Genetic disorders in TLR signaling pathways can affect the susceptibility of the infection with 

Gram-positive pathogens such as S. aureus [117, 233, 285, 288]. In order to study whether 

TirS increases S. aureus virulence, pathogenicity of MSSA476 wild type versus an isogenic 

mutant MSSA476 ΔtirS was compared in an intravenous and a skin abscess mouse infection 

models. The results revealed that the presence of TirS increased the bacterial load in multiple 

organs upon systemic infection (paper II). Our results are consistent with studies using E. 

coli, Brucella sp. and S. enterica wild type containing the TIR domain protein [37, 212, 243]. 

However, Y. pestis containing the TIR domain protein did not influence on the bacterial 

virulence in a mouse model of bubonic plague [278]. Interference of TirS with TLR and JNK 

signaling pathways was confirmed in the paper II. Recently, the role of TLR2 in 

phagocytosis and autophagy induction via JNK signaling was demonstrated in S. aureus 

(NCTC8325)-stimulated murine macrophages [66]. Although different strains were used, but 

the high bacterial survival in infected mice by MSSA476 wild type may be due to TirS-

mediated reduction in production of proinflammatory cytokines/chemokines and/or reduction 

in autophagy. However, this remains to be investigated. 

 

TirS influences the production of proinflammatory cytokines in vitro (paper II). Obviously, 

further comparison of cytokine levels in the serum of mice intravenously infected with 

MSSA476 wild type versus isogenic mutant MSSA476ΔtirS could add value to our results. 

Based on literature, both TNF-α [98] and TLR receptor signaling pathways [4, 124, 137, 287] 

can induce the activation of the NF-κB-reporter. TirS inhibited PAMP-induced TLR2-

mediated NF-κB activation, but not TNF-α (paper II). Thus, induction of TNF-α receptor-

mediated NF-κB activation by bacteria in the host cell may mask the effect of TirS on PAMP-

TLRs. Therefore, the choice of time points is of high importance in order to pinpoint the TirS 

effect. Additionally, the serum volume that can be extracted from an individual mouse was 

only 0.1 to 0.15 ml in our initial studies and numerous animals would be needed to optimize 

these experiments. Thus, regarding the three R’s of animal ethics (replacement, refinement 

and reduction), we chose not to include cytokine analysis in our mouse systemic infection 

modeling. Although much can be learned from murine modeling of infection, one of the main 

problems with the approach of using mouse models is the presence of a host difference. Thus, 

the interpretation of results in animal models should be carried out cautiously [77, 200].  

 

Immune evasion mechanisms are important for bacteria during infection and perhaps also 

colonization. Survival of S. aureus in an extracellular environment depends on overcoming 
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opsonophagocytosis, mediated through complement components and antibodies (reviewed in 

[334]). Our finding in paper III demonstrated the role of SdrD in immune evasion, which 

yielded a reduction of C3b deposition, increasing blood survival, and reduction of PMN-

mediated phagocytosis. Several other MSCRAMMs such as ClfA, Cna and SdrE, interfere 

with complement-mediated activities of immunity [102, 103, 135, 268].  

 

 

The meeting between selected virulence factors and host 

 

TirS and SdrD were both found in culture media (paper II & III). A common assumption 

about secreted proteins is that they contain a signal peptide. However, TirS is lacking such a 

peptide and was still found outside host cells (paper II). Proteins without the signal peptide or 

cell wall bound proteins may be released into culture media by different mechanisms. One 

possibility is secretion of membrane vesicles (MVs) into the extracellular milieu, which is a 

common feature of S. aureus [99]. Another option is release due to bacterial expression of 

autolysin, which is termed “nonclassical protein secretion.” Indeed, the two cell wall anchored 

proteins such as SdrD and protein A were both found in the secretome, together with several 

cytosolic proteins without signal peptide [226]. Recently, an ATP binding cassette transporter 

with previously unknown function, was found to be involved in the release of phenol-soluble 

modulins [32]. Therefore, a third option is release through un-identified receptors. SdrD 

contains an LPXTG motif and was still found in the culture supernatant. This could be either 

due to proteolytic cleavage or bacterial death. However, this remains to be investigated.  

 

The mechanism of transfer of TirS into the host cells requires further investigation. Gram-

negative bacteria can directly inject their effectors into the host cells using the Type III or 

Type IV secretion systems (T3SS or T4SS) [84, 213], or the effectors can be secreted into the 

medium and afterwards be taken up by the host cells. An example of the latter is TcpC from 

E. coli that enters into the host cell through cholesterol-rich lipid rafts [37]. Another 

possibility is MVs, which play an important role in transportation of several virulence-

associated components into the host cell [99]. However, if any of these or other mechanisms 

is used by TirS to enter cells remains to be elucidated.  
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Spread of virulence factors 

 

S. aureus virulence genes are generally localized on mobile genetic elements (MGE), such as 

pathogenicity islands (SaPIs), phages, or staphylococcal cassette chromosomes (SCC). This 

may enhance the possibility of their acquisition by other S. aureus stains through horizontal 

gene transfer and provide S. aureus an advantageous pathogenic strategy to adapt to the 

human host [190]. It has been demonstrated that mobile accessory virulence genes are not 

disseminated consistently among S. aureus strains. Additionally, some virulence genes can be 

carried on more than one element ([206] and references within).  

 

The tirS gene integrated into the staphylococcal cassette chromosome SCC476 element [118] 

(paper II). It seems that the existence of the tirS gene is an advantage for MSSA476 

enhancing its virulence through subversion of the fast-acting innate immune response (paper 

II). However, so far the prevalence of tirS has been reported in a limited number of other 

sequenced S. aureus isolates (paper II). The time will show whether the prevalence of TirS is 

increasing or decreasing. The origin of TirS is not known yet. However, it has been suggested 

that coagulase-negative staphylococci (CoNS) serve as reservoirs for S. aureus SCCmec 

elements (references within [327]). Whether the acquisition of tirS by MSSA476 is adapted 

from the (CoNS), merits further investigations.  

 

The sdr locus consists of sdrC, sdrD and/or sdrE, but all three genes are not necessarily 

present in the same strain [132, 258]. At least two sdr genes exist in all studied S. aureus 

isolates [132] and sdrC is always reported in the sdr locus [230]. The sdr locus of NCTC8325 

contains sdrC and sdrD (paper III). The genes encoding surface protein complexes are 

mostly localized on the “core variable” [173], and some of these genes, e.g. sdrD, are not 

present in all studied S. aureus isolates ([132, 189, 258] and paper III). Interestingly, more 

than 50% of tested MSSA and approximately all tested MRSA isolates contain sdrD in their 

genome ([258] and references within). Our results demonstrated that the prevalence of sdrD 

was significantly higher among invasive isolates (37.1%) than nasal isolates (28.5%) (Paper 

III). This may suggest that although the presence of sdrD is not crucial for S. aureus survival 

and growth, it confers benefits for invasive isolates as they often contain SdrD.  
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CONCLUDING REMARKS AND OUTLOOK 

 

Much has been learned over the past years about S. aureus colonization and infection of the 

human host. However, many questions remain unsolved. Our results are consistent with those 

of other studies and suggest that S. aureus and host interactions are strongly influenced by 

various parameters such as strains, MOI and host genetic background. The success of 

colonization and infection is, therefore, a complex interplay between a specific isolate and 

human individual. An effective adherence to the host cell, as well as ability to evade the host 

immune response is critical steps in S. aureus colonization and infection.  

 

Multiple bacterial determinants are known to be involved in colonization and infection. SdrD 

was found to facilitate adherence of S. aureus NCTC8325 to skin as well as enhancing 

survival in human blood. The virulence factor TirS was found to interfere with PAMP-

induced TLR2 signaling and increase bacterial accumulation in mice. These results suggest 

that SdrD may be a determinant involved in both infection and colonization. On the other 

hand, TirS may be more important during infection than colonization. Several questions 

should be addressed in future studies. The prevalence of sdrD was higher among invasive 

isolates than nasal isolates and has been associated with bone infections. Thus, it is important 

to focus on the role of SdrD in bone infections. In addition, the exact mechanisms behind the 

SdrD contribution in C3b deposition and high blood survival need to be evaluated further. 

Other questions that merit further investigations are whether and/how tirS is spread among S. 

aureus strains as well as a mechanism(s) by which TirS enters into the host cell. 

 

In summary, S. aureus has several adhesive and immune evasive factors, where the number 

and combination depend on the strain. Here, we found that the combination of factors not only 

influence adhesive and invasive properties, but also host responses. We also studied two 

determinants in more detail, TirS and SdrD. Both were found to have immune evasive 

properties, while the latter turned out to be multifunctional. Hopefully, our results may 

improve our understanding on some determinants associate with S. aureus colonization and 

infection and provide us with more knowledge on the complex interaction between this 

pathogen and the human host. However, further studies on the molecular aspects of 

interactions between S. aureus and host cells are needed in order to obtain future targets for 

infection prevention and/or therapy. 
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