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Abstract. This paper presents the Multiphysics technique applied in the design optimization of a loading hanger for an 
aerial crane. In this study, design optimization is applied on the geometric modelling of a part being used in an aerial 
crane operation. A set of dimensional and loading requirements are provided. Various geometric models are built using 
SolidWorks® Computer Aided Design (CAD) Package. In addition, Finite Element Method (FEM) is applied to study 
these geometric models using ANSYS® Multiphysics package. Appropriate material is chosen based on the strength to 
weight ratio. Efforts are made to optimize the geometry to reduce the weight of the part. Based on the achieved results, 
conclusions are drawn. 

INTRODUCTION

Aerial cranes are being used in the wide variety of applications such as in construction, transport, emergency, 
military etc. [1-3]. Figure 1(a) shows an aerial crane operation. Aerial crane operation involves helicopter, loading 
hanger and the lifted weight. Loading hanger is comprised of parts, such as loading line, attachment plate, slings, 
etc. Figure 1(b) shows a close-up view of the loading hanger [4]. 

In this work, focus is on the loading hanger. The loading hanger is connected between helicopter and the load. 
This connection is activated using electromagnetic switch, which can be detached on unloading or emergency in 
case of unstable helicopter flight. The objective here is to design this part, select appropriate material and use 
multiphysics tools for optimization. This work presents three phases, which includes (1) geometric modeling, (2) 
material selection and (3) optimization phases.  

The geometric modelling phase begins with a sketch of the attachment plate. Figure 2(a) and fig. 2(b) show the 
top and side views of the attachment plate based on pre-set design requirements. A set of requirements is provided to 
enclose a physical problem [5]. There are four sling holes surrounded by an attachment area. Each sling hole has a 
diameter of three centimeters. In addition to that, each hole needs to be thirty centimeters from the center of the 
attachment plate and equidistant from each other. The center area is for joining the attachment plate with the 
helicopter. It is also pre-set to 100 cm2. Only requirement here is that this area should be axisymmetric to the center 
of the attachment plate. The helicopter maximum loading capacity is up to one metric ton (1000 Kg).  
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(a) (b) 

FIGURE 1. Aerial crane operation is shown in (a). A zoom in view of loading hanger is shown in (b), comprising of three main 
segments, loading line from the helicopter, the attachment plate and slings to attach the weight [6].  

(a) (b) 

FIGURE 2. The attachment plate with pre-set dimensions requirements. Top view is shown in (a) and side view is shown in (b). 

Material selection phase is the choosing of an appropriate material for the attachment plate. It is desired that the 
designed part is efficient and safe. In this case, strength and stiffness are both important.  In this work, appropriate 
material is chosen from a list of available materials (table.1). Another important selection criterion is strength to 
weight ratio. The factor of safety is considered to be three in the selection process [5, 7]. 
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The optimization phase includes modifications in the geometry of the attachment plate while fulfilling all of the 
above given requirements. The focus is on the structural stresses and displacements. The aim is to reduce  the weight 
of the attachment plate [8].  

METHODOLOGY

The methodology followed in this study involves development of CAD models using SoildWorks® [9] and 
analysis using ANSYS® Multiphysics [10, 11]. These are followed by evaluation of the obtained results against 
requirements of an aerial crane operation and repeating these steps until most optimized part is obtained. Figure 3 
shows the road map of the methodology.  

FIGURE 3. Roadmap of methodology adopted for design optimization 

The development of CAD model includes building of 3D models using SolidWorks® CAD package [9]. Various 
parts are built as shown in fig. 4. All of these parts meet the dimensions stated earlier.  

Multiphysics analysis is conducted using ANSYS® Multiphysics package [10, 11]. Two types of boundary 
conditions are applied, that are displacement constraint and distributed forces (pressure). The forces are equally 
distributed in each sling line and applied on the edge of each sling hole. The boundary conditions are illustrated in 
fig. 5.  
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(a) (b) 

(c) (d) 

FIGURE 4. Various 3D parts built in SolidWorks® [9] for the attachment plate [12]. 

FIGURE 5. Boundary conditions applied to the model. (a) Displacement constraint applied at the connection between helicopter 
and the attachment plate. (b) Distributed load (pressure) is applied at the sling holes.   
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The multiphysics analysis is performed by applying linear, elastic, isotropic and homogeneous materials. The list 
of materials used are given in table 1. The von-Mises  yield criterion [13, 14] is employed for detecting the failure. 
The use of isotropic model for composite materials is questionable; however, one of the requirement is to have 
effective stresses as low as one-third of the yield strength (factor of safety equal to three). At low values of effective 
stresses, von-Mises criterion [13, 14] is close to Tsai-Wu criterion [15] which is valid over anisotropic materials 
such as carbon reinforced fiber polymer (CRFP) [16]. 

TABLE 1. Properties of materials; yield strengths, densities and specific strengths.  
Materials Yield Strength 

(Mpa) 
Density 
(Kg/m3)

Specific Strength 
(Yield Strength/Density) 

Aluminum Alloys 120 2700 0.04 
Stainless Steel Alloys 500 8000 0.0625 

Titanium Alloys 600 4500 0.13 
Nickel Alloys 900 7800 0.115 

Carbon Reinforced Fiber polymer (CRFP) 320 1800 0.17 

RESULTS AND DISCUSSION

The results from earlier tests (as shown in fig. 4) show high stresses in the sharp corners. This clearly indicates 
that sharp corner produces stress concentration points which must be avoided [17].  It is also realized that the 
problem is analogous to a simple bending beam considering that the attachment plate is quad symmetric. Solution to 
such a problem can be found by applying Euler-Bernoulli bending theory [18, 19]. The Euler-Bernoulli equation for 
the quasi-static bending of slender, isotropic and homogeneous beams under a transverse load is given in eqn. 1. 

  (1) 
Where x is a unit dimension in longitudinal direction, q(x) is a distributed load, E is the Young’s Modulus, I is 

the area moment of inertia and w(x) is the deflection from the neutral axis of the beam. 
Similarly, bending moment M(x) and shear force Q(x) can also be expressed in terms of Young’s Modulus E, the 

area moment of inertia I and deflection w(x) as given in eqn. 2 and eqn. 3 [18, 19]. 

     (2) 

   (3) 
For the beam cross-sections that are symmetrical about the plane parallel to the transverse direction, it can be 

shown that the bending tensile stress is as given in eqn. 4 [18, 19]. 

   (4) 
Where (x) is the bending tensile stress and y is a unit dimension in the transverse direction. 

It is shown from eqn. 4 that the bending tensile stress is directly proportional to the moment. The value of 
moment is proportional to applied force and distance between the constraint and the loading point. Hence, by 
reducing the distance between constraint and loading point, the stresses can be reduced. Keeping this in 
consideration, the models are re-built and tested for stresses.  

The final optimized three dimensional CAD model of an attachment plate is shown in fig. 6 (a). Figure 6 (b) and 
fig. 6 (c) show the von-Mises stress and displacement contours. The material of choice is CRFP, since it has the 
highest strength to weight ratio. The net weight of the optimized model is 0.25 Kg. The maximum stress is about 48 
Mpa, which is less than a half to the requirement (one-third of yield strength of CFRP = 107 Mpa; table 1). This 
gives factor of safety (FOS) of six. Higher FOS is also an advantage against aging failures such as fatigue and creep 
[17].  Maximum displacement is about 0.034 mm, which is very small in comparison to the part dimensions.    
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(a) 

(b) 

(c) 

FIGURE 6. (a) Optimized CAD model. (b) The von-Mises stress (N/m2 = 10-6 Mpa) contours. (c) The resultant displacement (m) 
contours.  
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CONCLUSION

The optimization methodology is a cyclic iterative process. Computer aided design (CAD) model and 
Multiphysics analysis (for example: finite element methods (FEM)) are the key inputs for the optimization process. 
In addition, knowledge from an engineering area is required to understand the problem and its solution. Given work 
presents an optimization of an attachment component of a loading hanger with set of requirements. Discussed 
methodology is tried and proved to be effective. The knowledge from mechanics of materials is the key to 
understand the problem and its solution. 
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