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Abstract 

Human kind has battled with diseases for centuries, and conquered both small pox and 

polio. Even though the global battle against cancer has been ongoing for decades, it is still 

one of the leading causes of death worldwide. Oral squamous cell carcinoma (OSCC) is an 

aggressive and unpredictable cancer with a high tendency to recur and metastasise. Despite 

increasing efforts to improved treatment, the 5-year survival rate is still low. Early 

intervention gives, as with many types of cancer, the best prognosis. However even small 

early stage tumours can behave aggressively.  

We discovered that low expression levels of the urokinase plasminogen activator receptor 

(uPAR) and the plasminogen activator inhibitor-1 (PAI-1) two proteins normally involved in 

the process of wound healing, were associated with low disease specific death in patients 

with early stage OSCC. PAI-1 and uPAR were therefore suggested as potential biomarkers to 

aid clinicians in treatment stratification. High expression of uPAR and PAI-1 was therefore 

implicated in the early stages of OSCC progression. In vivo studies further showed that the 

tumour microenvironment was involved in the induction of uPAR expression, which 

simultaneously resulted in enhanced activity of gelatinolytic enzymes. In vivo tumour growth 

in a syngeneic mouse model of OSCC did not show metastasis, however the tumour growth 

pattern reflected that of early stage OSCC. uPAR locates the proteolytic enzyme urokinase 

plasminogen activator (uPA) to the cell surface of cancer cells, and such pericellular 

proteolysis is thought to be required for cancer cell invasion and metastasise to distant 

organs. Cleavage of uPAR terminates its ability to bind uPA, however gives cells a different 

set of functions. These include directional migration which is also needed for cancer cells to 

spread. We could show that the stromal derived factor transforming growth factor-β1 (TGF-

β1) up-regulated the expression of PAI-1, and furthermore down-regulated cleavage of 

uPAR. Taken together, the current study shows that uPAR and PAI-1 are involved in early 

stage of OSCC progression, and that factors in the tumour microenvironment are important 

regulators of both the expression and posttranslational modifications such as glycosylation 

and proteolytic cleavage. 
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1. Introduction 

 

The aim of the introduction is to give relevant background information to the study. The 

introduction is divided in to four separate parts, where information about the disease of 

interest, oral squamous cell carcinoma (OSCC), is given in the first section. In the second 

section, an introduction is given to some aspects of the tumour microenvironment that are 

relevant for the study. In the third section, the plasminogen activation (PA) system is 

introduced, with special emphasis on the urokinase plasminogen activator receptor (uPAR). 

Finally, in the last section, the role of uPAR in migration, invasion and metastasis is 

summarized based on the current literature.  

1.1 Oral squamous cell carcinoma (OSCC) 

Oral squamous cell carcinomas (OSCC) are cancers originating from the squamous 

epithelium in the oral cavity. Locations include the lip, mobile tongue, buccal mucosa, labial 

mucosa, floor of the mouth, gingiva, hard palate and soft palate. OSCC belongs to a larger 

subgroup of tumours termed head and neck squamous cell carcinomas (HNSCC), comprising 

carcinomas arising in the oral cavity, oropharynx, larynx, hypopharynx, nasal cavity, 

nasopharynx, paranasal sinuses, salivary glands and the ear [1], where OSCCs are the most 

common oral malignancy with a poor 5-year survival rate [1-4].  

1.1.1 Epidemiology and Etiological factors.  

In 2008, more than 260.000 new cases of oral cavity cancers were predicted worldwide and 

over 130.000 of these patients were estimated to die from the disease (approximately 50%). 

More than 60% of these cases occur in the developing countries, where the male population 

by far displays the highest prevalence [3]. In Norway, the number of cancers arising in the 

oral cavity have gradually increased during the last decades, with an approximate 300 new 

cases each year. From these 300, it is estimated that 30-40% will die from the disease [5].  

Gender, race and age have all been associated with differences in OSCC incidence, mortality, 

site, grade, histological type and tumour stage at diagnosis [6]. As with many other types of 

cancer, OSCC most commonly occurs in the middle aged and elderly population [7,8]. The 
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Introduction 

male population have traditionally had a higher incidence in OSCC, typically 1:2 compared to 

women. This is however evening out, probably due to increased alcohol consumption and 

tobacco use among the female population [8]. In 2001, the highest mortality rates for OSCC 

were reported to be in France, the Indian subcontinent, Brazil and central/eastern Europe 

[7]. The lowest survival rates have been ascribed patients of African-American origin living in 

the United States [6]. Also among South-African Indians, living in Natal, the mortality rates 

from OSCC were high [7,9]. Most often, such differences in mortality rates are explained by 

cultural traditions, ethnic differences and socioeconomic circumstances [7]. 

Certain risk factors such as tobacco use, alcohol consumption and human papillomavirus 

(HPV) infections, increases the HNSCC incidence [3,7]. Furthermore, heavy consumption of 

alcohol combined with smoking functions synergistically, multiplying the risk of developing 

OSCC [3,7,10]. Snuff and chewing tobacco has also been associated with higher risk of 

developing OSCC. The Swedish snus on the other hand is a non-fermented moist snuff that 

contains less nitrosamine, and is therefore less carcinogenic than snuff, chewing tobaccos 

and smoking [11]. Though still debated, no large scale epidemiological studies have been 

able to prove an association between snus use and elevated risk of oral cancer [8,11]. A high 

percentage of oropharyngeal cancers are HPV positive (90% in Sweden, 60% in the USA), and 

HPV is thought to be a major cause of cancers in the oropharynx [12], though far less 

important for the development of cancers in the oral cavity. In the United States and Europe, 

an increase in HPV-related HNSCC has been reported. This trend was hypothesized to be 

related to an increase in oral sex [6], even though many patients with HPV-positive tumours, 

reported few or no oral sexual partners [12]. Other risk factors believed to have an impact 

on the development of OSCC are poor oral hygiene, gastro-oesophageal reflux disease, 

dietary factors, use of marijuana and environmental contaminants such as paint fumes, 

plastic by-products and gasoline fumes [10].  

1.1.2 Clinical features and histology 

OSCCs gradually progress from normal epithelium, via precursor stages, to invasive and 

metastatic cancers [1,10,13]. Oral cancers often develop from precancerous lesions such as 

leukoplakias and erythroplakias, which are often subtle, painless and asymptomatic. These 

often present as identifiable red (erythroplakia) or white (leukoplakia) patches, where 

development of leukoplakias in the tongue and floor of the mouth are associated with 
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higher risk of malignant transformation [8]. Leukoplakias in these sites are more frequently 

diagnosed with malignant changes such as epithelial dysplasia, carcinoma in situ and invasive 

SCC [6,8]. The most common site for the development of erythroplakias is the floor of the 

mouth, lateral tongue, retromolar pad and the soft palate. Erythroplakias are more 

frequently diagnosed as malignant than leukoplakias [8].    

Gradually the tumour presents as an exophytic mass or can display an endophytic growth 

pattern associated with the development of SCCs (figure 1). As the tumour develops, non-

healing ulcers appear. Ulcers can partially heal and later reappear, and eventually the cancer 

evolves to a crusted, non-tender, indurated ulcer or mass. Verrucous carcinoma represents 

about 3% of all OSCCs. It is a low-grade variant of OSCC, which displays slow and exophytic 

growth, is well differentiated and has a much better prognosis than conventional OSCC [8].  

 

 

Figure 1: Oral squamous cell carcinoma (OSCC). The image to the left shows an OSCC located underneath the 
tongue. The tumour has a white appearance and shows an exophytic growth. The image to the right shows and 
OSCC located in the buccal mucosa, and presents as an exophytic mass. 

 

Late stage symptoms include bleeding, loosening of teeth, difficulty wearing dentures, 

difficulties in swallowing (dysphagia), painful swallowing (odynophagia), speech impairment 

(dysarthria), and development of a neck mass as a sign of lymph node metastasis. Metastasis 

from OSCC usually develops in the ipsilateral (on the same side) cervical lymph nodes, and 

distant metastasis to the lung, though any part of the body may be affected [8].  
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OSCCs are histopathologically characterized according to the degree of differentiation [14]. 

In well differentiated tumours (grade 1; pG1), the tumour cells resemble normal epithelial 

cells, arranged in an orderly stratification. Heavy keratinization can be found in pearl 

formations (figure 2A). In moderately differentiated tumours (grade 2; pG3), the cells are 

less stratified, less keratinized and the tumour contains prickle cells (figure 2B). In grade 3 

(pG3) tumours the cells are poorly differentiated but still identifiable as squamous cell 

carcinomas (figure 2C) [10,14,15]. It is estimated that >50% of OSCC are moderately 

differentiated [4]. 

 

 

Figure 2: Differentiation of SCC. A: Well differentiated SCC (pG1). B: Moderately differentiated SCC (pG2). C: 
Poorly differentiated SCC (pG3). Reprinted and modified image from [4] with permission. 
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OSCC may also be characterized according to the growth pattern, which refers to growth at 

the invasive tumour front [15]. The tumour growth is categorized according to four different 

types of invasion patterns (type I-IV). When several different growth patterns are observed 

within the same tumour, the most aggressive pattern is reported. Type I: Tumours showing a 

pushing- or expansive boarder, where the intracellular connections (cohesions) are still 

intact, resulting in a well delineated infiltrating border. Type II: The malignant keratinocytes 

are arranged as solid rounded cords or bands. The tumour front is asymmetrically aligned, 

penetrating the surrounding tissue at different levels. Type III: Very similar to the type II 

growth pattern, except for small groups or cords of infiltrating cells. Type IV: The tumour 

shows an ill-defined and irregular border with satellite cells infiltrating the tumour stroma 

[15,16].  

Approximately 10-35% of patients suffering from oral cancer are at risk of developing second 

tumours [17]. Patients can present with multiple premalignant and malignant lesions in the 

oral cavity, a concept explained by field cancerization. The field cancerization theory was 

presented as early as in 1953 to explain the common local re-occurrence of OSCC after 

treatment [18]. Tabor and colleagues found, by analysing genetic markers, that the oral 

mucosa surrounding the resected tumour often displayed similar genetic mutations [19]. 

They hypothesized that “fields” of genetically altered cells could explain the high propensity 

for local recurrences and second field tumours (previously termed second primary tumours), 

later underscored by other studies [20-23]. While local recurrences develop from residual 

cancer cells not removed through treatment, second field tumours develop from the 

predisposed “field” surrounding the resected tumour. Tumours arising from new 

independent “fields” has been proposed as the source of “true” second primary tumours 

(figure 3) [1,24], which may be explained by the fact that the aerodigestive tract is 

chronically exposed to potential carcinogens, whereupon tumours may readily develop 

independently of each other [17]. 
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Figure 3: Field Cancerization. Relapse occurs in 10-35% of patients where the primary tumour has been 
removed. These relapses often occur within “fields” of genetically altered cells (light blue), in close proximity to 
the excised primary tumour (dark blue), and could explain the high propensity for relapse. These tumours are 
termed second field tumours. Residual cancer cells (dark blue single cells) after primary tumour resection, is a 
source for local recurrence, while a second field of cancerization may give rise to second primary tumours. 
Image reprinted from [1] with permission. 

 

1.1.3 Treatment of OSCC 

The treatment strategy is determined by several factors such as primary tumour size and 

location, lymph node status, presence or absence of distant metastasis, the patient’s ability 

to tolerate the treatment, and the patient’s desire [8]. Treatment of OSCC include surgery, 

radiation therapy and chemotherapy [10], but the most common treatment is the 

combination of radiation therapy and surgery, as is most often used for advanced stages of 

the disease [8].  

1.1.4 Prognostic and predictive factors  

Even though the prevalence of OSCC is higher in men than women [8], the prognosis is 

similar between the sexes. The importance of age at the time of diagnosis however is 

controversial. Some reports say that age influences the outcome, where older patients 

display worse prognosis [25], while others find an even distribution of prognosis across the 

age groups [6]. When it comes to alcohol and smoking there are conflicting reports on 
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prognosis. Some claim it has no effect and others claims it does [25]. Poor prognosis is often 

associated with lower socioeconomic status and lower education, and early detection of 

(pre)malignant lesions is of importance for improving prognosis [25,26]. 

TNM-staging. TNM-staging classifies tumours according to tumour size (T; T0-T4), lymph 

node metastasis (N; N0-N3) and distant metastasis (M; M0-M1) (see table 1) [4,10]. The 

tumours TNM-stage is strongly correlated to the prognosis of the patient, and is the main 

contributor to establishing the proper treatment strategy [8]. The individual T, N and M 

values classifies the tumour to either of four stages (stage I-IV) (see table 1), where a higher 

stage is strongly associated with worse prognosis [8,25]. Patients baring cervical lymph node 

metastasis (N+) are classified as stage III. Metastases to lymph nodes is widely accepted as a 

major prognostic factor, where (N+) patients display worse  prognosis and are far more 

susceptible to recurrence [25]. If distant metastasis (M+) is found, the disease is classified as 

stage IV, reducing the 5-year survival rate from approximately 45% to 20% [8]. A common 

problem is that patients with tumours of the same stage often respond differently to the 

same treatment [10]. This might in part be explained by the molecular heterogeneity of 

these tumours [1,27], hence better prognostic markers are needed, especially biomarkers 

predicting invasive and metastatic tumour behaviour.    
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Table 1: TNM staging of OSCC. 

TNM staging of OSCC 

Primary tumour size (T-status) 
T1 
T2 
T3 
T4 

Tumour < 2 cm in greatest dimension. 
Tumour more than 2 cm - 4 cm in greatest dimension. 
Tumour > 4 cm in greatest dimension. 
Tumour invades adjacent structures. 

Lymph node metastasis (N-status) 
N0 
N1 

N2a 
N2b 
N2c 
N3 

No regional lymph node metastasis. 
Metastasis in a single ipsilateral lymph node. < 3 cm in greatest dimension. 
Metastasis in a single ipsilateral lymph node. 3 – 6 cm in greatest dimension. 
Metastasis in multiple ipsilateral lymph nodes. < 6 cm in greatest dimension. 
Metastasis to bilateral lymph nodes. < 6 cm in greatest dimension.  
Metastasis in a lymph node > 6 cm in greatest dimension. 

Distant metastasis (M-status) 
M0 
M1 

No distant metastasis 
Distant metastasis 

Stage grouping 
Stage I 
Stage II 
Stage III 
Stage IV 

T1 N0 M0 
T2 N0 M0 
T3 N0 M0 or T1/T2/T3 N1 M0 
Any T4 lesion. Any N2 or N3. Any M1. 

 

Histopathological grading. Histopathological grading (pG1-pG3) of OSCC was in the 70’s 

suggested as an indicator of prognosis [28,29]. However, tumour grade alone is now 

recognised as a poor tool for predicting outcome and treatment strategy in OSCC [10,30,31]. 

To improve the prognostic value of tumour grading, it has now been recommended to 

combine it with tumour growth pattern (type I-IV), as described in the “clinical features and 

histology” section [14-16,32,33]. A tumour-induced “reactive” stroma (also termed 

desmoplasia) is necessary for tumourigenesis and metastasis. Desmoplasia is characterized 

by the presence of fibroblasts and myofibroblasts surrounding the invasive tumour island. 

However little is known about how the tumour stroma affects prognosis and henceforth 

treatment stratification of OSCC [15].  

Molecular heterogeneity and prognostic biomarkers. OSCC has proven to be a molecular 

heterogeneous type of tumour. All head and neck tumours may be subdivided into two main 

classes: those infected with high-risk HPV, especially HPV 16 and 18, comprising approx. 20% 

of all the tumours, and those that are not, approx. 80% (figure 4) [1,34,35]. Interestingly, 

patients infected with high-risk HPV show improved disease specific survival, with these 

tumours preferentially locating to the oropharynx [36]. HPV-infected tumours will most 
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often harbour a wild-type TP53 gene, which encodes the apoptosis regulating protein p53. 

During an HPV infection, the viral oncogenes E6 and E7 will encode proteins that result in the 

loss of apoptotic control through degradation of p53 and the binding of retinoblastoma (Rb) 

proteins, respectively [10]. This leads to a loss of regulation during the cell cycle, leading to 

an accumulation of DNA damage and cancer progression. In tumour cells not infected with 

HPV, it is estimated that approx. 60-80% of the tumours will have mutations in the p53 or 

Rb-pathways [1,37,38]. Mutations in the tumour suppressor gene TP53 are frequently 

observed in tumours from patients that are smokers and drinkers [10]. The p53 protein has 

therefore been suggested as a prognostic marker, predicting recurrence [25]. However, a 

review of published literature on popular OSCC biomarkers, p53 was found correlated with 

poor survival in only six of the 11 studies [39]. 

For HNSCC in general, other genes have been shown to be important in development and 

progression: CDKN2A encoding p16INK4A, CCND1 encoding cyclin D1, RB1/RBL1 encoding 

p170 and RBL1 encoding p130 [1].  

 

 

Figure 4: Molecular heterogeneity of HNSCC. HNSCC may be subdivided in those tumour cells infected with 
high-risk HPV (approx. 20%) and those that are not infected with HPV (approx. 80%). The majority of HPV-
negative tumours will harbour a p53 mutation, driving the tumourigenesis. Image from [1], with permission. 

 

Several studies also report that the epidermal growth factor receptor (EGFR) is 

overexpressed in HNSCC [40-43]. Overexpression of EGFR in OSCC has been correlated with 

increased tumour size, advanced pathological stage, increased incidence and severity of 

recurrence, decreased disease-free survival, and hence functions as a promising prognostic 
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marker. Furthermore, EGFR has been a hot target in the development of new treatment 

strategies [44]. In a study using expression profiling of 60 tumours, 56 were found positive 

for EGFR expression. Out of the 56 EGFR-positive tumours, 34 also showed positive 

immunostaining for phosphorylated EGFR (pEGFR) [45]. In a study including 82 NHSCC 

patients, where only 14 displayed phosphorylation of EGFR, a significant correlation was 

found between pEGFR and prognosis [41]. Both tyrosine kinase inhibitors and EGFR-targeted 

antibodies have been tested in clinical trials, resulting in merely 5-15% response rates when 

used as a sole treatment in recurrent and metastatic disease [46]. A phase III clinical trial, 

where the use of radiotherapy and an anti-EGFR antibody (cetuximab) was combined, 

resulted in prolonged progression-free survival in patients with HNSCC [47]. However, 

contradictive results are published on the prognostic value of EGFR. As described by Søland 

and Brusevold only two of the seven studies reviewed showed a correlation between EGFR 

expression and survival [39].  

The Ki67 marker is located in the nucleus of cells undergoing proliferation, and it is thought 

to indicate how fast the tumour is growing [48]. Some studies find that Ki67 correlates with 

poor prognosis, although contradictive findings do exist [27,39,49,50].  

Expression of certain matrix metalloproteinases (MMPs) in the primary tumour have been 

correlated with tumour stage [48] and poor prognosis in a subgroup of patients lacking 

lymph node metastasis [51]. Also proteins of the plasminogen activation (PA) system have 

been suggested as prognostic markers and therapeutic targets in OSCC [52-56], which will be 

discussed in more detail later. 

 

1.2 The tumour microenvironment 

The tumour microenvironment has gained increasing interest in the cancer research field 

over the last decades, and it is now generally accepted that the microenvironment plays a 

part in the development and progression of cancer [57]. The tumour microenvironment is a 

complex network of secreted soluble factors, non-cellular material and stromal cells that can 

modulate tumour progression. The stromal cells include many different cell types 

(summarized in figure 5) including neutrophils, mast cells, fibroblasts, macrophages and 
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endothelial cells [58,59]. As the tumour microenvironment is complex and consists of a 

multitude of factors that can influence on tumour progression, only a selection is presented 

below, which will be relevant for the study at hand. 

 

 

Figure 5: The tumour microenvironment. The tumour microenvironment contains numerous stromal cells that 
can either promote or supress tumour progression. BMDC = Bone marrow-derived cell; MDSC = myeloid-
derived suppressor cell; MSC = mesenchymal stem cell; TEM = TIE2-expressing monocytes. The images is 
modified and reprinted with permission [59]. 

 

1.2.1 The extracellular matrix (ECM) 

The ECM includes the interstitial matrix and the basement membrane, and consists of a 

diversity of proteins such as collagens, elastin, fibronectin, fibrillin and proteoglycans, giving 

the ECM structure and organ specific functions [58,60]. The basement membrane is a 

specialized type of ECM containing a complex network of collagen IV, laminin, 

entactin/nidogen and heparin-sulphate proteoglycans [60]. During cancer progression, the 
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normal ECM is transformed into a reactive stroma by either stromal cells, such as fibroblasts, 

or the tumour cells. Desmoplasia, a reactive stroma often observed in OSCC, is characterized 

by a dense deposition of ECM interspersed with activated fibroblasts (myofibroblasts) 

[61,62]. During tissue homeostasis, fibrin is not present, however in wounds; fibrin is 

deposited and is strongly proangiogenic. Fibrin is also present in the tumour 

microenvironment. Dvorak postulated in 1986 that tumour were like “wounds that do not 

heal” [63]. This was based on the observations that the tumour stroma was populated with 

numerous proliferating fibroblasts, showed large deposits of complex ECM proteins and 

displayed angiogenesis. 

1.2.2 Secreted soluble factors 

There are many soluble factors in the TME that may influence of tumour progression: VEGFs 

[64], TGF-α and EGF (in EGFR signalling) [65,66], PDGF [67] and the TGF-β [68]. Secreted 

soluble factors may also include MMPs and proteins of the PA system [58]. However, only 

TGF-β will be the focus of the following section. The TGF-β superfamily consist of over 40 

proteins, including the three highly conserved human isoforms of TGF-β (TGF-β1-3), activins 

(A, AB, B, C and E), inhibins (A and B), bone morphogenetic proteins (BMPs) and 

growth/differentiation factors (GDFs) [69]. The TGF-β cytokines have roles in cell growth, 

migration, proliferation, differentiation and activation of gene transcription of a wide range 

of genes [68,70]. The TGF-β1 isoform is pleiotropic, and produced by almost all cells, but 

mainly by the platelets, regulatory T cells (Tregs), monocytes/macrophages, lymphocytes, 

fibroblasts, epithelial cells and dendritic cells [69]. It is now well known that TGF-β can 

function both as a tumour suppressor in early tumour development, and a tumour promoter 

during later stages of progression [68,71], and a role of TGF-β has also been associated with 

changes occurring in the tumour microenvironment [72-74].  

During its production, TGF-β is associated with the latency-associated peptide (LAP) in the 

ER. Together they form the small latent complex (SLC). LAP shields the sites in TGF-β 

involved in receptor binding. Before secretion, SLC binds to the single latent TGF-β binding 

protein (LTBP) in the ER, forming the large latent complex (LLC). Once secreted, the LTBP  

promotes extracellular sequestration of TGF-β [75]. Before TGF-β can bind to it receptor, it 

must be released from its latent complex [76]. This activation of TGF-β can be performed by 

for instance plasmin (see figure 11), but also many more [76-78]. Integrins are also involved 
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in TGF-β activation, either through a protease-independent mechanism (involving αVβ6), or 

a protease-dependent mechanism (involving αVβ8). Upon activation, TGF-β dimers form a 

complex with two TGFβ type II (TGFβRII) and two TGFβ type I (TGFβRI) receptors located at 

the cell surface of the target cell [76]. This receptor complex formation leads to the 

phosphorylation of TGFβRI by the constitutively active TGFβRII. TGFβRI then phosphorylates 

SMAD2 and SMAD3 proteins and the signal is transmitted to the cell nucleus through what is 

known as the canonical signalling pathway [76]. TGF-β signalling may also involve an 

alternative non-canonical signalling pathway, involving PI3K-Akt, RhoA and MAPK pathways 

[68]. 

1.2.3 Tumour-associated macrophages (TAMs) 

Under normal conditions, macrophages play an important role in the non-adaptive immune 

system, functioning as scavenger cells, ridding the body of pathogens and tumour cells, but 

also stimulating the innate immune system [79]. There are two main macrophage 

phenotypes, M1 and M2. M1 macrophages are activated through factors such as IFN-ϒ, 

while M2 is activated through different interleukins and TGF-β [79]. The macrophage 

phenotype M1 will encourage inflammation, while the M2 phenotype suppresses the 

immune system, encouraging tissue repair through processes such as angiogenesis and 

matrix remodelling [80]. However, during carcinogenesis, the macrophage phenotype M2 

may have a prometastatic effect, enhancing tumour cell migration, invasion and 

intravasation [81,82]. The M2 macrophage has therefore been termed the tumour-

associated macrophage (TAM) [83,84]. High TAM content has been correlated with poor 

prognosis in ovarian cancer [85] and OSCC [86]. TAMs located in hypoxic regions of the 

tumour microenvironment induce angiogenesis through up-regulated production of VEGF 

[87,88].  

1.2.4 Carcinoma-associated fibroblasts (CAFs) 

The primary purpose of fibroblasts is maintaining the tissue integrity and homeostasis by 

synthesizing structural ECM proteins and proteases [58]. However, in wounds or in the 

tumour microenvironment, fibroblasts become activated and are termed myofibroblasts or 

cancer/carcinoma-associated fibroblasts (CAFs) [62,89]. TGF-β can activate fibroblasts, and 

once active they can be recognised through their expression of α-smooth-muscle actin 
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[62,89]. Furthermore, CAFs can promote tumour progression, as shown when non-invasive 

cancer cells co-injected with CAFs in mice resulted in increased invasion [89]. Through the 

secretion of MMPs and serine proteases such as uPA, hepatocyte growth factor/scatter 

factor (HGF/SF) and VEGF, myofibroblasts can promote migration, invasion and metastasis of 

the tumour cells [90]. Through the secretion of VEGF, myofibroblasts can attract endothelial 

cells. CAFs also produce other factors that contribute to angiogenesis, such as IL-8, secreted 

protein acidic and rich in cysteine (SPARC) and TGF-β [62]. In OSCC, when staining for CAFs, 

an abundant staining pattern was associated with poor prognosis [86]. Furthermore, CAFs 

have been shown to promote tumour formation and invasion [91].  

1.2.5 Endothelial cells 

As a tumour grows in size, the need for nutrients and the need for waste removal increases. 

Without a sufficient blood supply, tumours only develop to a size of 1-2 mm3 [92,93]. For 

tumours to develop beyond this point, they must progress through the “angiogenic switch”. 

The angiogenic switch is controlled through a balance between pro-angiogenic factors such 

as VEGF and PDGF, and anti-angiogenic factors such as thombospondin, endostatin, 

vasculostatin and angiostatin [93]. With a poor oxygen supply the tumour tissue becomes 

hypoxic and the transcription factor hypoxia-inducible factor 1 (HIF1) is stabilized and 

induces the expression of VEGF which is involved in recruitment of vascular endothelial cells 

[93]. Numerous in vitro studies have shown that the presence of fibroblasts enhances 

endothelial cell sprouting and promotes tubulogenesis [94-96]. Taken together, this shows 

that there is a complex interplay between the tumour cells and the tumour 

microenvironment, where the tumour cells recruit stromal cells that can eventually promote 

tumour progression.  

 

1.3 Plasminogen activation system 

The plasminogen activation (PA) system has been implicated in wound healing, tissue 

regeneration, clot lysis and cancer progression. Several proteins comprise the PA system, 

where the main effector is the broad spectrum serine proteinase plasmin (summarized in 

figure 6). Plasmin is activated from its precursor plasminogen (plg), by either the urokinase 

plasminogen activator (uPA) or the tissue-type plasminogen activator (tPA). The 
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plasminogen activator inhibitors (PAI) -1 and PAI-2 regulate the activity of uPA and tPA. tPA 

and uPA are secreted as inactive zymogens; pro-tPA and pro-uPA. While tPA is activated in 

solution, uPA is efficiently activated by plasmin when bound to its cell surface receptor uPAR 

[97]. In addition, plasmin can activate plasminogen [98], tPA [99], and cleave uPAR 

[100,101]. The functions of uPA and tPA are overlapping, though tPA is mainly involved in 

fibrinolysis, while uPA is involved in cell invasion as seen during wound healing and cancer 

invasion [102,103].  

 

Figure 6: The plasminogen activation (PA) system. Plasminogen can be activated by both tPA and uPA in the 
pericellular environment as well as intravascular. Plasminogen is secreted as the proenzyme Glu-plasminogen, 
and in a feed-back loop, plasmin cleaves Glu-plasminogen into Lys-plasminogen by removing the PAP-domain. 
tPA and uPA can then activate Lys-plasminogen into fully active plasmin, a process that is accelerated when 
both uPA and plg are bound to their respective cell surface receptors [104], not shown in image. Reprinted 
from [103] with permission from DeGruyter.  
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1.3.1 Plasminogen and plasmin 

Plasminogen (plg) is mainly produced by the hepatocytes in the liver and circulates in the 

blood (approx. 2 μM) in its native proenzyme form, Glu-plasminogen (93 kDa). In a feed-back 

loop, plasmin can activate Glu-plasminogen to Lys-plasminogen (84 kDa) by cleaving off the 

preactivation peptide (PAP) (figure 6). Lys-plasminogen is more readily activated by uPA and 

tPA than Glu-plasminogen, and binds fibrin with greater affinity. Cleavage of the Arg561-

Val562 peptide bond of Lys-plasminogen creates the fully active two-chain plasmin; held 

together by a disulphide bridge [103,105,106]. Active plasmin is a broad spectrum 

proteinase that degrades a variety of ECM proteins such as vitronectin (VN) [107], 

fibronectin (FN), fibrinogen [108,109], fibrin [108], aggrecan [110] and laminins [111-113].  

1.3.2 Tissue-type plasminogen activator (tPA) 

The human serine protease tPA (PLAT) is secreted as a 72 kDa inactive single-chain zymogen 

(pro-tPA), by mainly vascular endothelial cells, keratinocytes, melanocytes and neurons 

[108,114]. When the Arg275-Ile276 peptide bond is proteolytically cleaved, tPA is 

transformed into the active two-chain protease (chain A and B), held together by a single 

disulphide bridge (Cys264-Cys396). Chain A of tPA harbours a fibronectin type II domain/N-

terminal finger domain, a growth factor domain resembling the epidermal growth factor 

(EGF), and two kringle domains. Chain B contains the serine protease domain, similar to that 

of uPA, and contains the active site triad His322, Asp371 and Ser478 [106,115]. tPA is mainly 

involved in the fibrinolysis of blood clots, where binding to fibrin increases the tPA-activation 

of plg [108]. In the clinic, intravenous injection of tPA is used in the treatment of acute 

ischemic stroke, myocardial infarction, and pulmonary embolism [99,116].  

1.3.3 Urokinase plasminogen activator (uPA) 

The serine protease uPA (PLAU) is secreted as a 55 kDa one-chain zymogen (pro-uPA) [106], 

mainly by endothelial cells, epithelial cells, leukocytes, monocytes, fibroblasts and cancer 

cells [117,118]. Pro-uPA consists of three domains: the growth factor domain (GFD), a kringle 

domain and the proteolytic serine protease domain. The growth factor domain and the 

kringle domain together constitute the amino terminal fragment (ATF), sometimes termed 

as chain A (figure 7) [115,119]. The remaining part of the enzyme, also termed chain B, 

contains the serine proteinase domain [120] with the active site triad His204, Asp255 and 
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Ser356 [121]. The concentration of uPA in plasma is approx. 20 pM, where most of it is in 

complex with PAI-1, and a small fraction is present in the pro-uPA form. Pro-uPA is by 

cleavage of the Lys158-Ile159 peptide bond, giving a two chain high molecular weight 

(HMW) form of uPA (figure 7) [122], linked by a single disulphide bond between Cys148 and 

Cys279 [123]. Activation of pro-uPA can be performed by several proteinases such as 

plasmin [97], trypsin [124], cathepsin B and -L [125,126], MMP-7 [127], as well as kallikreins  

2, 4 and 12  [128]. Even though activation of pro-uPA can be performed in liquid phase, the 

activation is far more efficient when pro-uPA is bound to its cell surface receptor uPAR 

[106,122]. Active uPA can then activate plasminogen to plasmin, where the activation is 

much more efficient when both plg and uPA are bound to the cell surface. Active plasmin 

can then in a feed-back loop activate more uPA [129,130]. Only trace amounts of plasmin 

are needed to initiate the activation reaction, and uPA can remain active at the cell surface 

for several hours [131,132]. HMW-uPA can further be cleaved into the low-molecular weight 

(LMW) uPA which contains the protease domain and thus remains active, but cannot bind 

uPAR (figure 7) [106]. The remaining inactive part of uPA, the amino terminal fragment 

(ATF), can still bind uPAR [133,134]. Active uPA not only activates plasmin, but also HGF/SF, 

the macrophage-stimulating proteins (MSP) [106], and can additionally cleave uPAR, 

rendering it unable to bind uPA [135,136].  
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Figure 7 Plasmin-induced activation of uPAR-bound uPA. uPA bind uPAR via it amino terminal fragment (ATF) 
comprising the growth factor domain (GFD) and the kringle domains. Receptor associated plasmin cleaves 
receptor-bound pro-uPA at Lys158-Ile159, producing the active two-chain form of uPAR, termed high-
molecular weight (HMW) uPA. Plasmin can further cleave active HMW-uPA, producing an enzymatically active 
low-molecular weight (LMW)-uPA, and an inactive ATF-fragment. The ATF-fragment can bind uPAR, however 
LMW-uPA cannot.  

 

1.3.4 Plasminogen activator inhibitors (PAI) 

The main inhibitors of uPA and tPA are PAI-1 (SERPINE1) and PAI-2 (SERPINB2), in addition to 

neuroserpin (SERPINI1) and protease nexin-1 (PN1) (SERPINE2) [137], protein C inhibitor 

(PAI-3), thrombin and leukocyte elastase [103]. PAI-1 and -2 both belong to the serpin 

superfamily of serine protease inhibitors [138], and both PAIs perform similar physiological 

functions [139]. PAI-1 is a 379 amino acid protein of approx. 52 kDa [140], while PAI-2 exists 

either as a secreted 60 kDa glycosylated protein, or as a 47 kDa non-glycosylated 
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intracellular form not involved in regulation of proteolysis [141]. Both inhibitors bind uPA or 

tPA in a 1:1 complex, where PAI-1 acts faster and is more widely expressed than PAI-2 

[99,102,142]. 

PAI-1 is either active, latent or cleaved, where only the active form can bind and inhibit uPA 

or tPA [143]. Most of PAI-1 is bound to the ECM protein VN [144], and has been found to 

induce multimerization of VN [145]. While the VN-bound PAI-1 stays active for longer 

periods of time, free active PAI-1 is rapidly converted to the latent form [146]. When PAI-1 

binds uPAR bound uPA an low-density lipoprotein receptor-related protein-1 (LRP-1) assisted 

internalization of the complex is triggered. After uPA has been removed and routed for 

degradation, uPAR and LRP-1 are recycled back to the cell surface [102,147-149]. It was 

initially thought that PAI-1 could function as a good anticancer drug, by inhibiting proteolytic 

activity [150-153], and it was therefore surprising to find that PAI-1 expression conveyed 

poor prognosis in several types of cancer; breast cancer [154-156], pulmonary 

adenocarcinoma [157] and ovarian cancer [158]. Later, it was shown that the PAI-1 was 

involved in regulating tumour angiogenesis in a concentration dependent manner 

[102,159,160].   

1.3.5 Urokinase plasminogen activator receptor (uPAR) 

Introduction. uPAR is a multifunctional protein involved in pericellular proteolysis, cell 

adhesion, cell migration, and cell signaling through a spectrum of membrane partners 

(summarized in figure 8). Human uPAR consists of a single polypeptide chain that contains 

five N-linked glycosylation sites (Asn52, Asn162, Asn172, Asn200 and Asn233). The heavy and 

heterogenous glycosylation gives uPAR a broad band on SDS-PAGE (approx. 50-60 kDa). 

When treated with N-glycanase the size is reduced to approx. 35 kDa [161,162]. The cysteine 

rich glycoprotein is bound to the extracellular part of the membrane via a 

glycosylphosphatidylinositol (GPI) anchor (figure 8) [131,132], hence uPAR has no membrane 

spanning nor intracellular domain, and therefore lacks inherent signalling properties [163]. 

Three homologous domains constitute uPAR, domain 1-3 (D1-D3, also termed domain I, II 

and III), each connected through small inter-domain linker regions, where all three domains 

must be present in order for uPA to bind (figure 7) [164-166]. The interaction between uPAR 

and the ATF of uPA involves all three domains of uPAR, but the major binding site is located 

within domain I and involves the residues Trp30, Ile28, Phe25, Asn22 and Val20 in human 
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uPAR [164]. Both uPA and pro-uPA are able to bind uPAR, and dissociation from the receptor 

is slow, giving potential for focused and persistent proteolytic activity at the cell surface 

[102,115,120,167]. In addition to binding and facilitating in the activation of uPA, uPAR can 

bind the ECM protein VN (figure 8), causing changes in cell morphology and increased cell 

motility [168,169]. The uPAR-VN binding is stimulated when uPAR simultaneously binds pro-

uPA, uPA, ATF and the uPA-PAI-1 complex, PAI-1 alone inhibits the interaction [106].  

 

Figure 8: Cellular regulation and functions of uPAR and the plasminogen activation system. Pro-uPA binds its 
cell surface GPI-anchored receptor uPAR, whereupon it is readily activated by plasmin. Active uPA can then 
activate plasmin in a positive feed-back loop. Membrane anchored uPAR can be cleaved at the GPI anchor (by 
e.g. phospholipase C or plasmin) resulting in soluble uPAR (suPAR). Cleavage can also occur between D1 and 
D2, revealing the chemotactic peptide in the inter-linker region of D1 and D2 that facilitates in cell migration. 
Plasmin can degrade ECM proteins and also activate several latent MMPs which can cleave ECM- and non-ECM 
proteins such as growth factors. uPAR can bind the ECM via the ECM-protein vitronectin (VN) and induce cell 
signalling through lateral interaction with several integrin. Reprinted from [170] with permission from Nature. 
 

Expression of uPAR. The expression of uPAR in tissues is mainly restricted to tissues 

undergoing remodelling [171], such as during embryogenesis [172,173], wound healing 

[171,174], ischaemia [175] and during inflammation [176]. In vivo, cells reported to express 

uPAR are hematopoietic stem cells, monocytes/macrophages, peripheral blood leukocytes, 

B-lymphocytes, activated T-lymphocytes, neutrophils, granulocytes, activated keratinocytes, 

trophoblasts, myofibroblasts/fibroblasts and some endothelial cells. Furthermore, uPAR is 

expressed in many different cultured tumour cells [100,171,177,178], and increased uPAR 

expression is found in grafted tumours during cancer cell invasion [179,180]. In tumours, 

uPAR may be expressed by the cancer cells as well as by stromal cells such as 
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fibroblasts/myofibroblasts, neoangiogenic endothelial cells, neutrophils and macrophages 

[181-187]. Several extracellular factors, such as growth factors (GF), cytokines and 

chemokines, are involved in regulating the expression and/or availability of uPAR at the cell 

surface as summarized in table 2.  

 

Table 2: Extracellular factors shown to regulate uPAR expression in cells. 

Growth factors, cytokines,  
chemokines and ECM proteins 

Cells used Regulation Reference 

Epidermal Growth Factor (EGF) Colon cancer cells (CBSsf), lung 
carcinoma cells (A549). 

Up [188,189] 

Basic Fibroblast Growth Factor (bFGF) Bovine vascular endothelial cells 
(BME). 

Up [190] 
[191] 

Vascular Endothelial Growth Factor (VEGF) Bovine vascular endothelial cells 
(BME) 

Up [192] 

Transforming Growth Factor-Beta 1 (TGFβ-1) A549  Up [188] 
Hepatpcyte Growth Factor (HGF)/Scatter 
Factor (SF) 

Canine kidney epithelial cells 
(MDCK) 

Up [193] 

Interferon α (IFN-α) Colon cancer cells (HCT116). Up [194] 
 

Interferon γ (IFN-γ) U937 mononuclear phagocytes, 
colon cancer cells (HCT116). 

Up  [194,195] 

Tumour Necrosis Factor α (TNFα) Colon cancer cells (HTC116, 
KM12SM and LM1215), U937 
(suPAR). 

Up [195,196] 

TNFβ Macrophage-like cell (U937) Up [197] 
Interleukin (IL)-1α Macrophage-like cell (U937) Slight increase [197] 
IL-1β 
 

Human chondrocytes Up [198,199] 

IL-2 Natural killer cells, Macrophage-like 
cell (U937) 

Up/slight 
increase 

[197,200] 

IL-3 Macrophage-like cell (U937) Unchanged [197] 
IL-4 Macrophage-like cell (U937) Slight increase [197] 
IL-6 Macrophage-like cell (U937) Up [197] 
Complement Ca5 (chemoattractant) Macrophage-like cell (U937) Up [197] 
Collagen I Macrophage-like cell (U937) Slight increase [197] 
Collagen IV, laminin Macrophage-like cell (U937) Unchanged [197] 
    
Other factors Cells used Regulation Reference 
Phorbol 12-myristate 13-acetate (PMA) Colon cancer cells (HTC116, 

KM12SM, LM1215, RKO and GEO), 
HUVEC, A549, U937, OVCAR-3. 

Up [131,188,190,196,201,202] 

Dexamethasone (immunosuppressant) Macrophage-like cell (U937) down [197] 
Amiloride Colon cancer cells (HTC116, 

KM12SM and LM1215) 
Down/ inhibited [196] 

Sodium butyrate Colon cancer cells (HCT116, 
LIM1215 

Down/ Inhibited [203] 

Forskolin HUVEC Up [201] 
Ethanol HUVEC Up [204] 
Aspirin Colon cancer cells (HCT116, GEO) Up [205] 
Asbestos Mesothelial cells (MeT5A) Up [206] 
Okadaic acid (Serine/threonine phosphatase 
inhibitor) 

U937, WI-38, Hel299, 8387, A549, 
HeLa, HEp-2, MIAI. 

Up [207] 

Lipopolysaccharides  Human gingival fibroblasts Up [208] 
Hyaloronan (HA) Basal-like breast cancer cells (MDA-

MB-231) 
Up [209] 
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Many different signalling pathways are involved in regulating the expression of uPAR 

(summarized in table 3). The human gene for uPAR (PLAUR) is located on chromosome 

19q13 and spans across 7 exons, where both a full version, and a truncated version lacking 

the GPI-anchor, are known to exist [210]. The promoter region of PLAUR contains neither 

TATA- nor CAT-boxes [211,212]. Instead, the promoter contains a GC-rich proximal 

sequence, where several specificity protein 1 (Sp1) consensus elements are present [190], in 

addition to activator protein (AP) -1, AP-2, nuclear factor (NF)-ϰB, GATA-2, NF-1 and PEA3 

motifs [178,210]. Transcription factors such as Jun-D, c-Jun, c-Fos and Fra-1 have been 

shown to bind to the AP-1 consensus motif when cells were stimulated with PMA [213]. The 

promoter also contains a hypoxia-responsive element (HRE) where the hypoxia-inducible 

factor 1α (HIF-1α) can bind and induce transcription [214,215]. 

  

Table 3: Intracellular signaling pathways known to regulate uPAR expression in cells. 

Intracellular signalling pathways Cell type Regulation Reference 
Protein Kinase C (PKC) Human umbilical vein 

endothelial cells (HUVEC). 
Up [201] 

Protein Kinase A (PKA) and cAMP HUVEC, U937. Up [201,216] 
Mitogen Activated Protein Kinases (MAPKs): 
Extracellular Signal-Regulated Kinase 1 (ERK1) and 
ERK2 

Colon cancer cells (RKO, 
GEO). 

Up [217] 

JNK Ovarian carcinoma 
(OVCAR-3). 

Up [202] 

c-Src Colon cancer cells (SW480). Up [218] 

 

 

uPAR cleavage. A truncated form of uPAR, uPAR (II-III) (also known as uPAR D2+D3) can be 

produced through cleavage between domain I and II (figure 9). This cleavage can be 

performed by uPA, plasmin, trypsin, chymotrypsin, cathepsin G, elastase and several MMPs 

[101,135,219-221] and renders uPAR unable to bind uPA [222,223] and vitronectin (VN) 

[224]. Cleavage of uPAR is most efficiently performed when uPAR is GPI-anchored to the cell 

surface, and the process can be inhibited by saturating uPAR with inactive uPA. Hence, uPAR 

cleavage is performed mostly by uPA bound to neighbouring uPAR molecules [136,220]. This 

suggests that uPAR cleavage functions as a self-regulatory mechanism to avoid overactive 

proteolysis. uPAR may also be released from the cell surface through cleavage of the GPI-

anchor, producing soluble uPAR (suPAR) (figure 9) [225,226]. Plasmin, trypsin, phospholipase 

C and -D are all able to produce suPAR. While the phospholipases cleave the GPI-anchor, 
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plasmin and trypsin cleavage within the C-terminal end of the amino acid chain of uPAR 

[101,227-229]. SuPAR may also be cleaved by uPA between domains I and II, although to a 

much lesser extent than membrane bound uPAR [135,136,220]. 

 

 

Figure 9: Different forms of uPAR. uPAR exists in many forms at the cell surface, where the full-length version 
of uPAR, termed uPAR (I-III) is the only form that can bind uPA. uPAR (I-III) may be cleaved between domains I 
and II releasing domain I, termed uPAR (I). The remaining uPAR (II-III) is GPI-anchored to the cell surface, where 
the GPI-anchor may be cleaved, producing either the cleaved soluble uPAR, suPAR (II-III), or the soluble full-
length version, suPAR (I-III). 

 

uPAR induced cellular signalling. uPAR has no inherent signalling properties as it lacks both 

a membrane spanning domain, and an intracellular domain [163]. However, it has for a long 

time been known that uPAR triggers different signalling pathways in the cell through 

interactions with adjacent signalling molecules. The most studied signalling partners of uPAR 
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are the integrins [170,225]. uPAR has been found to associate with α3β1, α5β1, αVβ3, αIIbβ3 

and αMβ2 integrins, leading to cell signalling through focal adhesion kinase (FAK) and Src, 

Ras-mitogen-activated protein kinase (MAPK) pathway and extracellular signal-regulated 

kinase 1 (ERK1) and ERK2 and the Rho family small GTPase Rac [170].  

Research over the last two decades has brought another type of signalling receptor into 

focus, the G-protein coupled receptors (GPCR); N-formyl peptide receptor (FPR), FPR-like 1 

(FPRL1) and FPRL2 [230-232]. The linker region connecting domains I and II of uPAR human 

contains a chemotactic epitope, the Ser-Arg-Ser-Arg-Tyr (SRSRY)-peptide (uPAR88-92). This 

peptide can be exposed through cleavage of uPAR between domain I and II of uPAR [233], 

but also through a conformational change in uPAR when it is bound to uPA or ATF [233,234]. 

Through interaction with the GPCRs, the SRSRY-peptide induces chemotaxis (figure 10), as 

seen in monocytes and basophils [230-232]. suPAR (I-III) however does not expose the 

SRSRY-peptide, as it is not recognized by an antibody specific for this sequence [220].  

 

 
Figure 10: uPAR signalling through GPCRs. uPAR has the ability to associate with G-protein coupled receptors 
(GPCR) (e.g. FPR, FPRL1 and FPRL2) and induce cell signalling and chemotaxis. Either through uPAR cleavage, or 
through binding of ATF or uPA, may the chemotactic sequence SRSRY be revealed and associate with specific 
GPCRs. 
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uPAR has also been found to initiate cell signalling through several different types of 

receptor tyrosine kinases (RTKs), such as the platelet derived growth factor receptor-β 

(PDGFR-β) [235], insulin-like growth factor receptor (IGF1-R), c-Met [236,237] and the 

epidermal growth factor receptor (EGFR) [238-240]. In a study using an uncleavable mutant 

uPAR or a wild-type (wt) uPAR, it was found that uPAR (II-III) associated with GPCRs, while 

the uncleavable (full-length) uPAR preferably signalled through EGFR [241]. It is not clear 

whether uPAR can directly signal through EGFR alone, as several studies indicate that 

integrins functions as a link between the two [238,242]. 

 

Endocytosis and recycling of uPAR. The two major cell surface receptors involved in 

endocytosis and recycling of uPAR are the urokinase receptor associated protein (uPARAP, 

also known as Endo-180 and MRC-2) [243,244] and  LRP-1 [245]. uPARAP/Endo180 belongs 

to the macrophage mannose receptor (MMR) protein family, is an endocytic receptor for 

collagen and involved in matrix turnover [244,246,247]. uPARAP/Endo180 has been reported 

to play a role in uPAR-dependent cell migration [244] and increased expression has been 

reported in stromal fibroblasts of HNSCC [248]. LRP-1 mediates internalization of uPAR and 

integrins through binding to the uPA:PAI-1 inhibitor complex, where PAI-1 functions as a 

bridge between uPAR and LRP-1 [245]. When active PAI-1 binds to uPA, the LRP-1-specific 

binding site within PAI-1 is exposed through a conformational change that enables 

endocytosis via LRP-1 [249]. While uPA is routed for degradation, uPAR, LRP-1 and integrins 

are returned to the cell surface [250,251]. Endocytosis of the uPAR/uPA/PAI-1/integrin 

complexes reduces migration [252], while inhibiting LRP-1-induced endocytosis results in 

increased migration [253,254]. Also the mannose 6-phosphate receptor/insulin-like growth 

factor II receptor (M6PR/IGF2R, also termed CD222) has been reported involved in the 

endocytosis, as well as cleavage of uPAR [255]. Furthermore, it has been shown that uPAR 

may be endocytosed and recycled via a clathrin and LRP-1-independent mechanism, 

mimicking micropinocytosis [256]. 

 

Cell surface distribution of uPAR. GPI-anchored proteins preferably partition into 

cholesterol rich and detergent resistant membrane microdomains termed lipid rafts [257]. 

The majority of uPAR however seems to be located in the detergent soluble fraction of the 

membrane, with only a small portion located within lipid rafts [258,259]. Interestingly, uPAR 
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dimers are preferentially lipid raft associated, displaying increased affinity for vitronectin, 

and increased susceptibility for uPA-induced cleavage [258]. Also, raft associated uPAR 

engages different signalling partners than non-raft associated uPAR, and binding to uPA or 

ATF induces raft partitioning [259-262]. Additionally, in stromal-derived factor 1α (SDF1-α) 

stimulated lymphocytes, certain types of lipid rafts containing uPAR and chemokine 

receptors have been shown to locate to the leading edge (lamellipodia) of migrating cells 

[263], which shows that external factors can control both the distribution and functions of 

uPAR. 

1.4 uPAR in migration, invasion and metastasis 

The components of the PA system are related to the invasive process of cells and thought to 

be important for cancer invasion in OSCC [264]. The fact that plasmin can activate several 

MMPs interlinks these two proteolytic systems, giving cancer cells increased ability to invade 

the tumour stroma (summarized in figure 11) [265,266]. Furthermore, uPAR, uPA and PAI-1 

are involved in regulating cell signalling, migration and invasion both in vitro and in vivo 

[133,151,160,170,225,252]. Constituents of the PA system have therefore been suggested as 

promising prognostic biomarkers and as potential therapeutic targets [49,123,182,264]. 

 

Figure 11: The role of uPAR in cancer cell invasion. uPAR-bound uPA locates proteolytic activity to the cell 
membrane, enabling activation of plasmin. Plasmin can activate several matrix metalloproteases (MMPs) and 
latent growth factors such as TGF-β1. From [225] with permission.  
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1.4.1 In vitro and in vivo 

Expression of uPAR not only provides cancer cells with the ability to regulate the activity of 

proteolytic enzymes, but also regulates cell signalling in a spatiotemporal manner and 

henceforth cell behaviour. Both uPA-/- and uPAR-/- mice exist and are viable and fertile 

[267,268]. The uPA-/- mice did however display occasional fibrin deposition [267]. This 

implies that there is functional redundancy of both the uPA and uPAR protein, and that they 

are not crucial for survival. This was shown in a study of wound healing, where the 

proteolytic functions of the PA system and MMPs overlap [266]. However, tumour 

development in mice lacking uPA (or PAI-1) is retarded [153], and the role of the uPAR-uPA 

binding in vivo has also been linked to inflammation [269].  

The non-proteolytic functions of uPAR have, through several studies, been shown to be 

important for invasion and metastasis. By blocking the interaction between uPAR and uPA, 

using an ATF-like molecule, breast cancer- and gastric cancer in vivo cell growth, 

angiogenesis and metastasis to the liver was inhibited [134]. Similar results were obtained 

using an anti-uPAR antibody in the study of prostate cancer cells. In contradiction to the 

previously mentioned study, the antibody did not specifically block the uPAR-uPA binding, 

but epitopes located on uPAR important for other biological functions of the receptor. 

Invasion and migration in vitro, tumour growth in vivo, and experimental metastasis in vivo 

was reduced [270]. Using human kidney epithelial cells (HEK-293) either lacking uPAR and 

uPA, or expressing the human uPAR, but not uPA, Jo et al. could show that metastasis was 

unrelated to the proteolytic functions of uPAR and uPA. Cells lacking uPAR showed little 

metastasis, while cells expressing uPAR but not uPA metastasized frequently. Because 

human uPAR does not bind the murine stromal produced uPA, cells must therefore 

metastasise independently of the uPAR-uPA interaction [271]. Other features of uPAR might 

therefore be more important for the invasive and metastatic process, where uPAR-integrin 

interactions are believed to be important [170]. 

In vitro studies have shown that uPAR interacts with both integrins α3β1 [272,273] and α5β1 

[274,275]. Clustering of uPAR and the α3β1 integrin in cultured oral keratinocytes and OSCC 

cells induced expression of uPA, and activation of uPA enhanced invasion [56,276]. The 

importance of the uPAR-integrin interaction in vivo was shown using SCC-25 cells expressing 

either high or low levels of uPAR. Cells were injected orthotopically into the tongues of nude 
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mice. In areas of the tumours where uPAR and the α3β1 integrin co-localized, ERK was 

phosphorylated, showing that uPAR and α3β1-integrin interact in vivo [277]. The finding that 

inhibition of the uPAR-α5β1 integrin interaction led to tumour dormancy, through loss of 

FAK phosphorylation [278], supports the notion of uPAR-integrin interactions are important 

for tumour growth in vivo. 

1.4.2 Expression of the PA-system in OSCC 

Experiments using ELISA showed that uPA, uPAR, PAI-1, and PAI-2, but not tPA, were 

elevated in OSCC tumour tissue compared to healthy oral mucosa [53]. Furthermore high 

expression of uPA and PAI-1 have been shown to be significantly correlated to poor overall 

survival [55]. SuPAR was elevated in blood samples from patients suffering from HNSCC, 

compared to healthy individuals [279]. Immunohistochemical (IHC) studies have shown that 

high uPAR expression correlated with high tumour grading in OSCC, and that patients with 

uPAR positive tumours displayed a worse overall survival than patients with uPAR negative 

tumours [183]. It was also shown that low grade (G1) tumours with high uPAR expression 

predicted worse outcome than G1 tumours with low uPAR expression [183]. In another 

study, concomitant expression of uPA and uPAR in the OSCC tumours correlated with 

increased invasive behaviour, and expression of uPA correlated with secondary lymph node 

metastasis [52]. High uPA and uPAR expression has been correlated with worse overall 

survival [280], while high PAI-1 expression correlated with increasing tumour stage and 

tumour size [54]. Positive PAI-1 staining of tumour cells has also been suggested as a good 

indicative marker of invasive OSCC behaviour, even more so when co-localized with uPAR 

and the γ2-chain of laminin 5 [281].  

Due to the fact that both stromal cells and tumour cells can display increased 

expression of uPAR [186,187,282,283], and cleavage products of uPAR may be indicative of a 

proteolytically active tumour, the measuring of cleavage products in patient blood, urine or 

ascites could function as a prognostic tool [284]. Different forms of uPAR, including suPAR (I-

III), suPAR (II-III) and suPAR (I), have been detected in patients’ blood and urine, and 

elevated levels have been correlated with survival in a spectrum of different cancers 

[283,285-294].  
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2. Background and aims for the study 

 

The role of uPAR in cancer has been thoroughly documented and extensively studied over 

the last three decades since its discovery. uPARs involvement in OSCC progression is less 

documented, but more studies have emerged in the recent years. OSCC is a heterogeneous 

disease and still patients suffer from relapse and a poor 5-year survival rate. This 

underscores the importance of developing better prognostic tools, better treatment 

strategies and finding new therapeutic targets. It is therefore vital with a deeper 

understanding of the molecular mechanisms involved. uPAR seems to play an important part 

in the progression of OSCC observed through in vivo and in vitro studies. In light of this, the 

goal of this work was to gain a better understanding of the role of uPAR in OSCC, 

characterize it as a prognostic marker, and gain a deeper understanding of how the tumour 

microenvironment is involved in the regulation of uPAR expression and function. More 

specifically, we wanted to: 

• Study the distribution of uPAR, uPA, PAI-1 and Ki-67 in tumour tissue from patients 

with OSCC, and examine whether these factors were correlated with disease specific 

death. 

• Establish a syngene mouse model for tongue SCC and study the effect of high- and 

low expression of uPAR in tumours in vivo. 

• Study different tumour microenvironments in relation to expression and regulation 

of uPAR.  

• Understand how stroma-derived factors are involved in the regulation of uPAR 

expression and cleavage. 
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3. Summary of results 

 

Paper Ι 

 

Urokinase Plasminogen Activator Receptor (uPAR) and Plasminogen Activator Inhibitor-1 (PAI-1) 
Are Potential Predictive Biomarkers in Early Stage Oral Squamous Cell Carcinoma (OSCC). 

Magnussen S, Rikardsen OG, Hadler-Olsen E, Uhlin-Hansen L, Steigen SE, Svineng G. (2014). PLoS ONE 
9(7): e101895. Doi:10.1371/journal.pone.0101895. 

 

In this paper we used a tissue microarray (TMA) based immunohistochemical analysis of 

OSCC to test if components of the PA system could be used as predictive biomarkers. The 

expression of uPAR, PAI-1 and uPA was compared with clinicopathological variables and 

disease specific death. The principal findings were: 

• Low expression of uPAR and PAI-1 were correlated with low disease specific death in 

early stage OSCC.  

• uPA and the proliferation marker Ki-67 were not correlated with disease specific 

death.  

 

Paper ΙΙ 

 

Tumour Microenvironments Induce Expression of Urokinase Plasminogen Activator Receptor 
(uPAR) and Concomitant Activation of Gelatinolytic Enzymes. 

Magnussen S, Hadler-Olsen E, Latysheva N, Pirila E, Steigen SE, Hanes R, Tuula S, Winberg J-
O, Uhlin-Hansen L, Svineng G. (2014). PLoS ONE 9(8): e105929. 

Doi:10.1371/journal.pone.0105929. 

 

In this paper we studied the effect high- and low expression uPAR had on invasion and 

metastasis of a murine OSCC cell line, AT84, in vivo in a syngeneic mouse model and ex vivo 

in a leiomyoma invasion model. We also studied the role of different tumour 
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microenvironments on the expression and post-translational regulation of uPAR in the AT84 

cells. The main results were: 

• Increased expression of uPAR did not promote aggressive tumour growth or 

metastasis in tongue or skin tumours in the mouse model for OSCC. 

• Expression of uPAR was up-regulated in the tumour-stroma interface in the mouse  

model for tongue tumours, and in OSCC cells invading the tissue of the leiomyoma 

invasion model. 

• OSCC cells expressing high levels of uPAR in vivo and ex vivo showed increased 

activity of gelatinolytic enzymes. 

• Soluble factors derived from the tumour microenvironment of the ex vivo leiomyoma 

tissue induced increased expression and altered glycosylation and cleavage of uPAR.  

 

Paper ΙΙΙ 

 

Transforming Growth Factor-β1 (TGF-β1) Regulates Cleavage of the Urokinase Plasminogen 
Activator Receptor (uPAR) through Increased Expression of Plasminogen Activator Inhibitor-1 (PAI-

1) 

Synnøve Magnussen, Elin Hadler-Olsen, Eli Berg, Cristiane Cavalcanti Jacobsen, Bente Mortensen, 
Tuula Salo, Jan-Olof Winberg, Lars Uhlin-Hansen, Gunbjørg Svineng. 

Manuscript. 

 

In this paper we studied how uPAR cleavage was regulated tin the OSCC AT84 cells, both by 

the tumour microenvironment factor TGF-β1, the plasma constituent plasminogen and the 

uPA secreted by the cells. The main findings were: 

• TGF-β1 increased the ratio of full-length uPAR versus cleaved uPAR. 

• TGF-β1 reduced uPAR cleavage through induction of PAI-1 expression. 

• The amount of cleaved uPAR vs full-length uPAR regulated intracellular signalling and 

cell migration and invasion.
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4. General discussion 

 

The main focus of my work has been on OSCC, with emphasis on the role of the plasminogen 

activation system, and more specifically uPAR, in the malignant progression of OSCC. The 

findings in each individual paper are discussed within the respective papers. In the first 

section a selection of methods are discussed (methodological considerations), and in the 

second part (discussion of results) the major issues and highlights from the three papers will 

be discussed.  

4.1 Methodological considerations 

In this section, advantages and limitations of a selection of methods relevant for the project 

will be discussed. 

4.1.1 Prognostic biomarkers 

A patient diagnosed with OSCC today is treated according to a strategy based on the primary 

tumour size, growth pattern and its spread. The ability to give cancer patients even better 

treatment according to their needs requires reliable prognostic- and predictive biomarkers. 

Whereas a prognostic marker indicates the patients’ prognosis, a predictive marker indicates 

the outcome of a given treatment. Even after decades of research within this field, one 

important question still remains “will this patient need additional treatment, after the initial 

(often surgical) intervention?” [295]. In paper I, we present uPAR and PAI-1 as potential 

prognostic markers, and show that low expression was associated with lower disease 

specific death [49].  

There are several approaches to identifying new tumour biomarkers. In addition to protein 

based methods such as immunohistochemistry (IHC) and enzyme-linked immunosorbent 

assay (ELISA), RNA and DNA based techniques are also used and have gained increasing 

interest [296]. However, implementing RNA and DNA based techniques to screen patient 

material in the clinic would involve changing the current diagnostic system. To analyse 

biopsies for RNA and microRNA (miRNA), high-quality tissue samples are required; not 

formalin-fixed paraffin embedded (FFPE) samples, as is the standard today. Collection and 
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analysis of high-quality samples might therefore require both a change in the way samples 

are preserved and require specialized centres to perform the analysis [297]. There are clear 

benefits to the use of IHC-based techniques to identify tumour biomarkers on FFPE samples, 

and it was therefore our method of choice. Morphology-based diagnosis and IHC-based 

markers are already standard procedure in clinical practice today. Furthermore, FFPE 

samples preserve the tissue architecture, which enables location-specific detection of the 

biomarkers, such as the presence of a marker at the tumour invasive front. We did however 

use tissue microarrays (TMA) in our study [49], where the tumour invasive front is not 

necessarily included. Nevertheless, TMAs might actually represent a more objective and 

quantifiable method than when using whole tissue sections, as discussed below [298].  

Patient cohort and study design. In this study, we used a North Norwegian cohort consisting 

of 160 patients with primary SCC of the oral cavity and hypopharynx. When screening for 

biomarkers using patient material, it therefore is vital to know whether our patient cohort, 

and hence results obtained using the cohort, is representative and applicable to other 

populations. It is also of interest to know whether results obtained from other cohorts is 

applicable to our cohort, the North Norwegian population. This is especially interesting as 

the incidence of OSCC shows large geographical variations, due to culture-associated risk 

factors such as tobacco use and alcohol consumption [299]. In a recently published paper, 

the North Norwegian cohort used in paper I was found to be comparable to other European 

cohorts in most aspects such as tumour differentiation, location and patient age at diagnosis 

[300]. 

In paper I, 45 patients of the original cohort of 160 were excluded from the study. These 

patients had SCCs originating from the oropharynx, had verrucous tumours, or received 

radiotherapy prior to surgery. Up to 90% of cancers arising in the oropharynx are infected 

with high-risk HPV [12]. Increasing knowledge about HPV-induced oral cancer shows that 

these tumours display distinct molecular characteristics and develop through different 

carcinogenic pathways. They also present with largely better prognosis, and it is therefore 

suggested that these tumours are considered as a separate entity [1,301]. Verrucous 

tumours were also excluded due to the fact that these tumours are slow growing, with 

pushing borders, rarely metastasise and has a 5-year survival rate of 85-95% [4]. Patients 

that received radiotherapy were also excluded as these tumours may differ significantly from 
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the original primary tumour [302]. We believe that excluding these patients from our study 

on biomarkers makes the cohort more homogeneous, excluding obvious factors that may 

influence prognosis.  

Tissue microarray (TMA). The use of TMA involves the punching of small cores, typically 0.6 

mm in diameter, of representative tumour tissue. A number of cores are inserted into a 

recipient block, and tissue sections from the block can be used for IHC (figure 12). Using 

TMA to screen for potential biomarkers is time- and cost-efficient, as several hundred 

patients can be analysed on the same section. This also ensures identical experimental 

conditions for a large number of samples. For TMA to be beneficial, the cores must be taken 

from representative areas within the tissue. However, OSCC is histologically heterogeneous 

and shows a large variation in degree of differentiation within the same tumour [303-305]. 

Furthermore, the invasive tumour front has been suggested as the most important area for 

determining prognosis in oral cancer [14,16,33]. These areas may not be represented in a 

TMA since it may be technically difficult to sample cores from the invasive front. Challenges 

encountered when grading histopathological features such as the invasive front in whole 

tissue sections include inter- and intraobserver variability [306]. High inter- and 

intraobserver variability is not acceptable for a biomarker. A selection of biomarkers have 

been tested on TMA and compared to whole sections, where TMAs were found to be 

representative and reliable [305,307]. For heterogeneously expressed markers, TMA has 

even been suggested as a more objective and quantifiable method than when analysing 

whole tissue sections [298]. To enable accurate assessment of biomarkers, it was found that 

3-4 cores [308] of 0.6 mm from each tumour were sufficient [309]. The use of TMA to screen 

for potential biomarkers in OSCC has been validated by others and found to be satisfactory 

and efficient [305,307,308]. The TMA used in paper I was based on eight cores from each 

tumour. We experienced a loss of 16.5% of the cores due to technical issues during 

preparation, or lack of tumour tissue within the core. This is in line with previous reports, 

and gives a reliable number of cores for evaluation [298,308]. The interobserver variability of 

tumour staining was tested and shown to be acceptable [49]. Taken together, we concluded 

that the use of TMA as a method to screen for biomarkers using immunohistochemistry on 

OSCC tissue was suitable and reliable.  
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Figure 12: Making tissue microarrays. Tissue cores are taken from selected regions of the original tumour 
tissue in the donor block, and transferred to a recipient block. The recipient block containing several cores per 
patient, and harbouring tissue from numerous patients. Sections taken from the recipient block may then be 
analysed for potential biomarkers. 

 

Immunohistochemistry (IHC). There are several ways to screen for biomarkers, where IHC is 

a method often used. IHC is relatively rapid to perform and there is no need for expensive 

equipment. Furthermore, if using TMAs, it can also be relatively cost-efficient. In addition, 

IHC is routinely used in all clinical pathology departments, making new IHC markers easier to 

implement. However, there are important methodological considerations, such as validation 

of antibodies, proper positive and negative controls, pre-staining procedures (fixation, 

storage temperature and time, epitope retrieval etc.), an appropriate scoring protocol, and 

standardized procedures [39,310].  

Pre-staining conditions are seldom, if ever, reported in biomarker studies. Yet, how the 

tissue is handled before staining (e.g. delay in fixation and temperature), how long it is fixed, 

which fixative, how and for how long the tissue blocks are stored can have an impact on the 

result, and its reproducibility [39,311]. Especially the intensity of tissue staining can be 

affected in archival material, which is a challenge as many scoring methods are based on the 

quantity and intensity of the stain [39,310]. 

Validation and titration of antibodies are necessary steps when using IHC as a method to find 

new biomarkers [312]. In addition, including the correct positive and negative controls is 

important [39,310,313]. Validation of an antibody is a process that involves testing whether 

the antibody is specific for the target protein, selective and reproducible. Even though no 

common IHC guidelines exist, recommendations have been published, including how to 
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validate antibodies [312-314]. Western blot (WB) is often used as an initial step in the 

verification of specificity, and should preferably give one band of the anticipated molecular 

weight. Lysates of cells overexpressing the epitope or cells that have been stimulated to 

induce its expression are appropriate positive controls in WB. Likewise, lysates from cells 

where the expression of the epitope has been knocked-down should be used as a negative 

control. Testing the antibody on WB secures that it is specific for its antigen in WB, but gives 

little extra information, and it therefore needs to be tested in IHC. Excellent negative 

controls in IHC include cells or tissue from knockout mice not expressing the target protein, 

however such tissues are not always available. Negative controls also include isotype 

controls, where an irrelevant immunoglobulin of the same type that does not recognise the 

epitope is used. This will show any unspecific binding of both the isotype primary antibody 

and the secondary antibody. Tissues and cells known to express the target protein functions 

well as positive controls, though for new and untested antibodies this may not be known. A 

good positive control is an internal control, e.g. a cell type within the stained tissue known to 

express the epitope [313]. A reproducible antibody should give similar results across 

different antibody lots and time, and similar results should be obtained using another 

antibody for the same target protein. Another method used to ensure the specificity of the 

antibody involves pre-absorbing the antibody to its target, often a peptide or a recombinant 

protein before IHC analysis [312].  

In paper I and II, even though the antibodies used were not fully validated, the antibodies 

were extensively tested, and the specificity was verified using positive and negative controls 

(tissue/cells expressing or not expressing the target protein), and pre-absorption controls. In 

paper I, we used a mouse monoclonal anti-uPAR antibody (#3936) purchased from Sekisui 

(previously American Diagnostica). According to the company datasheet, the antibody was 

produced using soluble uPAR isolated from phospholipase C treated U937 cell as immunizing 

antigen and purified from ascites fluid by protein G affinity chromatography. Ferrier et al. 

have previously tested this antibody for use in IHC [315 2421]. They reported that the 

antibody did not correctly stain controls, but did not specifying the staining pattern any 

further. The control that were used was rat tumours established from uPAR-positive human 

melanoma cells, as positive controls, and cytospins from uPAR-negative human breast 

carcinoma cells, as negative controls. The antibody was not tested on human tumour tissue. 

36 
 



General discussion 

Enzymatic pronase E treatment and microwave treatment were both tested as methods for 

antigen retrieval [315]. In contrast, we report in paper I, a satisfactory staining of normal 

buccal mucosa tissue and tumour tissue. The heat-induced antigen retrieval (HIER) method 

used in paper I was somewhat similar to that reported by Ferrier et al., however there were 

differences that may explain discrepancies in our results. We boiled our sections in 10 mM 

citrate buffer, whereas Ferrier and colleagues used 50 mM. While they used PBS containing 

1% bovine serum albumin for antibody dilution, we followed a staining protocol specifically 

developed by the supplier for the anti-uPAR antibody (#3936, see company datasheet online 

at http://www.sekisuidiagnostics.com/products/205-murine-mab-against-human-upar). To 

further optimize the staining protocol and to reduce background staining, a high salt 

concentration was used in the assay buffers [49]. Although the antibody has not been fully 

validated using all the suggested steps by Bordeaux et al., both we and others have tested its 

specificity by various methods. Constantini et al. tested the antibody in IHC on normal breast 

tissue and breast carcinoma tissue, including negative control where samples were pre-

incubated with non-immune mouse serum [316]. Furthermore, the performance of the 

antibody has been compared with another uPAR antibody (#399), and was found to stain 

satisfactory [317]. The antibody was also pre-absorbed with recombinant native soluble 

uPAR [318], or suPAR shed from U937 cells using phospholipase C [316] and used for IHC on 

tumour tissue, where there was a reduction in staining. We also tested the specificity of the 

antibody; first by WB on lysates from GD25 cells overexpressing human uPAR and U937 cells 

stimulated with PMA. In both samples, the antibody only detected a band of the expected 

size of uPAR. A time-dependent increase in the intensity of the band was observed with PMA 

stimulation (paper I, figure S1). The band was absent in non-PMA-stimulated U937 cells and 

in GD25 cells not expressing uPAR (only empty vector). In addition, we performed IHC using 

our protocol with the antibody pre-absorbed with recombinant human uPAR and found a 

significantly reduced staining of OSCC tumour tissue [49]. Thus, in our hands, the #3936 

antibody performed satisfactory, although further tests are needed to fully validate the 

antibody. 

In paper I we used a scoring protocol that combines the staining intensity (0 = none, 1 = 

weak, 2 = moderate, 3 = strong) and proportion of cells stained (0 = none, 1 = <10%, 2 = 10-

50%, 3 = 51-80%, 4 = >80%). Based on our scoring protocol (value range: 0-12), tumours with 
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a scoring index (SI) above 5.63 were termed high uPAR expressing tumours. The average SI 

of this group was 8.22. This equals to a staining intensity of moderate to strong, and a 

percentage of positively staining cells between 10 and 80%. Illemann et al. reports that less 

than 1% of tumour cells were positive for uPAR in the tumour core of colorectal cancers, 

while at the invasive front 5-10% of the tumour cells were uPAR positive [319]. The number 

of positively stained tumour cells is very different between this study and our study, most 

likely due to differences between cancer types and scoring protocols.  

Publication bias. In 2013 almost 18.000 publications on cancer biomarkers were registered 

in Pubmed (figure 13), and out of these a little more than 3.000 were on prognostic cancer 

biomarkers. A common goal of biomarker studies is the finding of markers that can aid 

clinicians in treatment stratification. In an analysis of 1500 reports on biomarker studies, 

95% of the publications reported a statistically significant finding, clearly showing that there 

is a publication bias [320]. Furthermore, it has been states that as much as 75% of reported 

findings in biomarker studies are not reproducible [321]. However, only a very small fraction 

of these biomarkers get implemented into clinical practice [322]. The National Cancer 

Institute (NCI) reports the use of 31 tumour markers on their homepage 

(http://www.cancer.gov/cancertopics/factsheet/detection/tumor-markers), where uPA and 

PAI-1 are established biomarkers for breast cancer to “determine aggressiveness of cancer 

and guide treatment”. Tumour biomarkers not only states how aggressive the cancer is, but 

may also help determine the presence or lack of a tumour, guide treatment, predict 

treatment outcome, and tell us something about the prognosis. The poor reproducibility 

may partly result from the lack of study transparency. Information about the patient cohort, 

procedures used, controls included and validation of the antibodies are often lacking. Such a 

transparency is important to enable critical review and reproducibility of the experimental 

setup. Consequences of publishing non-reproducible data include waste of time, money and 

valuable patient material. Guidelines have now been published to aid publicists and 

researchers in reporting such necessary information [323-325]. The Reporting 

Recommendations for Tumour Marker Prognostic Studies (REMARK) checklist was published 

simultaneously in seven renowned journals in 2005 in order to reach a broad spectrum of 

readers. The REMARK checklist gives an overview of information that should be included 

when publishing results on prognostic tumour markers. Another aspect of publication bias is 
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that journals emphasise on novel and important findings, and shows a lack of interest in 

publishing negative results or validation of previous studies [39,326]. The space limits of 

many journals might also push the authors to exclude important information. With open 

access publishing it may now become easier for authors to adhere to these guidelines with 

no limit on the amount of information that can be published. Paper I was published in the 

Public Library of Science (PLoS) ONE, an open access online journal, where we aimed at 

adhering to the REMARK guidelines. 

 

 

Figure 13: Publications on cancer biomarkers. The search term “cancer biomarker” was used in Pubmed to 
find publications on cancer biomarkers. The first publications registered in Pubmed were from 1963. Each bar 
shows the number of publications per year until 2014. The search term includes both predictive and prognostic 
biomarkers. 

 

4.1.2 Model systems in cancer research 

There are many different model systems used in cancer research. These include different in 

vitro assays for cultured cells, ex vivo models and in vivo animal models. A selection of model 

systems relevant to this project are discussed below. 

In vitro assays of migration and invasion. Cell migration and invasion takes place during 

physiological processes such as embryogenesis, wound healing and immune cells trafficking 

[327], but also during cancer invasion and metastasis [328]. To understand and prevent 

cancer invasion and metastasis it is necessary to understand the underlying basic principles 
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involved in migration and invasion. By using in vitro migration and invasion assays, it is 

possible to study the mechanisms involved in more detail. However, the question remains 

how well the assay resembles real in vivo situations. In vitro assays are relatively easy to use 

and results are more reproducible compared to in vivo assays. In vitro assays are also less 

costly than animal experiments, and raise less ethical concerns since use of animals in 

research should be kept to a minimum [329]. 

Many different assays can be used to analyse migration and invasion in vitro, reviewed by 

Kramer et al. [329]. The transwell migration assay (Boyden chamber) is one of the most 

frequently used assays to analyse cell migration. Most transwell migration assays involve the 

removal of cells from the top chamber (e.g. from the top part of a filter), and quantifying the 

cells that have migrated to the attractant in the bottom chamber. The classical transwell 

migration assay is therefore an endpoint assay that requires optimization for every cell line 

used [329]. In paper III, a modernised version of the transwell migration assay was used: The 

xCELLigence system (ACEA Biosciences. Inc.) performs real-time cell analysis (RTCA) of 

migration by measurement of impedance created by the cells that reach the microelectrode 

sensors on the lower side of a microporous membrane. The created impedance gives an 

arbitrary “cell index” value. There is no need to find a suitable endpoint, only an optimal cell 

concentration. There is no need to stain cells or remove non-migrated cells. Drawbacks 

however include difficulty in separating proliferation from migration, and excluding altered 

morphology and increased adherence from cell proliferation, as all aspects are measured as 

impedance.  

Another assay used to study migration and invasion is vertical gel 3D migration/invasion 

assays [329]. Cells are then typically seeded on top of a collagen gel interspersed with 

fibroblasts, mimicking the in vivo setting, and it was termed the organotypic skin model 

[330]. An alternative when studying oral cancer could be the use of a version of this 3D 

model; an in vitro model of the oral mucosa [331,332]. The authors present the model as a 

good method to study cancer progression that will ultimately reduce the need for animal 

experiments. The model requires oral fibroblasts and keratinocytes cultured on an artificial 

matrix (e.g. Matrigel or collagen). Despite being physiologically relevant, these types of 

organotypic models represent a simplistic view of the tumour microenvironment lacking 
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several types of stromal cells, vasculature, a fully dysplastic stroma and is somewhat more 

labour-intensive than the leiomyoma invasion model which will be discussed next [333,334]. 

In paper II, we have used a model where the in vivo setting is more closely replicated 

through the use of an ex vivo leiomyoma invasion model [334]. The leiomyoma tissue is of 

endometrial origin and does not contain any living stromal cells that are known to influence 

tumour progression. However, the intact tissue contains many of the components known to 

be present in the tumour microenvironment such as collages I, III and IV and laminin. Soluble 

factors present in the tissue have been shown to induce invasion, and the tissue of the 

leiomyoma mimics the hypoxic tumour microenvironment. Cells otherwise unable to invade 

the classical collagen gel has been shown to efficiently invade the leiomyoma tissue 

[334,335]. Taken together, the leiomyoma invasion model proved a valid model to study 

invasion of the AT84 cells in vitro.  

Animal models of oral cancer. Even though no in vivo animal model is perfect for its 

purpose, it is generally agreed that the use of animals in cancer research is inevitable. 

Animal models used to study oral cancer include transplanted tumours, chemically induced 

tumours [336-339], xenograft tumours [340], and spontaneous tumours [341,342]. 

Chemically induced oral tumours resemble human oral cancer as many human OSCCs are 

also chemically induced through tobacco and alcohol consumption [7]. The chemically 

induced hamster cheek pouch model reflects human oral cancer in many aspects, often 

displaying p53 mutations and activation mutations of Ras [343]. However, inducing oral 

tumours chemically is labour-intensive, time consuming, requires exposure to carcinogens, 

and extensive animal handling which is potentially stressful for the animals [344]. 

Transplanted oral tumours include neoplastic cells injected into either immunosuppressed 

mice (used for xenografts) or immunocompetent mice (used for syngeneic grafts) [345]. 

Xenograft models open for the use of human neoplastic cells, however, these tumours 

seldom metastasise, and the lack of an intact immune system prevents evaluation of the 

immune cells’ role in tumour progression [344]. Furthermore, factors involved in tumour 

progression can be species specific, where some of these factors are provided by the host 

tumour stroma. This may explain why several anti-cancer compounds have shown promising 

results in xenograft tumours, but been ineffective in humans [345]. In vivo growth of tumour 

cells in a syngeneic mouse model constitutes a more realistic model, where the immune 
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system is intact [340,341,346-348]. The AT84 cells used in paper II [180], were derived from 

a spontaneous OSCC in C3H mice [341]. C3H mice accepted the tumour cells, which grew 

rapidly into large tongue tumour with as little as 10,000 cells injected [180]. Previous 

comparison of oral versus subcutaneous tumours using the same model system, revealed 

that oral tumours grew faster and metastasised to the lung while flank injected tumour cells 

did not [346]. We did not find any metastasis to lungs, liver or lymph nodes. However, Lou et 

al. injected tumour cells transcutaneously into the floor of the mouth where intravascular 

injections may have caused the metastasis, thereby bypassing the normal process of 

metastasis. We injected tumour cells directly into the tongue, which can explain the 

discrepancy of the findings. In addition, when using animal models it must be kept in mind 

that different tissues may influence on the tumour development. Metastasis occurs to a 

lesser extent when tumour cells are injected into another tissue than its origin. The 

observation that orthotopic (into the tissue of origin) injection of tumour cells, more often 

mimics progression of the human cancer better than heterotopic (into another tissue than 

the cells origin) injections, implies the importance of the tumour microenvironment 

[340,349,350]. A weakness of models using injected tumour cells is that these poorly reflect 

the early stages of tumour development. Another way to study the early stages of tumour 

development, is by the use of transgenic mice [344,351], however to our knowledge, no 

such model exists for OSCC. 
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4.2 Discussion of results 

In this section, the major issues and highlights from the three papers will be discussed in 

context to each other and of previously published results within the field. 

4.2.1 Prognostic biomarkers 

The massive amount of publications on biomarkers (figure 12) signifies the need for better 

prognostic and predictive markers, allowing for more personalized treatment. Whereas the 

traditional view has been “one drug fits all”, the view now is that each patient should receive 

the optimal treatment through personalized medicine [297]. In light of this, the use of 

tumour biomarkers becomes important, especially to enable stratification of patients that 

will respond differently to the same treatment, even though they are diagnosed with 

tumours of the same TNM-stage [10]. The goal of paper I was therefore to find biomarkers 

that could aid clinicians in their decision-making regarding the extent of treatment for 

patients with T1N0 tumours. 

Several studies on tumour biomarkers using IHC have been performed on OSCC, where 

EGFR, p53 and ki67 have been repeatedly suggested as potential prognostic markers 

together with many more [25,27,48]. However, a recent critical review has deemed EGFR, 

p53 and Ki67 as  poor prognostic markers for OSCC [39]. This is in line with our findings, 

where Ki67 did not correlate with survival [49]. The need for new biomarkers is reflected by 

the ever-increasing mass of publications on the topic (figure 12). It was therefore our aim to 

determine whether factors of the PA system could be used as prognostic biomarkers for 

OSCC using IHC. Interestingly, p53 which is often mutated in OSCC, is a negative regulator of 

uPAR expression [352]. This suggests that uPAR may be up-regulated in OSCC, making uPAR 

an potential prognostic biomarker in OSCC.  

Due to the PA systems role in tissue remodelling and wound healing, and its overexpression 

in many cancers [181,292,319,353,354], it has even been proposed as a target for cancer 

therapy [185]. In three separate studies, high levels of uPA and PAI-1 in primary tumours of 

the breast were significantly associated with increased risk of recurrence and worse survival 

[154,355,356]. These findings were later tested in a large study including 3424 breast cancer 

patients, where those expressing both uPA and PAI-1, where defined as high-risk patients 

and were found to benefit from adjuvant treatment [357]. uPA and PAI-1 are now approved 
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as prognostic markers for breast cancer. In OSCC, less is known about the role of the PA 

system, but it is thought to be important for invasion [264]. Previously published papers 

show that several of the components of the PA system are up-regulated in OSCC tumour 

tissue compared to normal tissue [53,55]. Elevated expression of uPA and PAI-1 was 

correlated to poor overall survival, though no reports were made on the disease specific 

survival [55]. The analyses were performed using ELISA on whole tissue samples, and 

distribution and expression patterns were therefore unknown. Hence, the expression of uPA, 

uPAR, PAI-1 and PAI-2 could originate from infiltrating stromal cells. Others have reported 

on the IHC staining pattern for uPAR, uPA, PAI-1 and PAI-2 in OSCC, where uPAR and PAI-1 

expression has been reported at the tumour invasive front [52,54,183,280,281]. uPAR and 

uPA were furthermore reported to correlate with a more invasive behaviour [52,280], and 

worse overall survival [280].  

Expression of uPAR may be up-regulated in either the cancer cells or the stromal cells (table 

2), and often tumours show heavy infiltration of inflammatory cells and myofibroblasts 

[186,319,358-362]. Previous reports say that most of uPAR positivity in OSCC is found in 

stromal cells such as macrophages, fibroblasts and neutrophils [183,281], although more 

recent publications have reported that uPAR is expressed in tumour cells at the tumour core 

of oesophageal adenocarcinomas and colorectal cancer, and that the expression was 

associated with prognosis [319,354]. We report that low expression of uPAR and PAI-1 in 

cancer cells of early stage OSCC (T1N0) predicts lower disease specific death [49], which 

indicates that uPAR may play a role in early events of OSCC progression. This is in line with 

results obtained by Lindberg et al., who concluded that expression of uPAR and PAI-1 were 

indicative of early invasion [281]. The number of patients belonging to the T1N0 group in our 

study was small (N=27). Based on this, we present uPAR and PAI-1 as possible biomarkers, 

but further work on a larger patient cohort must be performed in order to strengthen these 

results. As already mentioned above, uPAR staining has been reported at the invasive front 

of OSCC [183,281], while we report in paper I that most of the uPAR staining was towards 

the centre of the tumour islands [49]. This might reflect the use of TMA as a method, as the 

cores do not necessarily represent the tumour invasive front. Whole tissue sections will in 

the future have to be stained to analyse the distribution of uPAR staining in the tumours. 
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Taken together, the results reported in paper I are in line with previous reports, indicating 

that uPAR and PAI-1 are involved in tumour progression of OSCC. 

As has been reported for other cancers, soluble uPAR forms may be detected by ELISA based 

methods instead of IHC [283,288,289]. This allows for use of blood/plasma and urine as 

samples for detection of biomarkers. Collection of such samples can be done with little 

effort, and hospitals and clinics are already well equipped to collect and handle these 

samples. Collecting blood and urine samples are in addition non-invasive for the patient. The 

development of an ELISA based method to measure the presence of suPAR in blood showed 

that patients with either breast-, colon- or ovarian cancer had elevated suPAR levels 

compared to healthy individuals [285,293]. It was suggested as a method to assess prognosis 

and detect recurrence. Increased pericellular proteolytic activity of the tumour cells and/or 

stromal cells leads to shedding and cleavage of uPAR. Measuring uPAR fragments in 

blood/plasma may therefore reflect aggressive tumour behaviour, and maybe even 

angiogenesis as the fragments are shed from the tumour and into the bloodstream. High 

levels of suPAR and cleaved uPAR in blood/plasma has now been correlated to prognosis for 

several types of cancer: breast cancer [286], non-small lung cancer [288], small cell lung 

cancer [290], prostate cancer [289] colorectal cancer [292]. Increased levels of suPAR have 

also been detected in plasma from patients with HNSCC, although due to the short period of 

follow-up of the patients, no association with prognosis was determined [279]. ELISA-based 

techniques are quantitative, and the need for subjective assessment by a pathologist is not 

necessary. However, no information about the tissue complexity is gained using ELISA-based 

methods. The use of an ELISA-based method for our cohort of OSCC patients was not 

possible, as no blood and urine samples from these patients exist.  

4.2.3 The tumour microenvironment 

In paper II, we report that several different types of tumour microenvironments are involved 

in the up-regulation of uPAR expression [180]. Others have previously reported similar 

findings, where uPAR was shown to be expressed at the tumour invasive front of human 

colon adenocarcinomas [362], colorectal cancer [319], oesophageal adenocarcinoma [354], 

and OSCC [281]. In our mouse model for OSCC, uPAR was up-regulated at the tumour-

stroma interface of tongue tumours in cells with initially low endogenous uPAR expression 

(paper II). The stroma of the skin also induced expression of uPAR, when cells were injected 
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subcutaneously. To counteract the endogenous up-regulation, cells were transfected with 

shRNA targeted for Plaur mRNA. Cells stably expressing the Plaur-targeting shRNA were then 

used to develop new tongue tumours, which showed reduced levels of uPAR (paper II, figure 

4a and e). However, when these uPAR knock-down cells were invading the neoplastic tissue 

of the leiomyoma, uPAR expression was up-regulated already after 7 days in the cells 

invading deep into the tissue (paper II, figure 5). The leiomyoma tissue, which is a neoplastic 

but non-malignant tissue, shares many of the traits of the tumour microenvironment [334]. 

Furthermore, the leiomyoma tissue was shown to induce secretion of MMP-2 and MMP-9 in 

the invading OSCC cells, HSC-3 [334]. The leiomyoma also mimics the hypoxic tumour 

microenvironment, inducing invasion. It was furthermore shown that soluble factors from 

the leiomyoma tissue were important for invasion [335]. This shows that different tissues 

can modulate the expression of uPAR in different ways. 

Interestingly, leiomyoma tumours express TGF-β1 [363], and we reported that factors 

present in the leiomyoma conditioned medium (LCM) increased expression and glycosylation 

of uPAR, and possibly effected the cleavage (paper II and III). In paper III, we aimed at 

investigating whether TGF-β1 was involved in regulating uPAR expression, glycosylation and 

cleavage. By stimulating cultured AT84-uPAR cells with TGF-β1, the amount of full-length 

uPAR was increased through increased expression of PAI-1 (paper III). It is however uncertain 

whether TGF-β1 had an effect on the glycosylation of uPAR (paper III). Others have reported 

that TGF-β1 induces uPAR expression in cell culture [188]. Yet, TGF-β1 did not induce a 

statistically significant increase of the Plaur mRNA levels in AT84-EV and AT84-uPAR cells 

after 24 hours of stimulation in culture (paper III). Further research must be done to map 

whether TGF-β1 is involved in the increased expression of uPAR in the mouse tongue and 

skin tumours, or whether other stromal derived factors are the central players. Skin and 

tongue tumours did not display a desmoplastic stromal environment, which is one of the 

features of carcinomas overexpressing TGF-β [72,364,365]. However, several cell types that 

are often present in the tumour microenvironment produce TGF-β, such as fibroblasts, 

platelets, macrophages, lymphocytes, (epithelial cells) and tumour cells [69,72,89,366]. As 

described in the introduction, TGF-β1 is secreted in a latent form that is sequestered in the 

ECM [76]. There are many known activators of TGF-β such as integrins (αVβ6, αVβ8) and 

proteases (plasmin, MMP-2, MMP-9, and BMP1) together with several more factors nicely 
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summarized by Robertson and Rifkin [76-78]. Through activation, TGF-β is released from the 

ECM (see figure 11), and can convey its functions through binding to its cell surface 

receptor(s). When uPAR is expressed, the cells can activate uPA and hence plasmin, and 

plasmin can activate and release TGF-β from the ECM. The EV1, EV2, uPAR1 and uPAR2 cells 

all secreted HMW-uPA, and even though they were borderline negative for plasmin(ogen) 

(see figure S1 in paper II), plasminogen may be supplied through the bloodstream to the 

tongue- and skin tumours (paper II). We do not yet know whether the AT84 cells produce 

TGF-β1, or whether stromal cells in the tongue or skin expressed it. Interestingly, TGF-β1 

induces expression of PAI-1 in many cells including AT84 cells [367-369]. We observed that 

high levels of PAI-1 and uPAR in early stage human OSCC was associated with increased 

disease specific death. In paper III, we observed that cells expressing high levels of uPAR also 

secreted increased levels of PAI-1, compared to AT84-EV cells (paper III, figure 4A), and 

stimulating cells with TGF-β1 increased the levels further. It has however not been 

determined whether TGF-β1 is also involved in increasing PAI-1 or uPAR expression in our 

North Norwegian cohort of OSCC patients. One Brazilian study analysed 72 HNSCC tumours 

[370]. The results were not correlated to survival, but elevated levels of TGF-β1, uPA and 

PAI-1 mRNA was found in oral cavity tumours compared to normal oral mucosa. 

Interestingly, they found a small subgroup of pN0 patients that showed elevated levels of 

TGF-β1 [370].  

Another interesting observation was the fact that together with increased uPAR expression, 

cells with up-regulated uPAR showed increased activity of gelatinolytic enzymes (paper II, 

figure 7, 8 and S8). In addition, when uPAR was knocked down using shRNA, the gelatinolytic 

activity was reduced in tongue tumours (paper II, figure 7). Plasmin can degrade gelatin and 

has the ability to activate several different types of MMPs [225]. As seen when using in situ 

zymography [371], the gelatinolytic activity is not only present on the cell surface, but is also 

intracellular. The activity seen in the invading EV and uPAR cells (see paper II, figure 8) could 

originate from intracellular proteases or recycled proteases [372]. More recently, MMPs 

have been shown to have functions also intracellularly [373,374]. As was shown in figure 8 in 

paper II, the cells invading deep into the leiomyoma tissue, with up-regulated uPAR 

expression (EV1-sh), did not show reduced gelatinolytic activity in the presence of the MMP-

inhibitor EDTA. This shows that MMPs were not responsible for the gelatinolytic activity 
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seen in these cells. The increased activity could also originate from serine proteases such as 

plasmin, elastase and cathepsins that are located either pericellular or in the extracellular 

environment. Taken together, either cells invading deep into the leiomyoma tissue with 

increased uPAR expression, or cells overexpressing uPAR showed increased gelatinolytic 

activity. This shows that either stromal induced expression or overexpression of uPAR 

increases the cells ability to activate gelatinolytic enzymes.  

Increased proteolytic activity potentially enhances the invasive and metastatic ability of the 

tumour cells. Interestingly, TGF-β increased the amount of full-length uPAR on the AT84-

uPAR cells (paper III, figure 3). It is tempting to speculate that increased amount of full-

length uPAR gives the cells increased ability to activate proteolytic enzymes and signal 

through its partners. At the same time, an increase in PAI-1 expression was observed when 

cells were treated with TGF-β1 (paper III, figure 4). PAI-1 induces turnover of the 

uPAR/uPA/PAI-1/LRP1 (+/-integrins) complex, and has been shown to increase detachment 

of cells from the matrix protein vitronectin [250,375]. Through the cycles of attachment and 

detachment to the ECM; PAI-1 regulates migration [160,252,376,377]. Increased uPAR levels 

(and more full-length uPAR vs cleaved uPAR), could potentially increase the invasive and 

metastatic abilities of the cancer cells and thus induce tumour progression [225,378]. 

Nevertheless, in the syngeneic mouse model for OSCC used in paper II, we found no 

metastasis to lymph nodes, livers, lungs or mandibles from neither high- nor low uPAR 

expressing tumours. None of the tumours displayed an infiltrative growth pattern, but were 

instead rounded with a pushing-boarder type growth pattern (paper II, figure 2c and d, 

figure 4d). Even with as little as 10,000 cells injected, the mice were euthanized at day 14 

due to rapid tumour growth, thus maybe not allowing the time needed for metastasis to 

establish. Others have also suggested that the expression of uPAR is associated with the 

early events of tumour development, and suggested it as a marker for onset of invasion. 

Publications on premalignant lesions of oesophageal carcinomas showed that these lesions 

were uPAR-negative until early stromal invasion occurred [354]. Similarly, Lindberg et al. 

concluded that increased expression of uPAR was as a sign of early invasion in OSCC [281]. 

Although the AT84 tumours in the C3H mouse model did not show aggressive behaviour, the 

tumours showed increased uPAR expression at the tumour-stroma interface; that might 

mark the transition to a more malignant tumour. The induced uPAR expression of the 
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tongue tumours, and in cells invading the leiomyoma tissue (paper II), could therefore reflect 

the T1N0-group of patients observed in paper I. The T1N0-group with high uPAR expression 

was associated with higher disease specific death than the in the group with low uPAR 

expression (paper I).  

The levels of cleaved uPAR vs. full-length uPAR in the tumour tissue has not been 

determined. The distribution of the uPAR forms on the cells, and within the tumour would 

have been interesting to analyse. However, to the best of my knowledge, no antibody exists 

that can recognise uPAR (II-III) without also recognising full-length uPAR. To what extent 

uPAR is shedded from the tumour cells is also of interest. As reported, many cancers shed 

both suPAR and suPAR (II-III) into the blood stream [286,287]. SuPAR (II-III), harbouring the 

chemotactic peptide, is reported to be involved in homing of hematopoietic stem cells (HSC) 

from the bone marrow [379]. This uPAR-peptide is also involved in basophil chemotaxis 

[232] and monocyte-macrophage recruitment during inflammation [233,380]. The amount 

of infiltrating stromal cells was not evaluated in the EV and uPAR-expressing tumours (paper 

II). Using the C3H mouse model to study immune cell infiltration and the role of these cells in 

tumour progression would be beneficial; as the C3H mouse has an intact immune system. 
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5. Conclusions and future perspectives 

 

Our findings provide support for the involvement of the PA system in the progression of 

OSCC. Low expression of uPAR and PAI-1 in early stage OSCC was associated with low 

disease specific death, suggesting that PAI-1 and uPAR play a role in the early stages of OSCC 

progression. Thus, PAI-1 and uPAR were proposed as possible prognostic markers for 

patients with T1N0 tumours. Furthermore, in vivo studies indicated a stromal involvement in 

the induction of uPAR expression, which simultaneously enhanced the activity of 

gelatinolytic enzymes, processes thought to be important for invasion and metastasis. 

However, in the in vivo syngeneic mouse model that was used, cells with high levels of uPAR 

did not show signs of aggressive tumour growth and metastasis. Tumour growth patterns 

resembled more that of early stage OSCC. Nevertheless, soluble factors from the neoplastic 

tissue of the leiomyoma was shown to increase expression, alter glycosylation and cleavage 

of uPAR. Finally, the stromal associated factor TGF-β1 was found to reduce uPAR cleavage, 

resulting in the presence of more full-length uPAR on mouse OSCC cells, through increased 

expression of PAI-1. The amount of full-length uPAR versus cleaved uPAR on the cells was 

shown to alter cell signalling through ERK phosphorylation, and uPA-mediated cleavage of 

uPAR was shown to induce migration and invasion. 

Further studies are needed to unravel the specific role of uPAR and PAI-1 in the early events 

of OSCC development and to establish the role of TGF-β1 in this process. TGF-β1 clearly has 

role in the regulation of uPAR and PAI-1 through expression and control of uPAR cleavage in 

the AT84 cells. Whether this hold true for human OSCC cells needs to be established. 

Through the use of an in vitro model of the oral mucosa more insight may be gained into the 

role of uPAR, PAI-1 and TGF-β1 in the early events in OSCC development.  

Tongue- and skin tumours and leiomyoma invading cells showed a stromal induced up-

regulated uPAR expression. Simultaneously, an increase in activity of gelatinolytic enzymes 

was seen. It was however not assessed whether TGF-β1 and PAI-1 where present in the 

tumour tissues. Future research should be aimed at gaining insight into how also these 

factors are involved in regulating proteolytic activity in the tumours. Furthermore, 
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gelatinolytic enzymes are a large group of proteolytic proteins, and the objective is to map 

which proteolytic enzymes are involved. 

The tumour microenvironment is often infiltrated with a diverse mix of stromal cells, 

including fibroblasts and immune cells. It is now recognised that such cells are involved in 

regulating the progression of tumour growth in many cancer types. The inherent 

chemotactic peptide located within uPAR is an attractant for immune cells through its 

interaction with the fMLF-receptors (FPR, FPRL1 and FPRL2). With this in mind, could uPAR 

function as a “calling signal” for certain immune cells, attracting these to the tumour tissue? 

In this aspect, regulation of uPAR cleavage becomes important. Does TGF-β1, or other 

stromal factors, regulate uPAR cleavage and thereby its many functions in human tumours? 

If not, how is cleavage regulated? The syngeneic mouse model we have used will enable 

insight into these aspects as it has an intact immune system. 

The ultimate goal is to enable better treatment, or even curing patients with OSCC. It 

therefore becomes important to find a practical target for therapy, such as inhibiting certain 

functions of a protein. Understanding all aspects of how a therapy-targeted protein 

functions is vital. Treatment targeted for the function of a protein should preferably give 

little of no side-effects. If certain aspects of how a protein works is unknown, treatment 

targeted for this protein becomes a risk. uPAR is a protein with a broad spectrum of 

functions from proliferation, dormancy, migration, adhesion and invasion. uPAR targeted 

therapy then seems risky. However, uPAR knock-out mice are viable and fertile indicating 

that uPAR is not essential for life, and may therefore present an interesting target for 

therapy.  
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