
Adaptive order polynomial algorithm in a multi-wavelet
representation scheme

Antoine Durdek a, Stig Rune Jensenb, Jonas Juseliusc, Peter Windc, Tor Fl̊aa,
Luca Fredianic,∗

aCentre for Theoretical and Computational Chemistry, Department of Mathematics,
University of Tromsø, N-9037 Tromsø, Norway.

bCentre for Theoretical and Computational Chemistry, Department of Physics, University
of Tromsø, N-9037 Tromsø, Norway.

cCentre for Theoretical and Computational Chemistry, Department of Chemistry,
University of Tromsø, N-9037 Tromsø, Norway.

Abstract

We have developed a new strategy to reduce the storage requirements of a
multivariate function in a multiwavelet framework. We propose that alongside
the commonly used adaptivity in the grid refinement one can also vary the
order of the representation k as a function of the scale n. In particular the
order is decreased with increasing refinement scale. The consequences of this
choice, in particular with respect to the nesting of scaling spaces, are discussed
and the error of the approximation introduced is analyzed. The application
of this method to some examples of mono- and multivariate functions shows
that our algorithm is able to yield a storage reduction up to almost 60%. In
general, values between 30 and 40% can be expected for multivariate functions.
Monovariate functions are less affected but are also much less critical in view of
the so called “curse of dimensionality”.
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1. Introduction1

Kohn–Sham DFT has proven to be a computationally cost-effective approach2

for both the theoretical modeling of molecules and for the modeling of extended,3

periodic systems [18]. Recently, linear-scaling based approaches have gradually4

been removing the boundaries between these two extremes[17, 11]. In current5

computational chemistry, the Kohn–Sham orbitals are for molecules in most6

cases represented in terms of basis sets consisting of Gaussian functions. The7

molecular orbitals Ψi (r) are written as a linear combination of Gaussians:8
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Ψi (r) =
∑
µ

Ciµχµ (rK) =
∑
µ

CiµPµ (rK) exp
(
−αµr2

K

)
(1)

where the expansion coefficients Ciµ are referred to as molecular orbital coef-9

ficients, and where we have indicated that the electronic coordinates are given10

relatively to the nuclear center K to which the Gaussian basis function is at-11

tached. Pµ (rK) denotes a Cartesian polynomial xiKy
j
Kz

k
K . In principle the12

atomic basis set should be complete, thus infinite, but for practical reasons it is13

generally restricted to a few tens of functions for each atom in the molecule.14

For extended periodic systems, the most convenient approach is the rep-15

resentation in terms of Gaussian plane waves[18, 9], which easily exploits the16

periodicity of the system, and allows the fast evaluation of the molecular inte-17

grals:18

Ψi (r) =
∑
k

Cik exp (ikr) (2)

where k is a three-dimensional wave vector.19

Both approaches are somewhat inadequate when facing the challenge of mod-20

eling a large system which can be partitioned into a molecular subsystem and one21

or more extended or periodic structures. One would therefore like a separated22

representation that has approximate, algorithmic size-extensivity in the sense of23

a local and hierarchical scale adaptivity. More generally, finer approximations24

could be used in subunits of crucial importance for the molecular system at25

hand. For large molecules we believe a modular approach is essential to reflect26

the importance of the different subsystems for the quantum molecular problem27

under scrutiny.28

A step in this direction is taken by allowing different meshes in regions29

of space as in multigrid [20] and multiresolution[4] techniques. Multiresolution30

analysis may be employed to provide a sparse and efficient representation of both31

operators and functions in that it allows a description of the system at different32

scales of resolution. Wavelet bases provide important properties for designing33

efficient numerical solution techniques: orthogonality, vanishing moments and34

compact support. The latter, which is particularly important in high dimension,35

enables a locally adaptive representation of functions: the grid is refined only36

where the current representation is not sufficient to reach the required precision37

in the computed results, thus yielding the coarsest grid compatible with the38

desired numerical precision of the result.39

One important candidate multiscale method is the Multiwavelet basis which40

has been used by Harrison et al. [12, 13, 21], to represent Kohn-Sham molecular41

orbitals.42

By making use of this approach we have in our group performed extensive43

tests to verify the linear scaling capabilities of the approach with respect to the44

system size[14] and of the ability to control the error within an arbitrary and45

predefined value[10, 14]. In both cases very good results have been achieved.46
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The main drawback of such a grid based approach compared to traditional47

ones based on Gaussian functions or plane waves is the large memory require-48

ment associated with such methods: no explicit functional form is assumed,49

therefore the storage requirements for each function is very large, reaching sev-50

eral gigabytes, if high precision is requested. The problem can be partially ad-51

dressed by parallelization, thereby exploiting distributed memory architectures.52

A complementary strategy is to reduce the memory footprint of each function.53

One such method has recently been proposed by Bischoff and coworkers[6, 7]54

who employed a rank-reduction based on Singular Value Decomposition.55

In this paper, we will follow an alternative route to reducing the prefactor for56

the memory storage problem. We propose to make the order of the polynomial57

basis scale-dependent: k = k(n). In particular, k will decrease with the grid58

refinement. The underlying assumption is that higher order polynomials are59

less important at finer scales to correctly represent cusp-like functions such as60

those needed to deal with molecular orbitals. It is instead more important to61

increase the grid refinement. Since the support of the basis is the same as for62

a fixed basis, the basis functions supported on different hypercubes will still63

be non-overlapping and therefore orthogonal. As will be shown Section 3, the64

main challenge posed by this approach is the lack of orthogonality between the65

scaling space V nk and the wavelet space Wn
k′ with k′ < k. We have dealt with66

this problem by proposing an approximated representation. The algorithms67

necessary to construct it are given in Sec. 4 whereas a set of numerical tests is68

presented in Sec. 5 and discussed in Sec. 6.69

2. Multiwavelet representation in 1D70

Alpert was the first to describe the multiwavelet approach for the represen-71

tation of functions and operators [1, 2]. His work is based on his description of72

Legendre scaling functions and the corresponding wavelet functions. In order73

to set the notations for Section 3, we briefly review here the main ideas. Let us74

define the scaling spaces V nk as:75

V nk = Span{φnil(x)|i = 0, · · · , k, l = 0, · · · , 2n − 1} (3)

where76

φnil(x) = 2n/2
√

2i+ 1L̃i (2nx− l) , (4)

and L̃i (x) is the i−th shifted Legendre polynomial on the interval [0, 1]:77

L̃i (x) =

{
Li (2x− 1) x ∈ [0, 1]
0 otherwise

(5)

From the definition of L̃i (x) it follows that φnil is zero outside the interval78

[2−nl, 2−n(l + 1)].79

Legendre polynomials are chosen as a basis as they are obtained in a recursive80

manner and are orthonormal with respect to the scalar product81

〈f |g〉 =

∫ 1

0

f(x)g(x) dx (6)
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Moreover, the Legendre polynomial Li (x) has degree i implying that the poly-82

nomial basis spanning Vk′ (k′ < k) is a subset of the basis spanning Vk. We83

will largely exploit this in the next section: in order to change the order of the84

representation, one simply has to add or remove one or more basis functions85

keeping the other ones as they are.86

By definition of the scaling spaces, one gets directly that :87

V 0
k ⊂ V 1

k ⊂ · · · ⊂ V nk ⊂ · · · (7)

and the number of basis functions at scale n is dimV nk = 2n(k + 1).88

The wavelet spaces Wn
k are defined as the orthogonal complement of V nk89

with respect to V n+1
k :90

Wn
k ⊕ V nk = V n+1

k ,∀n (8)

which implies that dimWn
k = 2n(k + 1). If ψ0

i , i = 0, · · · , k are the basis91

functions of W 0
k , then we have the following properties for the basis of Wn

k :92

1. ψni is built as a piecewise polynomial function with a discontinuity in the93

middle of the interval since ψni ∈ V 1
k and ψni /∈ V 0

k .94

2. ψnil(x) = 2n/2ψni (2nx− l)95

3. 〈φnil|ψn
′

jm〉 = 0 (n′ ≤ n)96

4. 〈ψnil|ψn
′

jm〉 = δnn′δijδlm97

The freedom in the choice of basis functions for the wavelet space can be98

exploited by requiring additional properties. According to Ref. [3] it is possible99

to construct a basis such that:100

1. ψi has i+ k vanishing moments101

2. ψi is an odd (even) function with respect to inversion through the interval102

center x = 0.5 for even (odd) values of i.103

According to Equation 8, one can describe a linear unitary transformation104

between the two bases via a matrix transformation, which collects the four filter105

matrices G(0), G(1), H(0) and H(1):106 (
φnl
ψnl

)
=

(
H(0) H(1)

G(0) G(1)

)(
φn+1

2l

φn+1
2l+1

)
(9)

where φnl
t

= (φn1l, φ
n
2l . . . φ

n
kl) is a row-vector collecting all scaling basis functions107

at scale n in the l-th interval and ψnl
t

= (ψn1l, ψ
n
2l . . . ψ

n
kl) similarly collects the108

corresponding wavelet basis functions. The transformation is unitary and scale-109

independent. We remark again that Legendre polynomials bases are constructed110

recursively adding one function to the previous basis. Consequently, the H filter111

matrices are lower triangular. Moreover, given two polynomial orders k′ < k,112

the filters H(α)(α = 0, 1) for k′ are simply submatrices of their k counterparts:113

they are obtained by removing k − k′ rows and columns at the bottom and on114

the right side, respectively. This structure is illustrated below and has been115

exploited in the design of our algoritms (see Sec. 4 for details).116
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(α)
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(α)
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(α)
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

As shown by Alpert et al. [2], the use of polynomials as scaling functions is117

based on the following theorem:118

Theorem 1. Let V nk be a scaling space described as above with polynomials as119

scaling functions on the interval [0, 1].120

Thus we have the following result:121

1. limk→∞ V nk = L2([0, 1])122

2. limn→∞ V nk = L2([0, 1])123

The theorem shows that completeness in the L2 norm sense can be achieved124

both by increasing the polynomial order and by refinement of the dyadic sub-125

divisions along the ladder of scales.126

For any function f ∈ L2, the projected function Pnk f = fnk of f on V nk can127

be written as:128

fnk =

2n−1∑
l=0

k∑
i=0

fnilφ
n
il (10)

where fnil = 〈f |φnil〉 (11)

which is the finest-scale representation of f . Alternatively can f be decomposed129

the ladder of wavelet spaces:130

fnk = f0
k +

n−1∑
m=0

dfmk (12)

=

k∑
i=0

fiφi +

n−1∑
m=0

2m−1∑
l=0

k∑
i=0

dfmil ψ
m
il (13)

where fi = 〈f |φi〉 (14)

and dfmil = 〈f |ψmil 〉 (15)

The two representations are equivalent and can be interconverted in one another131

by recursive application of the two-scale relation:132

fnk + dfnk = fn+1
k (16)

The two operations are generally called reconstruction (from the left-hand side133

to the right-hand side) and decomposition[2].134
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The error committed by projecting the function onto V nk is fully controlled135

and can be computed [15, 19]. The accuracy is set as a parameter and the136

approximation can be done arbitrarily close to the true function via scale re-137

finement and variation on the order.138

139

It is also useful to introduce a projector notation. If we indicate Pnk and Qnk140

the projector onto V nk and Wn
k respectively. It then follows that141

Pnk +Qnk = Pn+1
k (17)

For k′ < k we will also define a residual projector Pnk,k′ as142

Pnk,k′ = Pnk − Pnk′ (18)

By definition of the wavelet projectors, and the previous relations the following143

relations can be easily proven:144

QnkPnk = PnkQnk = QnkPnk′ = Pnk′Qnk = QnkPnk,k′ = Pnk,k′Qnk = 0 (19)

Qnk′Pnk = Qnk′Pnk,k′ (20)

PnkQnk′ = Pnk,k′Qnk′ (21)

PnkPnk′ = Pnk′Pnk = Pnk′ (22)

As a corollary of the completeness theorem, for any normalized function145

f ∈ L2 the following relations can be written for the projection operators:146

lim
k→∞

‖Pnk f‖L2 = lim
n→∞

‖Pnk f‖L2 = 1 (23)

lim
k→∞

‖Qnkf‖L2 = lim
n→∞

‖Qnkf‖L2 = 0 (24)

3. Adaptive polynomial order representation147

The representation of a multivariate function f at scale n in d dimensions148

with a tensorial multiwavelet basis of order k requires 2nd(k+1)d coefficients for149

the reconstructed representation at scale n. The accuracy of the representation150

can be increased either by augmenting the polynomial basis (larger k) or by151

further refinements (larger n), thus increasing drastically the data storage. In152

order to limit the memory requirement adaptivity is introduced, thereby refining153

the representation only where the predefined accuracy is not met.154

We propose an additional way to reduce the data storage. Namely, instead155

of keeping the same polynomial order k at all scales we will assume that k156

can be chosen as a function of n with the limitation that k(n) ≤ k(n′) for157

n > n′. Especially in high dimension, this could determine a reduction of the158

data storage requirements.159
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The challenging point of this approach is represented by the loss of exact160

inclusion of the vector space V nk(n) into V n+1
k(n+1):161

V nk(n) ( V n+1
k(n+1) unless k(n+ 1) = k(n) (25)

Let us define V n∆k implicitly as:162

V nk(n)
def
= V nk(n+1) ⊕ V

n
∆k (26)

V n∆k is the subspace of V nk(n) which is not entirely contained in V n+1
k(n+1). However163

V n+1
k(n+1) can be employed to approximate a function belonging to V n∆k. More164

specifically, since165

V n+1
k(n+1) = V nk(n+1) ⊕W

n
k(n+1) (27)

then V n∆k can be approximated by a corresponding subspace in Wn
k(n+1). As an166

example let us consider V3 and V2⊕W2. The cubic function in V3 is orthogonal167

to V2 but can be approximated as a piecewise quadratic function which belongs168

to W2.169

We have the following theorem for any polynomial of order k:170

Theorem 2. Let V nk be the scaling space of order k, V nk−1 the scaling space of171

order k−1, at scale n Let Pnk , Pnk−1, Qnk−1 be the projectors onto V nk , V nk−1 and172

Wn
k−1 respectively. Let us define:173

dnk,k−1 = sup
f

||(1−Qnk−1)Pnk,k−1f ||L2

||Pnk,k−1f ||L2

(28)

where f ∈ C(k)([0, 1]). Then dnk,k−1 = 2−k174

To put it simply, the theorem states that if f is locally smooth, the norm of175

the component of Pnk,k−1f which falls outside Wn
k−1 decays faster than Pnk,k−1f176

itself, such that their ratio goes exponentially to zero with increasing k.177

Proof. We assume, without loss of generality that n = 0. The result comes from178

the fact that truncated Legendre series converges with an exponential decay for179

finite support functions [8, 16]. By writing the projection of f onto V k0 as180

P0
kf =

k∑
i=0

ckφ
0
k, ci =

〈
f |φ0

i

〉
(29)

and substituting into Eq. (28) one gets:181

d0
k,k−1 =

||ckφ0
k −Q0

k−1ckφ
0
k||L2

||ckφ0
k||L2

= ||φ0
k −Q0

k−1φ
0
k||L2 =

||φ0
k − (P1

k−1 − P0
k−1)φ0

k||L2 = ||(I − P1
k−1)φ0

k||L2 .

(30)
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The first step follows from the normalization condition of the basis, and the last182

one is due to the orthogonality of φ0
k with respect to V 0

k−1. In order to simplify183

the rightmost expression we recall the two scale difference equation [2]:184

φnil(x) =

k∑
j=0

h
(0)
ij φ

n+1
j,2l (x) + h

(1)
ij φ

n+1
j,2l+1(x) (31)

where h
(α)
ij , (α = 0, 1) is the ij element of the filter matrix Hα.185

By expanding φ0
k in V 1

k one gets:186

(I − P1
k−1)φ0

k =

k∑
i=0

1∑
l=0

φ1
jl

〈
φ1
jl

∣∣φ0
k

〉
−
k−1∑
i=0

1∑
l=0

φ1
jl

〈
φ1
jl

∣∣φ0
k

〉
= h

(0)
kk φ

1
k0 + h

(1)
kk φ

1
k1

(32)
where we have made use of the definition of the filter coefficients in terms of187

the inner product of basis functions of V 0
k and V 1

k and we have exploited the188

construction of the Legendre basis to eliminate all the common terms. The189

norm expressed in Eq. (30) is then simply190

||(I − P1
k−1)φ0

k||L2 =

√
(h

(0)
kk )2 + (h

(1)
kk )2 =

√
2|h(0)

kk | (33)

since h
(0)
ij = (−1)i+jh

(1)
ij (See Ref. [2] for details).191

In order to prove the theorem we need to show that h
(0)
kk = 2−k−1/2. Starting192

from:193

h0
ij =

〈
φ0
i0

∣∣φ1
j0

〉
=
√

2

∫ 1/2

0

φi(x)φj(2x) dx, (34)

we recall that φj(x) are the (normalized) shifted Legendre polynomials (see194

Eq. (4)) and we make the substitution y = 2x obtaining:195

h0
ij =

√
(2i+ 1)(2j + 1)√

2

∫ 1

0

L̃i (y/2) L̃j (y) dy (35)

For the shifted legendre polynomials, the following formulation of the Rodrigues196

formula holds:197

L̃i (x) =
1

i!

(
d

dx

)i
[x(x− 1)]

i
. (36)
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By applying the Rodrigues formula to L̃i (y/2) we get:198

L̃i (y/2) =
1

2ii!

(
d

dy

)i
[y(y − 1)− y]

i

=
1

2ii!

(
d

dy

)i i∑
p=0

(
i

p

)
(−y)p [y(y − 1)]

i−p

=
1

2ii!

i∑
p=0

i∑
q=0

(
i

p

)(
i

q

)(
d

dy

)q
(−y)p

(
d

dy

)i−q
[y(y − 1)]

i−p

=
1

2i

i∑
p=0

p∑
q=0

(
i

q

)
(−1)pyp−q

(p− q)!(i− p)!

(
d

dy

)i−q
[y(y − 1)]

i−p

=
1

2i

i∑
p=0

p∑
q=0

(
i

q

)
(−1)pyp−q

(p− q)!

(
d

dy

)p−q
1

(i− p)!

(
d

dy

)i−p
[y(y − 1)]

i−p

=
1

2i

i∑
p=0

p∑
q=0

(
i

q

)
(−1)pyp−q

(p− q)!

(
d

dy

)p−q
L̃i−p (y)

(37)

thus we have expanded L̃i (y/2) in a combination of shifted Legendre polyno-199

mials. This expression can now be inserted in Eq. (35). For i = j = k, due200

to orthogonality of the Legendre polynomials, only the term where p = q = 0201

gives contribution to the integral because all other terms contain lower order202

polynomials which are orthogonal to L̃k (x) by construction. Recalling that203 ∫ 1

0

L̃i (x) L̃j (x) dx =
δij

2i+ 1
, (38)

we finally obtain:204

h0
kk =

2k + 1

2k+1/2

∫ 1

0

L̃k (y) L̃k (y) dy =
1

2k+1/2
(39)

proving that d0
k,k−1 =

√
2h

(0)
kk = 2−k.205

206

For any fixed ∆k > 1, one could begin by defining dnk,k′ in analogy to207

Eq. (28), then proceed by exchanging c0kφ
0
k for φ̃ =

∑k
j=k′+1 cjφ

0
j in Eq. (30)208

and assume ‖φ̃‖L2 = 1. As shown by Alpert [1], ‖f − Pnk′f‖L2 converges expo-209

nentially to zero:210

‖(I − Pnk′)f‖L2 ≤ 2−nk
2

4k · k!
sup |f (k)(x)|. (40)

In order to show exponential convergence in the limit of k → ∞, one would211

additionally need to assume that there exists a C > 0 such that sup |φ̃(k)| ≤212
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C, ∀ k > 0. With this assumption the exponential decay is a consequence of213

Alpert’s bound.214

A way to interpret the result is by realizing that d0
k,k′ represents the residual215

norm of a unit vector v in V 0
k,k′ after its component in W 0

k′ has been projected216

out. In other words, for large enough k, and smooth functions (f ∈ C(k)([0, 1])),217

the space spanned by V nk,k′ becomes almost collinear with a corresponding sub-218

space of Wn
k′ . This near-collinearity can be expressed in terms of the projectors219

as:220

Pnk,k′ ' Pnk,k′Qnk′ ' Qnk′Pnk,k′ , (41)

where true equivalence would hold if the space V 0
k,k′ were a subspace of W 0

k′ .221

3.1. Projection onto V nk(n) and Wn
k(n+1)222

The projection step consists in the computation of the function representa-223

tion in the ladder of scaling and wavelet spaces. More in detail for each scale n,224

the projection fnk = Pnk f can for instance be obtained via a quadrature scheme.225

The wavelet component dfnk′ is obtained by noticing that:226

fn+1
k′ = fnk′ + dfnk′ (42)

For the sake of brevity we have assumed that k = k(n) and k′ = k(n+ 1).227

In this way we obtain at each scale a scaling part fnk and a wavelet part dfnk′ .228

We underline here that the two components are not orthogonal as Wn
k′ is only229

orthogonal to the first k′ polynomials of V nk .230

The projection down to the finest scale requires only the knowledge of k(n)231

for each scale n starting from a predefined maximum value kmax = k(0) until232

a minimum value kmin = k(nmin). Thereafter the polynomial order is kept233

constant at k = kmin234

3.2. Reconstruction: V nk(n) +Wn
k(n+1) → V n+1

k(n+1)235

The reconstruction step consists in obtaining the scaling representation at236

the finest scale by making use of the scaling component at the coarsest scale237

f0
k(0) and the ladder of wavelet components dfnk(n). Assuming again k = k(n)238

and k′ = k(n+ 1), the reconstruction step at each scale can be achieved by the239

following procedure.240

First the polynomial part of fnk from k′ + 1 to k is projected out:241

fnk′ = (1− Pnk,k′)fnk = Pnk′fnk (43)

then the scaling representation fn+1
k′ is obtained by assembling:242

fn+1
k′ = fnk′ + dfnk′ (44)

The procedure is repeated iteratively, scale by scale along the tree structure. As243

there is no overlap between neighboring nodes the iteration is carried on until244

a local finest scale, which is determined by the precision requirements.245
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3.3. Analysis: V n+1
k(n+1) → V nk(n) +Wn

k(n+1)246

The analysis or compression step is the inverse transformation of the recon-247

struction, in the sense that it consists in obtaining the scaling component at248

scale n = 0 and the wavelet components at all scales from the reconstructed249

representation fnk at the finest scale. This is achieved iteratively, starting at250

the finest scale. The difference with respect to the standard algorithm is repre-251

sented by the fact that, given a representation of f in V n+1
k′ we want to obtain252

a representation in V nk where k > k′.253

The first step consists in transforming fn+1
k′ into the corresponding wavelet254

and scaling components at scale n:255

fn+1
k′ = fnk′ + dfnk′ (45)

The second step consists in “transferring” the component of dfnk′ which is256

collinear to V nk to the scaling part in an approximate way by making use of257

Eq. (41):258

fnk′ + dfnk′ = Pnk′f +Qnk′f
= Pnk′f + (1− Pnk,k′ + Pnk,k′)Qnk′f
' Pnk′f + Pnk,k′f + (1− Pnk,k′)Qnk′f

= Pnk f + (1− Pnk,k′)Qnk′f = fnk + df̃nk′

(46)

In the last step we have implicitly defined df̃nk = (1− Pnk,k′)Qnk′f .259

In this way the scheme to achieve an approximate representation of f on260

V nk based on the representation in V n+1
k′ is complete. Repeating this procedure261

iteratively from n = nmax to n = 0 leads to a representation of f onto V 0
k(0) ⊕262

W 0
k(1) ⊕ · · · ⊕W

nmax−1
k(nmax) .263

3.4. Multivariate functions264

For multivariate functions a tensor product representation is employed. The265

projector onto the scaling space at each scale is:266

Pnk =

d⊗
i=1

Pn,ik (47)

whereas the projector onto the wavelet space is obtained as the difference be-267

tween two successive scales:268

Qnk
def
= Pn+1

k − Pnk =

d⊗
i=1

Pn+1,i
k −

d⊗
i=1

Pn,ik (48)

Similarly, we can define the residual projector as:269

Pnk,k′
def
= Pnk − Pnk′ =

d⊗
i=1

Pn,ik −
d⊗
i=1

Pn,ik′ (49)
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As for the monovariate case we can write the approximate relationship (41)270

which can be derived from the monovariate case by exploiting the tensor product271

structure:272

Qnk′Pnk,k′ =

(
d⊗
i=1

Pn+1,i
k′ −

d⊗
i=1

Pn,ik′

)(
d⊗
i=1

Pn,ik −
d⊗
i=1

Pn,ik′

)

=

d⊗
i=1

Pn+1,i
k′ Pn,ik −

d⊗
i=1

Pn+1,i
k′ Pn,ik′ −

d⊗
i=1

Pn,ik′ P
n,i
k +

d⊗
i=1

Pn,ik′ P
n,i
k′

=

d⊗
i=1

Pn+1,i
k′ Pn,ik −

d⊗
i=1

Pn,ik′ =

d⊗
i=1

(
Pn,ik′ +Qn,ik′

)
Pn,ik −

d⊗
i=1

Pn,ik′

=

d⊗
i=1

(
Pn,ik′ +Qn,ik′ P

n,i
k

)
−

d⊗
i=1

Pn,ik′

'
d⊗
i=1

(
Pn,ik′ + Pn,ik,k′P

n,i
k

)
−

d⊗
i=1

Pn,ik′ =

d⊗
i=1

Pn,ik −
d⊗
i=1

Pn,ik′ = Pnk,k′

(50)

We further underline that in the multivariate case, when the polynomial273

order is reduced from k to k′ the number of components which need to be274

discarded as described in Sec. 3.2 or transferred from Wn
k′ to V nk as described in275

Sec. 3.3 is now (k + 1)d − (k′ + 1)d: in other words it is the difference between276

the d-dimensional hypercube of length k + 1 and the one of length k′ + 1 (e.g.277

for d = 3 and k′ = k − 1 the number of discarded/transferred components is278

3k2 + 3k + 1).279

4. Algorithms280

In this section, we present the details of our algorithm. Legendre basis func-281

tions are used for scaling functions: thanks to the construction of Legendre282

polynomials, only one scaling function is involved in the process. The construc-283

tion of the wavelet basis [3] with additional vanishing moments is directly linked284

to the non-orthogonality between high order polynomial and the wavelet basis.285

In the simplest case where the polynomial order k(n) is lowered by one at each286

successive scale, only the first wavelet function ψ0 is not orthogonal to φk. All287

other inner products are zero by construction. E.g. for k = 3, this is equivalent288

to approximating the cubic function φk by the piecewise polynomial ψ0 which is289

made of two adjacent parabolas, supported respectively on [0, 1/2] and [1/2, 1].290

Increasing the order will, as proved in Theorem 2, lead to better approximations291

in the L2-norm sense. In practice one only needs to “move” one projection co-292

efficient for each node: the coefficient representing the projection onto ψn0l will293

instead be used for the projection onto φnkl or vice versa. This means that there294

is no additional loss of information or deterioration of the representation by295

performing successive reconstructions/decompositions.296
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Algorithm 1 illustrates the projection of a function employing our adaptive297

scheme. At each scale, starting from the coarsest one the scaling part of the298

function fnk(n),l is computed. Then the wavelet part dfnk(n+1),l Is computed by299

switching to the polynomial basis k(n+1). The norm of the wavelet part is then300

checked locally for each node against the required precision to determine whether301

refinement is necessary. We remark that dfnk(n+1),l is the projection of f in the302

wavelet space of the selected node, therefore ‖dfnk(n+1),l‖L2 =
∑k(n+1)
j=0 |dfnjl|2,303

where dfnk(n+1),l is defined in Eq. (15).304

Algorithm 1 Adaptive projection algorithm for a function f with a given
accuracy ε
01 For each scale n
02 For each available node l at the current scale

03 Compute fnk(n),l

04 Compute dfnk(n+1),l

05 If(‖dfnk(n+1),l‖L2 > 2−nε)
06 allocate child nodes and mw-transform coefficients

07 next node

08 next scale

Algorithm 2 describes the compression of a function: it is here assumed305

that the function is represented at the local finest scale as fnk(n) and all child306

nodes are present to reconstruct the parent. Starting at the next finest scale307

n = nmax − 1, the scaling part fnk(n+1) and the wavelet part dfnk(n+1) of each308

node are obtained from its children through a standard Multiwavelet (MW)309

transform. If k(n) > k(n+ 1), the scaling part is augmented to fnk(n) by making310

use of Eq. (46) and the wavelet part is correspondingly purged. In practice311

thanks to the Alpert construction of the basis set, this implies that one or more312

coefficients are simply transferred from the wavelet to the scaling part. The313

sequence is repeated for all nodes at the current scale n before moving to scale314

n− 1.315

Algorithm 2 Compression algorithm

01 For each scale from n = nmax − 1 to n = 0
02 For each node l at the current scale

03 Obtain fnk(n+1) and dfnk(n+1) from fn+1
k(n+1)

04 If (k(n) > k(n+ 1))
05 Transform fnk(n+1) + dfnk(n+1) into fnk(n) + df̃nk(n+1)

06 next node

07 previous scale

Algorithm 3 shows the reconstruction of the finest-scale representation of a316

function. Such a function is represented through f0
k(0) plus the modified wavelet317
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part at each scale df̃nk(n+1). Starting at the coarsest scale n = 0, the correct318

scaling and wavelet components fnk(n+1) and dfnk(n+1) are obtained by making319

use of Eq. (46) if k(n) > k(n+1). As for the compression algorithm, this implies320

that one or more coefficients are simply transferred, this time from the scaling321

to the wavelet part. The scaling representation of the child nodes fnk(n+1) is322

then obtained by a MW-transform. The sequence is repeated for all nodes at323

the current scale n before moving to scale n+ 1.324

Algorithm 3 Reconstruction algorithm

01 For each scale from n = 0 to n = nmax − 1
02 For each node l at the current scale

03 If (k(n) > k(n+ 1))
04 Transform fnk(n) + df̃nk(n+1) into fnk(n+1) + dfnk(n+1)

05 Compute fn+1
k(n+1) from fnk(n+1) and dfnk(n+1)

06 next node

07 previous scale

5. Numerical results325

In order to test the effectiveness of our approach we have selected some test326

functions and we have compared the amount of memory required to represent327

them on the one hand by making use of a regular MW-representation for a328

given polynomial order k and a given accuracy ε, and on the other hand with329

our decreasing order approach.330

The chosen functions are Gaussian functions and so-called Slater type or-331

bitals (f(x) = Ae(−α|x−x0|)) which display a cusp-like singularity for x = x0.332

Both examples are mutated from quantum chemistry as the former is the most333

widespread choice to build a basis set, whereas the latter is nowadays less com-334

mon but has the appropriate behavior: a cusp at the atomic center and expo-335

nential asymptotic decay for large distances.336

The parameterization employed for k(n) is shown in Fig. 1. The polynomial337

order is kept fixed at kmax from n = 0 to a given n0. It is then decreased by338

one at each successive scale up to n1 and finally kept constant for all successive339

scales at kmin = kmax − (n1 − n0). This strategy has been chosen to be able to340

adjust the range of scales where the order reduction takes place, keeping at the341

same time the structure as simple as possible.342

Table 1 and Table 2 collect the results for two one-dimensional Gaussians343

with exponents α = 50 and α = 10000 respectively. For each of them we344

have reported the number of coefficients required to represent the function with345

the standard MW-representation and polynomial order kmax and with decreas-346

ing order scheme. The parameterization of k(n) is also reported through the347

values of kmin (minimum allowed order) and n0 (starting scale for order reduc-348

tion). Our results show that a reduction of the size of the representation can349
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be achieved in most cases by the appropriate choice of k(n). In a few cases350

no reduction is possible indicating that the parameterization provided by the351

standard MW-representation is already optimal.352

The results collected for the two three-dimensional Gaussians are reported353

in Table 3 and Table 4, respectively. By comparison with the results obtained354

in the one-dimensional case, an enhancement of the compression achieved with355

a decreasing-order scheme can be observed. In particular the following remarks356

can be made: (1) the reduction of the number of coefficients needed for the357

representation can be achieved in all cases tested, (2) the compression achieved358

is consistently larger than for the monovariate case; (3) the decreasing order359

scheme has a stronger impact on the narrow Gaussian (large exponent α), which360

is also the one requiring a larger representation.361

The achieved compression expressed as percent reduction of the size of the362

representation for the Gaussian functions of Tables 1, 2, 3 and 4 is also reported363

in Fig. 2.364

Table 5 summarizes the same kind of information for a non-centered one-365

dimensional Slater-type orbital, with exponent parameter α = 100. The func-366

tion is off-centered (x0 = 0.27) in order to avoid the singularity to be on a367

discretization point and hence take artificially advantage of it. The table con-368

tains the number of coefficients required both for the standard representation369

with a fixed order k = kmax, and for the corresponding adaptive order repre-370

sentation. Our results highlight a reduction of the total number of coefficients371

in all cases. We have observed that in most cases the best parameterization is372

achieved when k(n) is chosen such that kmin is reached at the finest scale N .373

The results for the off-centered three-dimensional Slater orbital are presented374

in Table 6. The parameters are α = 100 and x0 = (0, 27; 0, 27; 0, 27). Also in375

this case, compared to the monodimensional one, a more consistent behavior376

is observed. Compression is achieved for all choices of initial order kmax and377

a more pronounced compression rate is observed compared to the monovariate378

case.379

The achieved compression expressed as percent reduction of the size of the380

representation for the Slater-type functions of Tables 5 and 6 is also reported381

in Fig. 3.382

6. Discussion383

The numerical results of the previous section, (see for a summary Fig 2 and384

3) show that in most cases, a compression of the memory needed to represent a385

single function can be achieved. Two clear distinctions can be drawn: on the one386

hand the compression achieved for functions presenting short-scale variations (a387

Gaussian with a large exponent or a cusp) is more significant; at the same time388

the effect of compression is clearly more pronounced for a multivariate function389

than for a monovariate one. The latter consideration is motivated by the the fact390

that in a standard MW-representation the number of coefficients at scale n is391

proportional to (k+1)nd, therefore the effect of order reduction is amplified. For392
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Figure 1: Generic shape of the order k(n)

kmax SR DOR kmin n0 %
5 180 180 5 0 0
6 210 182 5 0 13
7 176 168 5 2 5
8 126 126 8 0 0
9 140 128 8 0 9
10 154 120 8 0 13
11 168 148 8 0 12
12 182 162 8 0 11
13 84 84 13 0 0
14 90 86 13 0 4
15 96 92 13 0 4

Table 1: Comparison of standard MW-representation (SR) with the decreasing-order repre-
sentation (DOR) for a centered one-dimensional Gaussian function with α = 50. The number
of coefficients for the two representations (second and third column) is expressed as a func-
tion of the initial polynomial order kmax. For SR the initial order kmax is used throughout
whereas for the DOR the function k(n) is equal to kmax until n = n0 and then decreased by
one at each successive refinement until kmin is reached. The last column (%) is expressing the
compression achieved as the percent reduction in the representation size in terms of number
of coefficients.
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kmax SR DOR kmin n0 %
5 564 564 5 0 0
6 434 434 6 0 0
7 496 436 6 0 12
8 414 414 8 0 0
9 460 416 8 0 10
10 506 422 8 0 17
11 552 436 8 0 21
12 598 458 8 0 23
13 532 488 8 0 8
14 570 526 8 0 8
15 608 572 8 0 9

Table 2: Comparison of standard MW-representation (SR) with the decreasing-order repre-
sentation (DOR) for a centered one-dimensional Gaussian function with α = 10000. The
number of coefficients for the two representations (second and third column) is expressed
as a function of the initial polynomial order kmax. For SR the initial order kmax is used
throughout whereas for the DOR the function k(n) is equal to kmax until n = n0 and then
decreased by one at each successive refinement until kmin is reached. The last column (%)
is expressing the compression achieved as the percent reduction in the representation size in
terms of number of coefficients.

kmax SR DOR kmin n0 %
5 568512 568512 5 0 0
6 375928 310904 5 2 17
7 561152 323072 5 1 42
8 425736 324808 5 0 24
9 584000 427904 8 0 27
10 777304 447896 8 0 42
11 1009152 611008 9 0 39
12 1283048 809640 9 0 37
13 197568 197568 13 0 0
14 243000 202616 13 0 17
15 294912 248768 14 0 16

Table 3: Comparison of standard MW-representation (SR) with the decreasing-order represen-
tation (DOR) for a centered three-dimensional Gaussian function with α = 50. The number of
coefficients for the two representations (second and third column) is expressed as a function of
the initial polynomial order kmax. For SR the initial order kmax is used throughout whereas
for the DOR the function k(n) is equal to kmax until n = n0 and then decreased by one
at each successive refinement until kmin is reached. The last column (%) is expressing the
compression achieved as the percent reduction in the representation size in terms of number
of coefficients.
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kmax SR DOR kmin n0 %
5 1453248 1266880 4 7 13
6 1605240 1601144 4 6 0
7 1609728 1523200 4 6 5
8 1918728 1611464 7 0 16
9 2632000 1627520 7 0 38
10 3503192 1758616 7 0 50
11 4548096 2032832 7 0 55
12 5782504 2441384 8 0 58
13 5817280 2987264 8 0 49
14 7155000 3778936 8 0 47
15 8683520 4856768 9 0 44

Table 4: Comparison of standard MW-representation (SR) with the decreasing-order rep-
resentation (DOR) for a centered three-dimensional Gaussian function with α = 100. The
number of coefficients for the two representations (second and third column) is expressed
as a function of the initial polynomial order kmax. For SR the initial order kmax is used
throughout whereas for the DOR the function k(n) is equal to kmax until n = n0 and then
decreased by one at each successive refinement until kmin is reached. The last column (%)
is expressing the compression achieved as the percent reduction in the representation size in
terms of number of coefficients.
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Figure 2: Percentage of coefficients gain in function of the order kmax for the Gaussian-type
function in the one- and three-dimensional case and α = 50, 10000. The data corresponds to
the last column of the corresponding Tables.
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kmax SR DOR kmin n0 %
5 792 792 5 0 0
6 840 796 5 0 5
7 832 740 5 7 11
8 936 776 5 6 17
9 960 752 5 6 22
10 1056 780 5 5 26
11 1152 800 5 4 31
12 1196 816 5 3 32
13 1176 824 5 1 30
14 1320 828 5 0 37
15 1344 840 5 0 39

Table 5: Comparison of standard MW-representation (SR) with the decreasing-order repre-
sentation (DOR) for a off-centered one-dimensional Slater function with α = 100. The number
of coefficients for the two representations (second and third column) is expressed as a func-
tion of the initial polynomial order kmax. For SR the initial order kmax is used throughout
whereas for the DOR the function k(n) is equal to kmax until n = n0 and then decreased by
one at each successive refinement until kmin is reached. The last column (%) is expressing the
compression achieved as the percent reduction in the representation size in terms of number
of coefficients.

kmax SR DOR kmin n0 %
5 2004481 2004481 5 0 0
6 2129344 2012608 5 0 5
7 2195456 2054268 5 0 6
8 2472768 2091456 5 0 14
9 3008000 2174464 5 0 28
10 4174016 2216000 6 0 47
11 4091904 2367872 6 0 42
12 4921280 2640064 6 0 46
13 5795328 2679168 5 0 54
14 7128000 3049152 5 0 57
15 8650752 3706496 5 0 57

Table 6: Comparison of standard MW-representation (SR) with the decreasing-order rep-
resentation (DOR) for a off-centered three-dimensional Slater function with α = 100. The
number of coefficients for the two representations (second and third column) is expressed
as a function of the initial polynomial order kmax. For SR the initial order kmax is used
throughout whereas for the DOR the function k(n) is equal to kmax until n = n0 and then
decreased by one at each successive refinement until kmin is reached. The last column (%)
is expressing the compression achieved as the percent reduction in the representation size in
terms of number of coefficients.
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Figure 3: Percentage of coefficients gain in function of the order kmax for the the Slater-type
function in the one- and three- dimensional case with α = 100. The data corresponds to the
last column of the corresponding Tables.
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Figure 4: Relative variation on the number of coefficients for the Gaussian type function with
α = 10000 and Slater type with α = 100 in the three-dimensional case. For the two functions,
the SR and the DOR are presented. The relative variation r(k) is obtained with respect to
the order kref = 5. Writing N(k), the number of coefficients needed at order k, we compute
r(k) as r(k) = N(k)/N(kref ) (so that r(5) = 1 for any of the representation)
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the least-effective case (a monovariate Gaussian with small exponent, α = 50)393

the representation is however small to start with and the lack of a significant394

compression is to be expected.395

Concerning the parameterization of k(n) (the order k employed at each scale396

n) we observed that within a certain range, for all the examples shown a certain397

degree of compression can be achieved. In practice, the parameterization kmax ∈398

[8, 12], kmin = 5, n0 = 0 leads to a moderate compression for the monovariate399

functions and 30% or better in the multivariate case.400

It is also interesting to observe what happens to the total number of coef-401

ficients needed while increasing the order kmax. Such data are summarized in402

Fig. 4 for the multivariate functions. In the standard case, the representation403

size soon becomes larger with increasing k (the representation of the chosen404

narrow multivariate Gaussian with k = 15 becomes six times larger than the405

one with k = 5) both for the narrow Gaussian and the cusp. The wide Gaussian406

is however less sensitive to the choice of k until k = 13, when a significant re-407

duction is observed. By decreasing the order one sees that the overall size of the408

representation stays almost constant in the beginning and becomes larger only409

for kmax = 12 or larger. In other words, decreasing the order helps in main-410

taining an optimal degree of compression: smooth and slowly varying functions411

(Gaussian with α = 50) are best represented with large degree polynomials412

which are able to yield an accurate representation with very few refinements.413

For high frequency variations (Gaussian with α = 10000) and cusps, deep refine-414

ment levels are anyway necessary; the order reduction scheme employed here415

is able to keep the complexity close to optimal values by gradually removing416

unnecessary degrees of freedom.417

We also notice that for the cusp and the narrow Gaussian, when kmax = 12 or418

larger, also the decreasing order scheme leads to slightly larger representations,419

albeit not as large as the standard scheme. We argue that a more pronounced420

order decrease (e.g. k(n + 1) = k(n) − 2) could help reduce the complexity in421

such cases but we have not pursued this route yet.422

Another consideration regards the choice of n0, namely the last scale with423

order k = kmax. We have often seen (cf. Table 5 on the Cusp-like example)424

that an optimal representation with the decreased-order approach is obtained425

when the order kmin is reached at the finest scale N . This requirement is426

however function-dependent and therefore difficult to exploit fully in practical427

applications, where the same k(n) shall be employed for all functions. This428

consideration could nevertheless guide the final choice of the order function429

k(n).430

In the future we plan to apply the decreasing order scheme k(n) to the431

application of operators in the Non-Standard form[5]. The main challenge in432

this case will be the construction of the components of the operator at each433

scale. However, as the Non-Standard form virtually decouples scales when the434

operator is applied (the coupling is afterwards restored by applying the filters435

to the resulting functions) we believe this to be a feasible prosecution of the436

present work.437
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