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Particle density fluctuations in the scrape-off layer of magnetically

confined plasmas, as measured by gas-puff imaging or Langmuir

probes, are modeled as the realization of a stochastic process in which

a superposition of pulses with a fixed shape, an exponential distribu-

tion of waiting times and amplitudes represents the radial motion of

blob-like structures. With an analytic formulation of the process at

hand, we derive expressions for the mean-squared error on estimators

of sample mean and sample variance as a function of sample length,

sampling frequency, and the parameters of the stochastic process.

Employing that the probability distribution function of a particu-

larly relevant shot noise process is given by the gamma distribution,

we derive estimators for sample skewness and kurtosis, and expres-

sions for the mean-squared error on these estimators. Numerically

generated synthetic time series are used to verify the proposed esti-

mators, the sample length dependency of their mean-squared errors,

and their performance. We find that estimators for sample skew-

ness and kurtosis based on the gamma distribution are more precise

and more accurate than common estimators based on the method of

moments.

A. Introduction

Turbulent transport in the edge of magnetically confined plasmas is a key issue to

be understood on the way to improved plasma confinement, and ultimately commercially

viable fusion power. Within the last-closed magnetic flux surface, time series of the particle

density present small relative fluctuation amplitudes and Gaussian amplitude statistics. The

picture in the scrape-off layer (SOL) is quite different. Time series of the particle density, as
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obtained by single point measurements, revealed a relative fluctuation level of order unity.

Sample coefficients of skewness and excess kurtosis of these time series are non vanishing and

the sample histograms present elevated tails. This implies that the deviation from normality

is caused by the frequent occurrence of large amplitude events [57, 63, 106, 124, and 125].

These features of fluctuations in the scrape-off layer are attributed to the radially

outward motion of large amplitude plasma filaments, or blobs. Time series of the plasma

particle density obtained experimentally [24, 58, 106, 126–128] and by numerical simulations

[51, 104, and 129] show that estimated coefficients of skewness and excess kurtosis [130]

increase radially outwards with distance to the last closed flux surface. At the same time

one observes a parabolic relationship between these two coefficients and that the coefficient

of skewness vanishes close to the last closed flux surface [104, 127, 131–134].

Recently, it was proposed to model the observed particle density time series by a shot

noise process, that is, a random superposition of pulses corresponding to blob structures

propagating through the scrape-off layer [94]. Describing individual pulses by an exponen-

tially decaying waveform with exponentially distributed pulse amplitudes and waiting time

between consecutive pulses leads to a Gamma distribution for the particle density time am-

plitudes [94 and 135]. In this model, the shape and scale parameter of the resulting Gamma

distribution can be expressed by the pulse duration time and average pulse waiting time.

In order to compare predictions from this stochastic model to experimental measure-

ments, long time series are needed in order to calculate statistical averages with high ac-

curacy. Due to a finite correlation time of the plasma turbulence, an increased sampling

frequency may increase the number of statistically independent samples only up to a certain

fraction. Then, only an increase in the length of the time series may increase the number of

independent samples. This poses a problem for Langmuir probes, which are subject to large

heat fluxes and may therefore only be dwelled in the scrape-off layer for a limited amount

of time. Optical diagnostics on the other hand, may observe for an extended time interval

but have other drawbacks, as for example the need to inject a neutral gas into the plasma

to increase the signal to noise ratio, and that the signal intensity dependents sensitively on

the plasma parameters [68, 99, and 101].

This work builds on the stochastic model presented in Ref. [94] by proposing estimators

for the mean, variance, skewness and excess kurtosis of a shot noise process and deriving

their mean-squared error as a function of sample length, sampling frequency, pulse amplitude
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and duration, and waiting time. Subsequently, we generate synthetic time series of the shot

noise process at hand. From these, the mean squared error of the proposed estimators is

computed and their dependence on the sampling parameters and the process parameters is

discussed.

This paper is organized as follows. Section VI B introduces the stochastic process that

models particle density fluctuations and the correlation function of this process. In Section

VI C we propose statistical estimators to be used for the shot-noise process and derive

expression for the mean-squared error on these estimators. A comparison of the introduced

estimators and expressions for their mean-squared error to results from analysis of synthetic

time series of a shot noise process is given in Section VI D. A summary and conclusions from

the work are given in Section VI E.

B. Stochastic Model

A stochastic process formed by superposing the realization of independent random

events is commonly called a shot noise process [115]. Denoting the pulse form as ψ(t), the

amplitude as Ak, and the arrival time as tk, a realization of a shot noise process with K

pulses is written as

ΦK(t) =
K∑
k=1

Akψ(t− tk). (41)

To model particle density time series in the scrape-off layer by a stochastic process, the

salient features of experimental measurements have to be reproduced by it.

Analysis of experimental measurement data from tokamak plasmas have revealed large

amplitude bursts with an asymmetric wave form, featuring a fast rise time and a slow

exponential decay. The burst duration is found to be independent of the burst amplitude

and the plasma parameters in the scrape-off layer [72 and 134]. The waveform to be used

in Eqn. (41) is thus modeled as

ψk(t) = exp

(
− t

τd

)
Θ(t), (42)

where τd the pulse duration time and Θ denotes the Heaviside step function. Analysis of long

data time series further reveals that the pulse amplitudes A are exponentially distributed
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[134],

PA(A) =
1

〈A〉 exp

(
− A

〈A〉

)
. (43)

Here 〈A〉 is the scale parameter of the exponential distribution, and 〈·〉 denotes an ensemble

average. The waiting times between consecutive bursts are found to be exponentially dis-

tributed [57, 63, 111, and 134]. Postulating uniformly distributed pulse arrival times t, on

an interval length T , Pt(t) = 1/T , it follows that the total number of pulses in a fixed time

interval, K, is Poisson distributed and that the waiting times therefore are also exponentially

distributed [115].

Under these assumptions it was shown that the stationary amplitude distribution for

the stochastic process given by Eqn. (41) is a Gamma distribution [94]

PΦ(Φ) =
1

Γ(γ)

(
γ

〈Φ〉

)γ
Φγ−1 exp

(
− γΦ

〈Φ〉

)
, (44)

with the shape parameter given by the ratio of pulse duration time to the average pulse

waiting time

γ =
τd

τw

. (45)

This ratio describes the intermittency in the shot noise data time series. In the limit γ � 1,

individual pulses appear isolated whereas γ � 1 describes the case of strong pulse overlap.

In Ref. [94] it was further shown that the mean 〈Φ〉, the variance var(Φ) = 〈(Φ− 〈Φ〉)2〉,
the coefficient of skewness, S (Φ), and the coefficient of flatness, or excess kurtosis, F (Φ),

are in this case given by

〈Φ〉 = 〈A〉 τd

τw

, var(Φ) = 〈A〉2 τd

τw

, (46a)

S (Φ) = 2

(
τw

τd

)1/2

, F (Φ) = 6
τw

τd

, (46b)

Thus, the parameters of the shot noise process, τd/τw, and 〈A〉, may be estimated from

the lowest order moments of a time series. Before we proceed in the next section to define

estimators for these quantities and expression for their mean-squared errors, we continue by

deriving an expression for the correlation function of the signal given by Eqn. (41). Formally,

we follow the method outlined in Ref. [115].

Given the definition of a correlation function, we average over the pulse arrival time and

amplitude distribution functions and use that for exponentially distributed pulse amplitudes,
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〈An〉 = n!〈A〉 holds. This gives

〈ΦK(t)ΦK(t+ τ)〉 =

T∫
0

dt1Pt(t1)

∞∫
0

dA1PA(A1) · · ·
T∫

0

dtKPt(tK)

∞∫
0

dAKPA(AK)×

K∑
p=1

K∑
q=1

Apψ(t− tp)Aqψ(t+ τ − tq)

= 〈A2〉
K∑
p=1

T∫
0

dtp
T
ψ(t− tp)ψ(t+ τ − tp)

+ 〈A〉2
∑
p6=q

T∫
0

dtp
T

T∫
0

dtq
T
ψ(t− tp)ψ(t+ τ − tq). (47)

Here, we have divided the sum in two parts. The first part consists of K terms where p = q

and the second part consists of K(K − 1) terms where p 6= q. The integral over a single

pulse is given by

T∫
0

dtp Pt(tp)ψ(t− tp) =
τd

T

[
1− exp

(
− t

τd

)]
, (48)

where the boundary term exp(−t/τd) arises due to the finite integration domain. For ob-

servation times t � τd this term vanishes and in the following we neglect it by ignoring

the initial transient part of the time series where only few pulse events contribute to the

amplitude of the signal.

Within the same approximation, the integral of the product of two independent pulses

is given by

T∫
0

dtp P (tp)ψ(t− tp)ψ(t+ τ − tp) =
τd

2T
exp

(
−|τ |
τd

)
.

Substituting these two results into Eqn. (47), we average over the number of pulses occurring

in [0 : T ]. Using that the total number of pulses is Poisson distributed and that the average

waiting time between consecutive pulses is given by τw = T/〈K〉, we evaluate the two-point

correlation function of Eqn. (41) as

〈Φ(t)Φ(t+ τ)〉 = 〈A〉2 τd

τw

[
exp

(
−|τ |
τd

)
+
τd

τw

]
. (49)

Comparing this expression to the ensemble average of the model at hand, Eqn. (46a), we find

〈Φ(t)Φ(t + τ)〉 = 〈Φ(t)〉 [〈A〉 exp (−|τ |/τd) + 〈Φ(t)〉] . For τ → ∞, the correlation function

decays exponentially to the square of the ensemble average.
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C. Statistical Estimators for the Gamma Distribution

The Gamma distribution is a continuous probability distribution with a shape param-

eter γ and a scale parameter θ. The probability distribution function (PDF) of a gamma

distributed random variable X > 0 is given by

PX(X; γ, θ) =
Xγ−1

θγΓ(γ)
exp

(
−X
θ

)
, (50)

where Γ(x) =
∞∫
0

duux−1e−u denotes the gamma function. Statistics of a random variable are

often described in terms of the moments of its distribution function, which are defined as

mk =

∞∫
0

dX PX(X; γ, θ)xk,

and centered moments of its distribution function, defined as

µk =

∞∫
0

dX [PX(X; γ, θ)−m1]k .

Common statistics used to describe a random variable are the mean µ = m1, the variance

σ2 = µ2, skewness S = µ3/µ
3/2
2 and excess kurtosis, or flatness, F = µ4/µ

2
2 − 3. Skewness

and excess kurtosis are well established measures to characterize asymmetry and elevated

tails of a probability distribution function. For a Gamma distribution, the moments relate

to the shape and scale parameter as

m1 = γθ, µ2 = γθ2, µ3 = 2γθ3, µ4 = 6γθ4,

and coefficients of skewness and excess kurtosis are given in terms of the shape parameter

by

S =
µ3

µ
3/2
2

=
2√
γ
, F =

µ4

µ2
2

− 3 =
6

γ
.

For the process described by Eqn. (41), γ is given by the ratio of pulse duration time to

pulse waiting time, so that skewness and kurtosis assume large values in the case of strong

intermittency, that is weak pulse overlap.

In practice, a realization of a shot noise process, given by Eqn. (41), is sampled for a

finite time T at a constant sampling rate 1/4t as to obtain a total of N = T/4t samples.
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When a sample of the process is taken after the initial transient, where only few pulses

contribute to the amplitude, the probability distribution function of the sampled amplitudes

is given by the stationary distribution function of the process described by Eqn. (44).

The method of moments describes a method to estimate the moments of the distribu-

tion function underlying a set of N data points, {xi}Ni=1, which are now taken to be samples

of a continuous shot noise process, obtained at discrete sampling times ti = i·4t: xi = Φ(ti).

Using the method of moments, estimators of mean, variance, skewness, and excess kurtosis

are defined as

µ̂ =
1

N

N∑
i=1

xi, σ̂2 =
1

N − 1

N∑
i=1

(xi − µ̂)2 , (51a)

Ŝ =

N∑
i=1

(xi − µ̂)3

(
N∑
i=1

(xi − µ̂)2

)3/2
, F̂ =

N∑
i=1

(xi − µ̂)4

(
N∑
i=1

(xi − µ̂)2

)2 − 3. (51b)

Here, and in the following, hatted quantities denote an estimator. Building on these esti-

mators, we further define an estimator for the intermittency parameter of the shot noise

process analog to Eqn. (45)

γ̂ =
µ̂2

σ̂2
. (52)

We use this estimator to define alternative estimators for skewness and excess kurtosis as

ŜΓ =
2√
γ̂
, F̂Γ =

6

γ̂
. (53)

in accordance with Eqn. (46).

In general, any estimator Û is a function of N random variables and therefore a random

variable itself. A desired property of any estimator is that with increasing argument sample

size its value converges to the true value that one wishes to estimate. The notion of distance

to the true value is commonly measured by the mean-squared error on the estimator Û ,

given by

MSE(Û) = var(Û) + bias(Û , U)2, (54)

where var(Û) = 〈(Û−〈Û〉)2〉, bias(Û , U) = 〈〈Û〉−U〉, and 〈·〉 denotes the ensemble average.

When Eqn. (51a) is applied to a sample of N normally distributed and uncorrelated random
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variables, it can be shown that bias(µ̂, µ) = 0, bias(σ̂2, σ2) = 0, and that the mean-squared

error of both estimators is inversely proportional to the sample size, MSE(µ̂) ∼ N−1, and

MSE(σ̂2) ∼ N−1. For a sample of gamma distributed and independent random variables,

〈µ̂〉 = µ = γθ and 〈σ̂2〉 = µ2 = γθ2 holds. Thus the estimators defined in Eqn. (51a) have

vanishing bias and their mean-square error is given by their respective variance, var(µ̂) and

var(σ̂2).

With γ = µ2/σ2, the mean-squared error on the estimators for sample mean and

variance, given in Eqn. (51a), can be propagated on to a mean-square error on Eqn. (53)

using Gaussian propagation of uncertainty:

MSE(ŜΓ) = 4
σ̂2

µ̂4
MSE(µ̂) +

1

σ̂2µ̂2
MSE(σ̂2)− 4

1

µ̂3
COV(µ̂, σ̂2), (55)

MSE(F̂Γ) = 144
σ̂2

2

µ̂6
MSE(µ̂) + 36

1

µ̂4
MSE(σ̂2)− 144

σ̂2

µ̂5
COV(µ̂, σ̂2), (56)

where COV(Â, B̂) = 〈(Â − 〈A〉)(B̂ − 〈B〉)〉. Thus, the mean-squared errors on estimators

for coefficients of skewness and excess kurtosis can be expressed through the mean-squared

errors on the mean and variance, and through the covariance between µ̂ and σ̂2.

We now proceed to find analytic expressions for MSE(µ̂) and MSE(σ̂2). With the

definition of µ̂ in Eqn. (51a), and using 〈µ̂〉 = µ = 〈Φ(t)〉, we find

MSE(µ̂) = 〈(µ̂− µ)2〉 = −〈Φ(t)〉2 +
1

N2

N∑
i=1

N∑
j=1

〈Φ(ti)Φ(tj)〉. (57)

In order to evaluate the sum over the discrete correlation function, we evaluate the

continuous two-point correlation function given by Eqn. (49) at the discrete sampling times,

with a discrete time lag given by τ = τij = ti − tj. This gives

MSE(µ̂) =
1

N
〈A〉2 τd

τw

1 +
1

N

N∑
i,j=1
i6=j

exp

(
−|τij|
τd

) .
Defining α = 4t/τd, we evaluate the sum as a geometric series,

1

2

N∑
i,j=1
i6=j

exp

(
−|τij|
τd

)
=
N + e−αN − 1−Ne−α

2 sinh2 (α/2)
, (58)

77



to find the mean squared error

MSE(µ̂) =
1

N
〈A〉2 τd

τw

[
1 +

1

N

N + e−αN − 1−Ne−α
2 sinh2 (α/2)

]
. (59)

Fig. 20 shows the normalized mean-squared error as a function of the number of sampling

points, N . The parameter α relates the sampling time to the pulse duration time. For

α � 1, the obtained samples are uncorrelated, while the limit α � 1 describes the case

of high sampling frequency where the time series is well resolved on the time scale of the

individual pulses. We find for the corresponding limits

MSE(µ̂) =
1

N
〈Φ(t)〉2 τw

τd

×

1 α� 1,

1 + 2
N
e−αN−(1−αN)

α2 α� 1.
(60)

For both limits, MSE(µ̂) is proportional to µ2 and inversely proportional to the intermittency

parameter γ = τd/τw.

In the case of low sampling frequency, α� 1, the mean-squared error on the estimator

of the mean becomes independent of the sampling frequency and is only determined by the

parameters of the underlying shot noise signal. In this case, the relative error MSE(µ̂)/〈Φ〉2

is inversely proportional to γ and the number of data points N . Thus, a highly intermittent

process, γ � 1, features a larger relative error on the mean than a process with significant

pulse overlap, γ � 1. In the case of high sampling frequency, α � 1, finite correlation

effects contribute to the mean squared error on µ̂ given by the non-canceling terms of the

series expansion of exp(−αN) in Eqn. (60). Continuing with the high sampling frequency

limit, we now further take the limit αN � 1, which describes the case of a total sample

time long compared to the pulse duration time, T = N4t � τd. We find that in this case

the mean square error on the mean is given by

MSE(µ̂) =
2

αN
〈Φ(t)〉2 τw

τd

. (61)

As in the low sampling frequency limit, the mean square error on µ converges as N−1, but

is larger by a factor of 2/α, where α was assumed to be small.

In Fig. 20 we present MSE(µ̂) for α = 10−2, 1, and 102. The first value corresponds to

the fast sampling limit, the second value corresponds to sampling on a time scale comparable

to the decay time of the individual pulse events and the third value corresponds to sampling

on a much larger time scale. The relative error for the case α � 1 is clearly largest. For
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N . 104, the N dependency of MSE(µ̂) is weaker than N−1. Increasing N to N & 104 gives

αN � 1, such that MSE(µ̂) ∼ 1/N holds. For α = 1, and α = 10, αN � 1 holds, and

we find that the relative mean-squared error on the mean is inversely proportional to the

number of samples N , in accordance with Eqn. (60).

We note here, that instead of evaluating the geometrical sum that leads to Eqn. (58)

explicitly, it is more convenient to rewrite the sum over the correlation function in Eqn. (57)

as a Riemann sum and approximate it as an integral:

∑
i6=j

e−α|i−j| '
N∫

0

di

N∫
0

dj
[
Θ(i− j)eα(j−i) + Θ(j − i)eα(i−j)] = 2

αN + e−αN − 1

α2
. (62)

For the approximation to be valid, it is required that di/N, dj/N � 1, and that the variation

of the integrand over4i×4j must be small, α� 1. Approximating the sum as in Eqn. (62)

therefore yields the same result for MSE(µ̂) as the limit α� 1 given in Eqn. (60).

Expressions for the mean-squared error on the estimator σ̂2 and the covariance

COV(µ̂, σ̂2) are derived using the same approach as used to derive Eqn. (59). With

MSE(σ̂2) = 〈(σ̂2 − σ2)2〉, and COV(µ̂, σ̂2) = 〈(µ̂ − µ)(σ̂2 − σ2)〉, it follows from Eqn. (51a)

that expressions for summations over third and fourth order correlation functions of the

signal given by Eqn. (41) have to be evaluated to obtain closed expressions. Postponing the

details of these calculations to the appendix, we present here only the resulting expressions.

The mean squared error on the variance is given by

MSE(σ̂2) = 〈A〉4
[(

τd

τw

)2(
2

αN
+
−5− 8e−αN + e−2αN

α2N2

)
+
τd

τw

(
6

αN
+
−27 + 3e−2αN

α2N2

)]
+O

(
N−3

)
, (63)

while the covariance between the estimators of the mean and variance is given by

COV(µ̂, σ̂2) = 〈A〉3
[(

τd

τw

)2

4
1− e−αN
α2N2

+
τd

τw

(
3

αN
+
−17 + 4e−αN − 4e−2αN

2α2N2

+
9− 12e−αN + 3e−2αN

α3N3

)]
. (64)

The results, given in Eqs. (59), (63), and (64), are finally used to evaluate Eqn. (55), and

Eqn. (56), yielding the mean squared error on ŜΓ and F̂Γ. The higher order terms in eqn. (63)

are readily calculated by the method described in App. VI F and but are not written out

here due to space restrictions.
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In the limit αN � 1 leading order terms in Eqs. (63) and (64) are inversely proportional

to αN :

COV(µ̂, σ̂2) =
3

αN
〈Φ(t)〉var(Φ(t))

τd

τw

(65)

MSE(σ̂2) =
2

αN
var(Φ(t))2

(
1 + 3

τw

τd

)
. (66)

While Eqs. (61) and (65) are proportional to γ, MSE(σ̂2) depends also quadratically on γ.

D. Comparison to Synthetic Time Series

In this section we compare the derived expressions for the mean-squared error on the

estimators for the sample mean, variance, skewness, and kurtosis, against sample variances

from the respective estimators computed of synthetic time series of the stochastic process

given by Eqn. (41).

To generate synthetic time series, the number of pulses K, the pulse duration time

τd, the intermittency parameter γ, the pulse amplitude scale 〈A〉, and sampling time 4t

are specified. The total number of samples in the time series is given by N = K/γ4t.

The pulse arrival times tk and pulse amplitudes Ak, k = 1 . . . K, are drawn from a uniform

distribution on [0 : K/γ] and from PA(A) = exp (−A/〈A〉) /〈A〉 respectively. The tuples

(tk, Ak) are subsequently sorted by arrival time and the time series is generated according

to Eqn. (41) using the exponential pulse shape given by Eqn. (42). The computation of the

time series elements is implemented by a parallel algorithm utilizing the graphical processing

unit. For our analysis we generate time series for γ = 0.1 and 10, 4t = 0.01, and time and

amplitude normalized such that τd = 1 and 〈A〉 = 1. Thus, α = 4t/τd = 0.01 for both time

series. Both time series have N = 108 samples, which requires K = 105 for the time series

with γ = 0.1 and K = 107 for the time series with γ = 10. The histogram for both time

series is shown in fig. 21.

Each time series generated this way is a realization of the stochastic process described

by Eqn. (41). We wish to estimate the lowest order statistical moments as well as the errors

on them from these time series. This includes the dependency of these quantities on the

sample length N , which will be varied from 2× 103 to 106 by truncation.

To find the dependency on the sample length, we divide the time series for a given

value of γ into M equally long sub-time series with NM elements each, where M ∈
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{100, 200, 500, . . . , 50000}. For each sub-time series, we evaluate the estimators Eqn. (51a)

and Eqn. (53), which yields the sets {µ̂m}, {σ̂2
m}, {ŜΓ,m}, and {F̂Γ,m}, with m ∈ (1, . . . NM).

The variance of these sets of estimators is then compared to the analytic expressions for their

variance, given by Eqs. (59), (63), (55), and (56). Additionally, we wish to compare the pre-

cision and accuracy of the proposed estimators given by Eqn. (53) to the estimators defined

by the method of moments in Eqn. (51b). For this, we also evaluate Eqn. (51b) on each sub

time-series and compute the sample average and variance of the resulting set of estimators.

Figures 22 - 27 show the results of this comparison for a synthetic time series with

γ = 0.1. The upper panel in Fig. 22 shows the sample average of the {µ̂m} with error bars

given by the root-mean square of the set for a given sample size NM. Because µ̂ is linear

in all its arguments xi the sample average of {µ̂m} for any given NM equals µ̂ computed

for the entire time series. The lower panel compares the sample variance of the {µ̂m} for a

given NM to that given by Eqn. (59). For the presented data, the long sample limit applies

since αNM ≥ 2×101 � 1. A least squares fit on var({µ̂m}) shows a dependence of ∼ N−0.90
M

which agrees with the analytic result of MSE(µ̂) ∼ N−1
M , given by Eqn. (61).

with error bars given by the root-mean square of the set of estimators for a given

sample size NM. We find that the sample variance of the estimators compare well with the

analytic result given by Eqn. (63). A least squares fit reveals that var({σ̂2
m}) ∼ N−0.91

M

while Eqn. (63) behaves as N−1
M . The sample averages of the skewness estimators {ŜΓ,m},

Eqn. (53), and {Ŝm}, Eqn. (51b), as a function of sample size are shown in the upper

panel of Fig. 25. Both estimators yield the same coefficient of skewness when applied to

the entire time series and converge to this coefficient as a function of NM. For small num-

ber of samples, N . 104, the estimator based on the method of moments estimates a

sample skewness that is on average more than one standard deviation from the true value

of skewness. Again, the error bars are given by the root mean square value of the set

of estimators for any NM. For larger samples var({ŜΓ,m}) is smaller than var({Ŝm}) by

about one order of magnitude and both are inversely proportional to the number of sam-

ples. Eqn. (55) yields MSE(ŜΓ) ∼ N−0.99
M which compares favorably to the dependency of

the sample variance of the estimator based on the method of moments on the number of

samples, var({ŜΓ,m}) ∼ N−1.00
M . The discussion of the skewness estimators applies similarly

to the kurtosis estimators. Intermittent bursts in the time series with γ = 0.1 cause large

deviations from the time series mean which results in a large coefficient of excess kurtosis.
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Dividing the total time series in sub time series results in large variation of the sample ex-

cess kurtosis. We find that for samples with N . 104 the estimator based on the method of

moments performs better than the estimator defined in Eqn. (53). The opposite is true for

samples with N & 104, where F̂Γ performs significantly better than F̂ . In the latter case,

var({F̂Γ,m}) is lower than var({F̂m}) by one order of magnitude. Both estimators, F̂ and

F̂Γ, converge to their full sample estimate which is identical. A least squares fit reveals that

var({F̂Γ,m}) ∼ N−1.00
M while Eqn. (56) behaves as ∼ N−0.97

M .

In Figs. 28 to 32 we present the same data analysis as in the previous figures, for the

time series with high intermittency parameters, γ = 10. This corresponds to the situation

of large pulse overlap. Again, with NM ≥ 2 × 103, the limit αNM � 1 applies. The lower

panel in Fig. 28 shows that a good agreement between Eqn. (63) and the empirical scaling of

{µ̂m} which is found by a least squares fit to be var({µ̂m}) ∼ N−0.98
M , in good agreement with

Eqn. (61). We further find that also var({σ̂2
m}) is inversely proportional to the number of

samples, see Fig. 29. For Figs. 31 and 32 we note coefficients of skewness and excess kurtosis

are one order of magnitude lower for γ = 10 than for γ = 0.1 in accordance with Eqn. (46).

Due to the large pulse overlap, sample variances of skewness and excess kurtosis show a

smaller variance than in the case of γ = 0.1. Again, the magnitude of var({Ŝm}), and

var({F̂m}) is one order of magnitude larger than var({ŜΓ,m}), and var({F̂Γ,m}), respectively,

and the variance of all estimators is approximately inversely proportional to NM. For sample

sizes up to NM ' 104, F̂ yields negative values for the sample kurtosis while the true value

of excess kurtosis is positive. This is due to the large sample variance of this estimator and

a small true value of kurtosis of the underlying time series.

E. Discussions and Conclusion

We have utilized a stochastic model for intermittent particle density fluctuations in

scrape-off layer plasmas given in Ref. [94] to calculate expressions for the mean squared error

on estimators of sample mean, sample variance, sample coefficients of skewness, and sample

excess kurtosis as a function of sample length, sampling frequency, and model parameters.

We find that the mean squared error on the estimator of the sample mean is proportional

to the square of the ensemble average of the underlying shot noise process, inversely pro-

portional to the intermittency parameter γ, and inversely proportional to the number of
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samples, N . In the limit of high sampling frequency and large number of samples, the

mean-squared error also depends on the ratio of the pulse decay time to sampling frequency,

as given by Eqn. (61).

The derived expressions for the mean-squared error on the estimator for the sample

variance and covariance between µ̂ and σ̂2 are polynomials in both γ and N . These expres-

sions further allow to compute the mean-squared error on the sample skewness and kurtosis

by inserting them into Eqs. (55) and (56). In the limit of high sampling frequency and large

number of samples, we find that the expressions for MSE(µ̂) and COV(µ̂, σ̂2) to be inversely

proportional to both the number of samples and α, and to depend on the intermittency

parameter γ.

We have generated synthetic time series to compare the sample variance of the esti-

mators for sample mean, variance, skewness and excess kurtosis to the expressions for their

mean-squared error. For a large enough number samples, αN � 1, all estimators are in-

versely proportional to N. We further find that estimators for skewness and excess kurtosis

as defined by Eqn. (53) allow a more precise and a more accurate estimation of the sample

skewness and excess kurtosis than estimators based on the method of moments given by

Eqn. (51b).

The expressions given by Eqs. (59), (63), (55), and (56) may be directly applied to

assess the relative error on sample coefficients of mean, variance, skewness and excess kurtosis

for a time series of the particle density fluctuation in tokamak scrape-off layer plasmas.

We exemplify their usage for a particle density time series that is sampled with 1/4t =

5 MHz for T = 2.5 ms as to obtain N = 12500 samples. Common fluctuation levels in

the scrape-off layer are given by Φrms/〈Φ〉 ≈ 0.5. Using Eqn. (46a) and γ = τd/τw this

gives γ ≈ 4. Conditional averaging of the the bursts occurring in particle density time

series reveals an exponentially decaying burst shape with common e-folding times of ca.

20µs, so that α ≈ 0.01. Thus, the individual bursts are well resolved on the time scale

on which the particle density is sampled and the assumption αN � 1 is justified. From

Eqn. (61), we then compute the relative mean squared error on the sample average to be

MSE(µ̂)/〈Φ〉2 ' 3.2 × 10−3 and likewise the relative mean squared error on the sample

variance from Eqn. (66) to be MSE(σ̂2)/var(Φ)2 ' 2.6× 10−2. This translates into relative

errors of ca. 6% on the sample mean and approximately 16% on the sample variance. The

relative mean squared error on skewness and excess kurtosis evaluates to MSE(ŜΓ)/Ŝ2
Γ '
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8.6× 10−3 and MSE(F̂Γ)/F̂ 2
Γ ' 3.8× 10−2, which translates into an relative error of ca. 9%

on the sample skewness and of ca. 19% on the sample excess kurtosis. The magnitude of

these values is consistent with Ref. [51], figures (7), and (8), which presents radial profiles of

sample skewness and kurtosis, where the kurtosis profiles show significantly larger variance

than the skewness profiles.

F. Derivation of Mean-Squared Error on the Variance

We start by reminding of the definitions COV(Â, B̂) = 〈(Â − 〈A〉)(B̂ − 〈B〉)〉 and

var(B̂) = 〈(B̂ − 〈B〉)2〉. For Â = µ̂ and B̂ = σ̂2, we evaluate these expressions to be

COV(µ̂, σ̂2) =
1

N − 1

(
N∑

i,j=1

〈Φ(ti)
2Φ(tj)〉 −

1

N2

N∑
i,j,k=1

〈Φ(ti)Φ(tj)Φ(tk)〉
)

− 〈A〉 τd

τw

1

N − 1

(
N∑
i=1

〈Φ(ti)〉 −
1

N

N∑
i,j=1

〈Φ(ti)Φ(tj)〉
)
, (67)

and

var(σ̂2) = −〈A〉4
(
τd

τw

)2

+ 4〈A〉4
(
τd

τw

)2(
1

N2

e−αN − (1− αN)

α2

)
+

1

N2

(
N∑

i,j=1

〈Φ(ti)
2Φ(tj)

2〉 − 2

N

N∑
i,j,k=1

〈Φ(ti)
2Φ(tj)Φ(tk)〉

+
1

N2

N∑
i,j,k,l=1

〈Φ(ti)Φ(tj)Φ(tk)Φ(tl)〉
)

(68)

We made use of Eqn. (62) in deriving the last expression. Therefore it is only valid in

the limit α� 1. To derive closed expressions for Eqs. (55) and (56) we proceed by deriving

expressions for the third- and fourth-order correlation functions of the shot noise process

Eqn. (41).

84



We start by inserting Eqn. (41) into the definition of a three-point correlation function

〈ΦK(t)ΦK(t+ τ)ΦK(t+ τ ′)〉

=

T∫
0

dt1Pt(t1)

∞∫
0

dA1PA(A1) · · ·
T∫

0

dtKPt(tK)

∞∫
0

dAKPA(AK)×

K∑
p=1

K∑
q=1

K∑
r=1

Apψ(t− tp)Aqψ(t+ τ − tq)Arψ(t+ τ ′ − tr)

= 〈A3〉
K∑

p=q=r=1

T∫
0

dtp
T
ψ(t− tp)ψ(t+ τ − tp)ψ(t+ τ ′ − tp)

+ 〈A2〉〈A〉
K∑

p=q=1

K∑
r=1
r 6=p

T∫
0

dtp
T

T∫
0

dtr
T
ψ(t− tp)ψ(t+ τ − tp)ψ(t+ τ ′ − tr)

+ 〈A2〉〈A〉
K∑

p=r=1

K∑
q=1
q 6=p

T∫
0

dtp
T

T∫
0

dtq
T
ψ(t− tp)ψ(t+ τ − tq)ψ(t+ τ ′ − tp)

+ 〈A2〉〈A〉
K∑

q=r=1

K∑
p=1
p6=r

T∫
0

dtq
T

T∫
0

dtp
T
ψ(t− tp)ψ(t+ τ − tq)ψ(t+ τ ′ − tq)

+ 〈A〉3
K∑
p=1

K∑
q=1

K∑
r=1

T∫
0

dtp
T

T∫
0

dtq
T

T∫
0

dtr
T
ψ(t− tp)ψ(t+ τ − tq)ψ(t+ τ ′ − tr). (69)

The sum over the product of the individual pulses is grouped into six sums. The first sum

contains factors with equal pulse arrival times and consists of K terms. The next three

groups contain terms where two pulses occur at the same arrival time, each group counting

K(K − 1) terms. The last sum contains the remaining K(K − 1)(K − 2) terms of the terms

where all three pulses occur at different pulse arrival times.

The sum occurring in the four point correlation function may be grouped by equal pulse

arrival time as well. In the latter case, the sum may be split up into group of terms where

four, three and two pulse arrival times are equal, and in a sum over the remaining terms.

The sums in each group have K, K(K−1), K(K−1)(K−2), and K(K−1)(K−2)(K−3)

terms respectively.

Similar to Eqn. (48), we evaluate the integral of the product of three pulse shapes
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while neglecting boundary terms to be

T∫
0

dtpPt(tp)ψ(t− tp)ψ(t+ τ − tp)ψ(t+ τ ′ − tp)

' τd

3
exp

(
τ + τ ′

τd

)
exp

(
−3

max (0, τ, τ ′)

τd

)
(70)

while the integral of the product of four pulse shapes is given by

T∫
0

dtpPt(tp)ψ(t− tp)ψ(t+ τ − tp)ψ(t+ τ ′ − tp)ψ(t+ τ ′′ − tp)

' τd

4
exp

(
τ + τ ′ + τ ′′

τd

)
exp

(
−4

max (0, τ, τ ′, τ ′′)

τd

)
. (71)

To obtain an expression for the third- and fourth-order correlation functions, these integrals

are inserted into the correlation function and the resulting expression is averaged over the

total number of pulses. We point out that the K pulses occurring in the time interval [0 : T ]

is Poisson distributed and that for a Poisson distributed random variable K,〈
z∏

n=0

K − n
〉

= Kz

holds. Using this with Z = 2, the three-point correlation function evaluates to

〈Φ(t)Φ(t+ τ)Φ(t+ τ ′)〉 = 〈A〉2
[
2
τd

τw

exp

(
τ + τ ′

τd

− 3
max(0, τ, τ ′)

τd

)
+

((
τd

τw

)2

+ 1

)
exp

(
τ

τd

− 2
max(0, τ)

τd

)
+

(
τd

τw

)3
]
. (72)

The four-point correlation function is evaluated the same way. To evaluate summations over

higher-order correlation function, we note that Eqn. (72) evaluated at discrete times can be

written as

〈Φ(ti)Φ(tj)Φ(tk)〉 = 〈A〉2
[
2

(
τd

τw

)
exp
(
α(2i− j − k)− 3αmax(0, i− j, j − k)

)
+

((
τd

τw

)2

+ 1

)
exp
(
α(i− j)−max(0, i− j)

)
+

(
τd

τw

)3
]
, (73)

where τ = τij = 4t (i− j) and τ ′ = τjk = 4t (j − k). The summations over higher-order

correlation functions in Eqn. (67) and Eqn. (68) may then be evaluated by approximating

the sums by an integral, assuming N � 1, and dividing the integration domain into sectors
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where i < j < k, i < k < j, . . .. In each of these sectors, the max-functions in Eqn. (73) are

secular valued so that the integral is well defined. Denoting all permutations of the tuple

(i, j, k) as P3, and the respective elements of a permutated tuple as π1, π2, π3, we thus have

N∑
i,j,k=1

〈Φ(ti)Φ(tj)Φ(tk)〉 '
N∫

0

di dj dk 〈Φ(ti)Φ(tj)Φ(tk)〉 ×
(∑
π∈P3

Θ(π1 − π2)Θ(π2 − π3)

)
N∑

i,j,k,l=1

〈Φ(ti)Φ(tj)Φ(tk)Φ(tl)〉 '
N∫

0

di dj dk dl 〈Φ(ti)Φ(tj)Φ(tk)Φ(tl)〉×(∑
π∈P4

Θ(π1 − π2)Θ(π2 − π3)Θ(π3 − π4)

)
.

These integral are readily evaluated. Inserting them into Eqn. (67), and Eqn. (68), yields

the expression Eqn. (64) and Eqn. (63).
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