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Abstract 

In a previous work we presented a new distance that we called the sigma gram distance, which is used to compute the 
similarity between two sequences. This distance is based on parameters which we computed through an optimization process 
that used the artificial bee colony; a bio-inspired optimization algorithm. In this paper we show how a hybrid of two 
optimization algorithms; bacterial foraging and differential evolution, when used to compute the parameters of the sigma 
gram distance, can yield better results than those obtained by applying artificial bee colony. This superiority in performance 
is validated through experiments on the same data sets to which artificial bee colony, on the same optimization problem, was 
tested.     
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1. Introduction 

Similarity search is an important problem in computer science. This problem has several applications in many 
domains such as text, video and image retrieval, pattern recognition, bioinformatics, web search, fingerprint 
databases, and many others. The similarity search problem involves a collection of data objects D and a given 
query q. The task of this problem is to retrieve the data objects in D which are “close” to q according to some 
semantics of closeness. This closeness or similarity between two data objects is measured using a similarity 
measure or when satisfying certain axioms it is usually called a distance metric. The metric model of handling 
the similarity search problem has been widely used with different data types.  

Time series data is one of the data types to which the metric model is frequently (but not always) applied to 
handle different tasks such as classification and clustering.  

Time series are high-dimensional data, so there are different techniques to reduce their dimensionality, among 
these techniques symbolic methods have attracted particular attention.  

The main distance used to compare two strings is the Edit Distance (ED) [1] which is defined as the minimum 
number of delete, insert, and change operations needed to transform string S  into string T . However, this 
distance has its limitations because it considers local similarity only.  

In [2] we presented a new distance metric, the Sigma Gram distance (SG) that is applied to sequences. SG uses 
parameters which we computed using an optimization algorithm called Artificial Bee Colony (ABC).  

Bio-inspired, also called nature-inspired, optimization is a rapidly growing domain of research, and new 
algorithms emerge constantly. Yet these algorithms may have their own shortcomings in certain optimization 
problems. One of the new techniques that have been successfully used to overcome these drawbacks of 
optimization algorithms is to couple two optimizers to produce a hybrid one that has the advantages of each of 
the optimizers.   

In this paper we use a hybrid of two bio-inspired optimization algorithms to compute the parameters of SG and 
we show how the hybrid algorithm outperforms the aforementioned ABC algorithm.   

The rest of this paper is organized as follows: Section 2 presents related work. The hybrid algorithm is 
introduced in Section 3, and the comparison with ABC is conducted in Section 4. We conclude this paper in 
Section 5. 

2. Related Work 

Strings, also called sequences or words, are a way of representing data. This data type exists in many fields of 
computer science such as molecular biology where DNA sequences are represented using four nucleotides which 
correspond to the four bases:  adenine (A), cytosine (C), guanine (G) and thymine (T). This can be expressed as a 
4-symbol alphabet. Protein sequences can also be represented using a 20-symbol alphabet which corresponds to 
the 20 amino acids. The edit distance [1] is the main distance that is applied to compute the similarity between 



two strings. It is defined as the minimum number of delete, insert, and substitute operations needed to transform 
one sequence S into another sequence T.  

In a previous work [2] we presented an extension of the edit distance, which is based on the sum of n-grams. 
The proposed distance SG is defined as follows:  
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where S , T are the lengths of the two strings S , T  respectively, and where { }0∪∈ +Rnλ . 

Determining the value of the parameters nλ  is not a trivial task. In [2] the value of nλ was calculated as the 
output of an optimization problem. The optimization algorithm we used was artificial bee colony (ABC) [3], 
which is a bio-inspired optimization algorithm based on the foraging behavior of bees. In ABC each food source 
represents a potential solution of the optimization problem and the quality of the food represents the value of the 
objective function to be optimized. The control parameters of ABC are the population size (the number of food 
sources) pop_size , the number of cycles nr_cycles , and the number of trials of a certain food source max_nr.  

3. A Synergy of Bacterial Foraging and Differential Evolution 

Different optimization algorithms have different qualities. The principle of hybridization is to benefit from this 
fact by combining two optimization algorithms to obtain a new optimization algorithm that takes advantage of 
the strengths of the two methods. In this paper we are concerned with the hybridization of two optimization 
algorithms; Differential Evolution (DE) and Bacterial Foraging (BF).   

3.1. Differential evolution 

Differential Evolution (DE) is a bio-inspired optimization algorithm based on the principles of genetics and 
natural selection. DE is one the most powerful stochastic optimization algorithms for continuous parameters [4]. 
DE has the same elements as a standard evolutionary algorithm; i.e. a population of individuals, selection 
according to fitness, crossover, and random mutation. DE creates an environment in which a population of 
individuals, representing solutions to a particular problem, is allowed to evolve under certain rules towards a 
state that minimizes the value of a function which is usually called the fitness function.  

As with other evolutionary algorithms, the first step of DE is defining the problem variables and the fitness 
function. The range of the variable values can be constrained or unconstrained. A particular configuration of 
variables produces a certain value of the fitness function and the objective of DE is to find the configuration that 
gives the optimal value of the fitness function.  

DE has many variations, but in the following we present the classical DE. DE starts with a collection of 
randomly chosen individuals constituting a population whose size is pop_size. Each of these solutions is a vector 
of p dimensions and it represents a possible solution to the optimization problem. The fitness function of each 
individual is computed. In the next step for each individual of the population, which we call the target vector iT
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−+= . F is called the mutation factor or the differentiation constant and it is one of 
the control parameters of DE. F is usually chosen from the interval [ [1,0  .  

The trial vector R


is formed from elements of the target vector iT


and elements of the donor vector D


according to different schemes. In the following we present the crossover scheme presented in [5] which we 
adopt in this paper; an integer Rnd is randomly chosen among the dimensions [ ]p,1 . This guarantees that at least 

one of the dimensions will be changed. Then the trial vector R


is formed as follows:  
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where p,...,1i = . rC is the crossover constant, which is another control parameter. The control parameters of 
DE are determined by the algorithm designer. 

The next step of DE is selection. This step decides which of the trial vector and the target vector will survive 
in the next generation and which will die out. The selection is based on which of the two vectors; trial and target, 
yields a better value of the fitness function.  

Crossover and selection repeat for a certain number of generations NrGen , which is the third control 
parameter of DE. Most algorithms add a stopping criterion, which terminates DE if met, even if NrGen  has not 
been reached.     

3.2. Bacterial foraging  

Bacterial Foraging (BF) is an optimization algorithm which is inspired by the foraging behavior of the 
Escherichia coli (E. coli) bacteria. The principle of BF is that natural selection tends to eliminate animals with 
poor foraging strategies and either replaces them with others that have better foraging strategies or shapes them 
into ones which have these desirable strategies [6]. BF formulates this process as an optimization problem.  

In the following we present a brief description of BF taken mainly from [7]; during foraging locomotion of E. 
coli is achieved by a set of flagella which, when rotating in the clockwise direction, cause the bacterium to 
tumble, and when rotating in the counterclockwise direction enable the bacterium to swim. These two 
movements are known as chemotaxis. Figure 1 shows the tumbling and swimming chemotactic movements. The 
purpose of chemotaxis is to help the bacterium approach or avoid nutrient or noxious substance gradients.  
Sudden environmental changes may destroy the chemotactic progress causing the elimination and dispersal of a 
group of bacteria.  

Given a function ( ) p;f R∈θθ  (p is the number of parameters) to be minimized. BF finds the minimum of f 
by applying four mechanisms; chemotaxis, swarming, reproduction, and elimination-dispersal, which we will 
illustrate shortly, but let us first present a few definitions which are necessary to understand these mechanisms: a 
chemotactic step is a tumble followed by another tumble, or a tumble followed by a swim. Table 1 summarizes 
the symbols we are going to use to describe BF.  

 

 

Fig. 1. Chemotactic movement: (a) swimming (b) tumbling 

Flagella rotating counterclockwise: the bacterium swims Flagella rotating clockwise: the bacterium tumbles 



 
 

Nb The number of bacteria in the population  
Nc The number chemotactic steps 
Ns The swimming length 
Nre The number of reproduction steps 
Ned The number of elimination-dispersal events 
Ped The probability of elimination-dispersal  
C(i) The size of the step taken in the random direction determined by the tumble 

 

Table 1. The symbols used in the description of bacterial foraging 

The position of each member of the population of Nb  bacteria at the jth chemotactic step, kth reproduction step, 
and lth elimination-dispersal event is denoted by ( ) ( ){ }b

i N,...,2,1i| l,k,jk,j,iP == θ .  
We now describe the four mechanisms we mentioned earlier in this section:  

• Chemotaxis:  Let ( )l,k,jiθ  be the ith bacterium at the jth chemotactic step, kth reproduction step, and lth 
elimination-dispersal event, then the movement of the bacterium can be represented by :  
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     where Δ is a vector in the random direction whose elements lie in the interval [-1, 1]. 
• Swarming:  E. coli demonstrate a swarming behavior in that they travel in rings of bacteria which move up 

the nutrient medium when they are placed in the center of a semisolid matrix with a single nutrient chemo-
effecter. When simulated by a high level of succinate the bacteria release an attractant aspartate which helps 
them aggregate into groups and thus move as a swarm. The cell-to-cell signal in the swam can be represented 
by the following function:  
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     where dattractant , ωattractant , hrepellant, ωrepellant are coefficients to be chosen by the algorithm designer.  

 
The objective function ( )( )l,k,jP,fcc θ  is to be added to the original objective function to present a time 
varying objective function in that if many cells come close together there will be a high amount of attractant 
and hence an increasing likelihood that other cells will move towards the group. This produces the swarming 
effect [6]. 

 
• Reproduction: Through this process the least healthy bacteria die out and the healthier ones will undergo cell 

division to produce two daughter bacteria. This guarantees that the swam size will remain stable.     
 
• Elimination and dispersal:  There might be a gradual or sudden change in the environment where the 

bacteria live. As a result, the bacteria in a certain region are killed or a group might be dispersed into another 
location. This has two effects on chemotaxis; the first is destroying the chemotactic progress. The second is 
that the new bacteria might be placed at locations with a better food source, thus assisting chemotaxis.  

3.3.  Hybridization of BF and DE 

Compared with other bio-inspired optimization algorithms, BF possesses a poor convergence behavior over 
multi-modal and rough fitness landscapes. Its performance is also heavily affected with the growth of problem 



dimensionality [8].  On the other hand, DE may suffer from stagnation; i.e. the inability of progressing towards 
global optima. DE may also suffer from premature convergence. To overcome these problems the authors of [9] 
proposed an optimization algorithm, called Chemotactic Differential Evolution (CDE), which is based on 
hybridizing DE and BF by integrating some features from both of these optimizers.  The experiments conducted 
have shown that CDE outperforms both DE and BF.  

In CDE each trial vector first undergoes an adaptive computational chemotaxis. The trial vector is viewed as 
an E. coli bacterium. During chemotaxis, the bacterium which is close to a noxious substance takes a larger 
chemotactic step to move towards nutrient substances. Before each move, it is ensured that the bacterium moves 
in the direction of increasing nutrient substance concentration; i.e. a region with smaller objective function value. 
After this, it is subjected to DE mutation. For the trial vector, three vectors, other than the previous one, are 
selected, one of which is added with a scaled difference of the remaining two. The produced vector 
probabilistically interchanges its components with the original vector. Offspring vector replaces the original one 
if the objective function value is smaller for it. The process is repeated several times over the entire population in 
order to obtain the optimal solution [9]. 

4. Performance Evaluation 

The aim of our experiments is to compare the performance of CDE with that of ABC which we presented in 
[2] on the same optimization problem which is a classification task of symbolically represented time series.  

A time series S is an ordered collection:  
 

                                                           ( ) ( ) ( ){ }nn2211 v,t,...,v,t,v,tS =                                                         (5) 
 

where  n21 t...tt <<< , and where iv are the values of the observed phenomenon at time points  it .  
Time series data mining handles several tasks such as classification, clustering, similarity search, motif 

discovery, anomaly detection, and others. Time series are high-dimensional data so they are usually processed by 
using representation methods that are used to extract features from these data and project them on lower-
dimensional spaces.    

The Symbolic Aggregate approXimation method (SAX) [10] is one of the most important representation 
methods of time series. SAX is applied as follows: 
 
1-The time series are normalized.  
 
2-The dimensionality of the time series is reduced using PAA [11], [12]. 
 
3-The PAA representation of the time series is discretized by determining the number and location of the 
breakpoints. Their locations are determined using Gaussian lookup tables. The interval between two successive 
breakpoints is assigned to a symbol of the alphabet, and each segment of PAA that lies within that interval is 
discretized by that symbol. 

 
The last step of SAX is using the following similarity measure: 
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Where n is the length of the original time series, N is the length of the strings (the number of the segments), Ŝ
and R̂ are the symbolic representations of the two time series S and R , respectively, and where the function 

)(dist  is implemented by using the appropriate lookup table.  
The objective function of the optimization problem of our experiments is the error of a time series 

classification task based on the first nearest-neighbor (1-NN) rule using leaving-one-out cross validation. This 
means that every time series is compared to the other time series in the dataset. If the 1-NN does not belong to 
the same class, the error counter is incremented by 1. The parameters of the optimization problem are nλ in 
relation (1), in other words, we compute nλ that minimize the classification error using ABC as an optimizer 
(which is the optimizer used in [2] ) which we refer to as ABC-SG, and compare that with the optimal values of 

nλ  when those nλ values are obtained by using CDE as an optimizer in (1), which we refer to as CDE-SG.   



In our experiments we used the same datasets on which ABC-SG was tested in [2]. These datasets are 
available at UCR [13].  

As indicated earlier, the tested methods used symbolically represented time series This means that the time 
series were transformed to symbolic sequences using the first three steps of SAX presented earlier in this section, 
but instead of using MINDIST given in relation (6), we use ABC-SG (or CDE-SG). The parameters nλ  in 
relation (1) are computed using ABC (or CDE). This means, for each value of the alphabet size we formulate an 
ABC (or CDE) optimization problem where the fitness function is the classification error, and the parameters of 
the optimization problem are nλ . Practically n can take any value that does not exceed that of the shortest string 
of the two strings S ,T . However, in the experiments we conducted { }3,2,1n∈  because these are the values of 
interest for time series.  
  The control parameters for CDE were the following; the number of bacteria in the population Nb is 20, the 
differentiation constant F was set to 0.9, and the crossover constant rC  was set to 0.5. The number of 
chemotactic steps Nc was set to 5, the swimming length Ns was set to 4. The number of reproduction steps Nre 
was 4, the number of reproduction steps Ned was 2, and Ped , the elimination-dispersal probability, was set to 
0.25. The dimension of the problem p is that of n. As for nλ , their values are in fact unconstrained, but for 
simplicity we optimized them in the interval [ ]2,0 .  

As for ABC, the control parameters were the same used in [2] ; the number of cycles nr_cycles  was set to 20, 
and the number of trials of a certain food source max_nr was set to 10. As for the population size, it is the same 
as that for CDE.  

For each dataset we first the apply the optimizer (ABC or CDE)  on the training datasets to get the vector nλ
that minimizes the classification error on these training datasets, then we utilize this optimal nλ vector on the 
corresponding testing datasets to get the final classification error for each dataset. 

In Table 2 we present some of the results we obtained for alphabet size equal to 3, 10, and 20, respectively, 
which were the values on which ABC-SG was tested.  

  
 
 

 
Beef 

 

  ABC-SG  
 

CDE-SG  

 
  n=1 n=2 n=3  n=1 n=2 n=3  
α*=3  0.567 0.567 0.567  0.533 0.533 0.500  
α =10  0.500 0.500 0.467  0.467 0.467 0.433  
α =20  0.333 0.367 0.367  0.333 0.333 0.333  

                                (*: α is the alphabet size)  
 

 
Coffee 

 

  ABC-SG  
 

CDE-SG  

 
  n=1 n=2 n=3  n=1 n=2 n=3  

α =3  0.571 0.393 0.357  0.393 0.357 0.357  
α =10  0.214 0.286 0.214  0.214 0.179 0.179  
α =20  0.143 0.071 0.143  0.143 0.071 0.071  

 
 

ECG200 
 

  ABC-SG  
 

CDE-SG  

 
  n=1 n=2 n=3  n=1 n=2 n=3  

α =3  0.190 0.210 0.240  0.180 0.210 0.220  
α =10  0.200 0.220 0.220  0.200 0.210 0.210  
α =20  0.230 

 
0.230 0.260  0.220 

 
0.220 0.250  

 
 



Gun_Point 
 

  ABC-SG  
 

CDE-SG  

 
  n=1 n=2 n=3  n=1 n=2 n=3  

α =3  0.193 0.193 0.180  0.180 0.180 0.146  
α =10  0.146 0.127 0.133  0.133 0.127 0.120  
α =20  0.087 0.073 0.073  0.053 0.053 0.067  

 
 

FaceFour 
 

  ABC-SG  
 

CDE-SG  

 
  n=1 n=2 n=3  n=1 n=2 n=3  

α =3  0.057 0.057 0.057  0.057 0.045 0.045  
α =10  0.045 0.057 0.114  0.045 0.045 0.068  
α =20  0.114 0.114 0.102  0.090 0.102 0.102  

 
 

OSULeaf 
 

  ABC-SG  
 

CDE-SG  

 
  n=1 n=2 n=3  n=1 n=2 n=3  

α =3  0.351 0.343 0.331  0.331 0.331 0.322  
α =10  0.298 0.306 0.298  0.298 0.298 0.298  
α =20  0.322 0.331 0.331  0.306 0.322 0.322  

 

Table 2. Comparison between ABC-SG and CDE-SG 

 
The results show that the classification errors of CDE-SG, and for all the datasets shown, are equal or smaller 

than those of ABC-SG and for all values of the alphabet size.   

5. Conclusion  

In this paper we applied a hybrid optimization algorithm; chemotactic differential evolution - CDE, to 
compute the parameters nλ of SG distance, which minimize the error of a time series classification task. We 
compared this optimizer with another one; artificial bee colony- ABC, and we showed experimentally that CDE 
gives better results.   

This paper shows the advantages of coupling optimization methods to produce a new hybrid method to 
improve the performance of stand-alone optimizers. However, the resulting hybrid method may have too many 
control parameters that more research should be conducted to reduce the number of these control parameters.   
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