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Abstract. A large up-to-date compendium of integrated genomic data is often 

required for biological data analysis. The compendium can be tens of terabytes 

in size, and must often be frequently updated with new experimental or meta-

data. Manual compendium update is cumbersome, requires a lot of unnecessary 

computation, and it may result in errors or inconsistencies in the compendium. 

We propose a transparent file based approach for adding incremental update ca-

pabilities to unmodified genomics data analysis tools and pipeline workflow 

managers. This approach is implemented in the GeStore system. We evaluate 

GeStore using a real world genomics compendium. Our results show that it is 

easy to add incremental updates to genomics data processing pipelines, and that 

incremental updates can reduce the computation time such that it becomes prac-

tical to maintain large-scale up-to-date genomics compendia on small clusters. 

1 Introduction 

Recent advances in scientific instruments, such as next-generation sequencing ma-

chines, has the potential of producing data that provide views of biological processes 

at different resolutions and conditions, opening a new era in molecular biology and 

molecular medicine [1]. Many of the data analysis techniques developed for analyzing 

such genomic data integrate data from many experiments with metadata from multiple 

knowledge bases. The information in the knowledge bases [2] is essential for under-

standing the biological content of the experiment data. For example, the results of DNA 

sequencing may not become truly useful before the UniProt [3] knowledge base is used 

to map sequence bases to genes, the per gene results are compared to results from other 

experiments, and the significant differences have been  mapped to biological functions 

using the Go [4] knowledge base. 

Genomic data integration and analysis is typically implemented as a pipeline with 

several tools, where the output files of one tool acts as the input files for the next tool. 

The specific set of tools to use depends on the biological problem that is being investi-

gated. Often large amounts of data must be analyzed, since new sequencing machines 

produce multiple terabytes of data per experiment [5]. The cost of the analysis can 
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therefore be orders of magnitude larger than the cost of creating the data to be analyzed 

[6]. Cost efficient data analysis is therefore a key challenge for genomics data analysis 

Integrating new experimental data or updating meta-data may provide novel biolog-

ical insights. It is therefore important to update a biological compendium when new 

data becomes available. Meta-data updates are especially important since it represents 

the state of knowledge in the field [7]. However, current biological analysis tools typi-

cally require recalculating the entire compendium for meta-data updates. Such full up-

dates increase the computational time and cost; often to the point where reanalysis is 

not done. 

The cost of reanalysis can be greatly reduced by using incremental updates [8] that 

limit recomputation to new and updated data. We believe such an approach for incre-

mental updates of genomic data must satisfy the following four requirements. First, 

most existing analysis tools should be supported without any modifications since it is 

not practical to maintain modified versions of the many analysis tools used in genomic 

data analysis pipelines. Transparent incremental updates are therefore needed. Second, 

the incremental updates should be independent of the job and resource management 

systems used to run the pipeline tools since genomic analysis pipelines are run on many 

different platforms. Third, it should be easy to add incremental update support to an 

existing pipeline. The system should therefore handle update detection, processing of 

incremental updates, and integration of the incremental update with a previous full up-

date. Fourth, it should scale to large-scale compendium. 

To our knowledge, no previous incremental update systems for large-scale data [9–

15] satisfy all four requirements. These provide the required functionality and scalabil-

ity, but do not provide the easy to use transparent incremental updates that are necessary 

to add incremental updates to existing pipelines. Instead they require either porting ap-

plications to a specific framework such as Dryad [16] or MapReduce [17], or writing 

ad-hoc scripts for input generation and output merging.  

We present the GeStore system for incremental update management. GeStore uses a 

transparent file based approach that satisfies all four requirements. Most pipeline tools 

take as input one or more files with input and meta-data, and produce output consisting 

of one or more files. Incremental updates can therefore be implemented by modifying 

the input or meta-data files such that these only contain the data for an incremental 

update, and then merging the incremental output with the previous results. Tool code is 

unmodified, and the only modifications to the pipeline are two GeStore calls for gener-

ating input files and merging output files. GeStore provides a plugin framework for 

implementing parsers, tool-specific incremental file generators, and tool-specific out-

put file mergers. GeStore uses the Hadoop software stack for scalable data processing. 

Our contributions are threefold: (i) we propose a promising approach for adding in-

cremental updates to unmodified genomic data analysis pipelines, leading to substantial 

reduction in time and resources needed to update large biological compendium, (ii) we 

present the design and implementation of our system, including a framework for im-

plementing plugins that enable transparent incremental updates, and (iii) we present the 

feasibility of our approach and initial experimental evaluation of our system using a 

real metagenomics analysis pipeline and real data.  



2 GeStore 

 

 

Fig. 1. Incremental pipeline execution (left). GeStore architecture (right).  

GeStore is a system for enabling transparent incremental computations for unmodified 

file-based data analysis pipelines. GeStore consists of a runtime system that provides a 

plugin framework for incremental input file generation and output file merging, a tool-

set for parsing and detecting changes in files, and data storage and management (Fig. 

1, left). GeStore exports an interface for data feeders, and an interface for workflow 

managers. Data feeders are typically scripts that periodically download new input data 

or updated meta-data from remote repositories or local storage systems. All down-

loaded files are stored in GeStore. Pipeline managers (or pipeline configurations) are 

modified to call GeStore before running each tool in the pipeline in order to generate 

the incremental input files used by the tools and to merge the resulting files (Fig. 1, 

right). GeStore uses HDFS [18] and Hbase [19] to efficiently store incremental files 

and GeStore meta-data, and Hadoop MapReduce [17] to run scalable change detection 

jobs. In addition GeStore comprise library functions and tools to add incremental up-

dates to pipeline tools, and client applications to access data stored within GeStore. 

2.1 File based incremental updates 

GeStore uses a transparent file based approach where incremental updates are imple-

mented by modifying the input and meta-data files read by genomics data analysis tools 

such that these only contain the data for incremental update computations. The tool will 

then be run as normal, but it will typically produce a partial result. The partial result is 

merged with previously produced results and stored in GeStore.  



We have chosen a file based approach since there are relatively few file formats that 

are used by many genomics applications. It is therefore feasible to implement parsers 

that support most file formats and therefore most genomics pipeline tools. In addition, 

most file formats are simple and structured which makes it easy to write parsers for 

each format. However, update file generation and output merging is not trivial to im-

plement. It may be necessary to understand the biological content of the data and how 

the tools read and write the data. For example, for the widely used BLAST [20] tool 

most changes to the UniProt [3] input data records are for fields that are not used in the 

computation, and the output data records contains a field (e-value [15]) that is incorrect 

for incremental updates. Both of these issues can be fixed by writing relatively simple 

code for ignoring the insignificant fields during change detection and by fixing the e-

values in the output data. In addition, the system must provide, low overhead storage 

for incremental update data, and efficient generation of incremental update files.  

GeStore provides an interface that the pipeline system uses to request one or more 

incremental update input files, and to merge the partial results with previously produced 

results. These upcalls can be added by adding stages to the pipeline configuration before 

and after the execute tool step. Alternatively, the GeStore calls can be added by modi-

fying the code in the pipeline manger that manages the lists of input, meta-data, and 

output files used to setup a tool for execution and to store the results. 

2.2 Plugin framework 

GeStore provides a plugin framework to support many different file formats and pipe-

line tools. To add incremental updates to a pipeline the administrator must first write a 

plugin for each tool in the pipeline. These are then used by GeStore for each incremental 

update. A plugin comprise three parts: (i) a parser for each file type used by the pipeline 

tool, (ii) tool-specific incremental file generator, and (iii) tool-specific incremental out-

put file merger. Each plugin has typically a few tens of lines of code. Many plugins also 

share parsers and file mergers, and GeStore provides many library functions for pars-

ing, change detection, and merging of files. The plugins are managed by a framework 

that provides efficient data storage, and low overhead file parsing, generation, and 

merging.  

The file parser must define schemas for the input files and meta files used by a tool, 

and implement six methods that: (i) provide regular expressions that define the start and 

end of an entry in the file, (ii) split an entry into columns, (iii) compare two versions of 

an entry, (iv) check if an entry is well-formed, (v) put the entry into HBase, and (vi) 

generate output in other formats. The file generator requires implementing one method 

that specifies the parsers to use for each file format, and the fields to write to the input 

file. The output merger requires implementing a method to merge the output data with 

previously produced output data stored in GeStore. This may include minor fixes to 

output data fields as discussed above. 



2.3 Data storage and management 

GeStore uses the Hadoop software stack for scalable data storage and processing. Ge-

Store maintains: (i) HBase tables and HDFS files with pipeline tool input, output and 

meta-data file data, (ii) a cache of previously generated incremental update files stored 

in HDFS, and (iii) HBase tables with per plugin instance state that is used to generate 

file, merge output files, and provide provenance information.  

For file types that have a parser implemented, the data is split into entries and entry 

fields. These are stored as rows and columns in HBase using a file-format specific 

schema. The only required column in the schema is a unique ID for each row. The 

HBase schema can be modified by adding new columns to the table if for example the 

file format changes or the parser is modified. GeStore use the versioning mechanism in 

HBase to store only updated fields (i.e. delta compression), and to return the data for a 

given time period. The timestamp for a version corresponds to either the file generation 

date, release date, or version.  

3 Incremental METApipe 

METApipe is used by our biology collaborators to find novel enzymes by analyzing 

sequence data from marine microbial communities. METApipe is currently run using 

the GePan pipeline management system (developed by Tim Kahlke at the University 

of Tromsø). It includes the following tools: 

1. Multiple Genome Aligner (MGA): [21] does alignment of closely related DNA se-

quences. It does not require meta-data from knowledge bases. 

2. MGA-exporter: converts the MGA output to the format used by the next stage. 

3. FileScheduler: partitions and distributes the input data to the compute nodes. 

4. Protein BLAST (BLASTP) [20]: maps sequences to information from the UniProt 

Swiss-Prot and TrEMBL [3] knowledge bases. 

5. HMMer [22]: maps sequences to information from the Pfam-A and Pfam-B [23] 

protein family databases. 

6. Annotator: gathers the results from the preceding tools, and converts the data to a 

custom format. 

7. Annotator-exporter: converts the annotator output to a format that can be used by 

data visualization and exploration tools. 

To add incremental updates to METApipe we had to write parsers for the six file for-

mats used by the pipeline: FASTA, UniprotKB meta-data, Pfam meta-data, BLAST 

output, HMMer output, and MGA output. We also had to write plugins for the BLAST 

and HMMer tools. The BLAST plugin corrects incremental e-values as discussed in 

[15] during merge. The HMMer plugin only generates input files. 

The file format plugins were a total of 844 lines of Java code, and the tool plugins 

were 283 lines of Java code. The results show that file based incremental could be used 

for all tools in METApipe, and there are relatively few lines of tool specific code.  



To integrate GeStore with METApipe, we modified the code that generates the Grid 

Engine [24] scripts that run the pipeline tool code. GeStore calls were added by chang-

ing the file initialization commands to GeStore calls. In total, about 120 lines of code 

were changed in METApipe. We expect the changes required to other pipeline man-

agement systems to be similarly small. 

4 Evaluation 

Our initial experimental evaluation compares the benefits and overheads of using in-

cremental updates for the METApipe metagenomics analysis pipeline. Our experiments 

were run on a small cluster with one frontend and eight compute nodes. Each node is 

equipped with two Intel Xeon E5-1620 CPUs running at 3.6 GHz and 32 gigabytes of 

RAM. They have a total of 4.5 TB of local HDD. They also have 2.6 TB of NFS storage 

shared between them. The machines are connected using gigabit Ethernet. We believe 

such a cluster configuration is realistic for research labs that maintain genomic com-

pendia. 

We use a 15 mega base pairs metagenomics dataset from the Yellowstone Park [25] 

as input data. Processing this small dataset takes 2.5 hours on our small cluster. We 

incrementally update the dataset on the last day of the month from January 2011 to July 

2011. There were 6 updates to Uniprot Swiss-Prot and TrEMBL, and one update to 

Pfam A and B in that period. 

4.1 Update relationships 

 Total entries Total updates Significant New entries 

Swiss-Prot 527590 38.76% 0.44% 0.40% 

TrEMBL 14738346 32.11% 4.89% 4.88% 

Pfam-A 1076 100.00% 100.00% 3.25% 

Table 1. Monthly meta-data collection updates between January-July 2011. Averages reported. 

To analyze relationships between meta-data changes and input file changes, we aver-

aged all changes in UniProt TrEMBL, UniProt Swiss-Prot, and Pfam-A meta-data col-

lections between January and July in 2011(Table 1). In Swiss-Prot and TrEMBL most 

changes are to annotation that does not require BLAST recomputation, and hence a 

significant difference in incremental update execution time. Pfam has a naïve plugin 

that marks all changes as significant, and has therefore a high rate of significant changes 

(100%). The Pfam plugin could be improved by doing more precise classifications of 

non-significant updates. These results demonstrate the benefits of tool specific plugins. 

4.2  GeStore Improvements and overhead 

We measured METApipe execution time for full updates and incremental updates with 

1, 3, and 6 month periods (Table 2). The analysis time is dominated by BLASTp. Since  



BLAST execution time scales linearly with the input size, the smaller incremental input 

data generated by GeStore significantly reduce BLAST analysis time, and hence total 

execution time. 

Table 2. METApipe execution time split into analysis time and GeStore overhead (all in 

seconds). 

 

GeStore has an overhead for HMMer of 800 seconds when generating a complete da-

tabase, and 300 seconds when retrieving a cached database. Generating an incremental 

update database takes 2800 seconds, this is because the PFam plugin marks all updates 

as important. BLASTp has an overhead of 1700 seconds for generating a full database. 

The incremental update time is 300 to 800 seconds depending on the size of the update. 

Although GeStore overhead is significant for these experiments it will be much 

smaller for bigger, more realistic, input dataset sizes since the analysis time depends on 

input data size, while GeStore overhead depends on meta-data size. In addition, we 

expect to reduce the Pfam change detection overhead by implementing data aware 

change detection (as discussed above). 

The storage overhead increases sub linearly for UniProt since there are relatively 

few updates per month (as shown above), the January UniProt database file size is 33 

Gb. When stored in HBase it requires 48 Gb of space. However, the total size of the 

UniProt databases is 252 Gb, but only requires 77 Gb of space in GeStore. For Pfam 

the storage requirements increase linearly, from to 3.3 Gb to 7.1 Gb and 2.9 Gb and 6.3 

Gb respectively for GeStore and total file size. The storage requirements can be signif-

icantly reduced by improving the plugin for HMMer.  

GeStore achieves similar analysis runtime improvements (90%, for 5% meta-data 

updates) to incremental BLAST as reported in [15]. Execution time improvements 

ranging from 20% to 99% are reported in [9–14], but for applications from the data 

center domain. We have not experimentally compared the execution time improve-

ments and overheads to other large scale incremental update tools since these require 

modifications to the pipeline tools. 

5 Related Work 

Systems and frameworks for incremental updates on large scale datasets include Incoop 

[10], Percolator [11], Nectar [9], DryadInc [12], CBP [13], and HaLoop [14]. In Perco-

lator and CBP the programmer implements a system specific incremental program us-

ing respectively event-driven mini transactions and stateful primitives. Incoop, Nectar, 

 Analysis Overhead Total 

Full update (Jan 2011) 9141 0 9141 

  with GeStore 10718 2562 13280 

Incremental (Jan – Feb) 893 755 1647 

Incremental (Jan – April) 1736 3497 5233 

Incremental (Jan – Juli) 2850 3736 6586 



DyradInc, and HaLoop use data dependency graphs of Dryad [16] or MapReduce pro-

grams to automatically replace the input data for a computation with previously calcu-

lated results. GeStore combines these two main approaches; a programmer implements 

file generators and mergers for unmodified programs. GeStore is independent of the 

programming model and job management system, so the applications can be executed 

using Dryad, MapReduce [11], or the  Grid Engine [24]. 

GeStore extends the work in [15] by providing a framework and libraries to imple-

ment the necessary pre and post processing of data moved between a data warehouse 

and genomic analysis tools. This makes it easier to add additional support for additional 

genomic analysis tools as we have demonstrated by implementing incremental updates 

for a complete metagenomics analysis pipeline. 

Simple change detection is supported by tools such as Unix diff, delta encoding com-

pression systems [26], and version management systems such as CVS [27]. However, 

the change detection in these do not take into account the complex inter-file relation-

ships found in genomic datasets.  

The file tables maintained by GeStore are similar to declarative views maintained by 

data warehouses [28]. Incremental updates have also been used for non-distributed 

computation result caching (memoization) as in [8].  

Popular approaches for genomics pipeline management are Galaxy [29] and Bio-

Conductor [30]. These do not provide incremental computation. 

We evaluated GeStore using the locally developed METApipe pipeline. An alterna-

tive is the JCVI metagenomics analysis pipeline [31]. 

6 Conclusions and Future work 

We proposed an approach for adding incremental updates to unmodified genomic data 

analysis pipelines, leading to substantial reduction in time and resources needed to up-

date large biological compendiums. We presented the design and implementation of the 

GeStore system, including a framework for implementing plugins that enable transpar-

ent incremental updates. We demonstrated the feasibility of our approach and provided 

an initial experimental evaluation of our system using a real metagenomics analysis 

pipeline and real data. The cost effective transparent incremental updates provided by 

GeStore makes it practical to frequently update large genomic compendium with new 

experimental and meta-data, and thereby enabling novel biological discoveries. 

We plan to further evaluate the benefits and overhead of incremental updates for 

genomics data analysis by applying GeStore to the pipeline producing data for the IMP 

[32] tool, and to a Galaxy [29] pipeline. Galaxy can also be used to provide a GUI for 

GeStore configuration and data management. 
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