
Design and Evaluation of a
Recommender System

INF-3981 Master’s Thesis in Computer Science

Magnus Mortensen

Faculty of Science

Department of Computer Science
University of Tromsø

February 5, 2007





Design and Evaluation of a
Recommender System

INF-3981 Master’s Thesis in Computer Science

Magnus Mortensen

Faculty of Science

Department of Computer Science
University of Tromsø

February 5, 2007





Abstract

In the recent years, the Web has undergone a tremendous growth regarding both content

and users. This has lead to an information overload problem in which people are finding it

increasingly difficult to locate the right information at the right time.

Recommender systems have been developed to address this problem, by guiding users through

the big ocean of information. Until now, recommender systems have been extensively used

within e-commerce and communities where items like movies, music and articles are recom-

mended. More recently, recommender systems have been deployed in online music players,

recommending music that the users probably will like.

This thesis will present the design, implementation, testing and evaluation of a recommender

system within the music domain, where three different approaches for producing recommen-

dations are utilized.

Testing each approach is done by first conducting live user experiments and then measure

recommender precision using offline analysis. Our results show that the functionality of the

recommender system is satisfactory, and that recommender precision differs for the three

filtering approaches.
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Chapter 1

Introduction

1.1 Background

The World Wide Web contains an enormous amount of information. In January 2005
the number of pages in the publicly indexable [54] web was exceeding 11.5 billion [26].
Recent statistics also show that the number of Internet users is high and rapidly grow-
ing. Statistics from September 18th 2006 shows that 17% of the world’s population uses
the Internet and that the number of users has grown with over 200% from 2000 to 2006 [1].

The tremendous growth of both information and usage has lead to a so-called infor-
mation overload problem in which users are finding it increasingly difficult to locate the
right information at the right time [48]. As a response to this problem, much research
has been done with the goal of providing users with more proactive and personalized
information services.

Recommender systems have proved to help achieving this goal by using the opinions
of a community of users to help individuals in the community more effectively identify
content of interest from a potentially overwhelming set of choices [49]. Two recom-
mendation strategies that have come to dominate are content-based and collaborative
filtering. Content-based filtering rely on rich content descriptions of the items that are
being recommended [43], while collaborative filtering recommendations are motivated by
the observation that we often look to our friends for recommendations [52].

Systems using recommendations have been developed in various research projects. The
system called Tapestry [25] is often associated with the genesis of computer-based rec-
ommendation systems. Later, several research projects have focused on recommender
systems, either by introducing new concepts, or by combining old concepts to make bet-
ter systems.

Recommender systems have also been deployed within commercial domains, for example
in e-commerce applications. A well-known example is Amazon1, where a recommender

1www.amazon.com
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2 CHAPTER 1. INTRODUCTION

system is used to help people find items they would like to purchase. Many online com-
munities within the movie domain use recommender systems to gather user opinions
on movies, and then produce recommendations based on these opinions. Examples are
MovieFinder2 and Movielens3. New popular music services like Pandora4 and Last.fm5

also make use of recommendations to configure personalized music players.

1.2 Problem definition

This thesis shall focus on development and evaluation of a recommender system within
the music domain. Different approaches for computing recommendations will be designed,
implemented and tested with real end-users. Evaluation will be done by assessing the sys-
tem functionality and comparing the recommender precision obtained by each approach.

1.3 Interpretation

Throughout the last years, recommender systems have been deployed in various person-
alized music players. One reason for the success behind these players is due to their
ability to produce recommendations that accurately suits their users. By developing and
testing different variants of a music player using standard recommendation strategies, we
might be able to discover how the different techniques influence recommender precision.

We also conjecture that the standard strategies are not always sufficient to reflect a
person’s preference, where preference often is context dependent [4]. One important as-
pect of a person’s context is mood. By integrating a mechanism for mood filtering into
the music recommender system, it may be possible to give recommendations that better
suits a person’s often varying music preference.

Three variants of the recommender system will be tested using content-based filtering,
collaborative filtering and contextual collaborative filtering respectively. Testing includes
user experiments, where the users evaluate and listen to recommended music while the
system receives user feedback. Since listening to a vast variety of music generally takes
time, we conjecture that the users normally will test the system during the week while
studying or working. After testing the system, user feedback will be used to calculate
recommender precision. Finally, the results will be presented and evaluated.

1.4 Method and approach

The discipline of computing is divided into three paradigms[19]. These are theory, ab-
straction and design.

Theory is based on mathematics, and consists of the following four steps.

1. Characterize the objects under study.

2www.moviefinder.com
3www.movielens.umn.edu
4www.pandora.com
5www.last.fm
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2. Make hypothesis about the relationship between the objects.

3. Prove hypothesis true or false.

4. Interpret the result.

Abstraction is based on experimental scientific methods, and consists of the following
steps for investigating a phenomenon.

1. Form a hypothesis.

2. Construct a model.

3. Design an experiment and collect data.

4. Analyze the result.

Design is a paradigm rooted in engineering, and consists of four steps for constructing a
system that shall solve a problem.

1. Sate requirements and specifications for the system.

2. Design the system.

3. Implement the system.

4. Test the system.

5. Evaluate the system.

This thesis will follow the design paradigm, which means that a system solving a specific
problem will be developed. The problem is reflected in the requirement specification. To
fulfill these requirements, the system will be designed and implemented. Testing will be
done to measure system performance, in our case functionality and recommender preci-
sion. Finally, the system will be evaluated by consulting test results and requirements,
and then consider alternative approaches.

1.5 Outline

This thesis consists of the following chapters:

Chapter 2 - Related Work introduces the information overload problem that
current web technologies have to deal with. Different solutions to the problem is
presented, focusing on recommender systems. The chapter ends with a case study,
comparing two recommender systems that are relevant for our work.

Chapter 3 - Requirements states the system requirements.

Chapter 4 - Design proposes the design of our music recommender system and
its components.

Chapter 5 - Implementation discusses technical considerations and describes
the implementation of the system.
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Chapter 6 - Experiment describes the experiments carried out for this thesis,
and the experimental results.

Chapter 6 - Evaluation evaluates the system with respect to the requirements.

Chapter 7 - Conclusion draws the conclusion of this thesis and recommends
possible future work.



Chapter 2

Related work

This chapter will introduce the problem that recommender systems are trying to solve,
and different approaches for solving this problem. Present techniques used to improve
recommender systems are also explained before describing a case study with a comparison
between two popular recommender systems.

2.1 The World Wide Web

The World Wide Web (WWW or web) emerged in the early nineties. In 1990 Tim
Berners-Lee emphasized the necessity of an information management system to prevent
the loss of information resulting from the growing organizational structure at CERN1 [8].

The technology behind the web can be characterized as an information system com-
posed of agents [2]. Agents are programs that act on behalf of a person, entity or process
to exchange or process information. The main types of agents are server agents and
client agents. A server agent offers services that are used by the client agents, as shown
in figure 2.1. When a user follows a link on a web page in the browser, the browser
performs a request to the server, which responds by returning a web page.

The World Wide Web consortium was founded in October 1994. The goal was to develop
and maintain protocols that specify the standards that enable computers on the web to

1The European Organization for Nuclear Research

Server agent

Client agent
Internet

Request

Response

(1) (2)

(3)(4)

Figure 2.1: Client and server interaction.
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Figure 2.2: The number of Internet hosts between 1981 and 2006.

effectively store and communicate different forms of information. At its core, the web is
made up of the following standards:

Hypertext transfer protocol (HTTP) [9] is a transport protocol that specifies how
the servers and clients communicate with each other. When a user types the URL
of a web page or follows a link on a web page, the user’s web browser performs
a HTTP request to the server. The server responds by returning the web page
content in quick successions.

Hypertext mark-up language (HTML) [17] is used to define the structure of web
pages. The language has notions for embedding references to other documents.
These references appear on web pages as hyperlinks that the users can select to
fetch and display the referenced page. Recently, another markup language, XML
[12], has been defined to facilitate the sharing of data across different information
systems.

Uniform resource locator (URL2) [11] is a universal system for referencing resources
on the web.

Together, these standards form a simple and effective platform for sharing information.
Due to this, and the fact that computers and Internet access have become more available,
the World Wide Web has undergone an exponential growth, both in number of comput-
ers and users. Figure 2.2 shows the growth in the number of Internet hosts between 1981
and 2006 [57].

As the World Wide Web continues to grow at an exponential rate, the size and complex-
ity of web pages grow along with it. Different techniques have been applied to develop
systems that help users find the information they seek. These techniques belong to the
fields in software technology called information retrieval and information filtering.

2URI has been defined in [10]
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Query
interface

Document
processorCrawler Indexer Index

Content
Query
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(1) (2) (3) (4)(5)

Figure 2.3: Information retrieval.

2.2 Information retrieval and filtering

The rapidly expanding Internet has given the users the ability to choose among a vast
variety of information [27], whether it is information concerning their profession, events
in their world, or information that allows them to maintain their lifestyle. The infor-
mation that is needed to fulfil these continuously increasing demands can come from
different sources. Examples are web pages, emails, articles, news, consumer journals,
shopping sites, online auctions and multimedia sites. Even though the users profit from
the enormous amount of information that the sources provide, they are not able to han-
dle it. This information overload problem [48] is the reason why several techniques for
information retrieval and information filtering have been developed. Although the goal
of both information retrieval and information filtering is to deal with the information
overload problem by examining and filtering big amounts of data, there is often made a
distinction between the two [7].

Information retrieval

Information retrieval (IR), often associated with data search, is a technology that may
include crawling, processing and indexing of content, and querying for content. The nor-
mal process of IR is showed in figure 2.3. Crawling is the act of accessing web servers
and/or file systems in order to fetch information. By following links, a crawler is able to
traverse web content hierarchies based on a single start URL. The document-processing
stage may add, delete or modify information to a document, such as adding new meta
information for linguistic processing, or extracting information about the language that
the document is written in. Indexing is a process that examines content that has been
processed and makes a searchable data structure, called Index, that contains references
to the content.

Queries are requests for information. IR systems let a user write a query in form of
keywords describing the information needed. The user can interact with the IR system
through a Query interface. A Query-processor will use the index to find information
references based on the keywords and then display the references. The goal is to analyze
and identify the essence of the user’s intent from the query, and to return the most rele-
vant set of results.

Filtering of information in IR systems is done by letting the user specify what infor-
mation is needed by manually typing keywords describing the information. IR is very
successful at supporting users who know how to describe exactly what they are looking
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for in a manner that is compatible with the descriptions of the content that were created
during the indexing.

Information filtering

Information filtering (IF) systems focus on filtering information based on a user’s profile.
The profile can be maintained by letting the user specify and combine interests explicitly,
or by letting the system implicitly monitor the user’s behavior.

Filtering within IF systems is done when the user automatically receives the information
needed based on the user’s profile. The advantage of IF is its ability to adapt to the
user’s long-term interest, and bring the information to the user. The latter can be done
by giving a notice to the user, or by letting the system use the information to take action
on behalf of the user.

Closely related to IF is the idea of having a system that acts as a personalized deci-
sion guide for users, aiding them in decision making about matters related to personal
taste. Systems that realize this idea are called recommender systems.

2.3 Recommender systems

“We have 6.2 million customers; we should have 6.2 million stores. There should be the
optimum store for each and every customer.”

—Jeff Bezos, CEO of Amazon.com�[3]

In everyday life, when presented with a number of unfamiliar alternatives, people nor-
mally tend to ask friends for guidance, or to seek expert help by reading reviews in
magazines and newspapers. In the recent years, online recommender systems have begun
to provide a technological proxy for this social recommendation process [58], in which
they are used to either predict whether a particular user will like a particular item (pre-
diction), or to identify a set of N items that will be of interest to a certain user (top-N
recommendation).

Recommender systems (RS) [49] are used in a variety of applications. Examples are
web stores, online communities, and music players. Currently, people mostly tend to
associate recommender systems with e-commerce sites, where recommender systems are
extensively used to suggest products to the customers and to provide customers with
information to help them decide which products to purchase. Products can be based
on the top overall sellers on a site, on the demographics of the consumers, or on an
analysis of the past buying behaviour of the consumers as a prediction for future buying
behaviour [53]. This is shown in figure 2.4.

Content-based filtering and collaborative filtering are two algorithmic techniques for com-
puting recommendations. A content-based filtering system selects items based on the
correlation between the content and the user’s preference, as opposed to a collaborative
filtering system that chooses items based on the correlation between people with similar
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Retrieval Predict Level of Interest Adapt Information (e.g. filter)

User Profile

Information
Store

Figure 2.4: Information filtering in recommender systems.

preference. Systems using the latter technique are also referred to as automatic recom-
mender systems [53]. In addition, a hybrid approach has been developed to avoid certain
limitations related to content-based and collaborative filtering.

2.3.1 Content-based filtering

Because of the information overload problem explained in chapter 2.2, researchers have
been working for more than thirty years with technologies that allow automatic cate-
gorization and recommendation of information to a user based on the user’s personal
preferences [27]. In particular, various candidate items are compared with items previ-
ously rated by the user and the best-matching items are recommended.

Information filtering differs from information retrieval in the way the interests of a user
are presented. Instead of letting the user pull information using a query, an information
filtering system tries to model the user’s long term interests and push relevant infor-
mation to the user. Despite this difference, information filtering have borrowed certain
techniques from information retrieval [27], as is reflected in content-based filtering, and
also in collaborative filtering. One technique is term frequency indexing [50], where doc-
uments and user preferences are represented by vectors. As figure 2.5 shows, the vector
space have one dimension for each word in the database. Each part of the vector is
the frequency that the respective word occurs in the document or the user query. The
document vectors that are found to be the closest to the query vectors are possibly most
relevant to the user’s query. Collaborative filtering systems can use this technique by
letting each user profile be represented by a vector, and then compare user similarities
by interpreting the vectors.

Other techniques borrowed from IR systems include Boolean search indexes, where key-
words in a query are combined with Boolean operators [27, 16]; probabilistic retrieval
systems where probabilistic reasoning is used to determine the probability that a docu-
ment meets a user’s information need [23]; and natural language query interfaces, where
queries are posed in natural sentences [39].

There are several examples of systems that use content-based filtering to assist users in
finding information [60]. Letizia [40] is a user interface that assists users browsing the
web. The system tracks the browsing behaviour of a user and tries to anticipate what
pages may be of interest to the user. Syskill & Webert [45] is a system that based on
a user’s rating of web pages over time predict which web pages will interest the user.
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Word 2

Word 1

Word 3

Doc 1

Query

Doc 2

Figure 2.5: Term frequency indexing.

Higuchi [34] is a system using a neural network to model a user’s interests within a news
environment. The neural network is maintained while the user is approving or rejecting
different articles. What these systems have in common is that they all operate on textual
information.

Information only consisting of text can easily be parsed with today’s technology, and
then automatically categorized. For other types of information like multimedia data
(e.g. images, music and movies), the categorization requires more complex operations.
The technology for parsing multimedia data is getting better, but it will still take a while
before it can be done without human interaction. Today, categorization of such infor-
mation is mostly done manually by humans. This activity is expensive, time-consuming,
error-prone and highly subjective [42]. For this reason, content-based systems are not
suitable for dynamic, large environments with a vast and variant amount of information.
However, if information can be categorized without having to parse the information, this
problem can be avoided.

2.3.2 Collaborative filtering

The difficulties of automatic information processing have put restrictions on content-
based filtering technology. Collaborative filtering (CF) [25] was developed to address
this weakness. CF is different from other filtering technologies in that information is
filtered by using evaluation instead of analysis, thus categorizing information based on
the user’s opinion of the information instead of the information itself. In addition, CF
stresses the concept of community by letting recommendations be a result of the opinions
of the current user and other similar users. As figure 2.6 shows, all users contribute with
ratings based on their preferences. Recommendations for the current user are produced
by matching the user’s ratings with ratings given by other users. In this way, similar
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Figure 2.6: Collaborative Filtering.

users are linked together to form a community.

The properties of CF make it possible to build systems that have advantages above what
is possible with content-based filtering. First, because recommendations are independent
of the content itself, it is possible to filter information from any source. Second, it is
possible to filter and recommend information based on deep and complex relationships
to the user, such as taste or quality. For example, CF makes it possible to differ between
well-written and poorly written documents. Third, it is possible to receive serendipitous
recommendations. These are recommendations for information that the user is not ac-
tively looking for. Imagine a music recommender system where a user have listened to
several bad jazz songs, and conclude that jazz is not interesting. The user specifies in
the recommender system that jazz is not of interest, and will then stop receiving jazz
recommendations. However, assume that a second user, who dislikes the same jazz songs
as the first user, finds a good jazz song. Then, CF will make sure that the jazz song is
recommended to the first user. The user may then discover that jazz is not that bad after
all. Finally, CF helps to create communities, as explained above. None of this would be
possible using content-based filtering.

Systems using CF have been widely used in entertainment domains. Despite the fact
that the technology is mostly accurate, it has yet to be successful in domains where a
higher risk is associated with the acceptance of a recommendation. Users do not normally
object to purchasing CDs or DVDs after receiving recommendations from systems using
CF. However, a user would probably not take the risk of buying a house based on such
recommendations. The fact that CF systems are not trusted for risky content domains
has its explanation. Predictions made by recommender systems reflect approximations
made by humans. They are therefore not always accurate, and certainly not objective.
In addition, CF systems are doing calculations based on sparse and incomplete data.
Together these two conditions explain why the recommendations given by CF systems
are generally correct, but sometimes very wrong.

Another related issue concerns trust. CF systems act as black boxes, computerized or-
acles that give advice, but cannot be questioned [30]. The typical interaction paradigm
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Figure 2.7: The user-item matrix.

involves asking the user for some input, processing the input, and giving the user some
output in the form of recommendations. The user does not know why the specific content
was recommended. This problem has also prevented acceptance in all but the low-risk
content domains.

It is important to note that CF technologies normally do not compete with content-
based filtering technologies. Today, the two technologies are usually integrated to pro-
vide powerful hybrid filtering solutions. Successful research has been done in projects
like GroupLens [37, 48], Ringo [55], Video Recommander [31] and MovieLens [18]. Com-
mercial sites using CF technology are Amazon3, CDNow4, MovieFinder5 and Launch6.
These research projects and commercial sites make use of different approaches to achieve
collaborative filtering. These approaches will now be explained.

2.3.3 Collaborative filtering approaches

Collaborative Filtering systems are often classified as memory-based(user-based) or model-
based(item-based). Early research used a memory-based approach that makes rating pre-
dictions based on the entire collection of previously rated items by the users. Then, due
to limitations with this approach, researchers developed model-based CF systems that
use the collection of ratings to learn a model, which is used to make predictions. Although
the model-based approach deals with some of the limitations related to memory-based
CF, this approach also has its shortcomings. These approaches will be described further,
and their strengths and weaknesses will be addressed.

User-item matrix

A user-item matrix can be used to describe memory-based and model-based CF [61]. For
K users and M items, the user profiles are represented in a KÖM user-item matrix X, as

3www.amazon.com
4www.cdnow.com
5www.moviefinder.com
6www.launch.com
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Figure 2.8: Rating prediction based on user similarity

in figure 2.7. Each element xk,m = r indicates that the user k rated item m by r, where
r ∈ {1, ..., |r|} if the item has been rated, and xk,m = ∅ means that the rating is unknown.

The user-item matrix can be decomposed into row vectors:
X = [u1, ..., uK ], uk = [xk,1, ..., xk,M ], k = 1, ...,K

Each row vector uk corresponds to a user profile and represents a particular user’s item
ratings. This decomposition leads to memory-based CF.

The matrix can also be represented by its column vectors:
X = [i1, ..., iM ], im = [x1,m, ..., iK,m], m = 1, ...,M

where each column vector im corresponds to a specific item’s ratings by all K users. This
representation shows model-based CF.

Memory-based collaborative filtering

A memory-based CF approach, or nearest-neighbor [13, 29, 35, 48] is said to form an im-
plementation of the “Word of Mouth” phenomenon by maintaining a database of all the
users known preferences of all items, and for each prediction perform some computation
across the entire database. It predicts the user’s interest in an item based on ratings of
information from similar user profiles. This is shown in figure 2.8, where the prediction
of a specific item (belonging to a specific user) is done by sorting the row vectors (user
profiles) by its dissimilarity toward the user. In this way, ratings by more similar users
will contribute more to the rating prediction.

A variety of memory-based CF systems have been developed [47]. The Tapestry sys-
tem relied on each user to identify like-minded users manually [25]. GroupLens [48] and
Ringo [55], developed independently, were the first CF algorithms to automate prediction.
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These are general memory-based approaches, where for each prediction, computations
are done over the entire database of user ratings. The Pearson correlation coefficient was
used in GroupLens [48]. The Ringo project [55] focuses on testing different similarity
metrics, including correlation and mean squared difference. Breese et al. [13] propose
the use of vector similarity, based on the vector cosine measure often used in information
retrieval systems. In addition to the research projects mentioned, a number of commer-
cial systems using memory-based CF have been developed, most notably the systems
deployed at Amazon and CDNow.

Memory-based CF methods have reached a high level of popularity because they are
simple and intuitive on a conceptual level while avoiding the complications of a poten-
tially expensive model-building stage. At the same time they are sufficient to solve many
real-world problems. Yet there are some shortcomings [52, 32]:

Sparsity. In practice, many memory-based CF systems are used to evaluate large
sets of items. In these systems, even active users may have consumed well under
1% of the items. Accordingly, a memory-based CF system may be unable to make
any item recommendation for a particular user. As a result, the recommendation
accuracy can be poor.

Scalability. The algorithms used by most memory-based CF systems require
computations that grow according to the number of users and items. Because of
this, a typical memory-based CF system with millions of users and items will suffer
from serious scalability problems.

Learning. Since no explicit statistical model is constructed, nothing is actually
learned from the available user profile and no general insight is gained.

The weaknesses of memory-based CF systems, especially the scalability and learning
issue have led to the exploration of an alternative model-based CF approach.

Model-based collaborative filtering

The motivation behind model-based CF is that by compiling a model that reflects user
preferences, some of the problems related to memory-based CF might be solved. This
can be done by first compiling the complete data set into a descriptive model of users,
items and ratings. This model can be built off-line over several hours or days. Recom-
mendations can then be computed by consulting the model.

Instead of using the similarity of users to predict the rating of an item, the model-
based approach uses the similarity of items. This is illustrated in figure 2.9. Prediction
is done by averaging the ratings of similar items rated by the specific user [20, 52, 41].
Sorting is done according to dissimilarity, as in memory-based CF. The difference is that
the column vectors (items) are sorted toward the specific item, and not as in memory-
based CF, where row vectors are sorted toward the specific user. Sorting of the column
vectors assures that the ratings from more similar items are weighted stronger.
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Early research on this approach evaluated two probabilistic models, Bayesian cluster-
ing and Bayesian networks [13]. In the Bayesian clustering model, users with similar
preferences are clustered together into classes. Given the user’s class membership, the
ratings are assumed to be independent. The number of classes and the model parameters
are learned from the data set. In the Bayesian network model, each node in the network
corresponds to an item in the data set. The state of each node corresponds to the pos-
sible rating values for each item. Both the structure of the network, which encodes the
dependencies between items, and the conditional probabilities, are learned from the data
set.

Ungar and Foster [59] also suggest clustering as a natural pre-processing step for CF.
Users and items are classified into groups. For each category of users, the probability
that they like each category of items is estimated. Results of several statistical techniques
for clustering and model estimation are compared, using both synthetic and real data.

Research have also focused on a rule-based approach for doing model-based CF. This
approach applies association rule discovery algorithms to find associations between co-
purchased items and then generates item recommendations based on the strength of the
association between items [51].

As mentioned in section 2.3.3, memory-based CF approaches suffers from a data spar-
sity problem. Model-based methods solve this problem to a certain extent, due to their
“compact” model. However, the need to tune a significant number of parameters has
prevented these methods from practical usage. Lately, researchers have introduced di-
mensionality reduction techniques to address data sparsity [61], but as pointed out in
[33, 62], some useful information may be discarded during the reduction. [33] has ex-
plored a graph-based method to deal with data sparsity, using transitive associations
between users and items in the bipartite user item graph.

Another direction in collaborative filtering research combines memory-based and model-
based approaches [47, 62]. [61] proposes a framework for including model-based recom-
mendations into the final prediction, and does not require clustering of the data set a
priori.

Model-based CF has several advantages over memory-based CF. First, the model-based
approach may offer added values beyond its predictive capabilities, by highlighting cer-
tain correlations in the data. Second, memory requirements for the model are normally
less than for storing the whole database. Third, predictions can be calculated quickly
once the model is generated, though the time complexity to compile the data into a model
may be prohibitive, and adding one new data point may require a full recompilation.

The resulting model of model-based CF systems is usually very small, fast and essentially
as accurate as memory-based methods [13]. Model-based methods may prove practical
for environments in which user preferences change slowly with respect to the time needed
to build the model. Model-based methods, however, are not suitable for environments in
which user preference models must be updated rapidly or frequently.
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Figure 2.9: Rating prediction based on item similarity

2.3.4 Hybrid approach

As noted in section 2.3.2, several recommender systems use a hybrid approach by combin-
ing content-based and collaborative techniques. This helps to avoid certain limitations
of content-based and collaborative filtering systems [5]. There are four main approaches
for combining the two techniques into a hybrid recommender system.

Combining separate recommender systems

This approach implements content-based and collaborative techniques separately and
combines their predictions [46, 15]. This can be done by combining the ratings obtained
from individual recommender systems into one final recommendation, or by using the
”best” individual system after measuring the quality of both systems.

Adding content-based characteristics to the collaborative approach

This approach incorporates some content-based characteristics into the collaborative ap-
proach. Content-based profiles, and not the commonly rated items, are used to calculate
the similarity between two users. [46] makes it clear that this contributes toward over-
coming some of the sparsity-related problems of a purely collaborative approach, since
not so many pairs of users will have a significant number of commonly rated items. An-
other benefit is that users can be recommended an item not only when this item is rated
highly by users with similar profile, but also directly, when this item scores highly against
the user’s profile.

Adding collaborative characteristics to the content-based approach

This approach incorporates some collaborative characteristics into the content-based ap-
proach. One example is to create a collaborative view of a collection of user profiles,
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where user profiles are represented by term vectors [56]. This will result in an perfor-
mance improvement compared to a pure content-based approach.

Developing a single unifying recommendation approach

This approach constructs a general unifying model that incorporates both content-based
and collaborative characteristics. [6] proposes using content-based and collaborative
characteristics, for example the age or gender of users or the genre of movies, in a single
rule-based recommendation classifier.

2.4 Improving recommender systems

To provide better capabilities, recommender systems can be extended in several ways.
Some improvements that have shown to give better recommendations will now be intro-
duced.

2.4.1 Intrusiveness

Recommendations given by recommender systems are based on the user’s opinion of the
content. Opinions are expressed by ratings. Recommender systems are often distin-
guished by whether they operate on intrusive(explicit) or nonintrusive(implicit) ratings.

Intrusive rating refers to a user consciously expressing his or her preference for an item,
normally in a binary or numerical scale. Using a binary scale, the user can only indicate
whether he or she likes or dislikes an item, while using a numerical scale, the user can
express the degree of preference for an item. One example of a system using intrusive
ratings with a binary scale is Syskill & Webert [45], where users click on a thumbs up
symbol when visiting a web site they like, and a thumbs down symbol when visiting a
web site they don’t like. The GroupLens system [48] is an example of a system using
intrusive rating with a numerical scale. It uses a scale of one (bad) to five (good) for
users to rate Netnews articles, and users rate each article after reading it.

Nonintrusive rating is done by interpreting user behaviour or selections to assign a rating
or preference. Nonintrusive ratings can be based on browsing data in web applications,
purchase history in web stores, or other types of information access patterns.

Even though nonintrusive ratings can be useful to limit the required user attention,
they are often inaccurate and cannot fully replace explicit ratings provided by the user.
Therefore, the problem of minimizing intrusiveness while maintaining a certain level of
accuracy needs to be addressed by recommender system researchers.

2.4.2 Contextual information

Giving accurate recommendations is essential in recommender systems. Inaccurate rec-
ommendations will lead to displeased users, which will diminish the utility of the system.
There are several recommender systems in both commercial and academic areas that deal
with fixed user preferences. However, since the items preferred by a user may change de-
pending on the context, these conventional systems have inherent problems. Contextual



18 CHAPTER 2. RELATED WORK

information has therefore been used to improve the accuracy in recommender systems
[44].

Dey defines context as any information that can be used to characterize the situation
of an entity. An entity can be a person, place or object that is considered relevant to
the interaction between a user and an application, including the user and applications
themselves [21]. In addition, Dey presents an architecture that supports the building of
context-aware applications.

Contextual information can be crucial in some domains. The utility of a certain rec-
ommended item may depend on time and/or location. It may also depend on the person
with whom the recommended item will be shared, and under what circumstances. A
travel recommender system should not only recommend some vacation spot based on
what this user and other similar users liked in the past. It should also consider the time
of the year, with whom the user is travelling, and other relevant contextual information.
Imagine a tourist having a cellular phone with a GPS7 receiver. A recommender system
could then be used to continuously send the tourist updated travel information that is
relevant in terms of both time and location.

To be capable of using context in recommender systems, the content to be recommended
needs some meta-data attached to it; something that describes the different contexts.
This meta-data can be set manually or automatically by analyzing the content.

Manual modeling of content similarity

Meta-data can be added to content manually by the content providers, or by letting the
users add this information while using the recommender system. One example of the
first approach is how a movie can belong to a certain genre that is specified by the movie
provider. The latter approach can be implemented by letting the users set certain movie
properties. The movie recommender system developed by [24] even makes it possible for
users to adapt new keywords describing a movie. These keywords are used to produce
more accurate recommendations based on properties made by the users. The big advan-
tage of this solution is that it adapts to changes regarding what the users find important,
something which can change over time.

As stated in 2.3.1, manually categorization of content can be expensive, time-consuming,
error-prone and highly subjective. Due to this, many systems aim at providing more
automatic solutions.

Computational modeling of content similarity

Recently, much effort has been put in the area of automatic content similarity modeling
within recommender systems. Some of this work has focused on the music domain. Re-
search has usually tried to classify music by genre and artist, but also by contexts like
mood.[22] focuses on music retrieval by detecting mood. In this project, mood detection
is done by analyzing two music dimensions, tempo and articulation. Mood is divided

7Global positioning system
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into four categories; happiness, anger, sadness, and fear.

In 2004, a world-wide cross-validation of music similarity systems was conducted, in
the form of a public competition during the International Symposium on Music Informa-
tion Retrieval (ISMIR)8. The result of this competition showed that it was possible to
classify 729 music tracks into 6 different genres with an accuracy of 78.8%. They were
also able to identify artists from a collection of 120 music titles out of a list of 40 artists
with an accuracy of 24%.

MusicSurfer is a content-based recommender system that automatically extracts descrip-
tions related to instrumentation, rhythm and harmony from music audio signals [14]. [36]
developed a music recommender system for cars that can classify a wide range of stored
music using automatic music content analysis. The system is able to extract some mu-
sical features from a CD without any prior information. This information is stored on
a server together with the music. Users can then listen to music according to their cur-
rent mood. The system also has the ability to give personal recommendations based on
previously selected songs.

2.4.3 Evaluating recommender systems

Much effort has been put into the development of good metrics to measure the effec-
tiveness of recommendations [29, 27]. In most literature, the evaluation of algorithms is
done using coverage and accuracy metrics. Coverage measures the percentage of items
for which a recommender system is capable of making predictions [29].

Accuracy measures can be either statistical or decision-support [29]. Statistical accu-
racy metrics compares the estimated ratings against the actual ratings. Techniques for
doing this includes mean absolute error (MAE), root mean squared error and correlation
between predictions and ratings. Decision-support measures determine how well a rec-
ommender system can make predictions of items that would be rated highly by the user.
For example they include measures of precision and recall. Precision is the percentage
of truly high ratings among those that were predicted to be high by the recommender
system, while recall is the percentage of correctly predicted high ratings among all the
ratings known to be high.

Although these measures are popular, they have certain limitations. One is that the
users typically only rate the items that they choose to rate. The set of rated items
will then probably give a fallacious view of preferences because users tend to rate the
items that they like, not the items that they dislike. The consequence of this is that
evaluation results only show how accurate the system is on items that users decided to
rate, whereas the ability of the system to properly evaluate a random item is not tested.
Another limitation with most of these evaluation metrics is that they do not capture the
”quality” and ”usefulness” of recommendations. Imagine a recommender system for a
supermarket. Recommending obvious items such as milk and bread that the users are
likely to buy, will give high accuracy rates. However, it will not be very useful for the

8http://ismir2004.ismir.net/
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customer. It is therefore important to develop measures that also capture the business
value of recommendations.

2.4.4 Other improvements

Other research issues within recommender systems include understanding of users and
items [46, 47, 6], scalability [52, 53], explainability [30] and privacy [53]. Since these
issues are outside the scope of this thesis, they will not be discussed.

2.5 Case study: Pandora vs. Last.fm

Music recommender services like Pandora9 and Last.fm10 have become very popular dur-
ing the last years. These services are also called personalized streaming radio stations,
because they allow users to specify a favorite artist, and then provide an Internet audio
stream of similar music. Both provide the same service, but the underlying algorithms
are different [38].

The recommendations produced by Pandora are based on inherent qualities of the music.
When given an artist or a song, the service will find similar music in terms of melody,
harmony, lyrics, orchestration, vocal character and so on. Pandora calls these musical at-
tributes “genes”. The database containing songs and genes belong to the “Music Genome
Project”. As explained in section 2.3.1, the main approach for producing recommenda-
tions based on content analysis is called content-based filtering. Pandora is an example
of a service using this approach.

Last.fm is a social recommender, and knows little about the properties of each song.
Instead it assumes that if the actual user and a group of other users enjoy many of the
same artists, the actual user will probably also enjoy other artists that are popular in
the group. Collaborative filtering systems produce recommendations based on the cor-
relations between people with similar preferences. Last.fm uses this approach, but with
a different focus than most of the other systems using this approach. Instead of focusing
on improving the algorithms that are used to match similar users, Last.fm’s innovation
has been in improving the data that the algorithms work on. They claim that better
algorithms are nice, but better data is nicer. An additional feature is an optional plug-in
that automatically monitors different media-player software, so that user profiles gath-
ered from these external resources can be included in the Last.fm application to give
better recommendations.

2.5.1 Exploring new artists

Since both Pandora and Last.fm are services with the goal of helping their users discover
new music, it is also important that the services keep themselves up to date. Adding new
music to a service mainly involves two steps. First, the music and eventual attributes
are added to the library. Then, the new music needs to be recommended before it can
actually reach the users. This first step is said to be a bottleneck of content-based

9www.pandora.com
10www.last.fm
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filtering systems, as explained in section 2.3.1. That is also the case for Pandora. For
each song that is added to the library, employees at Pandora have to classify the song
according to hundreds of musical attributes. This does not pose a problem for Last.fm,
because here manual classification of each song is not required. However, Last.fm has
its weakness in the second step. The sparsity problem, explained in section 2.3.3, is the
problem of having a set of items to be evaluated that is larger compared to the number
of evaluations given by the users. Last.fm may have difficulties letting new music reach
the users because of this problem. Before new music can be recommendable, it needs
time to get enough popularity to rise above the system noise level. Pandora does not
have this problem because it is only comparing inherent qualities of the songs, not who
they are popular with.

2.5.2 Overspecialization

Another issue that has to be taken into account in services like Pandora and Last.fm
is the problem of overspecialization. In content-based services like Pandora, the system
can end up only recommending songs that score highly against a user’s profile. The user
is then limited to being recommended items that are similar to those already rated. For
example, a user with no knowledge about the music genre blues will never receive any
recommendations for even songs that the user likes within this genre. One solution to
this problem is to avoid recommending songs that are too similar to the songs already
played. Pandora solves this problem by allowing the users to build several radio stations.
Then it does not matter if one station is overspecialized as long as it is possible to create
a new station.

For Last.fm, the problem is that recommender systems based on collaborative filter-
ing tend to reward users who are similar to those who already use the system. If many of
the users have the same taste as the actual user, the actual user will probably get good
recommendations. If not, the actual user may get bad recommendations, and might end
up not using the service. This is called a “locked loop” whereby the system only includes
certain genres and styles. Although this may seem like a serious problem, a truly locked
loop is unlikely for services like Last.fm, because of leakages. A group of users that share
the same core musical tastes will have enough variance in secondary tastes to allow for
a range of music that will always expand. However, the expansion will be slow for less
popular genres.

2.5.3 Conclusion

Both Pandora and Last.fm are popular services and they both have millions of users. This
shows that the services provide recommendations that satisfy the users. Which service to
prefer is a difficult question, since they both have their strengths and weaknesses. Many
will probably say that combining the approaches of the two services, would create the
ultimate service, something which is not unlikely. It is said that Pandora is considered
most promising in becoming the leading music recommender system [38], because it
is easier for Pandora to incorporate Last.fm’s collaborative filtering functionality, than
the other way around. However, maintaining the manual work of classifying songs is
expensive, and Pandora is probably not delivering proportionally more benefit for that
cost.
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Figure 2.10: The information overload problem and a hierarchy of solutions.

2.6 Summary

This chapter first introduced the information overload problem in which users are finding
it increasingly difficult to locate the right information at the right time. Then, a set of
solutions to this problem has been presented. The hierarchy illustrated in figure 2.10
shows the relationship between these solutions. As can be seen, they either lie within
the field of information retrieval or information filtering. While information retrieval
systems filter information by letting users specify explicitly what information is needed,
information filtering systems strive to adapt the users long-term interests and filter in-
formation based on user profiles.

Closely related to information filtering is the idea of having systems that act as person-
alized decision guides for users. These kind of systems are called recommender systems.
There are mainly three algorithmic techniques for computing recommendations. Content-
based filtering selects items to recommend based on the correlation between the content
and the user’s profile. Collaborative filtering chooses items based on the correlation be-
tween users with similar preferences. In addition, there exist hybrid filtering approaches
that tries to avoid certain limitations related to content-based and collaborative filtering.

Furthermore, collaborative filtering are often classified as memory-based or model-based,
which means that rating predictions are based on the entire collection of previously rated
items, or on a model that reflects previously rated items respectively.

Various improvements to recommender systems have been introduced over the last years,
and three of them are presented in this chapter. First, intrusiveness should be minimized
while maintaining a certain level of accuracy, so that users can receive precise recom-
mendations without being overly disturbed. Second, contextual information like time
and location can be used to improve the accuracy of recommendations. Finally, various
evaluation metrics have been developed to measure effectiveness and thus find out if a
recommender system should be improved.
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The last section of this chapter presents a case study where two popular music rec-
ommender systems are compared. Pandora and Last.fm may seem similar for the users,
but the underlying algorithms vary. Pandora is mainly using a content-based approach
while Last.fm mainly uses collaborative filtering techniques. In chapter 4, two filtering
approaches that are similar to those used by Pandora and Last.fm, will be designed. The
reason for presenting these systems is to give an example of two relevant commercial
systems, and to explain some of the issues that have to be considered while designing
such systems.





Chapter 3

Requirements

This chapter presents the requirements of our system, and is based on the problem
definition in section 1.2. First an overview of the system model is presented.

3.1 System overview

In this thesis, a centralized recommender system for music is developed. An overview
of the system is illustrated in figure 3.1. Clients communicate with a web server over
the Internet. The web server provides a music service. After receiving song evaluations
from the clients, the server will produce and provide the clients with personal music
recommendations. Each recommendation consists of a play list with information about
the music, and where the music is located.

(2)
Server

(3)
Music and user

information

(1)
Clients

Internet

Figure 3.1: Recommender system overview.
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3.2 Functional requirements

3.2.1 Client application

The client application is the link between the user and the server application. Its task is
to gather information from the users and to allow users to play music. The information
is sent to the server application, where it is stored, and later used to produce recommen-
dations. In addition, the information is used to measure recommender precision. This
allows for investigation of how precision is influenced by different recommender strategies.
The requirements for the client application are:

R0 - Play music
The client application shall provide an interface that makes it possible to play
music by selection, or by navigation through standard music player buttons like
play, pause, stop and skip.

R1 - Request recommendations
The client application shall make it possible to request recommendations and to
send the requests to the server application.

R2 - Evaluate songs
The client application shall make it possible to evaluate each song and to send this
information to the server application.

3.2.2 Server application

The server application receives information from the client application, and provides the
client application with recommendations. The requirements for the server application
are:

R3 - Handle recommendation requests
The server application shall receive and handle requests for recommendations.

R4 - Store evaluations
The server application shall receive and store music evaluations.

R5 - Recommend using content-based filtering
The server application shall be capable of producing recommendations by inter-
preting the content and evaluations provided by the actual user.

R6 - Recommend using collaborative filtering
The server application shall be capable of producing recommendations by inter-
preting evaluations given by the actual user and other similar users.

R7 - Recommend using contextual collaborative filtering
The server application shall be capable of producing recommendations by inter-
preting contextual information given by the users, and evaluations given by the
actual user and other similar users.
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3.3 Non-functional requirements

R8 - Accuracy
The server application shall produce accurate recommendations that match the
user’s music preference.

R9 - Intrusiveness
The client application shall minimize intrusiveness and at the same time capture
user attention so that an acceptable amount of evaluation data is received.

R10 - Scale potential
The recommender system shall have the potential of being scalable both with re-
spect to size and geography.





Chapter 4

Design

This chapter presents our recommender system design and how to satisfy the require-
ments stated in chapter 3. First, the system architecture is explained, before discussing
each system component in detail.

4.1 Architecture

4.1.1 Decomposition

The user interacts with the client application through the interface. The interface pro-
vides the user with the opportunity to play music (R0), request recommendations (R1)
and evaluate songs (R2). Before music can be played, the client application needs a play
list consisting of a set of recommended songs. This is provided by the server application
after receiving a recommendation request (R3). To provide recommendations, the server
application needs to produce recommendations based on evaluations received from the
client application (R4). This can be done using content-based filtering (R5), collabora-
tive filtering (R6) or contextual collaborative filtering (R7).

To provide a satisfactory service for the users, the recommendations must be accurate
(R8), and the service should balance intrusiveness and getting a sufficient amount of
evaluation data (R9). In addition, the system should have a scale potential, both when
it comes to the number of client applications running simultaneously, and also when it
comes to the geographical distance between a client and a server application host (R10).

A recommender system with the following components will be designed to conform to
the requirements. All components are shown in figure 4.1:

Interface: Allows the users to interact with the system by playing and evaluating
songs. It also allows users to request new recommendations.

Player: Plays songs from the music store.

Evaluator: Receives ratings and moods from the interface and sends this infor-
mation to the server application. The evaluator in the server application receives
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Figure 4.1: Client and server components.

ratings and moods from the client application, and stores them in the evaluation
store.

Recommender: Receives requests from the interface, and sends the requests to
the server application. Once the request is received by the server application, it
produces recommendations and stores them in the play list store.

Loader: Loads information about the last set of recommended songs into the
interface.

Music store: Provides the player with songs.

Evaluation store: Stores information about users, music and evaluations.

Play list store: Consists of a set of play lists containing the last recommendations
for each user.

4.1.2 Scalability

Our design shows a typical centralized service in the sense that it is designed by means
of only a single server application running on a specific machine. The main problem with
this setting is that the server application simply can become a bottleneck as the number
of users grow. Even with much processing and storage capacity, communication with the
server application will eventually prevent further growth.

Scalability is a challenge that most commercial recommender systems have to deal with,
since they may have thousands of users world-wide, requesting recommendations simul-
taneously. Because of this, scale potential will be discussed even though it will not be
prioritized the development of our system.

4.2 System components

The components of our system will now be described in detail.
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Figure 4.2: Interface sketch.

4.2.1 Interface

The interface allows users to interact with the system. We provide a GUI that makes it
possible to play, evaluate and request music.

The interface receives music from the player, and provides the evaluator with evalu-
ations given by the user. When the user wants more music, the interface is used to
request new music, and the request is handled by the recommender. The interface re-
ceives information about recently recommended music from the loader.

Figure 4.2 shows a sketch of the interface that is designed. Playing songs will be done
by either using the navigation buttons in the top left corner or by selecting songs in the
play list. Each song will be evaluated by clicking rating buttons or mood buttons on
each song in the play list. Recommendation requests will be sent by clicking the music
request buttons, and genres will be changed using the genre buttons. In addition, album
cover image and album review will be displayed. This will hopefully make the system
more attractive for the test users.

4.2.2 Loader

The loader’s task is to load a play list into the interface on start-up or after a new
recommendation is produced. It uses the users id to locate the play list file for that user
in the play list store. Then, it makes sure that the play list content is displayed.

4.2.3 Player

When the interface is loaded with a set of recommended songs, the player provides the
interface with the actual music. It uses location information that the interface received
from the loader to find music in the music store, and then downloads and plays each
requested song.

While downloading and playing songs, the player may encounter delay problems. Delay
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in wide-area networks may be due to scalability problems, with respect to size and/or
geography. Scalability problems with respect to size may be caused by an overloaded
server. Since our experiment will only include a relatively small number of users, we will
probably not experience such a problem.

Geographical scalability problems may be caused by synchronous communication, where
the client application blocks until a reply is sent back from the server application. In a
wide-area system like ours, we need to take into account that communication may take
hundreds of milliseconds. When our system in addition exchanges relatively large files
(3-4 MB), some effort is required to make it scalable.

A general solution to scalability problems is to distribute and/or replicate server ap-
plication and data. Replication not only increases availability to improve geographical
scalability. It also helps to balance the load between the servers leading to better per-
formance, and thus improves scalability with respect to size. A potential drawback with
replication is that it may lead to consistency problems. Except for this drawback, repli-
cation is a technique that could help our system to scale.

In the case of geographical scalability, the general approach is to hide communication
latency by introducing asynchronous communication. However, using asynchronous com-
munication is usually not the best solution in interactive systems like ours, because the
client application usually have nothing better to do than wait for an answer from the
server application. In addition, our main concern is not the latency itself, but the prob-
lem of retrieving big files in a transparent manner. The user should not have to wait
for the file to be downloaded before the corresponding song starts to play. Our solu-
tion is to stream songs. This makes it possible to play each song while the file is being
downloaded. However, streaming may cause delay problems if download time is below a
certain threshold. This threshold is given by the size of the file with respect to the time
it takes to play the song. As long as the download time is low enough, so that each point
of time in the song is downloaded before it is played, delay should not be a problem.

4.2.4 Evaluator

Each song in the play list can be evaluated using the interface. The evaluator enables
the user to either rate or specify the mood for each song in the play list.

As explained in section 2.4.1, the user’s opinion of recommended items is usually ex-
pressed explicitly by using a binary or numeric scale, or implicitly by monitoring in-
formation access patterns. We have chosen to use a combination of the two, based on
a binary scale. Although a fine grained level of satisfaction will not be captured, we
think that fewer alternatives will make it easier to use the system. The user can express
satisfaction for a song by clicking a button pointing up or a button pointing down. In
addition to this explicit rating, the system monitors the playing of each song. If a song
is played through, the button pointing up is automatically set. If less than 30 seconds of
a song is played, the button pointing down is automatically set. By using a combination
of explicit and implicit evaluations, we hope to receive accurate user preferences while
minimizing intrusiveness.
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Mood specification is difficult to capture by monitoring information access patterns, and
is therefore only done explicitly. For each song, the user can choose among the following
moods: angry, happy, relaxed or sad. This set of moods may not be sufficient to give
an optimal classification for all songs, but again we keep to our simplicity statement;
fewer alternatives will make the system more user friendly. To ensure that all moods are
covered, the selected moods represent the extreme points of what we normally classify
as moods.

The evaluator in the client application receives evaluations from the interface, whether
they are ratings or moods, and sends them to the evaluator in the server application.
Each evaluation is sent at the moment the button is clicked, or automatically set. This
allows for evaluation information that is always up to date, but may have the disad-
vantage of causing delay problems if the number of simultaneous users is high. A more
scalable alternative would be to gather a set of evaluations and then send them together.
When an evaluation is received by the server application, the evaluator in the server
application stores the evaluations together with information about the actual user and
item in the evaluation store.

4.2.5 Recommender

The recommender handles requests for recommendations. When the recommender in the
client application receives a request for a new play list from the interface, the request is
sent to the server application. A set of songs are then recommended based on data from
the evaluation store and the selected filtering approach.

In general, a recommendation involves first producing a list of similar items or users,
and then choose items to recommend based on this list. Our design employs a commonly
used policy; only recommending items that the user has not evaluated. This reflects the
key idea of many recommender systems; helping users find unfamiliar items that they
probably will like. An alternative would be to include already rated songs, assuring that
the user receives some songs that he/she is guarantied to like. Using this approach,
the amount of evaluation data for our experiment would probably be reduced, because
the recommender would recommend songs that have been already evaluated. This could
weaken the result of our experiment, because of our already limited amount of evaluation
data.

In section 2.5 we gave a case study with a comparison of two recommender systems
that may seem similar on the surface, but where the underlying algorithm differ. Our
design includes two filtering approaches similar to the ones used by Pandora and Last.fm
respectively. In addition we have designed a filter that also considers contextual infor-
mation, in this case user mood.

All filtering approaches produce recommendations by consulting the whole evaluation
store database. An alternative and probably more scalable approach would be to com-
pile a model for each user, based on the user’s previous evaluations. Recommendations
could then be produced more efficiently by consulting the model instead of the whole
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database. However, this approach would have its drawback. Compiling the models can
be time-consuming, and since a model has to be compiled before recommendations can be
produced, this approach would prevent the production of up-to-date recommendations.

Content-based filtering

As described in section 2.3.1, content-based filtering is based on content analysis. Pan-
dora is a system that uses this approach by manually classifying the songs by musical
attributes. We have chosen to design a content-based filter that uses music genre as
musical attribute, and provides the user with music within the same genres as the user
previously has preferred. This may seem like a naive approach because music genres are
usually not a specific way of categorizing music; one genre may contain a considerable
variety of music. However, the main goal of this approach is to provide the users with a
variety of music that more or less lies within the category that the users prefer, and then
to gather as much evaluation data from the users as possible. The gathered evaluation
data presents a picture of each user’s preferences and therefore function as the user’s
profile. Profiles are needed as input to the other approaches.

First step in the content-based filtering approach is to compute a list of genres. These
are the genres represented in the set of songs that the user has rated. For each genre,
the difference between the number of positively and negatively rated songs is computed.
This will make a genre distribution for the user, which is used to find out which genres
the users prefer. Producing recommendations for a user is then done by selecting a set
of songs that reflects the user’s genre distribution.

Overspecialization must be considered in our design. When a user keeps rating songs
within the same genre positively, the user may end up with a play list that only consists
of songs within that specific genre. Getting the user out of this locked loop is done using
two techniques; boosting songs from second choice genres, and allowing users to start
over with a new combination of genres.

The first technique introduces some randomness in the recommendation process by boost-
ing songs within genres that are not the user’s first choice. Although this will allow the
user to give positive ratings to songs that are not within the users favorite genre, it is
not enough to get the user out of the locked loop. Imagine a user that has many posi-
tive ratings on songs within the rock genre. Even if the user gets some songs from the
jazz genre recommended, and rates these songs positively, these few ratings will not be
enough to get the user out of the “rock loop”.

The second technique allows the user to select a combination of genres. The recom-
mender component will then automatically feed a specific number of positive ratings into
the system. These ratings reflect the genre combination that is selected. For example,
if a user decides to listen to a combination of r&b and jazz, the user first selects these
two genres. The user will then receive a play list where half of the songs are r&b and
the other half are jazz songs. Songs recommended after an automatic feeding will only
be based on fresh ratings; ratings given after the last genre selection. This gives a fresh
start for recommendations, and lets the user out of the locked loop. The disadvantage
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of this technique is that the user can loose an already built up profile by selecting a
new genre combination. However, since the number of genres are limited and each genre
is quite varied, it will not take much time to build a new profile using this approach.
A better solution to the overspecialization problem might be to do like Pandora; offer
several stations for each user to switch between.

The automatically generated ratings that are used when changing genre combination
in this approach will not be considered in the other approaches, where ratings from this
approach is used as input. Discarding these ratings will prevent the use of possibly false
evaluation data, and therefore improve recommender precision.

Collaborative filtering

Collaborative filtering gives recommendations based on the correlation between people
with similar taste. Two different approaches for doing collaborative filtering has been
presented: memory-based and model-based. The former confronts the entire user pref-
erence database each time a recommendation is produced, while the latter confronts a
smaller model that reflects user preferences.

Although the memory-based approach is relatively simple and have the advantage of
avoiding an expensive model-building stage, it has some disadvantages. As pointed out
in section 2.3.3 it requires computations that grow according to the number of users and
items, and this is causing a scalability problem. In addition, the approach may have
problems producing enough recommendations because the number of evaluated items is
small compared to the total number of items. This is known as the sparsity problem,
and may also cause problems with exploration new artists, as with Last.fm.

The model-based approach tries to solve some of the problems related to the memory-
based approach by confronting a model for each user instead of the entire database.
This will increase recommender performance if the number of users and items are high.
However, the model-building stage is usually expensive, and freshness problems may be
encountered if user preferences change fast with respect to the time needed to build the
model.

In our design we have chosen to use the memory-based approach. Because of our limited
number of users and songs, the scalability issue is not a problem. Sparsity may be an
issue since the number of users and evaluations will be small compared to the number of
songs. This may cause problems producing recommendations because of too few songs in
the intersection of user profiles. We will try to solve this by first using the content-based
approach to gather an acceptable amount of evaluation data before introducing this col-
laborative filtering approach. The model-based approach would be a wise choice if we
had more users and scalability was a problem. Because of our small number of users, and
the fact that user profiles are updated frequently, we prefer the memory-based approach
to the model-based approach.

The process of producing recommendations can be divided into three steps:

1. Weight all users with respect to similarity with the actual user.
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2. Select a subset of users to use as basis for recommendations.

3. Compute recommendations based on the subset of users.

The first step is to compute a ranked list of similarity weights to measure closeness be-
tween the active user and other users. Several different similarity weighting measures
have been used.

Mean squared difference (MSD) is a similarity weighting algorithm used in the Ringo
music recommender [55]. As the name of the algorithm implies, this similarity measure
for two users is the average squared difference between ratings given by the two users on
similar items. msda,u is the mean squared difference between the actual user and user u.

msda,u =
∑m

i=1(ra,i − ru,i)2

m

where m is the number of items that both users have rated, ra,i is the rating given
by the active user on item i and ru,i is the rating given by the user u on item i.
We can see that 0 ≤ msda,u ≤ 1. If both users have similar ratings for all items, msda,u

will be 0. If the ratings differ, msda,u will be 1.

Grouplens [48] used the Pearsons correlation coefficient, which measures the degree to
which a linear relationship exists between two variables. pcca,u is the similarity weight
between the active user and user u.

pcca,u =
∑m

i=1[(ra,i − r̄a)(ru,i − r̄u)]√∑m
i=1(ra,i − r̄a)2

∑m
i=1(ru,i − r̄u)2

where r̄a is the average rating of the active user and r̄u is the average rating of user
u.

Other similarity measures includes the Spearman rank correlation coefficient and vector
similarity cosine measure. Spearman rank correlation coefficient is similar to Pearson,
but computes a measure of correlations between ranks instead of rating values. Vector
similarity cosine measure has shown to be successful in information retrieval, but Breese
found that vector similarity does not prove the optimal performance in collaborative fil-
tering systems [13].

In our design we have chosen to use the MSD algorithm. It is intuitive, easy to test, and
have shown acceptable performance [27].

In the second step we need to know the neighborhood of users that are helpful for mak-
ing recommendations for the actual user. In theory, we could include every user in the
database as a neighbor and weight the contribution of the neighbors accordingly, with
distant neighbors contributing less than close neighbors. However, collaborative filtering
systems are often handling many users. Making consideration of every user as a neighbor
is therefore infeasible when trying to maintain real-time performance. A subset of all
users must be selected as neighbors to guarantee acceptable response time. In addition,
many of the users do not have similar tastes to the active user, so using them as neighbors
will only decrease recommender accuracy. Two techniques, correlation-thresholding and
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best-n-neighbors have been used to determine how many neighbors to select.

The first technique is used in Ringo [55] and sets an absolute correlation threshold,
where all neighbors with absolute correlations greater than this threshold are selected.
This ensures that neighbors have a minimum correlation value, but if the threshold is
set too high, then very few users will be selected as neighbors.

The second technique, used by GroupLens [48], picks the best n correlates for a given
n. This solves the problem with the first technique, but data from [27] shows that the
value n affects the accuracy of recommendations. When using a small neighborhood, the
accuracy suffers. The problem arise because even the top ten neighbors are often an im-
perfect basis for producing recommendations in recommender systems. This is because
the user’s different experiences result in many different subtleties of taste, and makes
it very unlikely that there is a perfect match between users. Even if there is a perfect
match, the evaluation data of less similar users will also be taken into account, and this
might cloud the recommendations. Experience suggests that overall accuracy increases
with increasing size of the neighborhood, and that this technique gives more accurate
recommendations than correlation-thresholding.

Based on the results from [27], we have chosen to use the best-n-neighbors technique
for selecting a neighborhood for each user. In our setting, we have a small number of
users compared to what is usually the case in commercial recommender systems. The
reason for doing neighborhood selection is therefore not to improve performance, but to
filter out irrelevant users.

The third step in the collaborative filtering approach is to compute recommendations.
Once a neighborhood has been selected, the ratings from users in the neighborhood are
used to produce recommendations for the actual user. One way to do this is to traverse
the neighborhood list starting with the most similar user. Songs that this user has rated
positively and that the actual user have not yet rated, will then be recommended. An-
other approach is to make a ranked list consisting of items that have been rated positively
by many similar users, and give recommendations based on this list.

We have chosen to use the first alternative because we conjecture that with our limited
number of users no remarkable improvements will be gained by employing the second
approach.

An optimization often used in recommender systems is rating normalization. Rating
normalization copes with the problem of having users that do not rate on the same dis-
tribution, by performing some transformation to ensure that user ratings are in the same
space. This technique improves recommender systems using a numerical scale, but does
not have any effect on our binary scale. Hence, this optimization will not be considered.

Contextual collaborative filtering

As explained in section 2.4.2, context information has been used to improve accuracy in
recommender systems. Meta-data describing context can be set manually by users, or
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automatically by analyzing the content.

In this approach, mood is used as an additional filter variable in the collaborative fil-
tering approach. This will probably increase recommender precision because the system
will only recommend songs that are likely to reflect the user’s mood at the time recom-
mendations are requested. In the content-based filtering approach, songs were classified
by mood, by letting the user provide real-time feedback. It is only in the contextual
collaborative filtering approach that this classification is used in the recommendation
process. When requesting recommendations, the user can choose between angry, happy,
relaxed and sad. Given a certain mood, all songs classified with this mood will be used
as input to the same collaborative filtering algorithm as described above.

Using the mood classification of all users as basis for recommendations can in theory
result in recommendations that does not reflect all requested moods because users may
have different opinions about what constitutes a mood. In addition, songs can be classi-
fied with the goal of preventing instead of supporting a certain mood. Some users may
for example classify fast songs as sad because they want the music to make them happy.
Others may classify slow songs as sad because they find this more comfortable when sad.
In practice we think that the majority of the users will classify songs according to mood
in a similar way, and that the inclusion of mood as an additional filter will result in more
precise recommendations.

In addition, our conjecture is that context information is yet another attribute describing
music. The difference between genre, that is used as an attribute in the content-based
filtering approach, and mood that is used in this approach, may thus be subtle except
that they represent different ways of classifying music. It is also likely that Pandora, de-
scribed in section 2.5, uses mood as a musical attribute for producing recommendations,
just as it uses genre. In our design, both genre and mood is set manually. The differ-
ence is that genre is set by the music providers and is used in a content-based filtering
approach, while mood is set by the users and is used in a collaborative filtering approach.

After producing a set of recommendations, the information about the recommended
songs will be stored in the play list store and the play list will then be loaded into the
interface.

4.2.6 Music store

The songs that are recommended to the users are located in the music store. When a
song is about to be played, the player retrieves the song by streaming it from the location
that is specified in the play list.

In our design, both the music store and the rest of the server application reside on
the same host. Since they are independent, an alternative could be to split and replicate
the bottleneck of the two. However, they both represent resource-demanding compo-
nents of the system, and replication of them both is probably needed to make the system
more scalable. The server application includes the actual production of recommenda-
tions, something which requires much processing capacity while doing computations over
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Figure 4.3: Evaluation store database.

the whole evaluation store. The music store is a network bottleneck because it needs to
handle many simultaneously downloads.

4.2.7 Evaluation store

The evaluation store works as a storage for information about songs and users. In addi-
tion, it stores evaluations of songs provided by the users in form of moods and ratings.
All this information is used by the recommender to produce recommendations. The eval-
uation store consists of the relation database illustrated in figure 4.3. It shows all entities
and their relation with cardinality. The cardinality defines the numeric relationships be-
tween occurrences of the entities on either end of the relationship line.

The items entity does in our case represent songs and is connected to entities repre-
senting our two types of evaluation, mood and rating. One item can be related to many
evaluations, while one evaluation can only be related to one item.

In addition, evaluations must be connected to users. Since each user will receive items
in form of a play list, we have chosen to introduce an extra entity representing a session.
A session is started when a new play list is created. As evaluations are a link between
sessions and items, sessions are a link between users and evaluations. The sessions entity
is connected to evaluations by letting one session relate to many evaluations, and one
evaluation relate only to one session.

Sessions are connected to users by letting one session relate to one user, and one user
relate to many sessions.

Finally, each user has a genre profile that reflects the user’s current genre choice. The
users entity is connected to the genres entity by letting one user relate to one genre and
one genre relate to one user.

4.2.8 Play list store

The play list store is responsible of storing the last play list that is generated by the
recommender for each user. The last play list for a specific user will be retrieved from
the play list store when it is requested by the loader.

Each play list is stored as a file, containing information about each song in the play
list. The information includes the name of song, album and artist, and the location of
song, cover image and album review.
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Our design is based on a server where each current play list is stored persistently, and
reloaded upon startup. An alternative approach would be to use a server where the
current play list is lost when the client application is closed, and a new play list must
be created upon startup. Our approach has the advantage of giving the users more
control over their play lists because they can choose to keep the current list as long as
they want, even after restarting the client application. The server host will probably
be heavily loaded while handling requests from users and producing recommendations.
Introducing an extra task by letting the server application maintain a persistent play list
for each user may therefore not be a good idea. A better solution would probably be
to let the client host store the current play list persistently. One possible solution is to
store the play list in the browser as a web cookie, just like web stores save the content of
electronic shopping carts. This would probably reduce the load on the server host, and
thus improve the performance.

4.3 Summary

This chapter presented the design of our recommender system. Its functionality in-
cludes different components that together shall fulfill the functional requirements stated
in chapter 3. The interface allows users to interact with system, while the player makes
it possible to play songs. The evaluator operates both in the client and the server appli-
cation and allows for users to evaluate songs in their play lists by either rate or classify
each song by mood. Evaluations are basis for recommendations requested by the client
application and produced by the server application. Recommendations are produced
by the recommender, which follows one of three filtering approaches. After producing
recommendations, the corresponding play list is saved, and later retrieved by the loader.
This component makes sure to retrieve the actual user’s play list, and loads this into the
interface. This is done on client application start-up or after producing new recommen-
dations. Our design includes three persistent storages. The music store holds the actual
music, the evaluation store holds user and evaluation data, while the play list store holds
each user’s play list.

Additionally, this design shall fulfill three non-functional requirements. Each filtering
approach that is used by the recommender component shall result in accurate recom-
mendations that suit each user’s preference. Testing this design will include real-life
users. Since user feedback is crucial for a good result, our design needs to make sure that
test users are not unnecessarily disturbed while using the system. Intrusiveness therefore
needs to be reduced. At the same time it is important to collect enough evaluation data.
By using both implicit and explicit evaluations, we hope to balance the two. Although
scalability is not prioritized in the development of this system, its scale potential has
been discussed in this chapter. Our centralized architecture is probably not sufficient in
a real-life setting, since commercial recommendation systems normally needs to handle
thousands of simultaneous users world-wide. The scalability problem could probably be
solved by replicating the server application and/or the music store. Scalability could also
be improved by introducing a model-based filtering approach, so that recommendations
are produced by consulting a model instead of the whole evaluation store database. By
streaming songs, our design provides transparency in the sense that the user can play
each song while the corresponding file is being downloaded.
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Implementation

This chapter explains the implementation environment in which the recommender system
has been developed. Then, the implementation of each component designed in chapter
4 will be presented. Finally, the directives used to configure the system are listed.

5.1 Implementation environment

The implementation environment includes a server running the Unix-based operating
system FreeBSD1. FreeBSD is known to be reliable and robust. It is also among the free
operating systems that report the longest uptime2. Uptime is used to measure operating
system reliability and shows how long the system has been “up” running. A long uptime
indicates that the computer can be left unattended without crashing, and that no kernel
updates have been necessary, as installing a new kernel requires a reboot and resets the
uptime counter of the system.

An Apache HTTP server3 is used together with the open source database MySQL4.
They provide a secure and reliable platform for our system, and are also easy to set up
locally in order to preview and test code as it is being developed.

The client application is implemented using Microsoft Windows XP5 and Macromedia
Flash 86. To use the client application, the user will only need a web browser with Flash
installed. Supported browsers are limited to Mozilla Firefox7 and Opera8.

1www.freebsd.org
2uptime.netcraft.com/up/today/top.avg.html
3www.apache.org
4www.mysql.com
5www.microsoft.com/windowsxp
6www.adobe.com/products/flash/flashpro/
7www.mozilla.com/en-US/firefox/
8www.opera.com
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5.1.1 Programming language

For our recommender system we have chosen to use PHP9 as programming language
in the server application, and Flash/Actionscript in the client application. The reason
for choosing PHP is its advantage of being a platform independent, server-side scripting
language that is well compatible with Apache and MySQL. Because we want to provide
the users with a music player application, a client application with an interface containing
the functionality and appearance of an authentic music player needs to be implemented.
Flash/Actionscript is chosen for the implementation of the client application because
there already exists an open source project using this IDE to implement a basic web-
based music player. Our client application therefore includes an extended version of this
application.

5.1.2 Client application

The implementation of the client application is based on the XSPF web music player10.
This player is part of a project within the sourceforge developer community11, and pro-
vides a flash-based web application that plays MP3 files. The client application receives
parameters in a URL in the following manner.

http://vserver.cs.uit.no/content_player.swf?host=http://vserver.cs.uit.no&bin=/moodbox&playlist=/playlists&user=412

vserver.cs.uit.no/content player.swf is the location of the flash movie that forms the
client application. The movie is a compilation of a flash file and an Actionscript file.
The flash file includes graphic showing the appearance of the interface, and the Action-
script provides the functionality. There exist three variants of the client application, each
corresponding to a certain filtering approach. The current file, content player.swf, corre-
sponds to the content-based filtering approach, while cf player.swf and mood player.swf
correspond to the client application of the collaborative and contextual collaborative fil-
tering approaches respectively. The reason for having three separate client applications
is to maintain a structured and easily readable flash plan and Actionscript.

host is the name of the server that provides the server application. This URL is used by
the Actionscript to connect to the server application.

bin is the server side directory for the binary files, and is used by the Actionscript
to connect to the server application.

playlist is the server side directory where the play lists reside. By combining this di-
rectory with the user id, the Actionscript can find the location of the user’s play list file.

user is the user id, and is used to identify the user requesting recommendations and
giving evaluations.

When the client application is loaded, the parameters are set and the user can start
to interact with the interface.

9www.php.net
10musicplayer.sourceforge.net
11sourceforge.net
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5.1.3 Server application

The implementation of the server application differs from the client application in that
all filtering approaches are integrated into one application. When the server applica-
tion, that is located in server.php, receives a request from the client application, the
server interprets the received variables and acts accordingly. The variables will now be
explained.

option indicates if the client application wants to set a rating or mood for a certain
song, or request new recommendations.

The following variables are only used when the client application wants to set a rating
or mood for a song.

sessionid is the identification of a session for a certain user. A session is started
each time a new recommended play list is produced.

itemid is the identification of a certain song.

rating is the chosen rating for a certain song. This is a number, 0 or 1, meaning
negative or positive rating respectively.

mood is the mood that a certain song reflects. This is a number 1-4, meaning
angry, happy, relaxed and sad respectively.

The following variables are used when the client application requests new recommenda-
tions:

userid is the identification of a certain user.

filtermode is an indication of what filtering approach to use. The variable can be set
to content(content-based filtering), cf (collaborative filtering) or mood(contextual
collaborative filtering).

genrechange indicate that the genre combination is changed, and is a variable used
only in the content-based approach.

5.1.4 Communication

The Actionscript LoadVars class is used in the transferring of variables between the
client and the server application. This class makes it possible to send all variables in one
object to a specified URL, and to load all the variables at a specified URL into another
object. The LoadVars.onLoad handler is used to ensure synchronous communication,
which means that the client application continues only after the data is loaded.

All communication between the client and the server application is done using HTTP12,
where the client application initiates a request by establishing a TCP13 connection to a
particular port14 on the server host. The server application is listening on that port and
waits for the client application to send a request. Upon receiving a request, the server

12Hypertext Transfer Protocol
13Transmission Control Protocol
14Port 80 by default
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Figure 5.1: User Interface using content-based filtering.

Figure 5.2: User Interface using collaborative filtering.

application accepts the connection and takes action according to the request before send-
ing a response to the client application. HTTP is chosen as application layer protocol
because it suites our needs and works well with today’s Internet infrastructure.

5.2 System components

This section describes the implementation of the designed components. The components
are shown in figure 4.1.

5.2.1 Interface

The interface component functions as a link between the user and other components
in the client application by allowing the user to request, play and evaluate music. Our
interface is a modified version of the interface in the XSPF web music player. This player
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Figure 5.3: User Interface using contextual collaborative filtering.

initially offered streaming of MP3 files from one specific location. All functionality re-
garding the recommendation process is added to the original player. As shown in figure
5.1, 5.2 and 5.3, our interface differs depending on the filtering approach that is used.

Using the content-based filtering approach, the interface lets the user choose a combina-
tion of genres, and then receive recommendations based on the selected combination. In
addition, the user can set both rating and mood for each song.

The collaborative filtering approach offers a more stripped interface where the users
cannot choose genres or classify songs by mood.

The contextual collaborative filtering approach offers an interface similar to the collab-
orative filtering approach, but the user may in addition specify mood when requesting
recommendations.

5.2.2 Loader

The loader parses the play list file and makes each song available through the interface.
This is done by the following functions.

playlistLoaded()

This function parses the XSPF file that includes the play list for the actual user.
For each song, the URL for the song, cover image and album review is extracted
together with information about song, album and artist.

addTrack(track_label, track_id)

As the play list is parsed and information about each song extracted, the informa-
tion is added to the play list that is displayed in the interface. This allows for the
displaying and playing of each song. In addition, buttons that makes it possible to
set rating and mood for each song is displayed.
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5.2.3 Player

The player includes a set of functions that manage the playing of each song.

loadTrack()

This function is called each time a new song is about to be played, whether it is a
result of using the play, next, or previous button, selecting the song from the play
list, or letting the system play through the play list automatically. Before loading
the new song, the playing time of the last played song is measured. If the last song
was played for less than a number of seconds, and has not been rated while played,
it will automatically get a negative rating. This is done because we conjecture that
interrupting a song in the beginning may indicate that the user does not prefer the
song.

Then, the next song will be loaded using the Actionscript function loadSound(url,
isStreaming). This function loads an MP3 file, found in the music store, into a
Sound object. The isStreaming parameter is set to allow for streaming. Streaming
makes it possible to play the song while the file is being downloaded. Each loaded
file is saved in the browser’s file cache. After starting to load a song, the cover
image and album review are loaded and displayed.

stopTrack()

playTrack()

seekTrack(p_offset)

nextTrack()

prevTrack()

These functions are used to manage the navigation between songs implicitly by the
system or explicitly by the user. Playing or stopping a song is done by starting
or stopping the actual Sound object. After pausing a song, the song is resumed
by seeking to the stored pause offset of the song. Skipping between songs (next
or previous) is done by incrementing or decrementing the play list index variable.
The actual loading of songs is always done by the loadTrack() function explained
above.

5.2.4 Evaluator

An evaluation is a rating or mood given to a certain song by a user. The evaluator
handles evaluations given by the users. It is split into a client evaluator and a server
evaluator.

Client evaluator

The client evaluator’s task is to capture the user’s evaluation and send it to the server
evaluator. This is done by the following functions. When the user is clicking a rating or
mood button for a certain song, one of them is called.

sendRating(rate_mc)

sendMood(mood_mc)
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Both functions translate the given evaluation from textual to numerical represen-
tation, and then send it to the server evaluator. After receiving feedback from the
server evaluator, the number of evaluated songs in the current play list is calcu-
lated. This is done to assure that the user has evaluated a certain amount of songs
before new recommendations can be requested. If the number of evaluated songs
is over a threshold, a new play list can be loaded.

Server evaluator

When an evaluation is received from the client evaluator, the server evaluator stores or
updates the evaluation in the evaluation store. The functions for handling evaluations
are both part of the Evaluator class.

set_rating($sessionid, $itemid, $rating)

set_mood($sessionid, $itemid, $mood)

Both functions add or update the evaluation given by the user for a certain song.
The sessionid reflects the play list where the song resides. Because each song is
recommended once to each user, the set of play lists belonging to a certain user
only contains unique songs. If any evaluation on a song is already set by the user,
this evaluation is updated instead of added.

5.2.5 Recommender

The recommender is responsible of handling recommendation requests from the users
and producing new recommendations. As with the evaluator, this component is split
into a client and a server side component.

Client recommender

The client recommender receives recommendation requests from the users, and lets the
loader insert the newly recommended songs into the play list that is displayed in the
interface. The client side recommender consists of the following functions.

getList()

This function is called when the user requests a play list containing new recom-
mendations. In the content-based filtering approach this can be done by choosing a
genre combination and then click Start, or by clicking Reload. In the former case,
the chosen genre combination will be sent to the server together with a change
genre notification. In the latter, only a request for a new play list is sent. Using
the collaborative filtering approach, new recommendations are received by clicking
Reload. This will simply send a request for a new play list. In the contextual collab-
orative filtering approach, the request is done by clicking one of the mood buttons:
Angry, Happy, Relaxed or Sad. Then, a notification indicating the selected mood
is sent together with the request.

updateList()

After receiving feedback from the server side recommender, the client side recom-
mender clears the current play list from the interface and asks the loader to retrieve
the new play list.
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Server recommender

When a recommender request is received from the client application, the server appli-
cation will take actions based on the filtering approach used. The filtering approaches
are content-based, collaborative and contextual collaborative. Each filtering approach
will first produce a list of similar songs or users, and choose songs to recommend based
on this list. Recommended songs are then registered in the user’s play list. Because
collaborative filtering requires a set of already existing user profiles to produce accu-
rate recommendations, the two latter approaches use evaluation data from the former
approach as input. The implementation of the server side recommender for the three
approaches will now be explained further.

Content-based filtering

Before doing the actual recommendation (by producing a list of songs and then recom-
mend new songs based on this list), the server application must check if the request
received from the client application includes a genre change notification. As pointed
out in section 4.2.5, users may change genres to avoid the overspecialization problem. If
the genre change notification is included in the request, this indicates that the user has
changed the combination of genres, and wants to receive recommendations based on this
chosen combination.

The server application registers the new genre combination before invalidating previ-
ous ratings given by the user. This means that only later ratings will be taken into
account when new recommendations are produced. Then, a specific number of positive
ratings reflecting the chosen genre combination will automatically be inserted into the
evaluation store, and related to the actual user. The first play list is therefore not a
result of the user’s own ratings. It only reflects the genres that are chosen by the user.
Because these automatic ratings have not been set by the user, they should not be taken
into account when the evaluation data from this approach is used as input to the other
approaches. After invalidating old ratings and automatically inserting new ones, recom-
mendations are produced. If the genre change notification is not set, the recommender
starts producing recommendations directly without the invalidation and insertion stage.

The production of recommendations using this approach begins with computing the
distribution of genres in the set of songs that the user has rated. This results in a list
of genres and values indicating each genre’s part of the songs rated by the user. Recom-
mendations are based on this list. Each recommendation consists of a specific number of
songs with the same distribution of genres as all valid songs previously rated by the user.
Valid songs are the songs that are not invalidated after a genre change. Before producing
the recommendations, ratings are retrieved from the evaluation store and checked against
new recommendations to ensure that the same song is not recommended twice to the
same user. Genres, represented in the user’s genre distribution, that have a “part value”
lower than a threshold, will have their value increased so that these genres become more
dominating in the set of recommended songs. This is done to avoid that all recommended
songs lies within the same genre, and thus reduces the overspecialization problem.
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Collaborative filtering

When the server application receives a recommendation request, and the collaborative
filtering approach is used, the recommender first produces a list containing a specific
number of users that have more or less the same music taste as the actual user. Closeness
between the active user and other users is calculated using the mean squared difference
(MSD) algorithm described in section 4.2.5, and implemented using the following SQL
query.

SELECT s2.userid as userid, COUNT(r2.itemid) as simcount,

SUM((r2.rating-r1.rating)*(r2.rating-r1.rating)) as spread

FROM ratings r1, ratings r2, sessions s1, sessions s2

WHERE s1.userid=$userid AND s1.sessionid=r1.sessionid

AND s2.sessionid=r2.sessionid AND r2.itemid=r1.itemid

AND s2.userid<>s1.userid AND s1.selected<=10 AND s2.selected<=10

GROUP BY s2.userid

This query takes as input the id of the actual user. The conditions

s1.selected<=10 AND s2.selected<=10

assures that automatic ratings are not taken into account. The query returns a table
containing each user’s id together with two values reflecting the dividend and the divisor
of the MSD expression respectively. First, a value that we call simcount, telling the
number of songs that both the actual user and other users have rated. Second, a value
that we call spread, telling how many of these songs the two users have rated differently.
From these values, the mean squared difference between ratings given by the active user
a and user u on similar songs can be calculated.

msda,u =
spreada,u

simcounta,u

After calculating the msda,u value for a certain number of users, a similarity array
containing users and their MSD value is created. The array is sorted by msda,u starting
with the lowest value, indicating the highest degree of similarity.

Recommendation production is done by consulting the similarity array. Starting with
the first, and most similar user, all songs rated positively by this user will be retrieved.
Before recommending a song to the actual user, it is checked whether the actual user has
already rated this song, to assure that the same song is not recommended twice. When
a specific number of recommendations have been produced, an array containing the id
of each recommended song will be returned.

Contextual collaborative filtering

This approach uses the same algorithm as the collaborative filtering approach. The
difference is that the server receives a notification about mood together with the recom-
mendation request. Before finding similar users, this approach retrieves songs that are
classified with the chosen mood. Then, users similar to the actual user will be identified
in the same manner as in the collaborative filtering approach. Producing recommenda-
tions is done differently in the two approaches. In the collaborative filtering approach, all
songs are considered when retrieving songs from similar users. Contextual collaborative
filtering only considers songs with the mood specified by the actual user. Before adding
a song to the array containing recommendations, mood is checked by ensuring that the
song to be recommended resides in the set of songs with the specified mood. Only songs
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matching the specified mood, will be recommended.

When a specific number of new songs have been recommended using one of the three
filtering approaches explained above, a new session for the user is initiated and the play
list for that session is generated and saved in the play list store. The loader will then
retrieve the new play list and make it available through the interface.

5.2.6 Music store

The music store contains all the songs. Each song is represented as a MP3 file. In
addition, the music store also contains a cover image and review of each album. These
files are stored in JPG and TXT format respectively. The file hierarchy follows the
artist/album/file structure, where a file can be song, cover image or album review. An
example of this structure is shown below.

/music/Zero 7/When It Falls/

cover.jpg

review.txt

Zero 7 - When It Falls - Home.mp3

Zero 7 - When It Falls - In Time.mp3

Zero 7 - When It Falls - Look Up.mp3

Zero 7 - When It Falls - Morning Song.mp3

Zero 7 - When It Falls - Over Our Heads.mp3

Zero 7 - When It Falls - Passing By.mp3

Zero 7 - When It Falls - Somersault.mp3

Zero 7 - When It Falls - Speed Dial No. 2.mp3

Zero 7 - When It Falls - The Space Between.mp3

Zero 7 - When It Falls - Warm Sound.mp3

Zero 7 - When It Falls - When It Falls.mp3

5.2.7 Evaluation store

The evaluation store’s task is to store information about songs and users, and also the
evaluations given by the users on specific songs. The relation database, illustrated in
figure 4.3, shows the relation between different entities, and each relation’s cardinality.
Now, the evaluation store and the attributes of each entity will be explained in detail.
Entities with attributes are shown in figure 5.6.

The items entity stores information about songs including song id and name of artist,
album and song. In addition, it contains an attribute showing the music store URL
where the song resides, and the song genre. Song genre is a number between 0 and 125
according to the ID3 format15. The genre is set by the music provider.

When the recommender is using the content-based filtering approach, only six differ-
ent genres will be used: Rock, R&B, Pop, Jazz, Folk and Other. Each song in the music
store is associated with one of these genres, according to its ID3 genre and this genre’s
similarity to the six genres that are used. The genre distribution and the number of
songs within each specific genre is shown in figure 5.4. The genre distribution is also
illustrated in figure 5.5. The distribution is rather uneven because rock and other have a
relatively big share compared to the other genres. This is partly due to the classification
of genres in general, where one genre may contain a considerable variety of music. Rock
and other are examples of such genres. The use of this non-specific genre classification

15www.id3.org
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Genre ID3V alue ID3Genre Songs

Rock 0 Blues 29

1 Classic rock 1

9 Metal 21

17 Rock 1865

86 Bluegrass 23

5 Funk 30

43 Punk 16

131 Indie 431

Sum 2416

R&B 14 R&B 45

16 Reggae 52

42 Soul 78

7 Hip-Hop 21

15 Rap 12

Sum 208

Pop 13 Pop 462

98 Easy listening 61

116 Ballad 10

Sum 533

Jazz 8 Jazz 174

71 Lo-fi 1

10 New age 7

Sum 182

Folk 2 Country 127

80 Folk 112

88 Celtic 46

Sum 285

Other 12 Other 779

20 Alternative 22

52 Electronic 34

255 Diverse 1563

99 Acoustic 3

24 Soundtrack 2

Sum 2403

Figure 5.4: The number of songs within each genre.

of songs may therefore weaken the content-based filtering approach by producing recom-
mendations that do not necessarily lie within the genre that is specified.

Evaluations are split into moods and ratings which both function as a link between ses-
sions and items. The attributes belonging to these entities are similar except from the
fact that the moods entity stores values reflecting mood and the ratings entity store
ratings. Since evaluations function as a link between sessions and items, the evaluation
entities must include the primary key attribute of both the sessions entity and the items
entity. Evaluations in form of moods or ratings are stored in an attribute containing an
integer from 1 to 4 or 0 to 1 respectively.

The initiation of a session indicates the construction of a new play list. Sessions function
as the link between users and their evaluations, and each session has an identification
that is used as a link to each evaluation from this session. This link indicates which ses-
sion each evaluation belongs to. Because each session is also linked to a certain user, the
sessions entity also needs an attribute to identify users. Other information related to a
session is the time when the session is created, the number of songs selected (included) in
the session, an indication of the filtering approach used, and finally a boolean value telling
if the ratings linked to the session are invalid. Invalid values are set to indicate which
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Figure 5.5: Genre distribution.

Items

+Itemid: int

+Artist: char

+Album: char

+Song: char

+Path: char

+Genre: int

Moods

+Itemid: int

+Sessionid: int

+Mood: int

Ratings

+Itemid: int

+Sessionid: int

+Rating: int

Sessions

+Sessionid: int

+Userid: int

+Ts: timestamp

+Selected: int

+Type: int

+Invalid: bool

Users

+Userid: int

+Email: char

+Password: char

+Name: char

Genres

+Userid: int

+Other: bool

+Folk: bool

+Jazz: bool

+Pop: bool

+Rb: bool

+Rock: bool

Figure 5.6: Evaluation store entities with attributes.

songs should be taken into account when recommendations are produced. This is done
to reduce the overspecialization problem concerning the content-based filtering approach.

User data is stored in the evaluation store and are linked to both sessions and gen-
res. Consistent linking requires that each user has an unique id. Email addresses could
be used for this purpose, but since user id is often sent between the client and server
application, an integer is considered more convenient. In addition information like email
address, password and name are stored in its respective attributes. Email address and
password is used for authentication.

Each user has a genre profile indicating the current genre combination. This information
is only used by the content-based filtering approach and is stored in the genres entity.
Each row in the entity consists of attributes identifying each user, and a set of boolean
values reflecting the user’s chosen genre combination.

5.2.8 Play list store

Each user has a file representing the user’s play list. The file is stored in the play list
store using a slightly modified version of the XML Sharable Playlist Format, XSPF 16.

<?xml version="1.0"?>

<playlist>

<title>2051</title>

<genre>rock</genre>

<trackList>

<track>

16www.xspf.org
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<id>35109</id>

<location>http://vserver.cs.uit.no/music/Damien Rice/O/Damien Rice - O - Amie.mp3</location>

<artist>Damien Rice</artist>

<album>O</album>

<song>Amie</song>

<info>http://vserver.cs.uit.no/music/Damien Rice/O/info.txt</info>

<image>http://vserver.cs.uit.no/music/Damien Rice/O/folder.jpg</image>

</track>

</trackList>

</playlist>

The play list for a user is stored in a file named by the user’s id and the extension .xspf.
Each time the user requests new recommendations, this file will be overwritten by the
recommender and then reloaded and parsed by the loader. This file will always contain
a set of tags identifying the current play list. The Title tag indicates the session id that
this play list refers to. Session id is used by the evaluator to identify which play list the
evaluated song belongs to. The Genre tag tells the last chosen genre combination. This
text is used by the interface for display purposes. The main purpose of the play list file
is to store the play list. This is a set of songs that the recommender has chosen based on
the used filtering approach. The trackList tag contains the play list. Information about
each song is stored under the track tag.

The id tag is the unique id of the song used in the evaluation store while the tag called
location contains the music store URL of the song. The tags artist, album and song are
used by the interface to display information about the song in the play list. info is the
music store URL of the album review file, and image is the location of the file containing
the album cover image.

5.3 Configuration directives

The directives that decide the system behavior will now be listed. They are all defined
in the file called config.php.

FILTERMODE: Indicates which filtering approach to use. It can be content in-
dicating content-based filtering, cf indicating collaborative filtering, or mood indi-
cating contextual collaborative filtering.

HOSTURL: Tells the host where the server application resides. It can for example
be localhost or as in our case vserver.cs.uit.no.

Database settings include:

DBHOST: Name of the host where the database resides.

DBNAME: Name of the database.

DBUSER: Database user name.

DBPASSWD: Password for the specific database user.

File settings specify naming of different files and folders including:

BINDIR: Folder name of the binary files.
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PLAYLISTDIR: Folder containing the play list. This is the play list store location.

LOGFILE: File used for logging. Logging is done using the dprint() function that
resides in debug.php.

COVERIMAGEFILE: Name of the file containing cover image for each album.

ALBUMINFOFILE: Name of the file containing review of each album.

Recommender settings specify values related to the production of recommendations.
Some settings are used by specific filtering approaches, and some are used by all.

SIM K: Number of similarities to return. This can be either similar items or
similar users. Imagine that the collaborative filtering approach is used, and that
this constant is set to 5. This means that when similar users are found, only the 5
most similar users will be considered when recommendations are produced.

REC K: Number of recommendations to return. This constant specifies the max-
imum number of songs to be recommended each time recommendations are re-
quested.

MOOD K: Number of songs from a certain mood. Using contextual collaborative
filtering, this constant tells the maximum number of songs with a certain mood
that should be retrieved and sent as input to the collaborative filtering algorithm.

GENRE K: Number of songs from a certain genre. Using content-based filtering,
this constant tells the maximum number of songs with a certain genre combination
that should be retrieved and sent as input to the content-based filtering algorithm.

RATING K: Number of automatic ratings to insert when genre combination is
changed using the content-based filtering approach.

5.4 Summary

This chapter has described the implementation environment, implementation of each
system component, and configuration directives deciding the system behavior. The cho-
sen programming language is PHP for the server application and Flash/Actionscript for
the client application. The former is chosen because of its platform independence and
compatibility with Apache and MySQL, while the latter is chosen because it easily can
provide the functionality needed by a web-based music player. The client application re-
ceives parameters in a URL, while the server application takes action based on variables
received from the client application. All communication is done using HTTP and the
Actionscript LoadVars class.



Chapter 6

Experiment

This chapter contains a description of the experiments that was conducted for this thesis.
A set of steps is followed in order to identify the right measure for our system, before
the results of our experiment is presented. Throughout the chapter, the review of what
has been done previously is separated from the analysis of our own system.

6.1 Measuring recommender systems

Recommender systems have been successfully measured by the following five steps [28,
29].

1. Identify the high-level goals of the system.

2. Identify specific tasks that are identified for the system.

3. Identify the dataset used for measuring the system.

4. Identify system-level metrics.

5. Perform experiment and measurement.

Each step will now be addressed and seen in relation to our system.

6.1.1 Identify goals

The goals of the system must be determined before any measurements can be done.
Recommender systems are not valuable by themselves. Instead, they become valuable
because they help users perform tasks better than the users would be able to without
their assistance.

Before measuring a recommender system, it is important to identify which high-level
goals the system should aim to achieve. Goals can for example be to improve economic,
social or physiological values. It may also be to improve the quality of life for an indi-
vidual. Although the different goals are generally measured separately, they may overlap.

55
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The high-level goal of our recommender system is mainly to improve the quality of
life for the users. The system does not provide any economic value or strengthen a social
community. Instead it provides entertainment, recreation and automation by reducing
unnecessary effort in search for information. We can measure if the system improves the
quality of life by presenting the system to the users and observing the effects. High usage
and stated user satisfaction indicate that the system is improving quality of life.

6.1.2 Identify tasks

Having specified the high-level goal of our recommender system, the next step is to
identify the manner in which users will interact with the system. The choice of evaluation
metrics will depend on the specific tasks that are identified for the system. These depend
on the high-level goals of the users, and may include the following scenarios [29].

1. The user is about to make a selection that has significant cost and consequences,
and wants to know the “best” option.

2. The user has a fixed amount of time and resources, and wants to see as many of
the most valuable items as possible within that restriction.

3. The user wants to know about all relevant events within a specific content area.

4. The user wants to examine a stream of information in a given order, consuming
items of value and skipping items of no value.

5. The user has a single item and wants to know if the item is worth consuming.

6. The user wants to locate a single item whose value exceeds a threshold.

Given that rating of songs is not crucial for the user’s future, rules out scenario 1. This
would be different if our system recommended e.g. insurance packages or other important
items. Since the user normally does not have a fixed amount of time or resources while
using our recommender system, scenario 2 is not relevant for this system. The users of
our system are probably satisfied with receiving a play list containing a set of “decent”
songs and do not need all relevant songs at the same time. This excludes scenario 3.
Scenario 4 is generally meant for systems like bulletin boards, where some readers fre-
quently examine the subject line of every article posted to a group. If a subject appears
interesting, the entire article is retrieved and read. This functionality is outside the scope
of our system approach, mainly because our system does not require all relevant items
to be recommended in a strict ordering. Our system aims to identify a set of items that
will be of interest to a certain user, and not to predict whether a particular user will like
a particular item. Scenario 5 is therefore not relevant.

The user of our recommender system receives a play list upon request. This list consists
of a specified number of songs that suites the user’s taste. Because our system operates
on similarity measure to decide which items to recommend, and because a small number
of songs is sufficient, our system is closely related to scenario 6.
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6.1.3 Identify dataset

Several key decisions regarding the dataset underlie the successful measurement of a rec-
ommender system. One important aspect is whether measurement is carried out offline
on an existing dataset, or if it requires live user tests.

Much of the work in measuring recommender systems has focused on offline analysis
of predictive accuracy [18]. Such measurements predict certain values taken from a
dataset, and the results can be analyzed using the metrics discussed in the following
section. Offline analysis has the advantage of being fast and economical, and can often
utilize several different datasets and metrics at the same time [28].

However, offline analysis has two important weaknesses. First, the sparsity of ratings
in datasets set limitations for the number of items that can be included in the analysis.
It is infeasible to measure the appropriateness of a recommended item for a user, if the
user has not rated this item in the dataset. Second, offline analysis cannot determine
whether users will prefer a particular system over another. Preference can be due to
its predictions, or to other less objective criteria as for example aesthetics of the user
interface. Offline analysis is therefore limited to objective evaluation of prediction results.

Instead of measuring accuracy using offline analysis it is possible to conduct a live user
experiment. Such an experiment allows for controlled and focused investigations of spe-
cific issues, for example testing well-defined hypothesis under controlled conditions. Field
studies allow for a particular system to be made available to a community of users which
is then observed to measure the effects of the system. This kind of measurement can
capture additional data like satisfaction and participation.

Since we are interested in measuring our newly developed system, we need to gather
data to use for our measurements. We are also interested in capturing user participation
on the different filtering approaches. We have therefore chosen to conduct live user ex-
periments using field studies to capture user participation and ratings. This also makes
it possible to observe the effect of the system while it is used. An offline analysis of the
data collected during the user experiment will then be performed.

6.1.4 Identify metrics

Throughout the years, recommender systems and other information filtering systems have
been measured using a variety of metrics. The most commonly used metrics include mean
absolute error and precision and recall. Each metric has its strengths and weaknesses
with respect to the task that is identified for the system.

Mean absolute error

Mean absolute error (MAE) [28] belongs to a group of statistical accuracy metrics that
compares the estimated ratings against the actual ratings. More specifically, MAE mea-
sures the average absolute deviation between a predicted rating and the user’s true rating.

|E| =
∑N

i=1 |pi − ri|
N
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Since MAE treats the error from every item in the test set equally, this metric is most
useful for scenario 4 where a user is requesting predictions for all items in the informa-
tion stream. It is probably less useful for scenario 1,2,3 and 6. These scenarios represent
tasks where a ranked result is returned to the user, and only the highest ranked items
are relevant for the user. MAE provides the same weight to errors on any item. If certain
items are more important than others, then MAE may not be the right choice.

However, evidence suggests that other metrics show improvements when the MAE value
decreases. This shows that MAE should not be discounted as a potential metric for
ranking-based tasks. In addition, its underlying computation is simple and has well
studied properties.

Precision and recall

Precision and recall [28] belong to the group of decision-support accuracy metrics. Met-
rics within this group have in common that they determine how well a recommender
system can make predictions of items that would be rated positively by the user. Preci-
sion and recall can be computed based on the table below [28, 29].

Selected Notselected Total

Relevant Nrs Nrn Nr

Irrelevant Nis Nin Ni

Total Ns Nn N

The item-set is separated into two classes, relevant or irrelevant. This requires the rating
scale to be binary. Likewise, the item-set needs to be separated into the set that was
returned to the user (selected), and the set that was not. We assume that the user will
consider all retrieved items.

Precision is the ratio of relevant items selected to the number of items selected, and
thus represents the probability that a selected item is relevant.

P =
Nrs

Ns

Recall is defined as the ration of relevant items selected to the total number of rele-
vant items available, and represents the probability that a relevant item will be selected.

R =
Nrs

Nr

Recommendations produced by a recommender system are based on the likelihood that
they will meet a user’s taste. Only the users can determine if the recommendations
meet their standards. Relevance in recommender systems is therefore highly subjective.
Because of this, precision metrics may not be appropriate if users are rating items on
a numerical scale with more than two ranks. Translation from a numerical to a binary
scale is possible but difficult because the threshold determining if an item is relevant may
vary for different users.

Recall may also be difficult to compute, because the number of relevant items in the
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whole database must be determined. Since only the user can determine relevance, basi-
cally all users must examine every item in the database. If it is not important to consider
all relevant items in the database, recall can be unnecessary. In this case, precision mea-
sure alone is probably sufficient.

One weakness of using both precision and recall metrics to compare different systems
is that they must be considered together. The values representing precision and re-
call are also said do be inversely related and dependent on the length of the result list
returned to the user [29]. If more items are returned, then recall values increase and
precision values decrease. This requires that for one system, a vector of precision and
recall values are needed to measure the system performance. This may complicate the
comparison of many systems.

For scenario 1 and 2, precision and recall are not useful, because these scenarios rep-
resent tasks where ranked results are returned. Here, the user wants the current item
to be more relevant than all other items with lower ranking. Precision and recall only
measure binary relevance, and are not good at ranking the degree of relevance.

Using scenario 4 and 5, the usefulness of precision and recall depend on whether rat-
ings are binary or not. If the system is producing non-binary predicted ratings, precision
and recall may not be effective, because they can not measure how close predicted ratings
are to real user ratings.

Precision and recall can be useful for tasks where there exists a clear threshold that
divides relevant and irrelevant items. This is the case for scenario 3 and 6. Scenario 3
requires both precision and recall, but for scenario 6, precision alone is an appropriate
metric, because the user requests only a subset of interesting items. Recall measure is
not necessary because the system does not have to consider all relevant items in the
database. Since our scenario is closely related to scenario 6, precision is considered a
wise choice.

6.1.5 Perform experiment and measurement

A realization of our recommender system will have the goal of improving the quality of
life, and will not provide any economical value or strengthen a social community.

The step of identifying the manner in which users will interact with the system, is related
to our high-level goal. After listing different scenarios, we managed to find the one that
is most similar to ours. Scenario 6 states that the user wants to locate a single item
whose value exceeds a threshold, indicating that this item is relevant for the user. Our
scenario is similar to this situation. The users are interested in receiving a list of songs
that they probably will like. Unlike some of the other scenarios, the users of our system
do not require all relevant songs in the entire database. They are satisfied as long as
they receive a small set of “decent” songs.

The method of selecting the dataset for our measurement may affect our results. Consid-
ering offline analysis or liver user experiment, we chose to conduct live user experiments
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Figure 6.1: Location of the test users.

to capture data and observe the effect of the system while testing it. Measurement is
then done by using offline analysis.

Which metrics to use for the measuring of a recommender system depend on the task
identified for the system. For our scenario, precision is a good metric, because it mea-
sures the frequency with which our system makes correct or incorrect decisions about
whether an item is relevant. Since our users do not need a complete list of all potentially
relevant items, recall measure is not necessary.

Based on this discussion, we conjecture that recommender precision is a good measure
for our experiments, and that this will be measured by first doing live user experiments
to gather data and show user participation, and offline analysis to measure and present
the actual precision data.

User experiments

User and rating data from our recommender system has been collected in live user ex-
periments. This section will present these data to give a survey of the participation in
the user experiment.

The system has been available to a community of users that was observed to ascertain
the effect of the system. Most users are Norwegian men in their late twenties, study-
ing or working at the University of Tromsø1, at Cornell University2, at FAST Search &
Transfer3, or in Oslo. The location of the test users is illustrated in figure 6.1.

The system was available for 33 days, from November 11 until December 19. During
this period, all three filtering approaches were tested. The users had free access to the

1www.uit.no
2www.cornell.edu
3www.fastsearch.com
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Figure 6.2: Ratings given by each user for different filtering approach in the whole period.

music player through a password-protected web-page4. By using the music player, users
have requested, played and evaluated songs. The period and the number of days, users
and ratings for each filtering approach is shown in the table below.

Filteringapproach Totalperiod Days Users Ratings

Content-based 20061115-20061203 19 45 6159

Collaborative 20061204-20061210 6 21 2515

Contextual collaborative 20061211-20061219 8 16 1034

The long content-based period of 19 days is due to the building of the user profiles.
The profiles were needed in the collaborative and the contextual collaborative filtering
approach. The number of days for the these approaches were 6 and 8 days respectively.
Because of the profile-building stage, the content-based filtering approach had to be
tested first. Collaborative filtering was tested before contextual collaborative filtering
because the former were expected to give low precision compared to the latter. If the
most precise solution was tested first, the users would perhaps stop using the system
because of the decreasing precision. The table also reveals a decreasing number of both
users and ratings throughout the whole period.

The number of ratings given by each user for each filtering approach is shown in figure
6.2. It shows that there are 5-10 users functioning as authorities. They have a much
larger number of ratings than the other users, and they also tend to be the ones who have
tested all filtering approaches. They therefore seem to be the loyal users of the system.

Figure 6.3 shows the number of ratings given by the users each day of the period. It

4Sharing of music has been approved by the University of Troms IT department
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Figure 6.3: Ratings given by the users each day of the period.

shows that the number of ratings are decreasing with time. In addition, the number vary
depending on the day of the week. The number of ratings are increasing until mid-week
and then starts to decrease. This may seem surprising. One could think that people were
listening more in the beginning and end of the week, since it is closer to the weekend,
and people working and studying tend to be less concentrated these days.

Not surprisingly, the number is lower in the weekends than during the week. This is
probably because the users tend to use the service while working or studying. If we base
our evaluation on days with a low number of ratings, our result may be fallacious. As
seen from figure 6.3, one period of weekdays is selected from the period of each filtering
approach. These periods seem to be the best basis for our evaluation, because they had
more ratings than other periods. In this way, we avoid erroneous conclusions due to
basing our results on days with few ratings.

A comparison of the number of ratings for each filtering approach within the selected
periods are shown in figure 6.4. It shows that during these periods, the number of rat-
ings is clearly higher using the collaborative filtering approach, while the content-based
approach usually is higher than the contextual collaborative approach. The selected pe-
riods, and the number of days, users and ratings for each filtering approach is shown in
the table below.

Filteringapproach Selectedperiod Days Users Ratings

Content-based 20061120-20061124 5 26 2425

Collaborative 20061204-20061208 5 19 1814

Contextual collaborative 20061211-20061215 5 16 655
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Figure 6.4: Ratings for each filtering approach in selected periods.

Figure 6.5: Ratings given by each user for different filtering approaches in selected peri-
ods.
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Figure 6.6: The number of ratings given by each user for each day in selected periods.

This table shows that the number of users and ratings have flattened out compared
to the table showing the development of the whole period. Figure 6.5 also show this
trend, by displaying the number of ratings given by each user in these selected periods.
The reason for this is mainly because the content-based period has been cut down from
19 days to 5 days and therefore contribute with users and ratings accordingly.

Figure 6.6 shows the variation in the number of ratings given by each user for each day
in the selected periods. Also here we can see the decreasing number of ratings, and also
some of the authorities who have generally rated more songs than other users.

Studying these user/rating figures reveals some tendencies. First, the number of users
and ratings are decreasing throughout the period. Second, it shows that the system has
a few loyal users who have given many ratings and have tested all filtering approaches.
However, most users have only rated some songs and have only tested one or two ap-
proaches.

Precision measuring

Based on the data that was gathered during the user experiment, the precision of rec-
ommendations produced by our recommender system has been measured using offline
analysis.

Offline analysis has been done by performing calculations on gathered user and rat-
ing data. First, the precision of recommendations given throughout the whole period of
user experiments was calculated using the following expression. It is a slightly modified
version of the general precision expression that we conjecture will give a more intuitive
presentation of recommender precision.
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Figure 6.7: Daily recommender precision for each day in the whole period.

P =
(Nrs −Nis)

Ns

Instead of calculating only the number of relevant songs to selected songs, we have
chosen to also include irrelevant songs in the expression. The general precision measure
lets 0 indicate only negative ratings and 1 indicate only positive ratings. Our expression
gives a value between -1 and 1, where -1 means that all songs have been rated negatively,
0 indicate a similar number of positive and negative ratings, while 1 means that all song
have been rated positively. The drawback of not following the standard precision mea-
sure, is that our results are less comparable to other precision measures.

As an example, we have included an SQL query, calculating the daily precision values
for the whole period.

SELECT DATE(s.ts) as day,

(COUNT(r.rating>0 OR NULL)-COUNT(r.rating<1 OR NULL))/(COUNT(r.rating)) as prec

INTO OUTFILE ’prec.txt’

FROM ratings r, sessions s

WHERE r.sessionid=s.sessionid AND DATE(s.ts)>=’2006-11-15’ AND DATE(s.ts)<=’2006-12-19’

GROUP BY DATE(s.ts);

This query calculates the precision according to the expression explained above, and the
result is shown in figure 6.7. The figure shows a big variation spanning from -1 to 1.
However, most values lie between 0.20 and 0.60. The big peaks are mainly due to a small
and therefore not representative set of ratings, often given during weekends. Otherwise,
the figure shows an increase in precision at the end of the period. To investigate rec-
ommender precision further, we have extracted precision data from the same periods as
selected earlier. The values for these periods are shown in figure 6.8.

The figure shows that the contextual collaborative filtering approach gives best precision
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Figure 6.8: Daily recommender precision for each filtering approach in selected periods.

and that the content-based approach gives better precision than the collaborative filter-
ing approach. All approaches seem to increase and decrease more or less simultaneously
during the week, except for the contextual filtering approach. Its precision increases be-
tween Tuesday and Wednesday, while precision for the other two approaches decreases.
The precision for all approaches are clearly increasing from Thursday to Friday. The
figure also shows that collaborative filtering is the only approach to experience negative
precision, meaning that the users dislike more songs than they like.

Having showed the precision for the different filtering approaches in selected periods,
it may be interesting to see the precision for each user in the selected periods. This can
be seen in figure 6.9 as it shows the variation in each user’s precision for each day. This
figure shows three groups of plots, each representing one selected period. Further, one
can see an indication of where each group is centered. The first group, representing the
content-based filtering approach, have some highly positive and some negative precision
values, but the set of plots is centered around 0.4. The second group, representing the
collaborative filtering approach, has a higher number of negative ratings, and this group
is centered around 0.2. This shows that collaborative filtering generally gains lower pre-
cision than content-based filtering. Finally, the third group, representing the contextual
collaborative filtering approach, shows a high number of highly positive precision values
where some even equals 1. When precision equals to 1, this means that all songs have
been rated positively. This group is centered above the other two groups, at around 0.6,
showing that on average, more than 3/4 of the songs are rated positively.

In addition, this figure shows the pattern of how the different users are rating the songs.
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Figure 6.9: Daily recommender precision for each user in selected periods.

For example, some users tend to rate more positively than others, and some may gain
increasing or decreasing precision during the whole period. User 439 and 408 seem to
gain overall high precision, indicating that these users are usually satisfied with recom-
mended songs. User 432 is generally less satisfied, and therefore gain lower precision.
User 446 seems to gain increasing precision throughout the period, while 412 seems to
gain decreasing precision.

6.2 Summary

This chapter has described the experimental part of this thesis. By following five steps
for measuring recommender systems, we have identified certain properties of our system.

1. The high-level goal of our system is to improve the quality of life.

2. The task that is identified for the system allows the user to receive a list of songs that
the user probably will like, without having to recommend all potentially relevant
songs in the entire database.

3. The dataset that is used for the measurements is captured using a live user exper-
iment. Then, an offline analysis is performed on the dataset.

4. The metric that is best suited for the measuring of our system is precision.

The result of the user experiment shows that the number of users and ratings are de-
creasing throughout the period, and that the system has been used by 5-10 authorities
who have tested all three filtering approaches, and contributed with many ratings. The
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majority of the users have tested one or two of the filtering approaches and have given
few ratings.

The result of the precision measurement shows that the precision differs for the three fil-
tering approaches. Contextual collaborative filtering gives best precision, while content-
based filtering gives better precision than collaborative filtering. The precision for all
three approaches seems to follow more or less the same pattern during the week. Finally,
the pattern of how users rate differ. Some users are steadily gaining the same precision
level, while others increase or decrease during the test period.



Chapter 7

Evaluation

We shall now evaluate the recommender system that has been developed, and find out
if it meets the requirements specified in chapter 3.

7.1 Functional evaluation

R0-R7 state requirements that concern the functionality of our recommender system. In
rough terms, the system shall allow users to play music (R0), request recommendations
(R1, R3, R5, R6 and R7) and evaluate songs (R2 and R4).

Missing functionality

Playing songs and navigating in the play list works fine, although some functionality have
been requested. First, some users have asked for a way to fast-forward/rewind songs.
Others have complained about the placement of the navigation buttons, saying that a
more natural placement would be on the bottom of the player. Some users have said
that the rating buttons are misleading. Instead of using triangles pointing up or down
we should use symbols showing a thumb pointing up or down. Another thing that may
weaken the usability of the player is a small user interface with small buttons. Although
the balance between size and usability was considered throughly while developing the
system, some users may disagree in the chosen solution.

Play list advantage

A functional advantage of our system compared to other related systems is the possibility
to select songs to play from a list of recommended songs. Other commercial music players
like Pandora and Last.fm only recommend one song at a time, and does not allow to
start playing the same song over again. For example, if the stop button is clicked in
Last.fm while listening to a song, the song disappears. Then, if the play button is
clicked, another song is recommended. Our system does on the other hand always keep
the current play list, allowing the user to freely select what songs to play, even after
restarting the client application. This gives more control to the user, but it includes the
disadvantages of having a stateful server. First, this may be a burden for the server host
because of additional computations that follows the maintaining of state for each user.

69
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Second, the fact that our centralized server is a single-point of failure would get even
bigger consequences as the server is stateful. If the server host crashes, the play-list of all
users would be lost. However, since all play lists are stored persistently on the hard drive
and not in memory, a crash would normally not ruin the data. Although the problem of
having a stateful server is not serious in our setting, it would be if our system was part
of a commercial service handling thousands of users. One solution to the problem could
be to store each play list at the client host, for example in the browser as a web cookie.

Caching problem

While doing the user experiment, some users experienced problems refreshing their play
list upon recommendation requests. Flash movies (swf files), like other documents and
media retrieved by a web browser, are often saved, or cached, locally on the user’s hard
drive. The next time that media is requested, the web browser may load the file from
the cache instead of downloading it over the network. This might be desirable for a flash
movie whose content does not change often, but undesirable for movies like ours, that
are updated frequently with new content.

The problem can be solved easily by manually clearing the browser cache. However,
an automatic solution to this problem is required to maintain the availability of the sys-
tem. Using the following techniques, flash movie files can be forced to expire immediately
from the web browser cache. First, the Expires header of an HTML document telling
the web browser when a cached document should expire from the cache can be used.
Using a date in the past ensures that the document always will be expired. Second,
using the Pragma: No-Cache header directs the browser to not cache the document at
all. Finally, it is possible to force the linked page to be loaded from the server and not
from the browser cache by simply placing a pseudorandom number at the end of the
query-string. Since some technique’s functionality may depend on the browser that is
used, all techniques were used to avoid caching of play lists.

Halting problem

A problem that has been experienced by one user testing our recommender system is
that the client application stopped playing songs when its window resided behind other
application windows. In this case, the user had many applications running simultane-
ously, and when the player window was given focus after stopping, the song continued at
exactly the same point as it stopped. Without investigating this phenomenon further, it
may seem like the process running the client application got such low priority when it
got in the background that it stopped playing.

After all, our recommender system satisfies all the functional requirements stated in
chapter 3 (R0-R7).

7.2 Non-functional evaluation

R8-10 states the non-functional requirements of our recommender system. Each one will
now be evaluated.
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7.2.1 Accuracy

R8 states that the server application shall produce accurate recommendations that match
the user’s music preference.

Precision

Our system has been measured by calculating the precision of recommendations produced
by the system. Recall has not been considered because the users do not need all relevant
songs when requesting recommendations. As long as they receive some songs that meets
their needs, they will be satisfied. However, if our system for example allowed the users
to explicitly request songs from specific artists or albums, then recall would also be
important to assure that all relevant songs were considered.

User influence

Our experiment shows that collaborative filtering gives a low precision compared to
content-based and contextual collaborative filtering. The collaborative filtering approach
differs from the other approaches by not letting the users make any choices about what
songs to receive by providing realtime feedback. Recommendations are only based on
the user’s, and other similar users previous ratings.

Unlike collaborative filtering, content-based filtering allows the users to make choices,
more specifically by selecting a preferred genre combination while requesting songs. Con-
textual collaborative filtering allows the users to make choices by receiving songs based on
their specified mood. Giving the users more influence, by for example indicating context
in the process of recommending songs, may seem to provide more precise recommenda-
tions. This is clearly demonstrated from our experimental results. Collaborative and
contextual collaborative filtering use the same algorithm, except that the latter includes
mood as an extra filtering attribute. The experimental result shows that contextual col-
laborative filtering gains far better precision than collaborative filtering. This states the
fact that contextual information improves recommender precision.

Attribute quality

The experimental result shows that contextual collaborative filtering outperforms content-
based filtering when it comes to precision. Recall that they both do filtering based on
attributes describing the content; contextual collaborative filtering filters on mood and
content-based filtering filters on genre. The result may therefore indicate that collabo-
rative filtering as filtering technique outperforms content-based filtering. However, this
fact may be concealed by the attributes that are used during the filtering process. With-
out having done any further investigation, we conjecture that songs are specified more
accurately with respect to mood, than genre. The unfair genre distribution shown in fig-
ure 5.5, and the fact that songs are explicitly, and therefore relatively accurately related
to a mood, supports this assertion. Since the way songs are specified with respect to
musical attributes may differ, our experimental result may give a false impression about
the precision obtained by content-based and contextual collaborative filtering. A better
way to compare the two approaches would be to let them both filter on the same musical
attribute. Then, we would probably get a more reliable result.



72 CHAPTER 7. EVALUATION

Decreasing precision

It has to be mentioned that the precision measure for content-based and contextual
collaborative filtering are based on a smaller dataset than the precision measure for
collaborative filtering, making the precision of the former approaches less reliable, and
maybe falsely positive. In addition, further investigation of recommendations produced
by the collaborative filtering approach shows that they initially descend from users that
have some ratings in common with the actual user. However, after a few recommendation
requests, the number of similar users starts to decrease and results in mostly random
recommendations. This is probably due to our limited number of users, making precise
recommendations disappear faster than new ones are produced.

Figure 6.7 may prove this tendency showing a very steep decrease in precision in the
period of the collaborative filtering approach. It is clear that our system suffers from a
sparsity problem by having to few users. This is a known problem for collaborative filter-
ing systems. We tried to reduce the problem by having a long profile-building stage using
the content-based filtering approach. However, the sparsity problem makes it difficult
for our system to produce precise recommendations in the long run.

Disadvantage of large profiles

Although we conjecture that building large and specific user profiles would improve
recommender precision, our experiment showed something else. Instead of selecting
similar users with large profiles in the recommendation process, our system preferred
small similar user profiles. This happened because the actual user had more ratings
similar to small profiles than to big profiles. Large profiles seemed to specific to be used
as basis for recommendations. It would be interesting to investigate this further and
see if an experiment with more users would make the system utilize more of the large
profiles.

Unique preferences

Another group of profiles suffering in our system is the group of profiles reflecting unique
music tastes. While using collaborative or contextual collaborative filtering, our system
tends to reward users who are like those who already use the system. If there already exist
many users with similar taste in respect to the actual user, the actual user will probably
get precise recommendations. If not, the user may receive less precise recommendations.
The effect of this is that the user will probably stop using the system. Evaluation of our
system shows that some users have tested the system more than others. These users have
normally also tested more than one filtering approach. This may indicate that they have
been more satisfied with recommendations than other users, and that they constitute the
“main-stream” group of users in the system. Other users may have stopped using the
system because they received recommendations that did not suit their more unique taste.
Providing all users with precise recommendations is therefore a challenge that must be
faced, especially within commercial recommender systems, as they are influenced by a
big competition of capturing users having a big variety of taste.



7.2. NON-FUNCTIONAL EVALUATION 73

New users problem

Another weakness of our system is that it is not possible for new users to join the
system while using the collaborative or the contextual collaborative filtering approach,
simply because there does not exist any profiles for these users. This problem must
be solved in commercial systems, where new users are joining the system continuously.
More complex hybrid content-based/collaborative filtering solutions solves this problem,
by letting recommendations be based on a rich set of content-describing attributes in
addition to ratings given by the user and other similar users.

Filter overkill

As building more complex systems normally is done to increase recommender accuracy,
this may not be the best solution to improve the overall quality of the system. As men-
tioned in chapter 6, precision and recall is inversely related, meaning that prioritizing
precision will decrease the probability of having relevant songs recommended. We tested
our contextual collaborative filtering approach using genre as an additional filtering at-
tribute. The result of this intensive filtering was that the system returned a couple of
songs before it ran out of recommendations. This demonstrates that accuracy should not
always be the main goal while developing recommender systems.

After all, the server application in our recommender system produces enough precise
recommendations to demonstrate that the tested concepts work satisfactory. This means
that R8 is fulfilled. However, to provide precise recommendations over time, our system
would have needed more users.

7.2.2 Intrusiveness

R9 states that the client application shall minimize intrusiveness and at the same time
capture user attention so that an acceptable amount of evaluation data is received.

Capturing enough user feedback usually requires that the user must be disturbed. Since
recommender systems requires feedback from the users to provide personalized recom-
mendations, and that disturbing the users too much would probably make them stop
using the systems, balancing disturbance and data capturing must be considered in most
recommender systems.

Mixing explicit and implicit ratings

A normal way of balancing the two includes a mixture of explicit and implicit user ratings.
Explicit ratings requires disturbance because the user must for example click a button to
express preference. Because the users have full control over given ratings, this will give
precise feedback. Implicit ratings do not require the user’s attention because preferences
are expressed by monitoring the user’s behavior. This will give less precise feedback since
the user is not aware of ratings that are given. Our system uses a mixture of explicit
and implicit ratings by letting users both click an up or down button on each song, and
at the same time sets the up button if the song is played through and the down button
if less than 30 seconds of the song is played. This works well although especially implicit
feedback requires some tuning to work optimally.
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Problem remembering songs

Some users have expressed that after continuously playing a set of songs, they have for-
gotten whether they liked the songs played early in the set. They therefore had to go
through the songs over again to find out if they liked them, and then set ratings ac-
cordingly. The main problem with this was that the system did not provide a way to
fast-forward/rewind a song. This should be allowed since deciding whether a song is
preferable usually requires that the user starts listening some seconds out in the song.

Another way to make it easier to rate a set of recently played songs could be to start
playing a small summary of all songs after capturing the user’s attention. The user could
then easily determine which song to rate positively and which songs to rate negatively.

Capturing user attention

Since user attention is important to receive user feedback, and thus produce accurate
recommendations, the user interface of our system is used for providing the user with
an image of the album cover and an album review related to most songs in the music
store. This makes the interface look more attractive and may thus result in a better user
experience.

Another technique used by our system is to stop the player after playing five consec-
utive songs, and display a message asking if the user wants to continue playing. This
is done to assure that the user is testing the system and to avoid playing songs if the
user has put away the ear-phones. Continue playing songs without the user listing would
cause false implicit ratings and would decrease recommender precision. This technique
seems to work well although some users have complained about being interrupted while
playing music.

Binary vs numeric rating scale

Our system is using a binary rating scale, which does not give the same degree of rat-
ing accuracy as using a numeric rating scale. Binary ratings was chosen because our
conjecture was that few alternatives would make rating easier for the users, something
that probably would increase the number of ratings given by the user. It is uncertain
if our solution works better than a numerical scale. Some users have complained about
the binary scale and its disadvantage of not giving the possibility to express accurate
preference for songs.

One possible solution that gives more degrees of preference, and at the same time keeps
on to the binary scale, is to let explicit and implicit ratings give different rating weight.
This can be done by for example having a scale from 1 to 4, where 1 is the most negative
rating and 4 is the most positive. If the user rates a song explicitly by clicking the down
button, this song gets a rating equals 1, and if the song is explicitly rated by clicking the
up button, this will yield a rating equals 4. Implicit ratings will be given depending on
whether less than 30 seconds of a song is played or the whole song is played through. The
former case will give a rating equals 2 and the latter will give a rating equals 3. Having a
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finer grained rating scale where explicit ratings are weighted more than implicit ratings
will make user preferences more detailed, and probably recommendations more accurate.

Coarse-grained mood alternatives

Our system’s mood classification may suffer from the same problem, namely giving too
coarse-grained alternatives for the users. The current alternatives for classifying mood
only represent the most extreme degrees of mood without giving the possibility to express
moods “in between”. Extreme cases were chosen because we want to reduce the number
of alternatives, and instead of missing some alternatives it is better to give alternatives
that cover all possibilities.

After all, our mixture of explicit and implicit ratings makes sure that the system mini-
mizes intrusiveness and at the same time captures user attention so that an acceptable
amount of evaluation data is received. R9 is therefore fulfilled.

7.2.3 Scale potential

R10 states that the recommender system shall have the potential of being scalable both
with respect to geography and size.

Geographical scalability

Our system is tested from different locations, as shown in figure 6.1, and with a different
number of users playing music simultaneously. When a certain song is requested, the
download time is shown using a download bar in the interface, in the background of the
box showing the currently played song. The faster this bar expands, the faster the song
is downloaded. After using the system from different locations, it is experienced that
the download time depends on location in respect to the server. However, the download
time has never been so low that delay has been experienced. Although, most users have
been located within the same region as the server, some users have tested the system
from more distant places like the east coast of the United States. The fact that no delay
has been experienced by these users indicates that the system is geographically scalable
with the current number of users.

Size scalability

Considering the number of users, and scalability with respect to size, our result is more
uncertain. With our small number of test users, the system seems to perform satisfac-
tory. On the other hand, if the number of users were to increase, communication delay
would probably be considerable, causing problems communicating with the server appli-
cation and the music store. A solution to this problem could be to conduct standard
scaling techniques like distribution and replication. In a large setting with many users
world-wide, it would probably be necessary to replicate the server application to improve
availability and reliability all over the world, or at least in the part of the world where
most of the users reside. Since music taste differs depending on location, the music store
should be distributed so that for example most Asian music reside on servers in Asia
while most Latino music reside on servers in the south of Europe and South America.
To provide availability and reliability, each server should also be replicated depending on
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the server load.

After all, our system has the potential of being scalable if some scalability techniques are
deployed in both our server application and music store. R10 is therefore fulfilled.

7.3 Summary

In this chapter we have evaluated our recommender system against the requirements
stated in chapter 3. We conclude that all requirements, both functional and non-
functional, have been fulfilled.

The system functionality is acceptable although some features like fast-forward/rewind
each song and playing a summary of songs in a play list have been requested. In addition,
the users have experienced some problems refreshing their play list. One advantage of
our system is that it lets the user receive a list of songs, and not only one at a time. Our
system also lets the user keep each play list as long as the user wants, even after restart-
ing the client application. This user control is not provided by most other commercial
music services.

The most important of the non-functional requirements concerns accuracy. Without
accurate recommendations we would not need a recommender system in the first place.
Giving random suggestions, like many non-personalized streaming radio stations do,
could be sufficient. Our recommender system does like most other similar systems re-
quire input from users to produce accurate recommendations. Our experimental result
shows that users become more satisfied with recommendations if they are able to make
choices about what songs to receive, in our case by choosing music genre or mood.
Although musical attributes like genre and mood may help producing more accurate
recommendations, the performance of the filtering approach that is used also depend on
how accurate each song is specified with respect to the musical attribute. Our exper-
iment also shows that recommender precision decreases and that this happens because
precise recommendations disappears faster than new ones are produced. This is due to
our limited number of users. Having big user profiles does not seem to be an advantage
in our setting, where these profiles become too specific. Finding similar profiles therefore
becomes difficult. Our system also suffers from a problem of not accepting new users
when the collaborative of contextual collaborative filtering is used. This is due to a
property of pure “social” recommender systems requiring an existing profile to receive
recommendations. Finally, we have found out that practicing extensive filtering does not
necessarily improve the overall quality of the recommender system, as too much filtering
will reduce the number of recommended songs.

Our system strives to minimize intrusiveness and at the same time capture enough user
feedback by utilizing a mixture of explicit and implicit ratings. This seems to work fine
although especially implicit feedback requires some tuning to function optimally in our
system. To avoid receiving positive implicit ratings while the user for example puts away
the ear-phones, our system stops playing after five consecutive songs. Some user have
mentioned that they have forgotten whether they liked a song after playing a set of songs.
A possible solution is to play a summary of all songs in the play list for example when
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the user requests a new play list. This will help users to express their preference for
each song in the play list. Our system uses album information to help capturing user
attention. Our way of capturing rating data can probably be improved for example by
introducing a more fine-grained rating scale. This would make user preferences more
detailed and probably make recommendations more accurate. The coarse-grained alter-
natives for selecting moods is due to the desire of having few alternatives and at the
same time cover all subtleties of mood.

Considering our system’s scale potential is important because today’s commercial rec-
ommender systems usually provide services to thousands of users world-wide. Since we
throughout this thesis have compared our system to such services, scalability should also
be discussed, although it has not been of main importance in our development. We con-
clude that scalability with respect to both geography and size is not a problem in our
current system, but with more users over a large distance, our system would suffer. A
solution could be to selectively replicate our server application and selectively distribute
and replicate our music data.





Chapter 8

Conclusion

This chapter summarizes our thesis by first concluding whether our achievements have
fulfilled the problem definition. Then, future work is presented.

8.1 Achievements

The problem definition from section 1.2 is stated below.

This thesis shall focus on development and evaluation of a recommender sys-
tem within the music domain. Different approaches for computing recommen-
dations will be designed, implemented and tested with real end-users. Eval-
uation will be done by assessing the system functionality and comparing the
recommender precision obtained by each approach.

We have developed a recommender system that allows users to play music, request rec-
ommendations and evaluate songs. Three different filtering approaches have been imple-
mented and tested. First, a content-based filtering approach producing recommendations
by interpreting music genre and evaluations provided by the actual user. Second, a collab-
orative filtering approach producing recommendations by interpreting evaluations given
by the actual user and other similar users. Finally, a contextual collaborative filtering
approach producing recommendations by interpreting mood information given by the
users, and evaluations given by the actual user and other similar users.

Experiments have been done by conducting live user experiments to capture user and
evaluation data. This data has been used as basis for offline analysis measuring rec-
ommender precision for the different filtering approaches. The result of the precision
measuring shows that the precision differs for the three filtering approaches. Contextual
collaborative filtering gives best precision while content-based filtering outperforms col-
laborative filtering.

Our conclusion from the experiment can be split into four parts.
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1. Realtime feedback increases recommender precision. By allowing the users to
choose music genre or mood while requesting music, they are more likely to re-
ceive accurate recommendations.

2. User mood has proved to be an important aspect of the users context. Our ex-
periment has shown that by integrating a mechanism for mood filtering into the
recommender system, it has been possible to produce recommendations that better
suits the users often varying music preferences.

3. Our recommender system has proved to be useful within the music domain. By
producing recommendations based on user feedback, our system has been able to
satisfy the users. By using the best filtering approach, on average, 3/4 of the
recommended songs were positively rated.

4. Precision measuring alone has been sufficient to analyze our system. Since the
users are satisfied with a small set of songs that they probably will like, and do not
require all relevant songs, recall measuring is not necessary.

8.2 Future work

In this section we present issues that should be explored to improve our recommender
system.

Improve filtering approaches: Our filtering approaches have been developed
with the goal of demonstrating the concepts behind each approach. Further im-
provements can be done on each approach. One example is to introduce more
coarse-grained classification of music, for example by artist and album, instead of
only songs.

Hybrid solution: Combining content-based and collaborative filtering would re-
duce sparsity-related problems including the problem of including new users in the
system.

Contextual information: Filter on other types of contextual information, for
example information describing time, location or what the user is doing.

Safe user feedback: Allowing feedback from the users to change the behavior of
the system so that the system only recommends “safe” songs that the users are
guaranteed to like. Imagine a user who is in party mood, and makes the system
aware of this. The system then recommends all the user’s favorite party songs.

Community: Each user profile could be part of a community with similar profiles
where users for example could recommend music directly to each other. In addition,
other services could be included in the system, like discussion forums and chat
rooms.

Other media: The system could be expanded by offering other types of media
like pictures and movies.

Scalability: Modify our system to function better in a bigger setting, with many
users world-wide.
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Testing: Additional testing over a longer period and with a larger variety of users
would verify our results and the tendencies shown in the experimental results. Also,
testing of a baseline system that only recommends random songs would prove the
effect of using a recommender system.
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