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Abstract

The main notion behind the study of matroids is linear dependence. In

this thesis, we give a survey of the concepts and properties of linear error-

correcting codes over finite fields being dependent only on the matroids de-

rived from these codes. In particular, the weight distributions of linear codes,

and their extensions, over bigger fields are only dependent on the N-graded

Betti numbers of these matroids and their so-called elongations. We will use

this fact to find the weight distributions for some important codes as con-

stant weight codes and Hamming codes. In addition, the connection between

the Betti tower of a matroid and its dual tower will be studied for general

matroids.
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Introduction

In this thesis we will look into some deep connections that exist between

coding theory, combinatorics, algebraic topology and homological algebra.

Matroid theory was introduced in 1935 by Hassler Whitney, an American

mathematician who dedicated himself to graph theory, differential geometry,

cohomological theory and algebraic topology. It was also independently stud-

ied by Takeo Nakasama, but his work was not recognized until years after he

died.

We will begin with a compilation of elementary definitions and properties

that codes satisfy. The main concepts for codes introduced in Chapter 1 are

the Hamming distance, the weight of a codeword, what a linear code is and

the equivalence of linear codes. When dualizing a linear code, we obtain an

important result about weight hierarchies: Wei’s duality. After coding the-

ory, we will give a introductory overview of matroid theory. There are many

equivalent ways to define a matroid, but the principal one is about indepen-

dence. Afterwards, we will show the relation between codes and matroids, a

matroid associated to a linear code will be defined by the parity check matrix

of the code.
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12 INTRODUCTION

In Chapter 2 we will establish the main base so that we can work with

matroids as topological objects (simplicial complexes). A very basic back-

ground in monomial ideals will be given so that it can be applied to matroids.

A matroid, seen as a simplicial complex, gives rise to a monomial ideal of a

polynomial ring, the Stanley-Reisner ideal, which is the ideal generated by

squarefree monomials corresponding to non-faces of the simplicial complex.

As a result, the Stanley-Reisner ideal has minimal free resolutions, and this

defines its Betti numbers.

In Chapter 3 we will extend the definition of weight enumerator of a

code C, given in Chapter 1, to the extended code C ⊗Fq Fqr . It has recently

been shown that the extended weight enumerator of a code can be entirely

expressed with the help of Betti numbers of the matroid and its elongations.

The formula given in [18] for computing the coefficients for the GWP has

special importance in this thesis since it will be used frequently in chapters 4

and 5. MacWilliams identity will be mentioned here as well, since it will be

relevant for computing the dual Betti numbers.

Throughout Chapter 4 the focus will be on constant weight codes. They

have pure resolutions, so the Betti numbers for its Stanley-Reisner ring satisfy

certain properties. By using some results given in [5] and the Herzog-Kühl

equations, we will get a general formula for computing all the Betti tables

for a matroid M associated to a constant weight code and its elongations

just from its parameters. Furthermore, we will get a general formula from

the GWP for computing all the Betti tables ofM and its elongations and we

will give the last columns and some more entries for the duals of the Betti

tables.

In Chapter 5, we will leave aside the condition for matroids coming from

constant weight codes and take general matroids. We will try to obtain as

much information as possible from the Betti tower ofM to achieve the Betti
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numbers of the dual tower. This will result in a formula for the last Betti

number of each dual table. If the GWP are given, we will always be able to

compute the Betti numbers for the last complete column of each dual Betti

table, in addition to the first and the next-to-last entries as well as the po-

sition of certain zeroes. Finally, an example will be given to illustrate how

this process works.
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Chapter 1

Basic definitions

In this first chapter we will introduce some basic concepts so that we can

later work with matroids as representants for linear codes. We will define

here what is a code, its length, its weight, its minimun distance, etc. Af-

terwards, we will define what a parity check matrix is, by dualizing, and we

will formulate the Wei’s duality theorem. Next, we will go through the basic

definitions for matroids (via independent sets, bases, circuits and rank func-

tion), providing some examples. Finally, we will end up showing the relation

between codes and matroids.

1.1 Coding theory

1.1.1 Elementary definitions

In this section we will provide a really basic overview of what is a code,

its parameters and its basic properties.

Definition 1.1.1. An alphabet is a finite set of symbols. We will denote it

by Σ.

Definition 1.1.2. A code C is a subset of all posible words.

C ⊂
∞
∪
n=0

Σn = {{∅} ∪ Σ ∪ Σ2 ∪ Σ3 ∪ . . .}

15



16 CHAPTER 1. BASIC DEFINITIONS

Definition 1.1.3. Let q be an integer. A q-ary block code C is a set of

r-tuples (a1,...,ar), where ai ∈ Σ, alphabet of cardinality q. An element in

this set is called a codeword.

Definition 1.1.4. The length of a block code is the length of any codeword

from the code.

Example 1.1.1. (Difference between code and block code) The set of all

English words is a 26-ary code, but not a block code, since all words do not

have the same length. The set of all Norwegian ID numbers is a 10-ary block

code of length 11.

From now on we will just work with block codes.

Definition 1.1.5. The Hamming distance between two codewords x =

(x1, ..., xn) and y = (y1, ...yn) is:

d(x, y) = #{i, xi 6= yi}

If the alphabet is Fq, then we can define the weight of a codeword x as :

wt(x) = #{i ; xi 6= 0}

Example 1.1.2. If x = (10111), y = (01101) the Hamming distance between

them is d(x, y) = 3.

Definition 1.1.6. The minimun distance of a code C is

d = min{d(x, y); x, y ∈ C, x 6= y}
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Definition 1.1.7. Two different block codes of length n over the alphabet

Σ are equivalent if we can obtain one from the other by using the following

operations:

1. Permutation of the positions of the code.

2. Permutation of the symbols appearing in a fixed position.

Notation. A (n,M, d) code is a code of length n, size (number of codewords)

M and minimun Hamming distance d.

Theorem 1.1.1. A q-ary (n,M, d)-code satisfies

M

(
t∑
i=0

(
n

i

)
(q − 1)i

)
≤ qn

where t = bd−1
2
c.

Proof. [7, Theorem 2.16]

Definition 1.1.8. A q-ary code for which there is equality in Theorem 1.1.1

is called perfect.

Definition 1.1.9. A linear code of length n and rank k is a linear subspace

with dimension k of the vector space Fnq , where Fq is the finite field with q

elements.

Remark. In a linear code, any linear combination of codewords is again a

codeword.

Remark. The zero vector is necessarily a codeword for any linear code.

From now on we will just work with linear codes.
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Definition 1.1.10. The support of a codeword x is

Supp(x) = {i, xi 6= 0}

The support of a set of codewords, S, is the union of the supports of all

codewords in S.

Supp(S) =
⋃
x∈S

Supp(x) = {i,∃x ∈ S, xi 6= 0}

Property.

d = min{#Supp(D) | D subcode of C of dimension 1}

Proof. [20, Proposition 2 Section 3.1]

Definition 1.1.11. The generalized Hamming weights of a [n, k]-code C are:

di = min{#Supp(D) | D subcode of C of dimension i}

where 1 ≤ i ≤ k. The sequence (d1, ..., dk) is called the weight hierarchy of

the code.

Notation. [n, k]q describes the code: length n, dimension k and alphabet

size q.

Definition 1.1.12. A generator matrix of a [n, k]q-code C is a k× n matrix

over Fq whose rows form a basis of C.

Definition 1.1.13. Two different linear block codes of length n over a field

Fq are equivalent if we can obtain the one from the other by using the fol-

lowing operations:

1. Permutation of the positions of the code.

2. Multiplication of the symbols appearing in a fixed position by a non-

zero scalar.
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Example 1.1.3.

Let

B =

[
1 2 0 1 2

0 0 1 2 2

]
be a generator matrix of a linear code over F3.

If we multiply the fourth column by 2, we will obtain an equivalent code.[
1 2 0 1 2

0 0 1 2 2

]
×2−→

[
1 2 0 2 2

0 0 1 4 2

]
F3=

[
1 2 0 2 2

0 0 1 1 2

]

Remark. If two different linear codes are equivalent in the sense of Defini-

tion 1.1.13, they are, obviously, also equivalent in the sense of Definition 1.1.7.

In the sequel, equivalence of linear codes will always be in the sense of

Definition 1.1.13.

Proposition 1.1.2. Two equivalent linear codes have the same parameters:

length, cardinality and minimal distance.

Proof. [20, Proposition 7]

Theorem 1.1.3. Let G be a generator matrix of an [n, k]q-code. Then we

can find an equivalent linear code with generator matrix of the form

[ Ik A ]

where Ik is the k × k identity matrix and A is a k × (n− k) matrix.

Proof. [7, Theorem 5.5]



20 CHAPTER 1. BASIC DEFINITIONS

Definition 1.1.14. A generator matrix of the form

[ Ik A ]

where Ik is the k× k identity matrix and A is a k× (n− k) matrix, is called

generator matrix under standard form.

Example 1.1.4. Let us take a code C over F2 generated by the codewords

x = {0, 1, 1, 0, 1} and y = {1, 0, 1, 1, 1}. A generator matrix of C is:

G =

[
0 1 1 0 1

1 0 1 1 1

]

We can swap the rows and obtain a generator matrix in standard form:

G′ =

[
1 0 1 1 1

0 1 1 0 1

]

Remark. Generator matrices under standard form are not unique for equiv-

alent codes.

Example 1.1.5. In F3, G1 is a generator matrix for a code and G2 a gen-

erator matrix for an equivalent code. Then, their generator matrices under

standard form do not need to coincide:

G1 =

[
0 1 2 2 1

2 2 2 2 1

]
∼ G2 =

[
1 2 2 2 1

0 1 2 2 1

]
↓ ↓

G′1 =

[
1 0 2 2 1

0 1 2 2 1

]
6= G′2 =

[
1 0 1 1 2

0 1 2 2 1

]
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1.1.2 Duality

Let us first introduce some algebraic concepts that will provide the base

for the definition of dual objects related with coding theory.

Definition 1.1.15. Let u = (u1, ..., un), v = (v1, ..., vn) ∈ Fnq be two vectors.

Then the inner product is

u · v =
n∑
i=1

uivi

The inner product is a bilinear form, that is, it is linear on each component

of the cartesian product (bilinear), and its target is the set of scalars of the

vector space (form).

Definition 1.1.16. A bilinear form f : V × V −→ K is said to be:

• Symmetric if f(x, y) = f(y, x) ∀x, y ∈ V ,

• Nondegenerate if f(x, y) = 0 ∀y ∈ V ⇒ x = 0 and f(x, y) = 0 ∀x ∈
V ⇒ y = 0.

Definition 1.1.17. Let V be a K vector space, and φ : V × V −→ K
be a symmetric bilinear form. Let W ⊂ V be a subspace. We define the

orthogonal of W as:

W⊥ = {v ∈ V ; φ(v, w) = 0 ∀w ∈ W}

Theorem 1.1.4. Let V be a K vector space, and φ : V × V −→ K be a

symmetric bilinear form. Let W ⊂ V be a subspace. Then W⊥ is a vector

subspace of V . Moreover, if V is finite dimensional and φ is nondegenerate,

then W⊥ is finite dimensional and

dimK(W⊥) + dimK(W ) = dimK(V )

Proof. [13, Theorem 2.3]
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Remark. Even if dimK(W⊥)+dimK(W ) = dimK(V ), we do not usually have

W ⊕W⊥ = V .

Let C be a [n, k]q code with generator matrix G. Let C⊥ be the orthogonal

of the code for the usual inner product. Since the inner product is a nonde-

generate symmetric bilinear form, we know that C⊥ is a [n, n − k]q code. A

generator matrix H of C⊥ is therefore a (n − k) × n matrix with entries in

Fq, and whose rows are a basis of C⊥.

Definition 1.1.18. Let C be a [n, k]q linear code. Then, the [n, n−k]q linear

code C⊥ is called the dual code.

Definition 1.1.19. A parity check matrix of a linear code C is a generator

matrix of the dual code C⊥.

Remark. It describes the linear relations that the components of a codeword

from C must satisfy, since the rows of a parity check matrix are the coefficients

of the parity check equations, defining linear combinations of codewords. It

can be used in decoding algorithms and also to decide if a particular vector

is a codeword: x is a codeword in C iff Hxt = 0.

Definition 1.1.20. A parity check matrix of the form

[ B In−k ]

is said to be under standard form.
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Theorem 1.1.5. Let C be a linear [n, k]q code given by a generator matrix

G under standard form, say

G= [ Ik A ]

Then, a parity check matrix for C is given by

H= [ −At In−k ]

Proof. [7, Theorem 7.6]

Proposition 1.1.6. If G,H are a generator matrix and a parity check matrix

for C respectively, then they are a parity check matrix and a generator matrix

for C⊥ respectively.

Proof. It is clear from the definition of parity check matrix. Since H gener-

ates the dual code, being a parity check matrix for C, then, a parity check

matrix for C⊥ will generate (C⊥)⊥ = C.

Example 1.1.6. Let us take G a generator matrix in standard form over F2

as in Example 1.1.4

G =

[
1 0 1 1 1

0 1 1 0 1

]
From the standard generator matrix we can obtain a parity check matrix:

H =


1 1 1 0 0

1 0 0 1 0

1 1 0 0 1


That is a generator matrix for the dual code of C.
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Theorem 1.1.7 (Wei’s duality). Let C be a [n, k]q linear code, and C⊥ its

dual code. Let d1 < . . . < dk and e1 < . . . < en−k the weight hierarchies of C
and C⊥ respectively. Then,

{d1, ..., dk, n+ 1− e1, ..., n+ 1− en−k} = {1, ..., n}

Proof. [21, Theorem 3]

1.1.3 Weight enumerator for a linear code

Definition 1.1.21. Let C be a linear [n, k]-code over Fq. The weight enu-

merator of C is defined as the following polynomial:

WC(Z) =
n∑
j=0

AC,jZ
j

where AC,j denotes the number of codewords in C of weight j.

Remark. Another way of express WC(Z) is

WC(Z) =
∑
x∈C

Zwt(x)

Example 1.1.7. Let C be the binary even-weight linear code of length 3, i.e

C = {000, 011, 101, 110}.
Then, WC(Z) = 1 + 3Z2

Definition 1.1.22. The homogeneous weight enumerator of C is defined as:

WC(X, Y ) =
n∑
j=0

AC,jX
n−jY j
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Remark. Another way of express WC(X, Y ) is

WC(X, Y ) =
∑
x∈C

Xn−wt(x)Y wt(x)

Remark. Note that WC(Z) and WC(X, Y ) are equivalent in representing

weight information. They determine each other uniquely by the following

equations:

WC(Z) = WC(1, Z)

WC(X, Y ) = XnWC(X
−1Y )

Also note that WC(X, Y ) is not the ordinary homogeneization of WC(Z)

as usually described. In the case of the code from Example 1.1.7, we ob-

tain WC(X, Y ) = X3 + 3XY 2, but if we just homogenize as usual, we obtain

W h
C (Z, T ) = T 2 + 3Z2, which is different from WC(Z) .

Example 1.1.8. Let us compute the weight enumerator for Example 1.1.4

G =

[
1 0 1 1 1

0 1 1 0 1

]
The generators of the code C over F2 are the words x = {1, 0, 1, 1, 1} and

y = {0, 1, 1, 0, 1}, therefore all the words w ∈ C can be written as w = αx+βy

where α, β ∈ F2.

α β w = αx+ βy wt(w)

0 0 {0, 0, 0, 0, 0} 0

0 1 {0, 1, 1, 0, 1} 3

1 0 {1, 0, 1, 1, 1} 4

1 1 {1, 1, 0, 1, 0} 3
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Then,

WC(Z) =
∑
x∈C

Zwt(x) = 1 + 2Z3 + Z4

WC(X, Y ) =
n∑
j=0

AC,jX
n−jY j = X5 + 2X2Y 3 +XY 4

WC(Z) = WC(1, Z) = 1 + 2Z3 + Z4

It has important applications in the theory of error-correcting codes.

Knowledge of the weight enumerator of a code enables us to calculate the

probabilty of having undetected errors, as shown in [7, Theorem 6.14].

1.2 Matroids

1.2.1 Equivalent definitions

There are many equivalent ways to define a matroid. In this section some

alternative ways to define them will be given among some properties.

1.2.1.1 Via independent sets

Definition 1.2.1. A finite matroid M is a pair (E, I), where E is a finite

set (called the ground set) and I is a family of subsets of E (called the

independent sets) satisfying the following axioms:

(I1) ∅ ∈ I.

(I2) If I1 ∈ I and I2 ⊂ I1, then I2 ∈ I.

(I3) If I1, I2 ∈ I with |I1| < |I2| then there exists x ∈ I2\I1 such that

I1 ∪ {x} ∈ I.
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Example 1.2.1. Let I(M) be

I(M) = {{∅}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5},
{2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 3}, {1, 2, 5},
{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}}

It is straightforward to check that this is a matroid. We will see in the

sequel that this is the matroid associated to the code defined in Example

1.1.4.

Definition 1.2.2. A subset of the ground set E that is not independent is

called dependent.

1.2.1.2 Via bases

Definition 1.2.3. A basis for a matroid is a maximal independent set for

inclusion, i.e., an independent set which becomes dependent on adding any

element of E. The set of bases will be denoted as B.

Example 1.2.2. The set of bases for the matroid given in Example 1.2.1 is

B = {{1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}}

Proposition 1.2.1. All the bases of a matroid have the same cardinality.

Proof. [17, Lemma 1.2.4]

Proposition 1.2.2. Let B ⊂ 2E be a set of bases. B satisfies the following

properties:

(B1) B 6= ∅.

(B2) (Base change) ∀B1, B2 ∈ B, ∀x ∈ B2\B1, ∃y ∈ B1\B2 such that (B2∪
{y})\{x} ∈ B .
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Proof. [17, Lemma 1.2.2]

Theorem 1.2.3. {1,2,5} Let B be a set of subsets of E satisfying (B1) and

(B2). Let

I = {σ ⊂ B | B ∈ B}

Then, M(B) = (E, I) is a matroid, whose set of bases is B.

Proof. [17, Theorem 1.2.3]

1.2.1.3 Via circuits

Definition 1.2.4. A circuit of a matroid M is a minimal dependent sub-

set of E (for inclusion), i.e, a dependent set whose proper subsets are all

independent. The set of circuits will be denoted as C.

Proposition 1.2.4. The set of circuits of a matroid satisfy the following

properties:

(C1) ∅ /∈ C.

(C2) If C1, C2 ∈ C with C1 ⊂ C2, then C1 = C2.

(C3) (Global elimination axiom) If C1, C2 ∈ C are distinct and C1 ∩C2 6= ∅,
then ∀e ∈ C1 ∩ C2 ∃C3 ∈ C such that C3 ⊂ (C1 ∪ C2)\{e} .

Proof. [17, Lemma 1.1.3]

Definition 1.2.5. An element that does not belong to any independent set

is called a loop, i.e, if {e} ∈ C then e is a loop.
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Theorem 1.2.5. A matroid over the ground set E is entirely defined by its

set of bases, or by its set of circuits. Namely we have:

I = {σ ⊂ E ; ∃B ∈ B, σ ⊂ B}

and

I = {σ ⊂ E, ∀τ ∈ C, τ 6⊂ σ}

Proof. [17, Theorem 1.1.4]

Remark. While the bases of a matroid have all the same cardinality, circuits

might not.

Example 1.2.3. The set of circuits for the matroid given in Example 1.2.1

is

C(M) = {{1, 2, 4}, {1, 3, 4, 5}, {2, 3, 5}}

Proposition 1.2.6. Let E be a finite set and C a set of subsets of E. Let

(C ′3) be the following property:

(C ′3) (Strong circuit elimination axiom) If C1, C2 ∈ C are distinct and C1 ∩
C2 6= ∅, then ∀e ∈ C1 ∩ C2, ∀f ∈ C1\C2, ∃C3 ∈ C such that f ∈ C3 ⊂
(C1 ∪ C2)\{e} .

Then, the properties (C1), (C2), (C3) are equivalent to the properties (C1), (C2), (C ′3).

Proof. [17, Proposition 1.4.11 + Corollary 1.4.12]

Theorem 1.2.7. Let E be a finite set, and C ⊂ 2E satisfy the axioms

(C1), (C2), (C3). Let

I = {σ ⊂ E, @τ ∈ C, τ ⊂ σ}

Then (E, I) is a matroid whose set of circuits is C.

Proof. [17, Theorem 1.1.4]
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1.2.1.4 Via rank function

Definition 1.2.6. Let M = (E, I) be a matroid.

The rank function of the matroid M is :

r : 2E −→ N
σ 7−→ r(σ) = max{ |I| s.t I ⊂ σ, I ∈ I}

The nullity function of the matroid M is :

n : 2E −→ N
σ 7−→ n(σ) = |σ| − r(σ)

Proposition 1.2.8. Let σ ⊂ E, then

r(σ) = max{ |σ ∩B| ; B ∈ B}

Proof. [20, Proposition16]

Definition 1.2.7. The rank of a matroid M over E is defined as

r(M) = r(E)

Example 1.2.4. Let us take Example 1.2.1 and calculate the rank and nul-

lity for some sets:

σ r(σ) n(σ)

∅ 0 0

{1} 1 0

{1,2} 2 0

{1,2,4} 2 1

{1,2,3} 3 0

{1,2,3,4} 3 1

{1,2,3,4,5} 3 2
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Proposition 1.2.9. The rank function of a matroid M = (E, I) satisfies

the following properties:

(R1) r(∅) = 0.

(R2) If σ ⊂ E, x ∈ E, then r(σ) ≤ r(σ ∪ {x}) ≤ r(σ) + 1.

(R3) If σ ⊂ E, x, y ∈ E are such that r(σ ∪ {x}) = r(σ ∪ {y}) = r(σ) then

r(σ ∪ {x, y}) = r(σ).

Proof. [17, Theorem 1.4.14]

Proposition 1.2.10. Let r : 2E −→ N be a function. Then, the three

following properties are equivalent to the ones that the rank function satisfies

( (R1), (R2), (R3) ).

(R′1) 0 ≤ r(σ) ≤ |σ|.

(R′2) If σ ⊂ τ ⊂ E, r(σ) ≤ r(τ).

(R′3) If σ, τ ⊂ E, r(σ ∩ τ) + r(σ ∪ τ) ≤ r(σ) + r(τ).

Proof. [17, Lemma 1.3.1]

Theorem 1.2.11 (Matroid Via rank function.). Let E be a finite set and

r : 2E −→ N a function satisfying ((R1), (R2), (R3)) (or alternatively

((R′1), (R′2), (R′3)), and

I = {I ∈ 2E, r(I) = |I|}

Then, (E, I) is a matroid with set of bases

B = {I ∈ 2E, r(E) = r(I) = |I|}

and rank r.

Proof. [17, Theorem 1.3.2]
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Corollary. If M = (E, I) is a matroid with rank function r, σ ⊂ E is

dependent if and only if

r(σ) ≤ |σ| − 1

In particular, if σ is a circuit, then

r(σ) = |σ| − 1

Proof. [17, Proposition 1.3.5]

1.2.2 Duality

Theorem 1.2.12. LetM be a matroid on the ground set E with set of bases

B. Let B̄ be

B̄ = {E\B, B ∈ B}

Then B̄ is the set of bases of a matroid over E.

Proof. [17, Theorem 2.1.1]

Definition 1.2.8. LetM be a matroid on the ground set E and set of bases

B. Then the matroid on E and set of bases B̄ is called the dual of M, and

denoted by M∗.

Remark. (M∗)∗ =M

Example 1.2.5. The set of bases for the dual matroid from Example 1.2.1

is

B̄ = {{1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {4, 5}} = B(M∗)
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Definition 1.2.9. Let M be a matroid. Then

- The elements of I(M∗) are the coindependent sets of M.

- The elements of B(M∗) are the cobases of M.

- The elements of C(M∗) are the cocircuits of M.

- The rank function of M∗ is the corank function of M.

- A coloop of M is a loop of M∗.

Remark. The coindependent sets are not the complements in E of the inde-

pendent sets. There is not a nice description of the cocircuits of a matroid.

We cannot even predict the number of cocircuits from the number of bases

or the number of circuits.

Proposition 1.2.13. Let M be a matroid of rank r on the ground set E.

Then the rank of M∗ (or the corank of M) is |E| − r.

Proof. The rank of M is equal to the cardinality of any base. Then, the

cardinality of any base of M∗ is equal to |E| − r.

Theorem 1.2.14. Let M be a matroid of rank function r. Then the rank

function r∗ of M∗ is given by

r∗(σ) = |σ|+ r(E\σ)− r(E).

Proof. [17, Proposition 2.1.9]

Definition 1.2.10. Let M be a matroid over the ground set E with rank

function r. Let 1 ≤ i ≤ |E| − r(E). Then the i-th generalized Hamming

weight of M is

di = min{|σ|; n(σ) = i}



34 CHAPTER 1. BASIC DEFINITIONS

Proposition 1.2.15. Let M be a matroid of rank r on the ground set E.

Then, we have

d1 < . . . < d#E−r

Proof. [21, Theorem 1]

Theorem 1.2.16. Let M be a matroid on the ground set E and rank r. Let

d1 < . . . < d#E−r be its weight hierarchy. Let e1 < . . . < er be the weight

hierarchy of M∗. Then, we have

{d1, . . . , d#E−r} ∪ {n+ 1− e1, . . . , n+ 1− er} = {1, . . . , n}

and the union is disjoint.

Proof. [14, Proposition 5.18]

1.3 Relation between codes and matroids

1.3.1 Representable matroids

Definition 1.3.1. Two matroids (E, I1), (E, I2) are isomorphic if exists a

bijection φ : E −→ F such that σ ∈ I1 ⇐⇒ φ(σ) ∈ I2.

Definition 1.3.2. A vectorial matroid over a field F is a matroid obtained

from a finite set
→
v1, . . . ,

→
vn in some finite dimensional vector space W over F

such that E = [1, . . . , n], and σ = {i1, ..., im} ∈ I if and only if
→
vi1 , ...,

→
vim are

linearly independent vectors over F.

Definition 1.3.3. A matroid is representable if it is a vectorial matroid over

some field F.
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Example 1.3.1. V = Kt, vi =


v1i

...

vti

.

From these vectors we obtain a matrix A =


v11 . . . v1n

...
...

vt1 . . . vtn

 =
[
v1, . . . , vn

]
.

The independent sets of the vector matroid M[A] are

IM[A] = {{i1, ..., im} ; vi1 , ..., vim lin.indep.}

Remark. A set of columns in A is linearly independent (as vectors) if and

only if the corresponding set is independent in M[A].

Proposition 1.3.1. Let A be a k×n matrix with k ≤ n, X ⊂ E = [1, . . . , n].

Then, the rank function of the matroid M[A] is given by

r(X) = rank(A[X])

where A[X] is the vector matrix formed by the columns of A indexed by X.

Proof. It comes directly from the definition of rank since, for X ⊂ E, the

rank of the matrix A[X] is the rank of the vector space spanned by X.

Theorem 1.3.2. If M is the vector matroid of [ I | A ], then M∗ is the

vector matroid of [ −At | I ].

Proof. [17, Theorem 2.2.8]

Corollary. If M is representable over the field F, then M∗ is also repre-

sentable over F.
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Proposition 1.3.3. Let M be a matroid having fewer than 8 elements.

Then, M is representable.

Proof. [17, Proposition 6.4.10]

1.3.2 Non-representable matroids

All matroids that come from a code are vector (representable) matroids.

However, there are some matroids that are non-representable, so they do not

came from any code. Let us see an example:

Example 1.3.2 (V8 - Vámos matroid).

The Vámos matroid V is defined on the set V = {v1, ..., v8}. Its indepen-

dent sets are all the subsets of cardinality 6 4, except for five: {v1, v2, v3, v4},
{v1, v2, v5, v6}, {v3, v4, v5, v6}, {v3, v4, v7, v8}, {v5, v6, v7, v8}.

It is the smallest known matroid that is non-representable over any field,

as shown in [17, Proposition 6.1.10].

Figure 1.1: Vámos matroid
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1.3.3 How to obtain a matroid from a code

Proposition 1.3.4. Let H1 and H2 be two different parity check matrices

from the same linear code. Then,

M[H1] =M[H2]

Proof. H1 and H2 are parity check matrices from the same code. It means

that we can obtain one from the other by row operations. Since the matroid

M[H1] describes the independence between columns in H1 and the matroid

M[H2] describes the independence between columns in H2, both of them will

define the same exact independent sets.

Definition 1.3.4. A matroid from a [n, k]q linear code C is defined as

MC =M[H]

where H is a parity check matrix.

Remark. Although a matroid can also be defined using the generator matrix,

we will use the parity check matrix. The reason comes from the definition of

weight hierarchy of a code.

di(C) = min{|σ|; n(σ) = i} = di(MH)

Example 1.3.3.

H1 =


0 1 1 1 0

1 0 1 0 0

0 0 1 0 1

 H2 =


1 0 0 1 0

0 1 0 1 1

0 0 1 0 1


Both matrices give us the same matroid.
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Remark. Two different isomorphic matroids may come from two codes that

are not equivalent.

Example 1.3.4. By using MAGMA ( [2]), we can find two different isomor-

phic matroids such that come from two [5, 3, 2]-codes over F7 that are not

equivalent:

GM1 =


1 0 0 4 5

0 1 0 4 3

0 0 1 4 0

 GM2 =


1 0 0 2 5

0 1 0 6 5

0 0 1 5 0



Theorem 1.3.5. Let C be a linear [n, k]q-code. Then, MC is a matroid on

E = [1, . . . , n] of rank n− k and the dual of this matroid is M∗
C =MC⊥

Proof. [20, Theorem 7.12]

Theorem 1.3.6. Let C be a linear code, and MC its associated matroid.

Then,

di(C) = di(MC)

where di(C) and di(MC) are the generalized Hamming weights of C and MC

respectively.

Proof. [20, Theorem 7.14]

Definition 1.3.5. (Shortening) Let C be a [n, k]q linear code with generator

matrix G and parity check matrix H. Let J ⊂ [1, . . . , n]. Consider the set

CJ , obtained from C by taking all the words from C that are equal to 0 on J ,

and then delete the zeroes at J .
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Proposition 1.3.7. The code CJ is a linear code of length n−|J |, with parity

check matrix HJ obtained from H by deleting the columns corresponding to

J . CJ is called the shortened code.

Proof. [20, Proposition 10]

Remark. Shortening involves the throwing out of codewords and deleting

coordinate positions.

Generalizing the definition of shortening for codes we get to the concept

of restriction of a matroid.

Proposition 1.3.8. Let M be a matroid on the ground set E, with set of

independent sets I, and let F ⊂ E. Let

J = {X ⊂ F | X ∈ I}

N = (F, J) is a matroid.

Proof. [20, Proposition 24]

Definition 1.3.6. The matroid N on the ground set F with set of indepen-

dent sets J is called the restriction of M to F or the deletion of E \ F from

M, and denoted by either M|F or M\ (E \ F )

1.3.4 Elongation

Definition 1.3.7. For 0 ≤ i ≤ n− r(E), we define the i-th elongation ofM
as the matroid M(i) whose set of independent sets are

I(M(i)) = {σ ⊆ E ; n(σ) ≤ i}
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Remark. It is not difficult to see that M(i) is, indeed, a matroid:

(I1) ∅ ∈ I(M(i)), since n(∅) = 0.

(I2) If I1 ∈ I(M(i)), I2 ⊂ I1, then

|I2| < |I1| and r(I2) < r(I1)

By the property (R2),

r(I2) + |I1 \ I2| ≥ r(I1)

Then,

n(I2) = |I2| − r(I2) ≤ |I2| − r(I1) + |I1| − |I2| = n(I1) ≤ i

Therefore, I2 ∈ I(M(i)).

(I3) Let I1, I2 ∈ I(M(i)) such that |I1| < |I2| and assume that ∀x ∈ I2 \
I1, n(I1 ∪ {x}) > i. Then,

i < n(I1 ∪ {x}) = |I1|+ 1− r(I1 ∪ {x})

r(I1 ∪ {x}) < |I1|+ 1− i

We have that r(I1) ≥ |I1| − i and r(I2) ≥ |I2| − i. Then,

|I1| − i ≤ r(I1) ≤ r(I1 ∪ {x}) ≤ |I1| − i

Thereore, r(I1 ∪ {x}) = r(I1) = |I1| − i.
Since M is a matroid, the properties for the rank function r are

satisfied, and we asumed that n(I1 ∪ {x}) > i ∀x ∈ I2 \ I1. Then, by

repeated aplications of (R2),

r(I1) = r(I1 ∪ {x}) = r(I1 ∪ {x, y}) = . . . = r(I2) = |I1| − i

We get

n(I2) = |I2| − r(I2) = |I2| − r(I1) = |I2| − |I1|+ i⇒ n(I2) > i

that is absurd.
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Proposition 1.3.9. Let M be a matroid and let r and n be its rank and

nullity functions. Then, for σ ∈ E, the rank and nullity functions for its

elongations are:

r(i)(σ) =

{
r(σ) + i if n(σ) > i

|σ| if n(σ) ≤ i

and

n(i)(σ) =

{
n(σ)− i if n(σ) > i

0 if n(σ) ≤ i

Proof. We know that the rank of an independent set is equal to its cardinality.

Therefore, r(i)(σ) = |σ|, when n(σ) ≤ i.

For dependent sets we need to find one I ∈ I(M(i)) such that I ⊂ σ and

|I| = r(σ) + i. Let σ ⊂ E such that n(σ) = |σ| − r(σ) > i.

Let now I ∈ I(M) such that I ⊂ σ is maximal. Then, r(σ) = r(I) = |I|.
Since σ is dependent,

r(σ) < |σ| − i ⇒ |σ| − i > r(σ) = r(I) = |I|

⇒ |σ| − |I| > i

Then, ∃τ ⊂ σ \ I such that |τ | = i.

Let J = I ∪ τ . Then, n(J) = |J | − r(J) = |I| + i − |I| = i. Therefore,

J ∈ I(M(i)).

We have I ⊂ J ⊂ σ and J ∈ I(M(i)). Therefore,

r(i)(σ) = max{|I| ; I ⊂ σ, I ∈ I(M(i))} ≥ |J | = |I|+ i = r(σ) + i

Assume now that ∃J ∈ I(M(i)) such that J ⊂ σ and |J | = r(σ) + i+ 1.

Then,

n(J) = |J | − r(J) = r(σ) + i+ 1− r(J) ≥ r(J) + i+ 1− r(J) > i

that is absurd.
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In the case of nullity function for elongations, the definition reads:

n(i)(σ) = |σ| − r(i)(σ)

Therefore,

If n(σ) > i, n(i)(σ) = |σ| − (r(σ) + i) = |σ| − r(σ)− i = n(σ)− i.
If n(σ) ≤ i, n(i)(σ) = |σ| − |σ| = 0.

Corollary. r(i)(M(i)) = r(E) + i = r(E) + i.

Remark. The matoidM(i) is commonly referred to as the elongation ofM
to rank r(M) + i.

Lemma 1.3.10. Let r be the rank funcion of a matroid M. Then, the rank

function for its elongations satisfies:

r(i)(σ) = min{|σ|, r(σ) + i}

Proof.

r(i)(σ) =

{
r(σ) + i if n(σ) > i⇔ r(σ) + i < |σ|
|σ| if n(σ) ≤ i⇔ |σ| ≤ r(σ) + i

Therefore, r(i)(σ) = min{|σ|, r(σ) + i}.

Corollary. Let r be the nullity funcion of a matroid M. Then, the nullity

function for its elongations satisfies:

n(i)(σ) = max{0, n(σ)− i}

Proof. By the definition of nullity function,

n(i)(σ) = |σ| − r(i)(σ) = |σ| −min{|σ|, r(σ) + i}

= max{0, |σ| − r(σ)− i} = max{0, n(σ)− i}
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1.3.5 Truncation

Definition 1.3.8. The i-th truncation of M is the matroid M(i) whose set

of independent sets are

I(M(i)) = {σ ∈ I ; |σ| ≤ r(E)− i}

Remark. It is not difficult to see that M(i) is a matroid:

(I1) ∅ ∈ I(M(i)).

(I2) If I1 ∈ I(M(i)), I2 ⊂ I1, then |I2| ≤ |I1 ≤ r(E) − i. Therefore, I2 ∈
I(M(i)).

(I3) Let I1, I2 ∈ I(M(i)) such that |I1| < |I2|. Take x ∈ I2 \ I1, then

|I1 ∪ {x}| = |I1|+ 1 ≤ |I2| ≤ r(E)− i. Therefore, I1 ∪ {x} ∈ I(M(i)).

Remark. Equivalents ways to define truncations are:

I(M(i)) = {σ ∈ I ; r(σ) ≤ r(E)− i}

B(M(i)) = {σ ∈ I ; r(σ) = r(E)− i}

Proposition 1.3.11. For σ ∈ E, the rank function for truncations is:

r(i)(σ) =

{
r(E)− i if r(σ) > r(E)− i
r(σ) if r(σ) ≤ r(E)− i

Proof. It is sufficient to prove it for i = 1.

For independent sets in M(1), r(σ) ≤ r(E) − 1. Let J be a maximal

independent subset in M such that J ⊂ σ. Then, |J | = r(σ) ≤ r(E) − 1.

Therefore, J ∈ I(M(1)), and so, r(1)(σ) ≥ |J | = r(σ).

On the other hand, by definition, r(1)(σ) = max{|J | ; J ⊂ σ, J ∈
I(M(i))} ≤ max{|J | ; J ⊂ σ, J ∈ I(M)} = r(σ).

Thus, r(1)(σ) = r(σ) for r(σ) ≤ r(E)− 1.

If σ is dependent in M(1), r(σ) > r(E)− 1. Therefore, r(σ) = r(E).

We have that r(1)(σ) ≤ r(1)(E) = r(E)− 1.
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Now, If r(σ) = r(E) then ∃B ⊂ B such that B ∈ σ, so B \x ⊂ σ ∀x ∈ B.

Since B ∈ I(M) we get that B \ x ∈ I(M).

r(B) = r(E) = |B|
r(B \ x) = r(B)− 1 = r(E)− 1

r(B \ x) = |B \ x| = r(B)− 1

Then, B \ x ∈ I(M(1)). So r(1)(σ) ≥ |B \ x| = r(E)− 1.

Thus, r(1)(σ) = r(E)− 1 for r(σ) > r(E)− 1.

Corollary. Let r be the rank function of a matroid M. Then, for σ ∈ E,

the rank function for its truncations satisfies:

r(i)(σ) = min{r(E)− i, r(σ)}

Proof. It comes directly from the previous proposition.

Proposition 1.3.12.

(M(i))∗ = (M∗)(i)

Proof.

(r(i))∗(σ) = |σ|+ r(i)(E\σ)− r(i)(E)

= |σ|+ min{r(E\σ), r(E)− i} −min{r(E), r(E)− i}

= |σ|+ min{r(E\σ), r(E)− i} − (r(E)− i)

If r(E\σ) < r(E)− i, (r(i))∗(σ) = |σ|+ r(E\σ)− (r(E)− i) = r∗(σ) + i.

If r(E\σ) ≥ r(E)− i, (r(i))∗(σ) = |σ|
On the other hand,

(r∗)(i)(σ) = min{ r∗(σ) + i, |σ| }

= min{ |σ|+ r(E\σ)− r(E) + i , |σ| }

If r(E\σ) < r(E)− i, (r∗)(i))(σ) = |σ|+ r(E\σ)− (r(E)− i) = r∗(σ) + i.

If r(E\σ) ≥ r(E)− i, (r∗)(i))(σ) = |σ|
which are the results we were looking for.



Chapter 2

Betti numbers associated to

matroids

In this chapter we will define what a simplicial complex is and what its

homological properties are. This will establish the base for its later use in

chapters 4 and 5.

2.1 Simplicial complexes

Definition 2.1.1. A simplicial complex ∆ on the vertex set E = {1, . . . , n}
is a family of subsets of E, called faces, that satisfy the following condition:

• If σ1 ∈ ∆ and σ2 ⊂ σ1 ⇒ σ2 ∈ ∆

The set of maximal faces (for inclusion), called facets, is denoted as F(∆).

The set of minimal non-faces (for inclusion) is denoted as N (∆).

Definition 2.1.2. The dimension of a face F is |F | − 1, and the dimension

of the simplicial complex ∆ is the maximun dimension of its faces, i.e.

dim(∆) = max{|σ| − 1 , σ ∈ ∆}

45
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Definition 2.1.3. A subcomplex of ∆ is a simplicial complex such that every

of its faces belongs to ∆.

Definition 2.1.4. The k-skeleton of ∆ is the subcomplex of ∆ consisting of

all of the faces of ∆ that have dimension at most k.

Definition 2.1.5. ∆ is said to be pure if every facet has the same dimension.

Definition 2.1.6. Let ∆ be a pure simplicial complex. A shelling on ∆ is

a total order on the facets F1< . . . <Ft such that ∀ 1 ≤ i<j ≤ t ∃ k<j such

that Fi ∩ Fj ⊂ Fk ∩ Fj = Fj\{x} for x ∈ Fj.

2.2 Monomial ideals

Let K be a field, and let S = K[x1, . . . , xn] the polynomial ring in n

variables over K.

Definition 2.2.1. A monomial is a polynomial of the form

xa =
n∏
i=1

xaii

where a = (a1, . . . , an) and ai ∈ N .

Property.

xa · xb = xa+b

Remark. The set Mon(S) of monomials of S is a K-basis of S, i.e any

polynomial f ∈ S is a unique finite K-linear combination of monomials.

f =
∑

u∈Mon(S)

auu where au ∈ K

Definition 2.2.2. The set supp(f) = {u ∈ Mon(S) ; au 6= 0} is called the

support of f
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Definition 2.2.3. An ideal I is called a monomial ideal if it is generated by

monomials.

Theorem 2.2.1. The set of monomials belonging to a monomial ideal I is

a K-basis of I.

Proof. [6, Theorem 1.1.2]

Remark. This is not true for all ideals.

If we take I =< x1 + x2x3 >, the set of monomials belonging to I are not a

K-basis for it since Mon(I) = ∅.

Definition 2.2.4. For a monomial ideal I,

Mon(I) = Mon(S) ∩ I

Corollary. Let I be a monomial ideal. The residue classes of the monomials

not belonging to I form a K-basis of the residue class ring S/I.

BS/I = {u ; u ∈ Mon(S), u /∈ Mon(I)}

Proof. [6, Corollary 1.1.4]

Definition 2.2.5. A monomial xa is called squarefree if the components of

a are 0 or 1.

Definition 2.2.6. A monomial ideal is squarefree if it is generated by square-

free monomials.



48 CHAPTER 2. BETTI NUMBERS ASSOCIATED TO MATROIDS

2.3 Gradings

Let K be a field, and let S = K[x1, . . . , xn] the polynomial ring in n

variables over K.

Any nonzero polynomial f ∈ K can be decomposed, in an unique way, as

sum of homogeneous polynomials of different degrees.

Definition 2.3.1. The polynomials from the descomposition of f in the sum

of homogenous polynomials are called the homogeneous components of f .

Definition 2.3.2. An ideal I ⊂ S is graded if, whenever f ∈ I, all homoge-

neous components of f belong to I.

Let G be an abelian group.

Definition 2.3.3. A G-graded ring R is a ring such that R =
⊕
g∈G

Rg where:

• (Rg,+) is a subgroup of (R,+) ∀g ∈ G

• Rg ·Rh ⊂ Rg+h ∀g, h ∈ G

Remark. 1 ∈ R0

Definition 2.3.4. A G-graded module M on a G-graded ring is such that

M =
⊕
g∈G

Mg where:

• (Mg,+) is a subgroup of (M,+) ∀g ∈ G

• Rg ·Mh ⊂Mg+h ∀g, h ∈ G

Definition 2.3.5. Elements in Mg are called homogeneous elements of de-

gree g.
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Definition 2.3.6. The standard structure of the polynomial ring S as a Z-

graded ring is the following:

Si =


∅ if i<0

K if i = 0

{homogeneous polynomials of degree i} if i ≥ 1

Definition 2.3.7. The standard structure of the polynomial ring S as a Zn-

graded ring is the following:

Let a = (a1, . . . , an) ∈ Zn. Then,

Sa =


∅ if ∃ai<0

K if a = 0

K · xa if ai ≥ 0

Definition 2.3.8. A G-graded (or homogeneous) morphism of graded R-

modules

ϕ : M =
⊕
g∈G

Mg −→ N =
⊕
h∈G

Nh

of degree d is a morphism of R-modules such that ϕ(Mg) ⊂ Ng+d ∀g.

Definition 2.3.9. A graded (or homogeneous) morphism of graded rings

ϕ : R =
⊕
g∈G

Rg −→ S =
⊕
h∈G

Sh

is a morphism of rings such that ϕ(Rn) ⊂ Sn ∀n.
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Definition 2.3.10. If M is a graded module then, the shift of M by d ∈ G
is M(d)g = Mg+d.

Remark. If ϕ : M −→ N is a graded morphism of degree d, then

ϕ : M(−d) −→ N is a degree 0 homomorphism.

From now on, we will consider all the morphisms as morphisms of degree 0.

Definition 2.3.11. A chain complex (F•, δ•) is a sequence of modules con-

nected by homomorphisms δi : Fi −→ Fi−1 (called boundary operators) such

that δi ◦ δi+1 = 0. We will denote it as F.

F : . . .
δi+1−→ Fi

δi−→ Fi−1
δi−1−→ . . .

δ2−→ F1
δ1−→ F0

δ0−→ F−1
δ−1−→ F−2

δ−3−→ . . .

It is exact when Im(Fi+1) = ker(Fi).

Due to Hilbert’s Basis theorem, S is a Noetherian Z-graded ring. Let M

be a finitely generated Z-graded S-module.

Theorem 2.3.1 (Hilbert Syzygy Theorem). Let K be a field and M a finitely

generated module over the polynomial ring K[x1, . . . , xn]. Then, exists a free

resolution of M of length at most n.

Proof. [4, Theorem 1.13 and Chapter 19]

Definition 2.3.12. A free resolution of a G-graded module M over S is an

exact complex of S-modules

F : . . .
δi+1−→ Fi

δi−→ Fi−1
δi−1−→ . . .

δ2−→ F1
δ1−→ F0

δ0−→M −→ 0

such that each map δi is a G-graded morphism, and each Fi is a free S-

module.

It is called minimal if Im(Fi+1) ⊂MFi, where M =< x1, . . . , xn >.
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Proposition 2.3.2. Minimal graded free resolutions of a graded module are

unique up to isomorphisms.

Proof. [6, Prop.A.2.3]

Proposition 2.3.3. Let M be a finitely generated Zn-graded S-module and

F : . . .
πi+1−→ Fi

πi−→ Fi−1
πi−1−→ . . .

π2−→ F1
π1−→ F0

π0−→M −→ 0

a minimal graded free resolution of M with

Fi =
⊕
a∈Zn

S(−a)βia ∀i

Then,

βia = dimK TorSi (K,M)a ∀i, a

Proof. [16, Lemma 1.32]

Proposition 2.3.4. Let M be a finitely generated Z-graded S-module and

F : . . .
πi+1−→ Fi

πi−→ Fi−1
πi−1−→ . . .

π2−→ F1
π1−→ F0

π0−→M −→ 0

a minimal graded free resolution of M with

Fi =
⊕
j

S(−j)βij ∀i

Then,

βij = dimK Tori(K,M)j ∀i, j

Proof. [6, Proposotion A.2.2]

Remark. TorSi (K,−) are the i-th derived functors of the functor S/M⊗S−.

The definition and properties can be found in [8, Chapter 3, Section 8].
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Definition 2.3.13. The numbers

βia = dimK TorSi (K,M)a

are called the Zn-graded or multigraded Betti numbers of M , and

βi =
∑
j

βij

where βi,j =
∑
|a|=j

βi,a is called the i-th or ungraded Betti number of M .

Remark. We also must observe that the βij are independent of the minimal

free resolutions, and that we hence can find them by studying one explicit

such resolution.

Definition 2.3.14. Let ∆ be a simplicial complex. The chain complex as-

sociated to ∆ is

F : 0 −→ . . .
δi+1−→ KFi(∆) δi−→ KFi−1(∆) δi−1−→ . . .

δ1−→ KF0(∆) δ0−→ KF−1(∆) −→ 0

where

Fi(∆) = {σ ∈ ∆ ; dim(σ) = i}.

and δi are defined as follows:

δi : KFi(∆) −→ KFi−1(∆)

δi(x
σ) 7−→

∑
1≤j≤i

(−1)j+1xa1,...,aj−1,aj+1,...,an

where xσ = xa1,...,an , a1 < . . . < an.

Then, the i-th reduced homology is defined as

∼
H i(δ,K) = ker(δi)/Im(δi+1)

Definition 2.3.15.
∼
hi(M,K) = dim(

∼
H i(M,K))



2.4. THE STANLEY-REISNER IDEAL FOR A SIMPLICIAL COMPLEX53

Definition 2.3.16. Let A =
⊕
n≥0

An be a finitely generated graded K-algebra.

The Hilbert function of A is defined as

H(A, n) = dimK(An)

where dimK(An) is the dimension of the vector space An over K.

If I = ⊕
n≥0

In is a homogeneous ideal of A, we can also define

H(I, n) = dim(In)

Definition 2.3.17. Let A =
⊕
n≥0

An be a finitely generated K-algebra.

The Hilbert series of A is defined to be the generating function

F(A, t) =
∞∑
n=0

H(A, n) · tn

Similarly, if I is a homogeneous ideal of A, then the Hilbert series of I is

F(I, t) =
∞∑
n=0

H(I, n) · tn

2.4 The Stanley-Reisner ideal for a Simplicial

complex

Let ∆ be a simplicial complex on E = {1, . . . , n} and S = K[x1, . . . , xn]

be the polynomial ring in n variables over a field K.

Notation. We will use the following notation:

xF =
∏
i∈F

xi for F ⊂ E

Remark. This is a squarefree monomial ideal.
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Definition 2.4.1. Let ∆ be a simplicial complex on the ground set E. The

Stanley-Reisner ideal of ∆ is the monomial ideal generated by its minimal

non-faces, i.e,

I∆ = <xF ;F ∈ N (∆)> = <xF ;F /∈ ∆>

Remark. I∆ is a squarefree monomial ideal.

Definition 2.4.2. The Stanley-Reisner ring is

K[∆] = S/I∆

Definition 2.4.3. The facet ideal of ∆ is

I(∆) = <xF ; F ∈ F(∆)>

where F(∆) is the set of facets of ∆

Remark. I(∆) is also a squarefree monomial ideal.

Definition 2.4.4. The Facet Ring of ∆ is

S[∆] = S/I(∆)

Definition 2.4.5. Given a simplicial complex ∆ on E, we define its Alexan-

der Dual as

∆∨ = {E\F ; F /∈ ∆}

Proposition 2.4.1. ∆∨ is also a simplicial complex.

Proof. [6, Lemma 1.5.3]
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Theorem 2.4.2. (Hochster’s formula) The nonzero Betti numbers of I∆

and S/I∆ lie only in squarefree degrees σ, and we have

βi,σ(S/I∆) = βi−1(I∆) =
∼
h|σ|−i−1(∆|σ)

Proof. [16, Corollary 5.12]

It is quite easy to verify that the definition of a matroid M ensures

that the set I(M) of independent sets satisfies the conditions of a simplicial

complex. Consequently, the Stanley-Reisner ring and the Stanley-Reisner

ideal of a matroidM can, and will be defined as those ones from the simplicial

complex ∆ = I(M).

Since all matroids are shellable simplicial complexes we can apply the

results from algebraic topology to them.

2.5 Matroids as simplicial complexes

2.5.1 Free resolutions for matroids

Let K be a field and S the polynomial ring K[x1, . . . , xn]. Let alsoM be

a matroid on the ground set E = {1, . . . , n}.
As we saw before, matroids are simplicial complexes, so the definition of

the Stanley-Reisner ideal is the same as for matroids.

Definition 2.5.1. The Stanley-Reisner ideal ofM is the ideal in S generated

by monomials corresponding to its circuits.

IM = <xσ ∈ S ; σ circuit of M> = <
∏
i∈σ

xi ; σ ∈ C >
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Definition 2.5.2. A free resolution of IM is

0 −→ ⊕
d
S(−d)βρ,d(IM) −→ . . . −→ ⊕

d
S(−d)β0,d(IM) −→ IM −→ 0

It said to be pure if it has the form:

0 −→ S(−dl)βl,dl −→ . . . −→ S(−d0)β0,d0 −→ IM −→ 0

where d = (d0, ..., dl) is a strictly increasing sequence of integers.

It is said to be linear if exists d ∈ Z such that

0 −→ S(−d− ρ)δρ −→ . . . −→ S(−d− 1)δ1 −→ S(−d)δ0 −→ IM −→ 0

Example 2.5.1.

For the matroid M in Example 1.2.1, its circuits were

C(M) = {{1, 2, 4}, {1, 3, 4, 5}, {2, 3, 5}}

The Stanley-Reisner ideal of M is therefore

IM =< x1x2x4, x1x3x4x5, x2x3x5 >

A free resolution for IM is therefore

0 −→ S(−5)2 −→ S(−4)⊕ S(−3)2 −→ IM −→ 0
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2.5.2 Weight hierarchy

Let M be a matroid on the ground set E = {1, . . . , n}. Recall from

Chapter 1 that the Hamming weights of a matroid are defined as

di = min{ |σ| ; nM(σ) = i} for 1 ≤ i ≤ n− r(E)

Let us define them in terms of Betti numbers.

Theorem 2.5.1. LetM be a matroid on E. Then, the generalized Hamming

weights are given by

di = min{d ; βi,d 6= 0} for 1 ≤ i ≤ n− r(E)

Proof. [9, Theorem 2]

Proposition 2.5.2. Let M be a matroid associated to a code and βi,σ the

Betti numbers associated to a free resolution for its Stanley Reisner ideal.

Then,

βi,σ(IM) 6= 0 ⇐⇒ βi−1,σ(IM(1)
) 6= 0

for 1 ≤ i ≤ |E| − r(M).

Proof. In [9, Th.1] is proved that βi,σ 6= 0⇔ σ is minimal for inclusion in Ni,

where Ni = {σ ; n(σ) = i}. Let 0 ≤ i ≤ |E| − r(M).

Let us take σ ∈ Ni(M). The nullity function for its first elongation is

n(1)(σ) = max{0, n(σ)− 1} = max{0, i− 1}

Therefore, σ belongs to Ni−1(M(1)).

Let us now take σ ∈ Ni−1(M(1)). The nullity function now is

n(1) = i− 1 = max{0, n(σ)− 1}

so n(σ) = i. Therefore, σ belongs to Ni(M).
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Since Ni(M) and Ni−1(M(1)) have exactly the same elements, if we take

σ minimal from Ni(M) it will be minimal in Ni−1(M(1)) and vice versa.

Therefore,

βi,σ(IM) 6= 0 ⇐⇒ βi−1,σ(IM(1)
) 6= 0

Corollary. All σ ∈ Ni = {σ | n(σ) = i} have the same cardinality.

Proof. Let σ ∈ Ni. By [10, Lemma 3.1], for σ ∈ Ni, there exists a subcode

C ′ of dimension i such that σ = supp(C ′). Then, due to [15, Theorem 1],

|σ| = |supp(C ′)| = Wt(C ′) = di = d · qi−1
qi−1(q−1)

.

Corollary. If the Stanley-Reisner ring of a matroidM has a pure resolution,

then its elongations M(k) also have pure resolutions ∀ 1 ≤ k ≤ |E| − r(M).

Proposition 2.5.3. For 0 ≤ i ≤ |E| − r(M),

di(M(j+1)) = di+1(M(j))

Proof.

di(M(k+1)) = min{|σ| ; n(j+1)(σ) = i}
= min{|σ| ; n(σ)− (j + 1) = i}
= min{|σ| ; n(σ)− j = i+ 1}
= min{|σ| ; n(j)(σ) = i} = di+1(M(j))
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Weight enumerator

In this chapter we will define the weight enumerator for extended codes

and for matroids. In addition, we will write about the relation between a

code and its dual code as shown in the MacWilliams identity.

3.1 Weight enumerator for codes and extended

codes

Let C be an [n, k]-code over Fq. Just as a reminder from the first chapter,

its weight enumerator is defined as:

Definition 3.1.1.

WC(X, Y ) =
n∑
j=0

AC,jX
n−jY j

where AC,j denotes the number of codewords in C of weight j.

Let C be an [n, k]-code over Fq with generator matrix G. The set of all

Fqr linear combinations of words of C is itself a linear code, named extension

of C to Fqr , denoted by C ⊗Fq Fqr . A codeword w belonging to the extended

code C ⊗Fq Fqr can be expressed as w = a · G, where a = (a1, ..., ak) ∈ Fkqr
and G is a generator matrix of C . We will see that the number of words

59
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of weight j in C ⊗Fq Fqr can be expressed in terms of the initial code C as a

polynomial in qr, whose coefficients depend only on C.

Lemma 3.1.1. Let G = [c1|...|cn] be a generator matrix for the code C.

Let a ∈ FkQ, where Q = qr, and Ai(Q) = {a ∈ FkQ; ctia = 0}. Then, for

i1 < . . . < ij,

#(Ai1(Q) ∩ . . . ∩ Aim(Q)) = Qk−rank([ci1 |...|cij ])

Proof. Let ϕi,j be the linear function generated by the columns [ci1| . . . |cij ]
from G. The cardinality of the intersection is

#(Ai1(Q) ∩ . . . ∩ Aim(Q)) = # kerϕi,j

= Qdim ker(ϕi,j)

= Qk−dim(Imϕi,j)

= Qk−rank([ci1 |...|cij ])

Lemma 3.1.2. Let C be a [n, k] linear code over Fq. Then, exists P ∈ Z[T ]

of degree at most k such that ∀r,

P (qr) = AC,n(qr) = #{codewords of weight n in C ⊗Fq Fqr}

Proof. Let G = [c1|c2| . . . |cn] be a generator matrix of C, where cj denotes

the corresponding column j in G. Let i ∈ {1, ..., n} and qr = Q.

For 0 ≤ m ≤ n, let AC,m(Q) denotes the number of words of weight m in

C ⊗Fq FQ.

Let a = (a1, ..., ak) ∈ FkQ, then w = a ·G is a codeword in C ⊗Fq FQ.

The weight of a codeword in C ⊗Fq FQ is n if and only if wi 6= 0 ∀i, i.e.

cti · a 6= 0 ∀i.
The number of words of weight n is therefore

AC,n(Q) = #{a ∈ FkQ ; cti · a 6= 0 ∀i}
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Those are all words, except the ones that have weight different from n.

The words that have weight different from n satisfy cti · a = 0 for some i,

and the cardinality of such set of words is

#{a ∈ FkQ ; ∃ i s.t cti · a = 0} = #
n
∪
i=1
{a ∈ FkQ ; cti · a = 0}

By using the inclusion/exclusion principle and the previous lemma,

#(
n
∪
i=1
Ai(Q)) =

n∑
i=1

#(Ai(Q))−
∑
i<j

#(Ai(Q) ∩ Aj(Q)) + . . .+ (−1)n
∑

#(
n
∩
i=1
Ai(Q))

AC,n(Q) = Qk −#(
n
∪
i=0
Ai(Q)) =

= Qk −
∑

i∈{1,...,n}

Qk−rank([ci]) +
∑
i<j

Qk−rank([ci,cj ]) − . . .+

+ (−1)l
∑

i1<...<il

Qk−rank([ci1 ,...,cil ]) − . . .+ (−1)nQk−rank(G)

Corollary. P depends only on the matroid associated to C.

Proof. ∑
i1<...<il

Qk−rank([ci1 ,...,cil ]) =
∑

i1<...<il

Qk−rM[G]({i1,...,il})

=
∑
|σ|=l

Qk−rM[G](σ)

=
∑
|σ|=l

QnM[H](E\σ)

=
∑
|σ|=n−l

QnM[H](σ)

Therefore,

AC,n(Q) = (−1)n
∑
σ⊆E

(−1)|σ|QnM[H](σ)
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Lemma 3.1.3. For σ ⊂ E, let aC,σ(Q) = #{w ∈ C ⊗Fq FQ ; supp(w) = σ}.
Then,

aC,σ(Q) = (−1)|σ|
∑
γ⊆σ

(−1)|γ|QnM[H](γ)

Proof. Let Cσ(Q) denotes the shortening of C ⊗Fq FQ in E\σ, and let H|σ
denotes the restriction of H to the columns indexed by σ.

Since the shortening of C by J = {j1, . . . , jn} is define as the code with

parity check matrix obtained by deleting the cji columns from H, we have

that H|σ is a parity check matrix for Cσ(Q).

It is clear that aC,σ(Q) = aC|σ ,σ(Q).

Since M[H]|σ 'M[H|σ], and because of nM[H]|σ(γ) = nM[H](γ),

∀γ ⊆ σ, aplying the latest corollary:

aC,σ(Q) = (−1)|σ|
∑
γ⊆σ

(−1)|γ|QnM[H]|σ (γ)

Proposition 3.1.4. Let C be a [n, k] linear code over Fq and j ∈ [0, . . . , n].

Then, ∃Pj ∈ Z[T ] of degree at most k such that ∀r,

Pj(q
r) = AC,j(q

r) = #{codewords of weight j in C ⊗Fq Fqr}

Proof. For 1 ≤ m ≤ n we have,

AC,m(Q) =
∑
|σ|=m

aC,σ(Q)

= (−1)m
∑
|σ|=m

∑
γ⊆σ

(−1)|γ|QnM[H](γ)

Remark. As before, Pj depends only on the matroid M.
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Definition 3.1.2. The extended weight enumerator for the code C is the

polynomial

WC(X, Y, T ) =
n∑
j=0

Aj(T )Xn−jY j

where Aj(T ) are integral polynomials in T and Aj(q
r) are the number of

codewords of weight j in C ⊗Fq Fqr .

3.2 Weight enumerator for matroids

Let M be a matroid over the ground set E = {1, ..., n}.

Definition 3.2.1. The Tutte polynomial of M is defined by

TM(X, Y ) =
∑
σ⊆E

(X − 1)r(E)−r(σ)(Y − 1)n(σ)

Remark.

TM(1, 1) gives us the number of bases of M.

TM(2, 1) gives us the number of independent sets of M.

Definition 3.2.2. The Generalized weight Polynomials (GWP) are defined

as follows:

PM,0(T ) = 1

PM,j(T ) = (−1)j
∑
|σ|=j

∑
γ⊆σ

(−1)|γ|T nM(γ) for 1 ≤ j ≤ n

and we call them the j-th generalized weight polynomials or just GWP ofM.
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Example 3.2.1. Let C be the code

C = {{0, 0, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 0}}

A generator matrix for C is

G =

[
1 0 1

0 1 1

]

The parity check matrix for C from G is

H =
[

1 1 1
]

Therefore, the set of bases of its associated matroid M is

B(M) = {{1}, {2}, {3}}

Let us write the following table for easier computations:

σ r(σ) n(σ)

∅ 0 0

{1} 1 0

{2} 1 0

{3} 1 0

{1, 2} 1 1

{1, 3} 1 1

{2, 3} 1 1

{1, 2, 3} 1 2
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Let us now apply the formula of the GWP to this concrete matroid:

PM,0(T ) = 1

PM,1(T ) = (−1)1
∑
|σ|=1

∑
γ⊆σ

(−1)|γ|T nM(γ) =

= (−1) ·
(

[(−1)|∅|T n(∅) + (−1)|{1}|T n({1})] +

+ [(−1)|∅|T n(∅) + (−1)|{2}|T n({2})] +

+ [(−1)|∅|T n(∅) + (−1)|{3}|T n({3})]
)

=

= (−1) · 0 = 0

PM,2(T ) = (−1)2
∑
|σ|=2

∑
γ⊆σ

(−1)|γ|T nM(γ) =

= (−1)2 ·
(

[(−1)|∅|T n(∅) + (−1)|{1}|T n({1}) +

+ (−1)|{2}|T n({2}) + (−1)|{1,2}|T n({1,2})] +

+ [(−1)|∅|T n(∅) + (−1)|{1}|T n({1}) +

+ (−1)|{3}|T n({3}) + (−1)|{1,3}|T n({1,3})] +

+ [(−1)|∅|T n(∅) + (−1)|{2}|T n({2}) + (−1)|{3}|T n({3}) +

+ (−1)|{2,3}|T n({2,3})]
)

= 3T − 3

PM,3(T ) = (−1)3
∑
|σ|=3

∑
γ⊆σ

(−1)|γ|T nM(γ) =

= (−1)3 ·
(

(−1)|∅|T n(∅) + (−1)|{1}|T n({1}) +

+ (−1)|{2}|T n({2}) + (−1)|{3}|T n({3}) +

+ (−1)|{1,2}|T n({1,2}) + (−1)|{1,3}|T n({1,3}) +

+ (−1)|{2,3}|T n({2,3}) + (−1)|{1,2,3}|T n({1,2,3})
)

=

= T 2 − 3T + 2

Just in order to check the computations, we can replace T for qr when

q = 2 and r = 1, and look at the results for our code C.
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PM,0(2) = 1  1 word of weight 0 : {0, 0, 0}.
PM,1(2) = 0  No words of weight 1.

PM,2(2) = 3 · 2− 3 = 3  3 words of weight 2 : {0, 1, 1}, {1, 0, 1}, {1, 1, 0}
PM,3(2) = 22 − 3 · 2 + 2 = 0  No words of weight 3 .

The GWP can be expressed in terms of Betti numbers as follows:

Theorem 3.2.1. For each 1 ≤ j ≤ n, and l ∈ [0, n − r(E)], the coefficient

of T l in PM,j is equal to

n∑
i=0

(−1)i(βi,j(IM(l−1)
)− βi,j(IM(l)

))

Proof. [18, Theorem 5.1]

Remark. In our case, the formula will be used as

n∑
i=1

(−1)i+1(βi,j(IM(l−1)
)− βi,j(IM(l)

))

since we will use this theorem for computing the Betti numbers for the

Stanley-Reisner ring instead of the ones from the Stanley-Reisner ideal, and

they satisfy

βi,j(IM) = βi+1,j(S/IM)

Example 3.2.2. For M from Example 3.2.1,

Free resolutions for IM and IM(1)
, respectively, are:

0→ S(−3)2 → S(−2)3 → IM → 0

0→ S(−3)→ IM(1)
→ 0
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So, the Betti numbers βi,di(IM(l)
) that are different from 0 are

β1,2(IM) = 3 β2,3(IM) = 2 β1,3(IM(1)
) = 1

Also assume that βi,j(IM(l)
) = 0 whenever l /∈ [0, 2] .

Then, the coefficients for T l in PM,j(T ) are:

Coeffj=1(T 0) =
∑3

i=0(−1)i(βi,1(IM(−1)
)− βi,1(IM)) = 0

Coeffj=1(T 1) =
∑3

i=0(−1)i(βi,1(IM)− βi,1(IM(1)
)) = 0

Coeffj=1(T 2) =
∑3

i=0(−1)i(βi,1(IM(1)
)− βi,1(IM(2)

)) = 0

Coeffj=2(T 0) =
∑3

i=0(−1)i(βi,2(IM(−1)
)− βi,2(IM)) = −3

Coeffj=2(T 1) =
∑3

i=0(−1)i(βi,2(IM)− βi,2(IM(1)
)) = 3

Coeffj=2(T 2) =
∑3

i=0(−1)i(βi,2(IM(1)
)− βi,2(IM(2)

)) = 0

Coeffj=3(T 0) =
∑3

i=0(−1)i(βi,3(IM(−1)
)− βi,3(IM)) = 2

Coeffj=3(T 1) =
∑3

i=0(−1)i(βi,3(IM)− βi,3(IM(1)
)) = −3

Coeffj=3(T 2) =
∑3

i=0(−1)i(βi,3(IM(1)
)− βi,3(IM(2)

)) = 1

Definition 3.2.3. The matroid enumerator is the polynomial:

WM(X, Y, T ) =
n∑
j=0

PM,j(T )Xn−jY j

Property. If C is a linear code with parity check matrix H and extended

weight enumerator WC(X, Y, T ) then,

WC(X, Y, T ) = WM[H](X, Y, T )
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3.3 Duality

The weight enumerator of a code and the weight enumerator of its dual

code are related by the MacWilliams identity as follows:

Theorem 3.3.1. Let C be a linear code and let C⊥ be its dual. Then, the

weight enumerator of C completely determines the weight enumerator of C⊥

and vice versa, via the following formula:

WC⊥(X, Y ) = q−k ·WC(X + (q − 1)Y,X − Y )

Proof. [12, Theorem 5.13]

Example 3.3.1.

Let C be the following constant weight code:

C = {{0, 0, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 0}}

and C⊥ its dual.

C⊥ = {{0, 0, 0}, {1, 1, 1}}

Then, their weight enumerators are, respectively:

WC(X, Y ) = X3 + 3XY 2

W⊥
C (X, Y ) = X3 + Y 3

When we use the MacWilliams identity we observe that:

W⊥
C (X, Y ) =

1

4
WC(X + Y,X − Y )

=
1

4
[(X + Y )3 + 3(X + Y )(X − Y )2]

= X3 + Y 3

and

WC(X, Y ) =
1

2
W⊥
C (X + Y,X − Y )

=
1

2
[(X + Y )3 + (X − Y )3]

= X3 + 3XY 2
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MacWilliams identity is also true for the extended weight enumerator.

Theorem 3.3.2. Let C be a linear code and let C⊥ be its dual. Then, the

extended weight enumerator of C completely determines the extended weight

enumerator of C⊥ and vice versa, via the following formula:

WC⊥(X, Y, T ) = T−k ·WC(X + (T − 1)Y,X − Y, T )

Proof. [12, Theorem 5.13]



70 CHAPTER 3. WEIGHT ENUMERATOR



Chapter 4

Constant weight codes

In this chapter we will focus on constant weight codes. We will find a

formula for the Betti numbers of elongations from the formula given in [5].

The N-graded resolutions associated to constant weight codes are pure, but

not linear ( [10]) and we will also see that it is enough to know the first

Betti number to know the rest of them. From the Betti numbers we can also

obtain the weight hierarchy and vice versa.

4.1 Definition and properties

Definition 4.1.1. A constant weight code is a code where all non zero

codewords have the same Hamming weight.

Example 4.1.1. The following matrix generates a constant weight code over

F2:

G =


0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1



71
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An associated matroid to its parity check matrix is:

M = {{2, 4, 6, 7}, {3, 4, 6, 7}, {3, 5, 6, 7}, {2, 3, 5, 6}, {1, 2, 4, 5}, {1, 4, 6, 7},
{1, 4, 5, 7}, {1, 5, 6, 7}, {2, 4, 5, 7}, {1, 2, 6, 7}, {2, 3, 4, 6}, {3, 4, 5, 6}, {2, 3, 5, 7},
{2, 5, 6, 7}, {2, 4, 5, 6}, {1, 2, 3, 7}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 3, 4, 7}, {1, 2, 5, 7},
{1, 3, 5, 6}, {1, 2, 3, 4}, {2, 3, 4, 7}, {1, 3, 6, 7}, {1, 4, 5, 6}, {3, 4, 5, 7}, {1, 3, 4, 5},
{1, 2, 4, 6}}

A minimal free resolution for its Stanley-Reisner ideal

IM =< x1x3x5x7, x2x3x4x5, x4x5x6x7, x1x2x5x6, x1x3x4x6, x2x3x6x7, x1x2x4x7 >

is:

0→ S(−7)8 → S(−6)14 → S(−4)7 → IM → 0

which is pure, but not linear.

A minimal free resolution for its Alexander dual is:

0→ S(−7)8 → S(−6)42 → S(−5)84 → S(−4)77 → S(−3)28 → IM∨ → 0

which is pure and linear, as we expected. ( [3, Theorem 3]

Theorem 4.1.1. Let C be a [n, k, d]-code over Fq. Let 1 ≤ s ≤ k − 1.

Suppose that all the s-dimensional linear subcodes of C have the same weight

ds. Then, for every 0 ≤ t ≤ k, and every subcode Dt of dimension t of C, we

have:

wt(Dt) = dt = ds
qk − qk−t

qk − qk−s

Proof. [15, Theorem 1]

Remark. This theorem shows that being of constant weight is the same as

being of constant weight in any dimension, except in dimension 0 and dimen-

sion k.
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The hierarchy (d1, ..., dk) of a constant weight code is given in ( [10]) by

di = d
qi − 1

qi−1(q − 1)
(4.1)

where d is the minimun distance.

Conversely, a [n, k, d]q-code where dk = di
qk−1

qk−i(qi−1)
, for some 1 ≤ i < k is

a constant weight code of weight dk
qk−1(q−1)
qk−1

.

Example 4.1.2. The weight hierarchy of the code from Example 4.1.1, is:

d1 = 4

d2 = 4 · 22−1
2

= 6

d3 = 4 · 23−1
22 = 7

4.2 Betti Numbers for the Stanley-Reisner

ring

Let K be a field, S = K[x1, . . . , xn] and ∆ a simplicial complex such that

dim(∆) = d − 1. Let I∆ be its Stanley-Reisner ideal. We know that there

exists a minimal free resolution for S/I∆, and, due to Hilbert Syzygy’s the-

orem, we know that the resolution is finite and its length is less or equal

to n. Let us take I∆ such that proj.dim(S/I∆) = k, which means that the

minimal length among all finite projective resolutions (or, equivalently, by

Quillen-Suslin theorem, free resolutions) is k.

4.2.1 Simplicial complexes with pure resolution

Let us consider a particular case, when S/I∆ has a pure resolution. Then,

there exists a strictly increasing sequence of integers d0 < . . . < dk such that
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the resolution of S/I∆ has the form

0→ S(−dk)βk → . . .→ S(−d1)β1 → S(−d0)β0 → S/I∆ → 0

We will show that the Betti numbers βi for 1 ≤ i ≤ k satisfy a set of

equations.

The Hilbert series and the Betti numbers are related by

HS/I∆(t) =

∑k
i=0 βit

di

(1− t)n

as shown in ( [6, Section 6.1.3])

and so,

k∑
i=0

(−1)iβi t
di = HS/I∆(t)(1− t)n

We also know, due to Hilbert’s theorem, [6, Th.6.1.3], that there exists

a Laurent polynomial Q∆(t) ∈ Z[t, t−1] with Q∆(1) > 0 such that

HS/I∆(t) =
Q∆(t)

(1− t)d

where d− 1 is the dimension of the simplicial complex.

In consequence,

k∑
i=0

(−1)iβi t
di = Q∆(t)(1− t)n−d

If we differenciate m times, for 0 ≤ m < n− d, we obtain

k∑
i=0

(−1)iβi

(
di
m

)
tdi−m =

∂m

∂tm
[(1− t)n−dQ∆(t)]

where
(
di
m

)
= 0 ∀di < m.
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Taking t = 1 in every derivation, we will obtain the Herzog-Kühl equa-

tions:
k∑
i=0

(−1)iβid
m
i = 0

Remark.

The Herzog-Kühl equations are not obtained directly from the substitu-

tion of t for 1, but the computations we need are simple:

If we take t = 1 in

k∑
i=0

(−1)iβi t
di = Q∆(t)(1− t)n−d

we obtain
k∑
i=0

(−1)iβi = 0

If we take t = 1 in the first derivation, we obtain

k∑
i=0

(−1)iβidi = 0

If we take t = 1 in the second derivation, we obtain

k∑
i=0

(−1)iβidi(di − 1) = 0

Therefore,

k∑
i=0

(−1)iβid
2
i −

k∑
i=0

(−1)iβidi =
k∑
i=0

(−1)iβid
2
i − 0 = 0

which gives us the third Herzog-Kühl equation

k∑
i=0

(−1)iβid
2
i = 0

Proceedig as before, we will get all of them.
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From the Herzog-Kühl equations, we obtain the following system:

d0
0 −d0

1 d0
2 . . . (−1)kd0

k

d1
0 −d1

1 d1
2 . . . (−1)kd1

k

d2
0 −d2

1 d2
2 . . . (−1)kd2

k
...

...
... . . .

...

dn−d−1
0 −dn−d−1

1 dn−d−1
2 . . . (−1)kdn−d−1

k





β0

β1

β2

...

βk


=



0

0

0
...

0



Taking β
′
i = (−1)kβi we obtain the following Vandermonde system of

equations: 
d0

0 . . . d0
k

...
...

dn−d−1
0 . . . dn−d−1

k



β
′
0
...

β
′

k

 =


0
...

0



4.2.2 Cohen Macaulay simplexes with pure resolution

In adittion of having pure resolution, we consider now ∆ as a Cohen-

Macaulay simplicial complex.

Definition 4.2.1. A simplicial complex ∆ is said to be Cohen-Macaulay if

its Stanley-Reisner ring S/I∆ is a Cohen-Macaulay ring, i.e, if

krull.dim(S/I∆) = depth(S/I∆)

where the krull dimension is the supremum of the lengths of all chains of

prime ideals in S/I∆ and the depth is the longest regular sequence for S/I∆.

Then, we have

depth(S/I∆) = krull.dim(S/I∆) = dim(∆) + 1 = d
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Due to Auslander-Buchsbaum formula ( [6, Corollary A.4.3])

depth(S/I∆) + proj.dim(S/I∆) = depth(S)

so we get

depth(S/I∆) = n− k

Proposition 4.2.1. Let M be a matroid over E = {1, . . . , n} of rank r.

Then, M is Cohen Macaulay.

Proof. Since the rank of M is r, it makes I(M) to be a simplicial complex

of dimension r − 1. Due to [6, Corolary 6.6.2], krull.dim(S/IM) = r, so

proj.dim(S/IM) = n− r.
Auslander-Buchsbaum formula gives us the desired result:

depth(S/IM) = n− (n− r) = r = krull.dim(S/IM)

Now, if we allow the previous Cohen-Macaulay simplicial complex to be

a matroid M of rank r, we have that dim(M) = r − 1, so depth(S/IM) = r

and, as we considered before, proj.dim(S/IM) = k.

At this point, we get the following set of equations:
d0

0 . . . d0
n−d

...
...

dn−d−1
0 . . . dn−d−1

n−d




β
′
0
...

β
′

n−d

 =


0
...

0


which has n − d + 1 columns and n − d rows. Since it is a non degenerate

Vandermonde matrix, it is of maximal rank, n− d, and so, the dimension of

the kernel is 1.
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Supposing that [γ0, ..., γk] is a non-zero solution for the non-degenerate

Vandermonde system, any solution will be of the form [qγ0, ..., qγk] for q ∈ K.

As a result, all βi are given ∀i ∈ {1, ..., k}, since we know β0 = 1 and d0 = 0.

The formula given in [5, Section 1.4] finds the Betti numbers by com-

puting the solutions of the previous Vandermonde determinants:

βi,di = (−1)i · t ·
∏
s 6=i

1

ds − di
for some t

β0,0 = t ·
∏
s 6=0

1

ds − d0

= 1

This is in particular true if ∆ is a matroid having a pure resolution, since

all matroids have a Cohen-Macaulay Stanley-Reisner ring. So, if M is a

matroid of rank r, it has dimension r − 1. We get the following system:


d0

0 . . . d0
n−r

...
...

dn−r−1
0 . . . dn−r−1

n−r




β
′
0
...

β
′
n−r

 =


0
...

0


and

βi,di = (−1)i · t ·
∏
s 6=i

1

ds − di
for some t (4.2)

t =
∏
s 6=0

ds

4.2.3 Matroids associated to constant weight codes

Let M be a matroid associated to a constant weight code. Then, we

know that it is Cohen-Macaulay and has pure resolution.
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Replacing t and di in ( 4.2), (using ( 4.1))

βi,di = (−1)i ·
k∏
s=1

ds ·
∏
s 6=i

1

ds − di

= (−1)i ·
k∏
s=1

d(qs − 1)

qs−1(q − 1)
·
i−1∏
s=0

qs+i−1(q − 1)

d(qs − qi)
·

k∏
s=i+1

qs+i−1(q − 1)

d(qs − qi)

= (−1)i ·
k∏
s=1

qs − 1

qs−1
·
i−1∏
s=0

qi−1

1− qi−s
·

k∏
s=i+1

qs−1

qs−i − 1

= (−1)i ·
k∏
s=1

qs − 1

qs−1
·

i∏
m=1

qi−1

1− qm
·
k−i∏
m=1

qm+i−1

qm − 1

=

k∏
s=1

qs − 1

i∏
m=1

qm − 1 ·
k−i∏
m=1

qm − 1

·

i∏
m=1

qi−1 ·
k−i∏
m=1

qm+i−1

k∏
s=1

qs − 1

The q binomial is defined as[
k

i

]
q

=
f(k, q)

f(r, q)f(k − r, q)

where f(n, q) =
n∏
i=1

(qi − 1)..

Then,

βi,di =

[
k

i

]
q

q
i(i−1)

2

Since all the elongations will have pure resolutions, we can apply to them

the same strategy that we have applied to M.

Let us extend the definition of weight hierarchy to d0.

di = min{|σ| ; n(σ) = i}, for 0 ≤ i ≤ n− r(M)
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Let di(j) denotes the weight hierarchy for the j-th elongation of the ma-

troidM associated to the constant weight code and βi,di(j) its Betti numbers.

We have:

Let 0 ≤ j ≤ k.

t(j) =
∏
s 6=0

ds(j) =

k−j∏
s=1

ds

ds(j) = ds+j = d qs+j−1
qs+j−1(q−1)

for 1 ≤ s ≤ k − j

βi,di(j) = (−1)i ·
k−j∏
s=1

ds ·
∏
s 6=i

1

ds(j) − di(j)

= (−1)i+1 ·
k−j∏
s=1

qs+j − 1

qs+j−1
· q

i+j−1

qi+j − 1
·
i−1∏
s=1

qi+j−1

1− qi−s
·
k−j∏
s=i+1

qs+j−1

qs−i − 1

=

k−j∏
s=1

qs+j − 1

qs+j−1
· q

i+j−1

qi+j − 1
·
i−1∏
m=1

qi+j−1

qm − 1
·
k−i−j∏
m=1

qm+i+j−1

qm − 1

=

qi+j−1 ·
i−1∏
m=1

qi+j−1 ·
k−i−j∏
m=1

qm+i+j−1

k−j∏
s=1

qs+j−1

·

k−j∏
s=1

(qs+j − 1)

(qi+j − 1) ·
i−1∏
m=1

(qm − 1) ·
k−i−j∏
m=1

(qm − 1)

= q
i(i−1)

2 ·

k∏
m=1

(qm − 1) ·
i+j−1∏
m=i

(qm − 1)

j∏
m=1

(qm − 1) ·
i+j∏
m=1

(qm − 1) ·
k−i−j∏
m=1

(qm − 1)

= q
i(i−1)

2 ·

i+j−1∏
m=i

(qm − 1)

j∏
m=1

(qm − 1)

·
[
k

i+ j

]
q

= q
i(i−1)

2 ·
[
i+ j − 1

j

]
q

·
[
k

i+ j

]
q
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Example 4.2.1. Using this formulas is easy to compute the Betti numbers

for the resolutions for the elongations of the matroid from Example 4.1.1.

The resolutions for the Stanley Reisner ideals for the elongations of M are:

0→ S(−7)8 → S(−6)14 → S(−4)7 → IM → 0

0→ S(−7)6 → S(−6)7 → IM(1)
→ 0

0→ S(−7)→ IM(2)
→ 0

4.3 Weight enumerator

In this section we will analyze the weight enumerator of a constant weight

code, from which we will try to obtain as much information as possible. In

addition, we will find out that the dual of a Hamming code is, in fact, a con-

stant weight code. Hence, given a Hamming code, we will be able to obtain

its weight enumerator just by using the information from its parameters.

Let us write, as a reminder, the definition of weight enumerator.

WM(X, Y, T ) =
n∑
j=0

PM,j(T )Xn−jY j

4.3.1 Duality - Hamming codes

Definition 4.3.1. Let K be a finite field, and let r > 1 be an integer. Con-

sider PKr−1
q = (Kr

q\0)/F∗q. It has qr−1
q−1

elements. Choose a column vector in

Kr
q for every class. Let H be the qr−1

q−1
×r matrix whose columns are precisely

these vectors. Then H is a parity check matrix of a code C called a (r, q)

Hamming code.
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Proposition 4.3.1. Let r > 2. Then, the q-ary Hamming code Ham(r, q)

has parameters [ q
r−1
q−1

, q
r−1
q−1
− r, 3]q.

Proof. [11, Proposition 5.7]

Theorem 4.3.2. Let C be a [n, k]q code given by a parity check matrix H.

Then, the minimum distance of C is d if and only if

(1) Any d− 1 columns of H are linearly independent.

(2) There exist d columns that are linearly dependent.

Proof. [11, Proposition 5.6]

Corollary. Let C be a code given by a parity check matrix H . Then, C has

minimum distance 1 if and only if H has a 0 column.

Proof. [20, Corollary 5.3]

Theorem 4.3.3. The dual code of a Hamming code Ham(r, q) is a [ q
r−1
q−1

, r]q

code such that all the non-zero codewords have the same weight: qr−1. The

weight hierarchy of such a code is d1 = qr−1 and di+1 = di
qi+1−1
q(qi−1)

Proof. [1, Theorem 2.15]

Thanks to this last theorem, we can get the weight enumerator for a

Hamming code using the MacWilliams formula for dual codes given in The-

orem 3.3.1.
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Example 4.3.1. Given the Hamming code CHam
CHam = {{1, 0, 0, 0, 0, 1, 1}, {0, 1, 0, 0, 1, 0, 1}, {0, 0, 1, 0, 1, 1, 0}, {0, 0, 0, 1, 1, 1, 1}}
Generator and parity check matrices are:

G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

 H =


0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1



It is a Ham(3, 2)-code, so r = 3, q = 2, n = 7, k = 4. Consequently, its

dual code will be a [7, 3]2 constant weight code of weight 4.

Notation. We will use the following notation for Betti numbers:

β[M] =



β1,d1 β2,d1+1 β3,d1+2 . . .

β1,d1+1 β2,d1+2 . . .

β1,d1+2 . . .
...

... . . . βk,dk−1

. . . βk−1,dk−1 βk,dk


d1

which gives us βi,j(S/I∆) for 1 ≤ i ≤ k. It is known as Betti table.

The Betti tables for a matroid M from Ccwc and its elongations, com-

puted by using the formulas from the last section, are:

β[M] =

[
7 0 0

0 14 8

]
4

β[M(1)] =
[

7 6
]

6
β[M(2)] =

[
1
]

7
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Then, a table for the coefficients of Z l in GWP is:

7∑
i=0

(−1)i+1
(
βi,j(M(l−1))− βi,j(M(l))

)
l = 0 l = 1 l = 2 l = 3

j = 1 0 0 0 0

j = 2 0 0 0 0

j = 3 0 0 0 0

j = 4 −7 7 0 0

j = 5 0 0 0 0

j = 6 14 −21 7 0

j = 7 −8 14 −7 1

The GWP is therefore

PMC ,j(Z) =



1 if j = 0

0 if 1 ≤ j ≤ 3

7Z − 7 if j = 4

7Z2 − 21Z + 14 if j = 6

Z3 − 7Z2 + 14Z − 8 if j = 7

Its weight enumerator is

WCcwc(X, Y ) =
n∑
j=0

ACcwc,jX
n−jY j

= X7 + 7X3Y 4

So the weight enumerator for its dual code will be

WCHam(X, Y ) = q−k ·Wcwc(X + (q − 1)Y,X − Y )

= 2−3 ·Wcwc(X + Y,X − Y )

= 2−3
(
(X + Y )7 + 7(X + Y )3(X − Y )4

)
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Its extended weight enumerator is

WCcwc(X, Y, T ) =
n∑
j=0

PM,j(T )Xn−jY j

= X7 + (7T − 7)X3Y 4 + (7T 2 − 21T + 14)XY 6 +

+ (T 3 − 7T 2 + 14T − 8)Y 7

So the extended weight enumerator for its dual code will be

WCHam(X, Y, T ) = T−k ·Wcwc(X + (T − 1)Y,X − Y, T )

= T−3

((
X + (T − 1)Y

)7
+ (7T − 7)

(
X + (T − 1)Y

)3
(X − Y )4 +

+ (7T 2 − 21T + 14)
(
X + (T − 1)Y

)
(X − Y )6 + (T 3 − 7T 2 +

+ 14T − 8)(X − Y )7

)
= X7 + 7(T − 1)X4Y 3 + 7(T − 1)X3Y 4 + 21(T 2 − 3T + 2)X2Y 5 +

+ 7(T 3 − 6T 2 + 11T − 6)XY 6 + (T 4 − 7T 3 + 21T 2 − 28T + 13)Y 7

Remark. When we replace X, Y in W (X, Y, T ) for 0 and 1 respectively, we

obtain

WM(0, 1, T ) =
n∑
j=0

0n−j · 1j · PM,j(T ) = 01 · 1n · PM,n(T ) = PM,n(T )

That will coincide with PM,dk(T ) when the code is non-degenerate.

4.3.2 Betti tables for constant weight codes

Notation. We are going to make a slightly change of notation for the Betti

numbers of elongations so that they become easier to read.

βi,j(IM(m)
) = β

(m)
i,j
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Let us consider a matroid M from a constant weight code with weight

enumerator W (X, Y, T ).

Lemma 4.3.4. Let PM,j(T ) be the GWP of M. Then,

di = min{j ; deg(PM,j) = i}

Proof. We know that di = min{|σ| ; n(σ) = i}.
If j < di, ∀|σ| = j < di we have n(σ) < i. It is also clear that ∀γ ⊂ σ,

n(γ) < i. Therefore, PM,j(T ) = (−1)j
∑
|σ|=j

∑
γ⊂σ

(−1)|γ|T n(γ) has degree less

than i.

If j = di

PM,j(T ) = (−1)j
∑
|σ|=j
n(σ)=i

(∑
γ(σ

(−1)|γ|T n(γ) + (−1)|σ|T n(σ)

)

+ (−1)j
∑
|σ|=j
n(σ)<i

∑
γ⊂σ

(−1)|γ|T n(γ)

which has degree i, since there is at least one σ such that |σ| = j, n(σ) = i

and the two last summands have degree at most i− 1, i.e.,

PM,j(T ) =
∑
|σ|=j
n(σ)=i

T i + (−1)j
∑
|σ|=j
n(σ)=i

∑
γ(σ

(−1)|γ|T n(γ) + (−1)j
∑
|σ|=j
n(σ)<i

∑
γ⊂σ

(−1)|γ|T n(γ)

Taking W (X, Y, T ) from the begining of the section, we have now that

W (X, Y, T ) = PM,d0X
n + PM,d1(T )Xn−d1Y d1 + . . .+ PM,dk(T )Xn−dkY dk

So, when we replace X and Y by 0 and 1 respectively, we get

W (0, 1, T ) = PM,n(T ) = PM,dk(T )

since dk = n for non-degenerate codes.
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From here, by using the formulas given in Theorem 3.2.1 and Proposition

2.5.3 we can obtain all the Betti numbers for the last position in the last

column of the Betti table for each elongation of M, as we will now explain.

PM,n(T ) = PM,dk(T ) = akT
k + . . .+ a1T + a0

β[M] 
n∑
i=0

(−1)i+1
(
β

(−1)
i,n − β

(0)
i,n

)
= a0

β
(0)
k,dk

= −a0

β[M(1)] 
n∑
i=0

(−1)i+1
(
β

(0)
i,n − β

(1)
i,n

)
= a1

(−1)k+1
(
β

(0)
k,dk

+ β
(1)
k−1,dk

)
= a1

β
(1)
k−1,dk

= (−1)k−1(a1 + a0)

β[M(m)] 
n∑
i=0

(−1)i+1
(
β

(m−1)
i,n − β(m)

i,n

)
= am

(−1)k−m−1
(
β

(m−1)
k−m+1,dk

+ β
(m)
k−m,dk

)
= am

β
(m)
k−m,dk = (−1)k−m(am + . . . a0)

Since all the resolutions considered are pure, we could get all the other

Betti numbers by taking the other PM,ds for 1 ≤ s ≤ k.

The general formula for getting the βi,j in β[M(m)] from the weight enu-

merator for 0 ≤ m ≤ k is therefore

β
(m)
s−m,ds = (−1)s−m(a(s)

m + . . .+ a
(s)
0 ) (4.3)

where a
(s)
i are the coefficients of T s in PM,ds(T ).
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Example 4.3.2. Let

W (X, Y, T ) = X7+(7T−7)X3Y 4+(7T 2−21T+14)XY 6+(T 3−7T 2+14T−8)Y 7

be the weight enumerator for a matroid M from a constant weight code.

W (0, 1, T ) = PM,n = T 3 − 7T 2 + 14T − 8

where Tmax = T k. So k = 3 and therefore, C is a constant weight [7, 3]-code.

The j′s that are different from 0 in W (X, Y, T ) give us the weight hier-

archy, so (d1, d2, d3) = (4, 6, 7).

The Betti numbers that are different from 0 are therefore,

M M(1) M(2)

β1,d1 = β1,4 β1,d1(1)
= β1,d2 = β1,6 β1,d1(2)

= β1,d3 = β1,7

β2,d2 = β2,6 β2,d2(1)
= β2,d3 = β2,7

β3,d3 = β3,7

By using the formula (4.3),

β1,4(IM) = 7 β1,6(IM(1)
) = 7 β1,7(IM(2)

) = 1

β2,6(IM) = 14 β2,7(IM(1)
) = 6

β3,7(IM) = 8

So the Betti tables look like this:

β[M] =

[
7 0 0

0 14 8

]
4

β[M(1)] =
[

7 6
]

6
β[M(2)] =

[
1
]

7

which can be compared with the Betti tables we have from before, in Example

4.3.1.



Chapter 5

Duals of towers of Betti tables

As seen in last chapter, for a constant weight code, we can get all the

Betti numbers of the matroid associated to the code and its elongations from

its GWP. This works fine for all matroids having pure resolutions, but not

in general.

5.1 Betti table for a general matroid

Let M be a matroid of rank r over the ground set E = {1, . . . , n}. Let

k = n − r. Let σ ⊂ E. The ungraded βi,σ was defined in Chapter 2 as

dimK TorSi (K, S/IM)σ

As a reminder, the notation we use for the Betti table is the following

β[M] =



β1,d1 β2,d1+1 β3,d1+2 . . .

β1,d1+1 β2,d1+2 . . .

β1,d1+2 . . .
...

... . . . βk,n−1

. . . βk−1,n−1 βk,n


d1

where βi,j(M) = βi,j(S/IM) for 1 ≤ i ≤ k.

89
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The Betti numbers listed in the table refer to the sum of βi,σ for a cer-

tain cardinality j, i.e, βi,j =
∑
|σ|=j

βi,σ, and each βi,i+j−1 is displayed in the

i-th column and (j−d+1)-th row, where d is the minimal Hamming distance.

Lemma 5.1.1. For i /∈ [1, k], βi,j(M) = 0.

Proof. It comes directly from the definition of Betti number for the resolution

of IM. It is obvious for i ≤ 0. We also have that proj.dim(S/IM) = k, which

gives us βi,j = 0 for i ≥ k + 1.

Lemma 5.1.2. If j ≥ dk − k + i+ 1, βi,j(M) = 0.

Proof. As said in [9, Corollary 5], dk = |
⋃
τ∈C

τ | = |E| \ {coloops of M},

where C denote the set of circuits of M.

Let F be the union of all circuits ofM. Then, E \F is the set of coloops

of M, i.e, the set of elements of M that are in all the bases.

Let σ ⊆ F . Then, M|σ =M|F|σ , so

βi,σ(M) = βi,σ(MF ) =
∼
h|σ|−i−1(M|σ,K)

Let σ * F . Then, ∃x ∈ E \ F such that x ∈ σ. Then, M|σ has, at least

one coloop.

r∗M|σ(x) = |x| − rM|σ(σ \ x)− rM|σ(σ)

= 1− rM(σ \ x)− rM(σ)

x coloop  rM(σ \ x) = rM(σ)− 1

r∗M|σ(x) = 0

Therefore, x is still a coloop in M|σ.

It is proven that a simplicial complex with an isthmus (an element that

is in all the facets) has no homology. Then, due to Hochster’s formula,

βi,σ(IM) =
∼
h|σ|−i−1(M|σ,K) = 0
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Therefore,

β[M|F |σ] = β[Mσ]

We can therefore assume that n = dk. The lemma is then given in [19,

Lemma 3.2].

Proposition 5.1.3. Let (d1, . . . , dk) be the weight hierarchy of M. Then, if

j < di, βi,j(IM) = 0

Proof. By definition of di = min{|σ|;n(σ) = i}, for j < di it is not possible

to find any σ such that n(σ) = i and |σ| < min{|σ|;n(σ) = i}. Therefore,

βi,j = 0 for those j.

This way, the Betti table for any Stanley Reisner ideal of a matroid has

zeroes at the left (i ≤ 0) and right (i > k) sides, as well as at the top (j < di)

and bottom (j ≥ dk − k + i + 1) of the table, so that we can just focus in

what is inside these bounds.

5.2 Weight enumerator

The Betti table is distributed in such a way that the Betti numbers asso-

ciated to a given cardinality of σ ⊂ E, |σ| = d1 + i, are in the same diagonal.

In addition, from the previous lemmas and proposition we know that, in

certain positions of the table, βi,j = 0, so, for now, we have the following

β[M] =

β1,d1 β2,d1+1 β3,d1+2 . . . 0

β1,d1+1 β2,d1+2 . . . 0

β1,d1+2 . . . ...

...
. . . 0

. . . βk−1,dk−1 βk,dk




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where each ”diagonal” corresponds to a given cardinality of σ, and therefore,

to a given polynomial PM,j. As we see, for the diagonals corresponding to

|σ| = d1, |σ| = dk− 1 and |σ| = dk, at most one of the βi,j is different from 0,

so these can be retrieved from the GWP as we did for constant weight codes.

For computing βk,dk and βk−1,dk−1 we can use the formula ( 4.3), given in

Chapter 4.

Let 0 ≤ m ≤ k. Then,

β
(m)
k(m),dk

= β
(m)
k−m,dk = (−1)k−m(a(k)

m + . . .+ a
(k)
0 ) (5.1)

β
(m)
k(m)−1,dk

= β
(m)
k−m−1,dk

= (−1)k−m−1(a(k−1)
m + . . .+ a

(k−1)
0 ) (5.2)

where a
(s)
i are the coefficients of T i in PM,s(T ), for s = dk and s = dk − 1

respectively.

Remark. Note that every time a matroid is elongated, its rank increases by

one. Then, its corresponding k = n− r decreases by one.

β
(m)
k(m),dk

= β
(m)
k−m,dk

For the computations for the first Betti number of each elongation β
(m)
1,d1(m)

we must consider the polynomials PM,dm+1 for each mth-elongation, since

d1(m) = dm+1.

From Theorem 3.2.1, we have

n∑
i=1

(−1)i+1
(
β

(m)
i,dm+1

− β(m+1)
i,dm+1

)
= a

(m+1)
m+1

Since the weight hierarchy increases, d1 < d2 < ... < dk, we get that

d1(m) = dm+1 < dm+2 = d1(m+1)

Then,

β
(m+1)
i,dm+1

= 0 ∀i,m
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We also know that β
(m)
1,d1(m)

6= 0 . It is the first coordinate in the Betti

table for the mth-elongation. By Proposition 5.1.3,

β
(m)
i,d1(m)

= 0 ∀m, i 6= 1

Thus,

β
(m)
1,d1(m)

= β
(m)
1,dm+1

= a
(m+1)
m+1 (5.3)

where a
(m+1)
m+1 is the coefficient of Tm+1 in PM,dm+1(T ).

Summing up, from the GWP of a matroid M of rank r over E, we can

figure out

β[M(m)] =



∗ 0
...
...

0

∗ ∗


d1

5.3 Dual Betti tables

Given all the Betti numbers for an unknown matroid M and its elonga-

tions, we will try to get as much information as we can about the Betti tables

for its dual matroid and elongations.

Let us begin with an example about the difficulties when computing the

duals of Betti tables. There exists matroids with equal Betti tables, but

different dual Betti tables (see example below). Because of this reason, we

need at least the Betti tables for the elongations so that we can get more

information about the duals. It is not known if knowing the Betti tables for

all the elongations is enough to know the Betti tables of the dual.
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Example 5.3.1. Let

M1 = {{1, 3, 4, 6, 7}, {1, 2, 3, 6, 8}, {1, 2, 3, 4, 8}, {1, 2, 3, 5, 8}, {1, 2, 5, 6, 8},

{1, 2, 3, 4, 7}, {1, 2, 3, 5, 7}, {1, 2, 5, 6, 7}, {1, 3, 4, 5, 7}, {1, 3, 4, 6, 8},

{1, 2, 4, 6, 8}, {1, 2, 4, 6, 7}, {1, 3, 4, 5, 8}, {1, 2, 4, 5, 7}, {1, 4, 5, 6, 7},

{1, 2, 3, 6, 7}, {1, 3, 5, 6, 7}, {1, 4, 5, 6, 8}, {1, 3, 5, 6, 8}, {1, 2, 4, 5, 8}}

M2 = {{1, 3, 4, 6, 7}, {1, 2, 3, 4, 8}, {1, 2, 3, 5, 8}, {1, 2, 5, 6, 8}, {1, 2, 3, 4, 7},

{1, 2, 3, 5, 7}, {1, 2, 5, 6, 7}, {1, 3, 4, 5, 7}, {1, 3, 4, 6, 8}, {1, 2, 4, 6, 8},

{1, 2, 4, 6, 7}, {1, 3, 4, 5, 8}, {1, 2, 4, 5, 7}, {1, 3, 4, 5, 6}, {1, 2, 4, 5, 6},

{1, 3, 5, 6, 7}, {1, 2, 3, 5, 6}, {1, 2, 3, 4, 6}, {1, 3, 5, 6, 8}, {1, 2, 4, 5, 8}}

Then,

β[M1] =


1 0 0

0 0 0

5 4 0

0 5 4


2

= β[M2]

but

β[M∗
1] =


1 0 0 0 0

1 1 0 0 0

10 25 21 6 0

0 10 25 21 6


1

β[M∗
2] =


1 0 0 0 0

2 2 0 0 0

4 14 13 4 0

4 22 38 27 7


1
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Consider M a matroid of rank r over E = {1, . . . , n} and let k = n− r.
Consider its tower of Betti tables.

β[M(m)] =


β

(m)
1,d1+m

β
(m)
2,d2+m

. . . 0

β
(m)
1,d2+m

...
... 0

. . . β
(m)
k−m−1,dk−1 β

(m)
k−m,dk


d1+m

If we know all the β
(m)
i,j , we can get the GWP thanks to the formula in

Theorem 3.2.1 given in Chapter 3.

PM,0 = 1

PM,j =
n∑

m=0

( n∑
i=1

(−1)i+1
(
βi,j(IM(m−1)

)− βi,j(IM(m)
)
))
Tm

Then, the coefficient for Tm in PM,j is

cm =
k+1∑
i=1

(−1)i+1
(
β

(m−1)
i,j − β(m)

i,j

)
The weight enumerator was defined as

WM(X, Y, T ) =
n∑
j=0

PM,j(T )Xn−jY j

Replacing,

WM(X, Y, T ) =
n∑
j=0

n∑
m=0

cmT
mXn−jY j

If X = 0 and Y = 1 we have

WM∗(0, 1, T ) = PM∗,n(T )
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MacWilliams identity reads

WM∗(X, Y, T ) = T−k ·WM(X + (T − 1)Y,X − Y, T )

so

PM∗,n(T ) = WM∗(0, 1, T ) = T−k ·WM(T − 1,−1, T )

By using the formula for the coefficients in PM,j,

WM(T − 1,−1, T ) = (T − 1)n +
n∑
j=1

( k+1∑
m=0

cmT
m

)
(T − 1)n−j(−1)j

(5.4)

Note that

(T − 1)n−j =

n−j∑
α=0

(
n− j
α

)
Tα(−1)n−j−α

The coefficient of T t in ( 5.4) is determined by the values m and α = t−m
when m varies from 0 to t, along with the convention

(
r
s

)
= 0 when s < 0 or

s > r. Then,

et = (−1)n−t
((

n
t

)
+

t∑
m=0

(−1)m
n∑
j=1

cm

(
n− j
t−m

))

where
(
n−j
t−m

)
is a polynomial in j of degree t−m.

Lemma 5.3.1. For all polyomial P ∈ Q[j] of degree at most r-m-1, then

n∑
i=0

n∑
j=0

(−1)iP (j)βi,j(S/IM(m)
) = 0

and
n∑
i 6=0

n∑
j=0

(−1)iP (j)βi,j(M(m)) = −P (0)
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Proof. The first part is true because of the Herzog-Kühl equations, that

affirm ∑
i,j

(−1)iβi,j(S/IM(m)
)jl = 0

for 0 ≤ l ≤ r −m− 1 = n− krull.dim(S/IM(m)
)− 1.

For the second part, we have the following

n∑
i=0

n∑
j=0

(−1)iP (j)βi,j(S/IM(m)
) =

n∑
i 6=0

n∑
i=0

(−1)iP (j)βi,j(S/IM(m)
) + P (0)β0,0(S/IM(m)

)

=
n∑
i 6=0

n∑
i=0

(−1)iP (j)βi,j(S/IM(m)
) + P (0) · 1

Then,
n∑
i 6=0

n∑
j=0

(−1)iP (j)βi,j(M(m)) = −P (0)

Lemma 5.3.2. Let k = n− r. Then, for t < k, et = 0.

Proof.

et = (−1)n−t
(
n
t

)
+

t∑
m=0

n∑
j=1

n∑
i=1

(−1)i+1
(
β

(m−1)
i,j − β(m)

i,j

)(n− j
t−m

)
(−1)n−t+m

= (−1)n−t
(
n
t

)
+

t∑
m=1

n∑
j=1

n∑
i=1

(−1)iβ
(m−1)
i,j

(
n− j
t−m

)
(−1)n−t+m+1−

−
t∑

m=0

n∑
j=1

n∑
i=1

(−1)iβ
(m)
i,j

(
n− j
t−m

)
(−1)n−t+m+1

where
(
n−j
t−m

)
is a polynomial in j of degree t−m ≤ k −m− 1.

Applying Lemma 5.3.1 to et,

et = (−1)n−t
(
n
t

)
−

n∑
j=1

n∑
i=1

(−1)iβ
(0)
i,j

(
n− j
t

)
(−1)n−t+1

= (−1)n−t
(
n
t

)
−
(
n
t

)
(−1)n−t = 0
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Remark. This was expected since WM∗ is known to be a polynomial.

For t ≥ k we have therefore

PM∗,n(T ) = T−k ·
n∑
t=k

etT
t =

n∑
t=k

etT
t−k

From here, we can apply the formula obtained before for computing the

Betti numbers from the GWP.

Remark. Note that, for the dual matroid, M∗, the parameters are

k∗ = n− k = r

r∗ = n− r = k

n∗ = n

The last Betti number for the duals are therefore,

β∗
(m)
r−m,d∗r = (−1)r−m

(
ek+m + . . .+ ek

)
= (−1)2r+m

m∑
z=0

(−1)z
((

n

k + z

)
+

k+z∑
l=0

(−1)l
n∑
j=1

cl

(
n− j

k + z − l

))

Remark. Even if the matroid is degenerated, this formula holds for β∗
(m)
r−m,n

since we know that the only Betti numbers that might be different from 0

are those with i = r −m and j = n.

Remark. It is not possible to give such formulas for β∗
(m)
r−m−1,n−1 andβ∗1,d∗1+m

since PM∗,n−1 depends only on β∗
(m)
r−m−1,n−1 and β∗

(m)
r−m,n−1, and we generally
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do not know which one is 0. We know that one of them is 0, but we cannot

decide generally which one.

M∗ degenerate (d∗1 = 1) ⇒ β∗
(m)
r−m−1,n−1 = 0

M∗ non-degenerate (d∗1 6= 1) ⇒ β∗
(m)
r−m,n−1 = 0

Summarizing, for given β
(m)
i,j of M, a non degenerated matroid of rank r

over E, we have a formula for computing the Betti numbers in the last, next-

to-last and first position in every Betti table for the dual of a matroid M∗.

Along with the results in the previous lemmas and proposition at the begining

of the chapter, we know additionaly, all the elements in the last columns, i.e.,

β[M(m)] =

 β
(m)
i,j


d1+m

 β[M∗
(m)] =


∗ 0

...

∗ ∗


d∗1+m

Besides, we can obtain some certain positions for zeroes in the dual Betti

tables. Since the β
(m)
i,j are given, we know the weight hirarchy (d1, . . . , dk),

and, therefore, the dual weight hierarchy, (d1
∗, . . . , dr

∗), thanks to the Wei’s

duality theorem, given in Chapter 1, that affirms

{d1, . . . , dk, n+ 1− d∗1, . . . , n+ 1− d∗r} = {1, . . . , n}

Proposition 5.1.3 will gives us the zeroes in the dual Betti tables.
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5.4 Examples

Let’s give some examples in order to clarify what has been said so far.

Example 5.4.1. LetM over E = {1, . . . , 6} with the following Betti tower:

β[M] =

[
1 0 0

7 12 5

]
2

β[M(1)] =
[

5 4
]

4
β[M(2)] =

[
1
]

5

The rank of the matroid is r = 3.

Since d1(M) = 2, d1(M(1)) = 4 and d1(M(2)) = 5, we get the weight

hierarchy for M:

(d1, d2, d3) = (2, 4, 5)

The rank of M∗ is n− r = 3.

In consequence of Wei’s duality theorem, the weight hierarchy of M∗ is

(d∗1, d
∗
2, d
∗
3) = (1, 4, 6)

The weight enumerator of M is

WM(X, Y, T ) = X6 + (T − 1)X4Y 2 + (7T − 7)X3Y 3 +

+ (5T 2 − 17T + 12)X2Y 4 + (T 3 − 5T 2 + 9T − 5)XY 5

The weight enumerator of M∗ is

WM∗(X, Y, T ) = T−3 ·WM(X + (T − 1)Y,X − Y, T )

= X6 + (T − 1)X5Y + (T − 1)X3Y 3 + (T 2 + T − 2)X2Y 4 +

+ (4T 2 − 10T + 6)XY 5 + (T 3 − 5T 2 + 7T − 3)Y 6
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Then, by using the formulas ( 5.3) ,( 5.2) and ( 5.1):

β∗
(0)
1,1 = 1 β∗

(1)
1,4 = 1 β∗

(2)
1,6 = 1

β∗
(0)
2,6 = 6 β∗

(1)
1,5 = 4

β∗
(0)
3,6 = 3 β∗

(1)
2,6 = 4

Since we know that, for j < di, βi,j = 0, we get the following tables:

β[M∗] =


1 0 0

? 0 0

? ? 0

? 6 3


1

β[M∗
(1)] =

[
1 0

4 4

]
4

β[M∗
(2)] =

[
1
]

6

Example 5.4.2. Let us take an example where the matroid is non-representable.

LetM be the non-Pappus matroid. Its set of independent sets are all the sub-

sets ofE = {1, . . . , 9} with cardinality |σ| ≤ 3 except for {1, 2, 3}, {1, 5, 7}, {1, 6, 8}, {2, 4, 7},
{2, 6, 9}, {3, 4, 8}, {3, 5, 9} and {4, 5, 6}. Its betti tower is:

β[M] =

[
8 0 0 0 0 0

78 384 680 600 267 48

]
3

β[M(1)] =
[

126 420 540 315 70
]

5

β[M(2)] =
[

84 216 189 56
]

6

β[M(3)] =
[

36 63 28
]

7

β[M(4)] =
[

9 8
]

8

β[M(5)] =
[

1
]

9
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The rank of the matroid is r = 6, and its weight hierarchy (3, 5, 6, 7, 8, 9).

Therefore, the dual weight hierarchy is (6, 8, 9).

The weight enumerators for M and M∗ are

WM(X, Y, T ) = X9 + (8T − 8)X6Y 3 + (78T − 78)X5Y 4 +

+ (126T 2 − 510T + 384)X4Y 5 +

+ (84T 3 − 504T 2 + 1100T − 680)X3Y 6 +

+ (36T 4 − 252T 3 + 756T 2 − 1140T + 600)X2Y 7 +

+ (9T 5 − 72T 4 + 252T 3 − 504T 2 + 582T − 267)XY 8 +

+ (T 6 − 9T 5 + 36T 4 − 84T 3 + 126T 2 − 118T + 48)Y 9

WM∗(X, Y, T ) = X9 + (8T − 8)X3Y 6 + (12T − 12)X2Y 7 +

+ (9T 2 − 48T + 39)XY 8 + (T 3 − 9T 2 + 28T − 20)Y 9

Then, by using the formulas ( 5.3) ,( 5.2) and ( 5.1):

β∗
(0)
1,6 = 8 β∗

(1)
1,8 = 9 β∗

(2)
1,6 = 1

β∗
(0)
2,8 = 39 β∗

(1)
2,9 = 8

β∗
(0)
3,9 = 20

Then,

β[M∗] =

[
8 0 0

? 39 20

]
6

β[M∗
(1)] =

[
9 8

]
8
β[M∗

(2)] =
[

1
]

9

Actually, we can know β
(0)
1,7 too by using Herzog-Kühl equations,

since β
(0)
2,7 = 0.

β
(0)
1,7 = −β(0)

1,6 + β
(0)
2,8 − β

(0)
3,9 − β

(0)
0,0 = 12 (5.5)
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Then,

β[M∗] =

[
8 0 0

12 39 20

]
6

β[M∗
(1)] =

[
9 8

]
8
β[M∗

(2)] =
[

1
]

9

This example shows that the method works for general matroids. There

is no necessity that the matroid is associated to a linear code.



104 CHAPTER 5. DUALS OF TOWERS OF BETTI TABLES



Bibliography

[1] Bierbrauer, J.,Introduction to coding theory. Discrete Mathematics and

its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL,

2005

[2] Bosma. W., Cannon,J., Playoust, C., The Magma algebra system. I. The

user language, J. Symbolic Comput., 24 (1997), 235–265.

[3] Eagon, J.A., Reiner, V., Resolutions of Stanley-Reisner Rings and

Alexander Duality. J. Pure Appl. Algebra 130 (1998), no. 3, 265–275.

[4] Eisenbud, D., Commutative Algebra. With a view toward algebraic geom-

etry. Graduate Texts in Mathematics, 150. Springer-Verlag New York,

1995.
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