

 Faculty of Science and Technology
Department of Computer Science

StudentLink

A Generic Calendar Platform

—
Ruben Alexander Andreassen
INF-3990 Master’s Thesis in Computer Science, May 2015

iii

Abstract
Large organizations often use many software applications. In some cases, two or more of these

applications contains information that is very similar or the same. In this thesis we are going to look

at calendar information. UiT - The Arctic University of Norway is a large organization which uses

many applications that contains calendar information. Fronter, Syllabus and Microsoft Exchange all

covers different needs of the organization, but it is challenging to get a fast and easy overview of

calendars from several of the systems at the same time. By creating a generic calendar platform that

communicates with these systems, we get a new combined calendar system that contains every

calendar within the organization. This platform implements many interfaces to suit the needs of an

end user or end user application. The result is that the end user gets everything in one place, without

the need to access several different portals and manually compare calendars. The generic calendar

platform is also easily extensible, meaning that it could reach outside the organization.

iv

v

Table of Contents
1 Introduction ... 13

1.1 Problem statement .. 14

1.2 Method .. 14

1.3 Summary.. 15

1.4 Outline ... 15

2 Background .. 17

2.1 Service Oriented Architecture (SOA) ... 17

2.2 Web Service ... 17

2.2.1 World Wide Web Consortium (W3C) and Internet Engineering Task Force (IETF) 17

2.2.2 Simple Object Access Protocol (SOAP) .. 18

2.2.3 Representational State Transfer (REST) .. 18

2.2.4 Enterprise Mashup .. 18

2.3 Calendar sharing .. 19

2.4 Single sign-on... 19

2.5 HTTP Status Codes ... 20

2.5.1 302 Found .. 20

2.6 Microsoft Active Directory (AD) .. 20

2.6.1 Lightweight Directory Access Protocol (LDAP) .. 21

2.7 Microsoft Exchange ... 22

2.7.1 Microsoft Exchange Web Services (EWS) .. 22

2.8 Syllabus .. 22

2.8.1 Oracle .. 22

2.8.2 Syllabus database setup at the university ... 23

2.9 Fronter ... 23

2.9.1 OpenApi ... 23

2.9.2 OAuth .. 25

2.10 Summary.. 26

3 Design .. 27

3.1 Case ... 27

3.2 Overview .. 27

3.3 System architecture... 28

3.4 Components .. 29

3.4.1 Connectors .. 29

3.4.2 Middleware ... 36

3.4.3 Interfaces ... 36

3.4.4 Storage... 40

3.5 Summary.. 40

vi

4 Implementation ... 41

4.1 Connectors .. 41

4.1.1 Active Directory Connector (ADC) ... 41

4.1.2 Exchange Connector (XC) .. 48

4.1.3 Syllabus Connector (SC) ... 52

4.1.4 Fronter Connector (FC) .. 55

4.1.5 Adding new connectors ... 57

4.2 Middleware ... 58

4.3 Interfaces ... 58

4.3.1 Graphical User Interface (GUI) .. 58

4.3.2 ICAL Interface (ICAL) .. 59

4.3.3 Application Programming Interface (API).. 61

4.4 Storage .. 62

4.5 Summary.. 62

5 Testing ... 63

5.1 Graphical User Interface (GUI) .. 63

5.1.1 Login .. 63

5.1.2 Home ... 63

5.1.3 My Calendar .. 64

5.1.4 Search User Calendar .. 67

5.1.5 Search Course and Student Set ... 68

5.1.6 Rooms .. 69

5.2 ICAL .. 71

5.3 API.. 73

5.4 Use cases ... 76

5.4.1 Planning a meeting in the conventional way .. 76

5.4.2 Planning a meeting using the Web Service ... 79

5.5 Performance .. 82

5.6 Summary.. 84

6 Evaluation .. 85

6.1 Technical .. 85

6.2 Contribution .. 85

6.3 Outside the organization ... 86

6.4 Other projects ... 86

7 Conclusion ... 87

7.1 Conclusion ... 87

7.2 Further work .. 87

Bibliography ... 89

vii

List of Figures

Figure 2-1 Example of an object path in AD .. 21

Figure 2-2 Fronter rooms URL structure (Fronter, OpenAPIv1, 2014) .. 24

Figure 2-3 Fronter room, how to change format of the response (Fronter, OpenAPIv1, 2014)........... 24

Figure 2-4 Fronter response limits example (Fronter, OpenAPIv1, 2014) .. 25

Figure 2-5 OAuth authentication flow (Fronter, Oauth In Fronter, 2014) .. 26

Figure 3-1 System overview .. 28

Figure 3-2 System architecture ... 29

Figure 3-3 EWS SOAP Request/Response ... 32

Figure 4-1 Pseudo code for doing a user search ... 43

Figure 4-2 LDAP search filter for doing a user search ... 43

Figure 4-3 Attributes and values used in an ANR search. Note! Some of the values may be shortened

for readability. ... 44

Figure 4-4 ANR filter example ... 44

Figure 4-5 ANR filter example ... 45

Figure 4-6 ANR filter example ... 46

Figure 4-7 AD Course Group Format ... 46

Figure 4-8 AD Course Group Example ... 47

Figure 4-9 LDAP search filter for a room search ... 47

Figure 4-10 ConvertId operation request example (Microsoft, ConvertId operation, 2014) 49

Figure 4-11 ConvertId operation response example (Microsoft, ConvertId operation, 2014) 50

Figure 4-12 ConvertId operation error response example (Microsoft, ConvertId operation, 2014) 50

Figure 4-13 Content of the database connection configuration file (tnsnames.ora) 52

Figure 4-14 Calculation of the length of each period .. 53

Figure 4-15 Fronter iCal method private calendar call example ... 56

Figure 4-16 Fronter iCal method private calendar response example .. 57

Figure 4-17 Fronter iCal method room calendar call example.. 57

Figure 4-18 ICAL example .. 59

Figure 5-1 Login page .. 63

Figure 5-2 Home page ... 63

Figure 5-3 Web sites with calendar information ... 64

Figure 5-4 My Calendar ... 64

Figure 5-5 My Calendar detailed event view... 65

Figure 5-6 My Calendar add calendars .. 65

Figure 5-7 My Calendar merged view ... 66

Figure 5-8 My Calendar merged view ... 66

Figure 5-9 My Calendar several simultanious events.. 67

Figure 5-10 Search User Calendar ... 67

Figure 5-11 Search Course ... 68

Figure 5-12 Search Student Set ... 68

Figure 5-13 Rooms menu .. 69

Figure 5-14 Room lists and rooms ... 69

Figure 5-15 Room List Search (Combined) .. 70

Figure 5-16 All rooms .. 70

Figure 5-17 Room Search (Combined) .. 71

file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391586
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391587
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391588
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391592
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391593
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391594
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391599
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391600
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391601
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391606
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391607
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391609
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391610
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391613
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391615
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391616
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391619
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391623
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391625
file:///C:/Users/ran/Desktop/Masteroppgave/Innlevering/MasterThesis.docx%23_Toc419391627

viii

Figure 5-18 Google Calendar public calendar warning ... 72

Figure 5-19 Information about the ICAL service ... 72

Figure 5-20 StudentLink REST API v1 ... 73

Figure 5-21 GET method resource URL and example request .. 74

Figure 5-22 GET method resource URL and example request .. 75

Figure 5-23 A full overview of our personal calendars with information from the following calendar

systems: Google Calendar (private), Syllabus (university), Fronter (university) and Microsoft Exchange

(university). .. 76

Figure 5-24 Two calendars showing in Outlook Web App .. 77

Figure 5-25 A full overview of all the calendars needed to plan a meeting as accurately as possible on

the first attempt .. 78

Figure 5-26 Using the «Export calendars» function in Google Calendar lets us download a ZIP file with

one iCalendar file for each calendar that we have ... 79

Figure 5-27 When we unzip the downloaded file we find four iCalendar files, three of them are

calendars and one contains contact information ... 79

Figure 5-28 My Calendar shows a full overview of our personal calendars with information from the

following calendar systems: Google Calendar (private), Syllabus (university), Fronter (university) and

Microsoft Exchange (university). ... 79

Figure 5-29 When we add our student advisor and the rooms we have a full overview of our personal

calendars with information from the following calendar systems: Google Calendar (private), Syllabus

(university), Fronter (university) and Microsoft Exchange (university), the student advisors calendars

from the following calendar systems: Syllabus (university) and Microsoft Exchange (university), and

the room calendars from the following calendar systems: Syllabus (university) and Microsoft

Exchange (university). ... 80

Figure 5-30 Free periods that are longer than one our between Monday and Thursday are marked

manually .. 81

Figure 5-31 All simultaneous events on Thursday .. 82

Figure 5-32 Graph illustrating the average loading time with a different number of elements retrieved

from the connectors .. 84

ix

List of Tables
Table 2-1 Description of the most common REST methods ... 18

Table 2-2 AD object naming .. 20

Table 2-3 Example of table documentation of Syllabus (Scientia, All SDB Schema Tables, 2003)........ 23

Table 2-4 Fronter response types (Fronter, OpenAPIv1, 2014) .. 24

Table 2-5 Fronter OAuth endpoints (Fronter, Oauth In Fronter, 2014) .. 26

Table 3-1 LDAP attributes used by the AD connector (Microsoft, All Attributes, 2015) 30

Table 3-2 EWS SOAP Request explanation .. 32

Table 3-3 Resources available in the Web Service API .. 39

Table 4-1 LDAP setup... 41

Table 4-2 Comparison of encrypted LDAPv2 and LDAPv3 .. 42

Table 4-3 LDAP Attributes in User Object (Microsoft, All Attributes, 2015) ... 42

Table 4-4 Attributes used in the Room Object .. 47

Table 4-5 Exchange setup .. 48

Table 4-6 Possible values of the BusyType element (Microsoft, BusyType, 2009) 48

Table 4-7 Elements used in the CalendarEventDetails element (Microsoft, GetUserAvailability

Operation, 2011) ... 48

Table 4-8 Examples of values in the physicalLocationObject attribute compared to the Room List that

a specific Room is associated with .. 51

Table 4-9 Syllabus Database Setup .. 52

Table 4-10 Selected columns from the uit_activity-table ... 53

Table 4-11 Selected columns from the uit_institute_setup-table .. 53

Table 4-12 Seconds convertet to time .. 53

Table 4-13 How to calculate the day, start and end time of an activity ... 54

Table 4-14 Fronter setup ... 55

Table 4-15 Fronter OpenApi iCal method parameters (Fronter, OpenAPIv1, 2014) 56

Table 4-16 Example of existing calendar services ... 59

Table 4-17 Header properties in the iCalendar implementation (Desruisseaux, 2009) 60

Table 4-18 Non-standard header properties in the iCalendar implementation 60

Table 4-19 VEVENT properties in the iCalendar implementation (Desruisseaux, 2009) 61

Table 4-20 Non-standard VEVENT properties in the iCalendar implementation (Microsoft,

2.1.3.1.1.20.31 Property: X-MICROSOFT-CDO-BUSYSTATUS, 2015) ... 61

Table 5-1 A detailed list of the free periods with description ... 81

Table 5-2 Execution time on the Web Service with a different number of elements from different

connectors ... 84

x

xi

Glossary
University When talking about the university, we are always referring to UiT - The Arctic

University of Norway.
Room A teaching room, meeting room, or any other physical room defined as a

resource at the university. It is possible to allocate such a room; therefore it has
a calendar that is relevant to this paper. Private offices etc. are not a part of this
definition.

Room list A group of rooms. A room list can contain a group of rooms that is physically
located at the same institute or building, but does not need to.

Web Service When referring to the Web Service, we mean in most cases the generic calendar
platform that we have developed in this thesis.

Chapter 1 - Introduction

13

1 Introduction
Large organizations often use many types of software systems such as a variety of applications,

databases and Web Services to accommodate the different needs of the organization. When using

different systems to solve different tasks, it is not uncommon that some of the systems contains

similar types of information. Some users in the organization are super users and use specific systems

on a daily basis, and other users only use the different systems occasionally. In some, cases users

want to retrieve information from several applications that are similar. The last case can be time

consuming if the users need to hop in and out of several applications and web sites to get an

overview of the information they are looking for. The task can become even more difficult if the user

only have little or no training in using the software. There can also be situations where the user has a

right to know about the information, but don’t have direct access to the software containing that

information. This can be the case if the software don’t have advanced access management. This

would mean that the user would get access to view more information than intended, and that is

often not a good solution. Another alternative would be to hand out printouts of the relevant

information. We are going to look at a solution that eliminates the need of using several different

systems when the main goal is information retrieval of similar types of information.

A common way to retrieve similar information from different software systems is to create

middleware. When we are referring to middleware me mean the creation of a software that take

similar types of information as input, and outputs the same information in a combined format. The

input format can have different data structure and semantics. The middleware solves the

interoperability problem between the different software systems and the end user or end user

software. This raises a lot of challenges for the developers of the middleware in terms of handling

different API’s, communication protocols, interoperability and semantics, but the reward for the user

can be significant.

One architecture of middleware is Web Services. With Web Services we mean a method of

communication between two electronic devices over the World Wide Web (WWW). In this case

between several types of software and the end user software. A Web Service is highly flexible

because it supports many types of communication protocols over the network.

In this thesis, we will create a generic calendar platform in the form of a Web Service. The Web

Service will be able to retrieve calendar information from several different types of software, and

deliver the retrieved information to the user. The user will be able to access the Web Service directly

through a web page, or other developers can develop 3rd party applications and retrieve information

from the API that the Web Service offers. In addition, since we are dealing with calendar information,

the Web Service will provide a function to share public calendar information with other already

established calendar systems such as Google Calendar and Outlook Web Access.

We will only focus on information retrieval. This means that the Web Service will only be able to

retrieve information from the external software that the Web Service is communicating with. The

Web Service will not be able to add or modify any information. This design issue was made due to

the limited time we have to develop and write this thesis. However, the Web Service could be

extended to allow such operations. Access rights could be an issue when extending the Web Service

in that direction.

Chapter 1 - Introduction

14

1.1 Problem statement
We shall develop a generic calendar platform that interacts with several external systems using

different protocols and data formats. The focus will be on data retrieval and combining the retrieved

data. The generic calendar platform shall not be able to add or update any data back to the external

systems.

The generic calendar platform must have one connector for each external system that the platform is

going to communicate with and retrieve information from. It shall be simple to expand the platform

with new connectors that can communicate with other calendar systems that we have not

implemented in this thesis.

The generic calendar platform must implement middleware to be able to combine the retrieved data

into one internal representation. The middleware must understand the semantics of the data from

each external system. This makes it easy to add more connectors to integrate even more external

systems in the future. The connector only need to implement a method to parse the retrieved data

into the internal representation, then the platform will take care of the rest.

We shall also implement one or more interfaces that delivers the combined data in one or more

formats to the end user or end user software.

1.2 Method
The method we use in this thesis is software prototyping. This means that we develop a prototype of

the generic calendar platform that is functional. The platform may not be complete, but good

enough to get a feel for how the finished product would look like, and some of the functionality the

finished product could have.

There are two dimensions when developing a prototype. There is the horizontal prototype which

focuses on the user interaction rather than low-level functionality, and there is the vertical prototype

which is a more complete elaboration of a single subsystem (Nielsen, 1993). We use the latter type of

prototype. We will implement all the components that is needed from information retrieval to the

delivery of the combined information.

There are many variants when dealing with software prototyping, but all of these are mostly based

on two major types; Throwaway prototyping and Evolutionary prototyping (Davis, 1992). Throwaway

prototyping is when a prototype is made that will eventually be discarded. The prototype is not

intended to become a part of the final software. Evolutionary prototyping on the other hand, is when

a robust prototype is made in a structural manner that eventually the prototype becomes the

finished product. In this thesis we use evolutionary prototyping. This makes it possible to add

features and make changes that are not planned during the design phase. We also focus on one part

of the system at the time. Interaction between the generic calendar platform and a specific external

system can be one part, or combining information retrieved from the external systems can be one

part. The prototype will therefore evolve into a more and more finished product during the

development process.

We will also develop a GUI that we can use in the testing and evaluation of the prototype. By setting

up a use case we can determine if the generic calendar platform function and performs as intended.

Chapter 1 - Introduction

15

1.3 Summary
In this thesis, we develop a generic calendar platform that is able to retrieve data from four different

external systems. The systems are Active Directory (AD), Microsoft Exchange, Syllabus and Fronter.

All systems except AD contains calendar information, and this is the data we want to combine into

one combined calendar on our platform.

To do this, we need to develop connectors that communicates with each system we want to retrieve

information from. These connectors need to be developed according to each API specification. This

means that we need to have in depth knowledge about each system. Documentation is our friend

here. We need to use several different protocols such as HTTP, LDAP and TNS. Also, there are several

different data formats when communicating with the different systems such as SOAP, JSON and

iCalendar.

When the communication is in place and we are able to retrieve data, we need to find out the

semantics of the data. Since we are dealing with calendar data, the data contains more or less the

same information such as subject, description, location, date and time. But all the systems do not use

the same description for the same thing. For example, location in Exchange and room in Syllabus are

different terms of the same thing.

The last phase is to display the result to the user. We develop a graphical user interface in form of a

web page that has all of the functionality of the platform. In addition to this, we implement a REST-

based API for other developers to use. We will also implement a way to share public calendar

information so that any user can easily add calendar data in well-known calendar systems such as

Google Calendar and Outlook Web App (OWA).

The testing shows that our platform is a useful tool for users that are using two or more of the

external systems that we are implementing. Instead of having to access several different systems and

check several calendars, we have created a single portal that is easy and time saving to use. The user

experience is also greatly improved compared to using several of the external systems at the same

time.

1.4 Outline
Chapter 2 covers all the background information needed to understand the Design and

Implementation phase. Since we are integrating external systems, it is important to understand how

they work and how to connect to them.

Chapter 3 describes the design phase. We make some choices on how we think is the best way to

implement the external systems, how to combine the data retrieved, and how to deliver the data to

the end user.

Chapter 4 gives a very detailed overview of how we implemented each part of the platform. The

chapter covers much of the hurdles we met when integrating with external systems.

Chapter 5 shows the performance of the generic calendar platform and compares the platform to

the university’s already existing solutions.

Chapter 6 evaluates our findings and looks outside the organization.

Chapter 7 concludes the thesis and suggests further work.

Chapter 2 - Background

17

2 Background
In this thesis we are creating a generic calendar platform in the form of a Web Service that retrieves

calendar information from several external systems, combine the data where possible and deliver

the combined data to the end user or end user application. We therefore need to give an

introduction to each of the external system that we are going to retrieve information from. In

addition, we need to cover what a Web Service is and the common types of interfaces that a Web

Service can use.

2.1 Service Oriented Architecture (SOA)
When creating a Web Service, Service Oriented Architecture (SOA) comes into mind. SOA means that

the interface of the software is independent of any hardware, operating system or any underlying

software. The SOA makes it possible for services to exchange information over the network without

any human interference (Microsoft, Service-Oriented Architecture (SOA), 2015).

This becomes very important when we create software that is going to communicate with other 3rd

party software. If the 3rd party software we are trying to communicate with don’t have clean

interface that we can communicate with, it can be very difficult to interact with. This also applies to

our own software. We want to deliver the retrieved information to others, and it needs to be clean

and simple.

2.2 Web Service
A Web Service is a method to enable two electronic devices to communicate with each other over

the World Wide Web (WWW) (Booth, et al., 2004). The Web Service is most likely to use underlying

components, and creates an abstraction layer between the application code and the application

client. This is often referred to as middleware. The Web Service are loosely coupled with the

underlying components.

Common internet protocols, such as HTTP, makes sense to use when the main goal is to make

information available to a variety of users and applications. A Web Service is highly flexible and can

be written in a variety of languages. PHP, Java, C#, Ruby and Python to mention some. It makes sense

to develop a Web Service over a desktop or mobile application for the task we have at hand. In the

end, our Web Service can deliver information to any application that other developers might want to

create.

2.2.1 World Wide Web Consortium (W3C) and Internet Engineering Task Force (IETF)
The W3C is an organization that develops protocols and guidelines to ensure the long-term growth of

the Web. They are an important driving force when it comes to creating open standards and design

principles (W3C, 2014).

The mission of the IETF is to make the Internet work better by producing high quality, relevant

technical documents that influence the way people design, use, and manage the Internet (Internet

Engineering Task Force, 2015).

We mention them here because it is impossible to make anything on the web without noticing the

W3C and IETF.

Chapter 2 - Background

18

2.2.2 Simple Object Access Protocol (SOAP)
SOAP is a packaging structure for sending XML documents over a variety of different transport

protocols such as HTTP, TCP, UDP and SMTP (Gudgin, et al., 2007). However, the most common

transport protocol to use when working with SOAP is HTTP. SOAP can be used for remote procedure

call (RPC) client-server applications, but can also be used for one-to-many applications, such as

messaging systems.

When developing an API to a Web Service, SOAP is a common protocol to use when exchanging data.

In this thesis, we will not implement a SOAP based API for the 3rd party applications that wants to use

the Web Service. This is because SOAP is very complex and would be overkill for our lightweight Web

Service. However, one of the systems we are integrating with uses SOAP to exchange data. This

means that we need to implement a SOAP client to retrieve information from that system.

2.2.3 Representational State Transfer (REST)
REST is an architecture that relies on the transport protocol HTTP (Fielding & Taylor, 2002) (Fielding

R. T., 2000). In comparison to SOAP, REST can only be used by client-server applications. Web Service

API’s that uses REST are known as RESTful. REST uses HTTP operations (request methods), and there

are four methods that is mostly used. The notably methods are described in Table 2-1.

Since our Web Service will only be dealing with information retrieval we only need to implement the

GET and POST method. We will use the POST method for authentication because we don’t want the

user’s credentials to be listed in the URL.

RESTful API HTTP methods

Resource GET PUT POST DELETE

Collection URI
(http://
example.com/
resources)

List the URIs and
perhaps other
details of the
collection’s
members

Replace the
entire
collection with
another
collection

Create a new
entry in the
collection. The
new entry’s URI is
assigned
automatically and
is usually returned
by the operation

Delete the
entire entry

Element URI
(http://
example.com/
resources/
item17)

Retrieve a
representation of
the addressed
member of the
collection,
expressed in an
appropriate
Internet media type

Replace the
addressed
member of the
collection, or it
if doesn’t
exist, create it

Not generally
used. Treat the
addressed
member as a
collection in its
own right and
create a new entry
in it

Delete the
addressed
member of the
collection

Table 2-1 Description of the most common REST methods

2.2.4 Enterprise Mashup
“Mashups solve the quintessential information sharing problem: accessing and combining data from

disparate internal and external data sources in ways that where not pre-imagined.” (Crupi & Warner,

2009).

The previous quotation is a good explanation of a mashup, and one could imagine that our solution is

exactly this, a mashup. We combine information from both internal (Syllabus, Exchange) and external

(Fronter) sources in a way that none of the sources could have pre-imagined. The end result could be

a mashup in the form of a web page or other 3rd party application.

Chapter 2 - Background

19

But this statement has left out one important detail. A mashup is created from modular components

that the end user can assemble and reassemble as desired to serve current needs. The Web Service

that we have created could not be assembled easily without special expertise in the field of

programming. We can therefore not consider the end result as a mashup of any kind.

2.3 Calendar sharing
There are several ways to share a calendar. The most advanced way is to create a CalDAV server.

CalDAV is an extension of WebDAV that allows clients to access and manage a calendar on a remote

server (Daboo, Desruisseaux, & Dusseault, Calendaring Extensions to WebDAV (CalDAV), 2007).

When a calendar is shared using CalDAV, any user that has access can do DELETE operations to

delete a single event, or PUT operations to change an event. And many other operations that we do

not mention here. The way that this is done is that there is one URL for the whole calendar, and one

child URL for each event. Similar to a REST API. There exist many extensions to CalDAV, among them

a scheduling extension to plan meetings (Daboo & Desruisseaux, Scheduling Extensions to CalDAV,

2012).

If the goal is to just share a calendar, a common approach is to simply make iCalendar files accessible

over HTTP. When this is done, one URL represents a full calendar with all events. There are two ways

of doing this. The user could export a calendar from one system, getting an iCalendar file, and then

import that file into another system. The user would need to do the same process each time the

exported calendar changes.

The second approach is to share an iCalendar file by URL. Then, the user can provide the shared URL

into a calendar system that supports to add calendars by URL. The system that is importing the

calendar would manage the changes of the iCalendar file. Note that this is only a one-way

synchronization compared to the two-way that a CalDAV server would support.

A side note to basic calendar sharing is the Webcal URL scheme (IANA, 2012). This is an experimental

scheme that is used to tell an application, usually a web browser, that the URL should be handled by

a different application. This would be the same as taking HTTP URL and add it manually in the

program that is set up to handle the Webcal URLs.

2.4 Single sign-on
Single sign-on (SSO) is a technique for access control of multiple related, but independent, systems

(Huntington, 2015). When using SSO, a user logs in once to gain access to all the systems. There are

several ways of implementing SSO, from the usage of LDAP to cookies (Cugley, 2007). If cookies is

used, all the sites must be on the same domain.

However, this type of SSO would not help in our case. Assume that all the systems we are

implementing supports the same type of SSO. If the user logs on to our Web Service, he will

automatically be authenticated on the other systems. But this only means that the user can browse

from our system to another system without the need to authenticate one more time. In our case, it is

the Web Service that retrieves information from the external systems, meaning that the Web Service

is acting on behalf of the user. This means that the Web Server needs to authenticate to the external

systems on the users behalf. There are many papers of multiparty authentication, and the common

understanding of these is that multiparty authentication is complex to implement (IBM Corporation

& Microsoft Corporation, 2002).

Chapter 2 - Background

20

We have decided on a much simpler scheme since this thesis does not have authentication as the

main focus. The user must send his credentials to the Web Service on each request. Then the Web

Service can use these credentials to authenticate against the external systems. The credentials would

only exist on the Web Service during the execution of a script, and never cached. The Web Service

could only be compromised between when the Web Service receives the credentials and before the

script has finished execution. We leave it up to the 3rd party applications that uses the interfaces of

the Web Service to handle the user’s credentials securely.

2.5 HTTP Status Codes
RFC 7231 contains information about HTTP Semantics and Content, including status codes (Fielding &

Reschke, 2014). Some status codes are well known as we see them more or less every day. Example

of these are 200 OK, 404 Not Found and in some cases 500 Internal Server Error. We are not going to

describe these in detail, but we are going to look at the 302 Found status code that is relevant to

understand when looking at the Fronter login flow in Appendix A.

2.5.1 302 Found
The 302 Found status code indicates that the target resource resides temporarily under a different

URI. Since the redirection might be altered on occasion, the client ought to continue to use the

effective request URI for future requests.

The server SHOULD generate a Location header field in the response containing a URI reference for

the different URI. The user agent MAY use the Location field value for automatic redirection. The

server's response payload usually contains a short hypertext note with a hyperlink to the different

URI(s).

Note: For historical reasons, a user agent MAY change the request method from POST to GET for the

subsequent request. If this behavior is undesired, the 307 (Temporary Redirect) status code can be

used instead (Fielding & Reschke, 2014).

2.6 Microsoft Active Directory (AD)
The Microsoft Active Directory (AD) is a special-purpose

database. The data structure is hierarchical and it is

replicated and extensible. The directory is designed to

handle a large number of read and search operations and

a significantly smaller number of changes and updates.

Since the design of the AD do not handle many changes

and updates, it is not suitable for dynamic data. Examples

of data stored in the directory are user profiles, computer

configuration data and other resource objects (Microsoft, So What Is Active Directory?, 2014).

When working with Active Directory it is important to understand the object naming within the

directory. We have listed the terms that are useful to understand the meaning of in Table 2-2. The

objects in the AD are located with a hierarchical path, where the full path of the object is the

distinguished name (DN) (Microsoft, Object Naming, 2014).

Term Description

GUID Globally Unique Identifier

RDN Relative Distinguished Name

CN Common Name

OU Organizational Unit Name

DC Domain Component

DN Distinguished Name

O Organization
Table 2-2 AD object naming

Chapter 2 - Background

21

To illustrate this we can look at Figure 2-1. The CN Andreassen Ruben Alexander lies within the CN

Recipients that lies within the OU Exchange Administrative Group that lies within the O UIT. When we

write this out in reverse order, it makes up the DN. In most examples the O would be replaced with

DC=UIT, DC=NO, but the organization is free to organize their own structure with any keyword

suitable for the organization.

Figure 2-1 Example of an object path in AD

2.6.1 Lightweight Directory Access Protocol (LDAP)
The Lightweight Directory Access Protocol (LDAP) is an application protocol for accessing and

maintaining distributed directory information services over an Internet Protocol (IP) network. The

current version of LDAP is version 3 (LDAPv3), and the default Transmission Control Protocol (TCP)

port is 389. RFC 4510 contains the LDAP technical specification (Zeilenga E. K., 2006).

When working with a secure connection, LDAPv3 has a Transport Layer Security (TLS) extension. The

older LDAP version (LDAPv2) uses the URL scheme LDAPS on port 636. The usage of LDAPS was never

standardized and LDAPS is deprecated along with LDAPv2 (Zeilenga K. , 2003).

A client starts an LDAP session by connecting to a server that supports LDAP. The client then sends an

operation request to the server, and the server sends responses in return. The client can send many

requests without waiting for the responses, and the server can return the responses in any order.

LDAP requests can include StartTLS, Bind and Search. The StartTLS request set up a secure

connection. Bind authenticates the client and specify the LDAP version for the connection. Search

searches the directory for entries and returns these entries if any matches the search criteria.

In theory, LDAP supports a persistent connection. A persistent connection means that a client can

authenticate once, and then use the same connection until the connection times out or is manually

closed. This eliminates the need to authenticate for each request. However, the LDAP

implementation of the programming platform that we have chosen does not support a persistent

LDAP connection.

O=UIT

|-> OU=Exchange Administrative Group

|--> CN=Recipients

|---> CN=Andreassen Ruben Alexander

DN: CN=Andreassen Ruben Alexander,CN=Recipients,OU=Exchange Administrative Group,O=UIT

Chapter 2 - Background

22

2.7 Microsoft Exchange
Microsoft Exchange (MXS) is a server software that specializes on email, calendar and contacts

(Microsoft, Exchange Server 2013, 2015). The email, calendar and contacts can easily be accessed

through a desktop software like Outlook, online with Outlook Web App, or on any mobile phone. This

makes the Exchange software very powerful and easy to use for end users. The Exchange software

also contains email distribution groups and other resource objects such as meeting rooms.

2.7.1 Microsoft Exchange Web Services (EWS)
Exchange Web Services (EWS) provides the functionality to enable client applications to

communicate with the Exchange server. EWS provides access to much of the same data that is made

available through Outlook. SOAP provides the messaging framework for messages sent between the

client application and the Exchange server. The SOAP messages are sent by HTTP (Microsoft,

Exchange Web Services (EWS) in Exchange 2010, 2010).

In other words, the EWS is the API that we need to use when communicating with the university’s

Exchange server. The documentation of EWS is very large and detailed, and it has a big community of

experts in forums. The programming platform we chose did not have a build in library to

communicate with EWS, but we found an open source project on GitHub that we could use as a

starting point. The library where not complete so we ended up adding the functionality that we

needed and contributed the code back to the community through GitHub (Andreassen, 2014).

2.8 Syllabus
Scientia is the company that develops Syllabus. In this thesis, most of the information about Syllabus

is unknown. According to Scientia’s website:

“Syllabus Plus Enterprise Foundation is our core scheduling and timetabling solution. It provides a

suite of core applications which help organizations to improve their efficiency by managing the

planning and scheduling processes involved in the production of a timetable or schedule.” (Scientia,

Timetable Scheduling, 2014).

Of this, we can understand that Syllabus is a term of some software. What we do know on the

technical side is that Syllabus runs on top of an Oracle database. The version of Syllabus that the

university use does not have an API. This means that we need to retrieve the data directly from the

database. It is therefore not important how Syllabus works, as long as we are able to understand the

structure of the database.

This is of course only true when we focus on information retrieval. If we would be able to add or

modify data in the database we would need to understand how Syllabus would do the exact same

operation to avoid breaking the database.

2.8.1 Oracle
An Oracle database is a collection of data treated as a unit. The purpose of the database is to store

and retrieve related information (Oracle, 2015).

Since the version of Syllabus that the university uses do not have an API that other developers can

use, we can take advantage of the database. The database can be accessed directly by anyone and

any software that has access and supports the right protocols. In addition, our contact at the IT

department provided us with documentation of the database (Scientia, All SDB Schema Tables,

2003). One of the relevant tables in this thesis are documented as shown in Table 2-3.

Chapter 2 - Background

23

As Table 2-3 illustrates, there is not much description available for what the table and columns

contain. What we do know is that the tables we use in this thesis are views. A view is a SQL

statement that is stored in the database to make a logical table.

SDVC_COURSE

No description available.

Column Type Description From Table

ID char(32) No description available. SDO_COURSE

NAME varchar(255) No description available.

HOST_KEY varchar(255) No description available.

DESCRIPTION varchar(255) No description available.

DEPARTMENT char(32) No description available.
Foreign key to
SDO_DEPARTMENT.

LINK_SIZE integer No description available. SDP_COUSE

PLANNED_SIZE integer No description available.

DICT char(32) No description available. SDP_OBJ_WITH_DICT

USER_TEXT_1 varchar(long) No description available. SDP_USER_TEXT

USER_TEXT_2 varchar(256) No description available.

USER_TEXT_3 varchar(256) No description available.

USER_TEXT_4 varchar(256) No description available.

USER_TEXT_5 varchar(256) No description available.
Table 2-3 Example of table documentation of Syllabus (Scientia, All SDB Schema Tables, 2003)

2.8.2 Syllabus database setup at the university
Because of security reasons the university copy information from the production database to

another identical database that 3rd party applications can use. This is because they don’t want any

other software than Syllabus to work on the production database. The copy process takes place

every night, so the data is quite up to date. As we know of, our project and the in house web solution

for viewing timetables developed at the university (timeplan.uit.no) uses this database for accessing

Syllabus information.

2.9 Fronter
Fronter is a learning platform that includes a number of tools to collaborate and learn through the

Internet (Fronter, Fronter is a virtual learning environment, 2015). The tool that we are most

interested in is the calendar. All users in Fronter have their own personal calendar. The calendar is

available in their personal toolbar, and can be shared with other users. We will use the OpenAPI to

access calendar events. Although Fronter have an API available, we will see that the API is not

suitable for our needs because of the authentication method used to access the API.

2.9.1 OpenApi
The OpenApi v1 is REST-based. The API uses the HTTP protocol and simple requests and responses.

No complex SOAP calls. Because of this, it should be possible to use the API from most programming

languages, even JavaScript.

Chapter 2 - Background

24

2.9.1.1 Request format

The structure of the calls is best

explained with examples, as shown in

Figure 2-2.

When the last parameter is numeric,

we will get a detailed response. It

contains only information on one

element. When the last parameter is a

keyword, it is a collection, and the

response is a list of elements.

Because the API is REST-based, the methods behave differently depending on how we call them. We

can do GET, POST, PUT, DELETE or OPTIONS request.

GET requests will get info on the element requested. PUT requests will update information on the

element requested. POST requests will create new elements beneath the requested element. DELETE

requests will delete the element requested, and OPTION is a request to get information about a

method. The latter will return what calls the method supports (Fielding & Taylor, 2002).

2.9.1.2 Response format

The OpenApi supports several response formats,

and the output is always UTF-8 encoded. To change

output format, we add the parameter

alphanum_format to the request and specify the

output format as shown in Figure 2-3. The valid

output formats is listed in Table 2-4.

Format Description

XML The XML format used is WDDX. WDDX is an open standard for data exchange
between systems, using XML.

JSON JavaScript Object Notation. Refer to RFC 4627 for more details.

dump PHP's print_r output only used for debugging.

serialize PHP's serialize function. Use it if you need it.

HTML Only for debugging. More readable by humans, and partially hyperlinked.

raw Raw iCalendar format.
Table 2-4 Fronter response types (Fronter, OpenAPIv1, 2014)

api/v1.php/rooms

api/v1.php/rooms/12345

api/v1.php/rooms/12345/folders

api/v1.php/rooms/12345/folders/1234

api/v1.php/rooms/12345/folders/1234/elements

api/v1.php/rooms/12345/folders/1234/elements/1234

Figure 2-2 Fronter rooms URL structure (Fronter, OpenAPIv1, 2014)

api/v1.php/rooms?alphanum_format=json

Figure 2-3 Fronter room, how to change format of the
response (Fronter, OpenAPIv1, 2014)

Chapter 2 - Background

25

2.9.1.3 Response limits

Each response is limited to maximum 100 records. We can use the parameters int_limitstart and

int_limitcount to adjust the response as shown in Figure 2-4. If the call returns 100 records we must

use several request to make sure we retrieve all the records.

Note! During the testing of the Web Service we discovered that the documentation on the response

limits are not accurate. We could not manage to limit the results, and we retrieved over 100

elements in one request. The Fronter documentation is therefore wrong or outdated on this matter.

2.9.2 OAuth
Fronter uses OAuth to authenticate access to the OpenApi functions. OAuth is an open protocol to

allow secure API authorization in a simple and standard method from desktop and web applications.

Fronter uses OAuth 1.01 (Hammer-Lahav, 2010). All 3rd party applications must implement OAuth 1.0

to get access to information inside Fronter through the OpenApi. Fronter supports the HMAC-SHA1

OAuth signature method. HMAC is a mechanism for message authentication using cryptographic

hash functions (Krawczyk, Bellare, & Canetti, 1997).

2.9.2.1 OAuth in Fronter

When a 3rd party application want's to call the OpenApi in Fronter, they first get a request-token

from Fronter. Then the user gets a GUI from Fronter asking him to log in2. If the user is already logged

in, the user will be asked if he want to grant access to the 3rd party application. When granted access,

the user is redirected back to the 3rd party application. The request-token is now enabled. The 3rd

party application then exchanges the request-token for an access-token. Now the 3rd party

application can do OpenApi calls with the access-token until the token expires, the default is 2 hours.

This workflow is illustrated in Figure 2-5. If the 3rd party application wants to continue accessing the

OpenApi after the token has expired, it needs to do the authentication possess all over again.

To get access to OAuth and OpenApi, 3rd party applications must get a consumer-key and consumer-

secret from Fronter. The consumer-key and consumer-secret will be tied to one Fronter building. A

3rd party can get multiple keys if required. The consumer-key should have a name that identifies the

3rd party in some way. We have managed to get a pair of consumer-key and –secret to use in this

thesis.

1 A newer version, OAuth 2.0 obsoletes OAuth 1.0 (Hardt, 2012).
2 When the 3rd party app gets the request-token, and the user must grant access, this GUI will not redirect the

user to the login page. If the user is not logged in, they must open their normal Fronter login page and then

login. After that, return to the OAuth access page and refresh. Fronter is doing this for security reasons. Fronter

wants to protect the users from any phishing attempts.

//gets the first 100 records

api/v1.php/rooms?int_limitstart=0&int_limitcount=100

//gets the next 50 starting at 100

api/v1.php/rooms?int_limitstart=100&int_limitcount=50

Figure 2-4 Fronter response limits example (Fronter, OpenAPIv1, 2014)

Chapter 2 - Background

26

When we have the consumer-key and –secret, we can authenticate our Web Service using the OAuth

endpoints as shown in Table 2-5.

Description Endpoint

Obtain a request token https://fronter.com/customername/api/oauth.php/requesttoken

Authorize the request token https://fronter.com/customername/api/oauth.php/authorize

Upgrade to an access token https://fronter.com/customername/api/oauth.php/accesstoken
Table 2-5 Fronter OAuth endpoints (Fronter, Oauth In Fronter, 2014)

Figure 2-5 OAuth authentication flow (Fronter, Oauth In Fronter, 2014)

2.10 Summary
A Web Service needs to have a Service Oriented Architecture to make the Web Service loosely

coupled from any external system. Many protocols are used, but HTTP stands out as the most

important. In addition to that, there are several methods to choose from when passing data to or

from the Web Service such as SOAP and REST.

Each of the external systems that we are interacting with uses different types of interfaces and

communication protocols, which means that our Web Service needs to be highly flexible and

extensible.

Taking all this into account, we will design our Web Service accordingly in the next chapter.

Chapter 3 - Design

27

3 Design
In this chapter we will describe a real scenario that we will use in the design and implementation of

our Web Service. Then we will look at an overview of the design, the system architecture and all of

the components that make up the Web Service.

3.1 Case
Large organizations often use software from many different vendors. Sometimes, software from

different vendors contain similar types of information that could naturally be combined into one new

system. In this thesis we will concentrate on systems that contains calendar information and how we

can combine these calendars on a generic calendar platform.

One of the main issues within the university’s organization is that it is hard for one person to plan a

meeting when the participants and rooms have calendars in totally different systems. If a participant

is a student he has a personal calendar in Exchange but also a timetable in Syllabus. If the room is a

meeting room it has a calendar in Exchange, but if the room is a teaching room or auditorium it has a

calendar in Syllabus. The person planning the meeting, maybe a teacher, has a calendar in Exchange

and the teaching plan in Syllabus, and can also have a private calendar in Fronter.

As we can imagine, it can be challenging to accurate plan a meeting without the organizer having to

have an extensive dialog between every participant. We believe that if we make a calendar system

that integrates all the necessary calendars into one new calendar system, an organizer can much

more accurately plan a meeting between several participants on the first attempt or at least at an

earlier stage than would be possible without such a system.

3.2 Overview
The Web Service has to be able to communicate with several different types of systems. To make

matters worse, none of the systems we are implementing use the same way of exchanging data. This

means that the Web Service must be extremely flexible. To handle this, we create many different

components that can be considered as interfaces and connectors between the Web Service and the

3rd party systems that is not a part of the Web Service.

The workflow of the Web Service has three steps. First, we must retrieve information from the

external systems. Then, we need to combine the information so it looks like the information would

have come from one single system. The last step is to present the retrieved combined information to

the end user or other end user application.

The Web Service is stateless. We only store temporarily files, cookies and access tokens. This means

that the Web Service need to authenticate the user using the service on every request against the

external systems. The reason for this is that some of the external systems does not support

persistent connections. Without a persistent connection, the connection is lost at the end of every

sequence of requests. This makes it impossible for the Web Service to handle following requests

without knowing the username and password of the user. If the Web Service would know the

credentials, it means that it could be compromised to give up that information. To make the security

on the Web Service as good as possible, we leave it up to the 3rd party systems that uses the Web

Service to handle the user’s credentials in a secure fashion and send them along to the Web Service

on every request. The Web Service uses HTTPS with a valid certificate to ensure that the traffic is

encrypted.

Chapter 3 - Design

28

3.3 System architecture
Figure 3-1 gives a graphical overview of the whole system. How the dataflow is between our Web

Service and the external systems that we retrieve data from, and how the end user can interact with

the Web Service through a web browser or other 3rd party system.

The systems we retrieve data from is on the bottom of the figure. These are the external systems and

are mainly located at the university, but they could be located anywhere. Fronter is located outside

the university.

In the middle of the figure is the Web Service. This is where all the heavy work is done. The Web

Service has connectors that communicate with the external systems, middleware that combine the

data being retrieved, and interfaces that deliver the finished product to the end user. We also have

temporary storage.

At the top of the figure we have the different 3rd party systems that may use the interfaces provided

by the Web Service.

Figure 3-1 System overview

Chapter 3 - Design

29

3.4 Components
To make maintenance easy and flexible, the Web Service is built up of many components. We have

one component for each of the external system that the Web Service retrieves information from.

These are the connectors shown in Figure 3-2. The middleware itself is where the data is being

processed and combined if necessary. The components on the top are the interfaces that makes the

retrieved data available to the end user or other end user system. All of the components can use the

temporary storage as needed shown to the left in the figure.

Figure 3-2 System architecture

3.4.1 Connectors
The connectors communicates and retrieves information from external systems that are not part of

the Web Service. We will describe these components and provide information on how they

communicate with the external systems and which information they retrieve from the external

systems.

3.4.1.1 Active Directory Connector (ADC)

The ADC retrieves information from the Microsoft Active Directory (AD) at the university. All

communication is done with plain LDAP since the AD does not support encrypted LDAP. Although the

AD does not support encrypted LDAP at the time of the development process, the Web Service can

easily be configured to use encrypted LDAP.

There is not only information retrieval that is done against the AD, we also use the AD for

authentication. When we try to bind a username and password against the AD, it can tell us whether

the credentials are valid or not. All of the external systems we implement, except Syllabus,

authenticates against the university’s AD. This is very important as it means that the user only need

to use one username and password to access our Web Service, or each external system individually.

The alternative would be to ask the user for several different credentials when using the Web Service

so that the Web Service would be able to connect to all of the external systems. This would be very

inconvenient for the end user.

Chapter 3 - Design

30

Information about the logged in user

The AD contains much information about any given user. In fact over 70 attributes. We are not

interested in all of them, but the ones listed in Table 3-1 stands out as useful.

One important design feature we

came up with was the idea that when

a user wants to see his or hers

calendar in our Web Service, the

timetable of the courses and student

sets that the user is taking would

show up in the calendar

automatically. The university has a

system that contains this information,

code name BAS3. This system knows

everything about a student. For

example which courses and student

sets the user has taken, are currently

taking and are going to take.

Unfortunately we do not get access to

this system because of security

reasons, and therefore we had to find

other ways to retrieve that

information.

One of the things we noticed was that the memberOf attribute that contains information about all of

the groups a user is a member of, had groups that looked very similar to course codes. By traversing

the groups in this attribute it is possible to find out which courses a user is taking at the current

moment. It is not possible to find out which courses a user has already taken, or is going to take. The

reason for this is that the groups a user is a member of change each semester.

A user can also be a member of groups that represents student sets. However, we have decided to

not implement the linking between the student set groups in AD and the student sets in Syllabus. The

main reason for this is the lack of documentation from our contacts at the university on how to parse

the student set groups to be able to match them with the correct student sets in Syllabus. It seems

that this parsing cannot be done, and the only way is to change the AD group to contain more

information, or retrieve the information directly from BAS which we do not have access to.

Searching for other users

The Web Service have the ability to merge several calendars, or to view other users’ calendars. To be

able to merge other students or staffs calendars we first need to find them. The AD is the best way to

search for users since this is one of the main purpose of the directory.

3 The university has several systems with user information. Some of the systems we know about but don’t have
access to, are the following systems: FS, PAGA, BAS and System-X (Orakelet, Støttesystem for oppretting av IT-
brukerkonto, 2015).

LDAP attribute Description

displayName The display name for an object. This
is usually the combination of the
user’s first name, middle initial, and
last name.

givenName Contains the given name (first name)
of the user.

sn This attribute contains the family or
last name for a user.

mail The list of email addresses for a
contact.

samAccountName This attribute is used to store the
SAM account names that correspond
to the DNS host names in ms-DS-
Additional-Dns-Host-Name.

memberOf The distinguished name of the
groups to which this object belongs.

Table 3-1 LDAP attributes used by the AD connector (Microsoft, All
Attributes, 2015)

Chapter 3 - Design

31

We first thought that the best way to search for a user was to use the name attributes described in

Table 3-1. After a while we discovered that it was difficult to search for some users, especially if they

had middle names. We were getting zero results when we knew that we should get at least one or

more results. Then we discovered the anr attribute that is an efficient search algorithm that allows

objects to be found without complex search filters (Microsoft, Ambiguous Name Resolution for LDAP

in Windows 2000, 2007). This meant that we discarded our attempt to make a search filter based on

the name attributes and used the anr attribute instead.

When a user is found by his or hers name, we retrieve the same information about that user as we

do for the logged in user as described Table 3-1.

Room names, e-mail addresses and searching

In this thesis we want to retrieve calendar information from meeting rooms, classrooms and

auditoriums. All of the meeting rooms are in Exchange, and the other rooms are in Syllabus. Although

all of the meeting rooms are in Exchange, they are also represented as resources in AD since there is

a close binding between Microsoft Active Directory and Microsoft Exchange (Microsoft, Access to

Active Directory, 2013).

We must retrieve the calendar of a room from Exchange. But if we have the identifier or the name of

a room and only want information about that room we have two alternatives. Our first instinct was

to retrieve the room name from the AD instead of Exchange. The reason for this is that we believe

that the overhead of SOAP messages would be significant to the small amount of information that

we need to retrieve. This was later documented in Appendix D, proving that our instinct was right.

We therefore decided to retrieve room information from AD trough LDAP, which has little overhead.

Part of the room information is the name of the room and email address. The email address can be

used as an identifier to retrieve the room’s calendar information from the Exchange server through

the EWS interface.

Since the AD is specially designed to handle searches and performing them as fast as possible, it

makes more sense to look up the rooms in AD instead of Exchange. When searching for a room we

search on the displayName attribute. We did not experience any difference in the search results

when using the anr attribute as explained earlier. The reason for this is that only the displayName

attribute is relevant in a room object in AD. The other attributes that are used when doing an ANR

search contains information that would never be matched. We know this because we have inspected

some room resources in AD and compared the attributes of the rooms to the attributes used in an

ANR search. Examples of the attributes used in a calendar search can be found in the Implementation

chapter.

Chapter 3 - Design

32

3.4.1.2 Exchange Connector (XC)

The Exchange Connector uses SOAP requests to communicate with the university’s Microsoft

Exchange Server (MXS) through the Exchange Web Services (EWS) interface.

When we communicate with the Exchange through EWS we need to send three requests to the EWS

interface as shown in Figure 3-3. The reason for this is that the detailed description about a calendar

event is not returned by the first request. The Exchange server has many types of identifiers. The

events that we receive has a unique identifier in a format called HexEntryId. But to get the detailed

description of the events we need to have an identifier called EwsId. We therefore need to convert

all the identifiers of the events from HexEntryId to EwsId in a second request, and then get the

detailed description of all the events in a third request using the new identifiers. If we only wanted

the date, time, subject and location we could manage with only one request. We have not

implemented a future to turn this functionality on and off as needed, but it would be a good

optimization for further work to implement such a feature. The details of the requests are listed in

Table 3-2.

EWS SOAP Requests overview

Request Operation Description

1. GetUserAvailability Provides information about the availability of a set of users,
rooms and resources within a specified time period.

2. ConvertId Converts item and folder identifiers between different
formats. In our case we convert between HexEntryId4 and
EwsId5.

3. GetItem (calendar item) Returns all details about calendar events using the
identifiers from the second request.

Table 3-2 EWS SOAP Request explanation

Note! There is a limit to query 100 mailboxes in each request when communicating with the EWS

using the GetUserAvailability operation (Microsoft, GetUserAvailability Operation, 2011). This means

that for each additional 100 mailboxes we want calendar events from we need to double the number

of requests being made.

4 The hexadecimal representation of the PR_ENTRYID property. The PR_ENTRYID identifies an object such as a
CalendarEvent object in our case.
5 The EWS identifier format is used in Exchange 2007 SP1 and later versions of Exchange Server.

Figure 3-3 EWS SOAP Request/Response

Chapter 3 - Design

33

Calendar information

There are to main types of calendar information we can retrieve from the Exchange server. These

types are detailed calendar information and busy-free calendar information.

Detailed calendar information can be obtained when the logged in user has extended access to a

specific calendar. This is the case for the personal calendar of the user, and any calendar events that

the user has created on a meeting room, or any calendars that are shared with the user. Detailed

calendar information includes the date, time, length, subject, description and location of all events.

Since most users don’t share their calendar with everyone else, the logged in user can only view what

is called busy-free calendar information about other users and meeting rooms. This is basically only

information about whether a calendar has events or not, meaning that we get the date and time of

all events. We don’t get to see the subject, description or location of the events without the right

kind of permissions.

Room List (RL) information and searching

Both Syllabus and Exchange has the possibility to group several rooms into room lists (RL). This

makes sense, as one could make a RL of all the rooms in a given building or a given floor, and it would

be easy to find all the rooms at that building or floor based on the RL. RL information does not exist

in the AD as resources in the same way as rooms, so the RL’s needs to be retrieved from the

Exchange through the EWS interface.

RL information includes the name and the e-mail address of the RL, and names and e-mail addresses

of all the rooms included in the RL. However, there is a limitation in the EWS interface that means

that we first need to retrieve all the RL’s, and then make one request for each RL to retrieve all the

rooms in that specific RL. This means that if we want to retrieve ten RL with all of the associated

rooms, we need to make eleven requests. It would have been convenient if we could do this in one

request because of the overhead in SOAP requests and the fact that less requests is better in this

setting, but that is not possible. We design this function so that it is possible to retrieve all the RL’s

with or without the rooms to save requests when the actual rooms are not relevant.

The EWS interface does not have any search operation on the RL’s. We therefore need to retrieve all

the RL’s and do the searching on that result set on the Web Service. We would recommend to

redesign this in the future if the EWS interface would implement support to search for among RL’s.

Or even better, if the AD would contain RL information in the future, the searching could be done

through LDAP.

3.4.1.3 Syllabus Connector (SC)

The Syllabus Connector (SC) communicates directly with a copy of the Syllabus database (SDB). The

version of Syllabus that the university is using don’t have any interfaces for 3rd party applications. The

database is running on an Oracle database server. The SC uses SQL with Oracle syntax to retrieve

data from the database.

The user does not need to authenticate against Syllabus to retrieve information as with the other

systems. We use a separate database user for this. The database user has read only rights for an

extra layer of security against manipulating the queries. We are very aware of SQL injection and use

only prepared statements and proper escaping of any input data generated by the user6.

6 This does not mean that one should consider stored data as safe. Always escape data properly for the system
that the data is being inserted into.

Chapter 3 - Design

34

Searching

The SDB contains information about courses, student sets, rooms, room lists, and staff. All this

information is searchable by writing Oracle SQL statements. The search term is applied to different

tables and columns based on what the user is searching for. If the user is searching for a course, the

search term is applied to the course name and course code.

Sometimes, instead of having a lot of courses making up a semester, student sets (SS) are created. A

SS is a predefined study program that contains all of the lectures for that given study program. We

have implemented searching on the name and code of SS’s.

As mentioned earlier, both Exchange and Syllabus contains room calendars at the university. Rooms

that are used for teaching, colloquium and other activities except meetings are located in the SDB.

We have implemented searching on the room code and room name.

Like on the Exchange server, Syllabus also has the ability to group rooms into room lists (RL). We

have implemented searching on RL code and RL name.

Detailed calendar information

A course, student set or room in the SDB can have one or more activities. Each activity contains at

least one event, but usual a series of events. By gathering all activities we can calculate the events

date and time, and get the subject and description. Each activity can also be linked to one or more

rooms. This makes it possible to find the location of events for courses and SS’s.

Room List (RL) information

Like on the Exchange, the rooms in SDB can also grouped into several RL’s. But unlike the EWS

interface, we have the ability to make a query that retrieves all of the room lists and all of the rooms

in one result set by joining several tables.

However, we have not done this and make one request to retrieve all the RL’s and one additional

request for each RL to retrieve all the rooms in that list. The reason that we do this is that there is

almost no overhead when making a SQL request to the Oracle database server. We also have a

persistent connection that means that we only need to connect and authenticate once, and can then

make as many requests as needed. If we would to do this operation in one request we need to do a

little bit more processing on the Web Service. To be absolutely sure that we have made a good

choice here, one could compare the execution time on both methods. We have not done this since

we only have made a proof of concept, and everything should be double checked if this project

would go into production.

RL information includes the code and the name of the RL, and codes and names of all the rooms

included in the RL if needed. We have also made it possible to retrieve all the RL’s without including

the rooms if that information is irrelevant for the request.

Staff information

In the same way that the AD contains which courses a student is taking, the SDB contains information

on which courses a staff (teacher etc.) is teaching. Unlike the information in AD that is real time, SDB

contains information on previous courses, the current courses, and the courses that a staff is planned

to teach in the future if such a plan exist.

Chapter 3 - Design

35

3.4.1.4 Fronter Connector (FC)

The Fronter Connector (FC) communicates with Fronter through the Fronter OpenApi, which is REST-

based. OAuth is used to gain access to the OpenApi functions.

Getting access to the API

Since the OpenApi requires OAuth authentication, there are a few steps that needs to be done to

gain access to the API. The first thing we need is a consumer key. This is provided by Fronter and is

unique to the university’s organization. The consumer key can be used to gain a request token. The

request token can be used to gain an access token. To achieve this we send a request to Fronter with

the request token. Then the user has to log in to Fronter and by doing so granting access to an access

token. The Web Service can then use this access token for a limited period of time, the default is 2

hours, to send requests to the OpenApi.

This would not be very user friendly if other applications implementing our REST API would need to

redirect the user to the Fronter login page every two hours. To avoid this, we have made a scheme

simulating a browser to automate the whole process.

Private calendar information

This is the users own private calendar in Fronter. We can retrieve full calendar information from this

calendar. This includes the date, time, subject, description and location of all events.

Room calendar information

The room calendar in Fronter can be considered a course calendar since it is not a physical room, but

a virtual room containing information about a given course, study group etc. When a user is added to

a room in Fronter, meaning a virtual group and not a room according to our definition, the user can

retrieve full calendar information from this calendar. This includes the date, time, subject,

description and location of all events.

3.4.1.5 Adding new connectors

Since the Web Service is a generic calendar platform, it is easy to expand the platform with more

connectors. The connector’s main purpose is to implement the interface of an external calendar

system.

It is best if the user uses the same credentials7 to access the external system that is going to be

implemented as on the other external systems that are already implemented. If this is true, the

connector can retrieve the user’s credentials from a static object on the Web Service. If not, the

connector must retrieve the credentials itself.

When the credential issue is solved, the connector must implement the authentication method of

the external system. This can be HTTP Basic Authentication, OAuth or any other authentication type

that the external system uses to protect its interface.

The connector must be able to retrieve calendar information from the interface of the external

system based on an identifier and a date interval. The connector can implement searching to retrieve

identifiers and other information from the external system.

The connector is usually a separate class on the platform. The only modification to the main code

that is needed, is to register the connector’s calendar functionality in the main calendar script. If the

connector offers searching possibilities it must register these in the main search script.

7 We are not encouraging users to use the same credentials on several services. A user should always use
different credentials on every service he is using to minimize the damage if one service is compromised.

Chapter 3 - Design

36

3.4.2 Middleware
The data retrieved from the connectors will be in different format and have different semantics, but

the content itself will be more or less the same. We therefore need to make a common

representation of the data, and parse the data from the connectors to our own internal format.

When we have all the data in one format, the middleware can hand it over to the interfaces ready for

delivery to the end user. Since we have programming interfaces, we need to deliver the data in a

format that other developers can understand. We therefore use the RFC 5545 specification to make

an iCalendar format (Desruisseaux, 2009). The data is outputted as raw iCalendar from the ICAL

interface, and wrapped in JSON from the API.

3.4.3 Interfaces
The interfaces make the information gathered by the connectors available to the end user. There are

several different interfaces, making the information available in a variety of ways to the end user or a

3rd party application. In this section, we will describe these interfaces and provide information on

how they make the information available to the end user or a 3rd party application.

3.4.3.1 Graphical User Interface (GUI)

The GUI makes the information retrieved by the connectors directly available to the end user

through a web browser. This is a web page that any user with a user account at the university can

access and explore the functionality of the Web Service.

Searching for a user’s calendar

This function makes it possible to search for any user (student or staff) that exist in the university’s

AD. When the user you are searching for is found, it is possible to click on that user to view the user’s

calendar. This is a combination of several different calendars from several of the external systems.

 Exchange: The user’s Busy-Free calendar.

 Syllabus:

 If the user is a student, all the courses that the student is currently taking is shown.

The information about which courses a student is taking comes from parsing the

groups that the student is a member of in AD.8

 If the user is a staff (teacher etc.), all the courses the staff is teaching are shown.

 Fronter: We cannot retrieve any information about other users than the authenticated user.

The calendar information that we are able to retrieve on the logged in user is slightly different and is

explained in My Calendar (MC).

Other search functions

The ability to search for things is important. We want the user to be able to search for courses,

student sets, rooms and room lists.

To search for a course, the user needs to input three or more letters to make a list of current

matches appear. When the course that the user are searching for is found, it is possible to click on

that course to view the calendar events of the course. The events of a course is typically when and

where the course has lectures and colloquiums. Everybody has full access to view the detailed

information about these events. The same procedure applies to student sets since student sets and

courses are very similar in the SDB.

8 The same could be done with student sets. See Information about the logged in user in chapter 3.4.1.1 about
why we did not implement this.

Chapter 3 - Design

37

When searching for a room by room code or name, the search function will search in both AD and

SDB. The results are then combined into one list and displayed to the user. When the user clicks on a

room, the room’s calendar is displayed. We do not display which system that the room calendar

comes from in the GUI. Our initial thought was that the user does not need to know this information,

but we have later changed our mind. It would not hurt to display which external system the calendar

comes from. The user could benefit from this information if the calendar would need to be edited.

It is also possible to search for any room list (RL) by code or name. The search function also combine

similar RL’s. When the RL that the user want is found, the user can click on that RL to display all the

rooms in that RL. The list of all the rooms in the RL is also combined from both MXS and SDB. When

clicking on a room the room’s calendar is shown.

Display all rooms

This function makes it possible to browse through a list of all the rooms. It can be handy if the user

don’t know the name of the room that he is looking for. The list is a combination of all the rooms

from AD and SDB. It is possible to click on a room and view the room’s calendar. The details of the

events will depend on which external system the room exist in. If the room exist in AD the calendar is

stored in MXS and the user can only view the Busy-Free information about the events, unless the

user have access to view detailed calendar information. If the room exist in SDB, the user can view

detailed calendar information about all the events in the room’s calendar.

When browsing through the list it is possible to find two entries of the same room. This is not a bug,

but it means that the room exist in both external systems9. Since the Web Service don’t combine

rooms, the user will have to view both calendars to get the full overview. We could try to combine

these rooms into one, but we decided not to do this for one main reason. If the rooms does not have

the exact same name in both systems it would be difficult to programmatically figure out that two

rooms are the same without any other common identifier. It would therefore be necessary to allow

some slack when comparing room names, which could lead to rooms that are not exactly the same

being combined into one calendar. It would be very hard to get the accuracy right without any

manual processing.10

Display all Room Lists (RL)

This function makes it possible to browse through all the RL’s, find out how many rooms are in each

RL and browse through all the rooms in each RL. Since the RLs exist in two systems, MXS and SDB, the

Web Service combines RL’s with similar names. This means that a RL can contain rooms from both

MXS and SDB. The criteria for combining two RL’s is that the names of the RL’s need to be more than

95% similar. This means that we could end up with two RL’s that are not combined together even if a

human can see that they are very similar, because the test shows 95% or less similarity. When

clicking on a RL the functions displays all the rooms in that RL, and when clicking a room the user will

get the room’s calendar.

9 One example we found was the room MV.110 F.220 Møterom.
10 We later learned that the university was in a process to move all meeting rooms from Syllabus to Exchange.
The same room should not exist in both systems at the same time, but we did not delete this section since the
issue can be relevant in the future in a porting process or when adding more external systems.

Chapter 3 - Design

38

My Calendar (MC)

The MC function displays the logged in users calendar. This is a combination of several different

calendars from all the external systems, including:

 Exchange: The user’s personal detailed calendar information.

 Syllabus:

 If the user is a student, all the courses the student is currently taking is shown. The

information about which courses a student is taking comes from parsing the groups

that the student is a member of in AD. 11

 If the user is a staff (teacher etc.), all the courses that the staff is teaching are shown.

 Fronter:

 The user’s private calendar.

 All the room calendars (virtual groups).

In addition to this, the MC function lets the user add other users, courses, rooms, student sets and

the user can even upload iCalendar formatted files. To understand why this is a useful function,

consider the following scenario:

A student is planning a meeting with his tutor. The student has a few options. He could phone the

tutor and try to find a date and time that they could meet. They could also e-mail back and forth to

find a date and time that they both are free. Or, the student could use the MC function of the Web

Service to see the students own calendar, add the tutors calendar and add a few meeting rooms. The

student can now easily see when they both are free, and a meeting room is available. In one

combined calendar.

We did not implement a reverse calendar, meaning that the Web Service could suggest which dates

and times that the student and tutor can meet. We consider such a function to be suitable for further

development. The main reason for this is that our main goal is to retrieve all relevant calendar

information and get an oversight of that information. A reverse calendar functionality would be a

natural extension to this, but an extension that would have been more nice-to-have than relevant in

this thesis.

3.4.3.2 ICAL Interface (ICAL)

The ICAL interface is used to access iCalendar files. This interface does not implement any

authentication, therefore only public calendar information is available through this interface. This

means that the same information displayed on the university’s public web based timetable

(http://timeplan.uit.no/) is available through this interface.

Any 3rd party calendar system can access these iCalendar files by using a URL. Depending on the URL

that is being used, an iCalendar file is generated dynamically by the Web Service with the events of

the courses that are specified in the URL.

If we would want to offer any user specific calendar information we would need to implement some

sort of authentication scheme or make a unique hash or key that are provided in the URL. If we

would implement any authentication it would limit the number of 3rd party applications that could

import the calendar feed. For example, Outlook Web App (OWA) and Google Calendar only supports

to add 3rd party calendars by URL without any authentication. If we would implement a unique hash

that are provided in the URL that hash could be sniffed by anyone, making private information public

11 The same could be done with student sets. See Information about the logged in user in chapter 3.4.1.1 about
why we did not implement this.

Chapter 3 - Design

39

to anyone that knows the hash. Another problem is that many of the external systems require

authentication on every request. This would mean that we would need to cache all the calendar

events on the Web Service, or store the user’s credentials. Neither of the options seems acceptable.

We therefore chose to only implement basic functionality for demonstration purposes.

3.4.3.3 Application Programming Interface (API)

To make the Web Service complete, we have made a REST API with JSON responses. By using this API

other 3rd party applications can make combined calendars on any device that has access to the

internet, for example a calendar application on an Android device.

REST API’s are easy to use compared to SOAP, and JSON responses are much more modern than

XML. The Web Service also offers authentication of user accounts against the university’s AD. This

means that student programmers that are not interested in calendar information can use the API to

authenticate users instead of creating their own user registration and authentication. The advantage

of this is that other student programmers don’t need to learn how to use the LDAP protocol, if LDAP

is even supported in the chosen programming language. This means that users at the university can

use the same credentials that they use elsewhere at the university.

All resources available in the API is listed in Table 3-3. The full documentation is available in Appendix

C. An API testing tool is also available along with the documentation in the Web Service GUI.

Resource Description

GET api/v1/combine/calendar Get calendar items from all specified calendars. The
calendars can be from any user, room, course or student
set.

POST api/v1/user/auth Authenticates a user's credentials against Active
Directory at the university.

GET api/v1/user/search Search for a specific user.

GET api/v1/user/info/:id Get information on a specific user.

GET api/v1/user/course/:semester/:id Get all the courses a specific user is taking or teaching.

GET api/v1/user/calendar/:id Get calendar items from a specific user's calendar.

GET api/v1/roomlist/all Get a list of all room list's available.

GET api/v1/roomlist/search Search for a specific room list.

GET api/v1/roomlist/room/:type/:id Get a list of all rooms in a given room list.

GET api/v1/room/all Get a list of all rooms available.

GET api/v1/room/search Search for a specific room.

GET api/v1/room/calendar/:type/:id Get calendar items from a specific room resource.

GET api/v1/course/search Search for a specific course.

GET api/v1/course/calendar/:id Get calendar items from a specific course.

GET api/v1/studentset/search Search for a specific student set.

GET api/v1/studentset/calendar/:id Get calendar items from a specific student set.
Table 3-3 Resources available in the Web Service API

Chapter 3 - Design

40

3.4.4 Storage
The Web Service uses two types of storage. Both storage usages are only for temporarily data since

the Web Service is stateless. The file storage is used to store sessions retrieved from the EWS,

iCalendar files when the user uses the function to upload calendars to the system, and to store

Fronter calendars when retrieved from Fronter.

The latter can seem a bit strange since the calendars that are retrieved from Fronter are in raw

iCalendar format and can be parsed directly. The case is that we already had a library to parse

iCalendar files, but the library only supported to pass on file names and not to pass iCalendar

formatted strings directly. Instead of modifying the library we made a workaround to store the

retrieved iCalendar string into a file, and then pass the file to the iCalendar parser library. An

optimization could clearly be done to avoid this. We could use the file to cache the results from

Fronter, but we did not do this either since we wanted real-time data on every request.

We also use a local MySQL database. We store the access tokens used to access the Fronter OpenApi

in the database. Since the access tokens are valid for two hours it makes sense to store them instead

of authenticating against Fronter more times than absolutely necessary. The complexity of

authenticating against Fronter also matters in this choice since the authentication can take 1-2

seconds.

3.5 Summary
In this chapter we have seen how we have designed the Web Service and the choices we have taken.

There is a lot to implement. We need to develop all the connectors to be able to retrieve data from

each external system. Then we need to develop the middleware that needs to know the semantics of

all the data, and create a new internal format to be able to deliver combined information to the

interfaces. The interfaces will send the information to the end user or other end user software.

We have a lot to do, and in the next chapter we will get down to the dirty bit and actually do some

programming.

Chapter 4 - Implementation

41

4 Implementation
This chapter describes the implementation of each component in detail. The Web Service has a

configuration file located in the root folder. If any of the external systems changes it is easy to edit

the configuration file so that the Web Service don’t fail. In the configuration file it is also possible to

enable and disable each connector except the AD connector. The Web Service will continue to work

if any of the connectors fail, except for the AD connector. The AD connector is used for

authentication and must therefore always be available.

The Web Service is made up of many classes, but there is one class that acts as a controller class for

the implementation of all the calendar systems. If someone would like to implement other external

systems on the platform, it is necessary to implement a function in that class to populate the internal

calendar object.

4.1 Connectors
First we are going to see how the Web Service implements the connectors. These components are

the backbone of the Web Service, and stands for all of the information retrieval from the different

external systems.

4.1.1 Active Directory Connector (ADC)
The ADC takes care of all communication between the Web Service and the university’s AD. This

includes authentication, searching for users and rooms and detailed information about these users

and rooms. The AD itself does not contain any calendar information, but it contains objects that can

be linked to Exchange through email addresses as identifiers.

We communicate with the AD through LDAP queries. The queries can be powerful, but confusing

because of the syntax. We will not go into detail about how to write these queries, but it is explained

in the TechNet article (Mueller, Active Directory: LDAP Syntax Filters, 2014) and we have some

example figures in this chapter that we have commented for readability.

4.1.1.1 LDAP setup

To make the ADC able to communicate to the university’s

AD, LDAP needs to be set up correctly. The configuration

unique to the university’s set up can be viewed in Table

4-1.

The default port of LDAP is 389. If the Web Service would

need to communicate with a different AD, the values could be changed in the configuration file.

When writing this, the university’s AD does not support encrypted communication, but we have

implemented configuration parameters to turn encrypted communication on if the university would

support this in the future. There are two types of cryptographic protocols that could be used when

working with LDAP, the difference is described in Table 4-2.

We did not implement LDAPv2. There are several reasons not to implement this encryption method.

RFC 3494 recommends that the LDAPv2 specification is moved to Historic status and gives two

examples of the reason to do this (Zeilenga K. , 2003). The short draft is that some implementations

of LDAPv2 does not comply with the specification and uses different syntaxes and semantics to those

who follow the specification. Because of this, we decided to only implement LDAPv3 for security

which creates an encrypted channel instead of an encrypted connection. LDAPv3 also comply with

the specifications and is the recommended way to go.

Parameter Value

Account suffix @uit.no

Base DN DC=ad,DC=uit,DC=no

Hostname ad.uit.no
Table 4-1 LDAP setup

Chapter 4 - Implementation

42

 LDAPv2 (deprecated) LDAPv3

Port 636 389

Encryption Secure Sockets Layer (SSL) Transport Level Security (TLS)

Hostname ldaps://ad.example.com12 ad.example.com

PHP documentation (The PHP Group, LDAP
Functions (ldap_connect),
2014)

(The PHP Group, LDAP
Functions (ldap_start_tls),
2014)

RFC Reference RFC 2559 (Boeyen, Howes, &
Richard, 1999)

RFC 3377 (Hodges & Morgan,
2002)

Table 4-2 Comparison of encrypted LDAPv2 and LDAPv3

4.1.1.2 Users

A user object in AD has many attributes. We use only a handful of these. The attributes we use in the

Web Service is described in Table 4-3.

There are three types of name attributes.

When the Web Service determines a user’s

full name, the preferred method is

combining givenName and sn to get the

users full name. The reason for this is that

the common practice in the university’s AD

is that the last name comes first in the

displayName attribute. Since we want to

display the users full name as firstName-

lastName instead of lastName-firstName

we combine the givenName and sn

attributes. However, if for some reason

givenName or sn would be set to NULL, the

Web Service falls back on displayName as

we assume that this attribute will always be

present. Our testing shows that it is

possible to create a new user object

without specifying givenName or sn, but it

is not possible to create a new user object

without specifying the displayName

attribute.

12 This would make the hostname a URL and is only supported by OpenLDAP 2.x.x and up.

13 The attribute is used to store the additional DNS host name of a computer object. This attribute is used at the
time a DC is renamed (Microsoft, All Attributes, 2015).

Attribute Description

displayName The display name for an
object. This is usually the
combination of the user’s first
name, middle initial, and last
name.

givenName Contains the given name (first
name) of the user.

sn This attribute contains the
family or last name for a user.

mail The list of email addresses for
a contact.

samAccountName This attribute is used to store
the SAM account names that
correspond to the DNS host
names in ms-DS-Additional-
Dns-Host-Name13.

memberOf The distinguished name of the
groups to which this object
belongs.

Table 4-3 LDAP Attributes in User Object (Microsoft, All
Attributes, 2015)

Chapter 4 - Implementation

43

Although the Web Service only use a

few attributes in the AD, all fields in the

AD is returned when using the Web

Service’ API to get user information

about a specific user. This is because 3rd

party applications may have different

needs than the Web Service itself.

When searching for a given user the

query string is parsed using the pseudo

code in Figure 4-1.

As we can see from the pseudo code,

we are assuming that the name in the

query is formatted as firstName

middleName lastName. If the query has

more than two words, we move the last

name to the beginning of the query.

After formatting the query, we use the

query in a LDAP search filter shown in

Figure 4-2. The reason we move the last

name to the beginning if the query has

more than two words is because our initial testing revealed that it was difficult to search for persons

with middle names. The user would do a search, but the search result was not as expected. After

implementing the pseudo code in Figure 4-1 the search results matched the users’ expectations.

In Figure 4-2 we tell the AD

that five attributes need to

match in the returned result.

The first two attributes tells

the AD that we are looking

for a user account, then we

use the anr attribute to

search for the name. The

mail attribute is set to a

wildcard meaning that it

need to be present. The last

part of the filter is a bit more

complex.

Some attributes on AD objects are composed of bitwise flags. The syntax of the LDAP Matching Rule

is attributename:ruleOID:=value (Microsoft, How to query Active Directory by using a bitwise filter,

2014). In our search query for users, we don’t want disabled accounts. This can be students that are

finished studying, or staff that has left the university. We do this by checking that if the attribute

userAccountControl has its value set to 2, we do not want these objects. The cryptic number

1.2.840.113556.1.4.803 is the AND operator.

//Assume a search like this query

String q = “Ruben Alexander Andreassen”

//Convert the string into an array

Array qA = explode (WHITESPACE, q)

//If the query has more than two words

if (qA.length > 2) {

 //Assume that the last word is the last name

 //and extract it

 String lastName = qA[(qA.length-1)]

 //Remove the last word from the array

 unset(qA[(qA.length-1)])

 //Build a new query with the last name and the

 //rest of the words from the array

 q = lastName+” “+implode(WHITESPACE, qA)

 //The last name is now at the beginning

}

//Insert the query into search filter

Figure 4-1 Pseudo code for doing a user search

(& //AND operator

 (objectCategory=person)

 (objectClass=user)

 (anr=query)

 (mail=*)

 (! //NOT operator

 (userAccountControl:1.2.840.113556.1.4.803:=2)

)

)

Figure 4-2 LDAP search filter for doing a user search

Chapter 4 - Implementation

44

ANR stands for Ambiguous Name Resolution, and is an efficient search algorithm in the AD (Mueller,

Active Directory: Ambiguous Name Resolution, 2014). Several attributes are used in this algorithm

depending on which schema version the AD uses. Using Active Directory Explorer we have

determined that the university uses the latest schema version which is 69 at the time of writing.

Some of the attributes included in the ANR search is displayName, givenName and sn, which makes

sense as we would search in these attributes if the anr attribute was not available.

To get a more deep understand why we need to move the last name to the beginning of the query if

it contains more than two words, we need to look at the search filter that the anr attribute is

converted into. We look at an example using AD schema version 13 for simplicity. The attributes and

the values we use in the ANR example is listed in Figure 4-3. These are the attributes that the ANR

search algorithm will be using. By comparing the values of these attributes to the ANR filter examples

we can see where and why we get a match on the search.

Figure 4-3 Attributes and values used in an ANR search. Note! Some of the values may be shortened for readability.

The query Ruben is converted to anr=Ruben that is converted into the filter shown in Figure 4-4. As

we can see this filter will match on givenName from Figure 4-3.

Figure 4-4 ANR filter example

displayName=Andreassen Ruben Alexander

givenName=Ruben Alexander

legacyExchangeDN=/o=UiT/ou=EAG/cn=R/cn=Andreassen Ruben Alexander (ran033)

name=Andreassen Ruben Alexander (ran033)

physicalDeliveryOfficeName=Institutt for informatikk

proxyAddresses=x500:/o=EL/ou=EAG/cn=R/cn=-Andreassen;SMTP:ran033@post.uit.no

sAMAccountName=ran033

sn=Andreassen

anr=Ruben is converted into the following filter:

(|

 (displayName=ruben*)

 (givenName=ruben*) //Match

 (legacyExchangeDN=ruben)

 (physicalDeliveryOfficeName=ruben*)

 (proxyAddresses=ruben*)

 (name=ruben*)

 (sAMAccountName=ruben*)

 (sn=ruben*)

)

Chapter 4 - Implementation

45

When searching for only one word the anr attribute converts to a relatively simple filter. Let’s look at

what happens if we are searching for two words. The query Ruben Alexander or Ruben Andreassen

are converted into anr=Ruben Alexander or anr=Ruben Andreassen. These attributes are converted

into the filters shown in Figure 4-5.

Figure 4-5 ANR filter example

anr=Ruben Alexander is converted into the following filter:

(| //OR operator

 (| //part1

 (displayName=ruben alexander*)

 (givenName=ruben alexander*) //Match

 (legacyExchangeDN=ruben alexander)

 (physicalDeliveryOfficeName=ruben alexander*)

 (proxyAddresses=ruben alexander*)

 (name=ruben alexander*)

 (sAMAccountName=ruben alexander*)

 (sn=ruben alexander*)

)

 (& //part2

 (givenName=ruben*) //Match

 (sn=alexander*)

)

 (& //part3

 (givenName=alexander*)

 (sn=ruben*)

)) //END FILTER

anr=Ruben Andreassen is converted into the following filter:

(| //OR operator

 (| //part1

 (displayName=ruben andreassen*)

 (givenName=ruben andreassen*)

 (legacyExchangeDN=ruben andreassen)

 (physicalDeliveryOfficeName=ruben andreassen*)

 (proxyAddresses=ruben andreassen*)

 (name=ruben andreassen*)

 (sAMAccountName=ruben andreassen*)

 (sn=ruben andreassen*)

)

 (& //part2

 (givenName=ruben*) //Match

 (sn= andreassen*) //Match

)

 (& //part3

 (givenName= andreassen*)

 (sn=ruben*)

)) //END FILTER

Chapter 4 - Implementation

46

As we can see the query Ruben Alexander gives us a match in part one and a partial match in part

two, but both attributes in part two are required since the AND operator is used. This means that the

partial match in part two is not taken into account in the result. Ruben Andreassen gives us a full

match in part two of the filter.

The query Ruben Alexander Andreassen is converted into anr=Andreassen Ruben Alexander that

gives us the filter shown in Figure 4-6.

As we can see this query gives us a two matches in part one of the filter, and also a full match in part

three of the filter. The original query that where Ruben Alexander Andreassen would not have given

us any matches (Microsoft Corporation, 2001).

Figure 4-6 ANR filter example

4.1.1.3 Courses

Information about which courses any given student is taking at the current moment is based on

which groups a user is a member of in the AD. The memberOf attribute contains all the groups that a

user is linked to. Each course is represented by a group, formatted as shown in Figure 4-7.

The first and the last word is fixed. Course name and year are self-explaining. Semester can have two

values, the Norwegian words for spring and fall (vår and høst). Each course can have several different

versions in Syllabus, and the course version field reflect which version of the course the student is

taking. The term field is information about which term of the student’s study program the student is

taking the course.

anr=Andreassen Ruben Alexander is converted into the following filter:

(| //OR operator

 (| //part1

 (displayName=andreassen ruben alexander*) //Match

 (givenName=andreassen ruben alexander*)

 (legacyExchangeDN=andreassen ruben alexander)

 (physicalDeliveryOfficeName=andreassen ruben alexander*)

 (proxyAddresses=andreassen ruben alexander*)

 (name=andreassen ruben alexander*) //Match

 (sAMAccountName= andreassen ruben alexander *)

 (sn= andreassen ruben alexander*)

)

 (& //part2

 (givenName= andreassen*)

 (sn=ruben alexander*)

)

 (& //part3

 (givenName=ruben alexander*) //Match

 (sn=andreassen*) //Match

)

)

emner.<course name>.<year>.<semester>.<course version>.<term>.student

Figure 4-7 AD Course Group Format

Chapter 4 - Implementation

47

Figure 4-8 shows an example of a group in the AD. A user assigned to this group would mean a

student taking version one of the course INF-3320 (Middleware), in the year 2014, in the spring

semester, at the students sixth term (typically the last term in a Bachelor).

By finding all the groups that a user is a member of that starts with emner and ends with student, and

parsing them to retrieve the course name and version, we are able to link that information to the

courses in SDB and retrieve the course calendar. SDB stores the courses names as <course name>-

<course version>. The example in Figure 4-8 would be parsed to INF-3320-1.

At first the group name in the AD did not contain the course version, this was added in the middle of

this thesis. The code was then changed to use this information to improve the Web Service. In the

first version of the code, where we did not know the course version, we had to search in Syllabus for

the course code without the course version. This would give us all the course versions and we would

use the latest version as a match. We would then have made the conclusion that this was good

enough since we don’t have information about the previous courses taken by students, and we

would have to assume that the students are taking the latest version of the course. But since the

version number was added, we can with 100% accuracy link the information in the AD with SDB.

4.1.1.4 Rooms

Although the room’s calendar exist in MXS, all

the rooms are also resources in the AD. It

makes sense to search for rooms in the AD

instead of MXS for two reasons; LDAP is more

lightweight than SOAP, and AD is designed for

a large number of search operations (Microsoft, So What Is Active Directory?, 2014).

To filter the room resources from

all the other resources in the AD

we make sure the attribute

msExchRecipientTypeDetails is set

to 16. A value of 16 indicates that

the resource is a room mailbox

(Bailey, 2013). The LDAP filter

that is used in a room search is

displayed in Figure 4-9.

Like the user object, the room object has a lot of attributes. We only use the two listed in Table 4-4.

Since we don’t care about the order of the names that make up a room name, we only need to

retrieve the displayName attribute when handling rooms and not the givenName and sn attributes.

The mail attribute is used as an identifier to link the room’s resource in the AD to the room’s

calendar in MXS.

Attribute Description

displayName The name of the room

mail The email address of the room
Table 4-4 Attributes used in the Room Object

(&

 (displayname=query*)

 (msExchRecipientTypeDetails=16)

)

Figure 4-9 LDAP search filter for a room search

emner.inf-3320.2014.vår.1.6.student

Figure 4-8 AD Course Group Example

Chapter 4 - Implementation

48

4.1.2 Exchange Connector (XC)
The Exchange connector communicates with the EWS API. This is done through SOAP messages

which is essentially XML messages sent over the Internet. To implement this from scratch would be

very time consuming, so we have taken an open source project as a base and added the missing

functionality that we needed.

4.1.2.1 Exchange setup

To make the Web Service able to communicate to the

university’s MXS through the EWS interface we need to

configure a few parameters. The configuration that is

unique to the university’s setup can be viewed in Table

4-5.

4.1.2.2 Detailed and Busy-Free calendar

The GetUserAvailability operation provides detailed information about the availability of a set of

users, rooms and other resources within a specified time period. The Web Service use the email

address as an identifier for the user or room that we want to retrieve calendar information from.

The XML response contains a FreeBusyResponseArray element, where each

mailbox appears in a unique FreeBusyResponse element. The FreeBusyResponse

element contains a FreeBusyView element, and in that element we find the

CalendarEventArray element. This element contains one CalenarEvent element

for each event. There are three attributes making up an event: StartTime,

EndTime and BusyType. The BusyType element can contain any of the values

listed in Table 4-6.

By using this information, we can populate a calendar with information about

when any user or room is busy or free. We know that a user or room is free

when one of the following is true; there is an event where the BusyType

element is set to “Free”, or there is not any events at the given date and time

In addition to this, the

CalendarEvent element contains a

CalendarEventDetails element if the

user has permissions to view this

information. From the

CalendarEventDetails element we

can get detailed information about

the logged in user’s calendar events,

and any other users or rooms that

the logged in user has permissions to view detailed event information from. This permission is usually

given when a user shares a calendar or event with other users. The CalendarEventDetails element

contains several attributes, but we only use the ones listed in Table 4-7.

14 During the development of this thesis the university’s IT department upgraded from Exchange 2010 to
Exchange 2013. This does not affect the Web Service because none of the introduced operations in Exchange
2013 would have been used by the Web Service, and none of the operations the Web Service uses where
deprecated (Microsoft, EWS operations in Exchange, 2014).

Parameter Value

Hostname mail.uit.no

Host Version Exchange201014
Table 4-5 Exchange setup

Value

Free

Tentative

Busy

OOF (Out of
Office)

NoData
Table 4-6 Possible
values of the
BusyType element
(Microsoft,
BusyType, 2009)

Attribute Description

ID Represents the entry ID of the calendar item.

Subject Represents the subject of a calendar item.

Location Represents the location field of the calendar
item.

Table 4-7 Elements used in the CalendarEventDetails element (Microsoft,
GetUserAvailability Operation, 2011)

Chapter 4 - Implementation

49

The description attribute of the event does not exist in the CalendarEventDetails element. The

process of getting the description is a little bit more complicated. The ID attribute from the

CalendarEventDetails element is a hexadecimal representation of the PR_ENTRYID property

(Microsoft, IdFormat enumeration, 2014). To use this ID to get the description of the event we need

to convert it to a EWS identifier format that is used in Exchange 2007 Service Pack 1 (SP1) and later

versions of Exchange Server. The conversion is done using the ConvertId operation (Microsoft,

ConvertId operation, 2014).

Figure 4-10 shows a simple request to convert an identifier (ID) from the hexadecimal representation

(HexEntryId) to the EWS identifier format (EwsId) for an item in a user mailbox. If everything goes as

expected we get a response with the converted id as shown in Figure 4-11. If an error occurs, we get

a response explaining what went wrong like the one shown in Figure 4-12.

When we have the ID in the correct format, we can use the GetItem operation to retrieve calendar

items from the Exchange store (Microsoft, GetItem operation, 2012) (Microsoft, GetItem operation

(calendar item), 2013). We can get several events in one request by adding multiple IDs. The

response contains all the elements of the CalendarItem element, but we are interested in the

description that lies inside the Body element. The Body element can contain HTML or plain text, we

use the plain text in the Web Service because the iCalendar specification only allows plain text to be

used in the description of an event object (Desruisseaux, 2009).

Figure 3-3 illustrates that even if we wanted to get calendar information from twenty accounts, only

three requests are sent between the Web Service and the EWS interface. If we could manage

without the information in the CalendarItem element, which is the description in our case, only one

request would have been sent. This becomes more important if we want calendar information from

over 100 mailboxes, since we can only retrieve up to 100 mailboxes in each request.

Figure 4-10 ConvertId operation request example (Microsoft, ConvertId operation, 2014)

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:t="http://schemas.microsoft.com/exchange/services/2006/types">

<soap:Header>

 <t:RequestServerVersion Version="Exchange2010"/>

 </soap:Header>

 <soap:Body>

 <ConvertId xmlns=http://schemas.microsoft.com/exchange/services/2006/messages

 xmlns:t=http://schemas.microsoft.com/exchange/services/2006/types

 DestinationFormat="EwsId">

 <SourceIds>

 <t:AlternateId Format="HexEntryId" Id="AAMkAGZhN2IxYTA0LWNiNzItN="

 Mailbox="user1@example.com"/>

 </SourceIds>

 </ConvertId>

 </soap:Body>

</soap:Envelope>

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.microsoft.com/exchange/services/2006/messages
http://schemas.microsoft.com/exchange/services/2006/types

Chapter 4 - Implementation

50

Figure 4-11 ConvertId operation response example (Microsoft, ConvertId operation, 2014)

Figure 4-12 ConvertId operation error response example (Microsoft, ConvertId operation, 2014)

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas..." xmlns:xsi="...w3..." xmlns:xsd="...w3...">

 <soap:Header>

 <t:ServerVersionInfo MajorVersion="8" MinorVersion="1" MajorBuildNumber="191"

 MinorBuildNumber="0" Version="Exchange2010" xmlns:t="http://schemas..." />

 </soap:Header>

 <soap:Body>

 <ConvertIdResponse xmlns="http://schemas...">

 <ResponseMessages>

 <ConvertIdResponseMessage ResponseClass="Success">

 <ResponseCode>NoError</ResponseCode>

 <AlternateId xsi:type="t:AlternateIdType" Format="EwsId" Id="RgAAAAAS2%2"

 Mailbox="user@example.com" />

 </ConvertIdResponseMessage>

 </ResponseMessages>

 </ConvertIdResponse>

 </soap:Body>

</soap:Envelope>

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Header>

 <ServerVersionInfo MajorVersion="8" MinorVersion="1"

 MajorBuildNumber="206" MinorBuildNumber="0"

 Version="Exchange2010"

 xmlns="http://schemas.microsoft.com/exchange/services/2006/types" />

 </soap:Header>

 <soap:Body>

 <ConvertIdResponse

 xmlns="http://schemas.microsoft.com/exchange/services/2006/messages">

 <ResponseMessages>

 <ConvertIdResponseMessage ResponseClass="Error">

 <MessageText>Id is malformed.</MessageText>

 <ResponseCode>ErrorInvalidIdMalformed</ResponseCode>

 <DescriptiveLinkKey>0</DescriptiveLinkKey>

 </ConvertIdResponseMessage>

 </ResponseMessages>

 </ConvertIdResponse>

 </soap:Body>

</soap:Envelope>

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.microsoft.com/exchange/services/2006/types
http://schemas.microsoft.com/exchange/services/2006/messages
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance

Chapter 4 - Implementation

51

4.1.2.3 Room List

To retrieve a list of all room lists from the MXS, we use the GetRoomLists operation in the EWS

interface (Microsoft, GetRoomLists Operation, 2011). The GetRoomLists operation will return all the

room lists available within the Exchange organization.

The response is in XML and the element containing room lists is named RoomLists. The RoomLists

element contains child elements called Address. There is one Address element for each room list. The

Address elements child elements contain information about a specific room list. There are four

attributes that make up the room list information, but we only use the Name and EmailAddress

attribute. These attributes contains the information that the names of the attributes implies.

The Web Service implements a method to search for a particular room list, but the EWS don’t have

any functions to do this. We therefore have to retrieve all room lists from the Exchange organization,

parse through them and only return the ones that match the search query.

4.1.2.4 Room

We have previously discussed that we use the AD to search for particular rooms, but when we want

to retrieve all the rooms in a particular room list, we have to use the EWS interface. This is because

the AD don’t contain information about which room list a particular room is a member of. Since the

university uses room lists as logical groups of rooms at a physical location, they could use the LDAP

attribute physicalLocationObject15 to indicate that a room is within a particular room list. But they

have to do this consistently, or else it would not work very well. Our testing shows that in some

cases, the university uses this attribute to describe the location even more specific than the room list

would as shown in Table 4-8. Instead, we use the GetRooms operation to get the rooms within a

specified room list (Microsoft, GetRooms Operation, 2011).

The XML response contains a Rooms element, where the child elements Room contains information

about each room. Each Room element contains an Id element with the room information. There are

four attributes that make up the room information, but we only use the Name and EmailAddress

attributes.

Room Room List physicalLocationObject

MH L8.121 Møterom MH-Bygget MH bygget plan 8

REALF A042 Møterom Realfagsbygget Realfagsbygget

Teknologibygget 1.027 Kollokvierom Teknologibygget Teknologibygget, 1etg
Table 4-8 Examples of values in the physicalLocationObject attribute compared to the Room List that a specific Room is
associated with

15 Used to map a device (for example, a printer, computer, and so on) to a physical location. (Microsoft, All
Attributes, 2015)

Chapter 4 - Implementation

52

4.1.3 Syllabus Connector (SC)
The university runs an older version of Syllabus that don’t have any API that 3rd party applications can

use to retrieve information. The solution is therefore to retrieve information directly from the

Syllabus database (SDB). This is an Oracle database and the Web Service uses SQL statements to

retrieve information.

In addition to this, the database is very poorly documented (Scientia, All SDB Schema Tables, 2003).

We got some documentation on the table and column names, but that’s it. We therefore had close

contact with the university’s IT department to understand how the information in the database

should be interpreted, and we got some example queries to get started.

The calculation of events is complicated, but necessary to describe in detail because it affects how

the Web Service performs.

4.1.3.1 SDB setup

To make the Web Service able to communicate with the university’s SDB we need to configure a few

parameters. The configuration that is unique to the university’s setup can be viewed in Table 4-9.

Parameter Value Description

Database Username Not Public

Database Password Not Public

Database Connection String MISC The connection string is defined in a
configuration file named tnsnames.ora. The
content of the file can be viewed in Figure 4-13.

Database Start Year Previous year We can only search for data as far back as this
value.

Table 4-9 Syllabus Database Setup

Figure 4-13 Content of the database connection configuration file (tnsnames.ora)

4.1.3.2 Courses, rooms, room lists and staff

The SDB contains the timetable of many things. We will look at courses, rooms and staff. The way

that this is built up is that there is one table with all the courses, one table with all the rooms and one

table with all the staff at the university. These are the tables we use as base tables to do searches

against.

Then we have the activity table, which contains all the activities. Each activity represents a series of

events. Each course, room and staff can be linked to zero or more activities. To achieve a many-to-

many relation like this, the database has linking tables between each base table and the activity table

(Caffrey, 2011).

MISC =

 (DESCRIPTION =

 (LOAD_BALANCE = yes)

 (ADDRESS = (PROTOCOL = TCP)(HOST = nille-vip.uit.no) (PORT = 1771))

 (ADDRESS = (PROTOCOL = TCP)(HOST = helene-vip.uit.no)(PORT = 1771))

 (CONNECT_DATA =

 (SERVICE_NAME = MISC)

)

)

Chapter 4 - Implementation

53

The staff table contains email addresses of the staff, and these email addresses can be linked to the

AD. This enable us to do the user search in the AD, and then check if the user is a staff at the

university by searching for the users email address in the SDB. If the user is a staff, we can get all the

courses the user is teaching. This is much easier than if the user is a student, since we then have to

parse the groups in the AD and then link the parsed groups to the courses in the SDB.

If we retrieve the activities of a course or staff, we can also check the linking between the activities

and the rooms to get the location. If we want to get the activities of a room, that room is naturally

the location.

Syllabus also group rooms into room lists in the same way as the Exchange Server. The only

difference here is the semantics. What is called a room list in Exchange, is called a zone in Syllabus.

4.1.3.3 Activity

An activity in the SDB is like a repeated event. Unlike other systems where the system calculates the

repeated event into several events, we have to do this calculation ourselves on the Web Service. This

calculation is quite complicated at first sight. Let’s look at the following columns and values in one

activity from the activity table uit_activity shown in Table 4-10.

Name Value

scheduled_periods ((1 3 4 5 6 7 8 9 13 14 15 16 17) (205))

duration 3

week_pattern 0101111111000111110000000000000000000000000000000000
Table 4-10 Selected columns from the uit_activity-table

This means that the activity is in week 1, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16 and 17 from

scheduled_periods. The corresponding value in week_pattern is also set to one. The activity starts in

the period 205 (from scheduled_periods) and the duration is set to 3, meaning that the event is 3

periods long. This means that the first event of the activity is in week 1, and starts at period 205, and

ends at period 208. We need some more information to determine the date and time.

From a support table uit_institute_setup in SDB we can get the information shown in Table 4-11.

Name Value Description

start_time_of_day 25200 When the day starts for all activities in the database

end_time_of_day 79200 When the day ends for all activities in the database

periods_per_day 60 How many periods of 15 minutes between the start and end
time of the day

Table 4-11 Selected columns from the uit_institute_setup-table

The number from start_time_of_day and end_time_of_day is

the number of seconds from midnight (00:00:00). If we

calculate the actual start and end time from these seconds, we

get the times shown in Table 4-12. We can use these times, or

we can use only the seconds to calculate how long each period

is using the value from periods_per_day as shown in Figure 4-14.

Value Time (calculated)

25200 07:00

79200 22:00
Table 4-12 Seconds convertet to time

(((79200 seconds – 25200 seconds)/60 seconds)/60 periods per day) = 15 minutes

((22 hours – 7 hours)/60 periods per day) = 15 minutes

Figure 4-14 Calculation of the length of each period

Chapter 4 - Implementation

54

Each week starts on a Monday (Monday and not Saturday from the documentation), and each day

starts at 07:00 and ends at 22:00. In our example, the activity starts at period 205 and has a duration

of 3 periods. Table 4-13 shows how we use that information to calculate the day, start time and end

time of the activity.

From the calculation we now know that the first event of the activity starts in week one on a

Thursday at 13:15 and ends at 14:00. We still need to find the actual date. This is simply done by

calculating which date a Thursday was on in the given week of the given year. From week_pattern we

can see that the activity is repeated in week 3, 4, 5 and so on. We calculate the dates of all the

Thursdays of the weeks in the week pattern to get all events in the activity.

Attribute Calculation Result Description

Day (205 periods/60 periods per day) Day 3 The value here
represents the day of
the week.
0 = Monday
1 = Tuesday
2 = Wednesday
3 = Thursday
4 = Friday
5 = Saturday
6 = Sunday

Start Time (205 periods%60 periods per day) 25 periods Since the day starts at
07:00 we need to add
this to the time we
get. This means that 6
hours and 15 minutes
are actually meaning
13:15 when we add 7
hours.

(25 periods*15 minutes per period) 375 minutes

375 minutes converted to hours and minutes 6 hours and
15 minutes

(6 hours and 15 minutes) + 7 hours 13:15

End Time (13:15 + (3 periods * 15 minutes per period)) 14:00 We need to add the
duration of the activity
to get the end time.

Table 4-13 How to calculate the day, start and end time of an activity

While testing the Web Service we discovered that the Syllabus connector was quite slow when

dealing with a large number of activities. By optimizing the code we got a whole 50% increase in

performance when dealing with a large number of activities. The main problem was that the first

version of the code calculated all events of an activity by default. This lead to unnecessary processing

when an activity did not have events in the weeks that the date interval limited. We then modified

the code to check if the activity has events in the weeks that we want events from first, and then

calculate the events if there is any in the given weeks. This check is based on the week_pattern

attribute.

Chapter 4 - Implementation

55

4.1.4 Fronter Connector (FC)
The Fronter connector handles requests between the Web Service and the OpenApi that Fronter

provides. The requests are GET requests sent over HTTP, and the responses are in iCalendar format.

The most challenging with the FC is the authentication needed to use the OpenApi. Fronter does not

support automatic authentication and relies on user interaction to authenticate. We did not want to

implement the authentication this way because that would limit the user experience on our service.

We therefore needed to do some reverse engineering to solve this problem.

4.1.4.1 Fronter setup

To make the Web Service able to communicate with Fronter we need to configure a few parameters.

The configuration that is unique to the Fronter setup can be viewed in Table 4-14.

Parameter Value

Consumer key Not Public

Consumer secret Not Public

Consumer name uit

OAuth host https://fronter.com/uit

Request token URL https://fronter.com/uit/api/oauth.php/requesttoken

Authorize URL https://fronter.com/uit/api/oauth.php/authorize

Access token URL https://fronter.com/uit/api/oauth.php/accesstoken
Table 4-14 Fronter setup

4.1.4.2 Automated OAuth authorization

To access the OpenApi functions in Fronter, the 3rd party application needs to authenticate through

OAuth. From the Fronter documentation:

“When a 3rd party application want's to call the OpenApi in Fronter, they first get a request-token

from Fronter. Then the user gets a GUI from Fronter asking him to log in. If the user is already logged

in, the user will be asked if he want to grant access to the 3rd party application. When granting

access, the user is redirected back to the 3rd party application. The request-token is now enabled. The

3rd party app exchanges the request-token for an access-token. Now the 3rd party app can do

OpenApi calls with the access-token, until the token expires (default 2 hours).

When the 3rd party app gets the request-token, and the user must grant access, this GUI will NOT

redirect the user to the login page. If the user is not logged in, they must open their normal Fronter

login page and then login. After that, return to the OAuth access page and refresh.

Fronter is doing it this way for security reasons. We want to protect the users from any phishing

attempts.” (Fronter, Oauth In Fronter, 2014).

This would have been acceptable if our Web Service only had the GUI. But since we want our Web

Service to make the information available to other 3rd party applications, this procedure would be

highly unpractical. In addition, we know from experience that normal users want to login as few

times as possible.

With this motivation we analyzed the login process that Fronter uses. The findings of how the

Fronter login process works is described in Appendix A.

To automate this process we created a class with functions that simulate a browsers behavior. By

doing this, the web servers at the other end will think that our Web Service is a user browsing the

web trying to log in to Fronter. The PHP library used to simulate browser behavior is cURL and is a

default library embedded in the PHP installation (The PHP Group, Client URL Library, 2015).

https://fronter.com/uit
https://fronter.com/uit/api/oauth.php/requesttoken
https://fronter.com/uit/api/oauth.php/authorize
https://fronter.com/uit/api/oauth.php/accesstoken

Chapter 4 - Implementation

56

When looking at the login process in Appendix A, it becomes clear that we need to interfere with the

step two, six, seven and eight. Step two and eight because cURL don’t have a JavaScript engine, and

step six and seven because they require user input.

We have control over the user input, because the organization (org input field) is fixed, and the

username and password (feidename and password input fields) are provided by the user

authenticating with the API or through the GUI.

One big drawback in doing this, are the possibilities that the flow of the login process can change. If

the login flow would to change, we would need to change the code automating the login process.

This actually happened during the course of this thesis.

Step two in the Fronter login process was removed at some point during the development. This

caused the automatic login to fail. We therefore needed to reverse engineer the whole process again

to find out why the automatic authentication failed. After some debugging, it was clear that one of

the JavaScript redirect pages was removed. We then needed to modify the code to accommodate for

this, and everything worked again, until there is another change in the login process.

The experience this gives us is that everything can be done, but the use of these kinds of hacks need

close monitoring and is highly time consuming to maintain. But the user experience is greatly

improved.

4.1.4.3 User calendar

Each user has its own private

calendar in Fronter. To retrieve this

calendar information we use the

iCal method in the Fronter OpenApi

(Fronter, OpenAPIv1, 2014). The

iCal method takes the three

parameters described in Table

4-15.

Figure 4-15 shows an example API

call to the iCal method. This will

output all calendar events in

August 2014 from the user’s

private calendar in Fronter as

shown in Figure 4-16. The output

format is specified as raw, which

means that the output is the same

as it would be in an iCalendar file.

We then need to parse this result

to retrieve the calendar events.

16 This does not include the specified date. If we want the date 2014-08-31, we need to specify 2014-09-01.

Parameter Description

alphanum_format=raw When specifying the value raw
Fronter will output raw iCalendar
data instead of data wrapped in
JSON or XML. This is the
recommended setting.

date_from Displays calendar starting from the
specified date. The format is Y-m-d.
The default value is 30 days back
from the current date of the
request if not specified.

date_to Displays calendar up to the
specified date16. The format is Y-m-
d. The default value is 90 days
forward from the current date of
the request if not specified.

Table 4-15 Fronter OpenApi iCal method parameters (Fronter, OpenAPIv1,
2014)

https://fronter.com/uit/api/v1.php/ical;private?date_from=2014-08-01&date_to=2014-09-

01&alphanum_format=raw

Figure 4-15 Fronter iCal method private calendar call example

https://fronter.com/uit/api/v1.php/ical;private?date_from=2014-08-01&date_to=2014-09-01&alphanum_format=raw
https://fronter.com/uit/api/v1.php/ical;private?date_from=2014-08-01&date_to=2014-09-01&alphanum_format=raw

Chapter 4 - Implementation

57

Figure 4-16 Fronter iCal method private calendar response example

4.1.4.4 Room calendar

A room in Fronter is not the same as a room in MXS or SDB. The rooms from the latter systems are

physical rooms, but the rooms in Fronter are virtual representation of courses, student sets, student

programs and other groups. A room in Fronter is therefore not mixed with the rooms from MXS and

SDB, but threated as a normal calendar connected to the user that is a member of the room.

The method for retrieving calendar information from a room is the same as for the user calendar

with one minor change. We specify room instead of private in the API call. An example of such a call

can be viewed in Figure 4-17.

This will output all calendar events in August 2014 from all the rooms that a user is a member of in

Fronter. The output would be similar to the one shown in Figure 4-16.

4.1.5 Adding new connectors
The first thing the new connector need to implement is the authentication method of the interface of

the external system. If the user uses the same credentials on the new external system that is going to

be implemented, the credentials can be retrieved from a static object that the Web Service offers. If

not, the connector must retrieve the credentials itself.

When the authentication is in place, the connector must implement a method to retrieve calendar

information from a specific calendar at the external system. This method must take the identifier of

the calendar that is going to be retrieved and a date interval as input.

BEGIN:VCALENDAR

VERSION:2.0

METHOD:PUBLISH

PRODID:-//Fronter/Calendar ICS export//EN

BEGIN:VEVENT

CREATED:20140816T080000

LAST-MODIFIED:20140816T080000

DTSTAMP:20140816T080000

UID:uit-96890

SUMMARY:test

DESCRIPTION: Owner: Ruben Alexander Andreassen\n

ORGANIZER;CN=Ruben Alexander Andreassen:MAILTO:ran033@post.uit.no

URL;VALUE=URI:http://fronter.com/uit

 /calendar/index.phtml?bm=01&bd=16&by=2015&showroomcalendars=1

DTSTART:20140816T070000Z

DTEND:20140816T080000Z

LOCATION:Private room

END:VEVENT

END:VCALENDAR

https://fronter.com/uit/api/v1.php/ical;room?date_from=2014-08-01&date_to=2014-09-

01&alphanum_format=raw

Figure 4-17 Fronter iCal method room calendar call example

https://fronter.com/uit/api/v1.php/ical;room?date_from=2014-08-01&date_to=2014-09-01&alphanum_format=raw
https://fronter.com/uit/api/v1.php/ical;room?date_from=2014-08-01&date_to=2014-09-01&alphanum_format=raw

Chapter 4 - Implementation

58

When all this functionality is in place, the connector must implement a function that uses the

connector’s class in the main calendar class of the Web Service. This function must receive an

identifier and use the class’ date interval to retrieve calendar information from the connector. Then

the function must parse the calendar information and create an event object for each event. These

event objects must be added to the calendar class’ calendar list. The function can create a new

calendar in the list or use an existing calendar in the list to combine the connector’s calendar to

another calendar. The Web Service will then hand the calendar list to the interfaces that delivers the

calendars to the end user or end user system.

If the connector implements searching, almost the same procedure is needed. The Web Service has a

search class that the connector can register its searching possibilities. The search result can be

independent or combined with the other search functions such as rooms or room lists.

4.2 Middleware
To handle all the different data formats and semantics from the connectors we need to convert the

data into an internal format. We do this by creating an event class that each calendar event from all

the systems are converted into.

This class contains the key fields of an event. This includes date, time, subject, location and

description of the event. Location and description is optional.

When we have all the data in our own representation of a calendar event, we can format the data

correctly and hand it over to the interfaces. This can be in an iCalendar format, JSON representation

or an object depending on which interface that wants to retrieve the data.

4.3 Interfaces
The interfaces takes all the information from the middleware and make the information available to

the user or other 3rd party system.

4.3.1 Graphical User Interface (GUI)
The GUI is a web page that any student or staff at the university can use. First, the user has to

authenticate through a login page, and then the user can use all of the functionality that the Web

Service offers. The documentation of the API can also be found in the GUI if the user wants to

develop a 3rd party application that uses the functionality that the Web Service offers.

The URL of the GUI is https://studentlink.ifi.uit.no/. We also have a certificate issued by the

university. During this thesis, the Heartbleed bug was known. When this bug was known we patched

our web server right away and the certificate was changed to make sure that the Web Service could

not be compromised.

The biggest challenge with the GUI is that the Web Service needs to authenticate to some of the

external systems on every request. Since the user only has to authenticate when he logs in, the Web

Service need to store the username and password in a safe manner. Since the Web Service needs to

use the password, the password cannot be hashed. The username and password should never be

stored at the Web Service in clear text, or any way that is reversible, since the Web Service could be

compromised.

https://studentlink.ifi.uit.no/

Chapter 4 - Implementation

59

Since we only want to forward the credentials and do not intend to store it, but also don’t want the

user having to re-enter the credentials many times while using the GUI, we came up with the

following solution:

1. Encrypt the username and password using 256 bit AES encryption.

2. Store the encrypted username and password in the cookie. The user’s browser needs to have

cookies enabled to do this since the cookies are stored in the browser.

3. Store the encryption keys in the session store at the Web Service.

With each request the user’s browser will send the cookie. The Web Service can then use the keys in

the session to decrypt the data stored in the cookie. Someone exploiting the Web Service and gaining

access to the session store will be able to steal encryption keys, but they need the user’s cookie to

get the encrypted username and password. If we would to store the encrypted credentials in the

session, someone gaining access to the session store could try to brute force the data. Gaining access

to the keys are useless without the cookie. The only problem we can see is if someone with root

access is reading the Web Service process’ memory between the time that the Web Service receives

the cookie and the script exiting from execution. SquirrelMail uses the same scheme as we have

described here (SquirrelMail, 2014).

An alternative method would be to implement HTTP Basic Access Authentication (Franks, et al.,

1999). With this method, the user would be prompted for the credentials when he first visit the GUI.

The browser would then cache the credentials for a period of time, and send them to the Web

Service on each request. No cookies or sessions are needed. One of the reasons that we do not want

to use this method for the GUI is that there would be no way for a user to log out. It would be very

unsafe if the user is using a public computer and has no possibilities to log out safely. However, we

use this authentication method in the API. Then the application using the API could handle log outs.

We also implement the EU regulation that states that all websites in Europa must inform the users

that cookies is being used and what they are being used for (European Commission, 2014)

(Samferdselsdepartementet, 2013). The full notice can be viewed in Appendix B.

4.3.2 ICAL Interface (ICAL)
The ICAL interface creates an iCalendar file on the fly.

Much like the iCal method in the Fronter OpenApi. Many

3rd party systems can use this file to integrate the

calendar info from our Web Service in their own service.

Examples of these kinds of systems are listed in Table

4-16.

In these systems the user only need to enter the URL to the shared calendar, and the system will

display calendar the calendar information. An example URL is shown in Figure 4-18.

Calendar service

Google Calendar

Outlook Calendar

ICalSync2 app for Android
Table 4-16 Example of existing calendar services

https://studentlink.ifi.uit.no/indexICAL.ics?course=INF-2700-1

Figure 4-18 ICAL example

https://studentlink.ifi.uit.no/indexICAL.ics?course=INF-2700-1

Chapter 4 - Implementation

60

We don’t implement any authentication on this component for one reason; most of the systems that

can use this function don’t support any authentication. This means that we can only allow public

information to be accessed this way. The only public information we have is the calendar information

of courses and student sets from Syllabus. This information is already available through the

university’s online timetable portal. We could provide private information, but then we would need

to implement a unique URL for each user that could not accidently be guessed. And the user would

need to be informed of the risks, like that the information could be sniffed or accessed by other users

if the URL would go astray. Google Calendar does this.

Also, since our Web Server retrieves calendar information from external systems that require

authentication on every request, the user’s credentials would need to be stored at the Web Service.

We take security very serious, and will not have anything to do with storing passwords that can be

decrypted.

We implement the VCALENDAR header properties described in Table 4-17. In addition to the

standard header properties we implement a set of non-standard properties shown in Table 4-18. The

non-standard properties has an “X-“-prefix according to section 3.8.8.2 of the RFC 5545 specification

(Desruisseaux, 2009).

It is not without risk to implement non-standard properties. Although the X-WR-TIMEZONE is

commonly used by known services such as Google Calendar and Apple’s iCal application, and the

property don’t give any error messages in various iCalendar validators, the events time can be faulty

processed by systems that strictly implement the RFC 5545. The correct way to implement a time

zone is to add a VTIMEZONE component after the header, before the VEVENT’s (Desruisseaux, 2009).

And then use the TZID property along with the DTSTART and DTEND properties. We decided to

implement the non-standard property since it seems to be widely supported.

The VEVENT has several different attributes. We implement the VEVENT properties described in

Table 4-19 and one non-standard property described in Table 4-20.

Property Purpose

PRODID Product identifier. This property specifies the identifier for the
product that created the iCalendar object.

VERSION This property specifies the identifier corresponding to the highest
version number or the minimum and maximum range of the iCalendar
specification that is required in order to interpret the iCalendar
object.

CALSCALE This property defines the calendar scale used for the calendar
information specified in the iCalendar object. The default value is
“GREGORIAN”.

METHOD This property defines the iCalendar object method associated with the
calendar object.

Table 4-17 Header properties in the iCalendar implementation (Desruisseaux, 2009)

Property Purpose

X-WR-CALNAME The display name of the calendar.

X-WR-TIMEZONE The time zone of the calendar.

X-WR-CALDESC A description of the calendar
Table 4-18 Non-standard header properties in the iCalendar implementation

Chapter 4 - Implementation

61

Property Purpose

DTSTART This property specifies when the calendar component begins.

DTEND This property specifies the date and time that a calendar component
ends.

UID This property defines the persistent, globally unique identifier for the
calendar component.

DESCRIPTION This property provides a more complete description of the calendar
component than that provided by the "SUMMARY" property.

LOCATION This property defines the intended venue for the activity defined by a
calendar component.

STATUS This property defines the overall status or confirmation for the
calendar component.

SUMMARY This property defines a short summary or subject for the calendar
component.

TRANSP This property defines whether or not an event is transparent to busy
time searches.

DTSTAMP In the case of an iCalendar object that specifies a "METHOD" property,
this property specifies the date and time that the instance of the
iCalendar object was created. In the case of an iCalendar object that
doesn't specify a "METHOD" property, this property specifies the date
and time that the information associated with the calendar
component was last revised in the calendar store.

CREATED This property specifies the date and time that the calendar
information was created by the calendar user agent in the calendar
store.

LAST-MODIFIED This property specifies the date and time that the information
associated with the calendar component was last revised in the
calendar store.

SEQUENSE This property defines the revision sequence number of the calendar
component within a sequence of revisions.

Table 4-19 VEVENT properties in the iCalendar implementation (Desruisseaux, 2009)

Property Purpose

X-MICROSOFT-CDO-BUSYSTATUS Specifies the BUSY status of an appointment.
Table 4-20 Non-standard VEVENT properties in the iCalendar implementation (Microsoft, 2.1.3.1.1.20.31 Property: X-
MICROSOFT-CDO-BUSYSTATUS, 2015)

4.3.3 Application Programming Interface (API)
The Web Service implements a modified REST-based API. This means that the API is RESTful

implemented, using standard HTTP protocol and simple responses in JSON format. The most used

methods in a REST-based API is described in Table 2-1.

To use the API, authentication is required. We implement HTTP Basic Access authentication (BA)

because it is easy to implement and use standard HTTP headers (Franks, et al., 1999). We consider BA

to be sufficient since the Web Service use HTTPS. Without HTTPS BA is not safe since it only use

Base64 to encode the username and password. A better authentication scheme would be to use

OAuth 2.0 (Hardt, 2012). Amazon has also created a custom authentication scheme to their S3

solution (Amazon, 2006). Since the main focus of this thesis is to combine calendar information and

not on security, we consider it further work to change the authentication method of the API.

The Web Service only implements the GET and POST method. This choice was easy to make since we

don’t allow any changes to the data, only read operations.

Chapter 4 - Implementation

62

4.4 Storage
Although the Web Service does not contain any state, we need to temporarily store some data. One

of the most obvious reasons to use the file storage is for the function that lets the user upload

iCalendar files in the GUI. We store the files in a temp folder and the filename is stored in the

session. When the session expires, the file cannot be accessed because the Web Service don’t know

the filename without the session.

When the Web Service retrieves data from Fronter, we get data in a raw iCalendar format. We could

parse this data directly and display it to the user since the data is retrieved in each request and not

cached, but the iCalendar parser library that we use does not support this. We therefore need to do

a workaround where we store the iCalendar data to a file, and then use the library to parse the file.

Although we have done it this way, one should of course find another library or modify the existing

library to avoid doing this workaround. This would be a slight performance optimization.

The last usage of file storage we have is less obvious than the previous explained reasons. Some of

the external systems uses cookies that the Web Service needs to keep track of. The EWS interface

expects a cookie with the name exchangecookie to be set, or else we get the HTTP Error: 401

Unauthorized response. The importance of this is poorly documented, but we found a very important

sentence in an Exchange development blog stating that “If you create a custom client, make sure that

the exchangecookie cookie persists for each mailbox you are accessing.” (Mainer, 2011).

The other cookies we need to keep track of is created when we emulate a browser to access the

OpenApi in Fronter. This process require several redirects, and cookies are used in this process to

keep track of how far in the login process the browser17 has reached.

One optimization that we have not done is to clear the temp folder periodically to free disk space.

This can be done on a daily, weekly or monthly basis based on how fast the temp folder grows.

The MySQL database is a part of a library that we are using to handle authentication with the Fronter

OpenApi. The library implements an OAuth consumer client that connects to the Fronter server. The

Web Service needs to get one access token for each user that is using the Web Service, and the

database keeps track of this mapping, and other information related to the OAuth authentication

process.

4.5 Summary
In this chapter we have learned how to actually connect the connectors to the external systems.

There are many details that needs to be taken into account when communicating with the external

systems, and how to interpret the data retrieved. The most important thing is to understand how to

use the API of the external system and the limitations of the API.

The middleware takes it all together and deliver the data to the interfaces. The interfaces delivers the

data to the end user. We have created interfaces for a variety of usages, but the GUI is where we

really see what has been created.

In the next chapter we will do some testing and see how the Web Service compares to the

university’s existing solutions.

17 Browser meaning the simulated browser behaviour that the Web Service uses to authenticate against
Fronter

Chapter 5 - Testing

63

5 Testing
In this chapter we will explain how we tested the Web Service. We will focus on the user experience

through the GUI and mention how other 3rd party systems can use the Web Service. We will also

compare our solution with the university’s existing solutions, and see how the Web Service performs.

5.1 Graphical User Interface (GUI)

5.1.1 Login
The GUI is accessible through the URL https://studentlink.ifi.uit.no/. When the user first access this

URL the login page appears as shown in Figure 5-1. The page is simple, asking for a username and

password. In addition to this, we have a notice explaining how the web site uses cookies as required

by the EU Cookie Directive (European Commission, 2014).

The cookie notice explains what cookies are, and what our web site stores in the cookie. The whole

cookie notice can be read in Appendix B.

Figure 5-1 Login page

5.1.2 Home
When the user has successfully logged in we display a short greeting as shown in Figure 5-2. When

the home page is successfully loaded, we know that the Web Service is able to communicate with the

university’s AD.

Figure 5-2 Home page

https://studentlink.ifi.uit.no/

Chapter 5 - Testing

64

5.1.3 My Calendar
There is a menu on the top of the web page that the user

can use to navigate. Instead of visiting the web sites in

Figure 5-3, the user just clicks on My Calendar and the

Web Service displays the page in Figure 5-4.

In other words, My Calendar displays calendar information

from all the calendar systems that the Web Service

implements. We can already see that we only had to log in

once instead of twice (timeplan.uit.no does not require the user to log in), and we did not have to

search for all the courses we are taking at timeplan.uit.no.

The page loads quickly18, except for the first time. The first time the page loads the Web Service

needs to authenticate with Fronter as explained in chapter 4.1.4.2 Automated OAuth authorization.

This can take between one and three seconds.

Figure 5-4 My Calendar

18 The page average between one and two seconds

https://fronter.com/uit/

http://timeplan.uit.no/

https://mail.uit.no/

Figure 5-3 Web sites with calendar information

https://fronter.com/uit/
http://timeplan.uit.no/
https://mail.uit.no/

Chapter 5 - Testing

65

The main calendar only shows basic

information about when the event starts

and how long the event is planned to be. If

we hover the cursor over the black info icon

we get information about the events

subject, and if available, description and

location as shown in Figure 5-5.

The My Calendar is already useful, but we

have taken it one step further. It is possible

to bring even more information into the

calendar through the Add function

displayed in Figure 5-6.

The Add function makes it possible to

search and add calendar information about

other users, courses, rooms or student sets.

Which information we get from adding the different types are explained in more detail in the

following sub chapters. It is also possible to upload iCalendar files generated by other calendar

systems such as Google Calendar. In retrospect, we could have implemented a function to add

calendars by URL. This would require some state so that the user don’t have to do this every time he

access the GUI.

This makes My Calendar into a powerful planning

tool where the user can plan a meeting with another

person at a specific meeting room as shown in Figure

5-7 and Figure 5-8. When all the calendars are added

we only need to find a date and time where there is

no events to figure out when both persons can meet

at the specific meeting room. Each calendar we add

will get a different color so it is easy to tell them

apart.

Figure 5-5 My Calendar detailed event view

Figure 5-6 My Calendar add calendars

Chapter 5 - Testing

66

Figure 5-7 My Calendar merged view

Figure 5-8 My Calendar merged view

Chapter 5 - Testing

67

We only allow two events to display at the same time

and date in the main calendar view. If there are more

than two simultaneous events a gray circle with a +x

is displayed roughly where there are simultaneous

events. When we click on the circle all events that day

is displayed. The x is the number of simultaneous

events not shown in the main view.

5.1.4 Search User Calendar
This page makes it possible to search for any user in

the AD and display all public calendar information

from that users calendars. This means that we can

view whether the user is busy or free in Exchange,

and which courses the user is taking or teaching. We

cannot get any information from the users Fronter

calendar since that calendar is private and not public

through the OpenApi.

We do not make it visible in the web page which system the calendar events origin from, but the

information is there and is available for anyone using the API. This was a choice we made because we

wanted it to be hidden for the end user that the information comes from different systems. In

retrospect we have changed our mind. It would be a point to display which system the calendar

events origin from. Then the user would know where to make changes if he has access to do so in the

external system.

Figure 5-10 Search User Calendar

Figure 5-9 My Calendar several simultanious events

Chapter 5 - Testing

68

5.1.5 Search Course and Student Set
The pages to search for courses and student sets are very similar. If the user want to retrieve the

timetable for a specific course, he head over to the Search Course function. The user can then start

to enter the course code or name of the course. When three letters are hit, the Web Service start to

output the search result. The user can then click on a course to display the timetable as shown in

Figure 5-11.

Figure 5-12 shows the timetable for a student set after a student set is search for, found and

selected. The user can search on the name or code of a student set.

Both of these functions are very similar to the functionality found at the university’s timetable portal.

We only show them here because these functions are a byproduct of the My Calendar function.

Figure 5-11 Search Course

Figure 5-12 Search Student Set

Chapter 5 - Testing

69

5.1.6 Rooms
The search course and search student set functions did not

exactly bring anything new to the table, but where more a

byproduct of the functionality provided by the Web Service. This

is not the case with the room functions. Since rooms exist in both

Exchange and Syllabus, we need to merge the results to give the

user an impression that he is dealing with only one system.

Figure 5-13 shows the different room functions. There is possible

to view all rooms and room lists, or search for them if the room

or room list name is known.

5.1.6.1 All Room Lists

The first menu under the Rooms tab lets the user browse through all the room lists in Exchange and

Syllabus. The university has grouped the rooms by physical locations. For example is each building

one room list. Almost all physical locations has both meeting rooms and classrooms. All the meeting

rooms are in Exchange, and all the classrooms are in Syllabus. Both Exchange and Syllabus has room

lists, and the name of these room lists can be exactly the same or very similar.

In Figure 5-14 we have clicked on the room list Breivika. This room list actually exist in both Exchange

and Syllabus, but the Web Service combines these room lists into one new room list with the same

name. When we click on the room lists all the rooms in the new room list are shown. The user does

not known that the calendar of the rooms displayed can either be in Exchange or Syllabus. But the

user don’t need to know this information19, the user only needs to know that all the rooms at the

location Breivika is displayed without visiting more than one system.

We click on the room BRELIA L-133 Ark and the calendar from Syllabus is shown. If we would to click

on the next room in the list, BRELIA L121 Møterom, the calendar from Exchange would be displayed.

Figure 5-14 Room lists and rooms

19 In retrospect, maybe the user need this information if the user would like to edit the event.

Figure 5-13 Rooms menu

Chapter 5 - Testing

70

5.1.6.2 Search Room Lists

The room list Administrasjonsbygget also exist

in both Exchange and Syllabus. If we would to

search for this room list we only need to enter a

partial string as shown in Figure 5-15. As we can

see we only get one result. The Web Service

does a search against Exchange and Syllabus for

adm, and both systems return one result. Then

the Web Service compare20 the results, and if

the room list names are similar the Web Service

merge the results into one new list.

5.1.6.3 All Rooms

If the user don’t know the name of the room he is looking for, and don’t know which room list the

room lies within, it is possible to browse through all the rooms in Exchange and Syllabus. Figure 5-16

shows this function.

The list of all the rooms are mixed, some rooms are from Exchange and some rooms are from

Syllabus. The complete list from both the systems are sorted by name.

Figure 5-16 All rooms

20 We use PHPs similar_text function to compare strings. If the similarity is more than 95% we assume that the
room list from both systems are the same (The PHP Group, similar_text, 2014).

Figure 5-15 Room List Search (Combined)

Chapter 5 - Testing

71

5.1.6.4 Search Rooms

If the user know the name of the room he is

looking for, it is possible to search for the room

directly. By entering a partial search string as

shown in Figure 5-17, all the rooms that matches

the string are shown.

This search result of rooms are also a merged

result from Exchange and Syllabus. The user don’t

need to know which system the room calendar

origins from, but the information is available to

anyone that uses the API.

As the system developer, we can easily see that

any room with a name containing Møterom origins

from Exchange, and any room name containing

Grupperom origins from Syllabus.

5.2 ICAL
The ICAL menu in the GUI explains how the Web

Service creates a shared calendar. The iCalendar

file is created when requested. In this thesis we

have limited the file to only contain calendar

events from one week before the current date,

and four weeks from the current date. Since we

only want to demonstrate this functionality we

don’t see the need to provide more information

than that. Further work could for example add the

possibility to specify a date span in the URL, or

return all known events.

We have decided to only provide calendar

information from courses, since this information is

already public through the university’s online timetable portal. Most online calendar systems, like

Google Calendar, don’t support authentication when adding a calendar by URL. This means that

there would not be a good idea to have private calendar information available through this function.

If one would need to share ones calendar through the ICAL function, only busy/free status should be

shared and not details about the events. If you have a Google Calendar and want to share it, Google

makes it pretty clear that you should “Select this option only if you want to make all of your calendar

information (including event details) available to the world” as seen in Figure 5-18.

When we started this thesis, this functionality was new and useful for students at the university. Only

the people in our circle of friends knew about this, and during the development process there where

students that used this functionality to get the timetable of their courses on their mobile phones. But

during this thesis the university’s online timetable got this same functionality. Now that the

university’s official timetable have this in place, our implementation is obsolete and probably need

no further development if anyone where to take the project further.

Figure 5-17 Room Search (Combined)

Chapter 5 - Testing

72

Figure 5-18 Google Calendar public calendar warning

Figure 5-19 Information about the ICAL service

Chapter 5 - Testing

73

5.3 API
As we have mentioned before, the GUI is only to test the functionality that the Web Service provides.

The idea is that other 3rd party systems can use the API to make customized applications on other

devices than the web, like mobile phones.

The API requires authentication. We have implemented HTTP Basic Authentication, and anyone

registered in the university’s AD has access to use the API. There are other authentication protocols

out there, like OAuth, but these protocols are more complex to implement and not the main focus in

this thesis.

We have documented all the functions in the API as shown in Figure 5-20. On the first page we can

see all the resources available in the API and a short description. A full description of the API can be

viewed in Appendix C.

Figure 5-20 StudentLink REST API v1

Chapter 5 - Testing

74

If we click on one of the resources, we get more detailed information as shown in Figure 5-21. The

page explains all the details necessary to use the resource.

We feel that it is outside the scope of this thesis to develop an application that uses the API. Instead

we include a tool to test the functionality of the API directly in the GUI. In Figure 5-22 we take one of

the search results from Figure 5-21 and retrieve the calendar information of a particular course.

This works by filling in the input fields in the Test column to the right in the Parameters section.

When the required input fields are filled, the user can click the Test API button. The GUI then sends

an AJAX request to the Web Service, using the resource URL. The first time this is done, the browser

will ask for the user’s credentials since the API requires HTTP Basic Authentication. It does not matter

to the API that the user is already authenticated in the GUI. The Response field in the Example

Request section is updated with the response from the API.

Figure 5-21 GET method resource URL and example request

Chapter 5 - Testing

75

Figure 5-22 GET method resource URL and example request

Chapter 5 - Testing

76

5.4 Use cases
In the early stage of the Web Service the best use case where the ICAL service. A few students that

we knew used this function to get their course timetable on their mobile phones. During this thesis,

the official timetable of the university got this exact same functionality. We must therefore

demonstrate a different use case, unique to our solution.

We will look at the following scenario: we are planning a meeting with our student advisor. We want

a one hour long meeting to take place between 08:00 and 16:00, on one of the days Monday to

Thursday, in week 13, in the year 2015. This approximate time will be our guideline when planning

the meeting. To make the task a little more complex, we are going to plan the meeting in a building

called Teknologibygget. We want to use either a meeting room or a group room if possible.

To illustrate why our Web Service would be the preferred way to plan such a meeting, we are going

to show the workflow of the planning with and without our solution.

5.4.1 Planning a meeting in the conventional way
First, we open a browser and head to our personal Google Calendar. The next calendar we want to

check is in Fronter. We head over to Fronter in a new browser window, log in and find the calendar.

After that we head over to the university’s timetable portal. Here we need to search for the courses

that we are taking. Finally we head over to the Outlook Web App (OWA) portal to view our Exchange

calendar. We now have four browser windows open as illustrated in Figure 5-23.

Figure 5-23 A full overview of our personal calendars with information from the following calendar systems: Google
Calendar (private), Syllabus (university), Fronter (university) and Microsoft Exchange (university).

We now want to check the student advisors calendar. The student advisor also has an Exchange

calendar, and since we are within the same organization we can add him directly in OWA (bottom

left in Figure 5-23). This will give us the view shown in Figure 5-24. If we knew which courses our

student advisor is teaching, we could add these courses in the university’s timetable portal (top right

in Figure 5-23), but we don’t have that information at hand.

Chapter 5 - Testing

77

Figure 5-24 Two calendars showing in Outlook Web App

The next step is to find a meeting room or a group room. The meeting rooms at the university is

registered in Exchange, so we can search and add them directly in OWA in the same way as we found

the student advisor. The group rooms are in Syllabus, so we must use the university’s timetable

portal to find the calendar of the group room.

When we try to access the room schedule, we get an error message stating that we need to be within

the university’s network to access the room schedule. Since we are not at the university when

planning this meeting, we need to access the university’s VPN portal as an extra step on the way.

After we find the schedule for the room we have a complete overview of all calendars, in five

browser windows, as illustrated in Figure 5-25. The only calendar we are missing is the courses that

the student advisor is teaching, and any private calendars that he might have.

We are now ready to plan a meeting with our student advisor. In this particular example we can

discard the calendars with the fewest events so that the task becomes a little bit easier, but we still

had to go through a lot of steps to find that out.

Chapter 5 - Testing

78

Figure 5-25 A full overview of all the calendars needed to plan a meeting as accurately as possible on the first attempt

Side note! 23. February 2015 the university launched a new function that imports courses from

Syllabus to the student and teacher calendars in Exchange (Orakelet, TimeIT - Undervisningsplan på

telefon og kalender, 2015). This will eliminate the step to use the university’s timetable portal to

check our courses calendar (upper right window in Figure 5-25), and the student advisor’s calendar in

Exchange will contain the courses that the student advisor is teaching. Before the 23. February 2015

we did not know which courses the student advisor is teaching as pointed out earlier. We still need

to use the university’s timetable portal to check the calendars of the rooms that are in Syllabus.

Chapter 5 - Testing

79

5.4.2 Planning a meeting using the Web Service
First, we head over to the Google Calendar and export the private calendars that we have as shown

in Figure 5-26. Then we unzip the downloaded file as shown in Figure 5-27, and upload the iCalendar

files to the Web Service using the Add function in My Calendar in the GUI as shown in Figure 5-28.

Figure 5-26 Using the «Export calendars» function in Google Calendar lets us download a ZIP file with one iCalendar file for
each calendar that we have

Figure 5-27 When we unzip the downloaded file we find four iCalendar files, three of them are calendars and one contains
contact information

Figure 5-28 My Calendar shows a full overview of our personal calendars with information from the following calendar
systems: Google Calendar (private), Syllabus (university), Fronter (university) and Microsoft Exchange (university).

Chapter 5 - Testing

80

Now we have a complete overview of what we have planned in week 13 of 2015. The next thing we

need to do is to add our student advisor and the rooms that we want. We simply use the Add

function to search for the student advisor and the relevant rooms and add them to the calendar as

shown in Figure 5-29. We now have a total of 38 calendar events from 10 calendars from four

different calendar systems, in one view.

We are now ready to plan the meeting. Since we have decided that it is further work to have the

Web Service suggest dates and times where all calendars are free, we have done this manually as

shown in Figure 5-29 and Table 5-1. We still consider this much easier than the alternative described

when planning a meeting the conventional way.

Figure 5-29 When we add our student advisor and the rooms we have a full overview of our personal calendars with
information from the following calendar systems: Google Calendar (private), Syllabus (university), Fronter (university) and
Microsoft Exchange (university), the student advisors calendars from the following calendar systems: Syllabus (university)
and Microsoft Exchange (university), and the room calendars from the following calendar systems: Syllabus (university) and
Microsoft Exchange (university).

Chapter 5 - Testing

81

Figure 5-30 Free periods that are longer than one our between Monday and Thursday are marked manually

Day Time Description

Monday 08:00 to 10:15 No planned events in any of the calendars.

Monday 14:00 to 16:00 No planned events in any of the calendars.

Tuesday 08:00 to 10:00 No planned events in any of the calendars.

Tuesday 12:00 to 13:00 The room 1.005 is free.

Tuesday 15:00 to 16:00 No planned events in any of the calendars.

Wednesday 08:00 to 10:15 No planned events in any of the calendars.

Wednesday 13:30 to 15:00 No planned events in any of the calendars.

Wednesday 13:30 to 16:00 The room 1.005 is free.

Thursday 10:00 to 11:00 The room 3.028 is free. The +X icons indicate that there are
simultaneous events that are not shown in the view since there is
a limitation on only two simultaneous events at the same date
and time. If we click on the +1 on Thursday we get a full overview
of that day as shown in Figure 5-31.

Table 5-1 A detailed list of the free periods with description

Chapter 5 - Testing

82

Figure 5-31 All simultaneous events on Thursday

5.5 Performance
The need to scale this Web Service would be limited since we have designed the solution to handle

problems within a specific organization. In addition to this, it would be natural to limit the number of

calendars viewed at the same time and also the date interval viewed at the same time. It would be

natural to view a calendar for one week or one month, maybe one year. This would mean that the

number of elements retrieved from each connector would be very limited. We have produced some

test results to give a pointer on how the Web Service performs.

The testing is done through the GUI, and the time measured is for the execution of the script on the

Web Service, eliminating the time it takes to load the HTML to the client since this would not apply to

the other interfaces.

We use the My Calendar function and test how long it takes to retrieve a number of calendar

elements from each connector, except the AD connector that does not contain any calendar

information.

Without any calendar elements the My Calendar loads in 3713.46 milliseconds the first time and

1008.28 milliseconds the second time. The first time the page loads, the Web Service authenticates

with Fronter. This authentication is complex and take some time as shown in Figure 2-5. Since the

authentication against Fronter is valid for two hours, each additional request will be faster and

therefore we will use that time as the initial loading time.

Chapter 5 - Testing

83

In Table 5-2 we have listed the result of our testing. We have tested how long it takes to retrieve

approximately 10, 100 and 500 elements from each connector, and how long it takes to retrieve the

same number of elements from each connector at the same time.

As we would expect, the performance vary on which connector is being used. This is a result of

several different things such as the performance of the external system, the amount of data being

transferred over the network and how much processing of the data we need to do on the Web

Service.

The Fronter connector retrieves raw iCalendar data from Fronter. The Web Service only need to

parse this data right into the internal representation without any other processing. This makes the

Fronter connector the fastest when dealing with both a few and a large number of calendar

elements. Since the data structure is raw iCalendar format, there is now unnecessary overhead being

transferred between Fronter and the Web Service. The only optimization to be done here is to fix the

file storage workaround as discussed earlier.

The data transfer and data retrieval is fast in the Syllabus connector, but we need to do extensive

processing on the data being retrieved to calculate the events from the activities. This means that

the more activities we retrieve from Syllabus, the more activities we must calculate the events from.

This makes the Syllabus connector slowest when dealing with a lot of elements. We have optimized

the code from the first draft, but since the bottleneck is on the Web Service more optimization of the

code should be done. The calculation of the events could be done in parallel threads to speed up the

process.

The slowest connector when dealing with few elements is the Exchange connector. One of the

reasons for this is because SOAP messages have a large overhead. As we see the Exchange connector

is the second fastest when dealing with 100 and 500 elements. There is not much to do when it

comes to the overhead of SOAP messages, but optimization on how the requests are made could be

done. We could manage with only one request instead of three if we don’t need the description of

the calendar events. Since the GetUserAvailability operation has a limit on 100 mailboxes, the

reduction of one third of the request becomes significant for each additional 100 mailboxes we want

calendar events from.

Number of elements from Connector (number of calendars) Average loading
time (MS)21 Syllabus Exchange Fronter Total

0 0 0 0 1008.281302

13 (1) 0 0 13 (1) 1089.42349

107 (57) 0 0 107 (57) 2190.917087

505 (175) 0 0 505 (175) 4962.859011

0 13 (1) 0 13 (1) 1328.198409

0 109 (20) 0 109 (20) 1649.468899

0 505 (100) 0 505 (100) 2735.23736

0 0 13 (1) 13 (1) 1039.432645

0 0 105 (1) 105 (1) 1477.718782

0 0 471 (1) 471 (1) 2604.579759

13 (1) 13 (1) 13 (1) 39 (3) 1416.869068

107 (57) 113 (20) 105 (1) 325 (78) 2826.924992

484 (175) 502 (100) 473 (1) 1459 (276) 7719.504499

21 We refresh the page 10 times with CTRL+R to remove cache and use the average time.

Chapter 5 - Testing

84

Table 5-2 Execution time on the Web Service with a different number of elements from different connectors

Figure 5-32 Graph illustrating the average loading time with a different number of elements retrieved from the connectors

In addition to the performance we have measured, the time it takes to transfer the data to an end

user application trough the ICAL or API must be applied. We consider this time to be out of our

control and insignificant for the performance of the Web Service.

When it comes to the user experience we consider one to two seconds loading time to be

acceptable. There are many optimization techniques that could be applied to achieve such a

performance from our Web Service. In the GUI we could implement AJAX requests to load some

elements after the page has loaded. This is a widely used technique when developing web sites.

Applications that uses the API could also only load the calendar elements for one day, one week or

one month first, and then load the rest of the year while the user is browsing the current day, week

or month. When using the ICAL interface the same technique could be done, limit the requested

calendar size by date.

5.6 Summary
In this chapter we demonstrate what the Web Service bring to the table in contrast to using each

individual external system. Although the Web Service in the current version has some limitations,

only viewing the information without the possibility of updating the external systems, we see that it

is a useful planning tool.

We have also seen how the Web Service performs and scale. Most of the performance is dependent

on the external systems, except for Syllabus that requires heavy computations on the Web Service.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 13 13 13 39 105 109 107 325 471 505 505 1459

A
ve

ra
ge

 lo
ad

in
g

ti
m

e
(M

S)

Number of elements

Syllabus Exchange Fronter Combined

Chapter 6 - Evaluation

85

6 Evaluation
In this chapter we evaluate our generic calendar platform in several different ways. From the

technical side to the actual prototype and further extensions.

6.1 Technical
When developing a generic platform, one thing becomes very clear; the programming platform you

choose needs to be very flexible. In this thesis we interact with four different external systems, and

none of the systems offer the same way of communicating with their respective APIs. If they even

have an API. This means that we needed to implement four connectors for communication. It is also

essential that the platform chosen supports the underlying communication protocols that is needed.

In our case HTTP, LDAP and TNS22.

In addition to the support of the actual protocols, it speeds up the development if the platform has

lots of libraries to use when programming. Or, if the libraries are not a part of the core platform, the

community around the platform has developed Open Source projects for everyone to use. The

platform we choose had native support for HTTP, extensions for LDAP and TNS, and Open Source

projects that implemented connectors to communicate with AD, EWS and to successfully

authenticate through OAuth.

With all the technical hurdles in place we were all set to develop the actual software. This meant that

we needed to read much of the technical documentation for each system to understand the request

and result sets. In some cases, as with Syllabus, no documentation where available. Here we needed

to rely entirely on other peoples experience and expertise of the system. This can be both good and

bad. On one hand, we can ask about exactly what we want to do and get the right answer the first

time. But on the other hand, it becomes very difficult to do complex operations if the source of

information becomes unavailable for different reasons. We prefer to have good and detailed written

documentation at hand, or a large community around the systems.

Most of the data structures where different. This meant that we had to create a new internal data

structure and map all of the structures from the external systems into our new structure. Semantics

comes into play here. The attribute Room in one system does not automatically mean the same as

the attribute Room in another system.

6.2 Contribution
When starting this journey, we looked at the problem that occurs when an organization has many

different software’s that contain the same type of information, and we feel that we have solved the

problem to some degree. The platform we have developed works excellent when the main goal is to

get an oversight of several different calendars. If the user wants to do more complex operations, like

booking a meeting room or creating calendar events, he has to log in to the respective system to do

so. The platform could be extended to do more complex operations, but the goal should not be to

implement all of the futures that the origin systems contains.

22 TNS stands for Transparent Network Substrate and forms the basis for Oracle networking products. In our
case, an Oracle database.

Chapter 6 - Evaluation

86

The university has come a long way at the course of this thesis. Although some people at the

university’s IT department knew what we were working on, they continued to further develop their

own solutions. One example is that the course timetable from the university’s timetable portal can

now be integrated with external calendar systems. This is exactly the functionality we were first to

implement with the ICAL interface.

Another similarity is that the user’s and teachers course timetables is exported to Exchange. This is

also somewhat up our ally, but we are combining the calendars in a new system instead of

converting into one system as the university is doing. There are pros and cons on both approaches,

and we believe a combination is the best way.

We did also observe that when we started many meeting rooms was in Syllabus, and the Exchange

did only contain one room list. Now, every meeting room is in Exchange, and there are many room

lists also. Since we combine room lists and hide the location of the rooms, this transfer is not

noticeable for the users of our platform.

We believe that the generic calendar platform has great potential for further development. We also

believe that some of our findings are relevant to the university since they seem to move in the same

direction.

6.3 Outside the organization
When looking outside the organization, we find even more calendar systems. It would be impossible

to make one complete system, but it would be possible to make our platform even more complete

by implementing some state. For example, it could be possible to allow users to store shared

calendars by URL’s from other calendar services. Then users could get information from their Google

Calendar etc. integrated on our platform. This would be better than the other way around, since our

platform depends on external systems that requires authentication on every request.

By extending the database, we could allow users to store searches or combined calendars. Then the

user could create a custom calendar that consists of other calendars as their default calendar. Or

otherwise easy to access, without having to search for the same calendars every time the user access

the system.

6.4 Other projects
A native Android application, or any mobile application for that matter, could use the API that the

platform offers. Then, a user could log in to the Android application and get the same functionality

that the GUI offers. The Android application would then be in charge of handling the user’s

credentials.

When writing a native mobile application it is possible to access things that the web browser cannot

access, like the near field communication (NFC) chip on the device if this exist. The NFC chip could be

used against NFC tags on outside meeting rooms etc. The NFC tags would contain the ID of the room,

and the application can use that ID to get the rooms’ calendar from the platform using the API.

Other protocols for calendar sharing than the ones we have covered is also available. Z-Push is an

open source ActiveSync project (Z-Push Technology, 2015). By implementing Z-Push as an additional

interface of the platform, any calendar could be synchronized to any native mobile phone calendar or

other calendar system that supports the Active Sync protocol.

A Z-Push fork on GitHub called PHP-Push-2 is a modified version of Z-Push (dupondje, 2013). This

library would be a perfect match for the programming language we have chosen to develop the

generic calendar platform in.

Chapter 7 - Conclusion

87

7 Conclusion
In this chapter, we are going to make a conclusion and suggest further work.

7.1 Conclusion
We thought that yet another calendar system would solve an organizations problem with having

many different types of software that contains calendar information. And that this would be a trivial

task. But, as we discovered, not every system wants to share information with other systems. They

simply lack the API to do this. And even if you find a way to communicate with all the systems, the

data structure is most likely not the same. Sometimes, not even close.

It turns out that creating a new system is helpful. The generic calendar platform that we have created

has been used by real people during this thesis, and we have received requests from other

departments of the university asking about the possibilities to expand the system to create new

events, not just view them. With a bit of reverse engineering, almost everything can be done. The

integration with Syllabus and Fronter was not straight forward, but possible.

7.2 Further work
We feel that we have touched most of the areas when making a new calendar platform. But the

components we have created could always be improved. There are four particular things we feel that

should be improved if someone would to take the on the project.

As mentioned earlier, we use HTTP Basic Authentication for anyone that would want to use the API

of the platform. The main weakness of this protocol is that it passes the username and password in

the header on every request, and the credentials are only base64 encoded. This makes SSL a must

have, but in a man-in-the-middle SSL exploit the credentials of the user are left wide open. A better

authentication protocol should be used, preferably with a token management capability to limit

access to secured resources. If we had more time, we would look into OAuth 2.0.

From a user point of view, it would be nice to be able to add and edit events instead of only viewing

them. In our system the user can get a full view of all the calendars from every system, but if the user

wants to book a meeting, or add an event, he still would have to access the specific system. This

would require a substantial amount of work.

The integration of student sets are not complete. All the student sets are groups in the AD in the

same way as the courses, and every student that takes a student set is a member of that group. But

we could not find a way to link the AD group with the student set in Syllabus in the same way that we

did with courses. The IT department at the university is also in doubt that this is possible. There

seems to be missing some information in the AD group to get a good identifier. A solution to this will

be to change the group in AD, or integrate the platform with a system that has more complete

information on which student set a student is taking. As mentioned earlier, the university has

systems with this information.

Another thing that we did not get the time to implement is a reverse calendar. In our system, you can

easily see if people are busy or free, but it would be nice to have the system suggest dates and times

when all the calendars you add are available to have the same meeting. For example, we want a 2

hour meeting in week 7, in the building X with a number of people. System, please find a date and

time.

And of course, one could always integrate even more systems by developing more connectors.

Bibliography

89

Bibliography
Amazon. (2006, March 1). Signing and Authenticating REST Requests. Retrieved from AWS

Documentation:

http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

Andreassen, R. (2014, August 26). Files Changed. Retrieved from GitHub:

https://github.com/jamesiarmes/php-ews/pull/208/files

Bailey, J. (2013, September 11). O365: Exchange and AD - How msExchRecipientDisplayType and

msExchangeRecipientTypeDetails Relate to Your On-Premises. Retrieved from TechNet Blogs:

http://blogs.technet.com/b/johnbai/archive/2013/09/11/o365-

msexchangerecipienttypedetails.aspx

Boeyen, S., Howes, T., & Richard, P. (1999, April). Internet X.509 Public Key Infrastructure Operational

Protocols - LDAPv2. Retrieved from Internet Engineering Task Force:

http://tools.ietf.org/html/rfc2559

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., & Orchard, D. (2004,

February 11). Web Services Architecture. Retrieved from W3C:

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest

Caffrey, M. (2011, November). Modeling and Accessing Relational Data. Retrieved from Oracle:

http://www.oracle.com/technetwork/issue-archive/2011/11-nov/o61sql-512018.html

Crupi, J., & Warner, C. (2009, January 11). SOA World Magazine. Retrieved from Enterprise Mashups:

The New Face of Your SOA: http://soa.sys-con.com/node/719917

Cugley, D. (2007, August 8). OpenID versus Single-Sign-On Server. Retrieved from Damian Cugley’s

Alleged Articles: http://alleged.org.uk/pdc/2007/08/13.html

Daboo, C., & Desruisseaux, B. (2012, June). Scheduling Extensions to CalDAV. Retrieved from Internet

Engineering Task Force: http://tools.ietf.org/html/rfc6638

Daboo, C., Desruisseaux, B., & Dusseault, L. (2007, March). Calendaring Extensions to WebDAV

(CalDAV). Retrieved from Internet Engineering Task Force: http://tools.ietf.org/html/rfc4791

Davis, A. M. (1992). Operational Prototyping: A New Development Approach. IEEE, 70-78.

Desruisseaux, B. (2009, September). Internet Calendaring and Scheduling Core Object Specification

(iCalendar). Retrieved from The Internet Engineering Task Force:

https://tools.ietf.org/html/rfc5545

dupondje. (2013, October 5). PHP-Push-2. Retrieved from GitHub:

https://github.com/dupondje/PHP-Push-2

European Commission. (2014, June 27). Cookies. Retrieved from European Commission, Information

Providers Guide: http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures.

Irvine, California, United States of America: University of California.

Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern Web architecture. ACM

Transactions on Internet Technology (TOIT), 115-150.

Bibliography

90

Fielding, R., & Reschke, J. (2014, June). Hypertext Transfer Protocol (HTTP/1.1): Semantics and

Content. Retrieved from Internet Engineering Task Force (IETF):

https://tools.ietf.org/html/rfc7231

Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., & Stewart, L. (1999,

June). HTTP Authentication: Basic and Digest Access Authentication. Retrieved from Internet

Engineering Task Force: http://tools.ietf.org/html/rfc2617

Fronter. (2014, January). Oauth In Fronter. Retrieved from Fronter Wiki Oauth:

http://wiki.fronter.net/wiki/index.php/Oauth_in_fronter

Fronter. (2014, January). OpenAPIv1. Retrieved from Fronter Wiki OpenAPIv1:

http://wiki.fronter.net/wiki/index.php/OpenAPIv1

Fronter. (2015, January). Fronter is a virtual learning environment. Retrieved from Fronter:

http://com.fronter.info/virtual-learning-environment-lms/

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F., Karmarkar, A., & Lafon, Y.

(2007, April 27). SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). Retrieved

from W3C: http://www.w3.org/TR/soap12/

Hammer-Lahav, E. E. (2010, April). The OAuth 1.0 Protocol. Retrieved from Internet Engineering Task

Force (IETF): http://tools.ietf.org/html/rfc5849

Hardt, D. (2012, October). The OAuth 2.0 Authorization Framework. Retrieved from Internet

Engineering Task Force (IETF): http://tools.ietf.org/html/rfc6749

Hodges, J., & Morgan, R. (2002, September). Lightweight Directory Access Protocol (v3): Technical

Specification. Retrieved from Internet Engineering Task Force:

http://tools.ietf.org/html/rfc3377

Huntington, G. (2015, January). SSO and LDAP Authentication. Retrieved from Authentication World:

http://www.authenticationworld.com/Single-Sign-On-Authentication/SSOandLDAP.html

IANA. (2012, September 23). Resource Identifier (RI) Scheme name: webcal . Retrieved from Internet

Assigned Numbers Authority: http://www.iana.org/assignments/uri-schemes/prov/webcal

IBM Corporation, & Microsoft Corporation. (2002, April 7). Security in a Web Services World: A

Proposed Architecture and Roadmap. Retrieved from Microsoft Developer Network:

https://msdn.microsoft.com/en-us/library/ms977312.aspx

Internet Engineering Task Force. (2015, May). The Internet Engineering Task Force (IETF®). Retrieved

from Internet Engineering Task Force: https://www.ietf.org/

Krawczyk, H., Bellare, M., & Canetti, R. (1997, February). HMAC: Keyed-Hashing for Message

Authentication. Retrieved from Internet Engineering Task Force:

http://www.ietf.org/rfc/rfc2104.txt

Mainer, M. (2011, July 20). Client access server affinity and network load balancing considerations for

programmatic access to Exchange Online. Retrieved from Exchange dev blog:

http://blogs.msdn.com/b/exchangedev/archive/2011/07/20/client-access-server-affinity-

and-network-load-balancing-considerations-for-programmatic-access-to-exchange-

online.aspx

Bibliography

91

Microsoft. (2007, March 2). Ambiguous Name Resolution for LDAP in Windows 2000. Retrieved from

Microsoft: http://support.microsoft.com/en-us/kb/243299

Microsoft. (2009, March 16). BusyType. Retrieved from Office Dev Center:

http://msdn.microsoft.com/en-us/library/office/aa579531%28v=exchg.140%29.aspx

Microsoft. (2010, September 21). Exchange Web Services (EWS) in Exchange 2010. Retrieved from

Office Dev Center: http://msdn.microsoft.com/en-

us/library/office/dd877045%28v=exchg.140%29.aspx

Microsoft. (2011, September 26). GetRoomLists Operation. Retrieved from Office Dev Center:

http://msdn.microsoft.com/en-us/library/office/dd899416%28v=exchg.140%29.aspx

Microsoft. (2011, September 26). GetRooms Operation. Retrieved from Office Dev Center:

http://msdn.microsoft.com/en-us/library/office/dd899415%28v=exchg.140%29.aspx

Microsoft. (2011, September 14). GetUserAvailability Operation. Retrieved from Office Dev Center:

http://msdn.microsoft.com/en-us/library/office/aa564001%28v=exchg.140%29.aspx

Microsoft. (2012, November 28). GetItem operation. Retrieved from Office Dev Center:

http://msdn.microsoft.com/en-us/library/office/aa565934%28v=exchg.150%29.aspx

Microsoft. (2013, Mai 17). Access to Active Directory. Retrieved from Microsoft Exchange:

https://technet.microsoft.com/en-us/library/aa998561%28v=exchg.150%29.aspx

Microsoft. (2013, July 1). GetItem operation (calendar item). Retrieved from Office Dev Center:

http://msdn.microsoft.com/en-us/library/office/aa564509%28v=exchg.150%29.aspx

Microsoft. (2014, April 3). ConvertId operation. Retrieved from Office Dev Center:

http://msdn.microsoft.com/en-us/library/office/bb799665%28v=exchg.150%29.aspx

Microsoft. (2014, June 16). EWS operations in Exchange. Retrieved from Office Dev Center:

http://msdn.microsoft.com/en-us/library/office/bb409286%28v=exchg.150%29.aspx

Microsoft. (2014, June 19). How to query Active Directory by using a bitwise filter. Retrieved from

Microsoft Support: http://support.microsoft.com/kb/269181

Microsoft. (2014, January). IdFormat enumeration. Retrieved from Microsoft Developer Network:

http://msdn.microsoft.com/en-

us/library/microsoft.exchange.webservices.data.idformat%28v=exchg.80%29.aspx

Microsoft. (2014, October). Object Naming. Retrieved from Microsoft TechNet:

http://technet.microsoft.com/en-us/library/cc977992.aspx

Microsoft. (2014, October). So What Is Active Directory? Retrieved from Windows Dev Center -

Desktop: http://msdn.microsoft.com/en-

us/library/windows/desktop/aa746492%28v=vs.85%29.aspx

Microsoft. (2015, January). 2.1.3.1.1.20.31 Property: X-MICROSOFT-CDO-BUSYSTATUS. Retrieved

from Microsoft Developer Network: http://msdn.microsoft.com/en-

us/library/ee219533%28v=exchg.80%29.aspx

Microsoft. (2015, January). All Attributes. Retrieved from Microsoft Developer Network:

https://msdn.microsoft.com/en-us/library/ms675090%28v=vs.85%29.aspx

Bibliography

92

Microsoft. (2015, January). Exchange Server 2013. Retrieved from Microsoft Office:

https://products.office.com/en-us/exchange/microsoft-exchange-server-2013

Microsoft. (2015, January). Service-Oriented Architecture (SOA). Retrieved from Microsoft Developer

Network: https://msdn.microsoft.com/en-us/library/bb977471.aspx

Microsoft Corporation. (2001, November). Creating More Efficient Microsoft Active Directory-Enabled

Applications. Retrieved from Microsoft Developer Network: http://msdn.microsoft.com/en-

us/library/ms808539.aspx#efficientadapps_topic01e

Mueller, R. (2014, January 20). Active Directory: Ambiguous Name Resolution. Retrieved from

Microsoft TechNet: http://social.technet.microsoft.com/wiki/contents/articles/22653.active-

directory-ambiguous-name-resolution.aspx

Mueller, R. (2014, July 10). Active Directory: LDAP Syntax Filters. Retrieved from Microsoft Tech Net:

http://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-

syntax-filters.aspx

Nielsen, J. (1993). Usability Engineering. Boston: Academic Press.

Oracle. (2015, January). Introduction to the Oracle Database. Retrieved from Oracle:

http://docs.oracle.com/cd/B19306_01/server.102/b14220/intro.htm

Orakelet. (2015, January). Støttesystem for oppretting av IT-brukerkonto. Retrieved from UiT:

http://uit.no/om/orakelet/frag?p_document_id=318999

Orakelet. (2015, February 23). TimeIT - Undervisningsplan på telefon og kalender. Retrieved from UiT

Norges Arktiske Universitet: http://uit.no/om/orakelet/frag?p_document_id=406126

Samferdselsdepartementet. (2013, June 14). Lov om elektronisk kommunikasjon (ekomloven).

Retrieved from Lovdata: http://lovdata.no/dokument/NL/lov/2003-07-04-

83/KAPITTEL_2#%C2%A72-7b

Scientia. (2003, October 21). All SDB Schema Tables. Retrieved from SDB Technical Handbook:

SDBSchema.html

Scientia. (2014, October). Timetable Scheduling. Retrieved from Scientia:

http://www.scientia.com/en-GB/Solutions/Timetable-Scheduling

SquirrelMail. (2014, January). This code provides various string manipulation functions that are used

by the rest of the SquirrelMail code. Retrieved from SquirrelMail:

http://squirrelmail.org/docs/devel-code/squirrelmail/_functions---

strings.php.html#functionOneTimePadCreate

The PHP Group. (2014, January). LDAP Functions (ldap_connect). Retrieved from PHP:

http://php.net/manual/en/function.ldap-connect.php

The PHP Group. (2014, January). LDAP Functions (ldap_start_tls). Retrieved from PHP:

http://php.net/manual/en/function.ldap-start-tls.php

The PHP Group. (2014, January). similar_text. Retrieved from PHP:

http://php.net/manual/en/function.similar-text.php

The PHP Group. (2015, January). Client URL Library. Retrieved from PHP:

http://php.net/manual/en/book.curl.php

Bibliography

93

W3C. (2014, January). W3C Mission. Retrieved from W3C:

http://www.w3.org/Consortium/mission#openstand

Zeilenga, E. K. (2006, June). Lightweight Directory Access Protocol (LDAP): Technical Specification

Road Map. Retrieved from The Internet Engineering Task Force (IETF):

http://tools.ietf.org/html/rfc4510

Zeilenga, K. (2003, March). Lightweight Directory Access Protocol version 2 (LDAPv2) to Historic

Status. Retrieved from The Internet Engineering Task Force (IETF):

http://tools.ietf.org/html/rfc3494

Z-Push Technology. (2015, May). Retrieved from Z-Push: http://z-push.org/

Bibliography

94

Appendix A Fronter login flow

1

Appendix A Fronter login flow

Step Method HTTP
status
code

Type URL

1 GET 302 Redirect to:
https://fronte...main.phtml

https://fronter.com/uit/

Function in code
This is the fronterLoginStep01() function in the uitFronter class.

2 GET 200 text/html https://fronte...main.phtml

Description
This is a HTML page with a FORM. The default behavior of this page is that a JavaScript function in
the HTML body onload method submits the form when the page is loaded.

All the input values are server generated and do not need any user interference.

Form information
Action: https://fronter.com/shibboleth/feide/saml//sp20/idpdisco.php
Method: GET
Input name (value):
entityID (https://fronter.com/shibboleth/feide)
return (https://fronter...main.phtml)
returnIDParam (entityID)
idp_https://idp.feide.no (Select)

Function in code
This is the fronterLoginStep02() function in the uitFronter class.

3 GET 302 Redirect to:
https://fronte...feide.no

https://fronte...ntinue

4 GET 302 Redirect to:
https://idp.fei...main.phtml

https://fronte...feide.no

5 GET 302 Redirect to:
https://idp.fei...main.phtml

https://idp.fei...main.phtml

6 GET 200 text/html https://idp.fei...main.phtml

Description
This is a HTML page with a FORM. The default behavior of this page is to let the user choose
affiliation and submit the form.

Most of the input values are server generated. The user only needs to select the right organization
(org).

Note that the Action of this form is “?”. This means that all the parameters in the URL that were
used when retrieving the page will be gone from the URL when the user submits the form.

Form information
Action: ?
Method: GET
Input name (value):
org (uit.no)
asLen (239)

https://fronter.com/shibboleth/feide/saml/sp20/idpdisco.php?entityID=https%3A%2F%2Ffronter.com%2Fshibboleth%2Ffeide&return=https%3A%2F%2Ffronter.com%2Fshibboleth%2Ffeide%2Fsaml%2F%2Fsp20%2FinitSSO.php%3FRelayState%3Dhttps%3A%2F%2Ffronter.com%2Fuit%2Fmain.phtml
https://fronter.com/uit/
https://fronter.com/shibboleth/feide/saml/sp20/idpdisco.php?entityID=https%3A%2F%2Ffronter.com%2Fshibboleth%2Ffeide&return=https%3A%2F%2Ffronter.com%2Fshibboleth%2Ffeide%2Fsaml%2F%2Fsp20%2FinitSSO.php%3FRelayState%3Dhttps%3A%2F%2Ffronter.com%2Fuit%2Fmain.phtml
https://fronter.com/shibboleth/feide/saml/sp20/idpdisco.php
https://fronter.com/shibboleth/feide
https://fronter.com/shibboleth/feide/saml/sp20/initSSO.php?RelayState=https://fronter.com/uit/main.phtml
https://fronter.com/shibboleth/feide/saml/sp20/initSSO.php?RelayState=https://fronter.com/uit/main.phtml&entityID=https%3A%2F%2Fidp.feide.no
https://fronter.com/shibboleth/feide/saml/sp20/idpdisco.php?entityID=https%3A%2F%2Ffronter.com%2Fshibboleth%2Ffeide&return=https%3A%2F%2Ffronter.com%2Fshibboleth%2Ffeide%2Fsaml%2F%2Fsp20%2FinitSSO.php%3FRelayState%3Dhttps%3A%2F%2Ffronter.com%2Fuit%2Fmain.phtml&returnIDParam=entityID&idp_https%3A%2F%2Fidp.feide.no=Continue
https://idp.feide.no/simplesaml/saml2/idp/SSOService.php?SAMLRequest=fVLNb9sgFD%2Fbf4Xle0xMsnygJFLaqFqkbrXqtIddJoKfayQMlIe77b8vdmp1OywXDo%2F3%2B4QN8lZZtu98ox%2FhtQP0SRz9bpVGNlxt085pZjhKZJq3gMwLVu6%2F3TOaTZl1xhthVJp8Qq4jOCI4L41O4%2Bh42KY%2F67WYz5c0n1X0vIAlLL7MVxWtBa94vVqJ2WJdzVaiputlmjyDwwDdpoGpxyN2cNToufZhNs3nkymd5PSUzxjNWb74kSZ3xgkY4m3TmiuENDliEVzINxgncXQIuaXmfiBvvLfICJGVzWqQFWTaEJStVdDnI%2F1B%2B1tSlg8luDcpILONDTzFRx83UldSv1yv4nxZQvb1dComxUN5Cgz7sZ9bo7FrwX0IPD3efzqrndEeXCZMS7CR57NR4BsymCUXj5ZOyf%2B4BrO7ONr0q2xo0SW73mrLBbAxM8PLOrKgk42aaDfkL9xIY9n3EPB4KIyS4k8cRaH4lvvrDfQTWU3qYZV5xzVK0D7UEO2VMr9uHXAfnsm7LrwbCVrxRfzfH7uL3wE%3D&RelayState=https%3A%2F%2Ffronter.com%2Fuit%2Fmain.phtml
https://fronter.com/shibboleth/feide/saml/sp20/initSSO.php?RelayState=https://fronter.com/uit/main.phtml&entityID=https%3A%2F%2Fidp.feide.no
https://idp.feide.no/simplesaml/module.php/feide/login.php?asLen=239&AuthState=_354e3b729279486a6a37f763ca323391a87187553f%3Ahttps%3A%2F%2Fidp.feide.no%2Fsimplesaml%2Fsaml2%2Fidp%2FSSOService.php%3Fspentityid%3Durn%253Amace%253Afeide.no%253Aservices%253Acom.fronter.sp%26cookieTime%3D1392211276%26RelayState%3Dhttps%253A%252F%252Ffronter.com%252Fuit%252Fmain.phtml
https://idp.feide.no/simplesaml/saml2/idp/SSOService.php?SAMLRequest=fVLNb9sgFD%2Fbf4Xle0xMsnygJFLaqFqkbrXqtIddJoKfayQMlIe77b8vdmp1OywXDo%2F3%2B4QN8lZZtu98ox%2FhtQP0SRz9bpVGNlxt085pZjhKZJq3gMwLVu6%2F3TOaTZl1xhthVJp8Qq4jOCI4L41O4%2Bh42KY%2F67WYz5c0n1X0vIAlLL7MVxWtBa94vVqJ2WJdzVaiputlmjyDwwDdpoGpxyN2cNToufZhNs3nkymd5PSUzxjNWb74kSZ3xgkY4m3TmiuENDliEVzINxgncXQIuaXmfiBvvLfICJGVzWqQFWTaEJStVdDnI%2F1B%2B1tSlg8luDcpILONDTzFRx83UldSv1yv4nxZQvb1dComxUN5Cgz7sZ9bo7FrwX0IPD3efzqrndEeXCZMS7CR57NR4BsymCUXj5ZOyf%2B4BrO7ONr0q2xo0SW73mrLBbAxM8PLOrKgk42aaDfkL9xIY9n3EPB4KIyS4k8cRaH4lvvrDfQTWU3qYZV5xzVK0D7UEO2VMr9uHXAfnsm7LrwbCVrxRfzfH7uL3wE%3D&RelayState=https%3A%2F%2Ffronter.com%2Fuit%2Fmain.phtml
https://idp.feide.no/simplesaml/module.php/feide/login.php?asLen=239&AuthState=_354e3b729279486a6a37f763ca323391a87187553f%3Ahttps%3A%2F%2Fidp.feide.no%2Fsimplesaml%2Fsaml2%2Fidp%2FSSOService.php%3Fspentityid%3Durn%253Amace%253Afeide.no%253Aservices%253Acom.fronter.sp%26cookieTime%3D1392211276%26RelayState%3Dhttps%253A%252F%252Ffronter.com%252Fuit%252Fmain.phtml

Appendix A Fronter login flow

2

authState (_354e3b729279486a6a37f763ca323391a87187553f:https://idp.feide....)

Function in code
This is the fronterLoginStep03() function in the uitFronter class.

7 GET 200 text/html https://idp.fei...

Description
This is a HTML page with a FORM. The default behavior of this page is to let the user enter
username and password and submit the form.

Most of the input values are server generated. The user only needs to enter username and
password.

Form information
Action: (?asLen=239&AuthState...)
Method: POST
Input name (value):
feidename (<fill with username>)
password (<fill with password>)
asLen (239)
authState (_354e3b729279486a6a37f763ca323391a87187553f:https://idp.feide.no...)
org (uit.no)
inside_iframe (0)

Function in code
This is the fronterLoginStep04() function in the uitFronter class.

8 POST 200 Text/html https://idp.fei...main.phtml

Description
This is a HTML page with a FORM. The default behavior of this page is that a JavaScript function in
the HTML body onload method submits the form when the page is loaded.

All the input values are server generated and do not need any user interference.

Form information
Action: https://fronter.com/shibboleth/feide/saml/sp20/AssertionConsumerService.php
Method: POST
Input name (value):
SAMLResponse (PHNhbWxwOlJlc3… wOlJlc3BvbnNlPg==)
RelayState (https://fronter.com/uit/main.phtml)

Function in code
This is the fronterLoginStep05() function in the uitFronter class.

9 POST 302 Redirect to:
https://fronter...main.phtml

https://fronter...ice.php

10 GET 200 text/html https://fronter...main.phtml

Description
When we get this far we are authenticated (logged in to Fronter). This is a page that will redirect to
https://fronter.com/uit/main.phtml, but we don’t need to go there.

https://idp.feide.no/simplesaml/saml2/idp/SSOService.php?spentityid=urn%3Amace%3Afeide.no%3Aservices%3Acom.fronter.sp&cookieTime=1392211276&RelayState=https%3A%2F%2Ffronter.com%2Fuit%2Fmain.phtml
https://idp.feide.no/simplesaml/module.php/feide/login.php?org=uit.no&asLen=239&AuthState=_354e3b729279486a6a37f763ca323391a87187553f%3Ahttps%3A%2F%2Fidp.feide.no%2Fsimplesaml%2Fsaml2%2Fidp%2FSSOService.php%3Fspentityid%3Durn%253Amace%253Afeide.no%253Aservices%253Acom.fronter.sp%26cookieTime%3D1392211276%26RelayState%3Dhttps%253A%252F%252Ffronter.com%252Fuit%252Fmain.phtml&submit=Continue+%C2%BB
file:///C:/Users/ruben/Desktop/
https://idp.feide.no/simplesaml/saml2/idp/SSOService.php?spentityid=urn%3Amace%3Afeide.no%3Aservices%3Acom.fronter.sp&cookieTime=1392211276&RelayState=https%3A%2F%2Ffronter.com%2Fuit%2Fmain.phtml
https://idp.feide.no/simplesaml/module.php/feide/login.php?asLen=239&AuthState=_354e3b729279486a6a37f763ca323391a87187553f%3Ahttps%3A%2F%2Fidp.feide.no%2Fsimplesaml%2Fsaml2%2Fidp%2FSSOService.php%3Fspentityid%3Durn%253Amace%253Afeide.no%253Aservices%253Acom.fronter.sp%26cookieTime%3D1392211276%26RelayState%3Dhttps%253A%252F%252Ffronter.com%252Fuit%252Fmain.phtml
https://fronter.com/shibboleth/feide/saml/sp20/AssertionConsumerService.php
https://fronter.com/uit/main.phtml
https://fronter.com/uit/index.phtml?ssokey=adead2819b97fb944e75dd096abade56&mainurl=https%3A%2F%2Ffronter.com%2Fuit%2Fmain.phtml
https://fronter.com/shibboleth/feide/saml/sp20/AssertionConsumerService.php
https://fronter.com/uit/index.phtml?ssokey=adead2819b97fb944e75dd096abade56&mainurl=https%3A%2F%2Ffronter.com%2Fuit%2Fmain.phtml
https://fronter.com/uit/main.phtml

Appendix B GUI Cookies notice

1

Appendix B GUI Cookies notice

IMPORTANT NOTICE: PLEASE READ CAREFULLY BEFORE USING THIS WEBSITE: If you log in to this site

you agree to the placement of cookies on your computer in accordance with the terms of this policy.

If you do not wish to accept cookies from this site please refrain from using this site.

1. What are Cookies?

A cookie is a text-only string of information that a website transfers to the cookie file of the browser

on your computer's hard disk so that the website can recognize you when you revisit and remember

certain information about you. This can include which pages you have visited, choices you have made

from menus, any specific information you have entered into forms and the time and date of your

visit.

2. Types of Cookies

There are two main types of cookies:

Session cookies: these are temporary cookies that expire at the end of a browser session; that is,

when you leave the site. Session cookies allow the website to recognize you as you navigate between

pages during a single browser session and allow you to use the website most efficiently. For example,

session cookies enable a website to remember that a user has placed items in an online shopping

basket.

Persistent cookies: in contrast to session cookies, persistent cookies are stored on your equipment

between browsing sessions until expiry or deletion. They therefore enable the website to "recognize"

you on your return, remember your preferences, and tailor services to you.

In addition to session cookies and persistent cookies, there may be other cookies which are set by

the website which you have chosen to visit, such as this website, in order to provide us or third

parties with information.

3. Our use of Cookies

We currently use, and may use in the future, the following types of cookies on this website.

We use session cookies to help us maintain security and verify your details whilst you use the

website as you navigate from page to page, which enables you to avoid having to re-enter your

details each time you enter a new page.

We are not using any persistent cookies.

We are not using any third party cookies.

You can read detailed information about the cookies we use in the table below.

Cookie Name Details More Information

PHPSESSID This cookie contains the ID of
your session on the web
server. This is a way to
preserve certain data across
subsequent requests to our
site.

Appendix B GUI Cookies notice

2

username Your username encrypted with
256-bit AES. The cookie expire
after 12 hours or when you log
out.

Our site relies on information
from third party services such
as Microsoft Active Directory,
Microsoft Exchange, Syllabus
and Fronter. Some of these
services requires
authentication on every
request. We encrypt your
credentials and store them in
cookies so you don't have to
enter them on every page.

password Your password encrypted with
256-bit AES. The cookie expire
after 12 hours or when you log
out.

4. Refusing Cookies on this Site

Most browsers are initially set to accept cookies. However, you have the ability to disable cookies if

you wish, generally through changing your internet software browsing settings. It may also be

possible to configure your browser settings to enable acceptance of specific cookies or to notify you

each time a new cookie is about to be stored on your computer enabling you to decide whether to

accept or reject the cookie. To manage your use of cookies there are various resources available to

you, for example the “Help” section on your browser may assist you. You can also disable or delete

the stored data used by technology similar to cookies, such as Local Shared Objects or Flash cookies,

by managing your browser’s “add-on settings” or visiting the website of its manufacturer. As our

cookies are required for the website to work properly we recommend that you leave cookies

enabled. Otherwise, if cookies are disabled, it will be prevented from using this site altogether.

Appendix C REST API v1 documentation

1

Appendix C REST API v1 documentation

Combine

Resource Description

GET api/v1/combine/calendar

Get calendar items from all specified calendars. The

calendars can be from any user, room, course or student set.

User

Resource Description

POST api/v1/user/auth

Authenticates a user's credentials against Active Directory at

the university.

GET api/v1/user/search Search for a specific user.

GET api/v1/user/info/:id Get information on a specific user.

GET api/v1/user/course/:semester/:id Get all the courses a specific user is taking or teaching.

GET api/v1/user/calendar/:id Get calendar items from a specific user's calendar.

Room list

Resource Description

GET api/v1/roomlist/all Get a list of all room list's available.

GET api/v1/roomlist/search Search for a specific room list.

GET api/v1/roomlist/room/:type/:id Get a list of all rooms in a given room list.

Room

Resource Description

GET api/v1/room/all Get a list of all rooms available.

GET api/v1/room/search Search for a specific room.

GET api/v1/room/calendar/:type/:id Get calendar items from a specific room resource.

Course

Resource Description

GET api/v1/course/search Search for a specific course.

GET api/v1/course/calendar/:id Get calendar items from a specific course.

https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=combine&verb=calendar
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=user&verb=auth
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=user&verb=search
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=user&verb=info
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=user&verb=course
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=user&verb=calendar
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=roomlist&verb=all
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=roomlist&verb=search
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=roomlist&verb=room
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=room&verb=all
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=room&verb=search
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=room&verb=calendar
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=course&verb=search
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=course&verb=calendar

Appendix C REST API v1 documentation

2

Student set

Resource Description

GET api/v1/studentset/search Search for a specific student set.

GET api/v1/studentset/calendar/:id Get calendar items from a specific student set.

https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=studentset&verb=search
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=studentset&verb=calendar

Appendix C REST API v1 documentation

3

GET api/v1/combine/calendar

Returns calendar items from all specified calendars. The calendars can be from any user, room,
course or student set.

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/combine/calendar

Parameters

Parameter Description

users

optinal

The IDs of the users that you want calendar items for separated by semicolon.

Example: ath025@post.uit.no

Example: ath025@post.uit.no;ran033@post.uit.no

Refer to the GET api/v1/user/calendar documentation for more info.

rooms

optinal

The IDs and types of the room that you want calendar items for.

The ID and type are separated with colon, and the IDs and types are separated by

semicolon.

Example: MHU9.115:2

Example: MHU9.115:2;MH.U9.123.Moterom@asp.uit.no:1

Refer to the GET api/v1/room/calendar documentation for more info.

courses

optinal

The IDs of the courses that you want calendar items for separated by semicolon.

Example: INF-3320-1

Example: INF-3320-1;INF-1101-2

Refer to the GET api/v1/course/calendar documentation for more info.

https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=user&verb=calendar
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=room&verb=calendar
https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=course&verb=calendar

Appendix C REST API v1 documentation

4

studentsets

optinal

The IDs of the student sets that you want calendar items for separated by

semicolon.

Example: IMAT-FYMA13-ANB1-2

Example: IMAT-FYMA13-ANB1-2;B-FYSIOTER-06-ANB1-1

Refer to the GET api/v1/studentset/calendar documentation for more info.

mode

optional

The calendar has four modes that specify the date range of calendar items to be

returned.

The mode parameter must be one of the following:

day - calendar items for the date specified

week - calendar items for the whole week. The "date" parameter can be any date

in the week

month - calendar items for the whole month. The "date" parameter can be any

date in the month

interval - calendar items for a custom date interval

Default value: "week"

Example: week

date

optional

The date to use with the mode parameter. The date format is YYYYMMDD

Default value: The current date

Example: 20140115

todate

optional

The date to use with the "interval" mode parameter. The date format is

YYYYMMDD

"todate" must be in the same year as "date"

Example: 20140120

https://studentlink.ifi.uit.no/index.php?function=apiDocs&v=1&endpoint=studentset&verb=calendar

Appendix C REST API v1 documentation

5

POST api/v1/user/auth

Authenticates a user’s credentials against Active Directory at UiT. Returns true or false.

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods POST

Resource URL

https://studentlink.ifi.uit.no/api/v1/user/auth

Parameters

Parameter Description

user

required

The username for the user that’s going to be authenticated. Use only the

username, not the e-mail address.

Example: ran033

pass

required The password for the user that’s going to be authenticated.

Appendix C REST API v1 documentation

6

GET api/v1/user/search

Search for a user. Returns a list of users that matches the search string.

The Type returned can be one of the following:
The Type variable is unused

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/user/search

Parameters

Parameter Description

query

required

The name of the user that you are searching for. It can be the whole name or a

partial string. The search is not case sensitive.

Example: thorsen

Appendix C REST API v1 documentation

7

GET api/v1/user/info/:id

Returns information on a specific user.

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/user/info/:id

Parameters

Parameter Description

id

optional

 The ID of the user that you want information about.

If this parameter is not set, info of the user that is authenticating are returned.

Example: ath025@post.uit.no

Appendix C REST API v1 documentation

8

GET api/v1/user/course/:semester/:id

Returns all the courses a specific user is taking or teaching. This information is current and cannot be
viewed back or forth in time.

If the user is a teacher, the courses the teacher is responsible for is returned. This information can
change on a yearly basis.

The Type returned can be one of the following:
1 = The user is taking the course as a student
2 = The user is teaching the course

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/user/course/:semester/:id

Parameters

Parameter Description

semester

required

Which semester.

Valid semesters are:

1 = Fall semester

2 = Spring semester

Example: 1

id

optional

The ID of the user that you want information about.

If this parameter is not set, info of the user that is authenticating are returned.

Example: ath025@post.uit.no

year

optional

Four digit year. If no year is present, the current year is used.

This parameter has only effect if the user is a teacher.

Valid years are between 2014 and 2016

Example: 2013

Appendix C REST API v1 documentation

9

GET api/v1/user/calendar/:id

Returns calendar items from a specific user’s calendar.

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/user/calendar/:id

Parameters

Parameter Description

id

optinal

The ID of the user that you want calendar items for.

If this parameter is not set, calendar items for the user that is authenticating are

returned.

Example: ath025@post.uit.no

mode

optional

The calendar has four modes that specify the date range of calendar items to be

returned.

The mode parameter must be one of the following:

day - calendar items for the date specified

week - calendar items for the whole week. The "date" parameter can be any date

in the week

month - calendar items for the whole month. The "date" parameter can be any

date in the month

interval - calendar items for a custom date interval

Default value: "week"

Example:: week

date

optional

The date to use with the mode parameter. The date format is YYYYMMDD

Default value: The current date

Example: 20140115

Appendix C REST API v1 documentation

10

Parameter Description

todate

optional

The date to use with the "interval" mode parameter. The date format is

YYYYMMDD

"todate" must be in the same year as "date"

Example: 20140120

Appendix C REST API v1 documentation

11

GET api/v1/roomlist/all

Returns a list of all room lists available.

The web service combines room lists from UiT Exchange and UiT Syllabus database. Valid username
and password is required to access the Exchange server.

The Type returned can be one of the following:
1 = Room list from Exchange
2 = Room list from Syllabus
3 = Web Service room list

Note! The Web Service Type is a combination of two or more room lists of the Type Exchange or
Syllabus combined by the Web Service if the room list names have a similarity of more than 95%
according to the PHP function similar text.

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/roomlist/all

Parameters

Parameter Description

year

optional

Four digit year.

The room lists in the Syllabus database can change on a yearly basis.

Valid years are between 2014 and 2016

Default value: The current year.

Example: 2014

http://www.php.net/manual/en/function.similar-text.php

Appendix C REST API v1 documentation

12

GET api/v1/roomlist/search

Search for a specific room list. Returns a list of room list's that matches the search string.

The Type returned can be one of the following:
1 = Room list from Exchange
2 = Room list from Syllabus
3 = Web Service room list

Note! The Web Service Type is a combination of two or more room lists of the Type Exchange or
Syllabus combined by the Web Service if the room list names have a similarity of more than 95%
according to the PHP function similar text.

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/roomlist/search

Parameters

Parameter Description

query

required

The name of the room list that you are searching for. It can be the whole name or

a partial string. The search is not case sensitive.

Example: adm

year

optional

Four digit year.

The room lists in the Syllabus database can change on a yearly basis.

Valid years are between 2014 and 2016

Default value: The current year

Example: 2014

http://www.php.net/manual/en/function.similar-text.php

Appendix C REST API v1 documentation

13

GET api/v1/roomlist/room/:type/:id

Returns a list of all the rooms in a given room list.

The Type returned can be one of the following:
1 = Room from Exchange
2 = Room from Syllabus

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/roomlist/room/:type/:id

Parameters

Parameter Description

type

required

The Type of the room list

The Type can be any of the following:

1 = Exchange room list

2 = Syllabus room list

3 = Web Service room list.

Note! The Web Service Type is a combination of two or more room lists of the

Type Exchange or Syllabus combined by the Web Service if the room list names

have a similarity of more than 95% according to the PHP function similar text.

With the Web Service Type, the ID parameter will be a combination of several

IDs and Types, with the format: <ID>:<Type>;<ID>:<Type>

Example: 3

id

required

The ID of the room list

Example: KRV.33:2;MV.110:2;#SPLUSA6F58C:2

year

optional

Four digit year.

The room lists and Rooms in the Syllabus database can change on a yearly basis.

http://www.php.net/manual/en/function.similar-text.php

Appendix C REST API v1 documentation

14

Parameter Description

Valid years are between 2014 and 2016

Default value: The current year.

Example: 2013

Appendix C REST API v1 documentation

15

GET api/v1/room/all

Returns a list of all rooms available.

The web service combines rooms from UiT Exchange and UiT Syllabus database. Valid username and
password is required to access the Exchange server.

The Type returned can be one of the following:
1 = Room from Exchange
2 = Room from Syllabus

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/room/all

Parameters

Parameter Description

year

optional

Four digit year.

The rooms in the Syllabus database can change on a yearly basis.

Valid years are between 2014 and 2016

Default value: The current year.

Example: 2014

Appendix C REST API v1 documentation

16

GET api/v1/room/search

Search for a room. Returns a list of rooms that matches the search string.

The Type returned can be one of the following:
1 = Room from Exchange
2 = Room from Syllabus

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/room/search

Parameters

Parameter Description

query

required

The name of the room that you are searching for. It can be the whole name or a

partial string. The search is not case sensitive.

Example: mh u9.11

year

optional

Four digit year.

The rooms in the Syllabus database can change on a yearly basis.

Valid years are between 2014 and 2016

Default value: The current year.

Example: 2014

Appendix C REST API v1 documentation

17

GET api/v1/room/calendar/:type/:id

Returns calendar items from a specific room resource.

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/room/calendar/:type/:id

Parameters

Parameter Description

type

required

The type of the room that you want calendar items for.

The Type can be any of the following:

1 = Exchange Room

2 = Syllabus Room

Example: 2

id

required

The ID of the room that you want calendar items for.

Example: MHU9.115

mode

optional

The calendar has four modes that specify the date range of calendar items to be

returned.

The mode parameter must be one of the following:

day - calendar items for the date specified

week - calendar items for the whole week. The "date" parameter can be any date

in the week

month - calendar items for the whole month. The "date" parameter can be any

date in the month

interval - calendar items for a custom date interval

Default value: "week"

Example: week

date

optional
The date to use with the mode parameter. The date format is YYYYMMDD

Appendix C REST API v1 documentation

18

Parameter Description

Default value: The current day

Example: 20140115

todate

optional

The date to use with the "interval" mode parameter. The date format is

YYYYMMDD

"todate" must be in the same year as "date"

Example: 20140120

Appendix C REST API v1 documentation

19

GET api/v1/course/search

Search for a course. Returns a list of courses that matches the search string.

The Type returned can be one of the following:
The Type variable is unused

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/course/search

Parameters

Parameter Description

query

required

The name of the course that you are searching for. It can be the whole name or a

partial string. The search is not case sensitive.

Example: middleware

year

optional

Four digit year.

The courses in the Syllabus database can change on a yearly basis.

Valid years are between 2014 and 2016

Default value: The current year

Example: 2014

Appendix C REST API v1 documentation

20

GET api/v1/course/calendar/:id

Returns calendar items from a specific course.

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/course/calendar/:id

Parameters

Parameter Description

id

required

The ID of the course that you want calendar items for.

Example: INF-3320-1

mode

optional

The calendar has four modes that specify the date range of calendar items to be

returned.

The mode parameter must be one of the following:

day - calendar items for the date specified

week - calendar items for the whole week. The "date" parameter can be any date

in the week

month - calendar items for the whole month. The "date" parameter can be any

date in the month

interval - calendar items for a custom date interval

Default value: "week"

Example: week

date

optional

The date to use with the mode parameter. The date format is YYYYMMDD

Default value: The current date.

Example: 20140115

todate

optional

The date to use with the "interval" mode parameter. The date format is

YYYYMMDD

Appendix C REST API v1 documentation

21

Parameter Description

"todate" must be in the same year as "date"

Example: 20140120

Appendix C REST API v1 documentation

22

GET api/v1/studentset/search

Search for a student set. Returns a list of student sets that matches the search string.

The Type returned can be one of the following:
The Type variable is unused

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/studentset/search

Parameters

Parameter Description

query

required

The name of the student set that you are searching for. It can be the whole name

or a partial string. The search is not case sensitive.

Example: biologi

year

optional

Four digit year.

The student sets in the Syllabus database can change on a yearly basis.

Valid years are between 2014 and 2016

Default value: The current year

Example: 2014

Appendix C REST API v1 documentation

23

GET api/v1/studentset/calendar/:id

Returns calendar items from a specific student set.

Resource Information

Authentication
Basic access authentication. Valid UiT username and password, typically of the

user using the application.

Response

Formats
json

HTML Methods GET

Resource URL

https://studentlink.ifi.uit.no/api/v1/studentset/calendar/:id

Parameters

Parameter Description

id

required

The ID of the student set that you want calendar items for.

Example: IMAT-FYMA13-ANB1-2

mode

optional

The calendar has four modes that specify the date range of calendar items to be

returned.

The mode parameter must be one of the following:

day - calendar items for the date specified

week - calendar items for the whole week. The "date" parameter can be any date

in the week

month - calendar items for the whole month. The "date" parameter can be any

date in the month

interval - calendar items for a custom date interval

Default value: "week"

Example: week

date

optional

The date to use with the mode parameter. The date format is YYYYMMDD

Default value: The current day

Example: 20140115

todate

optional

The date to use with the "interval" mode parameter. The date format is

YYYYMMDD

Appendix C REST API v1 documentation

24

Parameter Description

"todate" must be in the same year as "date"

Example: 20140120

Appendix D Why we use LDAP to retrieve room names instead of EWS

1

Appendix D Why we use LDAP to retrieve room names instead of EWS

The EWS interface uses SOAP messages to receive and send information to a client. In this appendix

we are going to illustrate why we choose to use LDAP over EWS when we want to retrieve a room

name based on the email address of the room.

When we want to use the EWS interface we need to use the ResolveNames Operation. In this

example we send the following request:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xmlns:xsd=http://www.w3.org/2001/XMLSchema

 xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:t="http://schemas.microsoft.com/exchange/services/2006/types">

 <soap:Body>

 <ResolveNames xmlns=http://schemas.microsoft.com/exchange/services/2006/messages

 xmlns:t=http://schemas.microsoft.com/exchange/services/2006/types

 ReturnFullContactData="false">

 <UnresolvedEntry>ADM.A203.Moterom@asp.uit.no</UnresolvedEntry>

 </ResolveNames>

 </soap:Body>

</soap:Envelope>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.microsoft.com/exchange/services/2006/messages
http://schemas.microsoft.com/exchange/services/2006/types

Appendix D Why we use LDAP to retrieve room names instead of EWS

2

This gives us the following reponse:

This response is 3324 bytes in total, and the header alone is 1542 bytes. This means that the header

is almost larger than the body of 1782 bytes. And that is only because we set the

ReturnFullContactData attribute to false because we can use the Name attribute to retrieve the

rooms name. If we would set the ReturnFullContactData attribute to true we would get even more

information, including the DisplayName attribute. But for the rooms we assume that the Name and

DisplauName attributes are the same.

When we use the LDAP to search for the exact same room, the response is 532 bytes and the header

is 20 bytes. This means that the body is 512 bytes. Much less overhead than the SOAP request.

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Header>

 <t:ServerVersionInfo MajorVersion="8" MinorVersion="0" MajorBuildNumber="685"

MinorBuildNumber="8"

 xmlns:t="http://schemas.microsoft.com/exchange/services/2006/types" />

 </soap:Header>

 <soap:Body>

 <ResolveNamesResponse

xmlns:m="http://schemas.microsoft.com/exchange/services/2006/messages"

 xmlns:t=http://schemas.microsoft.com/exchange/services/2006/types

 xmlns="http://schemas.microsoft.com/exchange/services/2006/messages">

 <m:ResponseMessages>

 <m:ResolveNamesResponseMessage ResponseClass="Success">

 <m:ResponseCode>NoError</m:ResponseCode>

 <m:ResolutionSet TotalItemsInView="1" IncludesLastItemInRange="true">

 <t:Resolution>

 <t:Mailbox>

 <t:Name>ADM A203 Møterom</t:Name>

 <t:EmailAddress>ADM.A203.Moterom@asp.uit.no</t:EmailAddress>

 <t:RoutingType>SMTP</t:RoutingType>

 <t:MailboxType>Mailbox</t:MailboxType>

 </t:Mailbox>

 </t:Resolution>

 </m:ResolutionSet>

 </m:ResolveNamesResponseMessage>

 </m:ResponseMessages>

 </ResolveNamesResponse>

 </soap:Body>

</soap:Envelope>

http://schemas.microsoft.com/exchange/services/2006/types

Appendix D Why we use LDAP to retrieve room names instead of EWS

3

Note! We use the PHP curl_getinfo function to get the SOAP information since we use a SOAP library

in PHP that uses curl. To get the LDAP information we use Wireshark since the PHP LDAP library don’t

have any functions to get the response size. We could note use Wireshark for the SOAP requests

since they are encrypted.

Appendix D Why we use LDAP to retrieve room names instead of EWS

4

Appendix E Open Source Libraries

1

Appendix E Open Source Libraries

The generic calendar platform is programmed in PHP. Most of the functionality we use are a part of

the PHP platform. However, we use some open source libraries to speed up the development

process. The libraries and information about them is listed in this appendix.

adLDAP

License GNU

URL http://adldap.sourceforge.net/

Language PHP

Description

adLDAP is a PHP class that provides LDAP authentication and integration with Active Directory.

AES_Encryption

License Free to use and modify.

URL http://www.coderelic.com/2011/10/aes-256-encryption-with-php/

Language PHP

Description

This class allows you to easily encrypt and decrypt text in AES format. The class automatically

determines whether you need 128, 192, or 256 bits based on your key size. It handles multiple

padding formats.

ics-parser

License MIT

URL http://code.google.com/p/ics-parser/

Language PHP

Description

This PHP-Class should only read a iCal-File (*.ics), parse it and give an array with its content.

oauth-php

License MIT

URL https://code.google.com/p/oauth-php/

Language PHP

Description

A PHP library for OAuth 1.0a consumers and servers. Complete with an extensible OAuth store,

including a full working implementation of MySQL/MySQLi, Postgresql, PDO and Oracle stores.

http://adldap.sourceforge.net/
http://www.coderelic.com/2011/10/aes-256-encryption-with-php/
http://code.google.com/p/ics-parser/
https://code.google.com/p/oauth-php/

Appendix E Open Source Libraries

2

php-ews

License Free to use and modify.

URL http://adldap.sourceforge.net/

Language PHP

Description

The PHP Exchange Web Services library (php-ews) is intended to make communication with

Microsoft Exchange servers using Exchange Web Services easier. It handles the NTLM authentication

required to use the SOAP services and provides an object-oriented interface to the complex types

required to form a request

jQuery

License MIT

URL https://jquery.com/

Language JavaScript

Description

jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML document

traversal and manipulation, event handling, animation, and Ajax much simpler with an easy-to-use

API that works across a multitude of browsers. With a combination of versatility and extensibility,

jQuery has changed the way that millions of people write JavaScript.

Epoch

License Free to use and modify.

URL http://www.epoch-calendar.com/support/getting_iso_week.html

Language JavaScript

Description

While the JavaScript Date object is one of the most complete of all the default date-handling routines

in programming languages, one of the features it is sorely lacking is an algorithm for computing a

date's week number.

Bootstrap

License Free to use and modify.

URL http://getbootstrap.com/

Language JavaScript/CSS/HTML

Description

Bootstrap is the most popular HTML, CSS, and JS framework for developing responsive, mobile first

projects on the web.

Bootstrap-datepicker

License Apache License

URL https://github.com/eternicode/bootstrap-datepicker

Language JavaScript/CSS/HTML

Description

Add datepicker picker to field or to any other element.

http://adldap.sourceforge.net/
https://jquery.com/
http://www.epoch-calendar.com/support/getting_iso_week.html
http://getbootstrap.com/
https://github.com/eternicode/bootstrap-datepicker

	1 Introduction
	1.1 Problem statement
	1.2 Method
	1.3 Summary
	1.4 Outline

	2 Background
	2.1 Service Oriented Architecture (SOA)
	2.2 Web Service
	2.2.1 World Wide Web Consortium (W3C) and Internet Engineering Task Force (IETF)
	2.2.2 Simple Object Access Protocol (SOAP)
	2.2.3 Representational State Transfer (REST)
	2.2.4 Enterprise Mashup

	2.3 Calendar sharing
	2.4 Single sign-on
	2.5 HTTP Status Codes
	2.5.1 302 Found

	2.6 Microsoft Active Directory (AD)
	2.6.1 Lightweight Directory Access Protocol (LDAP)

	2.7 Microsoft Exchange
	2.7.1 Microsoft Exchange Web Services (EWS)

	2.8 Syllabus
	2.8.1 Oracle
	2.8.2 Syllabus database setup at the university

	2.9 Fronter
	2.9.1 OpenApi
	2.9.1.1 Request format
	2.9.1.2 Response format
	2.9.1.3 Response limits

	2.9.2 OAuth
	2.9.2.1 OAuth in Fronter

	2.10 Summary

	3 Design
	3.1 Case
	3.2 Overview
	3.3 System architecture
	3.4 Components
	3.4.1 Connectors
	3.4.1.1 Active Directory Connector (ADC)
	Information about the logged in user
	Searching for other users
	Room names, e-mail addresses and searching

	3.4.1.2 Exchange Connector (XC)
	Calendar information
	Room List (RL) information and searching

	3.4.1.3 Syllabus Connector (SC)
	Searching
	Detailed calendar information
	Room List (RL) information
	Staff information

	3.4.1.4 Fronter Connector (FC)
	Getting access to the API
	Private calendar information
	Room calendar information

	3.4.1.5 Adding new connectors

	3.4.2 Middleware
	3.4.3 Interfaces
	3.4.3.1 Graphical User Interface (GUI)
	Searching for a user’s calendar
	Other search functions
	Display all rooms
	Display all Room Lists (RL)
	My Calendar (MC)

	3.4.3.2 ICAL Interface (ICAL)
	3.4.3.3 Application Programming Interface (API)

	3.4.4 Storage

	3.5 Summary

	4 Implementation
	4.1 Connectors
	4.1.1 Active Directory Connector (ADC)
	4.1.1.1 LDAP setup
	4.1.1.2 Users
	4.1.1.3 Courses
	4.1.1.4 Rooms

	4.1.2 Exchange Connector (XC)
	4.1.2.1 Exchange setup
	4.1.2.2 Detailed and Busy-Free calendar
	4.1.2.3 Room List
	4.1.2.4 Room

	4.1.3 Syllabus Connector (SC)
	4.1.3.1 SDB setup
	4.1.3.2 Courses, rooms, room lists and staff
	4.1.3.3 Activity

	4.1.4 Fronter Connector (FC)
	4.1.4.1 Fronter setup
	4.1.4.2 Automated OAuth authorization
	4.1.4.3 User calendar
	4.1.4.4 Room calendar

	4.1.5 Adding new connectors

	4.2 Middleware
	4.3 Interfaces
	4.3.1 Graphical User Interface (GUI)
	4.3.2 ICAL Interface (ICAL)
	4.3.3 Application Programming Interface (API)

	4.4 Storage
	4.5 Summary

	5 Testing
	5.1 Graphical User Interface (GUI)
	5.1.1 Login
	5.1.2 Home
	5.1.3 My Calendar
	5.1.4 Search User Calendar
	5.1.5 Search Course and Student Set
	5.1.6 Rooms
	5.1.6.1 All Room Lists
	5.1.6.2 Search Room Lists
	5.1.6.3 All Rooms
	5.1.6.4 Search Rooms

	5.2 ICAL
	5.3 API
	5.4 Use cases
	5.4.1 Planning a meeting in the conventional way
	5.4.2 Planning a meeting using the Web Service

	5.5 Performance
	5.6 Summary

	6 Evaluation
	6.1 Technical
	6.2 Contribution
	6.3 Outside the organization
	6.4 Other projects

	7 Conclusion
	7.1 Conclusion
	7.2 Further work

	Bibliography
	Appendix A Fronter login flow
	Appendix B GUI Cookies notice
	Appendix C REST API v1 documentation
	Appendix D Why we use LDAP to retrieve room names instead of EWS
	Appendix E Open Source Libraries

