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Abstract 
 

Purpose 

The purpose of this work is to estimate the performance of a TLD object tracking 

algorithm and its openly available alternatives in object tracking / camera motion 

estimation in laparoscopic surgery videos in context of telementoring and stabilized 

telestrating, and to propose and architecture and implementation of a prototype solution 

for stabilized telestration which does not require specialized costly equipment. 

Motivation 

Telementoring in image-guided surgery has long since become a worldwide trend, 

facilitating faster and better surgical expertise distribution, increased quality of learning 

for beginner surgeons and better clinical outcomes for patients who no longer have to 

wait for an expert to travel (or do not have to travel themselves). Since the early days of 

telementoring, telestration (freehand annotation) has been mentioned as an important 

and valuable part of surgical telementoring. However, to this day, no commercial 

solutions tailored for surgical telementoring and telestrating that provide telestration 

stabilization are present. During virtually any surgical telementoring session with 

telestration, camera movements occur and once the camera moves, the telestrations lose 

their value unless this movement is calculated and the telestrations’ position is adjusted. 

Telestration in surgical telementoring needs more attention as an educational and 

mentoring tool, while at the same time being available without extremely costly 

equipment and providing all the possible functionalities that a surgeon might need. 

Methods 

A system that facilitates surgical stabilized telementoring while using the digital image 

information provided by a laparoscopic camera or a pre-recorded video file has been 

designed and implemented in modular way. The system was implemented using a 

combination of C#/Windows and C++/Ubuntu solutions. A literature review was 

conducted in order to collect the information about similar endeavors and experience of 

other research groups who work in this field. During the meetings with expert surgeons 

from UNN (University Hospital of North Norway), requirements for the systems were 

defined based on literature review findings and the surgeons’ feedback. Finally, a system 

was tested with a web-camera video feed and a pre-recorded video file. Also, extensive 

testing has been performed using a number of conventional object trackers and a dataset 

of total 24 laparoscopic surgery videos. 

Results 

The architecture proposed and the system developed have been proven to be a viable 

experimental solution for surgical telementoring and telestration in image-guided 

procedures. After rigorous testing using a data set of 24 videos, the conventional object 

trackers including TLD and its alternatives have demonstrated that they are capable of 

tracking camera position in surgical video sequences. However, every object tracking 

algorithm has demonstrated certain weak and strong sides, according to the test results. 

Conclusion 
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The system that was designed and implemented can be used for future work in improving 

the telestrating solutions for surgical telementoring, while seamlessly testing various 

camera position estimation solutions, which is made possible by the system’s modular 

architecture. The architecture proposed makes it possible to perform a cross-platform 

(including mobile solutions) telementoring with telestrations. Conventional object 

trackers can be used while solving the task of short-term camera motion estimation in 

surgical videos.  
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1. Introduction 
 

1.1. Background and Motivation 

Telementoring in minimally-invasive image-guided surgery has become increasingly 

popular and is already a part of many clinical routines in many hospitals. The benefits of 

telementoring in surgical procedures include significantly shorter patient recovery time 

due to decreased waiting time, decreased time spent in the operating room and no need 

to travel for patient and expert surgeon alike. Moreover, telementoring techniques 

facilitate a significant boost in surgical knowledge disseminations, allowing more 

inexperienced surgeons to learn given procedure remotely, while observing or being 

guided by an expert surgeon. 

Telestration (free-hand annotation) is one important part of a surgical telementoring 

procedure that has been reported to be an extremely useful tool. The telestration tool 

allows a mentoring surgeon to communicate the information to a mentee much faster 

than it is usually done using verbal communication, which again decreases the time that 

the patient spends on the operating table. 

There are commercial software and hardware systems that offer the telestration 

functionality, but it still remains vastly unsuited for certain scenarios that often happen 

while performing a telementoring session. 

One of the problems mentioned in context of telementoring and telestration in image-

guided surgery is the fact that camera may move while the telestration is still on screen, 

and the telestration becomes useless as soon as the camera moves. 

1.2. Aims 

Our main aim is to examine whether generic object trackers can be used for solving the 

camera movement problem in telestrations in surgical telementoring.  

The second aim is to propose an architectural approach to the telestration system and 

develop a prototype that would prove the possibility of implementation of a non-

expensive solution to the problem. A system should not require introduction of excessive 

costly into a traditional operating room without robotic equipment. The system should 

be flexible and versatile in terms of operating system on a user-device, and provide a 

means to test the solution of telestration movement problem using various means of 

digital image analysis. 

1.3. Assumptions and Limitations 

The telestration system is designed under assumption that it will be used as an 

experimental prototype in order to gather user feedback and test the various telestration 

tool features and image processing algorithms. 

1.4. Contributions 

A distributed architecture that makes the system extremely flexible and potentially cross-

platform has been proposed. An experimental system for testing the telestration features 

and camera motion estimation has been implemented.  
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Through a series of tests, it has been shown that traditional “non-surgical” object trackers 

can be used to solve camera motion estimation problem in some scenarios in surgical 

video. 

Tracker algorithm analysis has been performed based on the test results, providing the 

information about strong sides and limitations of the algorithms inspected. 

1.5. Report Structure 

This report is structured as follows: 

Theoretical Background 

This chapter describes the basic concepts of image processing which are necessary to 

understand how the image processing algorithms work. 

Theory 

This chapter explains how the tracking algorithms that are subject to experiments in this 

project work. The theory behind the image enhancement techniques are also described 

in this chapter. 

Related Work 

The Related Work chapter describes the approaches that are commonly used to solve the 

problem of camera motion estimation or object tracking in the surgical context. Advances 

in telestration for surgical telementoring are also described in this chapter. Moreover, the 

chapter gives a highlight on the pioneers in the related fields. 

Methods and Materials 

This chapter describes the way the insight into the field has been acquired, the way the 

system is developed, the way the data set has been created and the way the testing of all 

the subject trackers has been performed. 

Requirements Specification 

This chapter describes the functional and non-functional requirements to the system and 

the way they were created. 

System Design 

This chapter describes the way the system has been designed in order to fit the 

requirements specified earlier. 

Implementation 

This chapter describes the system implementation in more details. 

Testing 

This chapter describes the way the system was tested and the way the trackers in 

question were tested. The Testing chapter also describes how a data set for testing has 

been created. 
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Conclusion and Future Work 

This chapter makes the concluding remarks and highlights the possible direction for 

future work and improvements. 
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2. Theoretical Background 
 

The theoretical background chapter covers basic concepts in image processing that are 

the fundamental blocks for a vast majority of computer vision algorithms. 

2.1. Notation 

Digital image / frame retrieved by a camera is a matrix 𝑀, having dimensions 𝐻 × 𝑊 ×

𝐶, where 𝑊 is the number of columns (otherwise known as width), 𝐻 is the number of 

rows (otherwise known as height) and 𝐶 is the number of channels (e.g. RGB image 

contains 3 channels – red, green and blue, while a grayscale image only contains one that 

contains grayscale value intensities). One value in such a matrix at row 𝑖 and column 𝑗 is 
called a pixel and is denoted as 𝑝(𝑖, 𝑗). Depending on the number of channels, pixel may 

contain either a single intensity value (e.g. grayscale images) or a tuple of several 

intensity values for each channel (e.g. RGB images). Depending on the specific image 

format (e.g. how many bits are used to encode each pixel), intensity values may vary from 

0 to 2𝑛 − 1 where 𝑛 is the number of bits used to encode one intensity value (e.g. for an 

image using 8-bit format, intensity values will vary from 0 to 255). 

A video or video stream is a sequence of 𝑁 digital images 𝑀1, … 𝑀𝑁 that possess the same 

𝐻 × 𝑊 × 𝐶 dimensions. Images that are a part of video are commonly delivered at a 

certain rate of frames per second. Real-time algorithms are supposed to operate at 

framerates that are close (or higher) than 24 frames per second. In general, the more 

frames per second a camera can deliver and the more frames can be processed by an 

algorithm, the better results are acquired. 

2.2. Image Features 

An image feature is a term used in computer vision and image processing that describes 

a certain part of a digital image that is valuable for analysis of the given image and has 

certain informative or required properties (e.g. color, brightness, position).  

It is common to describe a feature by its location, size (bounding box), pixel intensity 

values and some information about its surroundings, depending on the specific feature 

type.  

There are several feature types commonly used in computer vision algorithms and 

methods. 

Edges are points of the image that have dramatic intensity changes around them. Some 

approaches include a certain amount of neighboring points into an edge feature set based 

on parameters like edge smoothness, gradient value and shape (see Figure 2.1). 
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Figure 2.1Edge detection example1 

Corners are locally 2-dimensionally structured features that are described by high 

amounts of curvature in the gradient of an image. Corners typically reside in places where 

edges rapidly change their direction (see Figure 2.2), but are not limited to this case. It 

became quite common to name such features interest points because of that. 

 

Figure 2.2 Corner detection example2 

Blobs represent more informative chunks of data about image regions instead of 

separate small features. Blobs may contain regions that do not contain gradient sharp 

enough to be recognized by edge or corner detection, or regions with generally high or 

low intensity values. Blobs may also describe regions encircled by edges (see Figure 2.3). 

                                                        
1 http://www.comp.leeds.ac.uk/viznet/reports/GPU_report/pictures/PyGPULena.jpg 

 
2 http://www.ee.surrey.ac.uk/CVSSP/demos/corners/blox-css.jpg 

http://www.comp.leeds.ac.uk/viznet/reports/GPU_report/pictures/PyGPULena.jpg
http://www.ee.surrey.ac.uk/CVSSP/demos/corners/blox-css.jpg
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Figure 2.3 Blob detection example3 

Haar-like features are a special kind of features found in digital images. Haar-like 

features have first found their application in face-recognition. They were developed by 

Viola and Jones (1) as a way to tackle computational expensiveness of other feature types, 

while maintaining sufficient meaningfulness for tracking or detecting applications. Haar-

like feature contains rectangular image regions that are adjacent. The intensity 

differences between pixels in all the regions are calculated and also become a part of 

feature description. However, it is mentioned that one Haar-like feature is not enough to 

be a strong object classifier hence a set or a cascade of such features is required to 

perform robust object detection using a detection window and a grid, each cell of which 

has Haar-like features calculated for it. 

Integral images known as summed area tables are used in Haar-like features’ detection 

and speed up the method to a great extent. An integral image is a data structure designed 

to facilitate quick computation of value sum in a rectangular subset of a grid. (2) 

In an integral image, value at given (𝑥, 𝑦) point equals the sum of all values to the left and 

above of the given point, including the value in the point itself (see 2.1). 

𝐼(𝑥, 𝑦) =  ∑ 𝑖(𝑥′, 𝑦′)

𝑥′≤𝑥
𝑦′≤𝑦

 

2.1 

One of the greatest advantage of this method is that it is possible to compute an integral 

image in one iteration over the image itself either iteratively, or recursively by 2.2. 

𝐼(𝑥, 𝑦) = 𝑖(𝑥, 𝑦) + 𝐼(𝑥 − 1, 𝑦) + 𝐼 (𝑥, 𝑦 − 1) − 𝐼(𝑥 − 1, 𝑦 − 1) 

2.2 

Once the integral image has been computed for the whole image or its subset, a value for 

any desired rectangle can be retrieved using 4 values in constant time. Given that a 

rectangle of interest is bound by 4 points A, B, C and D with respective coordinates 
(𝑥0, 𝑦0), (𝑥1, 𝑦0), (𝑥0, 𝑦1), (𝑥1, 𝑦1), the sum will be defined by 2.3: 

                                                        
3 http://www.nada.kth.se/~tony/cern-review/cern-html/img56.gif 

 

http://www.nada.kth.se/~tony/cern-review/cern-html/img56.gif
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∑ 𝑖(𝑥, 𝑦) = 𝐼(𝐷) + 𝐼(𝐴
𝑥0<𝑥≤𝑥1
𝑦0<𝑦≤𝑦1

) − 𝐼(𝐵) − 𝐼(𝐶) 

2.3 

2.3. Feature Detection 

Methods that are used for deciding whether there is an image feature at certain image 

point or region are called methods of feature detection.  

In many cases when computer vision algorithms require a set of certain features, the 

speed of feature detection is crucial (e.g. in order to facilitate real-time image analysis), 

hence there are several feature detectors available and researchers still look for faster or 

more robust methods to perform detection. There are several feature detectors that are 

most popular in object tracking applications. 

FAST 

Features from Accelerated Segment Test (3) is a feature detector that is capable of 

detecting corners. The most outstanding property of this method is its speed 

(computational efficiency). It is reported to be faster than feature detection methods such 

as SUSAN, Harris and difference of Gaussians used by SIFT (4). Further speed 

improvement is possible when machine learning enhancements are applied to FAST, 

making it a perfect candidate for live video processing. 

SIFT 

Scale Invariant Feature Transform method (4) is based on an assumption that for every 

object there is a feature description that can be extracted from an image. SIFT object 

features can help locate the object under different amounts of scale because of their scale 

invariant nature. It is also reported that SIFT features can help locate an object under 

certain degrees affine distortion, illumination and orientation changes. SIFT object 

descriptor is tolerable to a certain degree of errors in terms of relative (one of 

requirements for scale invariant nature) distance between points and the more features 

are selected, the more tolerable it is. 

SURF 

Speeded Up Robust Features (5) is a feature detector that finds its applications primarily 

in object recognition reconstruction of 3-dimensional spaces. The method’s core idea has 

similarities with that of SIFT feature detector. Authors claim that their SURF outperforms 

SIFT to a great degree (several times greater performance). SURF feature detector makes 

efficient use of Haar-like features and summed area tables otherwise known as integral 

images. 

2.4.  Motion Field 

Motion field represents visible motion caused by movements of camera or scene relative 

to each other. It is based on assumption that every visible 3D point of the scene is 

projected to a certain 2D point in the image received by a camera and those projections 

change over time depending on object or camera movements. A motion flow depicts those 

changes in point positions. (6) 
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Motion field can be calculated using various methods that fall into two categories: 

Differential  techniques are direct methods that analyze pixel intensity variations with 

respect to time and space. (7) 

Matching techniques are methods classified as indirect. In this case, a set of features is 

selected prior to estimating the motion field. The features are then matched between 

sequential frames and the motion field is retrieved.  

Depending on the application and its demands, it is possible to conduct a dense or sparse 

motion field estimation. Dense motion field relies on a larger amount of features to be 

calculated and is thus more expensive in terms of processing power and time. (6) 

2.4.1. Optical Flow 

Optical flow belongs to a differential class of methods for motion field estimation. Optical 

flow can be calculated between two consecutive frames of a video, indicating observable 

displacements within the picture. (6) 

For a two-dimensional case and two frames retrieved at 𝑡 and 𝑡 + ∆𝑡 moments in time, 

optical flow is calculated under the assumption that a voxel at (𝑥, 𝑦) at moment 𝑡 will be 

displaced by (∆𝑥, ∆𝑦) at moment 𝑡 + ∆𝑡 and will keep its brightness, making the 

statement 2.4 true (8): 

𝐼(𝑥 +  ∆𝑥, 𝑦 + ∆𝑦, 𝑡 +  ∆𝑡) = 𝐼(𝑥, 𝑦, 𝑡) 

2.4 

Under the assumption that the movement was small enough, we can apply Taylor series 

logic to transform 2.4 into: 

𝜕𝐼

𝜕𝑥
𝑑𝑥 +

𝜕𝐼

𝜕𝑦
𝑑𝑦 +  

𝜕𝐼

𝜕𝑡
𝑑𝑡 = 0 

2.5 

𝜕𝐼

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝐼

𝜕𝑦

𝜕𝑦

𝜕𝑡
+ 

𝜕𝐼

𝜕𝑡
= 0 

2.6 

(∇𝐼)𝑇𝑣 +  𝐼𝑡 = 0 

2.7 

with 𝑣 =

𝜕𝑥

𝜕𝑡
𝜕𝑦

𝜕𝑡

 and ∇𝐼 =

𝜕𝐼

𝜕𝑥
𝜕𝐼

𝜕𝑦

 in 2.7. This equation, however, cannot be solved because it has 

to be solved for two variables, which leads to introducing new equations, assumptions 

and constraints. 

Optical flow estimation techniques are widely used in robotics for object tracking and 

detection, and for 3-dimensional environment perception. 

Lucas-Kanade is a method to calculate optical flow differentially. It works assuming that 

optical flow is constant in the neighboring pixels of a target pixel (plus the basic 
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assumption of optical flow stating that displacement is small enough). The fundamental 

optical flow equation is solved for all neighboring pixels using the criterion of least 

squares. (9, 10) 

The method is reported to be more tolerable to image noise because it is operating on a 

set of pixels in the neighborhood of a pixel in question. Such a set is commonly a rectangle 

𝑅 as big as 𝑛 = 𝑁 × 𝑁 pixels, where 𝑁 is often set to 5. The method works by minimizing 

the sum of squares error: 

𝑒(𝑣) =  ∑ [(∇𝐼(𝑝𝑖))𝑇]

𝑝𝑖∈𝑅

𝑣 +  𝐼𝑡(𝑝𝑖)]2 

2.8 

It is possible to represent 2.7 for a set 𝑅 of pixels 𝑝1…𝑝𝑛 as: 

𝐴𝑣 = 𝑏 

2.9 

in which 

𝐴 =

𝐼𝑥(𝑝1) 𝐼𝑦(𝑝1)

⋮ ⋮
𝐼𝑥(𝑝𝑛) 𝐼𝑦(𝑝𝑛)

, 𝑣 =  
𝑣𝑥

𝑣𝑦
, 𝑏 =  −

𝐼𝑡(𝑝1)
⋮

𝐼𝑡(𝑝𝑛)
 

2.10 

And the solution to 2.9 is 

𝑣 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 

2.11 

It is by far not always true that the displacement between two consecutive frames is 

indeed small because it depends on the speed of objects or camera and the number of 

frames captured per second. This problem can be solved by applying Lucas-Kanade 

technique multiple times on an image pyramid in which each consecutive level contains 

an image with its resolution decreased by a factor of 2 in relation to the previous. LK is 

performed on the level with the lowest resolution and this result is them passed on to the 

higher resolution levels. 

There are several known problems with this method, however. 

Objects can move independently from each other, overlapping at will, which will make 

it harder to analyze target object motion. 

The camera itself may introduce distortions and noise which will affect pixel 

displacement and grey values which are crucial for the method to work properly. 

Grey values may also change their intensity because of illumination changes. Light 

sources that change their position over time may cause alterations in grey values despite 

the fact that no motion is really happening in the scene. 
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2.4.2. Feature Matching  

A subset of techniques for indirect motion field calculation is called feature matching. The 

problem is solved by locating a number of features in one frame and then in the next one, 

then trying to pair the features between the two. Depending on feature descriptors, 

different methods may be applied. Distance measures (e.g. Euclidean, non-Euclidean) 

used depend on descriptors and methods chosen. (11) 

 

Figure 2.4 Feature matching example4 

2.4.3. Feature Tracking 

As opposed to detection, tracking techniques are more efficient in terms of computations. 

They also obviously outperform optical flow calculation for all pixels of a given frame. 

One way to do so is to retrieve a set of features and perform tracking utilizing the Lucas-

Kanade method. (9) 

2.5.  Motion Model 

Motion models are utilized to describe the motion that happens within the frame using 

several degrees of freedom (DOF). Depending on the number of DOF used in given model, 

pose estimation/object tracking may become more or less computationally expensive. 

It is common to represent a motion model using a transformation matrix: 

𝐻 =
𝑎 𝑐 0
𝑏 𝑑 0

𝑑𝑥 𝑑𝑦 1
 

2.12 

Different motion models are used depending of the desired or affordable degrees of 

freedom number. 

Translation motion model has 2 degrees of freedom and describes translation along 𝑥 

and 𝑦 axis. 

                                                        
4 http://www.consortium.ri.cmu.edu/data/FeatFramework/featureMatching.jpg 
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𝐻 =
1 0 0
0 1 0

𝑑𝑥 𝑑𝑦 1
 

2.13 

Similarity model has 4 degrees of freedom including translation, uniform scale and 

rotation. 

𝐻 =
𝑎 −𝑏 0
𝑏 𝑎 0

𝑑𝑥 𝑑𝑦 1
 

2.14 

Affine model adds two more degrees of freedom totaling to 6: translation, rotation, 

shearing and scaling independently. 

Retrieving a feature’s position after the transformation has been applied is as simple as 

multiplying its transposed original position by transformation matrix 𝐻. 

2.6.  Random Sample Consensus Algorithm (RANSAC) 

RANSAC is an algorithm developed by Fischler (12) for removing outliers from data sets 

with relatively large numbers of errors such as feature trackers of all kinds, which makes 

is especially useful for many applications in image analysis field. It is commonly used in 

conjunction with feature trackers or matchers in order to get a set of features that fit a 

certain model or assumption. 

The algorithm iterates over a set of data 𝐾 times. First, a random set of 𝑁 entries is 

selected, model parameters are then estimated and the number 𝑀 of entries that fit the 

model is calculated, labelling such entries as inliers based on a certain tolerance value 𝜀. 

As soon as the number of inlier entries becomes greater than a specified threshold value 

𝛿, the model is estimated again using the newly retrieved inlier entries. 
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Figure 2.5 A set of points before RANSAC applied5 Figure 2.6 A set of points after RANSAC applied6 

A set of data that better fits the model is likely to be obtained if more iterations of RANSAC 

are performed. 

2.7. Visual Odometry and Egomotion 

Determination of position and orientation of a system via analysis of its camera pictures 

is called visual odometry (13). Visual odometry is heavily used in robotics in addition to 

GPS, accelerometers and other means to estimate the system position in space (e.g. wheel 

rotation monitoring). There are several advantages of visual odometry as opposed to its 

alternatives: 

 Does not rely on complex satellite systems or external communications 

 Tolerant to wheel slip 

 Only relies on visual input 

Estimation of camera position and motion relative to a scene (in some cases, an object) is 

called egomotion. 

Common approach to solving the visual odometry or egomotion problem has several 

steps. 

1. Retrieve sequential input images using available camera(s). 

a. Monocular (single camera) 

b. Stereo (two cameras) 

c. Omnidirectional camera 

2. Preprocessing 

a. Image enhancement 

i. Distortion correction 

ii. Brightness/contrast enhancement 

iii. Noise removal 

iv. Sharpening 

                                                        
5 http://upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Line_with_outliers.svg/383px-
Line_with_outliers.svg.png 
6 http://upload.wikimedia.org/wikipedia/commons/thumb/d/de/Fitted_line.svg/383px-
Fitted_line.svg.png 
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3. Detection of features 

a. Match features between consecutive frames 

b. Optical flow calculation (e.g. Lucas-Kanade algorithm) 

4. Outlier removal (often using RANSAC implementations) 

5. Camera self-movement calculation using the resulting optical flow. 

Approaches that utilize more than one camera tend to produce far less errors and provide 

additional information about the surrounding environment. 

2.8. Surgical Telementoring and Image-guided Surgery 

Telementoring is a form of mentoring that includes providing advice and expertise to a 

remote mentee. Image-guided surgery is a name for surgical procedures that involve 

indirect guidance provided by imaging techniques. In the modern world imaging 

techniques are commonly digital and are an integral part of minimally-invasive surgical 

operations (e.g. laparoscopic, endoscopic prucedures).  

Telementoring techniques evolve together with means of communication and nowadays 

almost always include video and audio translations between the remote mentor and the 

surgeon on sight. Moreover, often several video streams are transmitted to the mentor’s 

viewport (e.g. overall operating room view, laparoscopic/endoscopic image and a close 

up view of the patient). (14) 

Telestration is a recently emerged method of communication between the mentor and 

the mentee added on top of a simple video and audio translation layer. In a broader sense 

telestration involves any kind of drawing or annotation created by either side in order to 

directly specify regions of interest avoiding prolonged verbal descriptions and thus both 

saving time and increasing the quality of remote mentoring.  

Telestration is commonly used in weather forecasts and sports events broadcasts or 

discussions. (15) 
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3. Theory 
 

This chapter explains the theory behind the computer vision tracking algorithms and 

techniques used to implement the system. 

3.1. Consenus-based Matching and Tracking (CMT) 

Nebehay and Pflugfelder (16) propose a keypoint-based method for tracking objects in a 

long-term and in a model-free fashion, which means that no preliminary learning of 

tracker is required for it to function normally. This feature of the proposed algorithm 

makes it possible to use the tracker in quite various scenarios. 

The proposed tracker is capable to estimate the object center position, scale and the 

degree of in-plane rotation. The structured pseudocode description of this approach can 

be seen on (Figure 3.1). 

 

Figure 3.1 CMT explained in pseudocode7 

At the very first iteration, a set of keypoints is selected from inside the initial bounding 

box. BRISK (17) is used for keypoint selection and description. Each point is assigned its 

own binary descriptor. The initial object model thus contains from keypoints that are 

inside the bounding box and their respective descriptors. 

                                                        
7 16. Nebehay G, Pflugfelder R. Consensus-based Matching and Tracking of Keypoints for Object 
Tracking. 
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During the upcoming iterations, candidate matches for previously selected keypoints are 

found in the picture and again their binary descriptors are calculated. Hamming 

distance (18) is then computed between the old and the new descriptors. 

Candidate points from the newly detected point set have to be closer to the nearest 

neighbor than the second nearest neighbor by a certain ratio. This way, points that belong 

to background are excluded from the set and a resulting set consists of a subset from the 

current frame. 

After that, tracking takes place and Lucas-Kanade pyramidal varioation (9) is used for 

optical flow calculation. The set of tracked keypoints is retrieved by updating their 

positions based on optical flow. Keypoints that then turn out to be outside a bounding 

box are considered to be tracking failures and are removed from the set.  

The tracked and matched sets are then merged. Keypoints that are present in the 

matched set are removed from the set that is tracked because successful matching is 

considered more robust than tracking because matching does not rely on previous 

estimations. 

The next important step of the algorithm is keypoint voting. Each keypoint produces a 

vote for the object center position. In a more simple form keypoints vote for horizontal 

and vertical position only (translation). 

Afterwards, outliers are removed from the keypoint set right before the consensus 

calculation. The image is clustered into several regions and the cluster with most votes 

inside becomes the core cluster. Votes from this consensus cluster are then used to 

compute the current object center. 

3.2. Median Flow Tracker 

Median flow tracker proposed by Kalal et al. (19) addresses the problem of tracking, 

stressing the fact that the object’s appearance often dramatically changes over the course 

of tracking. The method introduces a possibility of the tracker to evaluate itself. It is based 

on the assumption that tracking results should be consistent independently of the 

direction of time flow. 

Trajectory validation is performed in 3 steps. First, the tracker produces a trajectory 

while following the point normally (with time flowing forward). Then another trajectory 

is calculated by backward tracking the point. And lastly, the two are compared. It is 

common to describe points that are being tracked with surrounding patches using sum-

of-square differences (20, 21), which helps to detect tracking errors related to fast 

movements or specular occlusions. However, this approach has trouble detecting 

trajectories that drift slowly. 

Lucas-Kanade (9, 22) method is employed to track the selected features. Features 

displaced less than 2 pixels were considered to be inliers in this case. Lucas-Kanade 

method calculates the sparse motion flow between two given frames. The flow is only 

calculated for a bounding box. The resulting trajectory is then evaluated by the forward-

backward method.  

Kalal et al. (19) solve the tracking initialization problem by first tracking a lot of pixels 

from the initial frame. Resulting trajectories are then evaluated using forward-backward 
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error and each pixel is assigned a value which is the error of its respective trajectory. The 

error values are calculated using sum-of-square differences. An error map consisting of 

all the pixels tracked shows which pixels can be tracked reliably. If a point received a 

large error value, it is excluded from the set of points that are being tracked. The ones 

that remain are later used to estimate the new position for an object bounding box. The 

bounding box’s new position is calculated as a median of all the tracked points’ 

trajectories. The overall iteration description can be depicted by (Figure 3.2) 

 

Figure 3.2 Forward-backward error method8 

The forward-backward error approach can possibly be integrated with other tracking 

frameworks and significantly improve their quality. 

3.3. On-line Boosting 

3.3.1. Tracking 

Grabner et al. (23) proposed a tracker based on on-line AdaBoost algorithm designed for 

feature selection. The presented tracker is capable of on-line learning. The model of a 

tracked object is updated by positive and negative examples from the frame being 

processed. The algorithm operates on gray values only, which means that it does not 

require and RGB image. 

The tracking component is designed to solve the task of tracking as a binary classification 

problem. The algorithm robustness is achieved by updating the existing binary classifier 

as the tracking goes on. 

The object that needs to be tracked is assumed to be present in the initial bounding box, 

which is provided as an input at the very beginning. The region specified by the initial 

bounding box is thus considered to be a positive example of object appearance for the 

tracker. The object surroundings, on the other hand, are labeled and remembered as 

negative examples. The initially obtained samples are crucial to initialize the on-line 

boosting algorithm by running several iterations in the very beginning using that data 

only. 

                                                        
8 19. Kalal Z, Mikolajczyk K, Matas J, editors. Forward-backward error: Automatic detection of tracking 
failures. Pattern Recognition (ICPR), 2010 20th International Conference on; 2010: IEEE. 
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Grabner et al. (23) apply classical approach in tracking steps, typical for template 

tracking, described by Hager et al. (24). First, current classifier in the region of interest is 

analyzed. Each position then yields a certain confidence value, which allows to analyze a 

resulting confidence map and translate the bounding box to a different location, following 

an object. Using mean shift procedure as described by Comaniciu et al.(25) can be used 

for improving detection. Furthermore, should a motion model be applied, it would be 

possible to reduce the search window. After the bounding box has been translated in 

accordance with confidence map values, the classifier has to be updated in order for it to 

adapt to object’s possible appearance changes. Once again the current selected region 

becomes a positive example and the surroundings are sampled into negative examples. 

3.3.2. On-line AdaBoost 

The on-line boost concept that has been introduced into a tracker by Grabner et al. (23) 

is based on weak and strong classifiers and selectors.  

Weak classifiers have weak requirements and have to yield decisions that are slightly 

more accurate than those of random guessing process. A weak hypothesis ℎ𝑤𝑒𝑎𝑘 

corresponds to a feature and is generated by a weak classifier via a learning algorithm. 

A selector operates on a set of weak classifiers 𝐻𝑤𝑒𝑎𝑘 = {ℎ1
𝑤𝑒𝑎𝑘, … , ℎ𝑀

𝑤𝑒𝑎𝑘}  with a 

hypothesis and choses one of them based on an optimization criterion. In this case every 

classifier has an estimated error value 𝑒𝑖 and the selector chooses one classifier with the 

smallest 𝑒𝑖. 

Strong classifiers are computed based on a linear combination of the weak ones. For a 

sample 𝑥 the strong classifier binary decision and its confidence value are defined as 

follows: 

ℎ𝑆𝑡𝑟𝑜𝑛𝑔(𝑥) = sign(𝑐𝑜𝑛𝑓(𝑥)) 

3.1 

𝑐𝑜𝑛𝑓(𝑥) =  ∑ 𝛼𝑛

𝑁

𝑛=1

·  ℎ𝑛
𝑠𝑒𝑙(𝑥) 

3.2 

The following diagram (Figure 3.3) provided by Grabner et al. (23) illustrates the decision 

process for one sample. 
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Figure 3.3 AdaBoost strong classifier calculation 

Selectors are the core of on-line boosting algorithm concept and are randomly initialized, 

holding an individual set of weak classifiers. Weak classifiers are updated as soon as the 

new training sample is available for analysis. As described before, the classifier with the 

lowest error is chosen by a selector.  

Updating the weak classifiers is said to consume the largest amount of processing time, 

so a global pool of weak classifiers is used instead of a dedicated pool per each selector. 

This allows to update all the weak classifiers in one go and move on to updating the 

selectors with their respective weak classifier sets, from which the best one is chosen and 

the weights are passed on further. Once all the selectors are updated, a strong classifier 

for given sample may be produced. Moreover, in the end of each iteration the weak 

classifier with the greatest error is removed from the pool and a new one is randomly 

chosen, which introduces more diversity into the selection process. 

3.3.3. Feature Selection 

Three different feature types are utilized in order to produce weak classifiers. Among 

them are Haar-like features as described by Viola and Jones (1), orientation histograms 

((26-28)), simplified local binary patterns(29). It is important to stress that the features 

can be computed fast enough for the tracking to remain real-time by employing integral 

images and histograms (27).  

3.4. Tracking Learning Detection (30) 

In their work work on a TLD tracker, Kalal et al. (30) present a tracking methodology that 

is tolerant to object disappearances and appearance changes, while not requiring 

preliminary training in offline mode. The core idea is to combine tracker and detector 

neither of which are suitable for solving the long term tracking problem separately. 

Authors propose the following framework to solve the long-term tracking task (Figure 

3.4) 
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Figure 3.4 TLD information flow diagram 

The tracker follows the object of interest from frame to frame, while the detector 

attempts to find all the previously seen appearances of the object and corrects the tracker 

if it deemed necessary. An array of object transforms can be used to estimate the object 

trajectory. The tracker in proposed TLD implementation is based on Median Flow (19) 

tracker with failure detection introduced. A pyramidal Lucas-Kanade feature tracker is 

employed (31). Object disappearances (when the average displacement of features is 

greater than 10 pixels) are handled by returning no bounding box. The tracker is tolerant 

to fast movements. 

Object detection component utilizes patches of object and its surroundings. A set of 

grayscale patches that describe the object and its surroundings are generated when the 

initial bounding box is selected. Possible alterations of the initial object appearance are 

generated with respect to scale and shift with predefined steps. It is reported that around 

50 000 patches are generated for an image of QVGA resolution (320x240 px) and 200 

synthetic positive patches are produced as the initial learning set for a detector. Patches 

are scaled to 15x15 pixels no matter what their original size is. The precise number of 

patches is said to be proportional to the frame resolution and the object bounding box 

size. 

Patches are an integral part of the object model employed in TLD. Every patch has several 

similarity measures attached to it: 

 Positive nearest neighbor similarity 

 Negative nearest neighbor similarity 

 Positive nearest neighbor similarity with respect to 50% of earlier positive 

patches 

 Relative similarity (higher values point out that the patch represents the object of 

interest) 
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 Conservative similarity (high value leads to a conclusion that the patch resembles 

object appearances seen in the first half of positive results) 

A scanning window grid is generated to perform detection based on patch similarity, 

which is computed using integral images and takes constant time (1). 

If neither the tracker nor detector return a bounding box, the object is considered not 

present in the view. However, if one of them fails, either the tracked bounding box or a 

maximally confident detector patch become the new output (confidence derived from 

similarity measures). 

The concept of positive-negative experts (P-N learning) is introduced which facilitates 

the overall self-evaluation and correction of the proposed algorithm. The detector is 

evaluated by these experts during every iteration (every frame). Positive experts retrieve 

missed detections while the negative one keeps track of false positives. The training set 

of the detector is obtained live and is constantly updated and improved by feedback from 

the experts. False negatives retrieved by the P-expert are labeled positive and their 

addition to the set increases detector’s generality (it recognizes more appearances of the 

object), while false positives are labeled as negative by N-expert and increase detectors 

ability to discriminate against everything that is not an object of interest.  

In Kalal’s implementation P-expert makes use of temporal structure of input frames and 

works under assumption that the object follows a certain trajectory, and if a detector 

labeled current location as negative, while the tracker considers this to be the current 

object’s position, a false negative example is added to detector’s set with a positive label. 

N-expert, on the other hand, makes use of the fact that there may only be one object 

appearance in any given frame. It analyzes all detector responses and the only one 

produced by a tracker. The most confident detector response is chosen as a reference 

patch. All the other patches that do not overlap with the reference one are labeled as 

negative. 

3.5. Semi-Direct Monocular Visual Odometry (32) 

Forster et al. propose a precise and robust algorithm that solves the problem of visual 

odometry. The method does not employ computationally costly feature extraction and 

works with pixel intensities. This feature of the algorithm allows it to work at higher 

frame-rates. 

The method is proposed to be used in small aerial vehicles that are controlled remotely 

or move using predefined patterns (e.g. quadrocopters, drones). A single camera directed 

downwards is thus employed as the only source of images for the algorithm. This is done 

in order to decrease the overall vehicle weight, which is crucial for small flying machines. 

The proposed algorithm works in two threads, simultaneously estimating the camera 

position and mapping the exposed area in 3D similar to SLAM algorithms. (33) 



22 
 

 

Figure 3.5 SVO parallel tracking and mapping 

In a thread that estimates camera relative position, image alignment using a sparse model 

is performed first. This is achieved by minimizing the photometric error between the 

current frame and the previous one. Pixels that correspond to projected positions of 3D 

points (points that belong to a map created by a separate thread) are used to calculate 

this error. Motion estimation is then performed by minimizing the reprojection error 

introduced by a feature-alignment step. 

The mapping thread uses a probabilistic depth-filter in order to estimate a 3D position 

for each detected 2D feature. Depth filters use large depth uncertainty values. More 

depth-filters are initialized when a feature is detected in an image region with a small 

amount of 3D-2D matches previously detected. One the uncertainty value of a depth filter 

for given feature becomes small enough, a corresponding three-dimensional point is 

inserted into the map, which is ready to be used by a thread that calculates camera 

movement.  

Despite the fact that feature correspondence is used in this algorithm, it is only performed 

when new keyframe with new 3D points is inserted into memory, which gives a 

significant fps boost to the algorithm. 

3.6. Preprocessing 

3.6.1.  Sharpen 

Image sharpening is a process of image modification that results in an image that is less 

blurry than the original input (see Figure 3.6). 
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Figure 3.6 Example of image sharpening9 

In the digital image processing context, a technique called unsharp masking is used to 

perform image sharpening. This concept is employed in software that is dedicated to 

working with digital pictures such as GIMP (34). Unsharp masking can also be applied in 

order to actuate edges and enhance contrast in places that fall under the filter’s actions. 

(35) 

Gaussian blur (36) is applied to the original image copy. The copy is then compared with 

the original and a certain threshold value is used to subtract images from each other if 

the difference is greater than that threshold. 

This technique comes at cost of possible introduction of artifacts such as undesired edges, 

but this effect can be used to our benefit when the image has to be further analyzed by a 

computer algorithm (such as a tracker or a detector), but not by a human viewer. There 

is also a possibility to only apply the effect to select channels of an RGB image or to select 

regions of the latter. 

The following three parameters are commonly used in unsharp masking for digital 

images (34, 35): 

 Radius. A smaller radius results in making smaller details more visible. 

 Amount. This parameter controls the general strength of resulting sharpening 

effect. 

 Threshold specifies the minimal amount of difference between pixels when 

sharpening should take place. This parameter can be used to leave smooth 

transitions untouched, but increase other subtle details’ visibility (both for human 

viewers and for computer vision algorithms). 

 

                                                        
9 http://upload.wikimedia.org/wikipedia/commons/4/43/Unsharped_eye.jpg 
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3.6.2. Histogram Equalization 

Representation of how often a value is encountered in a set is called a histogram. 

Histograms are traditionally visualized using rectangles, and their width represents the 

value classes, while their height is proportional to the number of value occurrences in 

given set. (37) 

Histograms may be of special interest when analyzing or modifying/enhancing with 

digital images. An image histogram contains the number of pixels corresponding to each 

value of tone (intensity).Figure 3.7 shows an image on the left and its histogram on the 

right.(38) 

 

Figure 3.7 Example of image and its histogram1011 

In particular, it is possible to use histograms to enhance the picture’s brightness and 

contrast by reassigning pixel intensity values. Stretching the peaks of an image histogram 

will increase the overall image contrast. Histogram equalization method adjusts the input 

image in such a way that the histogram of a resulting image becomes uniform, hence 

removing redundancy in dark or light tones (see Figure 3.8). (39) 

                                                        
10 
http://upload.wikimedia.org/wikipedia/commons/thumb/0/08/Unequalized_Hawkes_Bay_NZ.jpg/450p
x-Unequalized_Hawkes_Bay_NZ.jpg 
11 http://upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Unequalized_Histogram.svg/450px-
Unequalized_Histogram.svg.png 
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Figure 3.8 Example of an equalized histogram and a corresponding image1213 

OpenCV computer vision library offers an implementation of image histogram 

equalization. As described above, a function provided by OpenCV library alters the image 

so that its histogram becomes stretched and more uniform. This is achieved by 

remapping the initial histogram to a new one. This remapping has to be the cumulative 

redistribution function. Histogram 𝐻(𝑖) has a cumulative distribution 𝐻′(𝑖) defined as 

𝐻′(𝑖) =  ∑ 𝐻(𝑗)

0≤𝑗<𝑖

 

𝐻′(𝑖) has to be normalized in a way that the greatest value equals 255, which is the top 

limit for image intensity value. The image is then transformed using a normalized 𝐻′(𝑖) 

lookup table. (40, 41) 

3.6.3. Specular highlight removal 

Specular reflections in digital images are a result of light reflection by the observed 

surfaces. As the word specular suggests, light rays are reflected in a single direction as if 

the surface was a mirror. Reflections like that are typically seen on glossy surfaces and 

surfaces of objects with wet nature (see Figure 3.9, Figure 3.9).  

   

Figure 3.9 Synthetic specular highlight14 Figure 3.10 Specular highlights in an endoscopic image15 

                                                        
12 
http://upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Equalized_Hawkes_Bay_NZ.jpg/450px-
Equalized_Hawkes_Bay_NZ.jpg 
13 http://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Equalized_Histogram.svg/450px-
Equalized_Histogram.svg.png 
14 http://www.reallyslick.com/blog/wp-content/uploads/2011/08/quality_specular-300x187.jpg 
15 
http://www.doc.ic.ac.uk/~benlo/videos/Figure%206.10b%20SFS%20without%20specular%20removal
.jpg 
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Specular highlights often become an obstacle for human eyes while inspecting images or 

video sequences for prolonged periods of time. Highlights also capable of somehow 

interrupting object tracking/detection algorithms and other algorithms that depend on 

the integral object surface visual representation. Most algorithms, however, remove 

outliers such as irregular specular highlights. (42, 43) 
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4. Related Work 
 

The following chapter describes current achievements and experiences with telestration 

for surgical telementoring, camera motion estimation (visual odometry) in minimally 

invasive surgery (MIS), as well as in object tracking in MIS. 

4.1.  Search Methods 

Google Scholar16 has been used as a primary source of literature. The Table 1 describes 

the keywords used and the number of findings. The number of papers “found” denotes 

the number of papers that contain the necessary keywords and are included in the initial 

(bigger) set of literature. The number of “relevant” papers is the number of papers that 

were considered relevant after a more detailed inspection from the first initial set. 

Keywords Found Relevant 
camera+motion+estimation+surgery 26 15 
object+tracking+surgery 11 4 
telestration+surgery 26 10 
visual+odometry+surgery 8 6 

Table 1Results of literature search 

4.2.  Camera and Tissue Motion Estimation and Visual Odometry in MIS 

Given that a digital laparoscopic/endoscopic camera is an inevitable necessity in 

minimally invasive surgical procedures (both in traditional laparoscopic surgeries and 

those facilitate by robotic systems such as ZEUS and Da Vinci), researchers have long 

since turned their eyes to benefit from the most abundant source of data provided by a 

camera – a stream of digital images from inside the patients’ body. 

Earlier approaches to obtain information necessary for camera motion estimation 

heavily relied on sensors and techniques other than image analysis of a 

laparoscopic/endoscopic camera feed (44) (45, 46): 

- Artificial visual landmarks for image-processing approaches 

o LED lights 

o Infra-red stickers 

- Sensors 

o IR sensors 

o Ultrasonic sensors 

o Mechanical accelerometers 

With theoretical framework behind object tracking and camera motion estimation 

techniques described in 1988 (47), it was not at the time possible to provide robust real-

time implementations of such techniques. Early works were focusing 2D beating heart 

frequency tracking and instrument tracking (44) (46, 48). Heart tracking techniques are 

still being perfected and are mostly applied in order to counter cardiac shaking in video 

streams and in instrument positioning. Many works that feature visual tracking (with or 

                                                        
16 https://scholar.google.no/ 
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without artificial landmarks or external sensors) focus instrument tracking and robotic 

camera holder as a replacement to human assistant who manually holds the camera. (49) 

In time, visual techniques have become more efficient and complex, and have been 

developed as an alternative (or in addition) to tracking methods such as ultrasonic or 

infrared scanning, or introducing infra-red or colored markers. The growth of 

computational power of computing devices also greatly contributed to such turn of 

events. There are several reasons to avoid marker (artificial landmark) introduction and 

ultrasonic/infrared techniques (50, 51): 

- Possible personal biological intolerance to the markers being introduced, 

which may result in serious problems for the patient. 

- Markers have to be glued or stitched to the organ surface which may take 

extensive amounts of time and result in poorer clinical outcome. 

- It is not always possible or safe to introduce markers because of the space 

being limited inside the cavity. 

- Portions of organs are overlapped by markers and are no longer visible. 

- More equipment has to be introduced into the already crowded operating 

theatre. 

- Infrared scene lighting (with or without infrared markers introduced) 

introduces additional heat to the cavity, which is not always tolerable in the 

operation’s context. 

The techniques listed above often facilitate camera or tissue motion estimation with a far 

greater accuracy and speed than the techniques that rely solely on visual input, but they 

come at a certain price as just described (52) The following core advantages of purely 

visual motion estimation have been identified: 

- No additional equipment needs to be introduced to the operating theater given 

that digital video stream is provided. 

- No modifications required for visual techniques to work with existing MIS 

robotic hardware. 

Traditional uses of such techniques span across a set of surgical procedures that involve 

minimally invasive techniques and are image-guided such as bronchoscopy, transnasal 

skull-base neurosurgery, rhinoscopy and laparoscopic techniques, including those 

assisted by robotic systems.  

Grayscale 8 bit image feed is often used as a source of data. However, sometimes all 3 

channels are utilized in order to perform virtual field of view extension. Some approaches 

such as the one used for 2D instrument tracking and proposed by Bourger et al. (53) make 

use of alternative color spaces such as HSV. 

Many approaches are based on simultaneous localization and mapping (SLAM) method 

that is widely used in unmanned moving vehicles and use Kalman Filter or its extended 

version to facilitate the creation of a 3D point map. (54, 55) 

 

Heart tracking 
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Many research groups use motion estimation in order to perform virtual stabilization of 

a camera and surgical tools. This kind of stabilization is proven to be of great benefit for 

beating heart surgeries. If a virtual camera stabilization problem is solved, it will allow to 

solve the immediately adjacent problem of mechanical robotic instrument stabilization 

by moving the instruments intact with the patient’s heartbeat, making a beating heart 

surgery not a lot more difficult than a surgery on a heart that is almost still. Otherwise, a 

surgeon himself is bound to adapt his movements to the rhythm of a heart beating, while 

that focus and energy could be targeted at other actions. 

Such interest and abundance in positive results on virtual camera stabilization in beating 

heart surgeries are partly justified by the fact that heart is a much more rigid, less 

deformable and better defined organ as opposed to other parts of human body where 

endoscopic or laparoscopic surgeries take place (e.g. epigastrum), which makes it easier 

to track the surface of a beating heart using various methodologies. The fact that robotic 

systems such as Da Vinci and Zeus do not possess an integrated organ/tissue motion 

tracking capability to solve the problem, also fuelled the interest to this kind of research. 

These robotic systems, however, provide precise information on camera and tool motion 

because these motions are completely controlled by the surgeon via the system’s 

interface or semi-automatically, which leaves the camera motion estimation problem 

solved in case of robotic systems. (56, 57) Many solutions that are being developed with 

further integration with robotics in mind are developed for stereo 

endoscopic/laparoscopic cameras. (57) 

Bader et al. (57) proposed to describe a beating heart motion estimation as a partial 

differential equation that has a periodic solution (because the hearts beats repeatedly). 

Their system is developed using C++ language and a COM interface to MATLAB computer 

vision and differential equation libraries. Usually, well known portions of heart are 

tracked, which results in greater robustness of such solutions when that portion is clearly 

observable. 

Sauvée et al. (51) employed a texture tracking approach for solving a beating heart 

problem as an alternative to tracking artificial landmarks with known geometrical 

shapes. Texture features and sum of square distances (SSD) from frame to frame were 

used in order to calculate the organ movement. 

Stoyanov et al. (58) propose a solution for soft tissue motion tracking based on two 

combined feature detectors that help reconstruct the 3D structure. A pre-calibrated 

stereo laparoscopic camera was used in order to obtain images. The method uses Lucas-

Kanade feature tracker in order to follow the features throughout a consequent set of 

stereo images. (9) (59) The authors mention several less computationally complex 

alternatives to their method including the use of mechanical or optical accelerometers 

(60) and monocular motion recovery from 2D images (61), the latter two, however, 

being used exclusively for beating heart motion tracking. 

Soft-tissue tracking and visual odometry 

As opposed to heart motion tracking, soft tissues are not so easy to track in some 

scenarios and possess far greater flexibility and in most cases cannot be considered a 

rigid body. Natural landmarks (features and sets of features) in soft-tissue tracking might 
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be unexpectedly occluded or change their appearance because of tissue folding and 

lighting changes. (62, 63) 

Applications of soft tissue tracking are also slightly different from those possible in heart 

surgeries. In this case, tracking may be used to facilitate surgical guidance 

intraoperatively, impose active restraints on robotic instruments or compensate motion. 

(58) 

In the foldable non-rigid tissue tracking field, a stereo video feed from a camera located 

on the tip of an endoscope/laparoscope is often used because of the ever increasing 

popularity of robotic MIS systems. Stereo image gives the researchers an opportunity to 

benefit from the use of epipolar geometry techniques and in essence obtain more visual 

data from one frame with less camera movement involved. 

A solution based on simultaneous localization and mapping (SLAM) has been proposed 

by Mountney et al. (64). Their method aims to build a persistent three-dimensional map 

of the cavity while recovering camera position at the same time. Accordingly, Kalman 

filter (65) is used in order to process a map of 3D points as in many other SLAM 

approaches. Stereoscope position is estimated based on a 6 degrees of freedom (DOF) 

motion model. The features used to create a map are Shi-Tomasi features (22), tracked 

by a Lucas-Kanade feature tracker. The stereo laparoscope has to be calibrated in order 

for this method to work. 

A method for tissue deformation tracking and learning the deformation online has been 

proposed by the same research group. (66, 67) 

Mountney et al. (68) later proposed an extension of the latter approach for stereoscopic 

cameras that facilitates the dynamic expansion of viewport, while creating a 3D map of 

the cavity in a SLAM fashion. This method is reported to work in real time. In 2010, a new 

augmentation to this method was proposed by the same research group, now taking 

periodic movements such as respiratory or cardiac shaking into account. The system 

learns such movements and compensates movements within its SLAM procedure. The 

method is accordingly called MC-SLAM (motion-compensated SLAM). Extended Kalman 

Filter is being used in this case. (69) 

A somehow similar approach to camera motion estimation is proposed by Wang et al. 

(70) in order to track the position of an endoscopic camera inside the patient’s brain. The 

brain tissue is reported to be abundant in specularities, being poorly texturized. 

Moreover, the nature of endoscopic lighting and camera movements introduce extreme 

scene lighting and motion blur. The researchers propose a method that uses SIFT feature 

detector (71). However, an SVD (72) matching algorithm was used instead of the native 

SIFT matching function, because SVD proved to yield more correct matches. Minimization 

of reprojection error is used in order to create a 3D point cloud that is then iteratively 

updated. In this case, RANSAC has been reported to be insufficient to filter outliers since 

their amount was excessively big. Adaptive Scale Kernel Consensus (ASKC) is proposed 

instead, which is capable of estimating the accepted amount of outliers dynamically, 

making it possible to tolerate small inlier amounts and continue tracking. 
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A technique for retrieving structure from motion in a similar manner was proposed by 

Hu et al. (73) in 2012, using the LK feature tracker and a special method of outlier removal 

(instead of traditional RANSAC), called trifocal tensor. 

Another approach that employs reprojection error minimization has been described by 

Noonan et al. (63). Their method allowed to recover 6DOF (velocity and angular velocity) 

camera movement, while building a 3D cavity map using the SLAM methodology. RANSAC 

outlier filter was deemed sufficient for the task. However, an extended Kalman Filter 

(EKF) variation was employed in order to boost SLAM robustness. The researchers stress 

that small distance between stereo cameras is a limitation for SLAM techniques, as well 

as the fact that features may be extremely sparse in some cases and be occluded by 

highlights. 

There are several approaches such as the one proposed by Mirota et al. (74) that can be 

dramatically speeded up (optimized by parallelization) using graphics processing unit 

(Nvidia CUDA technology is commonly used for such purposes). A method of endoscopic 

camera motion estimation from a video feed uses preoperative CT scans as a source of 

data as well. Matlab implementation of SIFT feature detector is used. The researchers 

claim to achieve a 300 times speed boost by implementing a GPU optimization. 

Some researchers state that SIFT/FAST features do not provide enough speed for the 

structure from motion SLAM algorithms to be robust and real-time at the same moment 

(75). Instead, a STAR (76) feature detector has been used together with binary robust 

elementary features descriptors (BRIEF)(77). This combination of feature detector and 

descriptor yielded better matching percentage than a conjunction of SURF and SIFT 

respectively. Speed performance has also been reported to be greater, while offering 3D 

reconstruction of tissue deformations in real time. 

A method proposed by Lourenco et al. (78) makes use of structure from motion 

techniques (3D map from 2D images) for stereoscopic images, while at the same time 

being tolerant to a certain degree of non-rigid transformations. The scene is segmented 

under the assumption that it is rigid, but if the non-rigid transformations occur within 

separate segments, the algorithm still yields correct results. However, this robust 

structure from motion implementation does cannot be performed in real-time. 

Grasa et al. (79) propose their modification of SLAM technique tailored for handheld 

monocular endoscopes. An extended Kalman Filter (EKF) is used together with a joint 

compatibility branch and bound SLAM (JCCB SLAM). FAST features and simple patch 

correlation were used. This combination, however, suffers dramatic performance loss if 

there is even one mismatch, but outlier filtering solves this issue. 

Chang et al. (80) propose yet another variation of stereo visual odometry. 6 degree of 

freedom position transformations are provided by the algorithm. A technique called 

quadrifocal relationship is used in conjunction with traditional photometric error 

minimization in order to estimate the features’ position in space. The quadrifocal 

technique makes use of two consequent stereo images in the same way most monocular 

methods use two consequent “mono” images, in effect spanning the feature position 

estimation across 4 frames. The fact that the algorithm is optimized for GPU allows it to 

run in real-time using a dense set of features. 
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4.3.  Telestration in Telementoring 

Telestration as a tool has initially been in much use in applications such as sports and 

weather forecasting (15). Moore et al. (81) were one of the first research groups to have 

reported their experience in laparoscopic surgical telementoring while empowering the 

mentor with a telestration functionality. Ever since the early days of telestration in 

telementoring, its significance has been acknowledged and it has been reported as a 

feature that greatly enhances communication quality between the mentor and the 

mentee. (82) 

However, the research groups that pioneered in surgical telestration in telementoring 

reported the fact that it was hard to use telestration in real time because of network 

bandwidth that was not enough at that time (year 1997) to support a live audio, video 

and telestration streams at the same time. (82) 

Despite the fact that telestration was deemed useful, in the early days of telementoring 

the telestration tool has not received enough attention, being often omitted in favor of 

system simplicity or because of bandwidth limitations. 

As more research groups performed and evaluated surgical telementoring, its 

educational and clinical benefits became apparent(83, 84), leaving room to look deeper 

into its integral part - telestration. 

The capability to telestrate, provided by a system used for telementoring has been proven 

to dramatically increase teaching capabilities of a remote surgeon, making it much easier 

to reach agreement then while using a combination of audio and video communication 

(traditional video-conference) (85). Budrionis et al. (86) have conducted an extensive 

literature review on telestration in surgical telementoring which revealed several 

advantages of telestration apart from those mentioned above. The fact that 

communication is enhanced and more informative allows the surgeons conduct an 

operation in significantly smaller amount of time, which in turn makes the surgeons (both 

mentor and mentee) more available, and results in improved clinical outcome (86). The 

fact that telestration is proven to increase the quality of surgical education makes it an 

invaluable tool to counter the lack of surgical residents that are trained to operate on 

certain rare conditions that can be taught remotely (15, 85).  

However, telestration is often not provided together with commercial telementoring 

setups. It is known, though, that robotic Da Vinci system offers a possibility to telestrate 

in two dimensions on its master console. (87) 

Budrionis et al. propose the use of WebRTC17 to be used in order to transmit the video 

stream and telestrations over the network right into a browser, making the system usable 

on virtually any device that is capable of running a web-browser and possesses a network 

connection with sufficient bandwidth(15, 88). This being said, it might be possible to use 

telestration while performing a telementoring session from a mobile device such as a 

smartphone or a tablet (89). Using small portable devices that provide natural drawing 

interfaces such as tablets makes it possible to effortlessly use them for on-site telestrating 

while being scrubbed in or remotely (15). Using WebRTC and portable devices allows 

                                                        
17 http://www.webrtc.org/ 
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telementoring to be used as a service (i.e. on demand), making one mentor virtually 

available anywhere and anytime, providing him with core tools for sharing his knowledge 

and guiding the less experienced surgeons (88). 

Certain limitations are present in use of telestrations. The quality of telestrations vastly 

depends on network bandwidth and delays. This issue is far less pressing nowadays, but 

it is not completely obsolete. Santomauro et al. (87) report delays up to 500ms to be 

tolerable in telementoring, which is possibly also true for telestrations, but has not yet 

been assessed. 

Another problem that is relevant for any telestrating software is related to camera 

movements that are an integral part of any surgical operation, especially if a mentee is 

relatively novice in given procedure execution. Any camera movement basically renders 

telestrations useless because they become displaced and lose their logical meaning, 

because they are supposed to visually reside over a certain anatomical landmark. Several 

possible countermeasures were proposed by Budrionis et al. (89), including only 

allowing telestrations on still images, which eliminates the problem as such at cost of 

temporary loss of interactivity. One other possible approach is using 3D models retrieved 

from CT or MRI body scans. It might also be possible to make use of computer vision 

techniques. The latter two are, however, reported to be problematic to be implemented 

using mobile platforms. 
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5. Methods and Materials 
 

5.1. Research Paradigm and Tools 

This work has been performed using an engineering approach described by Comer et al. 

(90) First, the requirements and specifications are defined, then system design is 

performed, then the system is implemented and is afterwards finally tested. 

5.2. Materials 

In order to implement the system, a combination of software tools and two different 

operating systems have been used. Development took place on Windows 8 and Ubuntu 

14.04 operating systems. 

The following tools were used on a Windows operating system: 

- VS Express 2013 for Desktop18, an IDE provided by Microsoft that includes a .NET 

and WPF frameworks, used for developing the system’s user interface 

- C# language has been used to develop the GUI module of the system 

The following tools were used on a Ubuntu system: 

- Bash19 scripting command line language has been used to facilitate utility 

scripting while processing the digital image sets 

- Python20 scripting programming language has been used to facilitate image 

processing and object tracking for test purposes (using OpenCV for Python) 

- Matplotlib21 Python library has been used for plotting data sequences 

- C++ language has been used as a primary interface language for working OpenCV 

and developing the stabilizer module of the system 

The following tools were used on both operating systems: 

- OpenCV22, an open source library that contains a vast collection of image 

processing tools and algorithms, is released for Windows and Ubuntu and 

provides interfaces for all the languages used throughout the project 

- FFmpeg 23codec collection has been used to work with video and image sequences 

Among the hardware used is a stationary PC (Intel Core i7 4500U CPU, 8Gb RAM, 

Windows 8) and a laptop (Intel Core i5 3450s, 8Gb RAM, Ubuntu 14.04) 

5.3. Data Collection and Experiment Methods 

5.3.1. Literature review & Related Work 

A literature review has been performed in order to formulate functional and non-

functional requirements for the system, as well as to identify the current trends in 

                                                        
18 https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx 
19 http://www.gnu.org/software/bash/ 
20 https://www.python.org/ 
21 http://matplotlib.org/ 
22 http://opencv.org/ 
23 https://www.ffmpeg.org/ 
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telestration for surgical telementoring and surgical image processing in context of 

camera motion estimation and object tracking (See Table 1). 

5.3.2. Meetings with Expert Surgeons 

Several meetings with expert surgeons at UNN (Hiten Patel, Rolv-Ole Lindestmo and Etai 

Bogen) have been held in order to formulate the requirements for the system and discuss 

the possible approaches to facilitate the stabilized telestration. 

5.3.3. Application Testing 

The application has been iteratively tested along the development path, testing the 

modules separately with surgical residents at UNN (Hiten Patel, Etai Bogen). The 

application’s telestrating capabilities have been tested using input from a web-camera 

connected via USB, and using pre-recorded video files. 

5.3.4. Object Tracker Benchmark 

The object tracking algorithms have been collected from an experimental OpenCV 

module called contrib, which provides open source C++ implementations of the Median 

Flow tracker, the Ada Boost tracker, and the MIL tracker. The open source C++ 

implementation of TLD (the primary subject tracker of this work) algorithm has been 

retrieved from a public repository of Georg Nebehay, AIT24. The same repository contains 

the Python implementation of a CMT tracker which has been developed as an alternative 

or competitor of TLD. Total of 5 object trackers are featured in this work. 

A data set of total 6 video sequences has been collected using chunks of laparoscopic 

videos in public access (www.youtube.com) and the video records provided by Hiten 

Patel and Etai Bogen. The videos were then enhanced (histogram equalization, 

sharpening) in different ways and a resulting set of 24 videos has been processed by all 

the object tracking algorithms featured in this work. 

5.4. Evaluation Methods 

The application evaluation has been performed by expert surgeons from UNN (Hiten 

Patel, Etai Bogen). Evaluation of subject trackers has been performed in a semi-

automated way by processing the data set that consists of surgical videos with subject 

trackers and recording the results. 

The results were then plotted using Matplotlib and quantitative and qualitative analysis 

has been performed. 

5.5. Critique of Methods Used 

The application development should be performed with larger user audience, who could 

provide feedback on system’s usability and desired/undesired features. However, it 

might not be easy to find large numbers of surgeons. 

Getting a larger test group that would include the beginner surgeons, and a systematic 

questionnaire could provide more thorough information about the kind of telestration 

tool desired by a broader range of surgeons. 

                                                        
24 https://github.com/gnebehay 

http://www.youtube.com/
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Some SLAM (simultaneous location and mapping) and object tracking algorithms with 

their source code publicly available could not be tested because of the software 

constraints or  software/hardware portability issues. Some algorithms require pre-

calibrated or stereoscopic cameras to be used, while the goal of this study is to try and 

employ the simpler and less expensive setup for telementoring and stabilized 

telestration. 

Computer vision is a rapidly developing field of study and many computer vision 

algorithms suitable for the task might appear in the near future or might not have been 

found by author. This, however, does not stop us from changing the tracking element of 

the system which can be done easily due to the modular architecture. 

5.6. Summary 

The following methods were used in this work: 

- Data collection 

o Literature review 

o Data set collection 

o Meetings and discussions with expert surgeons 

- Engineering approach 

o Requirement specification 

o System design 

o System implementation 

- Application testing 

o Peer review 

o In-depth tracker testing 

o Tracker testing results interpretation 

The methods used are described in depth in the later chapters. 
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6. Requirements specification 
 

In this chapter, the definition of requirement specifications if described. A proposed 

scenario, use cases and the derived requirements are presented. 

UML use case diagram was created according to the scenario. Volere Requirements 

Specification (91) was used as a basis for systematic requirements definition. 

6.1. Requirements Source 

Requirements for the system are specified in a manner proposed by Robertson and 

Robertson (91), being divided into functional requirements that specify the actions that 

the system enables user to perform, while the non-functional ones identify the properties 

of system behavior. 

Requirements are in their mass derived from review of relevant literature and related 

work that has been previously performed and described by other researches in the same 

field (object tracking/image analysis in minimally invasive surgeries (MIS), image 

stabilization and telestration in MIS). 

Expert surgeons from University Hospital of Northern Norway (UNN) have also made an 

impact on the definition of system requirements. 

State-of-the-art systems inspired some of the requirements 

The way we want to test it later at UNN is also behind the requirements (surgeons are the 

source) “experts’ suggestions”. 

6.2. Requirements 

6.2.1. Scenarios and Required System Behavior 

Scenario.  

A minimally invasive surgical procedure on a certain patient has taken place at some time 

in the past. A video footage of the whole operation has been recorded. The video itself 

contains several segments of educational value that an expert mentoring surgeon would 

like to demonstrate to his less experienced colleagues who are in turn eager to learn.  

The mentoring surgeon needs a telestration tool in order to be able to draw lines or 

shapes with arbitrary properties on top of a moving video footage. However, small 

respiratory/cardiac and larger camera movements sometimes render the drawings 

useless because the tissue and the camera are displaced relatively to each other in 

relation to their position when a drawing has been created. 

Behavior. 

The system should provide the functionality to process and transmit the video sequence 

of interest, as well as provide the functionality to draw annotations on top of a video feed 

and handle camera movements when such movements occur in order to keep the 

drawings close to their initial logical position within a given video. 
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6.2.2. Use Cases 

The following use case diagram (Figure 6.1) depicts how a mentoring surgeon could use 

the system and how a system would behave. 

 

Figure 6.1UML use case diagram 

The “extending” nodes follow their parent use cases, but are not obligatory to follow 

them, while the “included” ones are bound to happen after their parent use cases take 

place.  

A more detailed description of use cases follows. 

Use case 1: View a segment of pre-recorded MIS video 

A mentor wants to see a surgical video that has been recorded prior to the 

mentoring session. 

Use case 2:  View a live video from MIS camera 

A mentor wants to see live video from a MIS camera that is inside a cavity (it can 

be a dry lab, or a simulation, or a training environment) 

Use case 3: Telestrate (camera not moving) 

A mentor wants to telestrate over a video that is being displayed, while the camera 

is not moving. Telestrations are not usually made over a moving picture. 

Use case 4: Cancel latest telestration 



41 
 

A mentor wants to cancel the latest telestration either because it has been drawn 

incorrectly or because it is no longer required. 

Use case 5: Explain the telestration (camera stabilized) 

A mentor wants to take his time and explain the meaning behind a recently drawn 

telestration. The camera is not moving or is moving insignificantly due to 

cardiac/respiratory movements. 

Use case 6: Explain the telestration (camera moving) 

A mentor wants to take his time and explain the meaning behind a recently drawn 

telestration. The camera is moving significantly either due to cardiac/respiratory 

movements or because it is otherwise required to move it by the flow of operation. 

Use case 7: Stabilize telestrations to counter camera movement 

The system stabilizes the telestrations created so far by using the information 

provided. 

Use case 8: Request a different stabilization method 

A mentor is not happy with current telestration stabilization method and/or 

wants to try a different one. 

Use case 9: Customize telestration tool 

A mentor wants to change the visual properties of telestrations that will be drawn. 

Use case 10: Customize line width 

A mentor wants to change line width of the telestrations that will be drawn. 

Use case 11: Customize line color 

A mentor wants to change the color of telestrations that will be drawn. 

Use case 12: Customize telestration shape 

A mentor wants to change the shapes that will be drawn by a telestration tool. 

6.2.3. Functional Requirements 

Functional requirements are defined based on the scenario described above, an UML 

presented, and the feedback from expert surgeons at UNN. Concerns about the system’s 

future development also made an impact on the list of requirements. Functional 

requirements will be numbered FREQ#<number> and will be referred to using such 

enumeration later on. 

FREQ#1 

Description: 

The system will provide a GUI for viewing videos from laparoscopic/endoscopic 

cameras and pre-recorder MIS videos. 

Use case(s) related: 
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1, 2 

Rationale: 

A GUI for viewing videos either live or pre-recorded is a basic functionality that is 

underlying the possibility to perform mentoring and telestrate. 

Source: author 

FREQ#2 

Description: 

The system will provide a way to switch between live and pre-recorded video 

input modes. 

Use case(s) related: 

1, 2 

Rationale: 

There has to be a way to switch the input modes between sessions in order to use 

it with pre-recorded or live surgical videos. This will also ensure that it is possible 

to test the system with staged and non-staged videos. 

Source: author 

FREQ#3 

Description: 

The system will provide a means of creating annotations on top of a surgical video 

being displayed. 

Use case(s) related: 

3 

Rationale: 

It is necessary to provide a way of drawing annotations for the mentor to be able 

to actually telestrate while performing a mentoring session. 

Source: author, expert sugeons 

FREQ#4 

Description: 

The system will provide a means of removing the last annotation created. 

Use case(s) related: 

4 

Rationale: 

This is a direct solution to the use case 4 problem. 
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Source: author, expert surgeons 

FREQ#5 

Description: 

The system will provide a built-in telestration stabilization method in case of 

camera movement. 

Use case(s) related: 

6, 7 

Rationale: 

It is necessary to cancel out camera movement for telestrations in order for them 

to remain informative after camera displacement. 

Source: author 

FREQ#6 

Description: 

The system will provide a means of switching the method of telestration 

stabilization while the system is offline. 

Use case(s) related: 

6, 7, 8 

Rationale: 

Methods of stabilization may become obsolete or better alternatives can be found, 

which makes it necessary to be able to switch the stabilization method without re-

building the system. 

Source: author 

FREQ#7 

Description: 

The system will provide a GUI to customize telestration line width. 

Use case(s) related: 

9, 10 

Rationale: 

This is a solution for use cases 9, 10. 

Source: author 

FREQ#8 

Description: 

The system will provide a GUI to customize telestration line color. 
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Use case(s) related: 

9, 11 

Rationale: 

This is a solution for use cases 9, 11. 

Source: author 

FREQ#9 

Description: 

The system will provide a GUI to customize telestration shape. 

Use case(s) related: 

9, 12 

Rationale: 

This is a solution for use cases 9, 12. 

Source: author 

 

6.2.4. Non-functional Requirements 

Non-functional requirements are partly derived from basic usability concerns. Future 

work on the system is also among the factors that influenced non-functional 

requirements. Non-functional requirements will be numbered using NFREQ#<number> 

notation. 

NFREQ#1 

Description: 

The system’s GUI should run natively on Windows OS 7 and higher. 

Rationale: 

With future testing at UNN in mind, the GUI should be able to run on Windows 

machines because of the hospital’s IT policies. 

Source: author, UNN IT stuff 

NFREQ#2 

Description: 

The video should be displayed with delays less than 500 milliseconds. 

Rationale: 

It has been reported that delays more than 500 milliseconds negatively affect the 

mentoring session quality. 

Source: author, expert surgeons  
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7. System Design 
 

This chapter describes the proposed system design that would conform to functional and 

non-functional requirements and be fitting for further testing and development at 

UiT/UNN hospital. 

7.1.  High-level System Design 

The following diagram (Figure 7.1) depicts a high level system design. 

 

Figure 7.1High level system design diagram 

The system is logically split into two modules, which makes it possible to alter one 

module without affecting the other. This way a stabilizer can be switched without 

disassembling the whole system and making excessive changes as long as the tracker 

conforms to the defined message format (both video and stabilization data)(FREQ#6). 

A video provider is a source of video that can be hooked up to the stabilizer. In the same 

way, a video provider can be any camera connected to the system or any file that resides 

in the system’s long-term memory. It could also be a video stream from a remote host 

(FREQ#2). 

After being retrieved from the video provider and processed by the stabilizer, a video 

stream is then transmitted to the GUI module and is shown to the user (FREQ#1). 

Stabilization data (i.e. estimated camera motion) is transmitted in parallel with the video, 

but in a separate data stream (FREQ#5). This is necessary to make it simpler to make 

changes to respective functionality and make the system more flexible in general. 

7.2.  GUI Module Design 

The GUI module will be responsible for providing an interface for the user to see the 

system’s output and to interact with the system by telestrating (Figure 7.2). 
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Figure 7.2 GUI module design diagram 

The user input is a component provided by operating system and standard input devices 

(e.g. mouse, keyboard), or any means of input that can be mapped to the standard input 

methods. 

The GUI module will possess two concurrent methods of interprocess communication 

that will run in parallel. Video input will provide a sequence of images to be displayed on 

the video layer which will be the lowest layer in the visual hierarchy. 

Stabilization input will provide information about camera movement, which will be 

applied to all the telestrations drawn so far, moving them accordingly (FREQ#5). The 

telestrations will be displayed on top of a video layer. 

The actual GUI elements will be displayed at the very top of visual hierarchy in order to 

ensure their visibility for the user at all times. User input such as drag & drop with the 

mouse left button will be interpreted into telestrations that will be placed on 

telestrations layer (FREQ#3). The GUI element positioning is displayed on Figure 7.3. 
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Figure 7.3 UI elements positioning 

The undo button is to provide a solution for FREQ#4. Once this button is hit, the latest 

telestration will be removed from the telestrations layer. 

The sandbox will display the current telestration shape, which is a simple freehand line 

drawing by default. The same sandbox will be a button (left click) to choose a telestration 

shape (FREQ#9), and a button to change the telestration color (right click) (FREQ#8). 

This way, less screen space will be occupied by the UI elements and a greater portion of 

underlying surgical video will be seen. 

The brush size slider is to provide a functionality to alter line width in a user-friendly way 

that does not require any numerical keyboard input and can be controlled with simple 

mouse drag & drop gestures (FREQ#7). 

The canvas opacity slider is introduced to provide a way to temporarily hide the 

telestrations or make them transparent to a certain degree (from 0% to 100 %) if the 

mentor thinks it is necessary to see them through. 

A close button is there to give the user the opportunity to stop the system. 

7.3.  Stabilizer Module Design 

The stabilizer module is going to perform most computationally heavy tasks in the 

system. The overall stabilizer design is depicted in Figure 7.4. 
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Figure 7.4 Stabilizer module design diagram 

Stabilizer’s video input is a part of stabilizer that is responsible for providing a stream 

of frames from the desired source. In case a mentoring session is going to feature surgical 

procedures that were recorded before, a file can be used as a video source. But if a live 

feed from a laparoscopic/endoscopic camera is needed, video input can be configured to 

use a camera of choice as a source as long as the camera is connected to a computer, 

where the module runs (FREQ#2). 

The decompressed/decoded frames are then passed to a video output thread, which uses 

an interprocess communication method to transmit the video to the GUI module 

described previously. 

In parallel, the decompressed/decoded frames are optionally passed to an image pre-

processing module, where certain adjustments can be made (e.g. brightness/contrast 

adjustment, sharpening). This step is sometimes necessary in order to enhance the 

images’ quality to make the image analysis more efficient. 

Depending on the experiment/mentoring session circumstances, a pre-processed or raw 

decompressed frames are then passed to an image analysis module, which uses computer 

vision techniques in order to retrieve camera motion coordinates that are necessary for 

telestration stabilization. 

Note that the image analysis node can be replaced by any other node as long as it yields 

correct/sufficient stabilization data in the end, including a node using different 

computer-vision techniques. This also means that if necessary, sensors other than camera 

can be used for camera motion estimation (FREQ#6). 

The estimated camera motion data is then serialized into a certain standard and is passed 

to a thread that performs interprocess communication with a GUI module (FREQ#5). 
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8. Implementation 
 

This chapter describes the implementation of the system’s GUI module and the 

stabilization module in detail. See source code in Appendix A. 

8.1. Technologies and Libraries Used 

Microsoft .NET framework 

A Microsoft .NET framework has been chosen as a basis for the system’s GUI module. The 

framework is designed for and is primarily used on Windows-based systems, which 

complies with NFREQ#1. A framework provides a Framework Class Library that is 

shared across a certain set of languages, making modules written using .NET 

interoperable between this language set. A .NET framework-based programs are 

executed in a common language runtime (CLR) virtual environment, which resembles a 

JAVA runtime environment technique. The .NET virtual environment handles memory-

management and certain levels of security, which allows the developers to not worry 

about memory leaks and certain security risks. 

The latest .NET 4.5 version is used in this project in order to ensure support of most 

advanced GUI features, as well as the ways to work with asynchronous tasks and network 

streams (as a part of interprocess communication). 

Windows Presentation Foundation 

Windows Presentation Foundation (WPF) was chosen as a tool for implementation of the 

system’s GUI. It is shipped together with Microsoft .NET framework, starting with version 

3. WPF employs the DirectX collection of APIs to draw the user interface, which makes a 

great difference in performance if dealing with complex graphical structures. 

WPF adopted the philosophy of describing business logic and visual components 

separately. An XML-based extensible application markup language (XAML) is used to 

describe the visual components of a WPF application. Each of XAML definitions 

corresponds to a certain object or attribute from the CLR, making it fully dependent and 

compatible with Microsoft CLR environment. 

The WPF framework provides extensive capabilities for creation of graphical user 

interfaces. 

C Sharp (C#) 

C# programming language has been chosen for the system’s GUI module implementation. 

This language is one of the languages that conform to common language infrastructure 

(CLI). This means that C# can be compiled to an intermediate language and be run on a 

CLI implementation (e.g. CLR provided by Microsoft). The C# can be used to utilize any 

functionality provided by the .NET framework. 

Microsoft Visual Studio Express 2013 

Visual Studio Express 2013 has been used as an integrated development environment for 

working with .NET, WPF, C# technology stack while developing a GUI module of the 

system. 
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OpenCV 

Open Source Computer Vision is a library that provides the functionality necessary to 

operate on digital images. Its primary goal and most common application is processing of 

real-time image sequences. 

Being written in C++, the library provides C++ language as its primary interface. Bindings 

for other languages are now implemented as well, making it possibly to utilize the 

library’s functions in Python, Java and Matlab. A number of wrappers for other languages 

exists. 

Emgu CV is an OpenCV .NET wrapper that can run on different platforms, which makes 

it possible to use any CLI language (including C#) to access the OpenCV functionality. 

C++ 

A C++ language which is the primary interface language for OpenCV library, was used to 

develop an image processing module of the system and make use of some publicly 

available object tracker C++ Linux implementations. 

GCC 

The GNU compiler collection GCC has been used to compile the stabilizer module code on 

a Ubuntu 14.04 system. 

Boost 

A Boost collection of C++ libraries has been used in order to implement interprocess 

communication via network (Asio library from Boost collection) on the stabilizer module 

side, as well as to implement the multi-threaded approach. 

Python 

Python programming language was used to facilitate utility scripting on Ubuntu while 

creating test sequences for tracking. It has bindings for OpenCV libraries and allows to 

operate on video files or image sequences while working with high level abstractions. 

Bash 

Bash command processor for Linux systems scripting has been used to facilitate batch 

processing of video files and image sequences by running Python scripts or other 

programs with necessary command line arguments, which allowed to avoid hard-coding 

certain values. 

8.2. GUI Module Implementation 

8.2.1. Visual Hierarchy 

The GUI layout has been described using XAML markup language. Most of the visuals are 

described in a MainWindow.xaml file. The hierarchy of visual elements is represented in 

Figure 8.1. 
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Figure 8.1Hierarchy of visual elements 

The LayoutRoot component is a Grid type container which is used to store GUI elements. 

As the type name suggests, it has definitions of rows and columns that can contain 

elements inside of them. Being a root level container, LayoutRoot is a logical (and visual, 

in our case) parent of all the other GUI elements. 

The ImgBehind is an immediate child of the LayoutRoot and is set to stretch all over its 

parent in order to fill the whole application width and height. This element has a Source 

property which will be used to store and display the incoming video stream. The Source 

property is set to display a blank white picture by default, stretched to fit the ImgBehind 

width and height. This element has the lowest ZIndex property (ZIndex = -1) which 

ensures that it will be displayed underneath the telestrations and the GUI control 

elements. 

The canvasArea element serves as a visual container for telestrations that will be created 

by user. It has a ZIndex of 0, meaning that it will be displayed right on top of the video 

feed. 

ParentGrid is a container for all the UI elements through which the user interacts with the 

system (besides the drawing functionality which is provided by a canvasArea). 

The Tools element is a child of the ParentGrid and is a StackPanel container type. Its 

children are displayed as a vertical stack, making it a good component to contain the UI 

buttons. 

The Tools element is a parent to 2 buttons: btnUndo and lineSampleBorder. BtnUndo, once 

clicked, will call a Button_Undo which cancels the latest telestration and the mechanism 

behind will be described later. A lineSampleBorder is basically a visual wrapper for a 

lineSample element, which acts like a button but is of Image element type. This button, 
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once clicked using a left mouse button, will call a tool selection dialog, and once clicked 

with a right mouse button, will call a color selection dialog. The dialogs and their logic are 

defined in separate XAML files. The lineSample element is also used to display the current 

telestration shape, width and color in order to make the user capable of instantly knowing 

what sort of brush he is going to use. 

Several Viewbox elements are there to hold the opacity slider and the brush thickness / 

line width slider and respective numerical inputs. 

The btnCloseApp element is a button that contains a cross picture and is responsible for 

shutting the application down. 

The dialogs for tool and color picking were defined in separate files: 

SelectToolDialog.xaml and SelectColorDialog.xaml respectively. The two were defined in 

a similar fashion, using a similar visual structure (Figure 8.2,Figure 8.3): 

 

Figure 8.2 Visual structure: tool selection dialog 

 

Figure 8.3 Visual structure: color selection dialog 

They are both implemented using a grid component as a root-level container with a 

StackPanel inside. The StackPanel elements use horizontal orientation, allowing the stack 

to be filled in in a horizontal manner. A list of buttons in the two StackPanels represents 

the possible tool and color choices. 

It is possible to choose from a simple Brush tool, an Ellipse, a Rectangle, a straight Line, 

and a Text tool in the tools dialog (Figure 8.4). 
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Figure 8.4 Tool picker dialog 

The color dialog offers a choice from white, red, bright blue (aqua), yellow and black 

(Figure 8.5). 

 

Figure 8.5 Color picker dialog 

8.2.2. GUI Logic 

Logic is separated from the UI element description but it specifies the way the elements 

influence the system’s behavior and the way they represent data. 

The MainWindow class contains several private and public variables that are the 

foundation for displaying a video and for all the telestration functionalities working. 

The following variables are responsible for storing an image in OpenCV-compatible blue-

green-red format (using an EMGU OpenCV wrapper for .NET), and a .NET Bitmap data 

structure that can later be displayed by an ImgBehind UI element (Code snippet 1). 

A list of telestrations (Code snippet 2) created by the user is also stored as a variable 

inside a MainWindow instance. 

A Telestration class defined in a Telestracion.cs file is a class defined to store any given 

telestration as a single object with certain attributes. A list of Telestration instances holds 

a collection of references to lists of Shape elements. Shape elements are the way the user-

created telestrations are stored inside a canvasArea element from the visual hierarchy. 

Image<Bgr, Byte> emguImage; 
System.Drawing.Bitmap emguImageConverted; 

Code snippet 1 Emgu Image declaration 

List<Telestration> listTelestration; 

Code snippet 2 Telestration list declaration 
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With an instrument and color selected, a user can draw telestrations similar to how it is 

done in any traditional drawing application – by pressing and releasing left mouse button 

and moving the cursor while the mouse button is down.  

The drawing functionality is controlled by several events attached to a canvasArea 

element. canvasArea_MouseDown event tracks the moment when the user wants to start 

drawing a shape chosen by the tool selection dialog. Once the mouse is down for the first 

time, the shape, color and width are applied to the telestration that will be drawn. 

The actual drawing happens when the mouse starts moving over the canvas Area, 

triggering a canvasArea_MouseMove event. Both mouse events provide a cursor position 

in their MouseEventArgs argument which allows to easily retrieve the position for a new 

telestration being drawn. 

If the mouse is down and the mouse is moving, a new telestration is being drawn. If a 

freehand brush is the current tool, the line will be drawn along with the cursor path. 

However, if a certain shape-tool has been selected, it will only become persistent after 

the mouse move occurs without the mouse button being down. Either way, a sequence 

(in case of freehand brush) or a single instance of Shape class will be added as children to 

the canvasArea element. References to the very same recently-created Shape element(s) 

will be incapsulated into a Telestration class and inserted into a list of telestrations which 

will allow us to later manipulate the sets of telestrations in order to counter the possible 

camera movements. 

Two additional lists are used in order to store a data structure called the “undo stack”, 

which is used to facilitate the latest telestration cancellation (Code snippet 3).  

The undoList stores pairs of integer numbers which represent the beginning and the end 

of a telestration sequence as it is stored inside a canvasArea, which allows us to easily 

remove the latest sequence of Shapes created, effectively implementing the “cancel” 

functionality. Whenever a new telestration is being drawn, the respective Shape indices 

are first stored inside a tempUndo list, and after the mouse button has been released, the 

sequence boundaries are appended to the permanent undoList. 

8.2.3. Telestration Class 

The Telestration class is a high-level abstraction which is necessary to work with 

collections of telestrations. It allows the system to memorize the initial telestration’s 

logical position in the “world” 2D coordinates based on the current known camera offset. 

Every telestration instance also possesses a pair of offset coordinates. A sum of “world” 

and “offset” coordinates yields the telestration’s coordinates on the screen, which makes 

it possible for the telestrations to follow the camera movements and retain their logical 

position. The fact that a Telestration instance contains a list of Shapes allows to apply the 

2D transform to all the Shapes in the list at the same time, which will immediately affect 

the telestrations that logically and visually belong to canvasArea element. 

List<List<int>> undoList = new List<List<int>>(); 
List<int> tempUndo = null; 

Code snippet 3 Undo lists declaration 
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The moment a new Telestration is instantiated, a new TranslateTransform instance is 

created, which provides the utility functions to work with 2D transformation. The 

TranslateTransform is then incapsulated into a TransformGroup object, which can be 

applied to Shapes that will be added to given Telestration instance.  

The following example illustrates how the telestrations keep their logical location while 

the camera moves. Whenever a new Telestration is created, it is assigned a current 
camera transform estimation, which equals (0,0) at the very beginning of the system’s 

workflow. All the incapsulated shapes are assigned a certain (𝑥1, 𝑦1) on-screen position. 

(See Figure 8.6) 

 

Figure 8.6 Telestration before camera movement 

After the camera moves by (𝑥2, 𝑦2), this difference in positions is appended to the 

transform of Telestration, which results in positioning it at (𝑥1 − 𝑥2, 𝑦1 − 𝑦2) in screen 

coordinates while maintaining its world coordinates. (See Figure 8.7) 
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Figure 8.7 Telestration before and after camera movement 

The fact that the TelestrationGroup is assigned to the Shapes by reference makes it 

possible to adjust the transform of all Shapes in one go when the corresponding method 

is called (Code snippet 4): 

8.2.4. Video Reception 

TCP sockets have been chosen as a means of interprocess communication for video 

transmission, which makes it possible to launch the stabilizer module either on the same 

machine, or on a remote host if it is necessary. 

public void Translate(double x, double y) 
        { 
            tt.X += x; 
            tt.Y += y; 
        } 

Code snippet 4 Appending camera offset to Transform object 
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A TCPListener is instantiated in the constructor method of the MainWindow class. It also 

starts listening to incoming connections with video transmission in the constructor 

method. The AcceptListener function accepts port number as an argument and is 

launched in the asynchronous manner, which prevents the UI thread from freezing until 

the connection is established (Code snippet 5). 

The moment the connection is established, a background worker thread is instantiated 

in order to asynchronously receive a video stream. The system is designed to work with 

images of fixed size (640 x 480 px) that have 1 byte per pixel value and 3 color channels 

(RGB/BGR), meaning that one decompressed frame will be of 921600 bytes size. One a 

background worker receives a frame, it converts the incoming EMGU-format image into 

a Bitmap that can be displayed by a WPF Image user interface element. The background 

worker than starts receiving the next frame. The process is repeated indefinitely. 

A NetworkStream abstraction class provided by .NET has been used to work with the 

images received. This level of abstraction allows to avoid unnecessary complexity of 

working with low-level TCP socket interfaces. 

8.2.5. Stabilization Data Reception 

The stabilization data is received asynchronously in parallel with the video frames that 

are later displayed to the user. Asynchronous Task .NET class is utilized to create an 

AsyncService class which is responsible for receiving the transform deltas from the 

stabilizer module. The AsyncService class is defined in a separate file (AsyncService.cs). 

An instance of AsyncService is created and run together with the MainWindow instance. 

TCP sockets were used as a means of interprocess communication with the stabilizer 

module. As soon as the AsyncService is instantiated, it starts listening to incoming 

connections from the stabilizer module. The transforms are sent as a stream of data and 

are delimited by a newline symbol, which makes it possible to read them using a utility 

function of a StreamReader .NET class (Code snippet 6): 

As soon as the new line is received, it is split into two coordinates using space character 

as a delimiter. The Vector of two doble-precision floating point numbers is then passed 

private async void AcceptListener(int port) 
        { 
            this.port = port; 
            this.ipAddress = new IPAddress(new byte[] { (byte)192, (byte)168, 
(byte)230, (byte)1 }); 
 
            listener = new TcpListener(this.ipAddress, this.port); 
            listener.Start(); 
 
            tcpClient = await listener.AcceptTcpClientAsync(); 
            worker.RunWorkerAsync(); 
        } 

Code snippet 5 Asynchronous accept listener 

string request = await reader.ReadLineAsync(); 

Code snippet 6 Asynchronous line reading from a stream 
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to the MainWindow class as a TransformReceived event where it is applied to a 

Telestration list available at the moment and keeps the telestrations intact with estimated 

camera movement. 

8.2.6. GUI Module Summary 

The GUI module in essence runs 3 threads and 2 of them are dedicated to asynchronous 

interprocess communication which is in turn necessary to receive a stream of video and 

estimated camera position alterations. (See Figure 8.8) 

 

Figure 8.8 GUI module threads 

8.3.  Stabilizer Module Implementation 

The stabilizer module has been implemented on a Ubuntu 14.04 system using the C++ 

language, a Boost collection of libraries and the OpenCV library for Linux systems, and a 

GCC compiler for C++. The module is launched with several mandatory and optional 

command-line parameters that make it possible to choose the parameters for 

interprocess communication, the source of video, and the object tracker that will be used 

as a source of stabilization data. 
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8.3.1. Video Input 

The stabilizer module is launched with an optional parameter to specify a video source 

file. This gives the user an opportunity to telestrate on a pre-recorded surgical footage. If 

this optional parameter is omitted, the camera connected to a machine that hosts the 

stabilizer, will be used as a source of frames (see Code snippet 7). 

If the user chose to telestrate on a video file, it is also possible to specify the offset in 

seconds so that the telestration session will start from a certain segment of video, 

possibly omitting the parts that are of smaller interest. 

As soon as the parameters are successfully passed, a thread that reads and transmits the 

video is started. 

The thread first waits for the connection with a GUI module to be established and then 

initiates the reading/sending loop of the data from the chosen capture device (a file or a 

camera). The frames are read as a decompressed default OpenCV matrix structure that 

contains a certain number of columns and rows (in our case, 640 x 480) and is in our case 

3 channels deep, with each single pixel encoded by 1 byte of information. After the frame 

is decompressed, it is send asynchronously via a socket connected to the GUI module. 

Once one frame is decompressed and fully sent to the GUI module, the thread executes a 

handler and starts reading and sending the next frame provided by a capture device. 

8.3.2. Stabilization Data 

Once the command line arguments are successfully parsed, a stabilization thread is 

started in parallel with the thread for reading a video stream. The stabilization thread 

first waits for the connection with the GUI module to be established. After that, an 

instance of tracker that has been chosen is instantiated. 

A collection of trackers provided by the tracking module in opencv_contrib repository 

branch25. The collection includes the MIL, the Online Boosting, the Median Flow and the 

TLD trackers. A common interface is provided in order to allow the developers to work 

with all the trackers in a uniform manner.  

                                                        
25 https://github.com/Itseez/opencv_contrib/tree/master/modules 

VideoCapture cap; // capture device declared 

… 

cap = VideoCapture(0); // camera input 

… 

cap = VideoCapture(argv[5]); // path to a video file (5 th  

                             //command-line argument) 

Code snippet 7 Video capture initialization 
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First, a bounding box rectangle has to be created in order to define the area that has to be 

tracked. The very first frame is then passed to the tracker init method together with the 

bounding box, effectively initializing it and making it ready to work (see Code snippet 8). 

Assuming that the structure of interest is in the center of the screen, a bounding box is 

positioned to have its center right in the center of the initial image, and is 200 px wide 

and high. 

The stabilizer thread copies frames from the ones read by a video thread and feeds them 

to the tracker in an infinite loop, calling its update method (see Code snippet 9). 

The bounding box structure is then upgraded to conform to the camera movement if it 

happened and it is possible to retrieve the movement offset. After this happens, the new 

bounding box coordinates are serialized and passed on to the GUI module via the TCP 

socket as a means of interprocess communication. The serialized bounding box 

coordinates are a string that contains a pair of double-precision floating point numbers, 

separated by a space and terminated by a newline character. 

The whole image processing loop logically looks as follows (Figure 8.9):  

Rect2d boundingBox; 

… 

boundingBox.x = bbx0; 

boundingBox.y = bby0; 

boundingBox.width = bbw; 

boundingBox.height = bbh; 

… 

cap >> frame; 

… 

tracker->init( frame, boundingBox ); 

tracker->update( image, boundingBox ) 

Code snippet 8 Bounding box and tracker initialization 

Code snippet 9 Tracker update 
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Figure 8.9 Image processing thread 

8.3.3. Interprocess Communication 

The interprocess communication has been implemented using Unix TCP sockets, 

wrapped into a Boost library collection in order to work on a higher level of abstraction. 

In both threads that are communicating with a GUI module, an individual socket on the 

same IP address with 2 different ports is used. The ports are specified in the command 

line parameters of a stabilizer module.  

After the connection is established, the data is written asynchronously in chunks, which 

is handler by an async_write function from Boost asio library. After the async_write is 

completed, a handler function is called to continue sending data as long as something to 

send is present. 

Using separate ports for different kinds of data makes it possible to make changes to the 

programs’ components in a more understandable and scalable way. The video retrieval 

and compression/decompression method can be altered without touching the image 

processing code, which in turn can be modified to use a better of a completely different 

solution to the required image analysis. 

8.3.4. Stabilizer Module Summary 

In essence, the stabilizer module runs two threads in parallel (Figure 8.10 Stabilizer 

module parallel threads). Both utilize asynchronous sockets and transmit the data as 

soon as it is ready to be shipped, providing the necessary information to the GUI module 

which can safely run either on the same machine or on the remote host, allowing the 

stabilizer module do the image analysis “heavy lifting”. Such an implementation leaves 

place for introduction of image preprocessing techniques and replacement of the image 
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processing algorithm in its entirety if a better alternative is found, while not disturbing 

the implementation of streaming or GUI module. 

 

Figure 8.10 Stabilizer module parallel threads 

8.4. Image Preprocessing 

Image preprocessing can optionally be included into the stabilizer’s pipeline. It is possible 

to visually enhance the image right before it is going to be processed by an image analysis 

algorithm.  

It may sometimes be necessary to enhance the picture’s brightness/contrast values or 

sharpen it, which can help the optical trackers obtain more features to track. 

8.4.1. Histogram Equalizer 

Histogram equalization has been implemented in Python as a part of offline 

preprocessing routine. The method uses OpenCV functions which means that it is 

possible to implement the same approach using a C++ programming language and 

integrate it into the system if necessary. 
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The python code highlights that make the equalization happen are displayed in  

The image that has to be equalized is first read into a matrix object as a BGR (blue, green, 

red) picture with 3 channels. It is then converted to a YCrCb color space, making it 

possible to equalize a colorful picture using the Y channel. 

The image is split into 3 channels and the Y channel is then equalized. After that the 3 

channels are merged back in order to represent an image that has 3 channels, and finally 

the image is converted to BGR format which can then be either passed to an image 

analysis algorithm or written into persistent memory. 

8.4.2. Sharpener (Unsharp Masking) 

Image sharpening is implemented using an unsharp masking technique which first 

calculates a blurred version of the original image and then adds the blurred image to the 

original using weighted sums (see Code snippet 11). 

The image is first read as a BGR image. A blurred image is created with 101 and 101 as 

width and height of the Gaussian kernel. The original image is added to the blurred one, 

with 1.5 and -0.5 multipliers respectively, efficiently subtracting the blur from the image, 

sharpening it as a result. 

8.5. Summary 

The system has been implemented in a distributed/modular fashion, employing a cross-

platform method of interprocess communication, which can later be exploited for further 

development and modifications. Moreover, it is possible to implement a GUI module for 

any operating system or device (including cross-platform browser-oriented Web-RTC 

approach), because it is in essence a thin client for a stabilizer module which processes 

and broadcasts the video. 

img = cv2.imread(path, 1) 

imgHist = cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB) 

channels = cv2.split(imgHist) 

channels[0] = cv2.equalizeHist(channels[0]) 

imgEqualized = cv2.merge(channels) 

imgEqualized = cv2.cvtColor(imgEqualized, 

    cv2.COLOR_YCrCb2BGR); 

Code snippet 10 Histogram equalization 

img = cv2.imread(path, 1) 

blur = cv2.GaussianBlur(img,(101,101),0) 

sharpened = cv2.addWeighted(img, 1.5, blur, -.5,0) 

Code snippet 11 Unsharp masking 
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9. Testing 
 

9.1. Application Testing 

The application has been tested with expert surgeons from UNN using a conventional 

Windows-based PC and an Ubuntu 14.04 laptop. 

The laptop (Intel Core i7 4500U CPU) was running the stabilizer module of the 

application, while a stationary PC (Intel Core i5 3450s) was running a GUI module.  

The PC was connected to the laptop via a peer-to-peer WiFi connection with ping ~1ms 

and the throughput speed at least as big as 50Mb/s, which allows to transmit the decoded 

OpenCV images of 640x480 size at ~50 FPS, making the transmission real-time with 

extremely slow delays. 

The peer reviewers (Hiten Patel, Etai Bogen) reported the software to work as expected 

(the telestration moving according to the estimated camera movement). Several 

suggestions were made on the possible improvements which will be discussed in the 

Discussion and Future work chapters. 

While the systems are in vicinity and the network bandwidth is not a problem, it is safe 

to assume that one of the potential problems is the image analysis overhead. 

9.2. Object Tracker Testing 

9.2.1. Object Tracker Selection 

A set of 5 conventional object trackers has been selected in order to compare their 

performance on laparoscopic surgical videos. All the trackers are not proprietary and 

have their source code in public access. 

The 4 trackers available in the OpenCV experimental contrib26 repository were primarily 

selected. The tracking module of contrib repository provides C++ implementations of the 

following trackers described previously: 

- MIL 

- TLD 

- Median Flow 

- Online Ada Boost 

However, the TLD implementation provided in this module seems to be out of order and 

performs poorly. As an alternative, an optimized OpenTLD implementation of TLD was 

found. 

In addition, a CMT tracker has been included into the list as it is described as a competitor 

of TLD and was developed by the same research group that provided an OpenTLD 

implementation. A Python implementation of CMT is provided27. 

All the trackers listed above provide a universal interface and functionality (Figure 9.1). 

                                                        
26 https://github.com/Itseez/opencv_contrib 
27 https://github.com/gnebehay/CMT 
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Figure 9.1 Tracker interface diagram 

9.2.2. Data Set 

A data set for performing the tracker testing has been acquired through several 

consequent steps. 

9.2.2.1. Acquisition of Laparoscopic Surgical Videos 

First, a set of laparoscopic surgical videos has been acquired from two sources. Expert 

surgeons from UNN provided 4 laparoscopic videos. The second portion of videos has 

been acquired via Youtube28 

The following keywords were used to perform the search: “laparoscopic surgery”. Only 

videos that longer than 20 minutes were included into the initial video set. Videos with a 

large portion of view covered by a black mask (resulting from the camera shape) were 

removed from the initial set. Due to the fact that the tracking solution presented in this 

work was tailored to work with frames of 640x480 size, videos with maximum available 

quality less than 440p were removed from the set. 

The videos from a filtered set were examined by author and expert surgeons from UNN, 

and several parts of videos that may be subject to telestration and object tracking (with 

different degree of camera shaking and instrument overlapping) were extracted from the 

original videos. The selected chunks of video can be downloaded via the link presented 

in Appendix B. 

The resulting set contains 6 videos and is presented in Appendix D. 

9.2.2.2. Pre-processing 

The previously created chunks of videos have been broken down into separate frames in 

order to perform image enhancement.  

                                                        
28 www.youtube.com 
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All the frame sequences have been processed by a script that performed histogram 

equalization. The original set of pictures has also been processed by an image sharpener 

script. Finally, the original set of pictures has been processed by both histogram equalizer 

and image sharpener. 

The script for pre-processing of image sequences have been implemented using the 

Python programming languages and the OpenCV library (See Appendix C). 

The sequences have then been stitched back into the videos and given specific prefixes to 

identify the method of preprocessing that has been applied. eq_ prefix has been used to 

identify a video processed by a histogram equalizer. sh_ prefix has been used to identify 

a video processed by an image sharpener. sh_eq_ prefix has been used to identify a video 

that has been processed by an equalizer first, and then processed by a sharpener. A video 

that has no prefixes that were mentioned above is the original video. 

FFmpeg29 command line tool has been used to perform video break-down and assembly. 

The resulting data-set contains 24 videos, 6 of which are original, and the rest are a result 

of pre-processing as described above. This way, every original video has 3 enhanced 

versions, processed by different means. 

The videos described above are used to compare performance and precision of the 

subject trackers. Some videos have more camera shaking than others, either due to 

respiratory movement or to the instability of manual camera holding. The videos also 

possess different levels of texturization and blurriness. These characteristics that vary 

from one video to another will allow us to see which of the subject trackers perform best 

in challenging conditions and whether the preprocessing affects the tracking result. 

9.2.2.3. Feature Detection 

A number of frames from the videos described above have been used to perform a feature 

detection test that would yield evidence whether histogram equalization or sharpening 

affect the amount of features detected in the same surgical image. 

The amount of features detected might significantly boost the tracking quality since all 

the object tracking approaches as well as the absolute majority of computer vision 

techniques rely on tracking different kinds of features. 

9.2.3. Benchmark 

9.2.3.1. Benchmark Structure 

Every subject tracker has been given the same bounding box (Figure 9.2) and all the 24 

videos were processed this way. As a result, every tracker produced a file having the 

tracker’s name as a prefix followed by a video name: <tracker_name>_<video_name>.txt. 

                                                        
29 https://www.ffmpeg.org/ 
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Figure 9.2 Testing: Tracker Bounding Box 

Every file contains a number of lines equal to the number of frames in a given video. Every 

line contains two integer numbers that denote the position of the top left corner of a 

bounding box at a given frame (e.g. “200 200” line denotes the x=200, y=200 position of 

the bounding box). 

Whenever the current tracker is not able to find an object in the current frame, a NaN 

(not a number) value is printed out. 

Furthermore, while processing the video sequences, the tracker’s frames per second rate 

has been calculated which will allow to see how the algorithm speed varies across 

different types of video, both enhanced and raw. 

9.2.3.2. Benchmark Results 

Preprocessing 

The methods used for pre-processing in this work demonstrate the FPS rates that can be 

used in real-time image analysis and streaming (Table 2). 

Pre-processing method FPS 
Equalization 96 
Sharpening 28 
Equalization and Sharpening 22 

Table 2 Preprocessing FPS 

Feature detection 

An experiment on select pictures from the data set has been performed in order to 

determine whether the amount of features that are extracted from an image alters when 

histogram equalization or image sharpening are applied. 
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Figure 9.3 Raw image (left), Equalized image (right) 

 

Figure 9.4 Sharpened image (left), Sharpened and Equalized image (right) 

BRIEF and FAST feature detectors (the only non-proprietary feature detectors openly 

available from the library) provided by OpenCV library have been used to retrieve the 

number of features in the images presented above (see Table 3 for results). 

Feature type raw equalized sharpened eq. and sharp. 
FAST 7868 14293 12886 15037 
BRIEF 250 1660 697 1945 

Table 3 FAST and BRIEF feature detection 

Histogram equalization provides a significant boost in the number of features detected in 

case of both FAST and BRIEF features. Image sharpening provides a considerable 

increment as well, but in a slightly lesser degree. However, the most prominent feature 

number boost is observed when both equalizing and sharpening are applied. 

 

Figure 9.5 FAST features in original, equalized and sharpened images (from left to right) 

Frames per second 

The frames per second rates of all the trackers on all videos (including pre-processed 

ones) have been calculated. 

Several trackers such as Ada Boost(Figure 9.6), MIL(Figure 9.7) and TLD(Figure 9.8) did 

not display significant difference between the pre-processed and raw videos. 
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Figure 9.6 Ada Boost FPS 

 

Figure 9.7 MIL FPS 

 

Figure 9.8 TLD FPS 
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However, TLD displayed higher FPS for raw videos in some cases, which is most likely 

related to the amount of features found in the picture, which increases with the pre-

processing applied. 

The CMT tracker displayed severe speed reduction when the video was preprocessed 

which is most likely due to the high limit of features to track. This, however, makes the 

tracker more robust and tolerable to instrument overlapping or partial occlusion of 

region of interest, and with the feature limit set to a lower number, the FPS rates are not 

going to be as low. This tracker demonstrates the higher FPS on pictures with low 

texturization (Figure 9.9 CMT FPS). 

 

Figure 9.9 CMT FPS 

The Median Flow tracker displays framerates that are more than enough for real-time 

applications, in some cases demonstrating a decline of FPS in response to pre-processing 

and the increased amount of features found as a consequence. The extremities that 

exceed 400 FPS are a result of tracking failure and can be disregarded (Figure 9.10 

Median Flow FPS). 

 

Figure 9.10 Median Flow FPS 
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Object tracking 

Based on the bounding box coordinates retrieved from all the available trackers 

processing the various versions of available videos, it is possible to observe correlation 

between the video properties and the tracker robustness and degree of similarity 

between the results of other trackers. The following video properties and corresponding 

tracker behavior has been observed. See the videos and the video naming conventions in 

Appendix D. See the complete set of coordinate plots in Appendix E. 

v1 video does not contain any large scale movements and is almost static apart from 

minor camera shaking due to camera holder instability and patient breathing. It can also 

be characterized as a video with very low texture present. There is, however, a large 

specular occlusion in the center of the scene. 

In this video, the TLD tracker is the only one that correctly follows the camera movements 

(Figure 9.11). 

 

Figure 9.11 v1 raw tracking 

The other trackers drift away significantly in the very beginning, which is caused by a 

specular occlusion in the middle of the scene and its low texturization. However, from 

then on all the trackers but TLD agree on the trajectory. 

Sharpening, equalizing and doing both increases the tracker’s trajectory similarity (apart 

from TLD), and significantly reduces jitter. 

The TLD trajectory slightly alters after the pre-processing of the video, but also reduces 

the jitter. 

It is noticeable that the Ada Boost tracker drifts away significantly after the sharpening 

pre-processing takes place (Figure 9.12). 
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Figure 9.12 v1 sharpened tracking 

v2 video demonstrates higher texture presence and a significant amount of movement 

over time. In this case, all the trackers but TLD recover similar trajectory with Ada Boost 

tracker deviating slightly more than others. On the contrary with the previous case, TLD 

does not recognize the high-amplitude movement that occurs in the video. (Figure 9.13) 

 

Figure 9.13 v2 raw tracking 
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Histogram equalization leads to greater similarity between the trackers’ results (except 

TLD). Again, sharpening the image makes the Ada Boost significantly drift from its 

original trajectory. 

The TLD tracker does not display significant changes in trajectory while working with 

preprocessed videos of any kind. 

v3 demonstrates high texture presence, a moderate amount of movement and the 

introduction of an instrument that overlaps the region of interest. 

The TLD tracker fails to recover the position as soon as the instrument is introduced, 

while other trackers display similar trends (with Ada Boost being offset significantly, 

while retaining the trend). 

 

Figure 9.14 v3 raw tracking 

Histogram equalization reduces the Ada Boost offset and makes its trajectory more 

similar to the other trackers (Figure 9.15). Further image enhancements increase the 

degree of similarity between trackers’ results. 
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Figure 9.15 v3 equalized tracking 

The TLD tracker does not recover after instrument introduction no matter the image 

enhancement technique. 

v4 video is similar to the v1 sample. A bright specular occlusion and low texture with 

almost no movement. In this case, the TLD trajectory is the closest to what can be 

observed in this video. Other trackers drift away from TLD’s trajectory due to the 

specularity. (Figure 9.16) 
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Figure 9.16 v4 raw tracking 

Equalization makes the trajectories of all trackers but TLD more similar, while 

sharpening makes the trajectories of those other than TLD more similar to TLD, but not 

with a similar trend (Figure 9.17). Equalization combined with sharpening yields results 

that are similar to those of pure equalization. 

 

Figure 9.17 v4 sharpened tracking 
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v5 video demonstrates high texture and a rapid instrument introduction. The TLD 

tracker immediately fails on a raw video version. The other trackers perform well and 

with little differences (Figure 9.18). 

 

Figure 9.18 v5 raw tracking 

Equalization leads to increased similarity between the trackers’ results, but the TLD still 

fails. Sharpening, however, allows the TLD to stop failing and produce a robust trajectory 

(Figure 9.19). The same effect is achieved by applying equalizer and sharpener at the 

same time. 
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Figure 9.19 v5 sharpened tracking 

v6 is a video that does not contain a lot of textures. Calm respiratory movements are 

present. The TLD tracker trajectory is slightly different from those retrieved by other 

trackers, but there are no dramatic differences. A TLD tracker briefly fails on a raw 

tracking sequence. 

 

Figure 9.20 v6 raw tracking 



79 
 

Equalization removes the failure point introduced by the TLD tracker, while sharpening 

introduces one. The other trackers do not display significant differences across the 

preprocessed videos. 

The data obtained after processing the videos was also used to observe dependencies 

within one tracker and several pre-processing modes. 

Ada Boost tracker is seen to change the trajectory dramatically when used on a video 

with low texture and pre-processed by sharpening (Figure 9.21). In other cases, no 

significant differences in tracker behavior while different pre-processing modes were 

used. 

 

Figure 9.21 Ada Boost tracking v1 

The CMT tracker does not display any difference in trajectory while processing any kind 

of enhanced video. 

Median Flow yields trajectories that are improved greatly on low-texture slow motions 

when equalizer or sharpener and equalizer are used. Pre-processing helps the tracker 

recover from loss of object and yield the robust trajectory (Figure 9.22). 
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Figure 9.22 Median flow v5 tracking 

MIL tracker shows improvement in all 3 pre-processing modes across several videos (e.g. 

Figure 9.23), but does not change the trajectory when it is already robust. 

 

Figure 9.23 MIL v6 tracking 

TLD’s performance is demonstrated to be improved by different combinations of pre-

processing techniques by wither removing a few tracking failures or providing complete 

recovering from severe failures (e.g. Figure 9.24). 
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Figure 9.24 TLD v5 tracking 

9.3.  Summary 

The application was tested performance-wise and the surgical residents reported that 

the system conforms to the system requirements specified earlier, while at the same time 

proposing further improvements to make the system more user-friendly. 

The system remains experimental to a vast degree and is suitable for collecting user 

feedback and tracking statistics. 

The analysis of the pre-processing techniques has proven that they do impact the quality 

of image analysis and can in many cases be used to enhance the tracking results. 

Among the trackers tested, TLD has been proven to be more tolerable towards scenes 

with lower texture and subtle movements, while being weak towards fast movements 

(even in a highly texturized scene). The other trackers tend to behave similarly in 

different situations and fail tracking far less often than TLD does (in scenes with fast 

motion). 

Sharpening and histogram equalization have been proven to affect the immediate 

results of tracking of all the trackers besides the CMT, which is, however, weak towards 

large numbers of features to track. Image sharpening has been demonstrated to 

increase the quality of tracking for TLD.
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10. Conclusions and Future Work 
 

10.1. Conclusions 

The motivation behind this project was to propose and architecture and develop a 

prototype of a system for telestration in surgical telementoring that could be used as a 

test-bed for improvement of camera motion estimation and the telestration tool itself. 

The aim of this work was to test effectiveness of conventional object trackers in a surgical 

context, estimate and compare their performance with regards to different surgical 

videos and various methods of image enhancement such as histogram equalization and 

image sharpening. 

The system was successfully designed and implemented using C#(.NET/WPF)/Windows 

for the GUI and C++/Ubuntu for the stabilizer component. The system components 

communicate with each other using TCP sockets which means that the communication is 

reliable and the components may be replaced by newer versions or better alternatives as 

long as they conform to the same communication standard. 

The system provides the functionality described in requirements specification and gives 

the user an opportunity to perform basic telestrating operations over a surgical video 

streamed from a source of choice (e.g. camera, video file). 

The system’s distributed nature and the way the two modules communicate with each 

other allows the user GUI module to be implemented for mobile platforms using either 

native applications or a browser-based video and telestration streaming using WebRTC. 

The fact that the stabilizer module that has to do all the heavy work can reside on a 

powerful computing device, means that the GUI-machine is no longer a computational 

bottleneck and tracking algorithms of great complexity can be used as long as the 

“stabilizer” node is fit for the task and the network bandwidth allows real-time video 

transmission. 

In order to analyze the performance of a set of 5 trackers(TLD, CMT, MIL, Ada Boost, 

Median Flow), a data set of 6 laparoscopic surgery videos has been collected and 

processed by image enhancement techniques, resulting in total of 24 videos. The image 

enhancement techniques’ performance has also been measured, indicating that the two 

techniques used in this work can be used in real-time without impairing the system’s 

quality of service.  

FAST and BRIEF feature detectors were used to compare the amounts of features 

detected in a raw and enhanced image. Enhanced images have shown dramatic boost in 

the number of features with image histogram equalization giving a much more significant 

boost than the image sharpening enhancement. 

The FPS of trackers in question was calculated while estimating a position of camera in 

the whole data set. All the trackers but CMT displayed the FPS close to or significantly 

higher than the real-time FPS (24 fps). 

The tracking quality has also been estimated based on the output from the trackers and 

the data set of 24 videos. The trackers’ trajectory has been compared within each other 
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and with regards to the video being enhanced (pre-processed) or not. Plotting the latter 

relationship allows us to see the weak spots of certain trackers based that depend on the 

video property. 

It has been discovered that image sharpening in some cases leads to significantly 

increased tracking results, even recovers the tracker from failure (TLD). In general, 

comparing the trajectories produced by trackers on raw and enhanced (pre-processed) 

videos has shown that the pre-processing methods presented in this work provide a 

boost in trajectory robustness. However, the trackers that do not have limits on the 

number of features that represent the tracked area, and the trackers that use more 

computationally heavy feature detectors or trackers, suffer a performance (FPS) loss 

because of a greatly increased amount of trackable features in enhanced videos. 

10.2. Future Work 

Future work would first of all mean introducing improvements to the system’s usability. 

This means that it has to become less experimental and more ready to be deployed with 

ease. 

Although the telestrations’ position is adjusted based on the tracker, surgical videos 

contain movements from which it is not always possible to recover after a failure (e.g. 

extreme tissue folding, tissue removal, removing camera from the patient and 

introducing it back). 

A tracker failure should be included into the application’s routine instead of being an 

exception. It might be enough to hold a telestration in place while the mentee is observing 

the telestration and the tissue and is planning the next move. When the move (e.g. cutting, 

electrocuting) itself is performed, an instrument will obstruct the field of view and the 

tracker might fail. It may make sense to assign a new attribute to each telestration being 

created that would state how a telestration should behave in case of tracker failure.  

Every telestration instance may be given a “time-to-live” after the failure has occurred 

and will fade away gradually, while residing in the position where it was last left by the 

stabilizer. The surgeon would then have less worries about the object tracking failures. 

With the latter improvement in mind, some upgrades might be needed for a 

communication protocol. 

Also, there are many more tracking algorithms including object trackers and SLAM-based 

camera motion estimators that can be ported for a suitable software platform or language 

in order to be tested within the surgical video setting. 

Furthermore, the system could be extended to support mobile platforms while still 

relying on a “powerhouse” stabilizer module that would reside on a stationary PC. This 

would allow to test the system in a remote setting. 

And finally, a more systematic user feedback from a wider audience could be collected in 

the future, which would allow to tailor the telestration tool itself for the needs of 

operating surgeons.  
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Appendix A Source code 

See included file Source code.zip or 

https://dl.dropboxusercontent.com/u/18799254/Source%20code.zip 

The archive includes the GUI module implementation (VS 20013 C# project) and a C++ 

implementation of the stabilizer.

https://dl.dropboxusercontent.com/u/18799254/Source%20code.zip
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Appendix B Raw videos 

Raw videos can be found on 

https://dl.dropboxusercontent.com/u/18799254/Raw%20videos.zip 

A set of raw videos and their pre-processed copies can be found on 

https://dl.dropboxusercontent.com/u/18799254/All%20videos.zip 

https://dl.dropboxusercontent.com/u/18799254/Raw%20videos.zip
https://dl.dropboxusercontent.com/u/18799254/All%20videos.zip
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Appendix C Preprocessing scripts 

See attached file “Preprocessing scripts.zip” or 

https://dl.dropboxusercontent.com/u/18799254/Preprocessing%20scripts.zip 

The attached file and the file in the URL specified above contain the scripts used for 

preprocessing of image sequences (histogram equalization, image sharpening, and 

applying the latter two at the same time). 

After an image or a video is pre-processed, a prefix is appended in order to differentiate 

it from the raw version. 

eq_ prefix is added to assets that have undergone histogram equalization. 

sh_ prefix is added to assets that have undergone sharpening. 

sh_eq_ prefix is added to assets that have undergone histogram equalization and 

sharpening after that. 

https://dl.dropboxusercontent.com/u/18799254/Preprocessing%20scripts.zip
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Appendix D Video set and Naming Conventions 

Entries of the Name column are clickable hyperlinks and lead to www.youtube.com. 

The first prefix denotes the fragments’ belonging to a certain video. The following pairs 

(triplets) of numbers denote the beginning and the end of an interval, from which a 

segment has been cut(mm-ss or hh-mm-ss). The trailing numbers stand for video 

resolution, and the extension is for the video encoding format. 

Simple video name aliases are used throughout the work for better readability (Table 4). 

The data sets included may contain either simple aliases or aliases with time codes. 

Name Alias with time code Simple alias 
Laparoscopic left radical 
nephrectomy 

y1_50-44_50-
55_640x480.mp4 

v3.mp4 

Laparoscopic left radical 
nephrectomy 

y1_51-04_51-
08_640x480.mp4 

v2.mp4 

Laparoscopic left radical 
nephrectomy 

y1_1-10-17_1-10-
57_640x480.mp4 

v5.mp4 

Laparoscopic uterine 
fibroid surgery 

y2_00-13_00-
21_640x480.mp4 

v1.mp4 

Laparoscopic uterine 
fibroid surgery 

y2_00-23_00-
30_640x480.mp4 

v4.mp4 

Video provided by Etai 
Bogen (UNN) 

el1_00-33-40_00-34-
15.mp4 

v6.mp4 

Table 4 Video aliases 

http://www.youtube.com/
https://www.youtube.com/watch?v=eMV8R2fCBuo
https://www.youtube.com/watch?v=eMV8R2fCBuo
https://www.youtube.com/watch?v=eMV8R2fCBuo
https://www.youtube.com/watch?v=eMV8R2fCBuo
https://www.youtube.com/watch?v=eMV8R2fCBuo
https://www.youtube.com/watch?v=eMV8R2fCBuo
https://www.youtube.com/watch?v=yRfLm4MRHRA
https://www.youtube.com/watch?v=yRfLm4MRHRA
https://www.youtube.com/watch?v=yRfLm4MRHRA
https://www.youtube.com/watch?v=yRfLm4MRHRA
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Appendix E Tracking plots 

See attached file “Tracking plots.zip” or 

https://dl.dropboxusercontent.com/u/18799254/Tracking%20plots.zip 

The contrib_output_tracker_video_plots folder contains the plots created for every 

tracker/video combination, which integrate the results of raw videos tracking, and the 

pre-processed ones. These plots can be used to see if there is any difference in tracking a 

certain video by a certain tracker with or without a certain pre-processing method. 

The contrib_output_video_plots folder contains the plots created for every video (raw and 

every kind of pre-processing separately) that integrate results for all trackers in one plot. 

These are good for comparing tracking results produced by different trackers for the 

same video. 

In both folders, the vertical axis is either x or y coordinate of a bounding box, and the 

horizontal axis is the number of frame in the video. 

https://dl.dropboxusercontent.com/u/18799254/Tracking%20plots.zip
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