UiT Faculty of Science and Technology
Department of Computer Science

THE ARCTIC
UNIVERSITY
OF NORWAY Casuar
A Protected Library OS for running Windows applications on top of Vortex
Erlend Helland Graff
INF-3990 Master thesis in Computer Science June 2015
Ill/llllll/lll/llllIl/lll/llllll/lll/ll FLFLET BT LD R r il 7e7ererererrerererereriirerei
TTTITTEI 00 rrrrrrrir i i i inirnrir i i rinnid tErrnrrriiri i iinrnriniririririnirtriri i nrrtrtri it el e
FILTTEETIEIT 000100010710 07100000710071 BA8IAd0I0dI0d LI LI I I 1L 1q 1] PCIUDCICDCC T T

1111111 11111111 /
’IIIIIlIlIlIlIIlIlIlIlIlIIlIIGIGICQGI T1ITETITITRT R T i i rrriiiiiieriririri ittt riri il

11117117 / |
TOLEETTTTEEE i T e d i it it i i i i iidi i BERELT R E LT LD DL LL LD 0L LT LD L LTI LTI I i et ni
NTTHTETRET TP i ariri i e i i ndd 18R PEP TR0 in i itiiing i ir i areir it nari i nn it i il i i
ICOICSJC//IIIIIIIIIIIIIIIIIIIIIII PIREEIRTRTEIBQ 00 RT LI RI P AT iririrrereninininerenenininenrei

FORREERREEeieedbeadbabdrdy 20000 IMNININVINVININMIVINIIVNINIMINIILVNIMNIININUNMNENninn
WPTERRRbRRRbnRrRaRbRaRRndE 10000000010 I erinnninnning
Hin QITQRQ000000R000Iael 0000000 000000000000000000 00010114 1" {

il IIIIIIIIIIIIc,lII

~
~
-~
~
o~
s
S
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
N
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
e

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
o~
~
~
~
~
~
~
~
~
N
--
S
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
-
~
N
e

Vo0 pdpnn I NI
QNN NIl
iy MMMMMMMMMNMMMNMNMMMNMMIN‘dMmMmMTannannNoIoa
qrraaaReaab i MNIINNNIN
vy i MMMMMMLNVMVMMMNMMMnMN‘‘‘mnmiMadToa@TaDaaa
AR IVl
vy NN
i NI
v MMMV
QAR MMM NIl
v llllllllllll'll'lllllllllllll'l'll'lll'lll'l'll'lllllllllll'll'l'l'l'l'l'll'll'l'llllllll'll'lllllllllll

N
~
N
~
N
Ly
N
~
~
~
~
Ly
~
y
~
y
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
N
~
N
~
N
~
~N

N

I/ 000000000 L 00000000
(L LG l'"'l'l'l’,"’l’f’f’f’l'l'l'll’l QAQAR000

L] 4. LLL] Q000000000 A
IQRRANY 0000000000 00000000000000000000000000000R 0000 0000000000000 0000000000000 0000000NN0AAI
YORAN! 2000000000000 000 000000 000000000000000000000000 00000
L l"l'l"""l'l'l'l""""'"""l'l'l'l""""""'l'l'l"""""""'l'l'l'l""""""4
YORA) J000 00000 RRRRR0RRARANRRNNRANNNANAANN L
L l'lllﬂl"'llﬂ""l"'llﬂ' 'lllNl"'lIM"Hl"'ll"l"lllﬂl'llﬂl'llﬂl4' 'lll"""l"'ll"""ﬂ" 'll"hl" >

T\ avans
ﬁl" 20000000000 4lIllIhlIhlIhlIhllllI'4HllHllHllHIII'Il'Il'IllIl'lllI'4NllNIIllHIIllHl'll'll'll'INllINllN’lﬂl‘"llllﬁ,ﬁg%ﬂ:ﬂﬂ:‘u;/‘4""‘;IIIHII' |
1 AQAQNQAQAAIAININININIRARANNARININONONANANGRANRARNANANANNANANONANRNRNNRNRIRNRNON lllllll"llﬂ'lﬂ'lﬂ'lﬂlli
r l"llI"l'lMNMl"lI"ll"ll"ll"IWlM"Ml"lI"l"llM"l'lI"h"'lM"l"II"h"lM"l'lI"h'.'lM"ll"lI"ll"ll"l'.'lﬂ"l'lllﬂl"

e B e e e e e e B e e e e e e e e e e e e B B e e e e e e e B e e e e e e e e e e e e e e e e e B e e e e 0 e e e e e e e e B e e e e s e e B e e e e e e e e s B e e e e e e e B e e e e e e B B R

“Ow! My brains!”
-Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Abstract

Today, virtual machines (VMs) are commonly employed to encapsulate and iso-
late workloads in the cloud, enabling efficient utilization of hardware resources
through the use of statistical multiplexing. Still, there is a significant overhead
associated with the use of vMs; each VM instance has to contain a complete OS
environment to support the execution of applications that are dependent on the
specific services provided by that 0S. Ultimately; this has led to the development
of alternate, more light-weight approaches to virtualization.

A library 0Os trades isolation for performance, by allowing applications to
execute natively on a host rather than inside a vM. All necessary OS abstractions
are provided through user-mode libraries that run as part of the address space
of each application. This commonly results in smaller resource footprints and
better performance for applications. However, there are a few drawbacks to
the library 0S approach. First, it is either costly or difficult to enable sharing
between multiple processes. Second, application compatibility can only be
achieved at a higher level than the application binary interface (ABI), unless
applications are modified to exploit alternate interfaces.

The protected library 0S (PLOS) is a novel architectural abstraction that is
similar to the traditional library 0S, but also facilitates hosting of multi-process
applications, and uses virtualization technology to target compatibility at the
ABI level. It has already been demonstrated as a promising architecture, through
the implementation of a PLOS that mimics the Linux 3.2.0 kernel, capable of
running complex, unmodified Linux applications like Apache, MySQL, and
Hadoop.

This thesis presents Casuar—a new PLOS that targets compatibility with Win-
dows applications. By implementing a subset of the core OS services provided
by the Windows NT kernel, we have been able to run Native applications and
system DLLs on both Windows and Casuar. We evaluate the performance of
Casuar experimentally, by comparing the system to native Windows and Wine
through a series of micro-benchmarks. Our results show that Casuar attains
near-native performance for a number of system services, and in many cases
significantly outperforms Wine.

Acknowledgements

I would like to express my first and foremost thanks to my advisors, Dr. Age
Kvalnes and Dr. Steffen V. Valvag, for your guidance, invaluable insights, and
believing in this project! Also thanks to Robert Pettersen for suggesting the
initial idea that led to this madness.

Thanks to my fellow students, especially Kristian Elsebg, Vegard Sandengen,
Michael Kampffmeyer, Jan-Ove ‘Kuken’ Karlberg, Einar Holsbg, Bjgrn Fjukstad,
and Magnus Stenhaug. Thank you for all your help, for taking part in the
obsessions, and for your presence in general. You have all contributed to de-
“trasig”-fying all the time spent at the university!

Finally, I would like to thank my family and our dog, Aidna, for expressing
their loving support.

Contents

Abstract iii
Acknowledgements \
List of Figures ix
List of Tables xi
List of Code Listings xiii
List of Code Definitions XV
List of Abbreviations xvii

1 Introduction 1
1.1 ThesisStatement 4
1.2 Targeted Applications 4
1.3 Methodology 5
1.4 Summary of Contributions 6

7

1.5 Outline

2 Architecture 9
2.1 Windows NT o i vttt et et e e 9
2.2 The Vortex Omni-Kernel 13

2.2.1 Protected Library Operating Systems 15
2.3 Gasuar e e e e e e e e e e e e e e 17
24 RelatedWork L 19
3 Low-level Synchronization and Signaling Mechanisms 21
3.1 Interrupt Request Levels (IRQLs) and Software Interrupts . . 22
3.1.1 Emulating Software Interrupts in Casuar 26
3.2 Asynchronous Procedure Calls (APCs) 36
3.2.1 Implementing APCsinCasuar 40
3.3 Blocking Synchronization 44

Vil

Vil CONTENTS

3.3.1 Dispatcher Objects 45

3.3.2 Implementation of Blocking in Windows 49

3.3.3 Implementing Blocking Waits in Casuar 52

3.4 SuspendandResume 58
3.5 Summary Lo e e e e e 60

4 Executive Services 63
4.1 Object Managerouuenuinio.n.. 63
4.1.1 Implementation of an Object Manager in Casuar . . . 68

42 I/OManager oo 70
421 1/0inCasuar.o oo 72

4.3 Memory Manager 73
4.4 Other Executive Components 75
4.5 SUMMATY . « « v v v v vt e e e e e e e e e 76

5 Achieving ABI Compatibility 79
5.1 BasicApproach 80
5.2 Monitoring Memory Accesses to User-Mode Data Structures . 82
5.3 Using Stack Traces to Provide Context 87
54 Results e 92

6 Evaluation 97
6.1 Experimental Setup 97
6.2 System Call Benchmarks 98
6.2.1 Benchmarkresults 101

6.3 1I/Obenchmarks 104
6.4 Summaryo e e e e e e 105

7 Concluding Remarks 109
7.1 Results e 109
7.2 FutureWork 111

List of References 113

List of Figures

2.1
2.2

2.3
2.4

3.1

3.2
3.3

3.4
3.5

3.6
3.7
3.8
4.1
4.2
4.3
4.4

5.1
5.2

6.1

6.2

An overview of the layered architecture of Windows NT.. . . 11
Schedulers control the message-passing between resources in

the omni-kernel architecture. 14
An overview of the layered architecture of Vortex. 15
Architecture of Casuar as a protected library 0S. 18

Example of how a processor’s IRQL may change in the face of

INEEITUPLS. . . v v v v e e e e e e e e e e e e e e e e e 23
IRQLs used in Windowsonx64. 24
Layout of a machine frame that is pushed onto a kernel stack

by the CPU when an interrupt occurs. 30
APC queue implemented as a circular list of KAPC objects. . . 39
Layout of user stack before dispatching a user APC to user

mode.. L. 43
Example illustrating how threads are released from a dis-

patcher object’s wait list. 48
Ilustration of how wait blocks links together dispatcher ob-

jects with threads waiting for the objects. 50
Examples of races between a faulting thread, an interrupter,

and the exception dispatcher thread. 56
Object type hierarchy. 64
Hierarchical structure of the global NT namespace. 65
Overview of handle table structure. 67
Lookup of objects in the NT namespace. 69
Casuar’s memory monitor architecture. 86

Hello world Native application run in Windows at boot-time. 93

Benchmark of synchronization and signaling operations (cor-
responding to system calls provided by the Windows Kernel). 102
Benchmark of executive services in the Object Manager, I/0
Manager, and Memory Manager. 104

6.3

6.4

6.5

6.6

LIST OF FIGURES

Measured time to complete an asynchronous, unbuffered read

operationtoafile., 106
Measured time to complete an asynchronous, unbuffered write
operationtoafile., 106
Measured time to complete a synchronous, buffered read op-
erationtoafile. 107

Measured time to complete a synchronous, unbuffered write
operationtoafile., 107

List of Tables

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Number of implemented instructions in x64 memory instruc-
tionemulator. L L .
Example stack trace where no function names have been re-
solved.
Example stack trace from Table 5.2, where PE export tables
are used to resolve functionnames.
Example stack trace from Table 5.2 and Table 5.3, where PDB
files are used to resolve function names.
Example of a stack trace indicating an error in Casuar’s im-
plemented interface.,
TEB fields that must be initialized by Casuar to complete the
loading phase of a Native application using NT 6.3 DLLs. Off-
sets are relative to NT 6.3 struct definitions.
PEB fields that must be initialized by Casuar to complete the
loading phase of a Native application using NT 6.3 DLLs. Off-
sets are relative to NT 6.3 struct definitions.
System calls that are used by the loading phase of a Native
application using NT 6.3 DLLS.«
Other system calls that are implemented by Casuar.

Xi

85

90

90

91

92

93

94

96

List of Code Listings

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8

5.1

Implementation of irql_raise() and irql_lower() as inter-

face to changing a thread’s current IRQL. 27
Implementation of check_for_pending_irqgl_interrupts(). 28
Implementation of irql_request_interrupt(). 29
Implementation of the C code IRQL interrupt handler. 31
Implementation of the assembly code IRQL interrupt handler

ENIIy POINLS. o e e e e e 33
Implementation of irql_interrupt_remote_thread(). ... 35
Implementation of the wait procedure for synchronizing with

a single dispatcher object. 54
Implementation of blocking in Casuar. 59
Implementation of Hello world Native application. 92

Xiii

List of Code Definitions

3.1 Windows Kernel type definitions for normal and special rou-
tineofan APC.o
3.2 Windows Kernel interface for initializing an APC and enqueu-
ingittoathread.

XV

List of Abbreviations

ABI application binary interface

ALPC Advanced Local Procedure Call
APC asynchronous procedure call

API application programming interface
APIC Advanced Programmable Interrupt Controller
CPU central processing unit

DLL dynamic-link library

DPC deferred procedure call

FIFO first in first out

HAL hardware abstraction layer

I/0 input/output

IPC inter-process communication

IPI inter-processor interrupt

IRP I/0 request packet

IRQL interrupt request level

IRR interrupt request register

ISR interrupt service routine

XVii

XVili

MMU memory management unit
NLS National Language Support
NMI non-maskable interrupt
OKRT omni-kernel runtime

OS operating system

PDB program database

PE Portable Executable

PEB process environment block
PLOS protected library 0s

Qos quality-of-service

RDP Remote Desktop Protocol
SEH structured exception handling
SLA service level agreement

SLO service level objective

TCB thread control block

TCP Transmission Control Protocol
TEB thread environment block
TLS thread-local storage

TPR Task Priority Register

VM virtual machine

VMM virtual machine monitor

vMX virtual-machine extensions

List of Abbreviations

List of Abbreviations XiX

vT Virtualization Technology

Introduction

Over the past few years, cloud computing [1] has emerged as an increasingly
popular paradigm for offering access to computing resources over the Internet
[2]. Cloud platforms enable users to deploy both single software applications
and large infrastructures through dynamic and on-demand provisioning of
virtual appliances. Virtualization technology is intrinsic to cloud computing—
encapsulation of workloads in vMs allows for fault isolation, security isolation,
and environment isolation between cloud tenants [3], [4], [5]. It also facilitates
efficient utilization of hardware resources by using statistical multiplexing [6]
for hosting multiple vMs on a single physical machine [2], [4], [7], [8], [9]. This
makes it possible for cloud providers to offer cost-effective service models, where
resources are metered and customers pay only for what they use [10].

Virtualization is commonly used to host multiple OSs on a single, physical
machine, by compartmentalizing each in a separate VM. A VMM running on
the host provides the vM abstraction, and is responsible for multiplexing the
available hardware among a number of isolated vM instances [11], [12]. Tradi-
tionally, a vM is manifested as a virtual hardware interface that is functionally
equivalent to the actual hardware of the host machine [11], [12], [13], [14].
This form of virtualization, known as full virtualization, enables hosting of a
stock Os within each vM [11], [14], [7].

The overhead of providing the vM abstraction can be high, especially when
a VM runs I/O-intensive tasks [15], [3], [7]. Therefore, it is commonplace for
modern VMMs to provide software-based interfaces in place of, or in addition

2 CHAPTER 1 / INTRODUCTION

to, the parts of the hardware interface that are particularly costly to virtualize
[16], [14], [71, [5]. This optimization, known as paravirtualization, is heavily
used by modern, state-of-the-art vMMs, such as Xen [17], Hyper-V [18], and
KVM [19]. For instance, it allows a VMM to replace virtualized 1/0 devices
with more efficient, buffer-based software abstractions [14], [5]. These low-
cost VvMM-provided interfaces can, however, only be exploited by a customized
0OsS.

Besides paravirtualization, advances have also been made in explicit hardware
support which contribute to overhead mitigation, in particular for vM workloads
that are cpU-intensive [20], [21]. Despite these improvements, there is still a
significant difference in attained performance when a task is run natively or in
a VM. This performance discrepancy can to some extent be attributed to the
VMM having to multiplex hardware resources among vMs without knowledge
of the urgency or timeliness of vM tasks [22]. For example, intolerable jitter
and processing delays may be the outcome of suboptimal scheduling decisions

[5].

Container-based virtualization [23] is a light-weight alternative to traditional
VM-based virtualization technology [24]. In a container-based system, the host
0s is extended with functionality for partitioning the user space into logically
separate containers, which isolate applications rather than 0ss. Virtualization
is performed at the ABI level, which means that containers provide weaker
isolation guarantees than vMs, but with the benefit of achieving near-native
performance [24]. Containers are, unlike vMs, transparent to the host 0S. Also,
the resource footprint of a container is significantly smaller than that of a vM,
because applications execute directly on top of the host Os.

The popularity of container-based virtualization has increased drastically dur-
ing the last few years—especially in combination with recent cloud-friendly
deployment and orchestration tools, such as Docker [25], rkt [26], and Ku-
bernetes [27]. Container systems have evolved from the chroot concept, used
in Unix-based 0Ss to restrict the file system access of an application, to in-
clude additional support for isolating other OS resources, such as process trees,
network interfaces, and CPU-, memory-, and I/O-consumption [24]. Implemen-
tations of container-based virtualization exist on multiple platforms; FreeBSD
Jails [28] and Solaris Zones [29] are integrated natively into their respective
host 0ss, whereas Linux uses implementations that extend the kernel, such as
Linux-VServer [23], OpenVZ [30], and LXC [31].

A drawback of container-based virtualization is that the OS can only host
applications built for a particular ABI. Recent works [16], [32], [33], [341], [35]
have explored ways to tackle this problem, by offloading the implementation
of Os abstractions from a host OS or VMM to user-mode libraries, leaving

protection and isolation as host OS responsibilities. This is analogous to the
library 0s concept advocated by earlier work, such as Cache Kernel [36],
Exokernel [37], [38], Nemesis [39], and Disco [40].

A library 0S decouples an application from the particular interface offered by
the host 0s. Isolation between applications is achieved by linking each with a
separate library OS instance that executes as part of the application’s private
address space. A weakness of this approach, however, is that it is costly, and in
some cases very difficult, to orchestrate and enable sharing of resources across
processes [38], [34].

Vortex [9], [7], [5], [8] is a recent, experimental OS that investigates novel
approaches to virtualization through a new architectural abstraction—a PLOS.
Instead of providing virtual hardware interfaces like conventional vMMs, Vortex
exposes a paravirtualized software interface comprising high-level commod-
ity Os abstractions, such as files, network connections, memory mappings,
processes, and threads. A PLOS molds these abstractions into an ABI that is
compatible with the system call interface of an existing 0S. It sits on top of
a thin virtualization layer, through which it obtains supervisory control over
applications. Unlike traditional library 0Ss, the PLOS abstraction is designed to
host multiple processes and facilitate sharing between these. The virtualization
layer allows the same PLOS instance to execute in the address space of each
process, while retaining strong isolation between applications.

A PLOS is, not unlike containers, completetely transparent to Vortex. All ap-
plications running on top of a PLOS are scheduled directly by Vortex at a
fine-grained level. However, Vortex provides stronger isolation guarantees than
existing container-based systems; resource management is enforced by Vor-
tex at the application-level, allowing two processes in the same PLOS to get
different logical views of available resources and their quotas. In addition, the
virtualization layer introduces a privilege boundary between processes and
their PLOS, equivalent to the separation between user mode and kernel mode
in a regular Os.

The PLOS approach has already been proven viable, through the implementa-
tion of a PLOS that mimics the Linux 3.2.0 kernel [7], [5], [8], [9]. By supporting
a common subset of system calls, this PLOS is capable of running complex,
unmodified Linux applications, such as Apache, MySQL, and Hadoop. As a
continuation of this work, we have explored the possibilites of implementing
a similar PLOS for supporting the execution of Windows applications on top
of Vortex. We previously proposed an architecture for a Windows-compatible
PLOS [41].

A central goal for our architecture was to enable reuse of functionality within

4 CHAPTER 1 / INTRODUCTION

existing Windows components to a large extent. We thus explored the possi-
bility of targeting compatibility at the system call level, in accordance with the
PLOS model. Our findings suggested that this is possible, and that it allows
us to rely on existing user-mode DLLs that applications depend on, rather
than having to reimplement their functionality. Specifically, we implemented
a system call ABI compatible with the calling convention used in Windows on
x64 architectures, and a loader component that parses DLLs and unpacks their
executable images into the address space of an application running on top
of the PLOS. Together, these mechanisms constitute a part of the execution
environment that is needed to be able to host existing Windows applications.
Continuing our previous work, this thesis focuses on the evaluation and imple-
mentation of system services and similar functionality that is exposed directly to
the applications, and which is required to support their actual execution.

1.1 Thesis Statement

Drawbridge [34] demonstrated that a library OS could offer a Windows-
compatible interface capable of running major applications such as Microsoft
Excel, PowerPoint, and Internet Explorer. This work required refactoring and
reimplementation of tens of thousands of lines of code in user-mode DLLs to
exploit a Drawbridge-defined ABI and to accommodate the limitation that all
DLLs had to depend on a single library 0S hosted in a single process.

We conjecture that it is possible to improve upon the conventional library Os
architecture. Specifically, our thesis is:

The protected library 0s architecture permits unmodified multi-process
Windows applications and user-mode DLLs to run under a Windows
library 0s.

1.2 Targeted Applications

We do not believe it is tractable to build a feature-complete PLOS that re-
tains full binary compatibility with Windows, unless essentially creating a
full-blown copy of Windows. However, we are convinced that a Windows-based
PLOS would be able to support a large number of commonly used Windows
applications with significantly less effort. In this thesis, we do not specifically
aim to support a predetermined set of existing applications. Instead, our goal
is to build a PLOS that meets the most common application requirements and
allows applications to execute on both Windows and this PLOS, without modi-

1.3 / METHODOLOGY 5

fying binaries or DLLSs to introduce dependencies on non-native, PLOS-specific
interfaces. Specifically, the PLOS architecture allows us to target compatibility
with the existing ABI of Windows. We do this through the implementation
of a subset of the ABI, while retaining the semantics of the corresponding
functionality in Windows.

The PLOS abstraction, by itself, imposes few or no limitations on what kind of
functionality may be implemented and which applications may be supported in
a Windows-compatible PLOS. However, the implementation of the PLOS archi-
tecture in Vortex inherits some restrictions from the current implementation of
Vortex. One such restriction is that Vortex has no graphical support, as Vortex
is primarily built for data centers rather than desktop workstations.

Many Windows applications, whether they are desktop applications or not,
provide window-based graphical interfaces. Thus, it would be advantageous
to support the execution of such applications on a Windows-compatible PLOS.
Although the lack of graphical support in Vortex is a restriction, it is by no
means a hindrance to achieving this. For example, Drawbridge [34] showed
that it is possible to provide interaction with an application’s graphical user
interface through a Remote Desktop Protocol (RDP) connection.

We have, however, chosen not to include graphical support in the scope of this
thesis, and instead focus exclusively on achieving compatibility for some of
the core 0OS services provided by Windows. We target compatibility only with
applications that are built for the 64-bit x64! architecture, as this is the only
platform currently supported by Vortex.

1.3 Methodology

Computer science is one of the youngest science disciplines, being developed
over just a little more than 60 years. The commonly accepted definition of
computing as a science is “the systematic study of algorithmic processes—
their theory, analysis, design, efficiency, implementation, and application—that
describe and transform information” [42]. This description was presented in
1989 by the Task Force on the Core of Computer Science, formed by ACM and the
IEEE Computer Society, as part of their final report, which concluded their effort
towards specifying a scientific framework for the fields of computer science and
computer engineering. The report also identified three major paradigms that
together form the basis for scientific work within the area of computing:

1. Note that we will use the term x64 throughout this thesis to describe both the Intel x86-64
and the AMD64 platforms collectively, unless otherwise specified.

6 CHAPTER 1 / INTRODUCTION

Theory is rooted in mathematics. Mathematical objects and their relationships
are studied, and hypotheses are formed to describe their behavior. These
hypotheses are subsequently proven or falsified to develop coherent, valid
theories that can be interpreted and applied within the other paradigms.

Abstraction is rooted in the experimental scientific method. The primary focus
is on the investigation of phenomenons. Hypotheses are used to construct
models and form predictions that are tested experimentally.

Design is rooted in engineering. Requirements and specifications are identi-
fied, and theory and abstraction is applied to design, implement, and test
systems that perform useful actions.

This thesis is rooted in the area of systems research, which to some degree
belongs to all three paradigms. First, we use existing knowledge about Windows
to devise a number of requirements for our system, and design components that
can fulfil the requirements, aided by theory and abstraction. This is the focus of
Chapter 3 and Chapter 4. Then, in Chapter 5 we use abstraction to formulate a
methodology for investigating the behavior of Windows applications that is not
already known to us. By following an iterative process, and applying a number
of techniques that we create using design and theory, we successively gain more
knowledge about Windows; we use the process to discover new requirements,
refine existing ones, and implement functionality that satisfy these. Finally,
through testing and experiments, we demonstrate the capabilities of the system
and evaluate its usefulness.

1.4 Summary of Contributions
This thesis makes the following contributions:

* We strengthen the viability of the PLOS architecture as an improvement
over the traditional library 0S through the implementation of Casuar—a
PLOS for running Windows applications on top of Vortex.

* We evaluate the most fundamental synchronization and signaling ab-
stractions in Windows—interrupt request levels (IRQLs), asynchronous
procedure calls (APCs), and blocking synchronization—which are pre-
requisites to supporting the execution of any Windows application. We
also give a detailed description of how these are implemented in Casuar
on top of the paravirtualized software interface of Vortex.

* We evaluate higher-level subsystems in the Windows NT kernel for man-

1.5 / OUTLINE 7

agement of executive objects, memory, and 1/0. Then, we describe how
the most commonly used system services can be supported through
selective implementation of just a small subset of the functionality im-
plemented in Windows.

* We present the architecture and implementation of a memory monitor
that can be used to trace memory accesses from user mode, and describe
how we can use this information to infer application dependencies on
undocumented data structure fields that are part of the Windows ABI.

* We describe a mechanism for producing stack traces, which we use to
provide necessary context for implementing missing functionality that is
exposed through undocumented parts of the Windows ABI.

* We demonstrate that our Casuar implementation is capable of hosting a
special type of Windows applications, known as Native applications.

* We experimentally evaluate Casuar through a number of micro-bench-
marks that demonstrate low overhead for several implemented system
services.

1.5 Outline
The remainder of the thesis is structured as follows.

Chapter 2 presents the existing architectures of Windows NT and Vortex,
including details about how Vortex implements the PLOS abstraction,
before outlining the architecture of Casuar. The chapter also presents
related work.

Chapter 3 describes the most essential synchronization and signaling mecha-
nisms in Windows, which are used extensively as part of implementing
higher-level system services. Throughout the chapter, each mechanism is
evaluated, and we provide a detailed description of how the correspond-
ing functionality is implemented in Casuar.

Chapter 4 gives an overview of some of the largest and most important high-
level components in the Windows NT kernel, and how Casuar replicates
a subset of their implementations to provide the necessary services to
hosted Windows applications.

Chapter 5 presents a methodology that we use to discover and implement

8 CHAPTER 1 / INTRODUCTION

application dependencies on undocumented parts of the Windows ABI.
The chapter describes some central challenges to achieving this, and
presents two techniques that help us tackle them—a memory monitor for
tracing memory accesses from user mode, and a mechanism for producing
stack traces that provide context about missing functionality. At the end
of the chapter, we demonstrate that our Casuar implementation, through
the use of these techniques, is able to host Native applications.

Chapter 6 evaluates Casuar, by comparing the system to Windows and Wine
through a series of micro-benchmarks.

Chapter 7 concludes the thesis and outlines future work.

Architecture

In this chapter, we present the architecture of Casuar as a protected library 0S
(PLOS) for running Windows applications on top of Vortex. First, we give an
overview of Windows NT, its main architectural components, and the user-mode
subsystems that define the interfaces between Windows and its applications.
Next, we describe Vortex and the omni-kernel architecture that Vortex imple-
ments. We explain the implementation of the virtualization environment that
Vortex provides to a PLOS. Then, we detail Casuar’s architecture, and how
it aims to target compatibility with Windows applications through extensive
reuse of existing user-mode libraries. Finally, we present related work.

2.1 Windows NT

Microsoft has developed and commercially released operating systems under
the Windows brand since the early 1980s. Today’s incarnations of Windows
belong to the Windows NT family, which was established when Windows NT
3.1 hit the market in July 1993 [43]. The architecture of Windows NT can
even be traced back as far as the 1970s, with its design originating from the
development of VAX/VMS from Digital Equipment Corporation [44]. Although
Windows NT is no longer used as a commercial product name, starting with
the release of Windows 2000, the Windows kernel is still developed under an
internal NT version number.

10 CHAPTER 2 / ARCHITECTURE

The NT kernel version has traditionally been incremented for every new, major
release of Windows. For example, the latest versions of Windows—Windows
8.1 and Windows Server 2012 R2—are instances of Windows NT 6.3. The same
NT kernel also powers Microsoft’s mobile platform, Windows Phone 8.1. Sim-
ilarly, the previous version, NT 6.2, is currently the basis for the Xbox One
entertainment system [45], as well as for Windows 8 and Windows Server 2012.
However, with the upcoming release of Windows 10, Microsoft has decided to
change the NT kernel version to 10.0 instead of 6.4, to let the Windows product
version and NT kernel build version stay in sync.!

Figure 2.1 gives an overview of the NT architecture and its various parts. As
shown, the Windows environment can be divided into two layers: kernel mode
and user mode. The kernel-mode layer encompasses all core OS functionality
that requires privileged access to system resources such as the cpuU, physical
memory, and I/0 devices. Its main components are the Windows Kernel and the
Windows Executive—both of which are contained in the ntoskrnl.exe system
executable file. In contrast, the user-mode layer contains all applications, which
run as processes in a non-privileged processor execution mode. There is a strict
separation between user-mode applications and the OS; processes have limited
access to hardware, and may only interact with the system resources indirectly
through a system call interface that is managed by the kernel-mode layer.
In addition, each process is given a separate, private addess space, to isolate
processes from each other.

The Windows Executive corresponds to the upper part of the kernel-mode layer.
It consists of a number of components or subsystems—such as the Memory
Manager, the 170 Manager, and the Process Manager—that manage different
parts of the system. These executive components provide abstractions over most
of the system’s resources, and make them available to user-mode applications
and device drivers via corresponding system services.

All executive services are built on top of the Windows Kernel. It implements
a set of low-level OS functionality that, to a large extent, interfaces directly
with the underlying hardware platform. This includes mechanisms for traps
and system calls, context switching and scheduling of threads, dispatching of
interrupts and exceptions, and multiprocessor synchronization services and
primitives. Kernel services are managed through a collection of kernel objects
and a number of basic functions that operate on these. The Windows Executive
encapsulates the kernel objects in more complex executive objects and uses
these to extend the functionality of the kernel to provide higher-level system
services.

1. A few, early preview builds of Windows 10 did in fact use 6.4 as the kernel build version,
before it was changed to 10.0.

2.1/ WINDOWS NT "

NET
Framework Windows App
Environment Environment

-NET User

Appli-
Windows Environment cation

FCL assemblies App platforms

Windows API

App

System User
Service Process

WinRT

Native System System Environment Subsystem DLLs
Process Service Process

Native API
User
mode
—— SYSCALL —— -
Kernel
mode

System Service Interface

Windows Executive

S o Config- Security
170 2 < W uration Reference Graphi
22 raphics
Manager °r_'§ S WM Manager Monitor Drivers

Device .
and Fs Windows Kernel
Drivers

Hardware Abstraction Layer (HAL)

Hardware

Figure 2.1: An overview of the layered architecture of Windows NT. Illustration is
derived from [46, Ch. 2].

12 CHAPTER 2 / ARCHITECTURE

Apart from the Windows Kernel and the Windows Executive, the kernel-mode
layer also contains drivers for 1/0 devices, file system, network, graphics, and
similar, as these typically need direct access to hardware or system resources.
This includes both native and third-party drivers, which Windows allows to be
dynamically installed and loaded. Finally, a hardware abstraction layer (HAL)
constitutes the lowest-level part of the kernel-mode layer. It is a kernel-mode
module—loaded from hal.dll by the Windows Kernel—that is designed to
hide machine-dependent differences in the underlying hardware platform.
On x64, the HAL is for example used to allocate interrupt vectors on behalf
of device drivers, and it provides a portable interface for requesting software
interrupts on different CPUs.

In Windows, a large number of system components also reside in user mode.
These include system support processes, which perform necessary initializa-
tion and management of the system, and native Windows services, which are
responsible for parts of the functionality that is available to a Windows ap-
plication. The system call interface provided by the Windows Executive is
not used directly by user-mode applications, because it is undocumented, and
Microsoft reserves the right to make changes to it between different versions
of Windows. Instead, Windows defines different environment subsystems that
are implemented in user mode and offer a broader, more convenient API to
applications. The Windows Subsystem provides the Windows ApI, which is the
primary interface used by almost all Windows applications. The Windows API
is fully documented, and behaves to a large degree consistently across different
Windows versions. As is shown in Figure 2.1, all .NET applications and Windows
apps also run indirectly on top of the Windows API.

The Windows API is exported by a large number of DLLs, such as kernel32.d11,
user32.dl1, and gdi32.d1l. These, in turn, are implemented on top of the
Native ApI—the lowest-level API available to applications and services in user
mode [46, Ch. 1-2], [47]. Similarly to the system call interface, the Native API is
undocumented and subject to change between NT releases. It also constitutes
the Native subsystem in which Native applications run. Examples of Native
applications are system support processes such as the Windows Subsystem
process (csrss.exe) and Windows Session Manager process (smss.exe), which
implement parts of the Windows Subsystem and cannot therefore be Windows
applications themselves. Almost all Native applications are developed internally
by Microsoft as part of Windows.

The Native API consists mainly of two parts: a set of system call stubs for
invoking Windows Executive system services, and a set of run-time library
functions that provide more convenient interfaces to Native applications and
Windows Subsystem DLLs. In contract to the Windows API, which is imple-
mented by several DLLs, support processes, and services, the Native API is

2.2 / THE VORTEX OMNI-KERNEL 13

provided almost entirely by a single DLL—ntd11.d11. This DLL is also special,
because it contains the function that is used as entry point for every process
in Windows—regardless of its subsystem—in addition to some other functions
that can be called by the Windows Kernel. For these reasons, ntdll.d11l is
loaded as part of the address space of all running processes.

2.2 The Vortex Omni-Kernel

As pointed out in Chapter 1, clouds commonly benefit from the many strong
isolation properties of virtualization and its opportunities for statistical multi-
plexing. However, modern VM technology does not provide sufficient isolation
between vMs that are consolidated on the same physcial host [3]. This means
that the resource consumption of a workload may affect the performance of
co-located workloads [4], due to contention on shared resources—a concept
referred to as performance interference [3], [9].

Cloud providers commonly have to meet a number of requirements for the
services offered to tenants. Such requirements are typically governed by service
level agreements (SLAs), in which non-functional aspects are expressed as a
number of service level objectives (SLOs)—each corresponding to a measurable
characteristic that is often defined in terms of available resources [2]. Provid-
ing performance guarantees in a virtualized environment that is subject to
performance interference is, however, non-trivial. Lack of rigorous control over
resource allocation may result in SLO violations. In addition, implicit sharing
of certain hidden, physical resources that are not easily virtualizable, such as
caches and buses, can cause interference that may affect the performance of
other resources in the system [9]. The result may be that SLOs—even when
these are retained—no longer adequately express quality-of-service (QoS), as
opposed to in an isolated, non-virtualized system, where SLO guarantees will
typically always coincide with perceived Qos [2].

Possible ways to deal with performance interference include employing strict
partitioning of existing resources between VM instances, or to over-provision by
reserving additional resources for on-demand repurposing [2]. However, either
of these approaches comes at the cost of less efficient utilization of available
hardware.

The omni-kernel architecture [9] was designed with the premise of employ-
ing pervasive monitoring and scheduling to ensure complete control over all
resource allocation. It is built on two fundamental abstractions—resources
and schedulers. Resources are software components that provide fine-grained
control over hardware or software functionality and expose interfaces for the

14 CHAPTER 2 / ARCHITECTURE

Resource
request

Scheduler

Resource Resource

Figure 2.2: Schedulers control the message-passing between resources in the omni-
kernel architecture. Illustration is derived from [9].

use of this functionality. A resource can depend on the functionality pro-
vided by other resources, and uses asynchronous message passing to send
requests to these. The resources are organized in a resource grid according to
their dependencies, where schedulers are interpositioned between every pair
of communicating resources, as illustrated in Figure 2.2. The schedulers are
responsible for dispatching and ordering request messages that are passed
between resources. They process information about resource usage, which is
measured extensively throughout the system, and use it to make scheduling
decisions that, for instance, are in accordance with predetermined SL.Os.

Vortex [9], [7], [5], [8] is an omni-kernel implementation for Intel x64 ar-
chitectures. The Vortex omni-kernel is structured as a monolithic kernel with
a layered design, as detailed in Figure 2.3. Most of its functionality is imple-
mented as resources in the resource grid layer; for example, the CPU resource is
used to allocate CPU-time, the memory resource manages allocation of physcial
memory, and the process resource and thread resource implement commod-
ity process and thread abstractions. Device drivers are also implemented as
specialized resources that interface with hardware.

A resource in the resource grid can export interfaces to the Vortex system
service interface, in order to make its functionality available to applications.
The system service interface is the highest layer of the Vortex omni-kernel, and
consists of all functions that are made available to processes through the system
call ABI. The resource grid is implemented on top of the omni-kernel runtime
(okRT)—a framework that manages resources and schedulers, and provides
the mechanisms for message-passing between these. At the lowest level, Vortex
implements a OKRT hardware abstraction layer (HAL) that, similarly to the
Windows NT HAL described in Section 2.1, is used to hide platform-specific
details from the OKRT and resource grid.

2.2 / THE VORTEX OMNI-KERNEL 15

Virtualization Environment

Applications Applications

Process Process Process Process
Native Environment
—

Virtual
User supervisor
mode mode
Kernel Kernel
mode mode

Export I/F Export I/F System Service Export I/F Export I/F
Interface

Figure 2.3: An overview of the layered architecture of Vortex.

2.2.1 Protected Library Operating Systems

The protected library 0S (PLOS) abstraction outlined in Chapter 1 is imple-
mented in Vortex by exploiting hardware support for virtualization; Vortex
uses the virtual-machine extensions (VMX) extensions that are part of the Intel
Virtualization Technology (VT) to create a virtualization environment in which
each PLOS and its applications runs. The virtualization environment introduces
an extra privilege level that separates a PLOS from its hosted applications. The
PLOS is allowed to execute with virtual supervisor rights on a virtual CPU,
whereas applications that are hosted by the PLOS run in a virtual user mode. As
a result, system calls from the applications will trap directly to the PLOS, thus
allowing the PLOS to target compatibility at the ABI level. At the same time,
the system service interface of Vortex is made available to the PLOS through a

16 CHAPTER 2 / ARCHITECTURE

vmcall ABI, providing the same functionality that is exposed to native Vortex
applications, but with slight differences.

A PLOS behaves like a regular 0S kernel from the perspective of its hosted
applications. Vortex splices the memory region containing the PLOS executable
image and data structures into the address space of every child process started
by the PLOS. This ensures that all applications running on top of a PLOS will
trap into the same PLOS instance, and lets the PLOS facilitate sharing of state
between applications.

Vortex implements its virtualization environment using the same virtual CPU
abstraction that is used by conventional vMMs to provide the VM abstraction.
However, the virtualization environment in Vortex differs significantly from a
VM. A VMM exposes a fixed number of virtual CPUs to the vM, which are used
by a contained OS to schedule threads internally. Because the 0S implements
its own thread abstraction and scheduler, the vMM has little or no insight
into what type of tasks are executed inside the vM. This means that the vMM
loses opportunities for making optimal and fine-grained scheduling decisions,
which in turn might hurt 1/0 performance. A PLOS, on the other hand, does
not implement its own thread abstraction; rather, it relies on the high-level
abstractions that are already provided by Vortex. Vortex virtualizes each thread
separately, by providing each with a separate virtual CPU, and thereby retains
full control over scheduling of all threads in the PLOS and its applications.

The virtualization environment allows a PLOS to differentiate access rights to
memory mappings, in order to protect pages from being accessed by applica-
tions executing in virtualized user mode. This is achieved through the Vortex
system call vx_mmap (), which lets the PLOS specify the privilege level of each
memory region. Vortex does not maintain a separate set of shadow page tables
for each PLOS, as is done for a vM in a conventional vMM. Instead, all memory
mappings are allocated in the ordinary page tables to reduce overhead.

To prevent a PLOS from accessing the Vortex kernel, Vortex exposes a copy of
the top-level page directory to the virtualization environment that does not
contain mappings for the Vortex kernel’s page tables. Whenever the PLOS or
one of its applications needs to allocate a new page table with an entry in the
page directory, the entry is mirrored in the virtual page directory. The active
page directory pointer of the CPU is automatically changed from the virtual to
the real page directory every time the PLOS traps to the Vortex kernel, and is
changed back upon leaving the kernel.

2.3 / CASUAR 17

2.3 Casuar

As stated in Chapter 1, Casuar is a continuation of previous work where we
did initial exploration of the possibilities for creating a Windows-compatible
PLOS. The architecture of Casuar is therefore the same as proposed earlier in
[41], of which we provide an overview here.

Recall that one of the main goals of Casuar’s architecture is to facilitate extensive
reuse of functionality that is already available through existing user-mode
DLLs. The Windows API that is implemented by such DLLs comprises more
than 100,000 callable functions [34], and would require a significant effort to
re-implement [41]. In contrast, there are only 433 non-graphics related system
calls in Windows NT 6.3 [41], and most of the functionality in the Windows
APIs is built on top of an even smaller subset of these.

By targeting application compatibility through the system call interface, we
believe it is possible to support the execution of Windows applications with
less effort than would be required to achieve compatibility at the Windows
API level. Figure 2.4 illustrates the architecture of Casuar, adhering to this
approach. Casuar will effectively replace the entire NT kernel (ntoskrnl.exe),
and provide alternate implementations for abstractions normally provided by
the Windows Kernel and Windows Executive. Although we have not found
it feasible to reuse any functionality from the NT kernel, we recognize the
separation of concerns between the low-level Windows Kernel and the higher-
level Windows Executive, and use the same separation when we implement
the equivalent functionality in Casuar. In Chapter 3, we describe the imple-
mentation of low-level synchronization and signaling mechanisms in Casuar
that correspond to abstractions from the Windows Kernel. We describe the
implementation of higher-level executive services in Chapter 4.

There is a potential drawback to targeting system call compatibility with Win-
dows. As may be recalled from Section 2.1, the system calls are a subset of
the undocumented Native API. It is therefore not straightforward to determine
what functionality is expected by user-mode applications through the system
call interface. In addition, there is a risk that new versions of Windows may in-
troduce changes to the Native API. The latter limitation could be circumvented
by targeting only specific versions of Windows. Moreover, it seems that drastic
changes to the system call ABI are not frequent, although Microsoft reserves
the right to perform such changes. In Chapter 5, we detail how we approach
the former challenge to reach an implementation that is capable of hosting
Native Windows applications.

18

Virtual
supervisor
mode

Kernel
mode

CHAPTER 2 / ARCHITECTURE

Virtualization Environment

Windows Environment

User
Process

System
Service

NET
Framework
Environment

.NET

Appli-
cation

FCL assemblies

CLR

Windows App
Environment

User

App

App platforms

WinRT

Windows API

System
Process

Native
Process

System
Service

SYSCALL

Casuar

Export I/F

System Service
Interface

Export I/F

Hardware

Figure 2.4: Architecture of Casuar as a protected library Os.

2.4 / RELATED WORK 19

2.4 Related Work

While there exist several systems that enable cross-platform application com-
patibility, there are very few that are built for running Windows applications on
platforms different from Windows. The open-source Wine project [48] is one
of the largest and perhaps the most well-known of such efforts. It allows Win-
dows applications to execute on POSIX compatible 0Ss, such as Linux. Wine is
currently able to run more than 10,000 Windows applications—including Word
and Excel from the Microsoft Office suite and a large number of complex 3D
games—and has partial support for at least another 10,000 applications.

Wine targets binary compatibility mainly at the Windows API level, but also
implements a portion of the Native API. This is done by replacing several system
DLLs—such as ntd11.d11, kernel32.d11, and user32.d11—with alternate im-
plementations that effectively emulate the Windows application environment
on top of the native POSIX API. All parts of Wine are implemented in user
mode; a separate Wine server process facilitates synchronization across pro-
cesses through inter-process communication (IPC) [49]. In this regard, Wine is
somewhat similar to a traditional library 0S. The Wine server can be thought
of as a means to enable sharing between multiple processes. However, relying
on a separate process to orchestrate this might hurt performance for certain
workloads; applications that depend on the server process will have to wait
for it to be scheduled by the host 0S, and there is inevitably some overhead
associated with the communication between processes.

ReactOS [50] is another open-source project that aims towards compatibility
with existing Windows applications. It is a stand-alone OS that re-implements
most kernel-mode and user-mode components of Windows. The implementa-
tion follows the architecture of Windows NT closely, and is to a large extent
based on reverse engineering of actual functionality in Windows. Although
the project has been around for more than 15 years [51], it is still in the alpha
stage, and only fully supports a small number of applications.

Drawbridge [34] is a research prototype that refactors Windows 7 into a library
0s. By evaluating Windows’ system service interface, the authors found that
it is possible to re-implement most of the system calls in user mode, on top
of a much smaller kernel-mode ABI. This was done while retaining enough
functionality to be able to run major desktop applications, such as Microsoft
Excel, PowerPoint, and Internet Explorer. Security isolation is achieved by
running each application on a different instance of Drawbridge. A security
monitor is interpositioned between Drawbridge and the host OS to enforce
different logical views of the system resources, such as the file system and
Windows registry, for each application. Support for graphics and input from
human interface devices (i.e. keyboard and mouse) is provided through Remote

20 CHAPTER 2 / ARCHITECTURE

Desktop Protocol (RDP) connections. Each Drawbridge instance gets a separate
RDP session that the end-user can connect to from an RDP client on the host
Os.

The Drawbridge system was evaluated by comparing it to running applications
on Windows—both natively, and in Hyper-V vMs. The memory overhead and
start-up time of a Drawbridge application was only slightly higher than that
of native applications. In contrast, both the memory footprint and boot-time
of a VvM-contained application was in several cases shown to be an order of
magnitude larger. These findings emphasize the advantages of a library 0S
architecture. However, Drawbridge is also subject to the traditional limitations
of library 0Ss; existing Windows DLLs had to be reimplemented in order to
emulate the NT system call ABI in user mode, and the system is unable to host
and facilitate sharing in multi-process applications.

Low-level Synchronization
and Signaling Mechanisms

In this chapter, we evaluate some of the fundamental synchronization and
signaling mechanisms that the Windows Kernel provides, and which is used
by the Windows Executive to implement higher-level abstractions. For each
such mechanism, we also describe how we implement a corresponding abstrac-
tion in Casuar, based on the paravirtualized software interface provided by
Vortex. First, we detail an interrupt prioritization scheme, known as interrupt
request levels (IRQLSs), that is used extensively by the Windows Kernel. We ex-
plain how software interrupts are used as the delivery mechanism for another
abstraction—asynchronous procedure calls (APcs)—and how Casuar imple-
ments functionality for emulating interrupts. Next, we describe APCs, what
they are used for in Windows, and why we require an equivalent abstraction in
Casuar. Then, we provide an overview of how the Windows Kernel implements
primitives for blocking synchronization, and describe Casuar’s approach to of-
fering corresponding blocking services. Finally, we show how the functionality
for suspending and resuming a thread is implemented, through the combined
use of blocking primitives and APCs.

21

22 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

3.1 Interrupt Request Levels (IRQLS) and
Software Interrupts

Windows employs a prioritization scheme for interrupts called interrupt re-
quest levels (IRQLs) [46, Ch. 3], [52]. Each logical processor has a current IRQL
attribute—a number that determines the priority of the task currently execut-
ing on the processor at any point of time, where a greater number indicates
a higher priority. Every interrupt vector allocated in the Windows Kernel is
assigned an IRQL that reflects its relative importance. When an interrupt is
dispatched to a processor, the processor’s IRQL is automatically raised to that
of the interrupt vector, before the associated interrupt service routine (ISR) is
executed. Similarly, the processor’s IRQL is automatically lowered back to its
previous level when the ISR returns. The current IRQL may also be raised or
lowered explicitly, using the functions KeRaiseIrql() and KeLowerIrql() of
the Windows Kernel.

Raising the IRQL to a given level n will temporarily disable or mask all inter-
rupts with priority less than or equal to n. Conversely, the processor may be
interrupted at any time to process an interrupt at a higher priority than the cur-
rent IRQL [46, Ch. 3]. Interrupts that cannot be delivered right away, because
the processor is already executing a task at an IRQL greater than or equal to
that of the interrupt, will be registered as pending. Once the processor’s IRQL is
lowered, all pending interrupts with IRQLs higher than the new, current IRQL
will be dispatched in priority order from highest to lowest, and the processor’s
current IRQL will immediately be raised to the IRQL of the highest-priority
pending interrupt to be serviced. Figure 3.1 illustrates an example of how the
IRQL changes when interrupts are being serviced by the processor.

On x64, there are 16 different IRQLs numbered o-15 [46, Ch. 3], as shown
in Figure 3.2. Each IRQL is assigned a specific meaning or purpose by the
Windows Kernel. The lowest IRQL, known as PASSIVE LEVEL, is the default
priority level, where all interrupts are enabled. All user-mode code and most
kernel-mode code runs at PASSIVE LEVEL. It is also one of just a few IRQLSs
that is not associated with any interrupt vectors.!

IRQLs 3-11 and 13-15 are used for hardware interrupts. The first of these IRQL
ranges, known collectively as DIRQL, is used for generic device interrupts, and
the second range is used for special system interrupts, such as the periodic

1. As of Windows 8, it is possible for drivers to register ISRs that will run at PASSIVE LEVEL
in response to an interrupt [53], [54]. Note, however, that the actual interrupt vector
from which such an interrupt originates will always be associated with a DIRQL, and
the passive-level ISR is run in the context of a special system worker thread through a
deferring mechanism.

3.1/ INTERRUPT REQUEST LEVELS (IRQLS) AND SOFTWARE INTERRUPTS 23

Interrupt at

IRQL 4 is
masked IRQL lowered,
ISR at IRQL 2 pending inter-
is preempted r‘upt‘at IRQL 4
by interrupt is dispatched
TaskatIRQL1 atIRQL4 Int Cat IRQL lowered,
is preempted n eI;rgly_)Bais pending inter- IRQL lowered, IRQL lowered,
by interrupt masked rupt at IRQL 3 ISB atIRQL 2 tas‘k atIRQL 1
at IRQL 2 is dispatched is resumed is resumed
IRQL 5
IRQL 4
- ---=-=-- b= -
IRQL 3
& - ———
IRQL 2 [_- ________________________________
IRQL | e e _
IRQLO
= Current IRQL — — Interrupted task ®— Interrupt event — — Pending interrupt

Figure 3.1: Example of how a processor’s IRQL may change in the face of interrupts.
The figure illustrates a timeline of interrupt events from left to right. In
the example, the processor is initially running at IRQL 1, and the system
receives interrupts at IRQLS 2, 3, and 4 at various points of time. Interrupts
at IRQLs above the processor’s current IRQL are dispatched right away,
whereas interrupts at lesser or equal IRQLs are masked. When an interrupt
is masked, it will be pending delivery until the current IRQL is lowered
below the IRQL of that interrupt. As soon as an ISR completes, the current
IRQL is lowered back to the IRQL at which the processor was running
before it was interrupted to execute the ISR. However, if there are pending
interrupts at IRQLs above the new, lesser target IRQL, the processor’s
current IRQL will immediately be raised again to the IRQL of the highest-
priority pending interrupt, before it even reaches the target IRQL.

system clock interrupt, a cache coherency inter-processor interrupt (IPI), and
non-maskable interrupts (NMIs). IRQL 12 (SYNCH LEVEL) is used to synchro-
nize access to some shared resources across differerent processors.

Finally, IRQLs 1 and 2 are used for software interrupts. Windows has two kinds
of software interrupts—deferred procedure calls (DPCs), which run at DISPATCH
LEVEL (IRQL 2), and asynchronous procedure calls (APCs), which are dispatched
at APC LEVEL (IRQL 1). Both DPCs and APCs are very important mechanisms
in the Windows Kernel.

DPCs are software interrupts that are targeted to run on a specific processor.
They are typically used by ISRs running at a higher IRQL to defer processor-
specific work to a lower IRQL, so that ISRs can execute as quickly as possible
[55]. The thread scheduler in Windows—commonly referred to as the dis-
patcher—also runs at DISPATCH LEVEL [52]. It is either invoked directly by

24 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

High Level = W
Hardware Pl Level 14
Interrupts eve
Clock Level 13
e { Synch Level 12
. nch Leve
Synchronization y } Processor-specific
> IRQLs
DIRQL n
Hardware °
Interrupts .
DIRQL 1 3
Dispatch Level 2
Software P J
Interrupts 1
APC Level

Thread-specific
IRQLs

Passive Level

Normal Thread
Execution

Figure 3.2: IRQLs used in Windows on x64. Note: this figure is based on figures from
[46, Ch. 3].

a thread calling a dispatcher function (for example if the thread yields or
enters a wait state), in which case the IRQL will be raised manually using
KeRaiseIrql(), or it is invoked in the context of a DPC.

When a thread is being scheduled to run on the processor, it is given a time
slice or quantum that limits the amount of CPU time it gets before it may
be preempted to allow another thread to run [46, Ch. 5]. The preemption
mechanism is driven by the system clock interrupt at CLOCK LEVEL, which
will post a DPC that invokes the dispatcher once the IRQL is lowered below
DISPATCH LEVEL, after the clock ISR completes [56], [46, Ch. 3].

Because the dispatcher runs at DISPATCH LEVEL, threads are scheduled to
run at IRQLs below DISPATCH LEVEL. If a thread raises the current IRQL to
DISPATCH LEVEL, it will, in effect, temporarily disable preemption,? since the
dispatcher will not be able to run [52]. However, if a thread raises the IRQL to
APC LEVEL, it may still be preempted by the dispatcher to run another thread
at either PASSIVE LEVEL or APC LEVEL. Then, when the preempted thread is
scheduled to run at a later point of time, it will resume its execution at APC
LEVEL. This means that an IRQL below DISPATCH LEVEL is considered an
attribute of the currently running thread instead of an attribute of the processor
that hosts the thread, and there is a logical separation betwen processor-specific
or high IRQLs—the levels above and equal to DISPATCH LEVEL—and thread-

3.1 / INTERRUPT REQUEST LEVELS (IRQLS) AND SOFTWARE INTERRUPTS 25

specific or low IRQLs—the ones below DISPATCH LEVEL.

It follows that Apcs—the other kind of software interrupts in the Windows
Kernel—are interrupts that are targeted to run in the context of a specific thread,
in contrast to DPCs, which were targeted at a specific processor. Although the
APC LEVEL interrupt vector will be associated with a particular processor, the
dispatcher will make sure that an APC is delivered to a specified target thread,
and not just to whichever thread is currently running on the processor at the
time when the interrupt is received. APCs are most commonly used in Windows
to perform 1/0 completion tasks that must run in the context of the same
thread that initiated an 1/0 operation [52]. The APC abstraction is, as opposed
to DPCs, also exposed to user-mode code. For example, the QueueUserApc()
Windows API call [58], and its underlying NtQueueApcThread() Native API
system call, allows a thread to post an APC to another thread. Other examples
are the ReadFileEx () and WriteFileEx () functions, which are used to initiate
asynchronous read and write operations on a file, respectively, that take as
argument a completion callback that will be run in the context of an APC [52].
APCs will be discussed further in Section 3.2.

The nature of IRQLs in Windows imposes certain restrictions on the program-
ming model of kernel-mode components and drivers. One such restriction is
that only code running at thread-specific IRQLs are allowed to initiate blocking
operations. This is because interrupts served at processor-specific IRQLs will be
executed in the context of an arbitrary thread that has only been temporarily
interrupted, and which should be able to continue running as soon as the
interrupting ISR completes [46, Ch. 3]. If an ISR at or above DISPATCH LEVEL
were allowed to block, it would effectively be blocking the thread that was
currently running on the processor. As a consequence, spinlocks is the only
synchronization mechanism that is allowed to be used at processor-specific
IRQLs [57].

If two or more ISRs need to synchronize through a spinlock, they all need
to be at the same IRQL. Moreover, this IRQL must be at least as high as the
highest IRQL at which the spinlock may be acquired anywhere in the system
[57]. If any of these requirements are violated, deadlock may occur.? There
are also many kernel functions that may be called only at certain IRQLs. All

2. In Windows, this is typically done when a thread acquires a spinlock in the kernel, to
make sure that the thread is not scheduled out while other threads may be spinning in a
busy-wait loop on another processor, waiting to acquire the spinlock [57].

3. For instance, if an ISR executing at IRQL n acquires a spinlock s, and is afterwards inter-
rupted to run an ISR at IRQL n + 1 that also attempts to acquire that same spinlock s, then
the processor will deadlock. The interrupted ISR cannot continue until the interrupting
ISR has completed, and the spinlock will thus never be released, allowing the interrupting
ISR to complete.

26 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

kernel functions that are available to drivers, for which this restriction applies,
will have specified in their documentation the exact IRQLs that are allowed.
Finally, a function in the kernel is typically allowed to raise the current IRQL
temporarily, but it is generally not allowed to lower the IRQL below the level
at which it was invoked.

3.1.1 Emulating Software Interrupts in Casuar

Because the APC abstraction is exposed to user-mode, we have deemed it
likely that an equivalent mechanism is needed in Casuar to support the system
calls that make use of APCs. By the same reasoning, it seems unlikely that a
DPC mechanism will be needed, since—as far as we have observed—there are
no system calls that expose or depend on this abstraction, either directly or
indirectly. Furthermore, Vortex does not expose the abstraction of a virtualized
CPU in the same way as a conventional vMM. Instead, Vortex virtualizes each
thread separately to retain control over how threads are scheduled. This means
that Casuar will not deal with virtual interrupts or implement an internal thread
dispatcher, which would be reasons for wanting DPCs in the first place.

To support APCs, we need a mechanism similar to CPU interrupts that allows
preempting the execution of a thread to have it perform some other work,
and afterwards returning it to the point of interruption. Despite the restric-
tions it imposes on our programming model, we also need the abstraction of
thread-specific IRQLs, so a thread may prevent the delivery of APCs at certain
times. Finally, we must be able to queue up pending interrupts that have been
masked by the current IRQL, and defer the delivery of these until the IRQL is
lowered.

On x64, IRQLs are implemented with hardware support from the local Ad-
vanced Programmable Interrupt Controller (APIC) of each processor. A proces-
sor’s current IRQL is equivalent to the value of the local APIC’s Task Priority
Register (TPR),* which is mirrored in the processor’s CR8 control register for
fast access. The local APIC also handles queuing and delivery of pending in-
terrupts [59, Ch. 10.8]. When the APIC accepts an interrupt that has been
masked, it is registered by setting a bit corresponding to the interrupt vector
in the interrupt request register (IRR) of the APIC. Later, when the pending
interrupt is delivered, the corresponding bit is cleared in the IRR.

As we cannot rely on the functionality of a virtualized APIC, we have chosen
to emulate the TPR and IRR of the local APIC in software. This is done on a

4. Further details about the APIC subsystem and the TPR may be found in [60, Ch. 15] and
[59, Ch. 10.8].

3.1/ INTERRUPT REQUEST LEVELS (IRQLS) AND SOFTWARE INTERRUPTS 27

per-thread basis, since we only need to represent thread-specific IRQLs. Each
thread maintains a current IRQL variable and a pending IRQL interrupt bitmask
in its kernel-level thread control block (TCB). Raising and lowering the thread’s
current IRQL is done explicitly through calls to the functions irql_raise() and
irgl_lower(), which are shown in Code Listing 3.1. These functions will only
ever be called in the context of the thread itself, so whenever a thread lowers
its IRQL, it can check for pending interrupts and deliver them by invoking the
respective ISRs directly through normal function calls.

Code Listing 3.1: Implementation of irql_raise() and irql_lower() as inter-

face to changing a thread’s current IRQL.

1 #define CURRENT_IRQL (CURRENT_THREAD—>tcb_irql)
2

3 drql_t

4 drqgl_raise(irgl_t new_irql)

5 {

6 irgl_t old_1irql;

7

8 irql_lock_acquire();

9

10 assert(new_irql >= CURRENT_IRQL);
11 old_irql = CURRENT_IRQL;

12 CURRENT_IRQL = new_irql;

13

14 irgl_lock_release();

15

16 return old_irql;

17 %

18

19 void

20 [drql_lower(irgl_t new_irql)

21 {

22 irql_lock_acquire();

23

24 assert(new_irql <= CURRENT_IRQL);
25 CURRENT_IRQL = new_irql;

26

27 check_for_pending_irqgl_interrupts();
28

29 irgl_lock_release();

30 }

The function check_for_pending_irql_interrupts(), shown in Code List-
ing 3.2, is used to check for and deliver pending interrupts. As long as the
thread’s pending IRQL interrupt bitmask has any bits set corresponding to
interrupts at IRQLSs higher than the IRQL at which the function was invoked, it
will clear the bit for the highest-priority pending interrupt, call the associated
ISR at the IRQL of that interrupt, and then the process is repeated after the ISR
returns. Only a single, sequential pass over the bitmask is needed to check for
and deliver all pending interrupts, as only interrupts at IRQLS below or equal to
the current IRQL will be registered as pending at any point of time—interrupts
at IRQLs greater than the current IRQL will be delivered right away. The only
exception is that after an ISR has returned, the bit corresponding to the IRQL

28 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

of that ISR must be checked again, because the ISR itself may have requested
an interrupt at the same IRQL to be delivered after the ISR completes.

Code Listing 3.2: Implementation of check_for_pending_irql_interrupts().

1 static void
2 check_for_pending_irql_interrupts(void)

3 {

4 irgl_t highest_irql, old_irql, isr_irql;
5

6 highest_irql = HIGHEST_BIT_SET(

7 CURRENT_THREAD—>tcb_pending_irql_interrupt_mask);
8

9 if (highest_irql == 0)

10 return;

11

12 // Save IRQL

13 old_irql = CURRENT_IRQL;

14

15 while (1) {

16 isr_irql = HIGHEST_BIT_SET_BELOW_EQ(
17 CURRENT_THREAD->tcb_pending_irql_interrupt_mask,
18 highest_irql);

19

20 if (disr_irql <= old_irql)

21 break;

22 else if (isr_irql < highest_irql)

23 highest_irql = disr_irql;

24

25 CLEAR_BIT(CURRENT_THREAD—>tcb_pending_irql_interrupt_mask,
26 isr_irql);

27 CURRENT_IRQL = dsr_irql;

28

29 invoke_irql_isr(isr_irql);

30 }

31

32 // Restore IRQL

33 CURRENT_IRQL = old_1irqgl;

34 }

To actually post an interrupt targeted at a specific thread, there are two
different cases to be considered; a thread may request an interrupt to be
delivered either to itself, or to another thread. In the first case, the ISR may be
called directly if the IRQL of the interrupt is greater than the current IRQL.
Otherwise, the interrupt is registered as pending by setting the corresponding
bit in the pending IRQL interrupt bitmask, and will be delivered when the
thread later calls irql_lower(). This functionality is implemented by the
function irql_request_interrupt(), shown in Code Listing 3.3.

Whereas the first case is trivial, since all code is run in the context of the
same thread, the second case is different because it requires a mechanism to
manipulate the execution flow of some other, specified thread. On Windows,
interrupt requests are handled by the hardware abstraction layer (HAL), and
there is a similar separation between interrupt requests targeted at the same
processor or another processor, where the HAL will issue an inter-processor

3.1/ INTERRUPT REQUEST LEVELS (IRQLS) AND SOFTWARE INTERRUPTS 29

Code Listing 3.3: Implementation of irql_request_interrupt(), used by a

thread to request an interrupt to be delivered to itself.

1 void

2 dirgl_request_interrupt(irqgl_t irql)

3 {

4 irgl_t old_1irql;

5

6 irgl_lock_acquire();

7

8 old_irql = CURRENT_IRQL;

9 if (old_irql < dirql) {

10 // Raise IRQL to that of ISR

11 CURRENT_IRQL = irql;

12

13 invoke_irql_isr(irql);

14

15 // Lower IRQL back to what it was before
16 CURRENT_IRQL = old_irgl;

17 check_for_pending_irqgl_interrupts();
18 } else {

19 SET_BIT(CURRENT_THREAD—>tcb_pending_irql_interrupt_mask, irql);
20 }

21

22 irgl_lock_release();

23 }

interrupt (IPI) in the latter case. If the interrupt request is an APC targeted
at a specific thread, the HAL will deliver an internal interrupt to the current
processor if the requesting thread and the target thread are the same or they
are hosted on the same processor core. Otherwise, if the thread is hosted on a
remote core, the HAL will request an IPI targeted at that core.

In Casuar all threads are managed by Vortex, and we therefore require special
support from Vortex through its paravirtualized system service interface for
emulating inter-thread interrupts. Conveniently, Vortex provides the system
calls vx_thread_getcontext() and vx_thread_setcontext(), for retrieving
and altering the register context of a given thread. They are typically used
together with vx_thread_suspend() and vx_thread_resume(), because the
register context of a thread may only be accessed when the thread is in a
suspended state.

By suspending a thread and modifying its thread context—specifically its stack,
segment registers, and instruction pointer—before resuming it afterwards, it is
possible to effectively interrupt the thread to have it execute some ISR. However,
it is important that the thread be able to resume its previous execution from
before the point of interruption, after the 1SR completes. On x64, when an
actual interrupt occurs, the CPU will trap into the kernel and push an interrupt
frame on the kernel stack before the ISR is invoked. This frame is often
referred to as a machine frame, and consists of the current stack segment (SS),

30 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

Stack frame of
interrupted task

Alignment padding

SS

RSP

RFLAGS

CS

Figure 3.3: Layout of a machine frame that is pushed onto a kernel stack by the cpPuU
when an interrupt occurs.

stack pointer (RSP), flag register (RFLAGS), code segment (CS), and instruction
pointer (RIP) [59, Ch. 6.14].5

The segment and stack registers are needed as part of the machine frame,
because the CPU may have been interrupted while executing code in user
mode. Transitioning into kernel mode from user mode will result in both a
change of privilege level and a stack switch from a user stack to a kernel stack,
and it must be possible to restore the user stack and the previous privilege level
afterwards. Before the frame is pushed, the cPU will make sure to align the
stack pointer to a 16-byte boundary, due to restrictions in calling-conventions on
x64. Figure 3.3 illustrates what the kernel stack will look like after a machine
frame is placed on the stack.

The last thing an ISR does, after it has completed its work, is typically to
execute an IRET instruction to resume the previously interrupted task. This
is a special instruction in the x64 instruction set that will pop the machine
frame off the stack, and use it to restore the registers contained within. The

5. Note that on x86, the SS and RSP registers are only pushed if the interrupt resulted in a
privilege level change (i.e. the CPU was executing code in user mode), whereas on x64
they are pushed unconditionally [59, Ch. 6.14].

3.1/ INTERRUPT REQUEST LEVELS (IRQLS) AND SOFTWARE INTERRUPTS 31

only side effects of the IRET instruction that are not determined directly by the
contents of the machine frame, are related to non-maskable interrupts (NMIs)
[61, Ch. 3.2], [59, Ch. 6.7], [62, Ch. 25.3]. Hence, since we do not deal with
any sorts of virtual interrupts, we are able to exploit the effect of the IRET
instruction as part of a mechanism for emulating interrupts.

Specifically, our approach is to construct a machine frame manually, populated
from the current register context of the thread to be interrupted. Then, we
place this machine frame on the kernel stack of the thread, and update the
stack pointer in the thread context to point to the beginning of the machine
frame—thereby simulating the stack push operation that is performed by the
CPU when an interrupt occurs. Finally, the interrupt handler is given an entry
point that, after calling an ISR, will execute an IRET instruction to restore the
thread’s previous state from the constructed machine frame.

We need to make sure that the ISR to be called as the result of an inter-
rupt is invoked at its corresponding IRQL. However, raising the IRQL of the
interrupted thread is preferrably done in context of the thread itself, as we
need to make sure the thread is resumed at the same IRQL as before. Fur-
thermore, the functionality for invoking an ISR is already implemented in
the function check_for_pending_irql_interrupts(). Therefore, we use as
interrupt handler a function that is invoked at the same IRQL that the thread
was running at prior to interruption. Before an interrupt is posted, the bit
corresponding to the interrupt is set in the pending IRQL interrupt bitmask.
Then, when the interrupt is dispatched, the interrupt handler will simply call
check_for_pending_irgl_interrupts() toinvoke all pending ISRs, as shown
in Code Listing 3.4.

Code Listing 3.4: Implementation of the C code IRQL interrupt handler.

1 void
2 dirqgl_interrupt_handler ()
3 {

4 irql_lock_acquire();

5 .

6 :

7 check_for_pending_irgl_interrupts();
8 .

9

10

irql_lock_release();
11 }

There are, however, a few special considerations that must be dealt with when
using this approach. On x64, the SYSCALL instruction [63, Ch. 4.2] is used to
implement fast system calls. When the system call handler is invoked after
trapping to kernel mode, the CPU is still executing on the user stack. Thus, it
is necessary to get hold of the kernel stack pointer in order to switch stacks.

32 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

To allow easy access to control structures in user mode and kernel mode,
x64 provides a mechanism that allows an arbitrary pointer to be stored in
the processor’s GS base register, and a SWAPGS instruction [63, Ch. 4.2] to
exchange the current value of the GS base with another hidden register called
IA32_KERNEL_GS_BASE. The hidden register is typically used to contain the GS
base belonging to kernel mode when in user mode, as well as the other way
around, and the SWAPGS instruction is used when trapping to or exiting from
the kernel, to change the value of the GS base.

Windows uses the GS base to point to the processor control region (KPCR)
structure of the current processor in kernel mode, and the thread environment
block (TEB) of the current thread in user mode. Similarly, in Casuar, we let
the GS base contain a pointer to the current thread’s kernel-level TCB when in
kernel mode, and make sure to retain the GS base as a TEB pointer when in
user mode, because it is heavily depended on by DLL code. We execute SWAPGS
as the first instruction in the system call handler, and may then obtain the
kernel stack pointer from the TCB by addressing it relatively to the GS register.
After the system call completes, the system call handler will change the GS
base back to the TEB pointer by executing another SWAPGS instruction before
returning to user mode.

Considering that a thread may be interrupted while executing code in the
system call handler, it is possible for the interrupt to happen both before and
after any of the SWAPGS instructions. This means that once the interrupt handler
is invoked, it is not straightforward to determine whether a SWAPGS instruction
should be executed or not, merely by examining the previous privilege level in
the CS register of the machine frame. On Windows and other OSs running on
x64, this problem does not occur, because the system call mechanism can be
programmed to disable all interrupts in response to the SYSCALL instruction,
before the system call handler is invoked. In our case, this is not possible, so
we have found another solution to the problem.

We use a single interrupt handler, but implement two versions of the entry
point to that handler—one that executes SWAPGS on entry and exit, and one
that does not. After the thread to be interrupted has been suspended, its
register context is examined to see if the thread has already loaded the proper
GS base, corresponding to its current privilege level, or not. This is possible
to determine, because it is known what the GS base value should be when
the thread is operating in kernel mode—namely the address of the thread’s
kernel-level TCB. If the thread was interrupted from kernel mode, and the GS
base already contains the TCB pointer, then the entry point without the SWAPGS
instruction is chosen. Otherwise, the entry point with SWAPGS is used instead.
The resulting implementation of the interrupt handler entry points is shown
in Code Listing 3.5.

3.1/ INTERRUPT REQUEST LEVELS (IRQLS) AND SOFTWARE INTERRUPTS 33

Code Listing 3.5: Implementation of the assembly code IRQL interrupt handler

entry points.

1 .macro IRQL_INT_ENTRY

2 # Allocate trap frame (MACHFRAME is already pushed to stack)
3 subq $STRAP_SIZE_MINUS_MACHFRAME_TYPEO, %rsp
4 # Save volatile registers

5 SAVE_INT_TRAPFRAME

6 .

7 :

8 callqg irgl_interrupt_handler

9 .

10 .

11 # Restore volatile registers

12 RESTORE_INT_TRAPFRAME

13 addq STRAP_SIZE_MINUS_MACHFRAME_TYPEO, %rsp
14 .endm

15

16 .globl asm_irqgl_int_entry_from_user
17 asm_irql_int_entry_from_user:

18 # Used as handler when GS contains user—mode value.

19 # At this point, a type 0 MACHFRAME has been pushed to stack.
20

21 swapgs # Make sure GS points to CURRENT_THREAD.

22 IRQL_INT_ENTRY

23 swapgs # Swap GS base back to whatever it was before
24 iretq

25

26 .globl asm_irql_int_entry_from_kernel
27 asm_irql_int_entry_from_kernel:

28 # Used as handler when GS contains kernel-mode value.

29 # At this point, a type 0 MACHFRAME has been pushed to stack.
30

31 IRQL_INT_ENTRY

32 iretq

A second consideration is to ensure that the machine frame is placed at the
end of the interrupted thread’s kernel stack, so that previous stack frames
are not overwritten. If the thread is interrupted from user mode, the end of
the kernel stack is already available in a tcb_stack_current variable in the
thread’s TCB, used to switch stacks upon system call entry. However, if the
thread is interrupted from kernel mode, special care must be taken because
there is a small window in the beginning and end of the system call handler
where the RSP still contains the value assigned to it from user mode, before
the stack switch occurs. A malicious user application could potentially alter
the RSP to point to memory locations within the kernel. If this is not detected,
then critical kernel data structures could be overwritten by stack frames as the
kernel stack grows from the initial RSP.

Every kernel stack has a known base—the memory address directly follow-
ing the last byte of allocated stack memory, from which the stack grows
downwards—and limit—the address of the first allocated byte, which indi-
cates the maximum capacity of the stack. First of all, we require that the RSP

34 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

lies between the base and limit of the current kernel stack if the thread was
interrupted from kernel mode. This will always be the case when the RSP
contains the value of the true kernel stack pointer. Hence, if the RSP is not
within the kernel stack area, it must have been assigned from user mode. In
this case, it is safe to use the value in tcb_stack_current as stack pointer
instead, because the thread came from user mode, and this is the value that
would have been loaded by the system call handler if the thread had been
interrupted after the stack switch.

Still, a user application could guess where the kernel stack is located in memory,
and alter the RSP accordingly. By pointing the RSP at the start of the kernel
stack, the application could attempt to overwrite previous stack frames, or
it could try to provoke a stack overflow by placing the RSP near the end of
the stack. To prevent previous stack frames from being overwritten, we make
sure that the RSP is not higher than the value in the tcb_stack_current
variable. A correctly placed kernel stack will always grow downwards from
this value, so the RSP must have been altered from user mode if it lies between
tcb_stack_current and the base. As in the previous case, we can replace the
RSP with tcb_stack_current without risking to overwrite any frames that are
in use.

To prevent stack overflow, we cannot rely on any boundary checks, because
it cannot be determined if an RSP between tcb_stack current and the stack
limit is a true kernel stack pointer or not. Instead, we require that the available
space between the RSP and the stack limit is sufficiently large to contain the
necessary stack frames to serve the ISR. In sum, these checks will guarantee
that an ISR will execute on a consistent kernel stack, even when the RSP has
been altered in user mode.

This concludes the description of how we have implemented a mechanism for
emulating software interrupts. We use this mechanism to implement APCs,
which are described in more detail in Section 3.2. The final implementation of
the function used to post an interrupt targeted at a remote thread is shown in
Code Listing 3.6.

3.1/ INTERRUPT REQUEST LEVELS (IRQLS) AND SOFTWARE INTERRUPTS 35

Code Listing 3.6: Implementation of irql_interrupt_remote thread(). Cer-

tain details have been simplified or omitted.

1 void
2 drqgl_interrupt_remote_thread(win_tcb_t *thread, irql_t irql)

4 vx_threadcontext_t th_ctx;

5 vx_vaddr_t interrupt_handler, rsp;

6 vxerr_t vXxerr;

7

8 irgl_lock_acquire_thread(thread);

9

10 if (IS_BIT_SET(thread->tcb_pending_irql_interrupt_mask, 1irql)) {
11 irgl_lock_release_thread(thread);

12 return;

13 }

14

15 SET_BIT(thread—>tcb_pending_irql_interrupt_mask, irql);

16

17 if (irql <= thread->tcb_irql) {

18 irql_lock_release_thread(thread);

19 return;

20 }

21

22 .

23 vxerr = vx_thread_suspend(thread—>tcb_rid, VX_TIME_NTIME);
24 :

25 .

26 vxerr = vx_thread_getcontext(thread—>tcb_rid, &th_ctx);

27 :

28 .

29 irql_lock_release_thread(thread);

30

31 // Get handler depending on current GS base of thread

32 interrupt_handler = get_interrupt_handler(thread, &th_ctx);
33

34 // Get kernel stack where it is safe to allocate MACHFRAME
35 rsp = get_interrupt_stack(thread, &th_ctx);

36

37 // Allocate MACHFRAME on stack and populate it from current context
38 allocate_machframe(&th_ctx, &rsp);

39

40 // Set new register context for invocation of interrupt handler
41 th_ctx.tc_registercontext.rc_ss = GDT_KERNEL_DATA;

42 th_ctx.tc_registercontext.rc_rsp = rsp;

43 th_ctx.tc_registercontext.rc_cs = GDT_KERNEL_TEXT64;

44 th_ctx.tc_registercontext.rc_rip = interrupt_handler;

45

46 vxerr = vx_thread_setcontext(thread->tcb_rid, &th_ctx);

47 .

48

49 vxerr = vx_thread_resume(thread->tcb_rid);

50 -

51

36 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

3.2 Asynchronous Procedure Calls (APCSs)

In Section 3.1, we described asynchronous procedure calls (APCs) as software
interrupts that are targeted to run in context of a specific thread. However, the
Windows Kernel abstracts APCs at a higher level than CPU interrupts. Instead,
it models an APC as a special sort of function call that will be invoked with
a given set of parameters within a given target thread [64]. The APC LEVEL
software interrupt is therefore best thought of as a delivery mechanism for
APCs, rather than being synonymous to an APC.

Windows operates with two types of APCs: kernel APCs and user APCs [46,
Ch. 3], [65]. User APCs are used to call a function in user mode, and kernel
APCs run in kernel mode. They also differ in how they are delivered to a
thread. Kernel APCs interrupt the execution of a thread, unless the thread has
explicitly disabled delivery of APCs, whereas user APCs are only delivered when
the thread allows them to be. Specifically, a thread must enter what is known as
an alertable state from user mode to be able to receive user APCs [66], [67]. A
thread running in user mode will be non-alertable during its normal execution,
and can only become alertable by calling a wait functions, such as SleepEx()
or WaitForSingleObjectEx(), with a special Alertable flag set to TRUE. The
concept of alertability will be elaborated on in Section 3.3.

APCs are represented by KAPC kernel objects, each containing information about
which function to call, what parameters will be passed to the function, and
which thread the APC is targeted at. The main function of an APC is known
as its normal routine. It is always invoked at PASSIVE LEVEL, and must be a
kernel-mode function for kernel APCs or a user-mode function for user APCs.
In addition, all APCs have a special routine, which is always a kernel-mode
function. It executes at APC LEVEL before the normal routine, and may modify
the arguments stored in the KAPC before they are passed to the normal routine.
The special routine can even change which normal routine should be called
after the special routine returns, or prevent the normal routine from running
at all. The type definitions for the normal and special routine of an APC, as
used in the Windows Kernel, are shown in Code Definition 3.1.

User-mode code can only specify the normal routine to be called by a user APC;
which kernel routine is used depends on the system service that is invoked
to queue the APC to a thread. The kernel routine is commonly used to free
the KAPC object associated with the APC, as this object has to be allocated
dynamically by the system in most cases. This is, for instance, the case with
the NtQueueApcThread () system call, used to implement the QueueUserAPC()
Windows API function.

There are two types of kernel APCs—normal kernel APCs and special kernel

3.2 / ASYNCHRONOUS PROCEDURE CALLS (APCS) 37

Code Definition 3.1: Windows Kernel type definitions for normal and special rou-

tine of an APC. Definitions are borrowed from [68].

typedef void (*PKNORMAL_ROUTINE) (
IN void *NormalContext,
IN void *SystemArgumentl,
IN void *SystemArgument2

)3

typedef void (*PKKERNEL_ROUTINE) (
IN KAPC *Apc,
IN OUT PKNORMAL_ROUTINE *NormalRoutine,
IN OUT void **NormalContext,
IN OUT void *xSystemArgumentl,
IN OUT void x*SystemArgument2

APGs [46, Ch. 3], [65]. The difference between these is that special kernel APCs
have only a special routine, whereas normal kernel APCs have both a special
and a normal routine. Furthermore, special APCs are regarded as of higher
importance than normal APCs, and are delivered before any pending normal
APCs.

A thread executing in kernel mode may disable the delivery of normal kernel
APGs by entering a critical region, using the KeEnterCriticalRegion() func-
tion of the Windows Kernel. To disable both normal and special kernel APCs,
KeEnterGuardedRegion () may be used instead to enter a guarded region.® The
functions KeLeaveCriticalRegion() and KelLeaveGuardedRegion() are used
as counterparts, to leave a critical or guarded region, respectively. When either
type of kernel APC is re-enabled, as result of calling one of these functions, the
thread will check for and deliver all pending APCs that are now allowed to be
received. This is similar to how our implementation of irql_lower(), from
Code Listing 3.1, works for IRQL interrupts.

The KeInitializeApc() function of the Windows Kernel is used to initialize a
KAPC object, and the KeInsertQueueApc() function is called to queue an APC
for delivery to a thread. The prototypes for these functions are shown in Code
Definition 3.2. Among the arguments to KeInitializeApc() is the KAPC object
to initialize, the thread to target, a flag that specifies whether it is a kernel or
user APC, the special and normal routine to associate with the APC, and the
first parameter that will be passed to those routines. Two more APC routine
parameters are specified as arguments to KeInsertQueueApc (), which will be
passed as second and third argument to the special and normal routine of the
APC.

6. It is also possible for a thread to raise its current IRQL to APC LEVEL to disable all APCs,
as discussed in Section 3.1.

38 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

Code Definition 3.2: Windows Kernel interface for initializing an APC and enqueu-

ing it to a thread. Definition is borrowed from [68].

NTKERNELAPI void
KeInitializeApc(
IN KAPC x*Apc,
IN KTHREAD xThread,
IN KAPC_ENVIRONMENT Environment,
IN PKKERNEL_ROUTINE KernelRoutine,
IN PKRUNDOWN_ROUTINE RundownRoutine OPTIONAL,
IN PKNORMAL_ROUTINE NormalRoutine OPTIONAL,
IN MODE ApcMode,
IN void *NormalContext

)3

NTKERNELAPI BOOLEAN
KeInsertQueueApc(
IN KAPC *Apc,
IN void *SystemArgumentl,
IN void *SystemArgument2,
IN KPRIORITY Increment

)3

In addition to the normal and special routine, the KeInitializeApc() function
takes an optional rundown routine as argument. This is a special function that
is called only when the kernel flushes the APC queues as a result of the thread
being terminated. It is typically used to perform cleanup actions, such as freeing
KAPC objects that have been allocated dynamically.

When KeInsertQueueApc () is called, the given KAPC object is placed onto an
APC queue that belongs to the target thread. Each thread maintains two such
queues, implemented as circular lists, in its KTHREAD control structure—one for
kernel ApPCs and the other for user APCs. Normal APCs are inserted at the tail
of the APC list, whereas special APCs are placed in front of all normal APCs,
after any previously enqueued special APCs. That is, the tail of the special APC
list is at the head of the normal APC list, as illustrated in Figure 3.4.

After an APC has been enqueued, the target thread is notified for APC delivery
unless the APC is not currently allowed to be received by the thread. Otherwise,
if the APC is a kernel APC, and the thread is in a normal running state, an APC
LEVEL interrupt is posted to the thread to execute an interrupt service routine
(1sR) installed by the APC subsystem. However, if the thread is in a wait state,
and APC delivery is allowed, it is signaled for wake-up instead. If a thread was
awakened from an alertable wait state by a user APC, it will return from the
wait after delivering pending APCs. A kernel APC, on the other hand, will only
temporarily awaken a waiting thread, and the wait will be resumed after the
APC has completed. The mechanisms related to waits and signaling will be
detailed further in Section 3.3.

3.2 / ASYNCHRONOUS PROCEDURE CALLS (APCS) 39

Tail of Head of
APC queue APC APC queue
queue
Special
Tail of Head of APC
normal special
APCs APCs
" N " =N

Tail of
special

APCs Special

APC

Head of
normal
APCs

Figure 3.4: APC queue implemented as a circular list of KAPC objects. Normal APCs
are inserted at the tail of the APC list, whereas special APCs are inserted
at the tail of the special APC list, in front of all normal APCs. APCs are
dequeued for delivery from the head of the APC list.

When a thread is interrupted or signaled to process APCs, it will deliver kernel
APCs first, before checking to see if user APCs should be delivered as well. All
pending APCs that are allowed to be received will be processed before the
thread resumes its previous task. This applies to user APCs as well as kernel
APCs; hence, once a thread enters an alertable state from user mode by calling
a wait function, it will not return from that function until either the user APC
list has been emptied, or the thread is forced out of the alertable state by a
special alert from the kernel [66].

Threads dequeue KAPC objects from the head of the kernel and user APC list,
and thus deliver APCs in the order in which they have been queued. The only
exception to this, is that the delivery of special APCs will preempt the normal
routine of any normal APC that may have been running at the time when a
special APC is queued to the thread [65]. In this case, the special APCs will be
delivered in the context of an APC LEVEL interrupt, and the preempted normal
routine will resume once there are no more special APCs to process.

On the other hand, a normal kernel APC will never be preempted by another

40 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

normal kernel APC. Although it is possible for the normal routine of a normal
kernel APC to be temporarily interrupted by an APC LEVEL interrupt, since
the routine is executing at PASSIVE LEVEL, the APC LEVEL ISR makes sure
not to start executing the next normal APC from the kernel APC list as long
as another kernel APC is already running. This is done by checking a spe-
cial KernelApcInProgress flag in the KTHREAD structure, which is set at APC
LEVEL before starting to run an APC routine, and cleared after the routine
returns.

3.2.1 Implementing APCs in Casuar

Recall from Section 3.1 that the reason we wanted to implement the abstraction
of APCs in Casuar is to support system services that depend on it. System
calls such as NtQueueApcThread(), NtReadFile(), and NtWriteFile() take
as arguments a callback to be invoked as the normal routine of a user APC,
and a parameter that is passed to the routine. However, it is only user APCs
that are exposed directly to user mode. Kernel APCs are only used internally
in Windows NT. The functions KeInitializeApc() and KeInsertQueueApc()
are not even available for use by third-party drivers.

Still, there are several system services that depend on kernel APCs indi-
rectly, as they are used to serialize asynchronous operations to a thread.
This is, for example, the case for the system calls NtSuspendThread() and
NtResumeThread (), which implement the functionality used by the Windows
API functions SuspendThread () and ResumeThread (). Other examples are the
NtGetContextThread() and NtSetContextThread() system calls, which are
used by the GetThreadContext () and SetThreadContext () functions.

There are some details concerning the APC implementation in the Windows
Kernel that we have not yet shed light on. The astute reader may have noticed
that the prototypes of KeInitializeApc() and KeInsertQueueApc() from
Code Definition 3.2 contain an APC environment argument and a priority incre-
ment argument, respectively, which we did not describe earlier. Both parameters
relate to functionality in Windows that we do not replicate in Casuar.

The priority increment is very specific to how the thread dispatcher is im-
plemented in Windows. Recall from Section 3.1 that we have no dispatcher
component in Casuar, because all thread scheduling is done directly by Vortex.
Hence, this parameter is irrelevant to our implementation, and so we will not
consider it further. The reasons for not implementing APC environments, on the
other hand, are mostly because of their complexity—they are part of a larger
mechanism in the Windows Kernel that allows a thread belonging to some
process to temporarily execute in the address space of another process.

3.2 / ASYNCHRONOUS PROCEDURE CALLS (APCS) A1

Specifically, the functions KeAttachProcess () and KeStackAttachProcess()
are provided by the Windows Kernel for detaching a thread from the process in
which it is currently executing, and attach it to some other, specified process.
This allows a thread to gain access to code and data in the address space of
another process, which is not otherwise available from the original process
that the thread was created in. Afterwards, a thread must return to its original
process, by calling KeDetachProcess() or KeUnstackDetachProcess (). Calls
to KeStackAttachProcess() and KeUnstackDetachProcess () are allowed to
be nested, as long as the thread eventually ends up back in its original pro-
cess.

The APC mechanism in Windows has to accommodate the possibility of a thread
becoming attached to different processes at various times, because APCs are
highly dependent on executing in a particular process address space; an APC
targeted to run in the thread’s original address space will not be able to run if
the thread is attached to another process, as code and data from the original
address space, which is needed by the APC, will become unavailable. However,
it is required that the thread still be able to queue up APCs for execution in the
original process, and that APCs explicitly targeted at the attached process may
also be queued and delivered.

In Windows, this is implemented by having each thread maintain different
sets of APC queues for the original process and the attached process if these
are not the same. The queues and other APC specific state that is dependent
on a particular address space, such as the KernelApcInProgress flag, is con-
tained in a KAPC_STATE structure [69]. A thread’s KTHREAD structure contains a
KAPC_STATE for the currently active address space, and also has two APC state
pointers—one that points to the APC state of the original process, and one that
points to that of the attached process.

The caller of KeStackAttachProcess () must allocate memory for a KAPC_STATE
that will be used to contain the thread’s previous APC state, and later supply
it as argument to KeUnstackDetachProcess() to restore the state [70]. The
thread’s KAPC_STATE and APC state pointers are updated accordingly when
these functions are being called. This means that when an APC is queued to a
thread, the APC state pointers allow the APC to be targeted to run in either the
original or the current process address space in a consistent manner.

The APC environment argument to KeInitializeApc() is simply a flag that
indicates which APC state pointer will be used, and thus, onto which APC
queue the APC will be inserted. An APC may either be targeted at the original
address space, the current address space at the time when KeInitializeApc()
is called, or whichever address space will be currently active at the time when
KeInsertQueueApc() is called.

42 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

In Vortex, there are no similar mechanisms that would allow a thread to switch
address space or in any way make it feasible to emulate such behavior. Re-
gardless, we—perhaps somewhat optimistically—find it reasonable to assume
that we will not face any situation where this functionality would in fact be
needed. Therefore, we have chosen not to represent APC environments or any
structure similar to KAPC_STATE, and instead embed all APC state directly into
the kernel-level TCB of each thread.

Apart from lacking the concept of APC environments, our implementation of
APCs follows that of the Windows Kernel closely. APC delivery is mainly built
on top of the IRQL interrupt mechanism detailed in Section 3.1. This makes it
straightforward to handle kernel APCs, as the APC LEVEL interrupt will trap
into kernel mode, where both the special and normal routine of the kernel APC
will be called right away. However, when delivering a user APC, the special
routine must first be invoked in kernel mode, and the kernel must afterwards
make sure that the normal routine is executed in user mode.

In Windows, the invocation of a user APC’s normal routine does not happen
immediately after its special routine has returned. Instead, the thread is inter-
cepted to call the normal routine just before it returns back to user mode, after
the system call or interrupt that resulted in APC delivery completes. The way
this is implemented in Windows is fairly simple, and so we chosen to base our
implementation on the same approach.

When a thread traps to the kernel as the result of a system call, interrupt, or
exception, it will allocate a trap frame on its kernel stack, which is used to
preserve the thread’s user-mode register state. Normally, when the thread later
returns from the kernel, it will restore its previous state from the trap frame, in-
cluding the previous instruction pointer (RIP) that specifies the return address.
However, when a user APC is being delivered to the thread, the trap frame is
manipulated to let the thread return to the function KiUserApcDispatcher()
in ntdll.d1ll instead.

To make sure that a thread will be able to return to its previous state after deliv-
ering user APCs, a CONTEXT record is populated from the state in the trap frame
before the trap frame is changed, and pushed onto the user stack of the thread.
The normal routine pointer and the parameters to the routine are placed at the
beginning of the CONTEXT frame, as arguments to KiUserApcDispatcher(),
which in turn will take responsibility for invoking the routine. In addition,
a machine frame is pushed onto the user stack before the CONTEXT record.
It contains the same stack pointer (RSP) and instruction pointer (RIP) as is
found in the CONTEXT record, but is used to support stack unwinding, as part
of the structured exception handling (SEH) mechanism in Windows [71]. Fig-
ure 3.5 illustrates the layout of the user stack before KiUserApcDispatcher()

3.2 / ASYNCHRONOUS PROCEDURE CALLS (APCS) 43

Previous user stack frame
before syscall/interrupt

Alignment padding

Machine frame

Context record

Normal routine
System argument 2

System argument 1

Normal context

Figure 3.5: Layout of user stack before dispatching a user APC to user mode. The
CONTEXT record contains the arguments to KiUserApcDispatcher() and
the previous user-mode register state of the thread. The latter will be
restored after pending user APCs have been delivered.

is invoked.

After the normal routine of a user APC has returned, KiUserApcDispatcher()
will call the NtContinue() system call, passing a pointer to the CONTEXT record
as argument. NtContinue () will then check if there are any more pending user
APCs to deliver. If so—and the thread has not received a special alert—it will
update the CONTEXT frame to contain the normal routine and parameters of
the next user APC, and the thread will return back to KiUserApcDispatcher()
to deliver the APC.

Finally, if the thread has received an alert, or the user APC queue has been
completely drained, the NtContinue() system call will restore the register
context contained in the CONTEXT record, and return back to user mode. Because
the previous RSP and RIP are among the registers that are restored, the thread

44 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

will, in effect, return to the same place as before being intercepted to deliver
user APCSs.

3.3 Blocking Synchronization

One of several important functions of the Windows Kernel, is to provide funda-
mental synchronization mechanisms that can be used by the Windows Executive
and—by extension—user mode applications, to coordinate concurrent access to
shared resources. Apart from certain atomic operations, the lowest-level lock-
ing primitive offered by the Windows Kernel is spinlocks [46, Ch. 3]. Spinlocks
provide non-blocking mutual exclusion—a processor that needs to acquire a
spinlock will spin in a busy-wait loop as long as the spinlock is acquired by
another processor, until it succeeds in taking ownership of the lock.

In general, spinlocks waste CPU cycles that could potentially be utilized by
other tasks or workloads in the system. However, as may be recalled from
Section 3.1, no other synchronization mechanism is available to code exceuting
at high IRQLs, such as interrupt service routines (ISRs), deferred procedure
calls (DPCs), and the thread dispatcher. High-IRQL tasks cannot be scheduled
out in favor of other tasks, because they execute in context of an arbitrary
thread that should not be prevented from running. Thus, to reduce negative
impact on a system’s overall performance, all code at high IRQLs is designed to
run for only very short periods of time. In addition, the Windows Kernel offers
queued spinlocks with FIFO semantics that may be used to further improve
efficiency in scenarios that are subject to a high degree of lock contention [72].
Consequently, the performance penalty of using spinlocks at high IRQLs is kept
reasonably low.

Threads, however, are used in a system to express more complex and long-lived
tasks than 1SRs and DPCs. They may be scheduled in any order by the dispatcher,
and there are no hard restrictions on the length of a thread’s quantum. Since
they execute at low IRQLs, threads may also be preempted at any time by the
dispatcher, except for special cases where the current IRQL has been temporarily
raised to DISPATCH LEVEL. Hence, the system greatly benefits from giving
threads the ability to synchronize through blocking mechanisms.

By blocking, a thread will relinquish control of the processor while waiting
for some condition to be met, allowing other threads to run in the meantime.
Because blocking is a scheduler-provided service, the dispatcher is given insight
into what a thread is waiting for. This allows the dispatcher to make better
scheduling decisions, as blocking threads will be considered ineligible to run
on any processor. Although there is some overhead associated with performing

3.3 / BLOCKING SYNCHRONIZATION 45

a blocking operation, the cost will be significantly smaller than that of a non-
blocking alternative for threads that acquire and hold exclusive resources for
longer periods of time. Finally, blocking abstractions are convenient as part of
an operating system’s application programming model—especially for threads
that need to acquire some resource to be able to progress, and cannot overlap
the wait asyncronously with other useful work.

3.3.1 Dispatcher Objects

The Windows Kernel provides several different blocking synchronization prim-
itives to the higher-level Windows Executive layer. Each such primitive is
represented as a dispatcher object—a special type of kernel object that can be
waited on by one or more threads [73], [46, Ch. 3]. All dispatcher objects have
a common dispatcher header structure, used to store each individual object’s
synchronization state and a list of threads waiting for the object.

The event object [74] is one of the most commonly used types of dispatcher
objects in Windows. It provides a basic signaling mechanism that allows a
thread to wait for the event to be set by another thread. An event is represented
by a KEVENT structure that contains nothing more than a dispatcher header.
As such, it is also the most fundamental blocking primitive of the Windows
Kernel. Examples of other dispatcher objects are timers, queues, mutexes, and
semaphores.

Some dispatcher objects do not correspond to raw synchronization mecha-
nisms, but are instead larger kernel objects that embed a dispatcher header
to obtain certain synchronization capabilities and become waitable. Threads
and processes are examples of such objects. Both use the dispatcher header to
provide join semantics; if a thread or process is waited on, the caller thread
will block until the specified thread or process terminates.

The functionality for performing blocking waits is made available by the
Windows Kernel through mainly three functions—KeWaitForSingleObject(),
KeWaitForMultipleObjects(),andKeDelayExecutionThread(). The firsttwo
functions allow a thread to block while waiting to synchronize with one or
more dispatcher objects. Almost all higher-level blocking synchronization mech-
anisms in Windows are projected down onto one of these two functions.
In addition, Windows API functions such as WaitForSingleObjectEx() and
WaitForMultipleObjectsEx() make their functionality directly available to
user-mode applications through corresponding system calls. The last function,
KeDelayExecutionThread(), is used for unconditional waits, where the calling
thread is put to sleep for a specified time interval. Windows API functions such
as Sleep() and SleepEx() are implemented on top of it, through the system

46 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

call NtDelayExecution(). Although the caller does not supply a dispatcher
object as argument to this function, it uses a timer object internally to perform
the wait operation.

A dispatcher object is always in one of two logical states—signaled or non-
signaled [46, Ch. 3]. When a thread waits for a dispatcher object, it will in
effect wait for the object to attain a signaled state. If the thread initiates a wait
operation for only a single object, and that object is already in a signaled state,
the wait is satisfied immediately and the calling thread will return from the
wait procedure without blocking. Otherwise, if the object is in a non-signaled
state, or the thread is waiting for other objects to be signaled as well, the thread
will block until its wait can be satisfied.

A thread that is waiting for multiple objects can specify its wait type as WaitAny
or WaitAll. If the wait type is WaitAny, the wait operation is satisfied when
either of the objects attain a signaled state. This wait type is also assigned
internally by the Windows Kernel to all single-object wait operations. The other
type, WaitAll, indicates that the thread is waiting for more than one object,
and that the wait will not be satisifed until all of the objects have been signaled.
Regardless of wait type, a wait operation will also be satisfied if the thread
specifies a timeout interval when calling a wait procedure, and the timeout
expires before the wait could be satisfied otherwise.

Threads that have to block while waiting for an object to become signaled
are placed on the object’s wait list. When the object is signaled, one or more
threads will be removed from the list and awakened. All released threads
with wait type WaitAny are known to have their wait satisifed at this point.
They can therefore be signaled for unwait, meaning they will return from the
wait procedure immediately after wake-up. However, a thread with wait type
WaitAll might still be waiting for other objects to become signaled. At the time
of releasing the thread, the system cannot determine with certainty if doing
so will result in satisfaction of the wait operation or not. Because of this, the
thread is instead signaled to test if the wait has been satisfied for all specified
objects. If the wait could indeed be satisfied after the thread was awakened,
the thread will unwait itself and return from the wait procedure. If not, it will
re-initiate the wait operation and continue to block.

Exactly how many of the waiting threads are released when an object is sig-
naled, and what makes an object transition between the signal states, depends
on the type of object. Dispatcher objects can be divided into two categories—
notification objects and synchronization objects. When a notification object is
signaled, all blocked threads are released from its wait list. The object then
enters a signaled state, and will remain signaled until it is manually reset.
Synchronization objects, on the other hand, release only a specific number of

3.3 / BLOCKING SYNCHRONIZATION 47

threads when signaled, and they might automatically reset to a non-signaled
state afterwards. Mutexes, semaphores, and queues are examples of synchroni-
zation objects, whereas processes and threads are notification objects. Events
and timers come in two variants—a synchronization type, which always satisfies
the wait of only a single thread when signaled, and a notification type.

Most synchronization objects abstract some sort of resource that can be acquired
exclusively by one or more threads. A mutex, for example, represents a blocking
lock that may be held by only one thread at a time. It is typically initialized in
a signaled state, and transitions to a non-signaled state after being acquired by
some thread. When the mutex is later released, it re-enters a signaled state and
will attempt to unwait a single thread from its wait list. Unless the wait list is
empty, the mutex will most likely be handed over to one of the waiting threads,
in which case the mutex becomes non-signaled once more. In contrast, a queue
object is initially non-signaled, and enters a signaled state when an item is
placed on the queue. It will remain signaled as long as there are items left on
the queue, and becomes non-signaled once the last item is dequeued.

To support the signaling semantics of different synchronization objects, the
Windows Kernel implements the signal state of a dispatcher object as a signal
count integer in the object’s dispatcher header. A positive value means that
the object is in a signaled state, and a value below or equal to zero indicates
a non-signaled state. Notification objects only ever have a signal count of
zero or one, whereas the signal count of a synchronization object may assume
other positive or negative values. Each time a thread completes its wait for
a synchronization object, thereby acquiring a resource, the signal count is
decreased. Similarly, the signal count is increased whenever a resource is made
available for acquisition. As an example, the signal count of a queue object
corresponds to the number of items on the queue (which will always be a
non-negative value). A mutex, on the other hand, will have a signal count less
than or equal to one—a negative value reflects the number of times it has been
acquired recursively by the owning thread.

When a synchronization object is signaled, the signal count determines how
many waiting threads may be released. Threads are released from the object’s
wait list in FIFO order, and the signal count is decreased for each unwaited
thread (with wait type WaitAny) that has not already had its wait satisfied.”
If the number of threads that are signaled for unwait is equal to the signal
count, the synchronization object will enter a non-signaled state (as the result

7. The Windows Kernel takes special care to handle races between unwaits, where more than
one signaled object could concurrently attempt to unwait the same thread. If a thread is
waiting for multiple objects with wait type WaitAny, only one of the attempted unwaits
may be allowed to satisfy its wait.

A8 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

Released first Released second

Dispatcher object [EjT u— e ——)

1

:

. . 1
Wait list head | Waittype ™| Wait type > Wait type > Wait type "
WaitAny WaitAll WaitAll WaitAny

Figure 3.6: Example illustrating how threads are released from a dispatcher object’s
wait list. When the object is signaled, the system will continue to release
threads from the head of the list as long as the signal count is positive.
The signal count is lowered each time a thread with wait type WaitAny
is successfully unwaited. Releasing threads with wait type WaitAll does
not affect the signal count.

of the signal count being lowered to zero); otherwise, the synchronization
object will remain in a signaled state. No more threads are released once the
object becomes non-signaled. Note that the signal count is not decreased when
releasing threads with wait type WaitAll, because it is not known if these
threads will be able to acquire a resource from the synchronization object
until after they have been awakened. This is beacuse the Windows Kernel
requires all objects that are waited upon to become signaled before a thread
may acquire resources from either of them [75]. Hence, the number of threads
that are released might be greater than the value of the signal count at the
time when the object is signaled. This is illustrated in Figure 3.6.

If a kernel APC is posted to a blocking thread, the thread will be signaled for APC
delivery, unless the thread has disabled kernel APCs before it initiated the wait
operation. This will cause the thread to wake up and deliver pending kernel
APCs. Afterwards, the thread will check if its wait condition was satisfied while
APCs were running, and either unwait itself or restart the wait accordingly.
Delivery of kernel APCs will happen regardless of whether the wait was initiated
from kernel mode or user mode.

When a thread calls one of the wait procedures, it may specify whether the
wait is alertable or not [57], [66]. A thread that is in a non-alertable wait state
may only be awakened if signaled for either unwait, test of wait satisfaction,
or delivery of kernel APCs. However, if a thread is in an alertable wait state, it
will also be awakened if it receives an alert or a user APC.

Alerts are a type of wake-up messages that are used by the Windows Executive
to abort wait operations for special cases such as thread termination and
cancellation of 1/0 operations. There are two types of alerts—user-mode alerts
and kernel-mode alerts. A thread will only receive user-mode alerts if its wait
operation was initiated from user mode, whereas kernel alerts may be received
irrespective of the privilege level at which the wait procedure was called. User

3.3 / BLOCKING SYNCHRONIZATION 49

APCs are also delivered to a thread only when waiting from user mode. If
a thread is signaled for alert or user APC, its wait operation will be satisfied
regardless of its wait type and the signal state of the specified dispatcher objects.
When the thread receives an alert, it transitions from an alterted state to a non-
alerted state, and returns from the wait procedure immediately thereafter. In
the case of user APCs, the thread will not return from the wait until all pending
user APCs that have been queued to the thread are delivered, as previously
detailed in Section 3.2.

3.3.2 Implementation of Blocking in Windows

When a thread blocks in the Windows Kernel, it will transition from a running
state to a wait state. As part of this process, the system needs to make changes
to dispatcher structures that control the scheduling of threads on the processor
that hosts the blocking thread. Hence, all wait-related operations execute at
DISPATCH LEVEL, as they need to prevent other dispatcher services that are
accessing the same structures from running.

Still, a task running on another processor may at any given time attempt to
send an alert or APC to the thread, or to signal a dispatcher object that the
thread is waiting for. This means that a thread’s wait could potentially be
satisfied while the thread is setting up the wait and preparing to block, because
of an external wake-up condition that happens concurrently. To prevent races
in such scenarios, all procedures related to waits and signaling therefore need
to synchronize through a rigorous protocol, which is described throughout the
following paragraphs.

All modification of state specific to the waiting thread is protected by a spinlock
that belongs to that thread. Similarly, each dispatcher object has its own lock
that protects, among other things, its signal count and wait list. Recall from
Subsection 3.3.1 that an object’s wait list keeps track of all threads that are
waiting for the object. However, the list does not actually link together the
KTHREAD structures of the waiting threads directly; instead, it contains a wait
block structure for each thread.

A wait block ties together a dispatcher object with a thread that is waiting for
that object. By using wait blocks, the Windows Kernel not only allows each
dispatcher object to know about all threads that are waiting for it, but also
lets each thread maintain a list of the objects it is waiting for; as illustrated in
Figure 3.7, each wait block will at the same time be part of both the dispatcher
object’s wait list and a wait block list belonging to the thread. In addition,
each wait block contains a wait block state that is used to synchronize a thread
that is performing a wait operation with one or more signalers in a consistent

50 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

Dispatcher
Object

Wait Block
Thread

Wait Block Wait Block
Thread

Thread: E

' Thread: E
]
' Object: n
'
.

Object:

Thread: E
Object:

...................................

Thread B's wait block list

Object 1's
Thread: [d ¢ wait list
Object: n '

Figure 3.7: lllustration of how wait blocks links together dispatcher objects with
threads waiting for the objects. Each wait block will always be part of
both a dispatcher objects’s wait list, used to locate threads waiting for that
object, and a thread’s wait block list, specifying all objects that thread is
waiting for. Note that a dispatcher object’s list of wait blocks corresponds
to the logical list of threads shown previously in Figure 3.6.

manner [46, Ch. 3].

When a thread initiates a wait operation, it goes through several different
intermediate states before it can block. First, the current IRQL is raised to
DISPATCH LEVEL. The thread will then check for pending alerts and APCs.
If the thread has pending kernel APCs, the IRQL will be lowered temporarily
to APC LEVEL to deliver these, and the thread will continue trying to wait
afterwards. On the other hand, the wait will be satisfied immediately if either
the thread is alertable and has received an alert or user APC, or the thread has
pending user APCs that have not yet been delivered after a previous alertable
user-mode wait. Otherwise, the thread enters an in-progress wait state.

The thread lock is held during the transition to the in-progress wait state, to
synchronize with other tasks that might try to deliver alerts or APCs to the
thread at the same time. This synchronization is especially important because
the delivery method for APCs changes when the thread enters a wait state;

3.3 / BLOCKING SYNCHRONIZATION 51

recall from Section 3.2 that the Windows Kernel uses interrupts to deliver APCs
to running threads, whereas a thread is signaled for wake-up instead if in a wait
state. In all cases where another thread performs actions that depend on the
state of a target thread, such as signaling the thread for alert or APC, the thread
lock of the target thread must be acquired by the other thread first.

After the thread has reached the in-progress wait state, it will setup the wait
blocks for each dispatcher object, lock all objects, and test for wait satisfaction.
If, at this point, the wait is already satisfied, the thread will update the signal
count of each object correspondingly and return from the wait procedure. The
thread will also return if the wait was not satisfied, but the caller has specified
a timeout value of zero or the timeout has already expired. In all other cases,
the thread will enqueue each wait block to the wait list of each corresponding
object, and try to continue to the committed wait state.

While the thread has been in the in-progress wait state, it may have been
signaled for alert or APC, or one or more of the dispatcher objects may have
become signaled. In the first case, the signaler will have updated a wait register
that belongs to the thread to inform it of pending alerts or APCs. In the second
case, the first dispatcher object that signals the thread for wake-up will change
the thread’s wait state from in-progress to aborted. This happens regardless of
whether the thread was signaled for unwait or for wake-up without immediate
wait satisfaction.

When the thread tries to enter the committed wait state, it will check its wait
register and see if its wait status has been altered. Again, the thread lock is used
to synchronize with potential signalers. If the thread’s state or wait register
has been changed by a signaler, the thread will not be able to proceed with
the wait operation—either the wait has already been satisfied, or the thread
is signaled to deliver kernel APCs or test for wait satisfaction manually. In the
former case, the thread will exit the wait procedure, whereas in the latter case,
the thread will re-start the wait and try to enter the in-progress wait state
again. In addition, the thread will make sure all wait blocks are linked out of
their respective dispatcher object wait lists before returning or continuing in
response to the signal. However, if the thread has not been signaled while in
the in-progress wait state, it can now safely enter the committed wait state.
Once the thread reaches this state, it will finally be able to block.

In the Windows Kernel, each logical processor core is represented by a processor
control region (KPCR) structure and a processor control block (KPRCB) sub-
structure. The KPRCB contains all data and structures that are used by the
dispatcher to schedule threads on the corresponding processor. Among these are
the ready queue—the list of threads that are to be scheduled on the processor—
and the KPRCB wait list—the list of blocking threads [46, Ch. 5].8 When a thread

52 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

blocks, the KPRCB of the current processor is locked by acquiring a spinlock
specific to that KPRCB. Then, the thread is moved from the ready queue to
the wait list, and the dispatcher is invoked to schedule another thread after
releasing the KPRCB wait lock.

If the thread is signaled while in the committed wait state, the signaler will
actually awaken the thread, rather than abort a wait operation that is being
set up. It does so by changing the thread’s state from waiting to deferred ready,
and correspondingly moving the thread to the deferred ready queue of the
KPRCB associated with the thread [76]. The KPRCB’s wait lock is held during this
operation. Following this, the dispatcher will eventually schedule the thread to
run again on the processor. When that happens, the dispatcher will also make
sure that all wait blocks belonging to the thread have been linked out of their
wait lists first—in the same way as when a wait is aborted from the in-progress
wait state. After the thread wakes up, it will then return directly from the wait
procedure.

3.3.3 Implementing Blocking Waits in Casuar

The implementation of blocking waits in Casuar follows closely that of the
Windows Kernel, but with some notable exceptions. We do not implement any
mechanism or structures that correspond to the KPCR or KPRCB. Because there is
no dispatcher component in Casuar, there is no need for the deferred ready wait
state either. The actual blocking of a thread is performed by having it suspend
itself using the Vortex system call vx_thread_suspend (). Correspondingly, the
vx_thread_resume () system call is used by a signaler to awaken a thread from
the committed wait state.

Unlike Windows, we do not implement wait timeouts using timer dispatcher
objects. In fact, Casuar does not include any abstraction that corresponds to
a timer object at all. Instead, we exploit the fact that vx_thread_suspend()
can be called with an optional timeout argument. Some translation of time-
out values is necessary, because timeouts in Windows are specified in 100 ns
units, and may be either relative or absolute, whereas the timeout parameter
to vx_thread_suspend() is expressed in milliseconds, and is always relative.
However, this involves significantly less work than would be required to imple-
ment the generic timer object abstraction.

8. Actually, Windows associates multiple ready queues with each processor—each for a
different priority level. However, this will not be detailed further, as it does not affect how
blocking is implemented in the Windows Kernel. More information about the internals of
the thread dispatcher may be found in [46, Ch. 5].

3.3 / BLOCKING SYNCHRONIZATION 53

The only dispatcher objects we fully support are events, threads, and pro-
cesses, although the implementation of the wait and signaling mechanisms
is sufficiently generic that it could easily be extended to include mutexes
and semaphores as well. For synchronization with dispatcher objects, we only
implement one wait procedure, thread_wait_for_single_object(), which
corresponds to the KeWwaitForSingleObject () function of the Windows Kernel.
An overview of its implementation is shown in Code Listing 3.7. The imple-
mentation of a procedure corresponding to KewaitForMultipleObjects() has
been deferred to future work. In addition, Casuar includes a simple imple-
mentation of a function thread_delay_execution(), which corresponds to
KeDelayExecutionThread(). It uses thread_wait_for_single_object() to
wait for an event object that is allocated locally on the caller’s stack with the
supplied timeout. Because the event is not visible outside of the function, it
cannot be signaled, meaning that the wait will only be satisfied if either the
timeout expires, or the wait is alertable and the thread receives an alert or user
APC.

Using vx_thread_suspend() and vx_thread_resume(), however, is not com-
pletely straightforward, because the semantics implemented by Vortex is
slightly different from that of traditional suspend and resume operations. In-
ternally, Vortex associates a suspend count with each thread to resolve races
between suspend and resume operations that could be submitted to the same
thread concurrently. This value is incremented for each suspend call, and decre-
mented on every resume. When vx_thread_suspend() is called, the target
thread will only be suspended if the suspend count is positive after its value has
been incremented. However, when vx_thread_resume() is called, the thread
will be awakened regardless of what the suspend count value is. Vortex dele-
gates the responsibility for balancing the suspend count to the application. In
other words, this must be dealt with in Casuar’s implementation of blocking
waits.

In Casuar, there are three cases in which a thread will be suspended:

* The thread suspends itself in order to block, after entering the committed
wait state.

* The thread is suspended by another thread as part of the mechanism
for posting an interrupt to the first thread (see Code Listing 3.6 in
Section 3.1).

* The thread generates an exception (such as a page fault or general
protection fault) that cannot be handled by Vortex. Normally, this will
result in the process being terminated. However, a process may inform
Vortex that it wants to handle exceptions on behalf of its threads. In this

54 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

Code Listing 3.7: Implementation of the wait procedure for synchronizing with

a single dispatcher object. Certain details have been simplified
or omitted for the sake of brevity.

1 NTSTATUS
2 thread_wait_for_single_object(void *object,

3

O N O Ul A
-~

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49
50
51
52
53
54

56 }

winsys_wait_reason_t wait_reason,
winnt_pmode_t wait_mode, vx_bool_t alertable,
vx_int64_t xtimeout)

winsys_wait_block_t *wait_block;
vX_uint64_t abs_wakeup_time;
vx_bool_t has_timeout;
VX_time_t vxtimeout;

NTSTATUS status;

CURRENT_THREAD—>tcb_wait_irql = thread_enter_dispatch_mode();
has_timeout = setup_timeout(timeout, &abs_wakeup_time);

while (VX_TRUE) {
status = thread_enter_in_progress_waiting_state(wait_reason,
wait_mode, alertable);
if (status == STATUS_KERNEL_APC)
continue; // Signaled for kernel APC / wait satisfaction test
else if (status != STATUS_SUCCESS)
return status; // Signaled for alert or user APC

wait_block = setup_single_wait_block(object);

kobj_lock_acquire_at_dispatch_level(object);

if (try_satisfy_wait(object, &status)) {
kobj_lock_release_to_dispatch_level(object);
break;

3

if (!get_vxtimeout(has_timeout, abs_wakeup_time, &vxtimeout) {
status = STATUS_TIMEOUT;
kobj_lock_release_to_dispatch_level(object);
break;

3

enqueue_wait_block(object, wait_block);
kobj_lock_release_to_dispatch_level(object);

status = thread_commit_wait(wait_block, vxtimeout);
if ((status != STATUS_KERNEL_APC) && (status != STATUS_TIMEOUT))
return status; // Signaled for unwait

// Signaled for kernel APC or test of wait satisfaction
CURRENT_THREAD->tcb_wait_irql = thread_enter_dispatch_mode();
! .

thread_lock_acquire_at_dispatch_level();
CURRENT_THREAD->tcb_thread_state = THREAD_STATE_RUNNING;
thread_lock_release_to_dispatch_level();

return status;

3.3 / BLOCKING SYNCHRONIZATION 55

case, the faulting thread will be suspended, and an exception message
is delivered to the process instead. We use this for monitoring and
debugging purposes, as will be described in Chapter 5.

The first two cases happen as the result of explicit calls to vx_thread_suspend().
This means that the caller can take the necessary actions to synchronize with
other tasks that are issuing matching calls to vx_thread_resume(). In the first
case, the thread’s wait state is changed to committed before suspending the
thread, and in the second case, the thread lock of the target thread (to be
interrupted) is acquired first, and the caller ensures the target thread is in a
running state.

However, the suspend operation in the third case will be performed automati-
cally by Vortex in response to an exception, which may occur at any time. In
particular, the thread will still be in a running state from Casuar’s point of
view when this happens, although it has been suspended by Vortex. Hence, one
thread might end up trying to interrupt another thread that has already been
suspended due to an exception. This, in itself, cannot be directly prevented,
and results in a few, special cases that Casuar must handle explicitly to ensure
that the suspend count is kept in balance.

Recall from Section 3.1 that interrupts are delivered by suspending the target
thread, updating its context, and then resuming it again to have it execute an
interrupt handler. If this happens to an already suspended thread, it will first
become double-suspended, and then be resumed with a suspend count that is
out of balance. After the interrupt handler has executed, the thread will return
to its previous context. This means that the thread will return to the previously
faulting RIP. Then, when the thread executes the same instruction as before,
it will likely fault again, which means that the thread will be suspended once
more and Vortex will generate another exception message.

When a process receives an exception message from Vortex, it will be processed
by a separate exception dispatcher worker thread that is set up for each process
by Casuar. This processing is performed asynchronously with other tasks in the
system. Hence, it could happen that the exception dispatcher tries to handle an
exception for a thread that has faulted, but that thread is no longer suspended
because it has been interrupted. This scenario is illustrated in Figure 3.8a.
Moreover, the worker thread might receive multiple exception messages for
the same exception, if the faulting thread has been interrupted one or more
times before the exception dispatcher has had time to handle the first exception
message for that thread. This is shown in Figure 3.8b.

For the exception dispatcher to be able to process exception messages properly,
it first needs to synchronize with potential interrupters of the faulting thread.

56 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

Another thread
posts an interrupt
to the faulting thread

Thread generates
exception and is
suspended

Interrupter

Exception message
is discarded as thread
is no longer suspended

Faulting thread
is resumed and
starts running ISR

Exception message
is received, and
exception is handled

ISR completes,
thread returns
and faults again

Thread is resumed
after exception
has been handled

Faulting thread

Exception dispatcher

= RuUNNing == = Suspended }:‘v% Exception —J» Exception message —3¥ Resume operation

(a) Exception dispatcher receives an exception message for the faulting thread, but
cannot handle it, because the thread has received an interrupt and is no longer
suspended. The exception message is therefore discarded. This can be done,
because the exception dispatcher will receive a new exception message after the
thread returns from the ISR. As part of discarding the message, the exception
dispatcher will issue a resume (not shown in the figure) to balance the thread’s
suspend count. This has no other side effects because the thread is already running.

Faulting thread
is resumed and
starts running ISR

Thread is resumed
after exception
has been handled

Thread is
awakened
spuriously

Another thread Exception message Exception message
posts an interrupt is received, and is discarded, but
to the faulting thread exception is handled causes spurious
wake-up
Thread generates ISR completes, Thread
exception and is thread returns initiates
suspended and faults again blocking
wait
Interrupter
Faulting thread - -
Exception dispatcher
= RUNNing == = Suspended ‘\::? Exception —p» Exception message —3¥ Resume operation

(b) Faulting thread receives an interrupt, and an extra exception message is therefore
generated for the same exception. After the first message is handled, the second
message must be discarded. If, at that time, the thread has initiated a blocking
wait, it will be awakened spuriously when the exception dispatcher issues a resume

for the discarded message.

Figure 3.8: Examples of races between a faulting thread, an interrupter, and the
exception dispatcher thread. When a thread generates an exception, it
is suspended by Vortex, and an exception message will eventually be
delivered to the exception dispatcher thread. However, the faulting thread
is still running from Casuar’s point of view. The thread might therefore
be awakened to receive interrupts, which results in two special cases (see
above) that must be handled to balance the thread’s suspend count.

3.3 / BLOCKING SYNCHRONIZATION 57

It does so by acquiring the thread lock of that thread. Next, the exception
dispatcher will assume that the thread is suspended, and try to retrieve its
thread context. This operation will fail if the thread is not suspended, and if
so, the worker will release the thread lock and simply discard the exception
message. The reasoning behind this approach is that the thread can only be
running if it was interrupted, and in this case, the thread will eventually return
to the faulting instruction and generate another exception message that could
be processed at a later time. To prevent the same exception from being handled
more than once, the worker will compare the RIP from the thread context with
the faulting RIP from the exception message. If these are not the same, it is
most likely because the exception has already been handled, and the RIP has
been advanced. In this case, the exception message will also be discarded.
Otherwise, the worker will change the thread’s state to a separate exception
state before releasing the thread lock. This will prevent the thread from being
interrupted or signaled while the exception is being handled. Afterwards, the
exception dispatcher will grab the thread lock again, and change the thread’s
state back to running. However, now it also needs to check for pending APCs
that could have been posted while the thread was in the exception state. If
there are pending APCs, the thread will be resumed to execute the APC LEVEL
interrupt handler, and if not, it will be resumed normally.

Note that the exception dispatcher will need to issue a resume operation for
every exception message it gets, even if the message is discarded, in order
to balance the initial suspend operation that generated the message. This
means that the suspend count will be balanced eventually, even though it
may be out of balance while a thread is executing an interrupt handler. In
Casuar, this guarantee is sufficient for all practical purposes. However, another
consequence is that the implementation of blocking waits will need to handle
spurious wake-ups. This is because the exception dispatcher may discard old
exception messages for a thread even while that thread is in a committed wait
state, as is also shown in Figure 3.8b.

In general, to make sure that the suspend count of every thread is balanced
properly, the implementation of blocking waits in Casuar needs to consider all

possible sources to a resume operation, which are the following:

* The thread is resumed by the exception dispatcher, after discarding an
exception message.

* The thread is signaled for unwait, alert, APC, or test of wait satisfaction.

* The blocking thread’s timeout expires, and the thread is resumed by
Vortex.

58 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

Note that the resume operation that is issued as part of the mechanism for in-
terrupting a thread cannot lead to a wake-up of a blocking wait, since interrupts
are only allowed when the thread is in a running state.

To determine whether a wake-up is spurious or not, the thread will acquire its
thread lock immediately after waking up, and examine its own state. When a
signaler awakens a thread from a committed wait state, it acquires the thread
lock and changes the state of the thread to running before issuing the resume
operation. Thus, if the thread is still in a waiting state after returning from the
call to vx_thread_suspend(), and the wake-up was not caused by a timeout,
then the thread must have been awakened spuriously. In this case, the thread
will issue an extra resume operation to balance its own suspend operation,
transition back to the running state, and then re-start the wait operation. Note
that in the time between a thread is being signaled and it wakes up, it is
not possible for the thread to receive any interrupts, although its state has
been changed to running. This is because the thread will remain at DISPATCH
LEVEL during the entire wait.

If the thread wakes up due to a timeout, the suspend count is self-balancing.
However, it is possible that the timeout has been racing against a resume
operation from a signaler, so the thread needs to check its state in this case as
well. If the thread is in a waiting state, the suspend count is already in balance.
On the other hand, if the thread is in the running state, then the thread has
been signaled and needs to issue an extra suspend operation to balance the
suspend count against the resume from the signaler.

Code Listing 3.8 shows the implementation of the function that is used for
blocking a thread in Casuar, after the thread has reached a committed wait
state. The code shows how the different wake-up scenarios are handled with
regards to balancing the suspend count, as discussed above. Note that the
return value of this function is the same as the return value from the call to
thread_commit_wait () shown in Code Listing 3.7 (although we do not include
a code listing for that function here).

3.4 Suspend and Resume

The last thing we consider in this chapter is how to implement functionality for
suspending and resuming a thread, according to the semantics of the Windows
system calls NtSuspendThread() and NtResumeThread(). In Section 3.2, we
used these functions as examples of system services that directly depend on
kernel APCs. After having described the functionality for performing block-
ing waits in Section 3.3, we are now able to explain how the suspend and

3.4 / SUSPEND AND RESUME 59

Code Listing 3.8: Implementation of blocking in Casuar. Certain details have

been simplified or omitted for the sake of brevity.

NTSTATUS
thread_do_wait_suspend(vx_time_t timeout)

{

winsys_thread_state_t thread_state;

vx_int64_t wait_status;
vxerr_t vxerr;
irql_t wait_irql;

wait_irql = CURRENT_THREAD—>tcb_wait_irql;
vxerr = vx_thread_suspend(CURRENT_THREAD->tcb_rid, timeout);
thread_lock_acquire_at_dispatch_level();

wait_status = CURRENT_THREAD—>tcb_wait_status;
thread_state = CURRENT_THREAD->tcb_thread_state;

if ((vxerr == VXERR_OK) && (thread_state == THREAD_STATE_WAITING)) {
/* We got a spurious wake-up.
* Balance suspend count against our own suspend.
*/
(void) vx_thread_resume(CURRENT_THREAD—->tcb_rid);

CURRENT_THREAD—>tcb_thread_state = THREAD_STATE_RUNNING;

/* Restart wait. Kernel APC flag indicates that wait is not
* necessarily satisfied yet.
x/
wait_status = STATUS_KERNEL_APC;
} else if (vxerr == VXERR_TIMEOUT) {
if (thread_state == THREAD_STATE_RUNNING) {
/* We have had a race between timeout and intended resume.
* Because timeout is self-balancing, this means that our
* suspend count is not in balance, and we must compensate
* for the extra resume.
*/
(void) vx_thread_suspend (CURRENT_THREAD—>tcb_rid,
VX_TIME_NTIME) ;
} else {
/* Actual timeout x/
CURRENT_THREAD—>tcb_thread_state = THREAD_STATE_RUNNING;
wait_status = STATUS_TIMEOUT;

3

thread_lock_release_to_dispatch_level();

return wait_status;

60 CHAPTER 3 / LOW-LEVEL SYNCHRONIZATION AND SIGNALING MECHANISMS

resume operations of a thread are implemented in the Windows Kernel. The
implementation of the corresponding functionality in Casuar is practically the
same.

Every thread has an associated suspend count, scheduler APC, and suspend
event, which are contained in its KTHREAD structure. Unlike Vortex, a thread in
Windows will remain suspended as long as the suspend count is positive. In
addition, the suspend event will be signaled when the suspend count is zero,
and otherwise be non-signaled.

When a thread is suspended, its suspend count is incremented. Then, if the
suspend event is in a signaled state, its state is changed to non-signaled, and a
scheduler APC is posted to the thread as a normal kernel APC. The event’s object
lock is used to synchronize callers to the suspend function, and the APC delivery
mechanisms will prevent the scheduler APC from being queued more than once
until it has executed. When the APC later runs in the context of the thread
to be suspended, it will make the thread wait for its own scheduler event,
using KeWaitForSingleObject(), orthread_wait_for_single_object() in
the case of Casuar.

Correspondingly, a resume operation will decrement the thread’s suspend
count. If the suspend count is lowered to zero, the suspend event will be
signaled, causing the suspended thread to be signaled for unwait. The thread
will then wake up and return from the scheduler APC function, continuing its
previous execution.

An interesting side effect of using APCs to implement suspend and resume
operations, is that threads that are inside a critical or guarded region will
implicitly be protected against unwanted suspension without having to use any
additional protection mechanisms. Moreover, because the suspend and resume
operations are implemented on top of the standard mechanism for blocking
waits, all potential races that involve changes of the thread’s state are already
handled by that mechanism.

3.5 Summary

In this chapter, we have described a number of important thread synchro-
nization and signaling mechanisms that constitute fundamental parts of the
Windows Kernel. After evaluating each mechanism, we have detailed how it
has been replicated in Casuar with focus on preserving the semantics of the
abstractions as they are perceived by user-mode applications. In the following
chapter, we will shift our focus to a higher abstraction layer, as we look at

3.5 / SUMMARY 61

the services and subsystems that the Windows Executive builds on top of the
lower-level Windows Kernel, and how we implement corresponding services in
Casuar.

Executive Services

Most of the functionality in the Windows NT kernel resides in the Windows
Executive. The Executive is structured as a collection of larger components
or subsystems, each providing a set of high-level services to applications.
In this chapter, we give an overview of some of the most central executive
components—the Object Manager, I/0 Manager, and Memory Manager. For
each, we also describe how we have implemented a subset of its functionality
in Casuar to support commonly used system services. At the end of the chapter,
we briefly summarize the functionality of some of the components that we do
not implement in Casuar, and the reasons for not doing so.

4.1 Object Manager

Recall from Chapter 2 that the Windows Executive provides a large number of
different abstractions that are made available to kernel-mode drivers and user-
mode applications through Windows’ system service interface. Almost all such
abstractions are expressed as executive objects, and many of them represent
shared system resources like files, devices, registry keys, and memory sections,
which may be accessible from multiple processes running on the system. The
different types of resources are managed by separate executive components;
for example, files and devices are exported by the 1I/0 Manager, whereas
a registry key is an interface to the Configuration Manager. However, the
executive objects themselves are managed by a single executive component—

63

64 CHAPTER 4 / EXECUTIVE SERVICES

Type
type
A
ReE'eStry Section Device
Y Type Type
Type

ReslSt Section

Object

Figure 4.1: Object type hierarchy. All objects have an object type. Object types are also
represented as objects. Their object type is the special type-type. Because
the type-type is itself an object type, the Object Manager assigns it as its
own object type.

the Object Manager.

The Object Manager is used to allocate and keep track of reference-counted
executive objects on behalf of the other executive subsystems [46, Ch. 3].
Each subsystem defines and registers an object type for each different type of
resource or abstraction through the Object Manager’s interface. Associated with
an object type is a number of callbacks that are implemented by the subsystem
that registers the object type. The callbacks provide the interface between the
Object Manager and the resource represented by the object type.

Every executive object is an instantiation of some object type. In addition, the
object types are themselves represented as objects. Their object type is a special
type-type, which is also its own object type. This is illustrated in Figure 4.1.
Because of its dependency on itself, the type-type object is setup manually by
the system as part of initializing the Object Manager.

The Object Manager also provides a uniform interface for accessing resources
and abstractions provided by the other executive components from user mode
[77]. Most of these resources are part of the global NT namespace, which is
rooted in the Object Manager. The Object Manager organizes the namespace
hierarchically using object directories, which contain pointers to executive ob-
jects or other directories. The directory structures also support symbolic links
(or “symlinks”), to be able to expose more convenient object paths to the appli-
cations. This structuring of the NT namespace is illustrated in Figure 4.2.

4.1/ OBJECT MANAGER 65

Root directory
Section Directory "\ Regi
5 < gistry
el Key
<

"Registry"

Object

"PhysicalMemory"

— "Device"

"KeyboardClass0"
Device "7 >
Object "HarddiskVolume1"

Directory ¢
"\GLOBAL??"

"c" [—| "\Device\Harddiskvolume1"

— >

— "GLOBAL??" "\GLOBAL??"

Device

Object

"\Device\HarddiskVolume2"

Figure 4.2: Hierarchical structure of the global NT namespace. The upper levels of the
namespace are structured using object directories and directory symlinks
that are setup by the Object Manager. The lower levels are implemented by
the executive subsystems, through their registered object types. In the illus-
trated example, a lookup with the NT path “\??\C:\Windows\System32”
in the object directories would first redirect “\??” to “\GLOBAL??”, so
the updated path would be “\GLOBAL??\C:\Windows\System32”. Then,
“\GLOBAL??\C:” would be translated to “\Device\HarddiskVolumel”. Be-
cause “\Device\HarddiskVolumel” points to a device object, the lookup
of the remaining path “\Windows\System32” would be performed in the
sub-namespace implemented by that device.

All lookup operations to the NT namespace are centralized by the Object Man-
ager. When an application requests access to a resource from user mode, it does
so through some system service that is exported by the executive subsystem
that implements the resource. For example, the system call NtOpenFile() is
commonly used to open a file or directory in the file system, and is exported by
the 1/0 Manager. However, the lookup operation for a resource is not handled
directly by each subsystem [78]. Instead, the Object Manager centralizes all
lookups to the NT namespace. Importantly, this allows all access control to
be centralized as well. Although most executive subsystems export resources
that differ significantly in their implementation, most of them depend on the
same security mechanisms—the access rights of a process needs to be verified
before it can be allowed to use a certain resource. During lookup operations,
the Object Manager interacts with the Security Reference Monitor—the ex-
ecutive component responsible for enforcing security policies—to verify that
the process has the necessary permissions to access the resource and may be
granted all the requested access rights. If the process is given access, the Object
Manager will then use the object type callbacks to let each subsystem handle
the implementation-specific part of the lookup.

66 CHAPTER 4 / EXECUTIVE SERVICES

Because executive objects reside in kernel mode, applications running in user
mode cannot be given access to manipulate these directly. Instead, Windows
uses handles to refer to objects indirectly, similarly to how file descriptors
are used in Unix-based systems. The Windows Executive and Object Manager
maintains a handle table for each process, in addition to a separate handle table
for kernel mode. Each time a process is given access to an object, an entry is
allocated for that object in the handle table of the process. The handle table
entry is used to contain a pointer to the executive object, together with the
access rights that was granted for the object. Then, the system will construct
a handle that refers to the entry, and return it to the process. Internally, the
handle contains the index in the handle table of the allocated entry, but to the
process, it is merely treated as an opaque structure that is used to interface
with the object.

After a process has acquired a handle, by opening or creating a resource, it can
supply the handle to other system calls to perform subsequent operations on
that same resource. If the resource is a dispatcher object (see Chapter 3), and the
handle has the sufficient privileges, the caller can synchronize with the object
by supplying the handle as argument to either NtWaitForSingleObject() or
NtWaitForMultipleObjects(). Both of these functions are exported as system
services by the Object Manager. However, the Object Manager allows the caller
to specify handles not only to dispatcher objects, but to other types of executive
objects as well.

Most executive objects are not dispatcher objects, but rather embed one or more
dispatcher objects—such as an event—in their structures for synchronization
purposes. The Object Manager allows each object type to optionally specify a
default object—a dispatcher object that is used to give objects of that type syn-
chronization capabilities. The default object is typically expressed as an offset
into the structure of an executive object, where a contained dispatcher object is
located. This allows each object of a given object type to use its own, separate
dispatcher object for synchronization. It is also possible for an object type to let
all objects of that type share the same dispatcher object. When, for example,
the NtWaitForSingleObject() procedure is called, the Object Manager will
lookup the executive object for the supplied handle, and use the default object
of the object or object type as argument to KeWaitForSingleObject (). This
allows for a flexible and convenient interface to user-mode applications. For
example, if an application supplies a handle to a file object, the event object
that is embedded in the file object will be used internally to perform the
synchronization on behalf of the file.

The handle table structures in Windows are designed to be highly performant
under concurrent workloads that allocate and access entries [78]. In addition,
the tables automatically scale up on demand. When a process is created, it

4.1 / OBJECT MANAGER 67

Top-level table
(< 128 pointers)

Mid-level tables
(2512 pointers

per table) | ® \ (XX} .\ (XX}

Low-level tables
(< 255 entries
per table)

Registry

Event Device
Key

Object Object

Section
Object

LA R
Object

Figure 4.3: Overview of handle table structure. The handle table is expanded up to a
three-level structure, on demand. The figure illustrates the case where the
maximum of three level have been allocated. The top-level and mid-level
tables contain table pointers, whereas the low-level tables contain actual
entries. Each entry points to an executive object, and also contains the
granted access right to the object, associated with the handle. As shown,
it is possible for two or more handle table entries to point to same object,
even with different access rights.

is given a single-level handle table. It consists of one memory page that can
contain up to 255 entries, each occupying 16 bytes (on x64).1 At the time when
the last entry in that table has been allocated, Windows will expand the handle
table to a two-level structure; a root page is allocated to contain pointers to
low-level tables, the existing table is linked as the first low-level table, and a
second low-level table is allocated to make another 255 entries available for use.
With a two-level structure, the handle table can contain up to 127.5K entries.
Similarly, the handle table may even be expanded to a three-level structure,
allowing a little less than 16M handles to be referenced by each process. An
illustration of the handle table structure is shown in Figure 4.3.

The object type callbacks that are supported by the Object Manager include
a delete method that is called whenever the last reference to an object in the

1. Each page has room for 256 entries, but the first entry in each low-level table is used as a
special leaf entry, which contains the base handle index of the respective low-level table.

68 CHAPTER 4 / EXECUTIVE SERVICES

system is given back to the Object Manager (i.e. the object’s reference count
is lowered to zero), and open and close procedures that allows a subsystem to
respond when a handle to an object is created or destroyed. One of the most
important callbacks is, however, the parse procedure, which is used to open
named resources from the NT namespace.

The Object Manager supports both named and unnamed objects. Named
objects are those that may be part of the NT namespace, whereas unnamed
objects cannot. More specifically, a named object is pointed to by some object
directory entry. A file object, for example, is not a named object. Even though
it represents a file path that is part of the NT namespace, no file objects are
directly referenced by any object directory. Instead, they are part of the sub-
namespace implemented by a device object (e.g. a harddisk volume). A device
object, on the other hand, is a named object that typically represents the root
of its own namespace. The object must be named for its namespace to be part
of the global NT namespace.

All object types that support either named objects or objects that may represent
a directory abstraction in a sub-namespace, are required to implement a parse
procedure. The only exception is the object directory type, since the lookup
in object directories is handled directly in the Object Manager. Figure 4.4
illustrates the process of looking up an object in the NT namespace from
a given path. Details that relate to access control and interaction with the
Security Reference Monitor has not been included in the figure.

4.1.1 Implementation of an Object Manager in Casuar

Casuar implements an Object Manager component that corresponds to a subset
of the functionality offered by the Object Manager in Windows. It has full sup-
port for allocation and reference-counting of objects, creation and registering
of object types, and setup and allocation of handle tables and handles on behalf
of processes. It also includes the necessary object directory and symlink struc-
tures for structuring an NT compatible namespace, together with procedures
for parsing NT paths and performing lookup of objects.

However, Casuar’s implementation does not include any form of access control,
which is a significant part of the Windows implementation. The most important
reason for not implementing any security mechanisms, is that it is extremely
difficult to do properly and correctly, and would widen the scope of our work
significantly. Moreover, since our system is built with the main focus being on
application-level virtualization, we assume that the processes that will run on
top of our system do not behave maliciously. In addition, Vortex already provides
mechanisms for isolating applications from each other. In the case where two

4.1 / OBJECT MANAGER 69

o ("\?2\C:\Windows\System32"
I

-
»2':1|
T

v

Path Context Type A

Y

e Device
Object

Lookup object Remaining path Context

"\Windows\System32"

il

Device Object type parse callback

I/0 Manager

Figure 4.4:

Lookup of objects in the NT namespace.

© The caller specifies the path to look up, a subsystem-specific context
pointer (optional), and the expected object type. In the shown example,
the caller opens the file system directory “\??\C:\Windows\System32”.

@ The Object Manager traverses the path, following symlinks, until it finds
a directory entry that points to an object (instead of another directory or
symlink). The object and the remaining path is returned from the internal
look-up procedure. In this example, the path prefix “\??\C:\” is resolved
to “\Device\HarddiskVolumel”, which points to a device object for that
volume.

© The object, remaining path, and context is passed to the parse callback
of the object’s object type.

@ The parse procedure executes, and interacts with the executive subsys-
tem that registered the object type. In this example, the lookup for the
remaining path is handled by the 1/0 Manager.

@ If the lookup succeeded, an executive object is returned from the parse
callback. This object might have been allocated by the parse procedure,
using the appropriate Object Manager routines. In this example, this is a
file object representing the “System32” file directory. The Object Manager
makes sure the returned object has the same object type as requested by
the caller. If it does not, the lookup fails.

® The Object Manager allocates a handle for the returned object in the
handle table of the process.

© A handle to the object is returned to the caller.

70 CHAPTER 4 / EXECUTIVE SERVICES

or more applications need to be separated in different security domains, they
could be setup to run on different instances of Casuar. Hence, they would be
unable to cause negative effects on other processes. A consequence, however,
of not supporting any security mechanisms, is that Casuar will not be able to
support any advanced Windows applications the depend on or use security
features of Windows directly, such as interfacing with user management or
querying access control lists.

There are also other aspects of the Object Manager in Windows that do not
apply to our implementation. For example, it is used to manage charging of
resource quotas according to, for example, memory usage. In Casuar, this is
already handled by Vortex, as part of the omni-kernel design.

4.2 1/0 Manager

The 1/0 Manager in Windows provides the interfaces for performing 1/0
operations to most devices in the system. It defines the device, driver, and
file object types and their interactions with kernel-mode drivers, user-mode
applications, and the other executive components. Almost all 1/0 operations go
through the file abstraction, where a file object may represent anything from
a regular file in a file system, to a named pipe or network connection. The
system calls NtOpenFile() and NtCreateFile() are used to open or create file
objects, and the functions NtReadFile() and NtWriteFile() constitute the
interface for performing the actual read and write operations to the file.

A device object may represent either a physical hardware device, such as a hard
drive or network interface card, or an abstract, higher-level resource, such as a
file system or TCP connection. Driver objects similarly represent kernel-mode
drivers that provide the interfaces between the 1/0 Manager and the devices.
Devices and matching drivers are typically organized in layered 1/0 stacks
for each separate resource, where each location in the stack corresponds to a
separate abstraction level—higher-level abstractions such as file systems are
built on top of lower-level abstractions such as hard drives [79].

The 1/0 model implemented by Windows is completely asynchronous. When-
ever a driver or application initiates an I/0 operation, the 1/0 Manager allocates
an I/0 request packet (IRP) for that request. The IRP is dispatched to the driver
at the top of the 1/0 stack associated with the file object, and will typically
be passed downwards through the stack. Associated with the IRP is an /0
stack location structure [80] for every layer in the stack, each containing the
arguments to the respective driver for the 1/0 operation to be performed. At
each layer, the driver may either complete its processing directly, or defer the

4.2 / 1/0O MANAGER 71

completion to a later time if it has started an asynchronous operation that is
currently pending. It is also possible for the driver at each layer to allocate
new IRPs, which will represent smaller 1/0 operations that are part of the
larger operation. In this case, the IRPs will be chained to each other and to
the initial IRP—the so-called master IRP. The master IRP will only complete
once all subordinate IRPs have completed.

Each IRP is assigned a major function code [81] that specifies the main type
of operation to be performed. When a driver registers itself in the system,
it specifies a dispatch routine callback for each major function code it sup-
ports. For example, every driver must implement a dispatch routine for the
IRP_MJ_CREATE major function code, which is used to respond to an open or cre-
ate operation [82]. Other examples are IRP_MJ_READ and IRP_MJ_WRITE.

When an asynchronous I/0 operation finishes, a special kernel APC associ-
ated with the operation’s IRP will be queued to the thread that initiated the
operation. This is done so that the necessary 1/0 completion actions will be
performed in the context of that thread. The driver at each stack location in
the 1/0 stack may register a completion routine that will be invoked when the
IRP completes. Drivers may also optionally allow IRPs to be canceled [83]. In
this case, a cancel routine is associated with the IRP. The system ensures that
an IRP may only be canceled if it has not already completed; either the cancel
routine or the completion routine will be called, but not both.

The 1/0 Manager may attempt to cancel an IRP, if the operation takes too
long to complete and an internal timeout expires. The application that ini-
tiated the 1/0 operation may also request that it be canceled, through the
NtCancelIoFile() and NtCancelIoFileEx() system calls. In addition, when
a thread terminates, all its pending 1/0 operations must be either canceled
or completed. To support this behavior, the 1/0 Manager enqueues every IRP
that is created on behalf of a thread to an IRP queue that belongs to that
thread, before the IRP is dispatched to a driver. When the IRP is canceled or
completes, it is removed from the queue. If a process requests that all pending
IRPs belonging to a specific thread should be canceled, the 1/0 Manager will
use the IRP queue to locate the corresponding IRPs.

When an application opens or creates a file, it may optionally specify that all 1/0
operations are to be performed synchronously against the file. Also, if a file was
opened for asynchronous 1/0, the caller may wait for any single 1/0 operation
to complete. In both cases, the KeWaitForSingleObject() wait procedure
is used to perform the synchronization (see Section 3.3). The procedure is
either called directly by the 1/0 Manager, or by the application through the
NtWaitForSingleObject () system call,depending on the type of 1/0 operation
and which mode the file was opened in. Similarly, the synchronization may be

72 CHAPTER 4 / EXECUTIVE SERVICES

done either using the file’s built-in event object, or a user-supplied event.

Some I/0 routines, such as NtReadfile() and NtWriteFile() allow the caller
to specify a completion routine that will be invoked in context of a user APC after
the 1/0 operation completes successfully. If the file was opened for synchronous
and alertable 1/0, the 1/0 Manager will deliver the user APC before returning
from the 1/0 routine. Otherwise, the APC is delivered the next time the caller
performs an alertable wait operation from user mode.

4.2.1 1/0 in Casuar

Vortex already provides an extensive 1/0 interface to Casuar. The Vortex omni-
kernel implements file system and networking support, and Vortex also provides
a user-mode library to its applications for simplifying the use of asynchronous
1/0. Different 1/0 resources are exposed to the applications as part of Vortex’
namespace. For example, the file system resource is available from “/fs”,
and TCP endpoints can be accessed through “/network/tcp/server” and
“/network/tcp/client”.

In Casuar, we have implemented a small part of the functionality corresponding
to the 1/0 Manager in Windows. We currently support 1/0 only against regular
files and directories in the file system, and we do not support cancellation of
1/0 operations. However, to make the implementation extensible to allow for
future additions, our implementation relies on many of the same abstractions
as used in Windows’ 1/0 model—such as devices and IRPs. Because all 1/0
operations in Casuar are built directly on top of the software interfaces provided
by Vortex and its user-mode library, there is no need for a layered 1/0 stack
or a separation between devices and drivers. We have therefore merged the
concepts of a device and driver into a single device abstraction. Similarly, we
do not represent 1/0 stack location structures, and instead embed the 1/0
operation arguments to the device directly in our IRP structure.

To natively integrate the file system of Vortex into the NT namespace, we have
abstracted the interaction with Vortex’ namespace as a VortexNS device. In
Windows, most applications interface with the file system through system drive
letters, such as “C:\” and “D:\”. These drive letters are represented as entries in
the “\GLOBAL??” object directory, and are mapped to devices such as harddisk
volumes via object directory symlinks (see Figure 4.2 from Section 4.1). In
Casuar, we exploit this structure, and similarly setup drive letters to map to
“\Device\VortexNS” instead.

Specifically, we have setup the custom drive letters “L:\” (for libraries) to
point to “\Device\VortexNS\fs\1ib”, and “A:\” (for applications) to point to

4.3 / MEMORY MANAGER 73

“\Device\VortexNS\fs\app”. The first is used as the system drive, where we
store all system files (such as DLLs) that a Windows application depends on,
and the second is used to separate the applications from the libraries. When,
for example, an application requests access to “\??\L:\Windows\System32”,
the Object Manager will make sure that the request is redirected to the
VortexNS device. Moreover, using this setup, the Object Manager will pass
“Nfs\lib\Windows\System32” as the remaining path to the VortexNS device,
which means that the backslash characters in the path simply need to be sub-
stituted with forward slashes to yield the corresponding Vortex namespace
path.

4.3 Memory Manager

The Memory Manager in Windows is responsible for implementing virtual
memory and managing the address space of each process [84, Ch. 10]. It divides
the physical memory into separate memory pools, and provides memory heaps
on top to allow other kernel-mode components to allocate and free memory
dynamically. Moreover, it provides support for protecting memory pages with
different access rights, locking pages, and swapping memory to paging files.
Implementation-wise, there are many features in the Memory Manager that
we will not describe here. Instead, our focus is on the interface that it exports
to user mode, and which we need to support in Casuar.

From the perspective of a user-mode application, there are three main services
that the Memory Manager provides through its system service interface:

* Allocation and freeing of anonymous memory, and protection of memory.
This corresponds to system calls such as NtAllocateVirtualMemory(),
NtProtectVirtualMemory(), and NtFreeVirtualMemory ().

* Creation and mapping of section objects, which represent either shared
memory or memory-mapped files. This corresponds to system calls such
as NtCreateSection(), NtOpenSection(), NtMapViewOfSection(), and
NtUnmapViewOfSection().

* Querying existing mappings or sections. This corresponds to system calls
such as NtQueryVirtualMemory () and NtQuerySection().

When an application performs a request for anonymous memory, it specifies
whether the memory is to be reserved or committed [85]. If a page is reserved,
it is marked as allocated in the address space of the process. However, the page
is not yet bound to physical memory and therefore cannot be accessed. On the

74 CHAPTER 4 / EXECUTIVE SERVICES

other hand, if a page is committed, it will be backed by physical storage. A free
page may either be committed directly, or it may be reserved first and then
committed at a later time.

Section objects are used as abstractions for portions of memory that can be
mapped into and shared between one or more address spaces [86], [84, Ch. 10].
A section is either file-backed, page-file-backed, or it corresponds to share-
able anonymous memory [87]. The Windows Image Loader, implemented
in ntd11.d11, also uses section objects to represent prototypes for memory-
mappings of DLLs. Every Windows DLL is structured according to the Portable
Executable (PE) image format. It typically consists of multiple segments—for
code, data, metadata, etc.—that will be unpacked to different memory loca-
tions when the DLL image is loaded into the address space of a process. A
single section object is always used to describe the mapping of each DLL. The
Memory Manager therefore structures every file-backed section as a collec-
tion of subsections, each pointing to a different byte range inside the file. For
image files, there is one subsection for each PE segment, plus an additional
subsection for the PE header that is present at the start of every DLL. Section
objects for regular files, on the other hand, typically consist of only a single
subsection.

A process can map one or more views of a section into its address space. If the
section is backed by an image file, the subsections will determine which file
ranges are mapped to which memory locations, relative to a base address for
the view. Otherwise, if the section is backed by a regular file, the caller may
specify which range in the file should be mapped into the view [88].

In Casuar, most of the functionality required to implement memory manage-
ment on behalf of Windows applications is already present from Vortex’ side.
Vortex exports the system calls vx_mmap() and vx_munmap (), which provide
powerful abstractions for allocating and protecting memory regions. However,
Vortex lacks functionality for querying the system about the state of existing
memory mappings, and does not support shared memory.

To be able to handle memory queries, we associate a memory descriptor list
with each process, which is updated every time a user-mode memory mapping
is created, changed, or destroyed. Without support from Vortex, however, we
are unable to include any functionality for shared memory sections. Hence,
the only type of section objects we implement are file-backed sections. Finally,
Casuar includes a PE parser component to support the creation and mapping
of section objects for PE image files, as is needed by the Image Loader. The
implementation of this parser, however, has already been covered in previous
work [41].

4.4 / OTHER EXECUTIVE COMPONENTS 75

4.4 Other Executive Components

There are many other components in the Windows Executive that provide
important functionality in Windows, but for which we do not implement equiv-
alent mechanisms in Casuar. Some, because they are not relevant to Casuar,
and others, because they are outside the scope of this thesis and have been
deferred to future work. We provide a brief overview here of a few of the most
central components or mechanisms that we have left out.

Process Manager Casuar needs to manage processes and threads to be
able to host Windows applications. However, most of the required functionality
is already provided by Vortex, through its high-level process and thread abstrac-
tions. Additional mechanisms that are involved as part of starting user-mode
threads are implemented directly in corresponding system services. Hence,
there is no need for a separate Process Manager component in Casuar.

Security Reference Monitor As briefly described in Section 4.1, the Se-
curity Reference Monitor is the central component responsible for enforcing
security policies in Windows [46, Ch. 6]. Its security model is mainly based on
configurable access control lists, which apply to both the file system and other
subsystems such as the registry. Casuar does not implement any functionality
for access control, and depends on mechanisms implemented by Vortex for
isolating applications from one another. This comes at the cost of not being
able to support applications that depend explicitly on the interface exported
by the Security Reference Monitor.

Configuration Manager The Configuration Manager is the executive sub-
system responsible for implementing the Windows Registry [46, Ch. 4]. As the
registry is frequently used by many Windows applications, Casuar will likely
need to be extended to include a registry component in the future.

Transaction Manager Starting with NT 6.0, the Windows Executive was
extended to include support for Transactional NTFS and Transactional Reg-
istry [89]. The transaction support is extensively used by the Windows Update
components when applying hotfixes or updating the system with service packs.
This allows the system to protect itself from corruption to a larger degree, if
a failure should occur while modifying system files or registry keys. However,
there are not many other Windows applications that depend on this transaction
support, so at this point we deem it highly unlikely that a Transaction Manager
would be needed in Casuar.

Advanced Local Procedure Calls (ALPCS) ALPC is the main mechanism
for inter-process communication in Windows [46, Ch. 3]. It is, among other

76 CHAPTER 4 / EXECUTIVE SERVICES

things, used for communication between the Windows Subsystem process
(csrss.exe) and the processes that run on top of the Windows Subsystem.
The reason for not implementing functionality for ALPC in Casuar is because
the mechanism is based on shared memory, which Vortex currently does not
support. It is, however, one of the important mechanisms that must be imple-
mented to be able to support regular Windows applications.

Networking Casuar currently lacks network support, which is a drawback.
Properly implementing it, however, requires a lot of work even though Vortex
has full support for TCP and UDP, which is why it has been deferred to future
work. The main reason is that the network interfaces in Windows depend
on support from several different kernel-mode drivers, which interact with
system DLLs in user mode [46, Ch. 7]. For example, the DLLs that implement
Winsock—Windows’ implementation of Berkeley sockets—explicitly try to load
the ws2ifsl.sys driver through corresponding system calls, and this driver
will call back into the DLLs [90].

Cache Manager The Cache Manger is responsible for implementing func-
tionality such as the file system cache, and ensuring that section views are
consistent, both across different address spaces and with the underlying storage
(in the case of file-backed sections). The functionality of the Cache Manager
corresponds partly to functionality that is already present in Vortex, and partly
to functionality that Casuar does not yet support (the latter especially concern-
ing section objects).

PnP Manager and Power Manager The Plug and Play (PnP) Manager
and the Power Manager are both responsible for managing hardware resources.
Hence, they are completely irrelevant to Casuar, because Vortex will abstract
all hardware as resources on behalf of its applications, and the resources are
only available to them through the system call interface.

4.5 Summary

This chapter detailed some of the most essential components of the Windows
Executive, and their high-level services that are exposed to applications. We
also described how Casuar selectively includes parts of their functionality, to
provide an adequate implementation of a few of the most commonly used
system services provided by these components.

In the next chapter, we describe the methodology and techniques that we
have used to complement the mechanisms from this chapter and the previous

4.5 / SUMMARY 77

chapter with the necessary functionality to let Casuar support the loading and
execution of Native applications.

Achieving ABI Compatibility

In the previous two chapters, we identified some of the major components and
mechanisms in Windows NT that are essential to supporting the execution of a
Windows application. We have given an overview of how each is implemented
in Windows, and have described the approaches we have taken to provide
alternate implementations in Casuar. However, this functionality is far from
sufficient to actually load and run Windows applications as processes on top
of Casuar. The application binary interface (ABI) that an application depends
on consists of other, smaller parts that must be supported as well.

To achieve ABI compatibility with a Windows application, it is necessary to
identify and correctly implement all the functionality that it needs to run. This
is quite challenging, because most parts of the ABI are undocumented. In this
chapter, we describe a methodology that we have devised for driving out the
necessary functionality, based on blackboxing the behavior of an application.
We also present a number of techniques that we use to aid our implementation
effort. Finally, we demonstrate that by combining the implementation from the
previous two chapters with the methodology and techniques from this chapter,
we are able to run Native applications on both Windows and Casuar.

79

80 CHAPTER 5 / ACHIEVING ABI COMPATIBILITY

5.1 Basic Approach

The Windows Kernel and Windows Executive export a little over 400 different
system calls [41]. Most Windows applications depend on merely a small subset
of these. Still, we know with certainty that the components and mechanisms
described in Chapter 3 and Chapter 4 do not account for all of the functionality
that is needed to run an application. Additional support is required for the
Windows Image Loader to be able to perform the necessary initialization of a
process, before it even starts to run the application code.

The lifetime of a user-mode process may be divided into two phases—the
loading phase and the execution phase. After the Windows Executive has created
and initialized the process in kernel mode, the main thread of the process
starts executing in user mode from the function LdrInitializeThunk() in
ntdll.dll. This function is used to invoke the Windows Image Loader, which
will perform necessary preparation of user-mode data structures that are
specific to the process and its threads. It is used as the effective entry point of
every user-mode thread. After the image loader has completed its work, the
thread will begin to execute code from a user-defined entry point. If it is the
main thread, it will use the application-wide entry point from the application’s
executable. The execution phase begins when the main thread starts to run
the actual application code, and it lasts until the process terminates.

The work that is done by the Windows Image Loader includes creating a
process heap, setting up thread-local storage (TLS), and initializing the process
environment block (PEB) and thread environment block (TEB) structures
accordingly. As indicated by its name, the loader will also make sure all DLLs
that the application depends on are loaded into the address space of the
process, and execute any DLL-specific initialization code as needed. The loading
phase cannot be bypassed, because other DLL functions that are used by an
application depend on the structures that are initialized by the loader. To
support the execution of a Windows application on top of Casuar, our primary
focus has therefore been on implementing the necessary functionality that
is required by the loader. After the loading phase completes, any additional
functionality needed to support an application depends on the specific behavior
of that application.

To be able to support the execution of the image loader, it is necessary to
implement additional system calls. However, it is not desirable to evaluate every
single system call up-front to decide whether to implement it or not. This would
be very time-consuming, especially since most system calls are undocumented,
and even their general behavior might be unknown. In addition, we have very
little a priori knowledge concerning the details of the loading phase. Available
literature [46, Ch. 3] only presents a broad description, from which we cannot

5.1 / BASIC APPROACH &1

infer much about the loader’s exact interaction with the system. This indicates
that we should merely rely on the execution itself to determine which system
calls and other functionality to implement. The notion is strengthened when
considering the work that is needed to support an application’s execution
phase, where we cannot assume that any implementation details are known
whatsoever.

As a result, we treat all user-mode code as a black box, and adhere to the
following basic approach for driving out the functionality that is needed to run
a Windows application:

1. We start by preparing the execution environment of a process, based on
our current knowledge.

2. Next, we start executing user-mode code from the LdrInitializeThunk()
function.

3. At some point, the image loader will try to perform an operation that
depends on a feature that has not yet been implemented. The operation
will interact with the system through some interface where we should
be able to detect the dependency.

4. We identify and evaluate the missing feature.

5. Then, we respond to the missing feature by implementing sufficient
functionality to support the user-mode request, and make changes to the
execution environment as necessary.

6. Finally, we re-start the execution, and continue to iterate this process
until the loading phase completes successfully.

There are, however, some challenges to this approach. First, we need to be able
to detect dependencies on unimplemented functionality at a fine-grained level.
For system calls, this is straightforward, because every system call will generate
a trap to Casuar that must be handled explicitly. However, Windows applications
depend on more than just system calls. System DLLs, such as ntdl1.d11, also
have dependencies on several user-mode data structures that are part of the
address space of the process, such as the PEB and TEB. These structures are
not only initialized by the loader; the DLLs also rely on the structures to have
been partly initialized by the kernel, even before the process starts executing
user-mode code. Hence, they may be considered part of the application binary
interface (ABI) between user mode and kernel mode. As with system calls, we
do not want to evaluate every possible structure member. A major challenge is
therefore to determine which structure fields are actually being accessed from

82 CHAPTER 5 / ACHIEVING ABI COMPATIBILITY

user mode—and hence must be initialized by Casuar—and what values these
fields should assume.

Second, it may be difficult to identify and evaluate a missing feature, even
though we know the name of the system call or structure member that has
not yet been implemented or initialized. Again, most system calls and struc-
ture fields are undocumented. Providing a sufficiently working and correct
implementation might in itself require blackboxing. A central question is how
to obtain enough information to know how a new feature is supposed to be
implemented or expected to behave.

Third, because our above approach is based on successive refinement, it is hard
to make progress without a clear measure of progress. Specifically, we need to
be able to determine whether adding or modifying functionality has allowed
the loader or application to continue its work towards successful completion.
If, for example, a change in our system has introduced erroneous behavior, the
image loader could start executing error-handling code. This should be clearly
noticeable for us to be able to fix such an error.

Throughout the following sections, we describe how we have taken on the
above three challenges. In Section 5.2, we describe our implementation of a
mechanism that allows us to monitor every memory access that is made to a
user-mode data structure, thus overcoming the first challenge. Following that,
Section 5.3 explains how we have implemented functionality for producing
stack traces, which may provide additional context for dealing with the other
two challenges. Finally, we demonstrate in Section 5.4 that, through the use
of the methodology and techniques described in this chapter combined with
the implementations from the previous chapters, we are able to run Native
applications on top of both Windows and Casuar.

5.2 Monitoring Memory Accesses to User-Mode
Data Structures

In Windows, there are mainly three user-mode data structures that must be
initialized before a process starts executing from the LdrInitializeThunk()
entry point. These are the PEB and TEB structures, which are specific to each
process and thread, and the KUSER_SHARED_DATA structure, which is shared
globally between all processes. In the first two structures, only some of the
members need to be assigned values by the kernel. Other members are setup
either by the Windows Image Loader or by initialization code in other sys-
tem DLLs. In contrast, the third structure is setup entirely by kernel-mode

5.2 / MONITORING MEMORY ACCESSES TO USER-MODE DATA STRUCTURES 83

code.

Determining what value to assign to each structure field largely involves trying
to deduce the meaning of the field, based on its name. In addition, we also
need to figure out which fields must be set. The structures are quite large; for
example, the TEB contains more than 6 KB of data, spread over more than 100
structure fields. Hence, we want to identify which fields are actually accessed
by an application, and only assing values to those that are expected to be
initialized by the kernel. However, memory accesses made by user-mode code
are not directly visible to kernel mode because, unlike system calls, they are
not explicit interfaces to the kernel. It is therefore necessary to use some kind
of instrumentation to be able to trace memory accesses.

Specifically, we want to let every access within a given memory region—
corresponding to a user-mode structure—cause a trap to kernel mode, similar
to how system calls behave by default. This way, the kernel will be able to log all
relevant memory accesses, so we can use this information to determine offline
which structure members must be initialized when preparing the execution
environment of a process. If, during the loading phase, a field is written to
without being previously read, we can determine with certainty that the field
is initialized by the loader. This means that we do not need to assign a value to
that field in Casuar. Conversely, if the first access to a structure field is a read
operation, this indicates a dependency on a value that must have already been
set by the kernel.

Our main idea is to exploit the paging mechanism on x64 and force generation
of page faults for all accesses within certain memory pages. Vortex allows
Casuar to memory-map pages with either supervisor or user access rights.
If a thread tries to access a supervisor page from user mode, the memory
management unit (MMU) will generate an access fault, and the thread will
trap to the Vortex kernel. Normally, such a fault will cause the process to
be terminated. However, recall from Chapter 3 that Vortex allows a process
to handle exceptions on behalf of its threads. If the process has subscribed
to exception messages, the offending thread will instead be suspended, and
the process is notified about the exception. In Casuar, we have turned this
mechanism on for all processes, so we are able to handle page faults.

The typical way to handle an exception is to make appropriate changes to
the system or process environment, such that the underlying cause for the
exception is resolved. Then, when a thread resumes its execution after the
exception has been handled, it will execute the previously faulting instruction
again. Unless the instruction causes another exception, the thread will be able
to proceed. However, to be able to monitor all memory accesses to a page, we
have to make sure that every access results in a trap. If the access rights of the

84 CHAPTER 5 / ACHIEVING ABI COMPATIBILITY

page are changed to allow the faulting memory instruction to succeed, then
subsequent accesses to the page will also succeed without generating a page
fault. On the other hand, if we do nothing in response to the fault, the thread
will continue to fault on the same instruction indefinitely.

Our approach is to leave the memory mappings as is, and instead perform the
memory access from kernel mode, on behalf of user mode. This is possible,
because the memory pages that have been protected with supervisor rights
will be accessible to the exception handling code executing in kernel mode,
without causing another exception. However, the faulting instruction cannot
simply be re-executed in kernel mode. Instead, we have created a mechanism
for emulating the effect of the instruction, so it behaves to user mode as if the
instruction executed normally on the CPU.

When a thread generates an access fault to a monitored memory page, we
decode the instruction byte code from the faulting RIP, emulate the memory
access corresponding to that instruction, and finally advance the RIP beyond
the instruction before resuming the thread. When the thread wakes up, it
will continue to execute code from the next instruction, instead of restarting
the faulting instruction. Using this technique, we effectively virtualize a user
mode thread’s memory accesses; threads will be oblivious to the fact that some
instructions are emulated instead of executed by the CPU. The net result is that
Casuar is able to log every single access to the pages it is monitoring.

To do the actual emulation of memory instructions, we implement a memory
instruction emulator component with functionality for decoding a subset of the
X64 instruction format. We only support instructions that access memory, and
we implement only instructions that are actually needed to handle accesses
to the monitored data structures. Table 5.1 summarizes the instructions we
currently support.

Most memory-related x64 instructions take two operands—a memory operand
and either an immediate value or a CPU register. The memory instruction
emulator performs memory access operations corresponding to the memory
operand, and uses the thread context of the faulting thread to read from and
write to its registers. In addition, it makes sure that other side effects of an
instruction are faithfully emulated. For example, many arithmetic instructions
update the RFLAGS register as well as the destination operand of the instruc-
tion.

However, the emulator does not access the memory within the monitored pages
directly. Instead, it is modeled to interact with a memory interface consisting
of read and write callbacks. The callbacks are supplied by a separate memory
monitor component. The memory monitor allows the system to register a range

5.2 / MONITORING MEMORY ACCESSES TO USER-MODE DATA STRUCTURES 85

Table 5.1: Number of implemented instructions in x64 memory instruction emulator.

Mnemonic Meaning # supported opcodes
and Bit-wise logical AND 3
btr Bit test and reset 1
bts Bit test and set 1
cmp Compare 5
dec Decrement 1
inc Increment 1
mov Copy 5
movzx Copy zero-extended 2
movsXx Copy sign-extended 1

or Bit-wise logical OR 4
test Test for set bits 5

of memory pages that will be monitored, together with a handler that is specific
for each range. Each user-mode data structure to be monitored will be mapped
to a different set of pages, and will register a handler with the monitor. The
handler has a separate set of callbacks for logging read and write accesses to
its associated page range.

When the system receives an exception message for a page fault, the memory
monitor will demultiplex the exception using the fault address. If the fault
address lies within one of the registered page ranges, the memory monitor will
locate the associated handler. Next, it invokes the memory instruction emulator
to decode the faulting instruction. Emulation of the instruction will result in at
least one call to the read or write callback of the memory monitor’s supplied
memory interface. The memory address to be accessed is calculated from the
instruction code and, possibly, the value of some register from the faulting
thread’s register context. When either of the memory monitor’s callbacks is
invoked, the monitor takes responsibility for performing the corresponding
memory access. Then, it translates the memory address to an offset, relative
to the base address of the located handler’s page range. Finally, the memory
monitor invokes the read or write callback that belongs to the handler (de-
pending on the type of memory access), and supplies the offset as argument.
This allows the handler to map the offset to the name of a member in the data
structure represented by the handler, and log the access. Figure 5.1 illustrates
the overall interaction between the memory instruction emulator, the memory
monitor, and the monitor handlers.

Every time the user-mode code tries to access a field from a monitored data
structure, the access will be registered by one of the loggers. However, if it is a

86 CHAPTER 5 / ACHIEVING ABI COMPATIBILITY

Monitor
Handler

Thread execution
85 cO

o 4d of 44 e3

4e 8d 34 e3

Memory Monitor
2% [48 8b 77 10| —> [N Hanaier
49 89 36

Monitor
Handler

Memory Register
Interface Context

read 8 bytes from read rdi, write rsi,
0x410000110010 update rip

(3]
A * \

Imov rsi,qword ptr [r‘di+0x10]|

x64 Memory Instruction Emulator

Figure 5.1: Casuar’s memory monitor architecture.

O When a thread generates an exception from user mode, the exception
is forwarded to the memory monitor.

@ If the exception was a page fault within a monitored page, the memory
monitor will handle the exception and invoke the memory instruction
emulator. The monitor passes the faulting thread’s register context and a
memory interface (consisting of read and write callbacks) to the emulator.

©® The memory instruction emulator decodes the faulting instruction, and
emulates its effect by updating the register context and interacting with
the memory interface.

® When the emulator issues read or write operations to the memory
monitor’s memory interface, the memory monitor will perform the corre-
sponding memory access. Then, the handler that owns the monitored page
is notified about the access, so the access can be logged.

5.3 / USING STACK TRACES TO PROVIDE CONTEXT 87

read operation to a field that should have been initialized by the kernel, it does
not make sense to allow the faulting thread to proceed afterwards, since the
continued execution will depend on the field to have been setup properly. For
this reason, all loggers are configured to allow accesses only to a predetermined
set of structure members. If a logger detects an access to a field that is not
in this set, it will log the access and then halt the system. Note that this only
happens when we need to implement some missing feature or assign an initial
value to a previously unassigned structure field. Afterwards, we manually add
the field to the set of structure members that are allowed to be accessed. From
this approach, we get full control over which fields are accessed, and can be
completely confident that we detect all dependencies on those fields.

5.3 Using Stack Traces to Provide Context

Via the mechanism described in the previous section, we are able to detect all
user-mode dependencies on both system calls and data structure members.
Moreover, we also know the names of most system calls and structure fields,
because they are either exported from the relevant system DLLs, or they are
public information. However, system calls and structure fields are merely in-
terfaces to underlying features of Windows NT. As these are for the most part
undocumented, their names might not by themselves yield enough information
that we are able to implement equivalent functionality in Casuar.

Gaining more insight about some unimplemented feature is a matter of acquir-
ing additional information about the context in which the feature is used. As
pointed out in Section 5.1, being able to do this will also aid our evaluation of
whether a corresponding feature in Casuar has been implemented correctly;
if we have more information about why a system call is invoked or a structure
member is accessed, it is possible to infer whether the user-mode code behaves
as expected or not.

When a thread traps to the Casuar kernel, the RIP of the user-mode instruction
that caused the trap will be available to the kernel. This, by itself, provides a
little bit of information; for a system call, the RIP will be within the ntd1l.d11l
function that implements the corresponding system call stub and therefore also
specifies the name of the system call, and for accesses to structure fields, the
RIP may reveal from which function the access originated. However, if the RIP
is considered together with the RSP from user mode, it is possible to construct a
complete traceback of the call stack containing all preceding function calls—a
so-called stack trace.

The implementation of Windows relies heavily on structured exception han-

88 CHAPTER 5 / ACHIEVING ABI COMPATIBILITY

dling (SEH)—its native mechanism for handling exceptions, both in kernel
mode and user mode [91]. There are some similarities between SEH and the
built-in exception support of C++ [71]. SEH allows C functions to use special
__try and __except keywords for executing code that might generate excep-
tions, and handle them accordingly. This also means that Windows requires
special support from the Microsoft C compiler to be able to implement SEH

[92].

When an exception occurs, the native exception handling code in Windows
will look for an exception handler (corresponding to an __except block in
the original, compiled C code). If the function that triggered the exception
does not handle it, the thread will return to the caller of that function and
the system will query it for an exception handler instead. The exception will
continue to bubble up the stack until the system either locates a matching
exception handler or, if the exception is unhandled, the process is terminated.
This means that the exception handling code needs to be able to unwind the
call stack in a consistent manner, regardless of where in the code the exception
occured.

The layout of the call stack in x64 Windows is dictated by the Microsoft x64
ABI [93]. Each time a function is called, the RIP is pushed onto the stack as
a return address, so the callee will be able to return back to the caller after it
has finished executing. This marks the start of a new stack frame. The stack is
used to store local variables and function arguments (except for the first four
arguments, which are passed in registers). In addition, some CPU registers are
specified as nonvolatile in the x64 ABI, meaning their values are part of the
caller’s state and must be preserved. To be able to utilize nonvolatile registers,
a function will save their old values on the stack, and later restore them before
returning to the caller.

When a function returns normally, it will execute instructions to restore all
nonvolatile registers and free all stack space that has been consumed by its
stack frame. Then, it will pop the RIP off the stack and use it to do the actual
return operation. However, if an exception occurs, the thread will not be able
to execute the instructions for cleaning up the stack, which are part of the
normal return path. This means that the exception handling code will need to
determine where to locate the nonvolatile registers and the RIP, so these may
be restored, as well as the amount of stack space that has been allocated.

To facilitate the unwinding of a stack frame, the x64 ABI requires that every
function consist of three parts: a prolog at the start of the function, an epilog
at the end of the function, and a function body inbetween. Only the prolog
and epilog are allowed to manipulate the stack pointer—all allocation of stack
space must happen in the prolog, and the corresponding clean-up must be done

5.3 / USING STACK TRACES TO PROVIDE CONTEXT 89

in the epilog.! This simplifies the common case, where exceptions occur within
the function body. It also requires a function to allocate sufficient stack space
in the prolog for the maximum number of arguments that is used in any call to
another function. However, for functions written in C, this is handled entirely
by the compiler.

The Portable Executable (PE) binary of an application or DLL contains all the
necessary information that the exception handling code needs to be able to
unwind the stack of any function within that binary. Every function has an
associated unwind information structure (UNWIND_INFO) [95], which is con-
tained as an entry in the PE file’s exception table [96]. The structure records
an unwind code [97] for each instruction in the function’s epilog that either
manipulates the stack or accesses a register that is needed during unwind.
Together, the unwind codes of a function allow the exception handling code to
reverse the effect of the function’s prolog when an exception occurs.

However, the unwind information is not usable only for handling exceptions. It
may also be used to produce stack traces, without having to exceute exception
handlers or force a thread to return from a function. This is done by Windows
debuggers such as Windbg, through the available Debugger Engine API in
Windows [98]. In this case, the primary use of the unwind information is
to locate the RIP in each stack frame and find where the next stack frame
starts.

As previously mentioned in Chapter 4, Casuar already includes a PE parser from
previous work [41]. We have extended the parser to support retrieval of unwind
information for a given RIP. Using this, we have implemented the necessary
functionality for producing stack traces. However, the unwind information only
provides the memory addresses of each function call. In order to get stack
traces that are meaningful and usable to us, it is also necessary to map the
function addresses to their corresponding function names.

It is possible to use the PE export table of a DLL to resolve function addresses
of public symbols to their respective symbol names. Table 5.2 shows an example
stack trace without symbol names, and Table 5.3 show the same trace where
the names of all public symbols have been included. However, as can be seen,
most of the functions that are part of the trace are internal, private symbols,
which cannot be resolved using the export tables. Hence, it is not sufficient to
rely exclusively on export tables for resolving function names, as they do not

1. There is one exception, where the function body may use the stack for dynamic allocation,
using alloca(). However, in these cases, one of the nonvolatile registers will be used as
frame pointer to indicate to the exception handling code where the static portion of the
stack frame starts [94].

90 CHAPTER 5 / ACHIEVING ABI COMPATIBILITY

reveal enough information to gain any insights from the traces.

Table 5.2: Example stack trace where no function names have been resolved.

RIP Location Symbol identifier

0x40000029aeea <ntdll.dl1+0x9%aecea> ntd1l.d1ll!.text+0x99eea

0x400000c123ba <kernelbase.dl1+0x123ba> kernelbase.dll!.text+0x113ba
0x400000c14da5 <kernelbase.dl1+0x14da5> kernelbase.dll!.text+0x13da5
0x400000c025el <kernelbase.dl1+0x025el1> kernelbase.dll!.text+0x15el

0x400000255619 <ntdll.d11+0x55619> ntd1l.dll!.text+0x54619
0x400000254de2 <ntdll.dl1+0x54de2> ntd1l.dll!.text+0x53de2
0x400000254¢c19 <ntdll.d11+0x54c19> ntd1l.d1l!.text+0x53c19
0x400000254bfb <ntd1l.d11+0x54bfb> ntdll.d1l!.text+0x53bfb
0x400000222516 <ntdll.d11+0x22516> ntd1l.dll!.text+0x21516
0x4000002211d0 <ntdll.d11+6x211d0> ntdll.d1ll!.text+0x201d0
0x40000025830d <ntdll.d11+0x5830d> ntd1l.d1l!.text+0x5730d
0x4000002cf264 <ntdll.dl1+0xcf264> ntdll.d1l!.text+0xce264
0x4000002bal188 <ntdll.d11+0xbal88> ntd1l.d1ll!.text+0xb9188
0x400000256a5a <ntdll.dl1+0x56a5a> ntdll.d1l!.text+0x55a5a

Table 5.3: Example stack trace from Table 5.2, where PE export tables are used to
resolve function names.

RIP Location Symbol identifier

0x40000029aeea <ntdll.dl1+0x9aeea> ntd1l.d11!NtQuerySystemInformation+0xa
0x400000c123ba <kernelbase.dl1+0x123ba> kernelbase.dll!.text+0x113ba
0x400000c14da5 <kernelbase.dl1+0x14da5> kernelbase.dll!.text+0x13da5
0x400000c025el <kernelbase.dl1+0x025el> kernelbase.dll!.text+0x1l5el

0x400000255619 <ntdll.d1l1+0x55619> ntd1l.d1l!.text+0x54619
0x400000254de2 <ntdll.dl1+0x54de2> ntdll.d1ll!.text+0x53de2
0x400000254¢c19 <ntdll.d11+0x54c19> ntd1l.d1l!.text+0x53c19
0x400000254bfb <ntd1l.d11+0x54bfb> ntdll.d1l!.text+0x53bfb
0x400000222516 <ntdll.dl1+0x22516> ntd1l.dll!.text+0x21516
0x4000002211d0 <ntd1ll.d11+0x211d6> ntdll.d1ll!.text+0x201d0
0x40000025830d <ntdll.d11+0x5830d> ntdll.d11l!LdrLoadD11+0x99
0x4000002cf264 <ntdll.dl1+0xcf264> ntdll.d1ll!.text+0xce264
0x4000002bal188 <ntdll.d11+0xbal88> ntdll.d1ll!.text+0xb9188
0x400000256a5a <ntdll.dll1+6x56a5a> ntdll.dll!LdrInitializeThunk+0xe

To be able to resolve private symbols, it is necessary to use additional debug
information. A PE file typically includes a special CodeView debug section
that either contains such information or, more commonly, points to a separate
program database (PDB) file containing the debug symbols. In Windows, the
PDB files for most system DLLs are made available by Microsoft for debugging
purposes [99]. Because PDB is a proprietary format, Microsoft also imple-
ments a DbgHelp library [100] that is used by debuggers or other third-party
applications to extract information from the PDB files.

It is not convenient to reuse the DbgHelp library in Casuar, because it runs
in user mode and is dependent on a number of other DLLs. Instead, we have
implemented our own PDB parser. This allows us to exploit debug information
associated with system DLLs that are loaded by an application. Our implemen-
tation corresponds to only a small subset of the functionality available from the
DbgHelp library. Because there is little available information about the struc-
ture of PDB files, we have restricted Casuar’s implementation to only include
what is needed for mapping addresses of private functions to their respective

5.3 / USING STACK TRACES TO PROVIDE CONTEXT N

function names. However, this allows us to produce stack traces where we are
able to resolve virtually all internal function calls. Table 5.4 illustrates what
the stack trace from Table 5.2 and Table 5.3 looks like when this is done.

Table 5.4: Example stack trace from Table 5.2 and Table 5.3, where PDB files are used
to resolve function names.

RIP Location Symbol identifier

0x40000029aeea <ntdll.dll1+0x9%9aeea> ntd1ll.d11!NtQuerySystemInformation+0xa

0x400000c123ba <kernelbase.dl1+0x123ba> kernelbase.dll!KernelBaseDllInitializeMemoryManager+0x3a
0x400000cl4da5 <kernelbase.dl1+0x14da5> kernelbase.dll!_KernelBaseBaseDllInitialize+0x12745
0x400000c025el <kernelbase.dl1+0x025el1> kernelbase.dll!KernelBaseDllInitialize+0x11

0x400000255619 <ntdll.d11+0x55619> ntdll.dll!LdrpCallInitRoutine+0x41
0x400000254de2 <ntdll.dl1+0x54de2> ntdll.dll!LdrpInitializeNode+0x176
0x400000254c19 <ntdll.d11+0x54c19> ntd1ll.dll!LdrpInitializeGraph+0x75
0x400000254bfb <ntdll.d11+0x54bfb> ntdll.dll!LdrpInitializeGraph+0x57
0x400000222516 <ntdll.d11+0x22516> ntdll.dll!LdrpPrepareModuleForExecution+0xl4e
0x4000002211d0 <ntdll.d11+6x211de> ntdll.d1l1l!LdrpLoadD11+0x338

0x40000025830d <ntdll.d11+0x5830d> ntd1l.d1l!LdrLoadD11+0x99

0x4000002cf264 <ntdll.dll+0xcf264> ntdll.dll!LdrpInitializeProcess+0x1684
0x4000002bal88 <ntdll.dl1+0xbal88> ntd1l.d1l!_LdrpInitialize+0x636dc
0x400000256a5a <ntdll.dll1+0x56a5a> ntdll.dll!LdrInitializeThunk+0xe

The stack trace shown in Table 5.4 is an example of an actual trace that was
generated by Casuar in response to an unimplemented feature in the system
call NtQuerySystemInformation(). This example illustrates how the symbol
names for the functions leading up to the system call may be useful. In this
case, they could help determine why the system call was invoked, and how to
implement the missing feature. For example, we see that the kernelbase.dll
DLL has been loaded, and that the loader was currently executing the DLL’s
initialization code. Moreover, it is clear that the NtQuerySystemInformation()
was called to retrieve some information that is needed to initialize a memory
manager component in the DLL.

Another example, which illustrates how strack traces can be used to quantify
progress, is shown in Table 5.5. In this case, the trace was generated after an
access to a previously unimplemented field ActivityId in the TEB. The access
happened after a call to NtQuerySystemInformation() that did not return the
proper result. From the stack trace, we get a clear indicator that an error has
occured. When seen in light of previous stack traces that do not contain error
indicators, it is possible to pinpoint the source of the error quite accurately
(which in this case is the NtQuerySystemInformation() system call). Then,
the stack trace can be used to help drive out a correct implementation of the
system call—when the error trace no longer appears, we can be somewhat
certain that our implementation is correct.

92 CHAPTER 5 / ACHIEVING ABI COMPATIBILITY

Table 5.5: Example of a stack trace indicating an error in Casuar’s implemented

interface.
RIP Location Symbol identifier
0x400000278d45 <ntdll.d11+0x78d45> ntd1l.d1l!EtwEventWriteNoRegistration+0x5d
0x4000002cc8dd <ntdll.dl11+6xcc8dd> ntdll.dll!LdrpLogFatalLdrEtwEvent+0xad
0x4000002cd3be <ntdll.dl1+6xcd3be> ntdll.dll!LdrpInitializationFailure+0x66
0x4000002ba284 <ntdll.dl1+0xba284> ntd1ll.d1ll! _LdrpInitialize+0x637d8
0x400000256a5a <ntdll.dl1+0x56a5a> ntdll.d1ll!LdrInitializeThunk+0xe

5.4 Results

Using the techniques described in the previous sections together with the
mechanisms from Chapter 3 and Chapter 4, we have been able to implement all
necessary functionality for completing the loading phase of Native applications
running on top of Casuar. In adherence to traditions for software development,
we have written a Hello world Native application, as shown in Code Listing 5.1,
and let it be the first application to successfully run on both Windows and
Casuar. Because Native applications do not have default 1/0 streams (i.e. stdin
and stdout) associated with them, we have used the NtDrawText () system call
to write “Hello, world!” on the Windows boot screen. The same system call
is implemented in Casuar to write to the system log, as Vortex does not have
any graphical interface. Figure 5.2 shows a screenshot of the Hello world Native
application running on Windows Server 2012 R2 (NT 6.3, build 9600).

Code Listing 5.1: Implementation of Hello world Native application.

1 void

2 NtProcessStartup(void *arg)

3 {

4 UNICODE_STRING us;

5 LARGE_INTEGER delay;

6

7 RtlInitUnicodeString(&us, L"Hello, world!\n");
8 NtDrawText (&us);

9

10 // Wait 10 seconds

11 delay.QuadPart = —100000000;

12 NtDelayExecution(FALSE, &delay);

13

14 NtTerminateProcess(NtCurrentProcess(), STATUS_SUCCESS);
15 3

Table 5.6 and Table 5.7 show complete overviews over all TEB and PEB structure
fields that had to be initialized by Casuar in order to complete the loading phase
of a Native application that is run alongside NT 6.3 system DLLs. All of these
fields have been identified using the memory monitor described in Section 5.2.
Although we have assigned values to all of the listed structure members, we
do not have complete information about the semantics of each. For example,
we do know that the PEB fields AnsiCodePageData, OemCodePageData, and

5.4 / RESULTS

Hello, world!

93

Figure 5.2: Hello world Native application run in Windows at boot-time.

Table 5.6: TEB fields that must be initialized by Casuar to complete the loading phase
of a Native application using NT 6.3 DLLs. Offsets are relative to NT 6.3
struct definitions.

Offset

Field name

Assigned value

0x0008
0x0010
0x0030
0x0040
0x0048
0x0060
0x02c8
Ox1l7ee
Ox17ee
Ox1l7ee
Ox1l7ee
Ox17ee
Ox1l7ee
Ox1l7ee
Ox17ee
Ox1l7ee
Ox17ee
Ox17ee
Ox1l7ee

NtTib.StackBase
NtTib.StackLimit
NtTib.Self
ClientId.UniqueProcess
ClientId.UniqueThread
ProcessEnvironmentBlock
ActivationContextStackPointer
SafeThunkCall
InDebugPrint
HasFiberData
SkipThreadAttach
WerInShipAssertCode
RanProcessInit
ClonedThread
SuppressDebugMsg
DisableUserStackWalk
RtlExceptionAttached
InitialThread
SessionAware

Stack base of user stack
Stack limit of user stack
Pointer to start of TEB
Unique ID
Unique ID
Pointer to PEB
NULL
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
Set for main thread
FALSE

94 CHAPTER 5 / ACHIEVING ABI COMPATIBILITY

UnicodeCaseTableData have to point to National Language Support (NLS)
codepages, and as such we have had to implement support for this. However,
we do not know what the pShimData field in the PEB is supposed to point to,
or what the possible values for the AppCompatFlags field are.

Table 5.7: PEB fields that must be initialized by Casuar to complete the loading phase
of a Native application using NT 6.3 DLLs. Offsets are relative to NT 6.3
struct definitions.

Offset Field name Assigned value
0x002 BeingDebugged FALSE

0x003 ImageUseslLargePages FALSE

0x003 IslLegacyProcess FALSE

0x003 IsImageDynamicallyRelocated TRUE

0x003 SkipPatchingUser32Forwarders FALSE

0x003 IsPackagedProcess FALSE

0x003 IsAppContainer FALSE

0x010 ImageBaseAddress Base address of process’ PE image
0x020 ProcessParameters RTL_USER_PROCESS_PARAMETERS
0x050 ProcessInJob FALSE

0x050 ProcessInitializing TRUE

0x050 ProcessUsingVEH FALSE

0x050 ProcessUsingVCH FALSE

0x050 ProcessUsingFTH FALSE

0x068 ApiSetMap Pointer to apisetschema.dll section
0x080 TlsBitmapBits o

0x0a0 AnsiCodePageData Pointer to NLS codepage
0x0a8 OemCodePageData Pointer to NLS codepage
0x0b® UnicodeCaseTableData Pointer to NLS codepage
0x0b8 NumberOfProcessors Number of logical cpPUs
0x0bc NtGlobalFlag o

0x0cO® CriticalSectionTimeout o

0x0c8 HeapSegmentReserve 0x100000

0x0d0® HeapSegmentCommit 8192

0x0d8 HeapDeCommitTotalFreeThreshold 4096

0x0e® HeapDeCommitFreeBlockThreshold 65536

0x0e8 NumberOfHeaps o

0x230 PostProcessInitRoutine NULL

0x240 TlsExpansionBitmapBits [¢)

0x2c8 AppCompatFlags o

0x2d8 pShimData NULL

0x2f8 ActivationContextData NULL

0x308 SystemDefaultActivationContextData NULL

0x318 MinimumStackCommit 8192

0x340 FlsBitmapBits [¢)

In Table 5.8, we also show all system calls that are invoked during the loading
phase. For each system call, we indicate which subsystem in Casuar implements
its functionality. Functions that correspond to services in the Windows Executive
that are not implemented by either the Object Manager, 1/0 Manager, or

5.4 / RESULTS 95

Memory Manager are listed with “Executive” as subsystem, and Windows Kernel
services are listed with “Kernel”. The system call NtApphelpCacheControl()
has been implemented to return an error code, indicating an unsupported
operation. For completeness, we also include all other system calls that are
currently implemented by Casuar in Table 5.9.

Table 5.8: System calls that are used by the loading phase of a Native application
using NT 6.3 DLLS.

Casuar subsystem Name of system call Implemented support

Executive NtQueryInformationProcess Partial support
NtQueryPerformanceCounter No
NtQuerySystemInformation Partial support

Kernel NtContinue Fully supported
NtTestAlert Fully supported

Object Manager NtOpenDirectoryObject Fully supported

1/0 Manager NtOpenFile Open regular files
NtQueryVolumeInformationFile Partial support

Memory Manager NtAllocateVirtualMemory Most common operations
NtFreeVirtualMemory Most common operations
NtQueryVirtualMemory Most common operations
NtProtectVirtualMemory Most common operations

N/A NtApphelpCacheControl No

Naturally, we have also attempted to load and run regular Windows subsys-
tem applications. However, it turns out that we are not able to get past the
loading phase for this type of application, because it will—as part of load-
ing kernel32.d11—try to communicate with the Windows subsystem process
(csrss.exe) through ALPC, which we currently do not support in Casuar (as
explained in Chapter 4). In other words, we cannot support existing regular
Windows applications that are built on top of the Windows API at this point.
This may be seen as a drawback, since there exist very few Native applications,
and these are mostly support processes that are started at boot-time. Typi-
cally, Native applications are either present only to allow regular applications
to run—such as smss.exe and csrss.exe—or they need to obtain exclusive
access to system resources at boot-time—such as the autochk.exe file sys-
tem validation application that requires raw disk block access. However, all of
our efforts towards supporting Native applications are also part of the work
required to support regular Windows applications, and are therefore highly
relevant.

Because we only have available a small number of specialized Native applica-
tions, we have taken the approach to write our own Native applications, similar
to the Hello World application, for testing the functionality of Casuar. In the

96

CHAPTER 5 / ACHIEVING ABI COMPATIBILITY

Table 5.9: Other system calls that are implemented by Casuar.

Casuar subsystem

Name of system call

Implemented support

Executive

Kernel

Object Manager

1/0 Manager

Memory Manager

NtCreateThreadEx
NtTerminateThread
NtTerminateProcess
NtDisplayString
NtDrawText

NtDelayExecution
NtYieldExecution
NtQueueApcThread
NtSuspendThread
NtResumeThread
NtCreateEvent
NtWaitForSingleObject

NtCreateSymbolicLinkObject
NtClose

NtCreateFile

NtReadFile

NtWriteFile
NtQueryAttributesFile
NtFlushBuffersFile

NtCreateSection
NtOpenSection
NtQuerySection
NtMapViewOfSection
NtUnmapViewOfSection

Creating threads for current process
Terminate current thread
Terminate current process

Print string in system log

Print string in system log

Fully supported

Fully supported

Queue to threads in same process
Suspend threads in current process
Resume threads in current process
Fully supported

Fully supported

Fully supported

Fully supported
Create/open regular files
Read from regular files
Write to regular files
Partial support

Fully supported

Partial support
Partial support
Partial support
Partial support
Partial support

next chapter, we use these to evaluate Casuar experimentally through a series
of micro-benchmarks.

Evaluation

While implementing Casuar, our main focus has been on ensuring the cor-
rectness of its functionality, in order to achieve compatibility with a subset of
the Windows ABI. However, performance is also an important aspect to the
usefulness of a PLOS, as the PLOS architecture was developed with the inten-
tions of improving upon the traditional library Os abstraction as a light-weight
alternative to VMs.

In this chapter, we evaluate Casuar using micro-benchmarks that measure the
overhead of a number of system calls and 1/0 operations. We run the same
benchmarks on Windows and Wine, to compare the performance of Casuar to
the performance of these existing systems.

6.1 Experimental Setup

We have written a number of small Native applications for running micro-
benchmarks that we use to measure the overhead of selected system calls and
1/0 operations. We use these benchmarks to compare Casuar to both Windows
and Wine. Specifically, we run the benchmark applications natively on Windows
Server 2012 R2 (NT 6.3, build 9600), and on Wine 1.7.44 running on Ubuntu
14.04.2 LTS with Linux kernel version 3.13.0-24, as well as on Casuar.

All experiments are run on a Dell PowerEdge M60oo blade server. The server

97

98 CHAPTER 6 / EVALUATION

is equipped with two Intel Xeon E5430 2.66 GHz Quad-Core processors. Each
core has separate 64x8 way 32 KB L1 data and instruction caches, and each
pair of cores shares a 6 MB 6424 way L2 cache (for a total of 12 MB L2 cache
per processor). Each processor has a 1333 MHz front-side bus and is connected
to 16 GB of DDR-2 main memory running at 667 MHz.

When running our benchmark applications on Vortex, Windows, and Linux,
we attempt to reduce possible background interference that could affect our
measurements. On Windows, we execute all benchmarks in a minimal envi-
ronment at the boot-stage, where no other processes contend for CPU time or
other resources. Similarly, we run Wine on top of a small Ubuntu installation,
where only system-critical tasks, such as kernel-mode driver worker threads,
are allowed to execute in the background.

In addition, we pin each benchmark thread to a separate CPU core, different
from the boot core, which is typically subject to most interference from system
tasks such as interrupts, deferred procedure calls (DPCs), and similar. This
also prevents the thread schedulers from moving thread between cores for
balancing load. We have observed that migration of threads is otherwise done
on a frequent basis in Windows, typically motivated by power savings benefits.
However, we have also seen that this can affect our measurements, for exmaple
because threads achieve a lesser degree of CPU cache locality.

6.2 System Call Benchmarks

We have measured the time it takes to perform a number of different system calls
on Windows, Casuar, and Wine. Although it is practically impossible to eliminate
interference from interrupts or the thread scheduler, we have taken measures
to reduce the interference for most of the system calls that we benchmark.
Through observation, we have found that background interference seems more
common within few, short time windows, rather than being distributed evenly
over a larger time interval. For example, the thread schedulers of Vortex,
Windows, and Linux will typically preempt a thread each 10 ms, when the
thread’s quantum expires, but do not cause interference inbetween.

Based on our observations, we have chosen to quantify the cost of each type
of system call by counting the number of sequential invocations that can be
completed within a certain time interval. We use an upper bound to limit the
length of this interval, so we can make sure it is sufficiently small to avoid
scheduler preemption, and sufficiently large to capture a large amount of
possible interference. By dividing the measured time interval with the number
of completed invocations, we obtain a mean value for how much time is

6.2 / SYSTEM CALL BENCHMARKS 99

consumed by a single invocation. This process is then repeated many times, to
get a sample sufficiently large to have statistical significance.

Under the assumption that interference occurs frequently within small time
windows, only some of the means in the sample should be affected to a large
degree. Such subsamples can then be removed from the sample, through the
use of outlier removal techniques. This will reduce the variance between the
remaining data in the sample, and the grand mean of the sample will yield a
more precise estimation of the actual cost of a single system call. Note especially
that it is easier to perform outlier removal on a sample of means, than if the
sample consisted of one observation per system call invocation; in the latter
case, a larger number of subsamples could be affected by interference to the
extent that these are no longer outliers.

Formally, we assume an infinite population with mean p and variance 2, and
draw (through measurements) m samples from the population, each consisting
of n observations. We let the random variable X;; represent observation i within
sample j, where 1 < i < nand 1 < j < m, and we assume that all X;; are
independent and identically distributed. We let x;; be the assumed value of
Xij, which represents the time that is used by a single system call invocation.
However, we do not observe the x;; directly, but instead count the number of
occurrences within a certain time interval. We let

nj
Iy = ZXU'
i=1

represent the total length of the time interval in the jth sample, t; be the
assumed value of T;, and n; be the counted number of events within the interval
tj. For each j, t; will be approximately the length of some predetermined upper
bound, but we allow ¢; to exceed this bound slightly to make it possible to
obtain one observation in a sample even when the upper bound is zero.

Furthermore, we let the random variable Y; represent the sampling mean of
sample j, and let y; be the assumed value of Y;. That is,

where the sample size n; varies between samples, because it corresponds to
the counted number of system calls within the time interval ¢;, and this interval
is likely to vary between samples.

From our initial assumption about the population, we know that E [X ; j] =pu
and Var [X,- j] = 02. According to the Central Limit Theorem, the sampling

100 CHAPTER 6 / EVALUATION

distribution of the sampling means Y; is approximately normal, given tllat n; is
el

sufficiently large, and it can be shown that E [YJ] = p and Var [Y]] =

Let

Jj=1
be the grand mean of the samples Y; of means and y its assumed value
Then m
1
E|Y|=— E|Y;| =
[] m Z []] I
Jj=1
and
m 2 2 m
1 o ro 1
Var[Y]=—221Var[Yj]—m2 ;: T where r:Zn_
j=1 j=1 "J j=1 "

We define the typical estimator Sf, of Var [Y]] for each j as

m

m—1j:1

However, 52 is not an estimator of the population variance o?; rather, it can be

shown that E [52] = & . In other words, an estimator for o can be obtained

by multiplying 52 w1th m/r. We define

2 2
2 mSY B mSY
2 = =
r m_ 1
Jj=1 n;

as an unbiased estimator for the population’s true 2, let s2 be its assumed value,
and finally use s = Vs2 to estimate the standard deviation o of the population.
Although s will be a biased estimator, the bias should be unsignificant for large
m.

In the results shown in the remainder of this section, the estimated cost of
a system call corresponds to 7y, and the standard deviation correponds to s.
We calculate y and s after outliers have been removed using a 95% prediction
interval test.

In summary, we are able to limit the effects that background interference has
on our benchmark results. We do this by measuring the time it takes to execute

6.2 / SYSTEM CALL BENCHMARKS 101

a sequence of system calls instead of a single system call. Instead of using a
fixed number of system calls, we count the number of system calls that can be
completed within a bounded time interval, and use this to estimate the time (y)
it takes to complete a single system call. Finally, we are also able to calculate
the standard deviation (s) of the individual system calls, although we only
measure the sequences of system calls. The reason for doing this calculation, is
that the standard deviation s is a measure for the variability of how much time
is used to execute each system call, instead of only a measure for the precision
of y.

6.2.1 Benchmark results

We have run benchmarks for system calls corresponding to some of the Windows
Kernel and Windows Executive services that we implement in Casuar. All
measurements are done in context of a single thread, which executes a sequence
of system calls. We repeat each experiment 500 times (this value corresponds
to the sample size m). We also vary the upper bound for the time intervals
depending on the type of operation to be performed, and on which platform
the benchmark is executed. The bound is chosen based on experimentation,
to attempt to reduce the standard deviation for all experiments. The value we
use typically lies between 200 ps and 800 ps. For a few operations, we have
used a bound of 0 ps, to let samples consist of only a single observation.

The results from benchmarking the Windows Kernel synchronization services
are shown in Figure 6.1. From this, we see that Wine performs significantly
worse than Windows for all of the synchronization-based operations that we
have measured. We attribute most of these performance penalties to commu-
nication overhead between the benchmark application and the Wine server
process, which is used to centralize synchronization operations. This exempli-
fies our previous claim that it is difficult to implement efficient sharing between
processes, when binary-compatibility is achieved through a software layer that
runs in the same address space as the application (as is the case for both Wine
and conventional library 0Ss).

We also see that in many of the cases, Casuar exhibits comparable performance
to native Windows. Casuar is also in most cases much faster than Wine. For
example, we have measured the overhead of the NtWaitForSingleObject()
system call; by waiting for a non-signaled dispatcher object with a timeout value
of zero, we effectively make the function examine the state of the dispatcher
object, without causing the calling thread to enter a wait state. From our
measurements, we see that our implementation of this function is nearly as
fast as the implementation in Windows.

102 CHAPTER 6 / EVALUATION

Delay 8?2 - Windows
I 2352 W Casuar

execution
s Wine

Wait for | 0.17
single object, | 0.18
0-timeout I = 23.23
Queue user [K 0.61
APCto | 0.21
current thread = 20.18
Queue and
deliver user APC .
to current thread I R R R R S 67.31
Queue user
APCto .
remote thread I R == 331
Queue and
deliver user APC .
to remote thread I D I S 44.62
Suspend .
running B 53.67
thread 40.6
Suspend
waiting .
thread I I R 41.65
Resume
thread 38.19
0 10 20 30 40 50 60 70

Microseconds

Figure 6.1: Benchmark of synchronization and signaling services (corresponding to
system calls provided by the Windows Kernel). The bar chart compares the
performance of each operation on Windows, Casuar, and Wine (smaller is
better). Error bars indicate standard deviation.

In a few cases, we even see that Casuar is faster than Windows; specifically,
we are able to queue APCs to a thread, and both queue and deliver APCs from
a thread to itself, with less overhead than Windows. We believe the reason
for this is that all APC delivery in Windows is dependent on CPU software
interrupts generated by the NT hardware abstraction layer (HAL), even when
a thread queues an APC to itself. As may be recalled from Chapter 3, the
interrupt request level (IRQL) mechanism in Windows is implemented with
hardware-support from the processor’s local APIC. Lowering the IRQL below
APC LEVEL will unmask pending APC interrupts, which originate either from
a local software interrupt that was generated on the same CPU core, or from
an inter-processor interrupt (IPI) sent from another core. Windows does not
differentiate between the case where a thread sends an APC to itself, or it
sends an APC to another thread on the same CPU core; both cases result in a
local software interrupt. In contrast, Casuar implements the IRQL abstraction
entirely in software. As a consequence, we are able to deliver APCs from a
thread to itself with only the overhead of a regular function call for invoking
the APC interrupt handler, which is cheaper than generating an actual software
interrupt.

However, Casuar’s implementation of APC suffers from a significant overhead
when delivering an APC to another thread. By measuring the time used to sus-

6.2 / SYSTEM CALL BENCHMARKS 103

pend a running thread different from the current thread, we implicitly quantify
the cost of delivering a kernel APC to a remote thread. Recall from Chapter 3 that
such APCs are delivered in Casuar by emulating software interrupts, using the
Vortex system calls vx_thread_getcontext() and vx_thread_setcontext().
These functions will, by necessity, synchronize with the interrupted thread. To
prevent race conditions, the thread context operations have to be performed by
Vortex on the same CPU core that hosts the remote thread. Hence, calling these
functions involve sending 1PIs to another core and waiting for a context record
to be retrieved from or updated on that core. As a result, we see that our imple-
mentation of APC delivery to other threads performs even worse than Wine’s
implementation, which already is many times slower than the implementation
in Windows. A possible way to improve our implementation could be to extend
the software interface of Vortex to natively provide mechanisms for sending
interrupts to threads, for example by adding support for a virtualized APIC in
its virtualization layer.

By measuring the time required to suspend a waiting thread and to resume a
thread, we similarly quantify the cost of signaling a thread for wake-up. We see
that the cost of suspending a thread approximately equals the cost of resuming
a thread, both on Windows and Casuar. Casuar is a bit slower than Windows,
but is still many times faster than Wine.

Figure 6.2 shows the results from benchmarking executive services imple-
mented in the Object Manager, 1/0 Manager, and Memory Manager. As with
the results shown in Figure 6.1, the performance of Casuar’s implementations is
comparable to that of Windows in several cases. Especially the implementation
of Casuar’s Object Manager seems to be only slightly slower than in Windows.
However, we have only performed measurements in non-contended scenarios,
so we do not currently have enough evidence to fully support this claim.

We have tried to characterize the overhead of the 1/0 Manager in Casuar by
performing 1/0 operations that are essentially no-ops. Specifically, we have
measured the time it takes to complete asynchronous read and write operations
of zero bytes, and the time it takes to flush all pending writes to the file
system when there are no outstanding write operations. For the read and write
operations, Casuar performs on par with Windows, whereas Wine is many
times slower. It should, however, be noted that the current implementation of
Wine does not implement asynchronous 1/0 for regular files, so some of the
additional overhead could be attributed to this fact. Somewhat surprisingly, the
flush operation executes many times faster on Casuar than on either Windows
or Wine.

Finally, we see that the executive operations in Casuar that perform the worst,
when compared to Windows, are those related to memory allocation. We

104 CHAPTER 6 / EVALUATION

Open
object
directory

- Windows

I - 21.22 WEm Casuar

Close B Wine

object
directory

I 18.29

0.53

Create 0.76

event

e 20.52

0.21

Destroy 04

event

I 18.55
34.8
59.27

I e 24.45

Create
file

1.45

Read file, 175

0 bytes

1.34

Write file, i

0 bytes I - 24.66

=413
I = 24.66

Flush file
0 pending
writes
Allocate 1 0.81
9.24
11.01

1213

0 10 20 30 40 50 60
Microseconds

Figure 6.2: Benchmark of executive services in the Object Manager, /0 Manager,
and Memory Manager. The bar chart compares the performance of each
operation on Windows, Casuar, and Wine (smaller is better). Error bars
indicate standard deviation.

attribute most of this overhead to Vortex, as Vortex performs almost all memory
management tasks on behalf of Casuar. We assume there exist opportunities for
improvement, but do not delve into the specifics of the Vortex implementation
here.

6.3 1/0 benchmarks

In addition to benchmarking individual system calls, we also attempt to char-
acterize the overhead of the 1/0 Manager in Casuar in more detail, since 1I/0
operations are typical performance sensitive tasks. We do this by measuring
the latency of read and write operations of different sizes against regular files.
However, because Vortex, Windows, and Linux implement different file systems
with different semantics, we are not concerned here with the time it takes
to complete a file operation to disk. Instead, we measure the time it takes to
access the disk block cache (in the case of Windows) or the buffer storage of

6.4 / SUMMARY 105

an in-memory file system (in the case of Vortex and Linux).

When measuring latency of 1/0 operations, we do not use the same approach as
described in Section 6.2. Because an I/0 operation is typically a more expensive
operation than a system call, and thus takes much longer time to complete, it
is sufficient to let each sample contain a single observation. As with the system
call benchmarks, we use a sample size of 500.

We measure four different types of accesses. Figure 6.3 and Figure 6.4 show
the results for asynchronous, unbuffered read and write operations. With these
configurations, Windows and Casuar are both able to return from the 1/0 oper-
ations before the operations have completed, returning STATUS_PENDING to the
caller. In contrast, it should be noted that Wine does not support asychronous
I/0 towards regular files, and instead completes all such 1/0 operations syn-
crhonously. This means that Wine’s seemingly severe performance overhead
shown in Figure 6.3 and Figure 6.4 is not directly comparable to the perfor-
mance shown for Windows and Casuar in the same figures.

For the asynchronous file operations, we see that the latency in Windows is
getting larger as the size of the 1/0 operations increases, whereas Casuar’s
latency does not grow significantly. There are small differences when the size
is below 8 MB. However, Casuar is clearly able to respond faster than Windows
for sizes above 8 MB.

Figure 6.5 and Figure 6.6 show the results for synchronous file operations, for
buffered read operations and unbuffered write operations, respectively. The
first figure shows that read operations from block caches in Windows and
Linux are faster than read from the in-memory file system in Vortex. In the
second benchmark, Windows has to write to NTFS buffers before being able to
complete the file operation. The latency of Windows is therefore not comparable
to Wine or Casuar in this case. However, we see for both benchmarks that Wine
is able to complete the 1/0 operation towards a Linux in-memory tmpfs file
system before the other two systems, and that Casuar performs the worst in
these cases. In sum, these findings indicate opportunities for improvements in
Vortex’ 1/0 stack.

6.4 Summary

In this chapter, we have evaulated the performance of Casuar experimentally
by running a series of micro-benchmarks for system calls and 1/0 operations
on Casuar, Windows, and Wine. By comparing the results from the system
call benchmarks, we see that most implemented system services in Casuar

106 CHAPTER 6 / EVALUATION

—— Windows
— Casuar +140
— Wine
435
430
%)
25 2
) o
()
[0}
%)
120 =
=
415
410
/ 1"
L lo
4K 16K 64K 256K ™ 4M 16 64M

Block size

Figure 6.3: Measured time to complete an asynchronous, unbuffered read operation
to a file. The plot compares the performance of the file operation on
Windows, Casuar, and Wine for different block sizes. Error bars indicate
standard deviation.

—— Windows
— Casuar +140
— Wine
435
430
(%)
25 2
) o
()
[0}
Ral
420 =
=
415
410
45
4K 16K 64K 256K ™ 4M 16M 64M

Block size

Figure 6.4: Measured time to complete an asynchronous, unbuffered write operation
to a file. The plot compares the performance of the file operation on
Windows, Casuar, and Wine for different block sizes. Error bars indicate
standard deviation.

6.4 / SUMMARY 107

—— Windows
— Casuar
— Wine

,
w
o
Milliseconds

L L I] " I " I
4K 16K 64K 256K ™ 4M 16M 64M
Block size

Figure 6.5: Measured time to complete a synchronous, buffered read operation to a
file. The plot compares the performance of the file operation on Windows,
Casuar, and Wine for different block sizes. Error bars indicate standard

deviation.
- 900
—— Windows
— Casuar - 800
— Wine
4700
4600
%]
500 £
] o
(v}
(]
v
+4400 =
=
4300
4200
/ 1100
. n . ’v/| do
4K 16K 64K 256K ™ 4M 16M 64M

Block size

Figure 6.6: Measured time to complete a synchronous, unbuffered write operation
to a file. The plot compares the performance of the file operation on
Windows, Casuar, and Wine for different block sizes. Error bars indicate
standard deviation.

108 CHAPTER 6 / EVALUATION

perform only slightly worse than Windows, and significantly better than Wine.
In a few special cases, our implementation is even faster than that of native
Windows. However, we have also identified mechanisms that currently exhibit
higher latency than both Windows and Wine, and which could most likely be
improved. For example, our implementation of emulated software interrupts
is currently very slow, and could be improved through modifications of the
software interface provided by Vortex.

We demonstrate low overhead in our implementation of the 1/0 Manager. The
low latency becomes especially significant as the transfer size of file operations
increases. However, we see that the 1/0 stack in Vortex has room for improve-
ments, as both the block cache of Windows and the Linux tmpfs file system
used by Wine outperform the in-memory file system used by Vortex.

Concluding Remarks

In this chapter, we summarize our results and discuss how they relate to our
thesis statement. We conclude by outlining possibilities for future work.

7.1 Results

The protected library 0S (PLOS) architecture was designed to be a light-weight
alternative to virtual machines (VMs), where applications are virtualized rather
than entire 0Ss. Unike traditional library 0ss, a PLOS facilitates hosting of
multi-process applications, and can target compatibility with applications built
for another OS at the application binary interface (ABI) level without requiring
modification of existing binaries.

The PLOS has already been demonstrated as a promising architecture, through
the implementation of a Linux-compatible PLOS capable of running complex,
unmodified Linux applications like Apache, MySQL, and Hadoop on top of
Vortex. The focus of this thesis has been to further strenghten the viability of the
PLOS as a suitable general-purpose architecture for application virtualization.
Specifically, our thesis is:

The protected library 0s architecture permits unmodified multi-process
Windows applications and user-mode DLLs to run under a Windows

library o0s.

109

110 CHAPTER 7 / CONCLUDING REMARKS

We have implemented a PLOS—Casuar—that targets compatibility with Win-
dows applications through the implementation of a commonly used subset of
Windows system calls. To accomplish this, we have studied the architecture
of the Windows NT kernel, and its Windows Kernel and Windows Executive
components, which implement most of the system services that are part of the
NT system call ABI. We have identified and evaluated the most essential thread
synchronization and signaling mechanisms that are part of the Windows Ker-
nel, and implemented equivalent constructs in Casuar. Building on these, we
have also analyzed the most important subsystems of the Windows Executive,
and implemented selected subsets of their functionality in Casuar to provide
higher-level system services to applications.

Retaining the semantics of the NT ABI in Casuar requires thorough under-
standing of the underlying mechanisms of Windows NT. To implement the
mechanisms corresponding to functionality of the Windows Kernel and Win-
dows Executive in Casuar, we have to a large degree depended on existing
documentation or descriptions from available literature. However, most of the
NT ABI is undocumented and used indirectly by applications through DLLs,
which are loaded as part of each application’s process address space. In addi-
tion, the ABI also comprises a number of data structures, containing fields that
are initialized by the NT kernel and accessed by user-mode DLL code.

Through the implementation and use of a memory monitor mechanism and
a mechanism for producing stack traces, we have been able to identify all
ABI dependencies, and obtain additional information about the purpose and
functionality of various undocumented system calls that are used by system
DLLs. This has allowed us to implement all the necessary functionality in Casuar
for loading and running applications that are built on top of the Native API of
Windows. We have demonstrated that we are able to run the same applications
and DLLs on both Windows and Casuar, without introducing PLOS-specific
modifications to either.

Although we have not demonstrated any specific experiments where multi-
process applications are hosted on the same instance of Casuar, this is nonethe-
less directly facilitated by the PLOS architecture, as exemplified by the imple-
mentation of the Linux-compatible PLOS [7], [5], [8], [9]. The only restriction
on sharing between processes in our Casuar implementation, is that we do not
support attaching threads that are part of a process to the address space of
another process, as detailed in Chapter 3.

Evaluating these findings, we see that our thesis holds; we are able to run
unmodified Windows applications and user-mode DLLs on top of Casuar, and
the PLOS architecture facilitates hosting of multi-process applications. We
have also evaluated the performance of Casuar experimentally, by comparing

7.2 / FUTURE WORK 1M1

the system to Windows and Wine through a series of micro-benchmarks. Our
results indicate that the PLOS architecture does not by itself impose significant
overhead on the execution of virtualized applications. Instead, we see that
Casuar attains near-native performance for a number of system services, and
performs many operations several times faster than Wine. From the results,
we have also suggested possible areas for improvement, both in Casuar and
Vortex, concerning operations that are slower than on Windows or Wine.

7.2 Future Work

Although we regard the ability to run Native applications on Casuar as a
significant accomplishment, the system would benefit more from the ability to
run regular Windows subsystem applications as well. As previously outlined in
Chapter 4 and Chapter 5, there are a few additional mechanisms that will have
to be supported in Casuar for this to be possible. We reiterate some of them
here, and also suggest other improvements or additions that could be made to
the Casuar implementation:

ALPC ALPC is the next mechanism that must be supported to be able to load
Windows subsystem applications. During the loading phase, all Windows
subsystem applications will use ALPC to communicate with the Windows
Subsystem process (csrss.exe). Achieving support for ALPC in Casuar
will likely involve modifications to Vortex, as the mechanism is based on
shared memory, which Vortex does not currently support.

Sessions Sessions are used to provide different sandboxes in Windows with
different logical views of parts of the NT namespace. They are, for ex-
ample, used to isolate system services from normal applications started
by the end-user.

Windows Registry Many Windows applications use the Windows Registry
frequently, for example to access configuration data. It is also likely that
a registry must be implemented to be able to complete the loading of
regular Windows subsystem applications.

Graphics support Although we do not primarily target desktop applications,
there are many Windows applications that use window-based graphics to
provide configuration interfaces. We believe it would be possible to follow
the same approach as Drawbridge [34], and provide graphical interfaces
to applications through RDP connections. This would require a large
amount of work. Specifically, we would have to implement functionality
corresponding to the win32k. sys kernel-mode driver in Windows, which

12 CHAPTER 7 / CONCLUDING REMARKS

implements a separate system call table for graphics-related services. In
addtion, we would have to implement support for the RDP protocol.

Network support For Casuar to be able to support a wide range of applications
in the future, we would have to implement support for the socket-based
network APIs in Windows. This would require implementing correspond-
ing functionality to a number of kernel-mode drivers.

List of References

[1]

[2]

[3]

[4]

[5]

(6]

[7]

Peter Mell and Timothy Grance. The NIST Definition of Cloud
Computing. Technical Report 800-145, National Institute of Standards
and Technology (NIST), Gaithersburg, MD, September 2011.

Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-Clouds:
Managing Performance Interference Effects for QoS-Aware Clouds. In
Proceedings of the 5th European Conference on Computer Systems,
EuroSys 10, pages 237—250, New York, NY, USA, 2010. ACM.

Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman, Zhihua
Wen, and Calton Pu. An Analysis of Performance Interference Effects
in Virtual Environments. In Proceedings of the 2007 IEEE International
Symposium on Performance Analysis of Systems and Software,
ISPASS-07, pages 200—209, Washington, DC, USA, 2007. IEEE
Computer Society.

Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi. EC2 Performance
Analysis for Resource Provisioning of Service-oriented Applications. In
Proceedings of the 2009 International Conference on Service-oriented
Computing, ICSOC/ServiceWave’o9, pages 197—207, Berlin,
Heidelberg, 2009. Springer-Verlag.

Audun Nordal, Age Kvalnes, and Dag Johansen. Paravirtualizing TCP.
In 6th international workshop on Virtualization Technologies in
Distributed Computing, pages 3—10, 2012.

Xiaoqiao Meng, Canturk Isci, Jeffrey Kephart, Li Zhang, Eric Bouillet,
and Dimitrios Pendarakis. Efficient Resource Provisioning in Compute
Clouds via VM Multiplexing. In Proceedings of the yth International
Conference on Autonomic Computing, ICAC ’10, pages 11—20, New York,
NY, USA, 2010. ACM.

Audun Nordal, Age Kvalnes, and Dag Johansen. Balava: Federating
Private and Public Clouds. In 2011 IEEE World Congress on Services,

113

14

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

LIST OF REFERENCES

pages 569-577, 2011.

Audun Nordal, Age Kvalnes, Robert Pettersen, and Dag Johansen.
Streaming as a Hypervisor Service. In 7th international workshop on
Virtualization Technologies in Distributed Computing, 2013.

Age Kvalnes, Dag Johansen, Robbert van Renesse, Fred B. Schneider,
and Steffen Viken Valvag. Omni-Kernel: An Operating System
Architecture for Pervasive Monitoring and Scheduling. Technical
Report IFI-UiT 2013-75, Department of Computer Science, University
of Tromsg, 2013.

Farzad Sabahi. Secure Virtualization for Cloud Environment Using
Hypervisor-based Technology. International Journal of Machine
Learning and Computing, 2(1):39—45, February 2012.

Robert P. Goldberg. Architectural Principles for Virtual Computer
Systems. PhD thesis, Harvard University, Cambridge, MA, 1972.

Stuart E. Madnick and John J. Donovan. Application and Analysis of
the Virtual Machine Approach to Information System Security and
Isolation. In Proceedings of the Workshop on Virtual Computer Systems,
pages 210-224, New York, NY, USA, 1973. ACM.

L. H Seawright and R. A. MacKinnon. VM/370: A Study of Multiplicity
and Usefulness. IBM Syst. J., 18(1):4-17, mar 1979.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the Art of Virtualization. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, SOSP ’03, pages 164-177,
New York, NY, USA, 2003. ACM.

Lamia Youseff, Rich Wolski, Brent Gorda, and Chandra Krintz.
Paravirtualization for HPC Systems. In Proceedings of the 2006
International Conference on Frontiers of High Performance Computing
and Networking, ISPA’06, pages 474—486, Berlin, Heidelberg, 2006.
Springer-Verlag.

Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Denali:
Lightweight Virtual Machines for Distributed and Networked
Applications. In Proceedings of the 2002 USENIX Annual Technical
Conference, 2002.

LIST OF REFERENCES 115

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

The Xen Project. http://www.xenproject.org/. [Online].

Microsoft. Hyper-V.
https://technet.microsoft.com/en-US/windowsserver/dd448604.aspx.
[Online].

KVM. http://www.linux-kvm.org/. [Online].

Keith Adams and Ole Agesen. A Comparison of Software and
Hardware Techniques for x86 Virtualization. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XII, pages 2-13, New York,
NY, USA, 2006. ACM.

VMware. Performance Evaluation of Intel EPT Hardware Assist.
Technical report, Mar 2009. Available at
http://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf.

Hwanju Kim, Hyeontaek Lim, Jinkyu Jeong, Heeseung Jo, and
Joonwon Lee. Task-aware Virtual Machine Scheduling for I/0
Performance. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’09,
pages 101-110, New York, NY, USA, 2009. ACM.

Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and
Larry Peterson. Container-based Operating System Virtualization: A
Scalable, High-performance Alternative to Hypervisors. In Proceedings
of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, EuroSys ’07, pages 275-287, New York, NY, USA, 2007.
ACM.

Miguel Gomes Xavier, Marcelo Veiga Neves, Fabio Diniz Rossi,

Tiago C. Ferreto, Timoteo Lange, and Cesar A. F. De Rose.
Performance Evaluation of Container-based Virtualization for High
Performance Computing Environments. In Proceedings of the 2013 21st
Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, PDP 13, pages 233—240, Washington, DC,
USA, 2013. IEEE Computer Society.

Docker. https://www.docker.com/. [Online].

rkt - App Container runtime. https://github.com/coreos/rkt.
[Online].

http://www.xenproject.org/
https://technet.microsoft.com/en-US/windowsserver/dd448604.aspx
http://www.linux-kvm.org/
http://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
https://www.docker.com/
https://github.com/coreos/rkt

116

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

LIST OF REFERENCES

Kubernetes by Google. http://kubernetes.io/. [Online].

Poul henning Kamp and Robert N. M. Watson. Jails: Confining the
omnipotent root. In In Proc. 2nd Intl. SANE Conference, 2000.

Barbara Higgins, Laura Hartman, Owen Allen, and Shanthi
Srinivasan. Solaris Zones - Oracle Enterprise Manager Ops Center User’s
Guide 11g Release 1 Update 3. Oracle, Nov 2011.

OpenVZ. http://openvz.org/. [Online].
LXC. https://linuxcontainers.org/. [Online].

Glenn Ammons, Jonathan Appavoo, Maria Butrico, Dilma Da Silva,
David Grove, Kiyokuni Kawachiya, Orran Krieger, Bryan Rosenburg,
Eric Van Hensbergen, and Robert W. Wisniewski. Libra: A Library
Operating System for a JVM in a Virtualized Execution Environment.
In Proceedings of the 3rd International Conference on Virtual Execution
Environments, VEE ’07, pages 44-54, New York, NY, USA, 2007. ACM.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schiipbach, and
Akhilesh Singhania. The Multikernel: A new OS architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09, pages 29—44,
New York, NY, USA, 2009. ACM.

Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,
and Galen C. Hunt. Rethinking the Library OS from the Top Down. In
Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
XVI, pages 291-304, New York, NY, USA, 2011. ACM.

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. Unikernels: Library Operating Systems for the
Cloud. In Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS 13, pages 461—472, New York, NY, USA, 2013. ACM.

David R. Cheriton and Kenneth J. Duda. A Caching Model of
Operating System Kernel Functionality. In Proceedings of the 1st
USENIX Conference on Operating Systems Design and Implementation,
OSDI ’94, Berkeley, CA, USA, 1994. USENIX Association.

http://kubernetes.io/
http://openvz.org/
https://linuxcontainers.org/

LIST OF REFERENCES 117

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Dawson R. Engler, M. Frans Kaashoek, and James O’Toole, Jr.
Exokernel: An Operating System Architecture for Application-Level
Resource Management. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, SOSP 95, pages 251-266, New York,
NY, USA, 1995. ACM.

M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor
M. Brice no, Russell Hunt, David Mazieres, Thomas Pinckney, Robert
Grimm, John Jannotti, and Kenneth Mackenzie. Application
Performance and Flexibility on Exokernel Systems. In Proceedings of
the Sixteenth ACM Symposium on Operating Systems Principles, SOSP
‘97, pages 52—-65, New York, NY, USA, 1997. ACM.

Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. The Design
and Implementation of an Operating System to Support Distributed
Multimedia Applications. IEEE J.Sel. A. Commun., 14(7):1280-1297,
September 2006.

Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco:
Running Commodity Operating Systems on Scalable Multiprocessors.
In Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles, SOSP '97, pages 143-156, New York, NY, USA, 1997. ACM.

Erlend Helland Graff. Initial Design and Implementation of a
Windows VM OS for Vortex. Bachelor’s Thesis in Computer Science,
University of Tromsg — The Arctic University of Norway, January 2014.

Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder,
Allen Tucker, A. Joe Turner, and Paul R. Young. Computing as a
Discipline. Communications of the ACM, 32(1):9-23, January 1989.

Microsoft. A history of Windows.
http://windows.microsoft.com/en-us/windows/history, 2013. [Online;
accessed 20-May-2015].

Mark Russinovich. Windows NT and VMS: The Rest of the Story. http:
//windowsitpro.com/windows-client/windows-nt-and-vms-rest-story,
1998. [Online; accessed 20-May-2015].

Microsoft. Xbox One operating system versions and system updates.
http://support.xbox.com/en-US/xbox-one/system/system-update-
operating-system. [Online; accessed 20-May-2015].

http://windows.microsoft.com/en-us/windows/history
http://windowsitpro.com/windows-client/windows-nt-and-vms-rest-story
http://windowsitpro.com/windows-client/windows-nt-and-vms-rest-story
http://support.xbox.com/en-US/xbox-one/system/system-update-operating-system
http://support.xbox.com/en-US/xbox-one/system/system-update-operating-system

118

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

LIST OF REFERENCES

Mark Russinovich, David A. Solomon, and Alex Ionescu. Windows
Internals, Part 1. Microsoft Press, Redmond, WA, USA, 6th edition,
2012.

Mark Russinovich. Inside the Native API.
http://netcode.cz/img/83/nativeapi.html, 2004. [Online; accessed
20-May-2015].

Wine project. http://www.winehq.org/. [Online].

Wine architecture - Wine Developer’s Guide.
https://www.winehq.org/site/docs/winedev-guide/x2591. [Online].

ReactOS. https://www.reactos.org/. [Online].

ReactOS. ReactOS/History. https://www.reactos.org/wiki/index.php?
title=React0S/History&oldid=34714, 2014. [Online; accessed
11-June-2015].

Microsoft Corporation. Scheduling, Thread Context, and IRQL. White
paper. Available at
http://www.microsoft.com/whdc/driver/kernel/IRQL.mspx, September
2014.

Microsoft. Using Passive-Level Interrupt Service Routines (Windows
Drivers). https://msdn.microsoft.com/en-
us/library/windows/hardware/hh698277 (v=vs.85) .aspx. [Online;
accessed 25-February-2015].

Microsoft. Supporting Passive-Level Interrupts (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/hh451035(v=vs.85) .aspx. [Online;
accessed 25-February-2015].

Microsoft. Introduction to DPC Objects (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff548024(v=vs.85) .aspx. [Online;
accessed 26-February-2015].

Enrico Martignetti. Windows Vista APC Internals. Available at
http://www.opening-windows.com/download/apcinternals/2009-

05/windows_vista_apc_internals.pdf, May 2009.

Microsoft Corporation. Locks, Deadlocks, and Synchronization. White

http://netcode.cz/img/83/nativeapi.html
http://www.winehq.org/
https://www.winehq.org/site/docs/winedev-guide/x2591
https://www.reactos.org/
https://www.reactos.org/wiki/index.php?title=ReactOS/History&oldid=34714
https://www.reactos.org/wiki/index.php?title=ReactOS/History&oldid=34714
http://www.microsoft.com/whdc/driver/kernel/IRQL.mspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh698277(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh698277(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh451035(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh451035(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff548024(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff548024(v=vs.85).aspx
http://www.opening-windows.com/download/apcinternals/2009-05/windows_vista_apc_internals.pdf
http://www.opening-windows.com/download/apcinternals/2009-05/windows_vista_apc_internals.pdf

LIST OF REFERENCES 19

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

paper. Available at
http://www.microsoft.com/whdc/driver/kernel/LOCKS.mspx, Aprﬂ
2006.

Microsoft. QueueUserAPC function (Windows).
https://msdn.microsoft.com/en-
us/library/windows/desktop/ms684954(v=vs.85).aspx. [Online;
accessed 26-February-2015].

Intel Corporation. Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A: System Programming Guide, Part 1,
September 2014.

Don Anderson and Tom Shanley. Pentium Processor System
Architecture. Mindshare PC System Architecture. Addison-Welsey, 1995.

Intel Corporation. Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2A: Instruction Set Reference, A-M, January
2015.

Intel Corporation. Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C: System Programming Guide, Part 3,
January 2015.

Intel Corporation. Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B: Instruction Set Reference, N-Z, January
2015.

Microsoft. Asynchronous Procedure Calls (Windows).
https://msdn.microsoft.com/en-
us/library/windows/desktop/ms681951(v=vs.85) .aspx. [Online;
accessed 08-March-2015].

Microsoft. Types of APCs (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff564853(v=vs.85).aspx. [Online;
accessed 11-October-2014].

Microsoft. Waits and APCs (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff565592(v=vs.85).aspx. [Online;
accessed 11-October-2014].

Microsoft. Alertable I/O (Windows). https://msdn.microsoft.com/en-

http://www.microsoft.com/whdc/driver/kernel/LOCKS.mspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684954(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684954(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff564853(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff564853(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff565592(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff565592(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363772(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363772(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363772(v=vs.85).aspx

120

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

LIST OF REFERENCES

us/library/windows/desktop/aa363772(v=vs.85) .aspx. [Online;
accessed 09-March-2015].

Albert Almeida. Inside NT’s Asynchronous Procedure Call.
http://www.drdobbs.com/inside-nts-asynchronous-procedure-
call/184416590, November 2002. [Online; accessed 11-October-2014].

CodeMachine Inc. Catalog of key Windows kernel data structures.
http://www.codemachine.com/article_kernelstruct.html, April 2012
[Online; accessed 28-September-2014].

Microsoft. KeStackAttachProcess routine (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff549659 (v=vs.85) .aspx. [Online;
accessed 14-March-2015].

Microsoft. Structured Exception Handling (C/C++).
https://msdn.microsoft.com/en-us/library/swezty51.aspx. [Online;
accessed 15-March-2015].

Microsoft. Queued Spin Locks (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff559970 (v=vs.85) .aspx. [Online;
accessed 16-March-2015].

Microsoft. Introduction to Kernel Dispatcher Objects (Windows
Drivers). https://msdn.microsoft.com/en-
us/library/windows/hardware/ff548068(v=vs.85).aspx. [Online;
accessed og9-March-2015].

Microsoft. Defining and Using an Event Object (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff543006 (v=vs.85) .aspx. [Online;
accessed 13-May-2015].

Microsoft. WaitForMultipleObjects function (Windows).
https://msdn.microsoft.com/en-
us/library/windows/desktop/ms687025(v=vs.85) .aspx. [Online;
accessed 16-May-2015].

David B. Probert. Windows Kernel Internals - Thread Scheduling.
http://www.1i.u-tokyo.ac.jp/ss/lecture/new-documents/Lectures/03-
ThreadScheduling/ThreadScheduling.ppt, Sep 2004. [Online].

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363772(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363772(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363772(v=vs.85).aspx
http://www.drdobbs.com/inside-nts-asynchronous-procedure-call/184416590
http://www.drdobbs.com/inside-nts-asynchronous-procedure-call/184416590
http://www.codemachine.com/article_kernelstruct.html
https://msdn.microsoft.com/en-us/library/windows/hardware/ff549659(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff549659(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/swezty51.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff559970(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff559970(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff548068(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff548068(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff543006(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff543006(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms687025(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms687025(v=vs.85).aspx
http://www.i.u-tokyo.ac.jp/ss/lecture/new-documents/Lectures/03-ThreadScheduling/ThreadScheduling.ppt
http://www.i.u-tokyo.ac.jp/ss/lecture/new-documents/Lectures/03-ThreadScheduling/ThreadScheduling.ppt

LIST OF REFERENCES 121

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

David B. Probert. Windows Kernel Architecture Internals.
http://research.microsoft.com/en-
us/um/redmond/events/wincore2010/Dave_Probert_1.pdf, Apr 2010.
[Online].

Dave Probert. Architecture of the Windows Kernel. http:
//www.cs.fsu.edu/~zwang/files/cop4610/Spring2015/windows.pdf,
April 2008. [Online; accessed 22-May-2015].

Microsoft. I/0 Stack Locations (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff551821(v=vs.85).aspx. [Online;
accessed 24-March-2015].

Microsoft. I0_STACK_LOCATION (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff550659 (v=vs.85) .aspx. [Online;
accessed 24-March-2015].

Microsoft. IRP Major Function Codes (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff550710(v=vs.85).aspx. [Online;
accessed 22-May-2015].

Microsoft. IRP. MJ CREATE (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff550729(v=vs.85).aspx. [Online;
accessed 22-May-2015].

Microsoft. Canceling IRPs (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff540748(v=vs.85).aspx. [Online;
accessed 4-April-2015].

Mark Russinovich, David A. Solomon, and Alex Ionescu. Windows
Internals, Part 2. Microsoft Press, Redmond, WA, USA, 6th edition,
2012.

Microsoft. ZwAllocateVirtualMemory routine (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff566416(v=vs.85).aspx. [Online;
accessed 19-February-2015].

Microsoft. Section Objects and Views.

http://research.microsoft.com/en-us/um/redmond/events/wincore2010/Dave_Probert_1.pdf
http://research.microsoft.com/en-us/um/redmond/events/wincore2010/Dave_Probert_1.pdf
http://www.cs.fsu.edu/~zwang/files/cop4610/Spring2015/windows.pdf
http://www.cs.fsu.edu/~zwang/files/cop4610/Spring2015/windows.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551821(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff551821(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff550659(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff550659(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff550710(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff550710(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff550729(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff550729(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff540748(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff540748(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff566416(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff566416(v=vs.85).aspx

122

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

LIST OF REFERENCES

https://msdn.microsoft.com/en-
us/library/windows/hardware/ff563684(v=vs.85) .aspx. [Online;
accessed 18-April-2015].

Microsoft. File-Backed and Page-File-Backed Sections (Windows
Drivers). https://msdn.microsoft.com/en-
us/library/windows/hardware/ff545754(v=vs.85) .aspx. [Online;
accessed 18-April-2015].

Microsoft. ZwMapViewOfSection routine (Windows Drivers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff566481(v=vs.85).aspx. [Online;
accessed 18-April-2015].

Microsoft. Kernel Transaction Manager.
https://msdn.microsoft.com/en-
us/library/windows/desktop/bb986748 (v=vs.85).aspx. [Online;
accessed 24-May-2015].

Maxim S. Shatskih. How WinSock works.
https://www.osronline.com/showthread.cfm?1ink=134510, Jul 2008.
[Online; accessed 19-April-2015].

Microsoft. Structured Exception Handling (Windows).
https://msdn.microsoft.com/en-
us/library/windows/desktop/ms680657 (v=vs.85) .aspx. [Online;
accessed 28-May-2015].

Exceptional Behavior - x64 Structured Exception Handling. The NT
Insider, 13(3), may 2006. Available at
https://www.osronline.com/article.cfm?article=469.

Microsoft. Overview of x64 Calling Conventions.
https://msdn.microsoft.com/en-us/library/ms235286.aspx. [Online;
accessed 28-May-2015].

Eugene Ching. A walk in x64 land.
http://www.codejury.com/a-walk-in-x64-land. [Online; accessed
15-March-2015].

Microsoft. struct UNWIND_INFO.
https://msdn.microsoft.com/en-us/library/ddssxxy8.aspx. [Online;
accessed 15-March-2015].

https://msdn.microsoft.com/en-us/library/windows/hardware/ff563684(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff563684(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545754(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545754(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff566481(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff566481(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb986748(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb986748(v=vs.85).aspx
https://www.osronline.com/showthread.cfm?link=134510
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680657(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680657(v=vs.85).aspx
https://www.osronline.com/article.cfm?article=469
https://msdn.microsoft.com/en-us/library/ms235286.aspx
http://www.codejury.com/a-walk-in-x64-land
https://msdn.microsoft.com/en-us/library/ddssxxy8.aspx

LIST OF REFERENCES 123

[96]

[971]

[98]

[99]

[100]

Ken Johnson. Introduction to x64 debugging, part 3.
http://www.nynaeve, net/?p=11. [Online; accessed 15-March-2015].

Microsoft. struct UNWIND CODE.
https://msdn.microsoft.com/en-us/library/ck9asaa9.aspx. [Online;
accessed 15-March-2015].

Microsoft. Examining the Stack Trace (Windows Debuggers).
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff543082(v=vs.85).aspx. [Online;
accessed 28-May-2015].

Microsoft. Use the Microsoft Symbol Server to obtain debug symbol
files. https://support.microsoft.com/en-us/kb/311503. [Online;
accessed 29-May-2015].

Microsoft. Symbol paths (Windows). https://msdn.microsoft.com/en-
us/library/windows/desktop/ms680689 (v=vs.85).aspx. [Online;
accessed 28-May-2015].

http://www.nynaeve,net/?p=11
https://msdn.microsoft.com/en-us/library/ck9asaa9.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff543082(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff543082(v=vs.85).aspx
https://support.microsoft.com/en-us/kb/311503
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680689(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680689(v=vs.85).aspx

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Code Listings
	List of Code Definitions
	List of Abbreviations
	1 Introduction
	1.1 Thesis Statement
	1.2 Targeted Applications
	1.3 Methodology
	1.4 Summary of Contributions
	1.5 Outline

	2 Architecture
	2.1 Windows NT
	2.2 The Vortex Omni-Kernel
	2.2.1 Protected Library Operating Systems

	2.3 Casuar
	2.4 Related Work

	3 Low-level Synchronization and Signaling Mechanisms
	3.1 Interrupt Request Levels (IRQLs) and Software Interrupts
	3.1.1 Emulating Software Interrupts in Casuar

	3.2 Asynchronous Procedure Calls (APCs)
	3.2.1 Implementing APCs in Casuar

	3.3 Blocking Synchronization
	3.3.1 Dispatcher Objects
	3.3.2 Implementation of Blocking in Windows
	3.3.3 Implementing Blocking Waits in Casuar

	3.4 Suspend and Resume
	3.5 Summary

	4 Executive Services
	4.1 Object Manager
	4.1.1 Implementation of an Object Manager in Casuar

	4.2 I/O Manager
	4.2.1 I/O in Casuar

	4.3 Memory Manager
	4.4 Other Executive Components
	4.5 Summary

	5 Achieving ABI Compatibility
	5.1 Basic Approach
	5.2 Monitoring Memory Accesses to User-Mode Data Structures
	5.3 Using Stack Traces to Provide Context
	5.4 Results

	6 Evaluation
	6.1 Experimental Setup
	6.2 System Call Benchmarks
	6.2.1 Benchmark results

	6.3 I/O benchmarks
	6.4 Summary

	7 Concluding Remarks
	7.1 Results
	7.2 Future Work

	List of References

