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Abstract

Collaborative filtering recommender systems have become essential to many
Internet services, providing, for instance, book recommendations at Amazon’s
online e-commerce service, music recommendation in Spotify and movie rec-
ommendation in Netflix.

Matrix factorization and Restricted Boltzmann Machines (RBMs) are two pop-
ular methods for implementing recommender systems, both providing superior
accuracy over common neighborhood models. Both methods also shift much of
the computation from the prediction phase to the model training phase, which
enables fast predictions once the model has been trained.

This thesis suggests a novel approach for performing matrix factorization using
the Alternating-Least-Squares with Weighted-A-Regularization (ALS-WR) algo-
rithm on CUDA (ALS-CUDA). The algorithm is implemented and evaluated in
the context of recommender systems by comparing it to other commonly used
approaches. These include an RBM and a stochastic gradient descent (SGD)
approach.

Our evaluation shows that significant speedups can be achieved by using CUDA
and GPUs for training recommender systems. The ALS-CUDA algorithm imple-
mented in this thesis provided speedup factors of up to 175.4 over the sequen-
tial CPU ALS implementation and scales linearly with the number of cuDpA
threads assigned to it until the GPUs shared memory has been saturated. Com-
paring the performance of the ALS-CUDA algorithm to CUDA implementations
of the SGD and the RBM algorithms shows that the ALS-CUDA algorithm out-
performed the RBM. For a sparse dataset, results indicate that the ALS-CUDA
algorithm performs slightly worse than the SGD implementation, while for a
dense dataset, ALS-CUDA outperforms the SGD. However, generally the advan-
tage of the ALS-CUDA algorithm does not necessarily lie in its speed, but also in
the fact that it requires fewer parameters than the SGD. It therefore represents
a viable option when some speed can be traded off for algorithmic stability, or
when the dataset is dense.
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Introduction

Many Internet companies, like Ebay,! Amazon,2 and Netflix,3 are increasingly
dependent on their ability to distill the interests and preferences of their cus-
tomers from large datasets of historic user behavior [31]. This has led to in-
creasing demands for information filtering (IF) systems that can process large
amounts of data to produce personalized recommendations with both high
precision and high recall.

IF systems have been used since the early 1990s, when manual filtering systems
such as Tapestry [18] were introduced. Shortly thereafter, another class of IF
systems, Collaborative Filtering (CF) recommender systems, emerged. Unlike
information retrieval systems, which use a static content base to serve a dynamic
information need (e.g., a search engine using a static index to serve dynamic
queries), recommender systems assume a dynamic content base and a relatively
static information need (e.g., music taste). Early automated CF systems include
the GroupLense [45] and Ringo [51] projects.

While personalized and content-based systems rely on matching individual user
profiles to items, CF also uses community data to provide recommendations.
In recent years, recommender systems have moved into the center of our living
rooms as part of services for streaming of movies and music, such as Netflix

1. ebay.com
2. amazon.com
3. netflix.com
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Recommender

Ratings System Recommendations

O O
Agit » > T
J‘u\' }ﬁﬂ J ﬁ]

Model

Figure 1.1: Concept of a recommender system.

and Spotify.4

In a recommender system users rate certain items (e.g., movies for Netflix). The
recommender system uses these ratings in combination with various machine
learning techniques to compute a model that, provided a users rating history,
computes recommendations. One technique, for example, maps each user and
item to the same feature space and provides recommendations based on the
distance between users and items in said feature space. Users receive these
recommendations and continue to provide additional ratings, thereby causing
the model to be updated and improving the recommendations further. As the
number of users, items, and rated items increases over the lifetime of the system,
the recommendation stage will have to be able to adapt to updates in order to
provide the user with up-to-date recommendations. Figure 1.1 illustrates the
general concept of a recommender system. The input to a recommender system
is a stream of large amounts of data (ratings), which needs to be filtered to
provide users with the relevant data, the best recommendations. The filtering
rules are dependent on the ratings and will continuously change due to new
input. The users providing the ratings can be, but are not necessarily the same
users that receive the recommendations, as CF systems utilizes community
data to provide recommendations.

1.1 Parallelization Using GPUs

Matrix factorization is a machine learning technique commonly used in CF
recommender systems, which often uses a stochastic gradient descent (SGD)
approach. The popularity of matrix factorization recommender systems has
risen in recent years—especially due to their performance in the Netflix Prize,
in which they were an essential part of the winning entry [32]. Matrix fac-
torization recommender systems are now part of, among others, the Netflix
recommendation system [33]. Generally, they are considered one of the best

4. spotify.com
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standalone approaches in CF, but are in practice often combined with other
models to achieve even better performance [37].

Another method that also emerged as part of the Netflix Prize competition is the
Restricted Boltzmann Machine (RBM) approach to CF [46]. RBMs have been
shown to provide rating accuracies similar to matrix factorization recommender
systems, but have been observed to find different patterns in the data [46]. This
observation led to highly accurate hybrid systems, where both RBMs and matrix
factorization techniques are combined [32].

To cope with the rapid increase in the number of available ratings and the
constant stream of new, additional, ratings, it is essential to consider parallel
approaches to the problem of recommender systems. Many techniques have
been proposed to solve this problem, as the accuracy of recommender systems
highly relies on the number of ratings used [27]. Faster, parallel execution will
allow the combination of different algorithms, whose results can be combined
to achieve better results. Various approaches have been suggested to paral-
lelize the recommendation task, both on distributed and on shared memory
systems [44, 55, 60, 65].

Besides accuracy and computational performance, the number of training pa-
rameters is another important factor that needs to be considered when choosing
a machine learning technique for recommender systems, because many of these
techniques require parameters to be specified prior to execution. For simpler
configuration of the recommender system, it is desirable that the algorithms
have as few training parameters as possible.

This thesis focuses on the middle part of Figure 1.1—the recommender system—
and investigates the effects of parallelizing it using NVIDIA’s Compute Unified
Device Architecture (CUDA) framework for graphics processing units (GPUS).

The computational capability of GPUs has increased significantly in recent
years compared to Central Processing Units (CPUS), as illustrated in Figure 1.2,
making them an important part of high-performance computing. This has led
to the integration of GPUs in a large fraction of the top supercomputers [38].
Even though potentially huge speedups can be achieved, not all problems are
suited to parallelization on GPUs.

The task of training recommender system models is a computational expen-
sive task and parallelizing them efficiently on GPUSs requires an understand-
ing of their properties, such as memory layout and accesses, and how these
translate to the GPU architecture. GPUs have previously found application in
CF recommender systems, like those approximating the Singular Value De-
composition (SVD) [14], the RBM [6], and various user-based and clustering
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models [29, 57, 62].

1.2 Problem Definition

In this thesis we consider the problem of parallelizing recommender systems
on GPUs using the Alternating-Least-Squares with Weighted-A-Regularization
(ALS-WR) algorithm, which has previously been shown to have great efficiency
potential on CPUs [37]. The Alternating Least Squares (ALS) algorithm has
also the advantage over the SGD and RBM algorithms that it requires fewer
parameters to be specified. Although the partial computations of the ALS are
inherently parallel, the operations involved are generally quite complex and
because of this they are more time consuming to run on the lower clock fre-
quency of the GPU. The ALS-WR algorithm has, to the author’s knowledge, not
previously been fully implemented using GPUs.

Our thesis is that:

The ALS-WR algorithm can be parallelized efficiently on GPUs by careful orches-
tration of the GPU single instruction, multiple threads (SIMT) architecture and
memory layout.

To support our thesis, we study two related algorithms: SGD and RBM. The
SGD algorithm is similarly to the ALS used in matrix factorization approaches
to recommender systems, while RBMs are used in model-based systems. We
evaluate our method by comparing it to the SGD and RBM approaches, which
have been effectively implemented using CUDA.

1.3 Contributions
The contributions of this work are:
* A description of the main approaches to CF.
* The design and implementation of a ALS-WR matrix factorization algo-
rithm on CUDA. Our main focus is on recommender systems, but matrix
factorization is also applicable to other contexts, such as computer vision

and document clustering.

* An experimental evaluation of the ALS-WR on CUDA by comparing it to
CUDA implementations of the SGD and RBM.
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1.4 Methodology

The discipline of computer science can, according to the final report of the ACM
Task Force on the Core of Computer Science [7], be divided into three major
fundamental paradigms: theory, abstraction, and design.

Theory is based on the idea that a problem description is developed and a
hypothesis of the relationships within the problem is made. The defined rela-
tionships are then proven or disproved, and the results are analyzed.

Abstraction is the second paradigm and describes an experimental scientific
method. Similar to the theory paradigm, abstraction starts off by developing a
hypothesis. However, the hypothesis is, unlike in the theory scenario, not proven
mathematically, but instead challenged by the use of experiments.

Design has its roots in engineering, where system requirements are defined,
and systems are designed, implemented, and tested. The various stages in all
three paradigms are usually performed multiple times before completion in an
iterative fashion.

As part of this thesis, certain aspects of all three paradigms have been encoun-
tered. In the initial stages of the work much focus was put on understanding
the existing foundation and theory of the field. Existing related work was im-
plemented to analyze their advantages and drawbacks and based on this foun-
dation, we designed and implemented our own system. The thesis was then
experimentally analyzed based on the design and our algorithm was compared
to other existing systems.

1.5 Context

This thesis is written as part of the EONS (Efficient Execution of Large Work-
loads on Elastic Heterogeneous Resources) project at the University of Tromsg—
The Arctic University of Norway. The centers investigates parallel programming
and parallel processing in the context of future distributed large-scale het-
erogeneous systems and aims to develop a programming model for big-data
workloads, using a combination of compiler, operating system, and high-level
scheduler.
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1.6 Structure of the Thesis
The thesis is structured in 7 chapters including the introduction.

Chapter 2 provides an introduction to recommender systems and is divided
into four different parts. The first part provides the reader with a general
overview over the three main approaches to CF recommender systems.
The second part focuses on the matrix factorization approach to recom-
mender systems. It introduces the theory of SGD and ALS and includes
descriptions of related parallelization attempts. In the third part the RBM
and its model-based approach to recommender systems is discussed. To
conclude the chapter a taxonomy is presented that provides the reader
with an overview of how the methods presented relate to each other.

Chapter 3 reviews some of the most important principles of parallel program-
ming using CUDA, such as the general programming model and the mem-
ory model. It also presents the motivation of using GPUs and CUDA over
CPUSs.

Chapter 4 presents the design and implementation of two of the implemented
recommender system algorithms. It illustrates the SGD and RBM algo-
rithms and elaborates on how they were parallelized using CUDA.

Chapter 5 describes the design and implementation of the CUDA ALS-WR im-
plementation. It presents the standard ALS-WR algorithm and details
how it was modified to run efficiently on GPUSs.

Chapter 6 presents the results of the various algorithms and compares their
performance to each other. It also covers how the various algorithm pa-
rameters are affected by changes in e.g. dataset sparsity.

Chapter 7 summarizes the results, and proposes future work to extend this
thesis.






Recommender Systems

The field of recommender systems can be divided into three major categories:
1. Non-personalized recommender systems that mainly rely on aggregated
opinions, such as average scores, or on product association (e.g. Amazon’s

“people who bought this, often bought this together with it”).

2. Content-based recommender systems that use a user’s profile information
and the user’s history to provide recommendations.

3. CF systems that additionally include the opinions of other users to provide
good recommendations [41].

Hybrid approaches exist that combine multiple of these techniques [5].
This chapter gives a brief introduction to the different categories of CF rec-

ommender systems and covers the basic principles of matrix factorization and
model-based recommender systems.

2.1 Rating Matrix

The rating matrix is a common data abstraction used for CF recommender
systems, where the element in the matrix at position (i, j) will be k if a user i
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Rating matrix Recommendation matrix
V1 U3 U3 U4 V1 U3 U3 U4
u; 1 57?2 2 1 51 2 u;
Uy 2?1 ? 5 Prediction 4 1 4 5 us
us 4 2 5 7? 4 2 5 5 |[u3
Uy 2?21 2 2 21 2 | us

Figure 2.1: Illustration of the rating matrix and the prediction step.

has given item j a rating k. Figure 2.1 displays a rating matrix on the left hand
side, where the missing entries are represented by a question mark. It can be
seen that the first user, u;, has given the second item, v, a rating of 5. Using
the rating matrix as an input, the recommender systems task is to compute
accurate predictions for the missing ratings, which can then be used to provide
users with recommendations from the recommendation matrix.

2.2 Collaborative Filtering

The systems considered in this thesis belong to the class of CF recommender
systems, which find their application in most of the successful recommendation
systems found on the Web [48]. They are based on the assumption that people
who agreed on item ratings in the past, are likely to agree on item ratings that
have only been rated by one of the users.

CF recommender systems can be subdivided into three types, (i) neighborhood-
based, (ii) model-based, and (iii) dimensionality reduction approaches [35].

2.2.1 Neighborhood-Based

Neighborhood based CF systems provide recommendations by grouping users
based on some similarity metric using their historic taste profiles. There are two
main classes of neighborhood based systems, (i) the user-based neighborhood
approach, which predicts an items rating for a given user based on how similar
users have rated the item and the (ii) item-based neighborhood approach,
which assess how similar a new item is to the previously rated items.

These approaches are based on two different assumptions. The user-based
approach can be used if the user preferences (their tastes) are either relatively
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stable for individual users or if a users taste moves in sync with the taste of the
other users. In contrast to the user-based approach, the item-based approach
assumes that the relationships between the individual items are stable but not
necessarily the users taste.

There are drawbacks with both of these approaches. To provide the user with a
single recommendation, user-based systems need to compute the correlation be-
tween a given user and all m other users. This can be computational expensive
for large m. For n items in the recommender system, the recommendation pro-
cess has therefore a complexity of O(nm) for a given user. Since a recommender
system, usually, has to provide ratings to all its users, its complexity grows to
O(m?n). Further, because users generally only rate very few of the available
items, it can be difficult to define good neighborhoods. Some of these problems
are solved by item-based methods, however, item-based methods are being con-
sidered to lack in serendipity [12]. This means that users are rarely pleasantly
surprised by receiving useful, but unexpected recommendations.

2.2.2 Model-Based

Model-based systems are another commonly used approach to CF recommender
systems. In these systems, recommendation models are trained using the avail-
able user, item, and rating information. The models can then be used to predict
a rating for a given user-item pair. These models can be generalized as

f(pb‘]j) - R,‘j, i= 1,2,...m, ] = 1,2,...,71 . (2.1)

where p; is a model parameter for a user i and g; is a model parameter for
item j [52]. Here, m and n denote the number of users and items, respectively.
As can be seen from this equation, a set with model parameters p; and g;
needs to be found that provided the mapping function f return the correct
ratings R. Various model based approaches have been used as part of recom-
mender systems, including clustering [30], Bayesian hierarchical models [63],
and RBMs [46].

2.2.3 Dimensionality Reduction

Another approach to CF is the dimensionality reduction or matrix factoriza-
tion approach, which in recent years has grown in popularity [33, 36]. This
method is motivated by the observation that the rating matrix is an overfit
representation of the users tastes, as ratings can depend on external factors,
such as a users mood. The dimensionality reduction approach achieves a more
compact representation of the users tastes, by modeling the recommendation
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problem as a matrix completion problem given a set of observed elements in a
matrix.

There are, however, infinitely many possible matrices that agree with the ob-
served elements. This means that assumptions have to be made regarding the
observed and unobserved elements in the matrix. In recommender systems
the most common assumption is that of low-rank,! which assumes that the
complete rating matrix is of low-rank.

2.3 Matrix Factorization Recommender Systems

The matrix completion problem involves fitting a low-rank model that preserves
the key aspects of the original incomplete rating matrix [37], which can be
used to estimate the missing entries. This implies that all users and items are
mapped to the same low dimensional latent? feature space with dimension k,
where each user and item is represented by k features and similarities can be
found using inner products. This means that each user has a feature vector
representing the users taste and each item has a feature vector representing
what taste the item belongs to. Figure 2.2 illustrates the concept for a two
dimensional feature space. Items that are close to a user in the feature space
indicate that the users taste corresponds well to the items taste category. This
means that the user is likely to enjoy the movie, which therefore should receive a
high recommendation score. For example, the girl with the round face in Figure
2.2 is likely to enjoy the movie Titanic, which should therefore receive a high
recommendation, whereas she is not likely to enjoy the movie Goodfellas. The
mapping for recommender systems is commonly based on SVD-dimensionality
reduction.

2.3.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is a technique in linear algebra that has
found great applicability in the field of IF, and has also been used to solve
information retrieval problems as part of the Latent Semantic Analysis tech-
nique [11]. The SVD was initially discovered by the mathematicians Eugenio
Beltrami, who in 1873 published the first article on the topic, and Camille Jor-
dan, who independently arrived at the same but a more complete solution in

1. Rank is a term used in linear algebra describing the number of linearly independent rows
and columns in a matrix. In our case, a rating matrix of low-rank has many user and item
feature vectors that are linear combinations of each other.

2. Features do not have explicit semantic interpretations.
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Figure 2.2: A 2-dimensional feature space for matrix factorization recommender sys-
tems.

the following year [53]. The method is a common technique used as part of di-
mensionality reduction, as it transforms correlated variables into uncorrelated
variables that better represent the variance in the data. SVD ensures ordering
of the dimensions by the amount of variance in the data that the dimensions
represent. It is therefore often used to take an overfit representation of high
dimensional data and express it in a lower dimensional space by retaining as
much as possible of the variance in the data.

Given an m X n matrix R that we want to decompose, we have to find the m x d
and n X d orthogonal matrices U and V respectively, such that

R=USVT, (2.2)

where S is a diagonal matrix of size d X d, containing eigenvalues of RR” .

The drawback with this simple expression, however, is that solving it for U and
V has a computational complexity of O(m?n + n®) [20]. Another drawback of
this method, in regards to recommender systems, is that a complete matrix is
required. Hence, all elements (ratings) in the matrix need to be known, which
would make the task of recommendation irrelevant.

To solve the issue of not being able to compute the SVD due to a non-complete
rating matrix, multiple methods have been suggested in the literature. One
alternative is based on imputation, where the missing ratings are replaced
with meaningful substitute values, like the users average rating as done by
Sarwar et al. [49]. Another alternative, which in recent years has become the
most used approach, is to compute an approximation of the SVD by making
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use only of the known ratings, such that

R~UVT, (2.3)

where the resulting matrices U and V will not be orthogonal due to it being
an approximation and not a true SVD [13].

The matrices U and V are commonly found by utilizing the sum of squared
error cost function

1
LU,V) = ZIR - utv|? (2.4)

and minimizing it with respect to U and V. The cost function is sometimes
referred to as loss function.

As recommender system problems commonly involve very sparse datasets this
is often represented as a sum over all the observed rating values [35]. This
leads to

‘ 1 m n
LU,V)= min o Z Z Li(Rij — UTV;)?, (2.5)
’ i=1 j=1

where

L. = 1, if u; has rated v;
Yo 0, else.

The matrix completion problem can therefore be stated as

U*,V*) = min (U, V) , 6
( ) rll}’lg( ) (2.6)

where U*TV* correspond to the complete versions of the rating matrix. A miss-
ing rating for user i for item j can be predicted as Ul.*TV].* [55].

2.3.2 Approaches to Solving the Matrix Completion
Problem

Several approaches have been suggested to solve the low-rank matrix factoriza-
tion problem, with two of the most popular ones being gradient-descent and
alternating-minimization based [37]. Even though these approaches do not
produce a true SVD of rating matrix R, they have performed well in predicting
unseen ratings [32].
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Figure 2.3: Example of how an ideal gradient descent for a convex cost function be-
haves.

Gradient-descent

Gradient descent methods are iterative optimization algorithms that have been
frequently used in the field of machine learning to minimize differentiable
cost functions of various algorithms. The standard gradient descent approach
computes the gradient of the cost function for the current weight parameters
(U and V in the matrix factorization recommender system scenario) and does
a step towards the cost functions direction of largest decrease in the parameter
space. Figure 2.3 illustrates the gradient descent principle for an ideal convex
cost function with one weight-variable. However, cost functions are often more
complex in practice and contain not only a single global minimum, but also
local minima that the gradient descent can converge to. To decrease the risk of
getting stuck in local minima, different techniques like utilizing a momentum
factor or an on-line gradient descent variant have been suggested [56].

Two additional problems that are often encountered with gradient descent
optimization (and most learning algorithms), are overtraining and overfitting.
Overtraining occurs when the weights (free parameters) adapt to peculiari-
ties in a specific training set due to excessive training on the training dataset,
whereas overfitting occurs when the number of free parameters is too large,
such that the model adapts to details of the trainings set. Both these issues
result in a model that is non-generalizable, causing it to perform poorly for
unknown (new) feature vectors (data points).

The cost function for the SVD approximation requires a sum over the whole
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dataset. This means that it is possible to perform gradient descent updates by
considering the whole dataset and by performing an update step only after
performing a complete sweep through the dataset.

The on-line variant of the gradient descent, the stochastic gradient descent
(SGD), offers an alternative approach to finding an optimal solution by only con-
sidering a single training point when performing weight updates. This means
that the gradients and updates are only computed from the cost function at
a specific point instead of based on the global cost function. The intuition be-
hind this approach is that multiple small steps (one for each presented training
point) are performed. Each of these steps decreases the global cost based on
only knowing one training point. This contradicts with the intuition of the
standard gradient descent where large steps are taken towards decreasing the
global cost function. Even though the convergence does not follow a straight
line, it will converge to a local or global minimum if a sensible learning rate
is chosen. Tips on choosing a sensible learning rate can be found in Bottou,
2012 [3].

The sGD generally requires more steps to achieve convergence compared to
the standard gradient decent, but since each step calculation only requires
one training point, it often leads to a quicker convergence compared to the
standard gradient descent algorithm. Additionally, as the update calculation
is slightly varying from one training point to another, the SGD is less prone to
getting stuck in local minima and will often be able to escape into more optimal
regions. The general update equation for gradient descent based algorithms
for one weight variable is

oL
Wil = Wp — pi— , (2.7)

ow

where p is the learning rate and g—‘ﬁ the partial derivative of the cost function
L(-) with respect to the weight w.

For the recommender system scenario, the cost function L depends on two
weight parameters U and V. Using Equation 2.5 and adding a L2 regularization
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term? to it to avoid overfitting yields the cost function
— in o (R _ 17Ty \2 1 2 2 2
L(U,V) = rll]n‘rfl 5 ,él jzgl Lij(Rij — U Vi)~ + 2 Uz + 5 IVIlz, (2.8)

where A, and A, are regularization parameters and ||-|| 12, the Frobenius norm [35].

Differentiating the cost function in Equation 2.8 with respect to U and V to
find an expression for the SGD update equations leads to

<
ou; D iUV = Ry)V; + U, (2:9)
j=1
and
0F <
3V, Z L;(UIV; = Rip)U; + A3V . (2.10)
i=1

For a single training point z(i, j), the update for the model (U, V) can therefore
be computed by using equation 2.9 and 2.10 and the update can be applied
using equation 2.7 such that

U _ o _ 0L

; ; yan (2.11)

and P
(t+1) _ /(&) _
v = vy

b a—‘/J . (2.12)

where y1 is the learning rate and the exponents (¢) and (t+1) indicate the t™ and
(t + 1) iteration, respectively. It can be seen that each training point requires
the update of both the whole vector U; and the whole vector V;. Algorithm 2.1
illustrates the SGD algorithm using pseudo code.

Choosing the correct learning rate y is a crucial part, as it has a big impact on
the convergence speed of the gradient descent based methods. The learning

3. The regularizer trades off variance vs. bias. Bias is the error due to classifiers having
a preconceived notion of what data should look like, whereas a high variance refers to
the fact that a model is not restricted enough. Not restricting the model enough leads to
overfitting to training data. L2 regularization restricts the parameters to a sphere in the
parameter space around the origin, introducing some bias to reduce variance [22].
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Algorithm 2.1 — The SGD algorithm.

while not converged do
for each training point z(i,j) do
update U; using Equation 2.11
update V; using Equation 2.12
end
end

rate is commonly chosen to decrease with the iteration count to guarantee con-
vergence. However, it can be difficult to chose this function, as a slow decrease
of the learning rate will result in a slow decrease in the variance of the weight
estimate, whereas a quick decrease will require more updates and iterations
to converge to a local or global minima [3].

Alternating Least Squares

The cost function for the matrix completion problem in Equation 2.5 is not
convex. However, the Alternating Least Squares (ALS) approach is utilizing the
fact that fixing one of the parameter matrices U or V will result in a convex, least-
squares problem. By alternating which parameter to fix and optimizing the
sub-problems of the matrix completion problem, the overall matrix completion
problem can be solved iteratively. Using equation 2.5 as a starting point and
using weighted-A-regularization, as was done by Zhou et al. [64], yields

- 1 m n
L(U,V) = 1’[511‘1/1 E Z Z Iij(Rij - UiTV}‘)Z
| i=1 j=1 (2.13)

2 2
+/1(§ g, [uil|® + § no, | [vj]1%) .
i 7

The global minima of the least-squares sub-problems can then be derived ana-
lytically by solving

L
aa_u,- =0 (2.14)
and
oL 0 (2.15)
— = 1
a0, 0 5

which yields the update equations
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u; = (ViV}l + Any, E) 'V, RT (i, ) (2.16)
(2.17)

and
v; = (Uy, U,f + Any, E) UL RT (i, 1) . (2.18)

Given the weight parameter matrix U of user feature vectors, Uy; denotes the
sub-matrix of U that contains only the user feature vectors of users that have
rated item j. Similarly, given the weight parameter matrix V of item taste
vectors, Vr, denotes the sub-matrix of V' that contains only the items that the
user i has rated. R is the rating matrix, E is the dim X dim identity matrix and
n,, and ny; are the number of items a user i has rated and the number of users
who have rated a given item j, respectively. dim is the dimensionality of the
latent feature space that the users and items are mapped to. A full ALS update
for both U and V will in this thesis be referred to as an epoch.

Comparing the Gradient-Descent and Alternating Minimization
Approach

Both SGD and ALS are approaches that can be applied to the matrix completion
problem, however, there are certain differences between the two methods. The
SGD algorithm is computationally less expensive than the ALS, as it does not
require solving the least-square problems [61]. Makari 2014 [37], however,
states that, for small numbers of dim (< 50), the computational overhead is
“acceptable”. On the other hand, the ALS algorithm is superior to the SGD with
regards to the number of parameters that need to be set, as it does not require
the specification of a learning rate.

2.3.3 Parallelizing Matrix Factorization Recommender
Systems

Multiple solutions have been proposed to parallelize and/or distribute the
computation of the SGD algorithm. Unfortunately, the generic SGD algorithm
is not embarrassingly parallel, which makes it difficult to scale to very large
amounts of data, as locks or other forms of synchronization primitives have
to be used. The reason for the difficulties is that the weights learned in each
iteration will depend on the weights learned in the previous iteration. Also,
the updates computed for one element in the matrix will lead to an update in
the whole weight vector for that column and row. For example, consider a case
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Figure 2.4: Parallelization problems with the SGD.

with four users us, ... U4, and four items v, ... U4, as illustrated in Figure 2.4.
The Figure shows two update calculations, one for the rating R3 5 and one for
the rating R; 3. The circle in each of the two illustrations represents the rating
that is used for the update. It can be seen that for the first update the third item
feature vector (v3) and the third user feature vector (u3) are being updated.
However, in the second update the third item feature vector (v3) is updated as
well. This means that these two updates can not be performed in parallel in a
consistent mannetr.

Attempts to parallelize SGD have relied on either the inherent structure in the
matrix factorization problem or certain properties of the matrix factorization.
For instance, the stratified stochastic gradient descent (SSGD) [15] algorithm
uses the structure of the matrix factorization problem to solve the paralleliza-
tion issue and provides the foundation of many of the parallelized approaches.
The SSGD is based on the idea that the total cost function can be seen as a
sum over losses of smaller areas (stratum losses), which together make up the
whole matrix. The losses are found using loss (cost) functions L;(w), ..., L,(w)
such that

L(w) = wiLi(w) + woLo(w) + ... + w,Lp(w) . (2.19)

It has been proven that, by carefully minimizing these stratum losses, the algo-
rithm will converge [15]. Based on this idea, the distributed stochastic gradient
descent (DSGD) was developed. It utilizes the following theorem, which was
proposed and proved by Gemulla et al. [15]:

Theorem 1. Two training points z, = (u1,v1) € Z and zo = (u2,v5) € Z are
interchangeable with respect to any loss function L having summation form if they

share neither row nor column, i.e., u; # us and v1 # vs.

DSGD subdivides the rating matrix into d X d blocks of size m/d X n/d, where
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m and n refers to the row and columns of the matrix. It then utilizes the fact
that blocks, which are diagonal from each other (share no row or column)
are interchangeable according to Theorem 1 and schedules the blocks that are
independent from each other together.

The sGD algorithm Jellyfish [43] is also based on the idea of the SSGD and
partitions the rating matrix into independent blocks. However, unlike in the
SSGD the data is reshuffled each epoch to randomize the order and achieve
faster convergence. To avoid the full cost of reshuffling the algorithm relies on
overlapping the reshuffling and SGD computation. This means that multiple
copies of data need to be kept and thus the algorithm has high memory re-
quirements. Additionally reshuffling is expensive. Another algorithm that has
been proposed by Recht et al. in 2011 [44] is Hogwild, a lock-free algorithm,
which is described in more detail in Section 4.1.

Parallelization approaches using CUDA exist for the SGD algorithm. Kato and
Hosino [28] take the SGD and parallelize it using CUDA. However, unlike in the
sequential version, their algorithm is not updating U and V for each training
sample, but instead processes U and V separately. It first updates U for all train-
ing samples and then V for all training samples. This procedure is illustrated
using pseudo code in Algorithm 2.2. They claim that a speedup factor of 20
over a sequential CPU implementation was achieved for a randomly generated
dataset.

Algorithm 2.2 — The modified SGD algorithm suggested by Kato and
Hosino [28].

while not converged do
for each training point z(i,j) do
update U; using Equation 2.11 in parallel
end
synchronize
for each training point z(i,j) do
update V; using Equation 2.12 in parallel
end
synchronize
end

The parallelization of ALS is commonly based on the idea that each of the
least square problems can be computed independently, as updates to U do
not affect the updates to V [64]. Thus, multiple threads can calculate updates
for U (or V) in parallel. Using this observation, it is possible to extend ALS to
a distributed shared-nothing algorithm [55], where every node is responsible
for updating parts of the feature matrices in parallel. Other algorithms based
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Figure 2.5: A Restricted Boltzmann Machine with J hidden and I visible units.

on the concept of alternating minimizations have been suggested based on a
coordinate descent approach to the matrix factorization problem [60].

2.4 Model-Based Recommender Systems

The most popular model-based approach to recommender systems is the Re-
stricted Boltzmann Machine (RBM), which is considered to be on par with
the matrix factorization recommender systems and thereby also one of the
best standalone approaches to the recommender system task [46]. Besides
recommender systems, RBMs have been used to model complicated, high-
dimensional data and have found application in modeling of speech and human

motion [39, 54].

2.4.1 Restricted Boltzmann Machines

RBMs can be viewed as a two layer stochastic, energy based neural network*
where each of the neurons (or units) in the hidden and visible layer are con-
nected with no intra-layer connections. In graph theory this is referred to as
a complete bipartite graph [34], and is illustrated in Figure 2.5. The units in
the hidden layer correspond to stochastic binary feature detectors, whereas the
visible units represent the observed binary states (input data).

The RBM is based on an energy model, where the joint configuration of the
visible and hidden units has an energy of

4. A neural network is a common machine learning technique that is inspired by the brain
and the brains structural constituents, the neurons [23].
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E(v,h) = — Z a;v; — Z bih; — Z'Uihjwij , (2.20)

ievisible j€hidden i,j

where v; corresponds to the binary state of the visible unit i, and h; corre-
sponds to the binary state of the hidden unit j. w;; corresponds to the weight
connecting the two units and a; and b; correspond to the visible and hidden
biases, respectively [25].

The probability for every pair of v; and h; is given by the following energy
function, which is based on the Boltzmann distribution in statistical mechan-
ics [50],

p(v,h) = %e_E(v’h) (2.21)

with the partition function Z, sum of all Boltzmann factors,

Z = Z e E@.h) (2.22)
u,h

turning the Boltzmann factor into a probability.

This means, that the probability for the visible vector v is given as

1

p(v) = 7 Z e E@.h) (2.23)
h

From this it is possible to see that the probability for a given visible vector can
be increased by either lowering the energy for the given vector, or increasing
the energy for the other visible vectors. Training of RBMs is usually performed
using stochastic steepest ascent,> where the derivative of the log probability
with respect to the weight is given as

5. Stochastic steepest ascent is similar to statistic gradient descent. However, in the stochas-
tic steepest ascent, a cost function is maximized by following the positive gradient to a
local/global maxima.
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0logp(v)

Owij = (vihj}data = (Vihj)model » (2.24)
leading to the update rule
Awij = p (<Uihj>data - (Uihj>mode1) , (2.25)

where p is the learning rate, (-)4ata corresponds to the expectation under the
distribution of the data, and (:)mogel to the expectation under the distribution
of the model.

An unbiased sample for the first term (v;h;)dara can be easily computed as there
are no intra-layer connections, which means that for a given training vector v
it is possible to compute the binary state of the hidden units as

p(h] = 1|’U) = O'(bj + Z ’inij) , (2.26)
i
where o(+) is the logistic sigmoid function
_ 1
o(x) = Tt (2.27)

However, finding an unbiased sample for the second term, (v;h;)model, is more
difficult, as it would require running a Monte Carlo Markov Chain to con-
vergence, with Gibbs sampling being the transition operator of the chain as
illustrated in Figure 2.6 [24].The conditional probabilities of the hidden units
are given as

pvi=1h)=0la; + Z hjw;; | . (2.28)
J

As can be seen in the figure, finding a perfect sample for (-)mode1 Would be
very time consuming and inefficient. Geoffrey Hinton presented a simplified
learning rule, where the distribution of the first reconstruction (- )recon is used
instead of the model statistics [24]. Even though this simplified learning rule
only roughly approximates the actual gradient of the log probability, it has
been shown to perform well in many application scenarios [46]. Increasing
the number of Gibbs sampling steps before collecting the statistics yields more
exact updates, and is therefore usually increased as the training progresses,
leading to
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Figure 2.6: The figure illustrates the Gibbs sampling for RBMs until convergence. To
compute (v;h;j)model the statistics of the model need to be found. This can
be done by performing Gibbs sampling until convergence (v;h;)*. This is,
however, a very time consuming procedure.

Awij = pi ((Vihj)data — (Vihj)T) (2.29)

where T is the number of steps the Gibbs sampling was performed.

Restricted Boltzmann Machines for CF

RBMs were first introduced to the task of CF under the Netflix Prize [46], and
ended up being a crucial part of the winning entry [32]. Initially, the use of
RBMSs seems to be unintuitive and inefficient, as each user has only rated a
small number of items. Representing each item by a visible unit would yield a
huge RBM with each training vector being very sparse. Instead of doing this,
Salakhutdinov et al. [46] suggests that each user has a small private RBM
with the visible units corresponding only to the actual ratings of the user. Each
personal RBM has only one training vector, but as all models use and update the
same weights and biases the learning will contribute to improving the "global"
model.

In recommender system scenarios, the modeling of the visible units is slightly
different to the original RBM. Here, the input vector v is replaced by a K X m
observed binary indicator matrix, where element vf is set to one if the user
has rated item i with rating k. K and m are the number of different possible
ratings and the number of rated items, respectively. Figure 2.7 illustrates this
new model design for a scenario with K = 5 (e.g., 1 to 5 star ratings).

Instead of Equation 2.20, the energy of the joint configuration of the visible and
hidden units for the modified model is given as
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Figure 2.7: Illustration of the Restricted Boltzmann Machine design to the CF problem.
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The Restricted Boltzmann Machine for Collaborative Filtering (RBM-CF) makes
use of a conditional multinomial distribution to model the columns of V such
that

p (vlf _ 1|h) _ exp (a{? + 2 hJWlljc)
el

(2.31)

and a conditional Bernoulli distribution for modeling of the hidden units such
that

K
p(hj = 1|V) = O'(bj + Z ZU?WS) . (2.32)
i k=1

The weight matrix in a CF recommender system is a three dimensional matrix,
where one dimension is used to represent the different rating options. The
update rule for the weight matrix is similar to Equation 2.29

AWE = 1 (@Fhydaaa — (@FRT) (2.33)
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Figure 2.8: A taxonomy of the recommender systems discussed in this section. Only

the systems that have been explicitly discussed are displayed in the hier-
archy.

Testing is performed by clamping the observed ratings V on the visible units,
computing p(h; = 1|V) for all hidden units and then computing a reconstruc-
tion using p(vl{c = 1|h). The prediction can then be found as

K
Zp (v{‘ = 1|h) Xk . (2.34)

k=1

Even though training the RBM-CFs can take some time, the above equation
shows that the prediction of new ratings given the observed ratings can be
performed in O(J) where J is the number of hidden units h.

2.5 CF Recommender System Taxonomy

This chapter has given a general description of the main techniques for CF rec-
ommender systems and has provided the reader with a more detailed analysis
of the three approaches used in this thesis: the SGD, the ALS and the RBM-CF
algorithms. We have devised a taxonomy of the various recommender systems
that have been explicitly mentioned in this chapter, which is shown in Figure
2.8. It illustrates how the various systems and recommender system classes are
related to each other.
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Chapter 1 introduced the incentive to use parallel programming techniques for
recommender systems. The next chapter will focus on why GPUs are ideal for
this parallelization and provide the reader with a basic understanding of how
CUDA, NVIDIA’s parallel programming model for GPUSs, can be used.



Design principles for
efficient CUDA
implementations

The use of GPUs for computational intensive tasks has in recent years experi-
enced a rapid increase in popularity [16]. This chapter explains the motivation
for using GPUSs over conventional CPUSs in the context of recommender systems
and introduces the reader to the CUDA programming model.

3.1 Motivation

Ever since the release of the first commercial microprocessor (Intel 4004) in
1971 [2], general-purpose CPUs have historically been the method of choice for
performing computations, and their performance has continuously improved.
During the major part of the CPUs development the main focus was on support-
ing sequential workloads, leading to an optimization for sequential execution
workloads at the cost of parallel execution.

Many techniques have been used to optimize CPUs for sequential execution.

These include caching, out of order processing, and branch prediction. This
added complexity actually makes up most of the circuitry on the cPU, thereby

29
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Memory Controller

Shared L3 Cache-

Figure 3.1: [llustration of Intel’s Core i7 processor (Codename Bloomfield). The white
boxes are used to illustrate the portion of the chip used for execution units.
The figure is based on the one by Glaskowsky, 2009 [17].

occupying space which otherwise could be used for additional execution units.
This is illustrated in Figure 3.1, which shows a Core i7 processor where the area
occupied by execution units on the chip is highlighted by white boxes. It can
be seen that these only make up a small fraction of the total chip area.

Additionally, in recent years performance improvements have delivered di-
minishing returns. This is due to challenges such as the memory wall, the
instruction-level parallelism (1LP) wall, and the power wall [4]. The memory
wall refers to the increasing gap between the CPU and memory speeds, which
leads to memory being a performance bottleneck unless larger caches are intro-
duced. The 1LP wall is used to refer to the increased difficulty of parallelizing
instructions in a single thread, unless the complexity is increased by, for in-
stance, making use of more aggressive branch predictions. The power wall
refers to the fact that increasing clock frequencies of processors leads to an
increase in energy consumption and thereby an increase in production of heat.
All these challenges have led to an increase in processor complexity.

GPU computing was introduced to the consumer market in 2001 with the re-
lease of the NVIDIA’s GeForce 3, making use of pixel shaders, which to a limited
extend where programmable [17]. Over the following years the programma-
bility was extended leading up to the GeForce 7800, which was released in
2005. It used three types of programmable engines for the various stages of the



3.1 / MOTIVATION 31

graphics processing pipeline [17].

The drawback of this architecture was that three types of programmable en-
gines had to be controlled, and the throughput in the various stages of the
pipeline had to be balanced carefully. In 2006 a new architecture was released
as part of the GeForce 8800 that used a unified shader architecture and removed
the pipelined architecture. In the unified shader architecture each shader core
can perform all shader tasks in the pipeline, thereby removing the need of
pipeline stage balancing. Together with the GeForce 8800, CUDA—a parallel
programming model for NVIDIA’s GPUs—was released, making GPU program-
ming more accessible to consumers [47].

Further development has in the past years led to improved architectures, with
the current state of the art being the Maxwell architecture [10]. The Kepler
architecture [9]—which has been used as part of this thesis, and which was
the state of the art in GPU design prior to the Maxwell architecture—is shown
in Figure 3.2. The figure shows that the GPU, to a large extent, is composed
of computational units (dark orange boxes) with a small amount of support
elements. Unlike the cPU (Figure 3.1), which has been optimized for sequential
executions with a large amount of conditional branches (control-flow intensive),
most of the GPU chip area and consumed power is used for arithmetic work.
This makes the GPUs ideal for workloads that can use multiple threads and
that are computationally intensive.

The potential for speedup of matrix computation on GPUs compared to CPUS,
is well illustrated in an experiment, where an element-wise cube is taken of
a square matrix. This is an operation requiring many multiplications that are
independent for each element in the matrix and is an embarrassingly parallel
operation. Figure 3.3 displays the computation time for running the experiment
with different sized matrices on both the CPU and the GPU. It shows that the
GPU performs and scales a lot better than the CPU. However, in this plot the
time spent for transferring the matrix to the global memory of the GPU has not
been included. It only displays the ideal effect that can be achieved if many
operations are chained on the GPU so that the computation/communication
ration becomes large.

Accounting for the memory transfer time, the observed speedup is much lower,
due to the fact that the amount of data that needs to be transferred increases

proportionally to the square of the matrix dimension. This can be seen in Figure
3.4.

This experiment leads us to our first design principle.

Design Principle 1. Minimize host to device communication.
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Figure 3.2: Example of a Kepler architecture. It can be seen that the fraction occupied
by computational units (dark orange boxes) is much larger than for a
modern CPU.
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Figure 3.3: The graph illustrates the difference in computational performance, which
can be achieved for certain workloads by an GPU over an cPU. The exam-
ple chosen was an elementwise matrix operation, and only the computa-
tion part, excluding the memory transfer, is timed.
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Figure 3.4: The graph shows the difference between the CPU and GPU for an ele-
mentwise matrix operation. The time for memory transfer as well as the
computation is measured. It is based on the same experiment as Figure
3.3.
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In this and the following chapters important aspects related to CUDA program-
ming for, but not limited to, recommender systems will be highlighted as design
principles.

3.2 CUDA Programming Model

Modern NVIDIA GPUSs consist of processing units called Streaming Multipro-
cessors (SM), each one consisting of multiple Scalar Processors (SP). CPUs can
use these by initializing kernels—functions that run massively parallel on the
GPU and that are executed by many threads. GPU threads, unlike CPU threads,
are extremely lightweight and the overhead of creating and switching between
threads is very small. With the development of improved GPU architectures
the CUDA programming model has also improved. The features supported by
a GPU are indicated by the compute capability, its version number [8].

CUDA threads are organized in thread blocks, where each thread block can be
one-, two-, or three-dimensional, and where each thread has a unique index
vector describing its location in the thread block. Thread blocks are organized
in a similar way (one-, two-, or three-dimensionally) in a grid with a unique
index identifying each block [8]. When initializing a kernel, the grid layout—as
well as the thread block layout—has to be chosen to fit the problem.

CUDA uses a single instruction, multiple threads (SIMT) architecture, where
each SM runs one or more thread blocks. Each thread block contains a multiple
of 32 threads called a warp, the minimum unit of execution for modern GPUSs.
Threads in a warp execute in lockstep regardless of divergent branching. This
means that if not all 32 threads agree on the execution path, some of the threads
will be idle during parts of the computation and the warps full efficiency will
not be achieved.

Putting this in respect to the GPU architecture presented in Figure 3.2 it is
possible to see that the GPU is made up of eight Kepler Generation Streaming
Multiprocessorss (SMxs) divided up into four Graphics Processing Clusters
(GPCs). A more detailed view of the SMX is illustrated in Figure 3.5. Besides
the sps, the sMxs also consist of four warp schedulers, eight dispatch units,
sixteen texture units, and various types of memory. The memory model of the
GPU will be explained in the next section.

In the CUDA programming model the CPU, or host using CUDA terminology,
and the GPU (device in CUDA terminology) are assumed to have separate mem-
ory spaces. The communication between them is performed using the global
device memory, which is persistent through kernel launches. The host therefore
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Figure 3.5: The sMXs in the Kepler GPU architecture.
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Figure 3.6: Illustration of a common program flow in a CUDA program.

has to allocate memory on the device prior to copying the input data to the
GPUs memory space. The kernel can then be launched by the cPU. Once the
computation has been completed the CPU is responsible for copying the results
back to the cPUs memory space. The control flow in a typical CUDA program is
illustrated in Figure 3.6. Code Listing 3.1 illustrates the invocation of a kernel
function of name kernel in C. The kernel is invoked on a grid containing of
10 X 10 X 10 blocks, where each block contains 16 X 16 X 2 threads, with the
parameters A and B.

Code Listing 3.1 — Kernel invocation in C.

int invokeKernel (A, B)
{

dim3 threadsPerBlock (16,16,2);

dim3 blocksPerGrid(10,10,10);

kernel <<<blocksPerGrid, threadsPerBlock>>>(A, B);
}

3.3 CUDA Memory Model

The cUDA memory hierarchy shown in Figure 3.7 illustrates various memory
spaces that CUDA threads might access during their execution. Each thread
has access to three main different levels of memory: local memory, shared
memory and global memory. Local memory is private to each specific thread
and cannot be accessed by other threads. It consists of on-chip registers and
a small amount of off-chip memory. Threads in a block, in addition to their
individual local memory, also have access to shared memory, which is visible
to all the threads in the block. The largest and slowest memory level is the
global memory, which all threads can access [8]. It can be used by all threads
in the grid to communicate with threads on different SMs or store data that all
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Figure 3.7: Illustration of the memory hierarchy of CUDA GPUs.

threads need to access. Code Listing 3.2 illustrates how global device memory
can be allocated in C and how data can be transfered from the host memory
to the device and back again.

The specific CUDA architecture, where threads are divided into warps, has to
also be considered when performing memory accesses. Global reads and writes
by threads in a warp are grouped into as few transactions as possible by the
device in an effort to minimize bandwidth usage. If one thread accesses global
memory and only needs to read/write a small subset of the data, this will
be represented as one transaction. However, if other threads need to access
other parts of the same memory area, the operation can be performed as one
transaction. A kernel is therefore most efficient when threads read and write
to sequential memory locations. Such a contiguous access is called a coalesced
memory access and is illustrated in Figure 3.8, where the memory chunk that a
thread can read from global memory in one transaction is represented by the
top array. Early CUDA devices with compute capability less than 2.0 allowed
transaction to be coalesced per half-warp (16 threads), whereas newer devices
allow larger memory accesses, such that a whole warp (32 threads) can perform
one transaction [8].

Figure 3.9 illustrates a different memory access pattern, where the access is not
performed sequentially, but all threads still access the same parts of the large
chunk of memory. Early devices did not support this form of coalescence and
had to issue separate transactions for each of the threads. Current devices, how-
ever, support coalesced access even for non sequential memory accesses.
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Code Listing 3.2 — Allocating global device memory.

1 int main()

2 {

3 // Size of a 10 element vector

4 size_t sizeA = 10 * sizeof (float);

5

6 // Allocate memory on host for a 10 element vector
7 float* A = (float*)malloc(sized);

8

9 populateVector (&A)

10

11 // Allocate memory on device

12 float*x A_d;

13 cudaMalloc (&A_d, sized)

14

15 // Copy vector A to device

16 cudaMemcpy (A_d, A, sizeA, cudaMemcpyHostToDevice)
17

18 // Invoke kermnel

19 dim3 threadsPerBlock(16,16,2);

20 dim3 blocksPerGrid(10,10,10);

21 kernel <<<blocksPerGrid, threadsPerBlock>>>(A_d);
22

23 // Copy result back to host into array A

24 cudaMemcpy (A, A_d, sizeA, cudaMemcpyDeviceToHost);
25

26 // Free memory on device

27 cudaFree (A_d);

28 1}

Global Memory

thread id: O Threads

Figure 3.8: Coalesced memory access illustration.
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Figure 3.9: Coalesced but not sequential memory access.
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Figure 3.10: Strided, non-coalesced, memory access.

Another memory access pattern is displayed in Figure 3.10, where every adja-
cent thread is accessing every other array location. This is commonly referred
to as strided memory access. It can be seen that in the example figure, two
memory transactions need to be performed instead of just the one in the previ-
ous examples. A larger stride leads to more memory transactions and thereby
to worse performance.

The effect of using coalesced vs. non-coalesced memory access can be illustrated
with a similar experiment as the one in Section 3.1. Here, the performance for
coalesced memory access is compared with the performance when using the
strided memory access pattern of the kernel in Code Listing 3.3.

The input array a represents the matrix A in row-major order and the threads
in each warp will therefore access all the elements in a coalesced fashion as
warps in a grid are also in row-major order.

In Code Listing 3.4 (line 12), the memory access pattern has been changed to
a strided approach, where the warps in the grid and the elements in memory
are still in row-major order, but the elements are accessed in column-major
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Code Listing 3.3 — Kernel computing the element wise power of 3 (Coa-
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lesced).
1 __global__ void kernel(float =*a, float *res, int dim)
2 A
3 // Get x and y threadId in grid
4 int x = (blockIdx.x * blockDim.x) + threadIdx.x;
5 int y = (blockIdx.y * blockDim.y) + threadIdx.y;
6
7 // Check that threadIlId’s element inside matrix
8 if(x > dim || y > dim)
9 return;
10
11 // Calculate position in matrix array a
12 int idx = y*dim+x;
13
14 res[idx] = alidx]*alidx]*al[idx];
15 }
Code Listing 3.4 — Kernel computing the element wise power of 3 (Strided).
1 __global__ void kernel(float *a, float *res, int dim)
2 A
3 // Get x and y threadId in grid
4 int x = (blockIdx.x * blockDim.x) + threadIdx.x;
5 int y = (blockIdx.y * blockDim.y) + threadIdx.y;
6
7 // Check that threadIlId’s element inside matrix
8 if(x > dim || y > dim)
9 return;
10
11 // Calculate position in matrix array a
12 int idx = x*dim+y;
13
14 res[idx] = alidx]*alidx]*al[idx];
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Figure 3.11: Graph showing the performance differences for coalesced vs. strided mem-
ory access for an elementwise matrix operation.

order.

The difference in performance of the two example kernels can be seen in Fig-
ure 3.11. The time measurements include both the cost of memory transfer from
host to device, device to host, and computation. The figure illustrates that the
strided approach has a poorer performance than the coalesced one. This leads
us to our second design principle.

Design Principle 2. Coalesce memory accesses, especially for global memory ac-
cesses.

3.4 Summary

This chapter introduced the CUDA programming model and illustrated the
computational advantage that can be achieved using GPUs over CPUSs in an
experiment. The CUDA memory model was presented, and the importance of
achieving coalesced memory accesses was shown experimentally. Chapters 4
and 5 use the techniques presented in this chapter and show how the SGD,
RBM, and ALS-WR algorithms where implemented using CUDA.






Hogwild and RBM: Design
and implementation

In this chapter we describe key aspects of implementing CF recommender
systems on NVIDIA GPUs. We explore both the matrix factorization and the
model-based classes of the taxonomy in Section 2.5. The implementation of two
algorithms, one in each class, is described. The Hogwild algorithm was chosen
to represent the matrix factorization class, whereas the CUDA RBM approach
was chosen to represent the model-based class of recommender systems.

Generally, the high-level architecture of all the recommender systems included
in this and the following chapter consists of two components: a host and a
CUDA device, as illustrated in Figure 4.1. The host is responsible for loading the
training data, converting it into the correct format, and performing sequential
operations. The CUDA device performs most of the computational operations
required to train the model. Given a set of ratings, the recommendation model
produces recommendations for the missing values in the rating matrix.

4.1 Hogwild

The design in this section is based on the work done by Recht et al., 2011 [44],
who proposed the Hogwild approach to parallelizing the SGD. Hogwild is a lock-
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Recommendation
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Ratings Recommendations

CUDA-Device

Figure 4.1: The general architecture of the CUDA based recommender systems.

free approach for parallelizing the SGD on shared memory multi-core systems.
It is based on the idea that, given a sparse matrix, the SGD will converge even
without the use of locking, which means that processes are allowed to update
the weights at will and may overwrite progress made by others while doing
so. Due to the overwriting occurrences some of the progress will be lost during
the training process, which means that usually more update steps are required
to achieve convergence. However, as more weight updates can be performed
in a given timespan, convergence speedups are observed as the parallelism
increases. A more detailed analysis of the scalability and performance of the
Hogwild algorithm on CUDA can be found in our earlier work [26].

The pseudo code for the learning algorithm for the SGD is displayed in Algo-
rithm 4.1. It illustrates the iterative nature of the algorithm, which in the cuDA
implementation has been performed running massively parallel (Hogwild), by
parallelizing the learning phase (line 2-10).

4.1.1 Parallelization

The learning phase is parallelized by calculating the feature vector updates
and performing the update on the CUDA-device. Figure 4.2, illustrates how the
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Algorithm 4.1 — The Hogwild SGD algorithm.

1 initialize random weights
2 for each epoch do

3 for each training rating r;; do

4 u; <- load feature vector for user
5 vj <- load feature vector for item
6 Au; = (uij - r,-,j)vj + Alu,-

7 AUJ' = (ui vj — r,-,j)u,- + szj

8 u; = u; — pAu;

9 v; = vj — pAv;

10 end

11 end
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Figure 4.2: Abstract view of the Hogwild CUDA implementation.

matrices U, V, and R are stored in global memory. The figure also shows the
grid-layout for the CUDA threads, by illustrating two blocks in the grid. Each
row in the blocks is responsible for performing a single training update.

As the rating matrix in recommender systems is usually very sparse, the matrix
is stored in the Coordinate List (COO) matrix format, where the representation
consists of three arrays—one representing the rating value, one the row index,
and one the column index. For example, the rating matrix

W o U1 o
OO = WK
g = O DN
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will in the cOO matrix format be represented as

data=[1 1 4 3 51 1 2 3 5]
row=[0 0 0 1 2 2 2 3 4 4]
col=[0 1 2101220 2]

The sparseness observation for recommender systems, leads to our third design
principle.

Design Principle 3. Utilize sparse data representations to make efficient use of
the limited device memory and reduce the data transfer overhead.

As argued in Section 3.3, it is important to consider the layout of data in memory
when performing CUDA computations. Figure 4.2 illustrates that the data stored
in global memory consists of the user-matrix U, the item-matrix V, and the
rating matrix R. Accesses to user- and item-matrices corresponds to reading
a given user’s or a given item’s feature vector. To enable coalescent reads and
writes, the matrices must be stored vector-wise in memory.

Another important factor to consider when reading the feature vectors from
global memory, is that reads and writes must be performed as a transaction in
order to avoid inconsistent reads and writes. As CUDA memory transactions are
performed per warp, it is only possible to guarantees consistent global reads
and writes for feature vectors up to 32 dimensions. For a larger number of
dimensions, locking would be required. However, as the number of dimensions
is often chosen to be reasonably small to avoid overfitting, this issue does not
often occur.

4.2 RBM-CF

Another promising approach to collaborative filtering is the RBM-CF algorithm
proposed by Salakhutdinov et al. in 2007 [46] as described in this thesis in
Section 2.4. Additionally, the work presented in this section is based on the
work done by Cai et al., 2012 [6], who proposed a parallel implementation of
the RBM-CF algorithm on GPUs.

As seen in Section 2.4, the conditional probabilities of the visible and hidden
units are given as

k k
e T2 Wi

k _ —
=1
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and

K
p(h; = 1|V) = o(b; + Z Z ok k), (4.2)
i k=1

and the weight update is computed as

AWE = p((0f hj)data = (©F hj)1). (4.3)

Additionally, the visible bias updates are computed as

Aa; = p({vi)data — (Vi)T) (4.4)

and the hidden bias updates as

Abj = p((hj)data — (hj)r)- (4.5)

Using this underlying model, the general algorithm will be introduced in Sec-
tion 4.2.1 before Section 4.2.2 illustrates how it was parallelized using CUDA.

4.2.1 Algorithm

The learning algorithm for the RBM can best be illustrated by use of pseudo
code, which can be found in Algorithm 4.2.

It illustrates that the learning is performed iteratively on mini-batches, where
each mini-batch corresponds to the vectors of rated movies for multiple users.
For each of the mini-batches the hidden units are computed using Equation 4.2,
before the n*" reconstruction is found using Gibbs sampling and utilizing equa-
tions 4.1 and 4.2. The final step is to use the statistics found by performing the
Gibbs sampling to update the weight and bias terms using equations 4.3, 4.4,
and 4.5. The most time consuming calculations consist of the matrix multiplica-

—k =k _ }
tions in lines 6, 12, 15, and 18 (h ,h , 7" and AW¥) of Algorithm 4.2. These
have speedup potential utilizing GPUs [6]. Table 4.1 provides an overview over
the matrix multiplication operations.
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Algorithm 4.2 — The RBM-CF algorithm.

initialize random bias and weights

for

each epoch do

for each mini-batch do

construct v to vX

for k=1 to K do_
= tr(WK)o* + b
end

_—G(Zflh)
h =

for each Gibbs sampling step do
for k=1 to K do
¥ =Wkh +a
eqd , ,
7" = exp(@)/ Ti, exp(@”) /
compute h as above using ©
end
for k=1 to K do
AWK = 5 tr(h) — oF tr(h)
Wk = Wk + i x avg(AWF)
update a
end _
update b

end

end
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Left Right Product
Symbol Dim  Symbol Dim  Symbol Dim
—k
Hidden Update tr(WX)  JxI o~ IxXM h JxM
-k’ ,
Visible Update ~ Wk Ix] h JxM  oF IxM

—K’
Weight Update ~ oF IXxM twh ) MxJ] AWk Ix]J

Table 4.1: Overview over the three matrix operations of the RBM-CF.

4.2.2 Parallelization

To improve the parallelization of this algorithm even further, the sparsity of
the visible units o* should be taken into consideration according to Design
Principle 3. To do this, oF is represented in a sparse format, which consists of a
mixture of three commonly used sparseness formats. This section will describe
the process of constructing ok,

Data format
For a set of M users in a batch with I items—potentially rated per user—the

rating matrix is an I X M matrix. For three users in a batch with five items in
the system, the rating matrix might look like

w o U1 o=
OO = WM
N~ O DN

Using this example, the first part of Figure 4.3 illustrates how the rating vector
for user 1 (first column) can be converted to a binary representation, where
each column corresponds to one item in the original rating vector and each row
denotes what rating a user has given to the item. Items that have not received a
rating are represented by an x. Using this representation to find v!, the binary
rating vector for all items that received a rating with k = 1 can be produced
by selecting the first row (highlighted in the figure). The I X M binary batch
matrix o' is found by repeating this for all users.

However, as previously noted, these matrices @), will be very sparse and
should therefore be represented as sparse matrices. This is done by using a
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Figure 4.3: Illustration of the batch dataset generation.

sparse matrix format that combines the advantages of the Compressed Sparse
Row (CSR), Compressed Sparse Column (CSC), and the COO matrix formats.
The joint sparse matrix format is used to support coalesced reads and writes
as part of the three different matrix multiplications and is motivated by Design
Principle 2. The CSR and csc formats both consist of three arrays each: a data
array, an index array and an index pointer array. The example rating matrix
would, in the CSR format, be represented as

data=[1 1 4 35 1 1 2 3 5]
indices=[ 0 1 2 1 2 2]
indptr=[0 3 4 7 8 10 ]
and in the csc format as
data=[1 53 1 3 1 4 1 2 5]
indices=[0 2 4 0 1 2 0 2 3 4]

indptr=[{0 3 6 10 ]

The process of computing this sparse format for the previous example of ot
is illustrated in Figure 4.4. As the data array is being updated as part of the
visible unit update computation, it is advantageous to only represent the data
(binary format of rating values) in one form. This avoids the need of keeping
multiple arrays consistent. To be able to access the data in CSR matrix for-
mat, which is required when computing the weight updates, it is necessary to
represent the data using a mapping array. This array maps the data array of
the CSR matrix format to the data array of the cSc format. As can be seen
in Figure 4.4, the sparse format does include all the O-values in addition to
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Figure 4.4: Figure that shows the conversion of the batch dataset matrix to the sparse
matrix format.

1-values (not the x-values). This is done to be able to use the row/column
indices, row/column pointers, and mapping arrays for all 7¢. An additional
benefit is that the indices and arrays do not have to be changed when comput-
ing the reconstructions during the Gibbs sampling procedure. To increase the
computation/communication ratio according to Design Principle 1, the author
made the design choice to store the row, column and mapping indices on the
device during batch generation and keep them there until the model has been
updated for the batch. This avoids unnecessary data transfer.

Hidden units update

The Ek = tr(WF )Ek +b part of the hidden unit update has been parallelized
using CUDA and the CSC part of the sparse matrix representation of o*. To
achieve the parallelization of the matrix multiplication, each column in the
result matrix is represented by a thread block, with each thread being respon-
sible for exactly one hidden node in the column. By leveraging the cSc format
in this manner, the entries of o are read coalesced. Because D" is restricted
to being either 1 or 0, the inner product computation of W* and ¢ can be
expressed as a summation for increased performance.
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Visible units update

The o* = Wrh+a expression of the visible unit update has been parallelized us-
ing CUDA. In this case o~ was represented by the cOO format and one thread
block is assigned to each missing entry in o~. The threads in the block per-
form the inner product computation between Wl.k and h;, and parallel reduc-
tion is used to sum up the individual thread results to efficiently perform the
computation for large numbers of hidden units. As for the hidden units, the
multiplication is expressed as a summation since h; can only be 1 or 0.

Weight update

The third matrix operation computes AW* = 7¥tr(h) and AW = Ek’tr(z ) by
using the CSR format together with the mapping information present in the
mapping array. One thread block is used to compute each row of the product
matrix AWK, with threads computing elements in the row. Unlike the visible
and hidden unit update scenario, it can not be assumed for the weight update
that one of the matrices that is getting multiplied contains only ones and zeros.
This means that the optimization where the multiplication is transformed into
an addition cannot be performed.

Data transfer

To increase the performance of the algorithm the author considered storing
and performing the weight updates (line 18 and 19 in Algorithm 4.2.1) on the
device to avoid the transfer overhead in all three update computations (Design
Principle 1). The drawback of this approach is that for large datasets and large
batches the k weight matrices can be too large to store on the device, which
might be why it was not suggested by Cai et al. [6]. However, for the datasets
used in this thesis the weight matrices where small enough and the difference
in performance was investigated. Both versions of the algorithm were run for
one epoch. The dataset used, is a movie dataset from Douban.! It has roughly
130,000 users, which where run in batches of 100. A detailed overview over the
dataset can be found in Section 6.1. Figure 4.5 illustrates the results of those
test runs. By storing and keeping the weight matrices in device memory, the
total time for one epoch was halved compared to the original implementation.
Similar improvements can be observed for each of the different updates. We
note, that for datasets that are small enough to keep the weight matrices in
memory a considerably speedup can be achieved for the RBM-CF.

1. douban.com
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Figure 4.5: Performance gain by keeping the weight matrices in device memory. The
time it takes to perform one epoch is measured for both implementations
to illustrate the effect of keeping the weight matrices in global memory.
Besides the total time, the time for the three update computations was
measured.
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4.3 Summary

This chapter provided the reader with an understanding of how the sGD and
RBM algorithms were implemented and optimized using CUDA. In Chapter 6,
we will evaluate the two algorithms and compare the results with the Alternating-
Least-Squares with Weighted-A-Regularization on CUDA (ALS-CUDA) imple-
mentation, which is presented in the next chapter.



ALS-CUDA: Design and
implementation

This chapter describes the design and implementation choices that where made
to implement the Alternating-Least-Squares with Weighted-A-Regularization
on CUDA (ALS-CUDA) algorithm. The ALS-CUDA algorithm is based on the ALS-
WR algorithm discussed in Section 2.3.2, in particular the two equations

u; = (V,Vjh + Any, E) 'V, RT (i, ) (5.1)
and

vj = (U,jU,f + Any, E)'ULRT (i) (5.2)

where u; and v; refer to the ith and jt h row and column in the result matrix,
R, respectively. Given the weight parameter matrix U of user feature vectors,
Uy, denotes the sub-matrix of U that contains only the user feature vectors of
users that have rated item j. Similarly, given the weight parameter matrix V
of item taste vectors, V;, denotes the sub-matrix of V' that contains only the
items that the user i has rated. E is the dim X dim identity matrix, and n,,, and
ny; are the number of items a user i has rated, and the number of users who
have rated a given item j, respectively. dim is the dimensionality of the latent
feature space that the users and items are mapped to.
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The pseudo code of the ALS-WR algorithm can be seen in Algorithm 5.1. Each
epoch consist of an U and V update, where the equations 5.1 and 5.2 are used
to compute them. Each of the individual update computations includes the
construction of the sub-matrices Uy, and V.

The data format used to represent the rating matrix is a combination of the
Ccsc and CSR matrix representation format. Unlike in the RBM-CF algorithm,
no mapping array was used to represent the two data arrays (see Section 4.2.2),
as the data in the rating matrix is constant during training. The data format
was chosen to allow efficient construction of the sub-matrices by using the
CSR index pointer array to find the number of ratings for a given user and
to retrieve I;. Using the CSC index pointer array the number of ratings for a
given item can be found and the vector I; can be retrieved efficiently (Design
Principle 3).

The matrices U and V, and the sparse rating matrix R are transferred to the
device before the first update calculation and are updated in device memory.
This means, that no data has to be transfered between the updates, causing a
high computation/communication ratio (Design Principle 1).

The update equations 5.1 and 5.2 can be divided up into two main operations.
The first one is the computation of the matrix multiplication and the addition
of the regularization term (V7, VII_T + Any,E and Uy, Ug + /lnvjE). Two main
challenges arise when implementing the matrix multiplication, which can be
solved by making use of a dynamic matrix multiplication. This is discussed in
Section 5.1.

Once the first main operation has been performed and returned a result matrix
A, the second operation is the computation of the expression A‘lVL.RT(i,I,-) or
A‘lUIJ.RT(i,I ;). As matrix inversion is very costly, the operation is performed
by solving the expression as a linear system of equations, which is discussed in
Section 5.2.

5.1 Dynamic Batch Matrix Multiplication

One problem for the CUDA implementation is the fact that for the V7, VT and
Uy, UT matrix multiplications, the sub-matrices Vi, and Uy, are of Varylng size,
but have to be performed for each column in V and each row in U. The ability
to perform matrix multiplications in parallel is critical for the performance of
the algorithm. Hence, a kernel must be designed that can perform all multipli-
cations in one batch. The second design issue with the matrix multiplication
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Algorithm 5.1 — The ALS-WR algorithm.

initialize random weights
for each epoch do
for each user i in U do
Vi, <- comnstruct sub-matrix for user i
u; = (Vi,V]| + Any, E) 'V, RT (i, I;)
for each item j in V do
U;. <- construct sub-matrix for item j
v = (UIjUIJT_ + Any, E) UL RY (i, 1)
end
end

arises because the size of the matrices V7, and Uy, are dependent on the number
of users who have rated an item j, or on the number of items that a given user i
has rated. Since CUDA does not support dynamic allocation of memory during
kernel executions, the varying size of the matrices can be a problem. To cir-
cumvent this limitation, we exploit mathematical properties of the two matrix
multiplications. As the matrix multiplication involves a matrix being multiplied
by its transpose, the resulting matrix will be a square matrix of dim X dim
dimensions, where dim is the dimension of the user and item feature vectors.
The other advantage of ALS is that the result of the multiplication will be a
symmetric matrix B such that

B =BT, (5.3)

This means that the result matrix can be fully represented by dim X (dim +
1)/2 instead of dim X dim elements. As dim is known, the required space in
global memory can be allocated prior to kernel execution. This assumption of
symmetry is still valid after the regularization term An,,E is added, as it, due
to the identity matrix E, only modifies the values on the diagonal.

Using the matrix A to represent either Vi, (or Uy,), where V7, (or Up) is a
dim X ny,, (or dim X ny,;) matrix, the matrix multiplication can be expressed

Bi1 Bi2 Bis A1 Ap Az A Ax Az
Bo1 By Baz | =| A1 Az Axz |X| A1z Az Az
B31 B3z Bss Az1 A3y Aszs A1z Axz Asz

In global memory, the matrices V and U are stored feature-vector wise as
displayed in Figure 5.1.

This memory layout means that coalesced memory accesses cannot be achieved
by performing the standard matrix multiplication, which can incur large over-
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U/Vi Uz/V2 Un/Vm

Figure 5.1: Memory layout for the ALS-CUDA algorithm. Both weight matrices are
stored vector-wise.

’AT : nrows d columns

asy  adq1
asy b

a3 | dsz 443

as4 Qg4

b21 b31 b41

QZD b32 b42

b32 b33 b43

as1 Qa2 A43  Q4g bar  bsy  baz  bag

’A : d rows n columns ‘ ’B = Ax AT : d rows d columns

Figure 5.2: Illustration of the matrix multiplication for diagonal entries when a matrix
is multiplied with its transpose.

heads (Design Principle 2). Figure 5.2 displays the process of matrix multipli-
cation for the diagonal entries and Figure 5.3 for the non-diagonal elements.
These figures illustrate how an entry in the result matrix B can be found, and
the effect of the symmetry. It can be seen that in the scenario where A is in row-
major order, reading rows in A can be performed coalesced (which corresponds
to a column in AT). However, as matrix A in the ALS-CUDA scenario needs to
be stored in column-major order (one column represents one user/item feature
vector), this cannot be done as easily.

To utilize coalesced reads, the implementation presented here uses a different
pattern to compute the matrix multiplications. A column (size dim) is read
coalesced from global memory (either from V or U), and is placed in shared
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memory to allow all threads in the warp (and block) fast access. The element
that each thread read is stored in the threads local memory.

’AT : n rows d columns ‘

as
bas
as3

a4

by

bsz

bs3

Ayl Q42 Q43 Gaq ba1  bay  bas  bas

A : d rows n columns ‘ ’B = Ax AT : d rows d columns

Figure 5.3: Illustration of the matrix multiplication for off-diagonal entries when a
matrix is multiplied with its transpose.

Using the data column we can compute one part (term) of each of the elements
in result matrix B. This is done by initially multiplying each of the values in
local memory with themselves, which yields a summation term for the diagonal
entries, as illustrated in Figure 5.4. Using the rest of the elements from the
column, which are now stored in shared memory, each thread can compute the
other combinations of its local memory entry and all the others. This way the
summation term for the non-diagonal terms can be computed as illustrated in
Figure 5.5.

As the result matrix is symmetric, only the lower (or upper) half of the non-
diagonal elements need to be computed explicitly. This means that not all
permutations, but all combinations have to be found, resulting in (dizm) com-
binations for non-diagonal terms and dim for for the diagonal terms. As dim
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’AT : n rows d columns ‘

ayd  ba

;

a asy

a asz  a43

a44

ba1
bss

bs3

’A :drowsn Columns‘ ’B = Ax AT : d rows d columns ‘

Figure 5.4: Finding the first part of the diagonal entries for the modified matrix mul-
tiplication procedure. The second column in matrix A will yield another
term for each of the diagonal entries in B. All four terms are found by
repeating the procedure for all four columns in A.

threads are performing the calculation, each thread is performing at most

() am)] [ Grbt)]
dim dim
[ (dim—1) (5.4)
B (2!(dim — 2)!)} 1
_[dim+1
2

calculations per column. If (d;m) + dim is not divisible by dim some of the
threads will require one operation less than stated in the equation. This means

that for a column of size dim, each thread performs O(dim) operations.

Once all combinations have been evaluated and the results have been written
to the correct place in shared memory, the next column is loaded and the same
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’AT n rows d columns
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Figure 5.5: Finding the first part of some of the off-diagonal entries for the modified
matrix multiplication procedure. The figure illustrates the first combina-
tions of the first column in A. Computing all the combinations will yield
one term for each of the off-diagonal elements. Repeating it for all four
columns will yield four terms for all off-diagonal terms, which when added
together yield the result matrix.

process is performed, thus enabling coalesced reads for all the memory accesses.
This process is repeated n,, or n,; times for V;, and Uy, respectively to compute
the whole matrix.

However, to combine the products, e.g. as; X a3; in Figure 5.5, we need to find
the correct update position in the result matrix B. The correct row position can
be found by using the current thread id, which corresponds to the row number
in matrix A. In our example, this would be 2. The correct column position can
be found by the shared memory array location that the current thread reads
the second product term from. This corresponds to the column in AT, which
in our example is 3. Ensuring that for the symmetric entries only the elements
with a row number lower than their column number are stored, the index in
the symmetric row-major matrix can be found as
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(row — 1)row 1

2 , (5.5)

idx = (row — 1)dim + col —

where symmetric elements are in the form that col > row.

A pseudo code for the dynamic batch matrix multiplication is illustrated in
Algorithm 5.2.

Algorithm 5.2 — The dynamic batch matrix multiplication.

// Read rowlIdx in matrix A (in range [0,dim-1])
rowIdx = getThreadId()
for each column in sub-matrix A do
// Read threads first product term
threadValue = column[rowIdx]
// Calculate maximum number of operations per thread
using Equation 5.4
nrOps = getNrOps(dim)
for operationIdx in range(nrOps) do
// Check if the current combination has to be
calculated, handles the case of (d?ﬂ-+dhn not
being divisible dim
if (combinationNr < totalCombinationNr)
columnIdx = (operationIdx + rowIdx) \% dim
updateTerm = threadValue * column[columnIdx]
//Find index in symmetric matrix array using
Equation 5.5

idx = getSymIdx (min(row,col) + 1, max(row,col) +
1, dim)
symMatrix [idx] += updateTerm
end
end

5.2 Solving the Linear System of Equations

Once the vector multiplication (V;,R? (i, I;) and UIjRT(i,I ;1)) and the matrix mul-
tiplication has been performed, it is possible to view the least square problem
as a linear equations system of type Ax = b, where b refers to the vector and
A to the summation of the matrix multiplication and the regularization term.
Many methods exist for solving such a system, for example Gauss-Jordan [1].
However, using the fact that the matrix multiplication will always result in a
symmetric matrix it is possible to half the operations required by utilizing a
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LDLT decomposition. The faster Cholesky [42] decomposition could not be
used, as the matrix is not guaranteed to be positive definite, which is the as-
sumption that the Cholesky decomposition bases itself on.

5.2.1 LDL' Decomposition

In the LDLT decomposition, a matrix A gets decomposed into a lower matrix
L and a diagonal matrix D such that

A=LDLT (5.6)

with L’s diagonal terms being

L =1. (5.7)

For a square matrix with dimension dim = 3, the decomposition would be

A21 Azz A23 = L21 1 0 Ix 0 D22 0 x| O 1 L32
Az Azx Aszz L31 L3z 1 0 0 Das3 0 0 1
where the entries for the D matrix can be found by
j-1
2
Djj :Ajj_ZijDkk (58)
k=1
and the entries for L by
j-1
Lij = Ayj — Z Lix Dy Ljg- (5.9)
k=1

Once the decomposition has been performed, the system of linear equations can
be solved by a forward substitution followed by a backward substitution.
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5.2.2 Forward Substitution

Once the LDLT decomposition has been performed the linear system can be
written as

LDLx = b, (5.10)

where matrix A has been replaced by its decomposition.

Replacing DLT x with a new vector variable z, it is possible to rewrite equation
5.10 as the new system of linear equations

Lz=0b. (5.11)

As L is a lower matrix, solving for z becomes a trivial task and can be done
by

i—-1
zi=b; - ZLika . (5.12)
k=1

To find x, z needs to be solved with respect to x, which is referred to as the
backward substitution step.
5.2.3 Backward Substitution

Utilizing the fact that D is a diagonal matrix, and LT an upper matrix, it is
possible to solve

z=DLTx (5.13)

with respect to x by scaling z by D. As D is a diagonal matrix, the result vector
y can be found as

yi = — (5.14)

with
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L'x=y. (5.15)

As LT is an upper matrix, the vector x can be found by

N
Xi =y — Z Lgixi for NN —1,..,1 (5.16)

k=i+1

Algorithm 5.3 — The ALS-CUDA algorithm.

solving the original linear set of equations and resulting in the updated U; or
V; feature vector.

1 for each row in U (or V) do

14
15
16

17
18
19
20
21
22

// Use CSR format of rating matrix to find start and
end of I; (or CSC format to find I;)

startIdx = getStartRowIndices ()

endIdx = getEndRowIndices ()

// Find number of ratings for user (or item), which
corresponds to number of columns in matrix A
nrColumns = endIdx-startlIdx

symMatrixSize = dim * (dim + 1) / 2

// Compute symmetric matrix
sparseMatrix = matrixMultiplication(nrColumns,
ratingMatrix)

// Solve the system of linear equations

L,D = LDLTDecomposition(sparseMatrix, dim,
symMatrixSize)

forwardSubstitution(L, b, dim, symMatrixSize)
backwardSubstitution(L, z, D, dim, symMatrixSize)

Z

X

// Update row in U (or V)
row = X

end
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5.3 Complete ALS-CUDA algorithm

Combining the procedure of solving the linear system of equations with the
batch matrix multiplication algorithm, the ALS-CUDA algorithm can be ex-
pressed as illustrated in Algorithm 5.3. The matrixMultiplication function refers
to the dynamic batch matrix multiplication algorithm described in Section 5.1
and illustrated in Algorithm 5.2. The functions in lines 16-18 follow the steps
described in Section 5.2 and solve the linear system of equations.

5.4 Summary

This chapter introduced the ALS-CUDA algorithm. To optimize the ALS-WR al-
gorithm on CUDA, a dynamic matrix multiplication algorithm was formulated
that allows for memory coalesced reads and writes. It was optimized using
the symmetry property. Additionally, the process of performing the matrix in-
version by solving a linear equation system has been illustrated. The LDLT
decomposition was used to optimize the number of reads/writes required to
perform the operation. In Chapter 6, the algorithms presented in this and the
previous chapter are evaluated and compared.



Evaluation

This chapter describes the experimental setup and the datasets that have been
used to evaluate the ALS-CUDA algorithm. The scalability of the ALS-CUDA
algorithm is analyzed and its performance is compared to the SGD and RBM-
CF implementation.

6.1 Experimental Setup

All experiments were run on a Dell Precision T3610 workstation with the fol-
lowing specifications: Intel Xeon(R) CPU Es5-1620 v2 @ 3.70GHzX8, GeForce
GTX 770 (1536 CUDA Cores), and 64GB DDR3 1866 MHZ.

The first dataset used as part of this evaluation is the Douban! movie dataset
that was produced in [35]. Douban is a Chinese website that was launched in
2005 and allows users to rate and review books, movies and music, whilst also
supporting social networking services and providing users with recommenda-
tions. In our evaluation, we will only utilize the movie ratings. The dataset
consists of 129,490 unique users, 58,541 unique movies, and 16,830,839 ratings
between 1 and 5. This corresponds to a sparsity2 of 0.22% for the rating matrix.

1. douban.com
2. In recommender systems sparsity is the fraction of nonmissing elements over the total
number of elements in the rating matrix.
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Table 6.2 summarize the statistics of the dataset.

Table 6.1: Statistics of the Douban dataset.

Minimum Average Maximum
Number of Ratings (Users) 1 129.98 6,328
Number of Ratings (Items) 1 287.51 49,504

The second dataset is from the Jester Online Joke recommender system, which
is a research project from the UC Berkeley Laboratory for Automation Science
and Engineering [19]. Jester was launched in November 1998 and gained pop-
ularity after being mentioned in Wired News magazine and on online news
sites such as Yahoo, Excite and Netscape News [19]. The data used from the
Jester dataset in this thesis includes ratings collected between April 1999 and
May 2003, and consists of 100 jokes (items) that have been rated by 73,421
users. In total the dataset contains 4,136,360 ratings and has a sparsity of
56.34% for the rating matrix, which is unusually dense for a recommender sys-
tem. An overview of the statistics of the Jester dataset can be found in Table 6.2.
The ratings in the Jester dataset are continuous values between —10.00 and
+10.00. To avoid negative and non-integer ratings, the ratings are normalized
and discretized to an integer range of 1 to 5.

Table 6.2: Statistics of the Jester dataset.

Minimum Average Maximum
Number of Ratings (Users) 15 56.34 100
Number of Ratings (Items) 18505 41363.60 73413

For our evaluations, the quality of the recommendations are measured using
the mean absolute error (MAE) metric. The MAE is defined as

1 )
MAE = — Z IRi;—Rijl (6.1)
i,jeS

where T is the total number ratings in the test dataset S. R; ; and R;, ;j denote the
actual and the models predicted rating for user i and item j, respectively.

The datasets that we use for our experiments are split into a training set and a
test set. The training set consists of 80% of the ratings, and the test set of the
remaining 20%.
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6.2 Finding suitable free parameters

The learning phases of the presented algorithms in Chapter 4 and 5 rely on a set
of learning parameters. For the SGD algorithm, two parameters are required—
the learning rate and a regularization parameter—whereas the ALS-CUDA algo-
rithm requires only the regularization parameter. The RBM-CF algorithm has
the most parameters of the three algorithms, as it requires a learning rate, the
number of hidden nodes, and the batch size to be specified. To compare the al-
gorithms fairly, we must find suitable parameter for all algorithms and for each
dataset. This section introduces the parameters for the different algorithms
and presents the best parameters for each of the datasets.

6.2.1 Hogwild on CUDA

For the Hogwild algorithm the training samples presented to the algorithm
were sampled with replacement from the training set and the weights were
initialized randomly by sampling from a uniform distribution over [0,1). The
ideal regularization parameter of the Hogwild algorithm was then found by
performing two experiments: one for the Douban, and one for the Jester dataset.
Figure 6.1 illustrates the results for the two experiments, where the MAE on
the test dataset for a range of parameters is plotted. For each parameter setting
the algorithm performed 7.6 x 108 updates and the best achieved MAE for
the test dataset was selected. The figure shows that the best regularization
parameter, A, for the Douban dataset lies at 0.021. For the Jester dataset, the
best regularization parameter was found to be A = 0.06. The two experiments
were repeated ten times for different training set realizations and the figure
shows the mean MAE over those runs. The standard deviation was evaluated for
each regularization parameter and the largest standard deviation was 1 x 1073
and 3.06 x 10~ for the Jester and Douban dataset, respectively. The observed
small standard deviation indicates that the algorithm is robust to changes in
the training dataset.

To find an optimal learning rate parameter for the Hogwild algorithm, we
perform a similar experiment as the one for finding the regularization param-
eter, but this time adjusting the learning rate. The resulting mean MAE for
the Douban and Jester dataset can be found in Figure 6.2. As can be seen,
the optimal learning rate in Douban is 0.026, while in Jester it is 0.016. The
largest standard deviation for this example was 1.5 x 1073 for the Jester and
5.11 x 10~ for the Douban dataset.
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Figure 6.1: MAE for various regularization parameters A, for the Hogwild algorithm.

0.75
—Mean for Jester dataset
—NMean for Douban dataset
0.7 I
(0.016,0.69592)
k%)
0}
= 0.65 -
L
<
=
0.6 -
5:7\0.026 0.56011
0.55 - (0.026, 1) ‘ ‘
0 0.05 0.1 0.15

Learning Rate

Figure 6.2: MAE for various learning rate parameters for the Hogwild algorithm.
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Figure 6.3: MAE for various regularization parameters A, for the ALS-CUDA algorithm.

6.2.2 ALS-CUDA

Our ALS-CUDA algorithm requires only a regularization coefficient to be pre-
defined. Two experiments have been performed to find the best regularization
value. As with our Hogwild experiments, the weights for the ALS-CUDA algo-
rithm were initialized randomly by sampling from a uniform distribution over
[0,1). Figure 6.3 shows the best MAE for the Douban and Jester test dataset
after 50 updates for a range of different regularization parameters. It can be
seen that the optimal regularization parameters for the Douban and Jester
dataset are A = 0.05 and 0.07, respectively. Small variations in A can yield
considerable changes in accuracy. The largest standard deviation was found to
be 2.12 x 10™* for the Douban and 7.19 x 10~* for the Jester dataset.

6.2.3 RBM-CF on CUDA

The RBM-CF requires us to set a learning rate, as well as two additional param-
eters: the number of hidden units and the batch size. The learning phase of the
RBM-CF was found to be considerably slower than the learning phase of the
ALS and SGD. To be able to evaluate the learning rate in a feasible way, only
parts of the training and test dataset were used to find a good learning rate for
the model. Léon Bottou [3] states that learning rates can be mathematically
proven to be independent of the training set size for a stochastic gradient de-
scent as long as the subset of data is a good representation of the full dataset.
Using this reasoning, we split the rating matrix into a smaller subset, which was
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Figure 6.4: MAE for various learning rate parameters for the RBM-CF algorithm.

used for the learning rate experiment in this section. The initial weight values
were sampled from a normal distribution with a standard deviation of 0.01
and zero-mean as suggested by Salakhutdinov et al. [46]. Figure 6.4 illustrates
that, for the Jester dataset, the most progress towards convergence was made
using a learning rate of 0.02. Due to high computational cost, the parameters
were only evaluated on the smaller Jester dataset.

The method suggested by Léon Bottou [3] to evaluate the learning rate param-
eter on a small dataset can, however, not be used when considering the right
number of hidden nodes or the batch size, as these are directly dependent on
the size of the dataset. Instead, as parameter sweeps were unfeasible, we based
our choice of parameters on the works of Cai et al. [6] and Salakhutdinov et
al. [46], after confirming their findings in our implementation. The number
of users per batch was chosen to be 100, whereas the number of hidden units
was set to 128.

6.3 Sparsity Experiments

As part of the evaluation, the effect of dataset sparsity has been analyzed. As
mentioned in Chapter 1 the accuracy of a recommender system is assumed
to decrease as the number of ratings in the dataset decreases. Further, our
intuition tells us that a model is more prone to overfitting as the number of
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Figure 6.5: Optimal regularization parameter A, for the ALS-CUDA algorithm for
changes in sparsity.

training samples decreases, because each of the samples is presented more
often to the model and the variation in ratings is decreased. This experiment
focuses on validating these two intuitions.

As described in Section 6.1 the Jester dataset has a sparsity of 56.34%. This
means that even after dividing it into a training and test set the dataset will
still have a high sparsity percentage. This allows for a sparsity analysis using a
real dataset. Figure 6.5 illustrates the effect of changes in sparsity on the reg-
ularization parameter. For sparser datasets a higher regularization parameter
needs to be chosen, which is as expected, as the reduced number of ratings can
quickly lead to overfitting. The largest standard deviation for this experiment
was 9.8 x 1073,

Taking it a step further and looking at the general accuracy of the model for
different levels of sparsity shows that accuracy decreases as the number of
ratings in the dataset decrease. The results can be seen in Figure 6.6. They agree
with our intuition that more ratings in the dataset will improve the accuracy.
From these experiments we can conclude that real-world recommender systems
need to be designed to account for changes in sparsity. The largest standard
deviation for this experiment was 1.4 x 1073,
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Figure 6.6: MAE on the Jester test dataset for varying sparsity for the ALS-CUDA al-
gorithm.

6.4 ALS-Scalability

Next we evaluate the scalability of the ALS-CUDA algorithm proposed in this
thesis. Figure 6.7 shows the scalability of the ALS-CUDA algorithm. The speedup
is calculated by measuring the time it takes for the algorithm to reach the thresh-
old of 0.5732 for the Douban dataset for various numbers of CUDA threads, and
is normalized by the time it takes one half-warp to do the same. The number of
threads is increased in steps of 128 (4 warps, or 1 block in our case). It can be
seen that the ALS-CUDA algorithm scales linearly up to 4096 threads, before
a significant drop in computational performance can be observed. An analysis
of the drop indicates that it is due to the limited amount of shared memory
available to each of the 8 SMXs in the Kepler architecture.

Our algorithm requires each half-warp to store its own symmetric matrix for
its dynamic batch matrix multiplication. This means that for a 16 dimension
matrix factorization, 136 32-bit elements need to be stored per half-warp. Using
this information to calculate the shared memory requirements for one block (4
warps) means that the symmetric matrix requires approximately 4.35kB. As
the algorithm also requires another 136 32-bit element matrix per half-warp
to store the matrix decomposition, as well as additional shared memory for
solving the linear system of equation, the total shared memory requirement
per block is 10.594kB.

The Kepler architecture supports a maximum amount of 48kB of shared mem-
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Figure 6.7: Illustrates how the ALS-CUDA-implementation scales with an increase in
assigned CUDA-threads.

ory per SMX [40]. This means that the number of blocks that can be resident
on each sMx for our algorithm, given a block size of 4 warps, is
48kB
—_— | = 6.
{10.594kBJ (62

This corresponds to 512 resident threads per SMX or, since the device consists
of 8 sMxs, 4096 resident threads on the device. This is considerably lower
than the 2048 maximum threads per sMX that is stated in the Kepler architec-
ture [40].

The effect of moving the symmetric matrices to global memory (2 symmetric
matrices per half-warp), and thereby decreasing the shared memory require-
ment of each block to approximately 2.09kB, was tested. Figure 6.8 illustrates
the number of blocks that can reside on a SMX for a given amount of shared
memory. As can be seen from the figure, the modified algorithm should not be
constrained by shared memory requirements, and each sSMXx should therefore
be able to have 16 resident thread blocks with 64 active warps. Figure 6.9
shows the results of scaling the modified ALS-CUDA algorithm, and it can be
seen that it scales linearly for a much large number of threads, until 12,288
threads (or 12 blocks per sMX). To support the full amount of 16 blocks per
SMX, the number of registers (local memory) per thread would have to be
reduced.
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Figure 6.10: Compares the scalability of both the shared memory and the global mem-
ory ALS-CUDA algorithm with an increase in CUDA-threads.

The figure shows that increasing the number of threads for the modified ALS-
CUDA algorithm, also increases the amount of global memory accesses, which
leads to constraints due to memory bandwidth. Figure 6.10 compares the shared
memory ALS-CUDA to the global memory version. The speedup for both algo-
rithms normalized by the one half-warp performance of the shared memory
implementation is shown. We see that the shared memory version performs
generally better due to the utilization of fast shared memory. However, we
also see that the performance difference between the two implementations
decreases as the number of assigned threads increases.

6.5 Speedup of Matrix Factorization Algorithms

The computational performance of the two matrix factorization algorithms,
Hogwild and ALS-CUDA, has been compared. This was done by using the best
parameters for each of the algorithms and measuring the time for each of them
to reach a certain threshold. For the Douban dataset this threshold was chosen
to be 0.5732,3 whereas the threshold for the Jester dataset was set to 0.71.4
Figure 6.11 shows the performance of the two algorithms for both datasets for

3. The value was chosen since it was achieved using matrix factorization recommender sys-
tems for the Douban dataset in Ma et al.2011 [35].
4. For the Jester dataset the value was hand-chosen, due to a lack of better options.
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the sequential CPU and the parallel GPU implementations. To be able to make
a fair comparison, the parallel SGD algorithm was measured once for the ideal
block/thread configuration of the ALS-CUDA algorithm and once for its own
ideal configuration. A scalability experiment, similar to the one in Section 6.4,
showed that the best performance of the SGD algorithm is reached when all 8
SsMxs have 2048 resident threads. From the figure we can see that significant
performance gains are achieved for both datasets when using the GPU. Table 6.3
displays the speedups for the ALS-CUDA, the SGD with ALS-CUDA configuration,
and the ideal SGD block/thread configuration for both datasets. For the SGD
implementations the configuration is specified as (block/thread).

Table 6.3: Speedup for the ALS-CUDA and SGD algorithm for the Douban and Jester

datasets.
Speedup Factor
ALS-CUDA SGD (32/128) SGD (128/128)
Douban 175.4 133.9 209.3
Jester 131.3 73.4 225.3

Figure 6.12 provides a close-up of the results for the parallel versions of the SGD
and the ALS-CUDA algorithm. We observe that the ALS-CUDA algorithm clearly
outperforms the SGD algorithm on both datasets, when the same configura-
tion is chosen. Additionally, it outperforms the ideal SGD configuration on the
Jester dataset, but is slightly slower than the SGD on the Douban dataset. The
difference in computational performance for the ALS-CUDA algorithm between
the two datasets can be explained by the fact that one epoch has to compute
updates for each row and each column. A dataset that has a low sparsity will
therefore require more row and column update computations compared to
a dataset with high sparsity. Including the fact that the ALS algorithm only
requires one parameter (the regularization parameter), it provides a good al-
ternative to the SGD in situations where a trade-off between performance and
the benefit of having fewer parameters can be made, or in situations where the
dataset has a high density.

6.6 Comparing Matrix Factorization Approaches
to RBM-CF

We compare the computational performance of the CUDA RBM-CF algorithm
to the two matrix factorization recommender systems, SGD and ALS-CUDA.
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As the RBM-CF algorithm did not reach the threshold for the Jester dataset,5
the plot compares them using a measure of reduction in MAE over time. This
means that the improvement in MAE compared to the initial MAE is measured
once each algorithm converges and is divided by the time it took to reach
convergence. Figure 6.13 shows that the RBM-CF algorithm is considerably
slower than both the SGD and ALS-CUDA algorithms, which agrees with our
findings presented in Section 4.2.2.

5. The reason for the RBM-CF algorithm not reaching the threshold could be due to the fact
that the whole training was performed using 1 Gibbs sampling step per update, or due to
the fact that the number of hidden nodes was not ideal.



Concluding Remarks

Recommender systems have become important parts of online services, such
as Amazon and Netflix. As these services are scaled to accommodate large
numbers of users, items, and ratings, it is essential to understand how the
underlying algorithms can be efficiently parallelized.

In this thesis, we have described and analyzed key issues involved when paral-
lelizing recommender systems on CUDA GPUs. We have developed ALS-CUDA, a
novel algorithm to solve the matrix completion problem on CUDA and compared
its performance to two other recommender system algorithms. The ALS-CUDA
algorithm clearly outperforms the RBM implementation, and is only slightly
slower than the SGD algorithm on the Douban dataset. It does outperform
the SGD algorithm on the Jester dataset, whilst additionally requiring fewer
training parameters. The scalability of the ALS-CUDA algorithm was analyzed,
and we observe that it scales linearly with the number of CUDA threads until
the shared-memory limit of the SMXs is reached.

7.1 Future work

On the performance side, the extensibility of the recommender system problem
to GPU-clusters could be investigated. This would help solve the problem of
having access to only a limited amount of memory. Especially for larger datasets,
implementations of CUDA-aware MPI, such as MVAPICH, could be used [58].

81
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However, distributed shared-nothing algorithms would have to be employed
due to the memory not being shared by different nodes. Many common shared-
nothing approaches to matrix factorization recommender systems are based
on the SSGD algorithm, where the computation of the local losses could be
performed using GPUs. This was, however, out of scope for this thesis.

The ALS-CUDA algorithm could be evaluated on more modern GPUSs of the
Maxwell architecture. With the introduction of compute capability 5.2, the
maximum amount of shared memory was doubled (compared to the Kepler
architecture) and sMs now offer 96 kB instead of 48 kB [10]. Generally, the
trend tends to go towards more shared memory per sM, which the ALS-CUDA
algorithm will benefit greatly from. For the modern Maxwell architectures, the
ALS-CUDA implementation is expected to support 8 blocks a 4 warps per SM.
The Maxwell architecture also allows the implementation of a hybrid between
the shared memory and the global memory version, where the dynamic batch
matrix multiplication is stored in global memory, but solving the linear system of
equations is completely done using shared memory. This hybrid version should
be able to support the maximum number of 16 blocks & 4 warps resident per
SM, as the Maxwell architecture increases the number of registers per thread
by a factor of 4 compared to the Kepler GPU used as part of this thesis.

The ALS-CUDA algorithm has been evaluated in this thesis in the context of
recommender systems. However, matrix factorization is applicable to many
fields, such as computer vision or document clustering [21, 59]. Analyzing the
algorithm in a non-recommender system context could provide further insight
into the advantages and disadvantages of the ALS-CUDA in a more general
setting.

On the accuracy side, an investigation of the algorithms extensibility could
be performed. Especially the matrix factorization methods can be extended
to include additional features, which would improve their accuracy. However,
adding more features might also introduce additional challenges with regards
to the CUDA programming model, that need to be considered. On the other
hand, hybrid systems could be tested for real-world applications, where matrix
factorization recommender systems are used and combined with RBMs. The
effect on accuracy of using stale RBMs combined with matrix factorization
systems could be analyzed and might allow for more accurate high-performance
systems, in which the RBM model is updated less frequently due to their lack
in performance.

A more thorough analysis of when the SGD performs better than the ALS-CUDA
algorithm and vice versa is also part of future work and was out of scope for
this thesis.
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7.2 Conclusion

As part of this thesis we have successfully designed and implemented a novel
ALS-WR algorithm on CUDA—ALS-CUDA—and have achieved significant speedup
factors of up to 175.4 over a sequential CPU implementation of the ALS-WR
algorithm. To design the algorithm, inspiration was taken from both the SGD
and RBM algorithms. A comparison of the three algorithms indicates that the
ALS-CUDA algorithm outperforms the SGD algorithm for small, dense datasets,
whereas the SGD algorithm performs better on sparser datasets. Additionally,
our results show that both the SGD and ALS-CUDA algorithms outperform the
RBM algorithm.
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Theoretical floating point
operations calculation

This appendix explains the origin of the results presented in Figure 1.2. The the-
oretical number of floating point operations per second (TFLOP/s) is calculated
using

TFLOP/s = C X f X FLOP/c, (A1)

where f denotes the frequency of each of the C cores and FLOP/c is the num-
ber of single or double precision floating operations that can be performed
per cycle by a given architecture. The GPU and CPU information was taken
from the specifications provided by NVIDIA! and Intel.2 In cases where both a
base and boost clock frequency where available the base clock frequency was
chosen.

This can be illustrated using an example. The GeForce 780 Ti has 2880 cores
with a base clock frequency of 875 MHz, where each core can perform two

1. nvidia.com
2. ark.intel.com

AN
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single floating point operations per cycle leading to

TFLOP/s = 2880 X 875 x 10°cycles/s x 2FLOP/cycles

(A.2)
= 5040GFLOP/s.
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