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Abstract

Accurate predictions of free energies and the corresponding enthalpies and entropies
from computer simulations are invaluable for understanding enzymatic catalysis and
drug actions in terms of actual structure activity relationships. To facilitate the
management and handling of the enormous amount of data generated when calculating
thermodynamic parameters, we have developed a high-throughput interface (Qgui) for
automated free energy and empirical valence bond calculations. We present simulations
of cold- and warm-adapted trypsin that quantitatively capture experimental catalytic
rates of the two enzymes and further yield high-precision Arrhenius plots, which show
the characteristic trends in activation enthalpy and entropy. The relationship between
these parameters and the 3D structure is reflected by significantly different internal
protein energy changes during the reaction. The origin of this effect is not localized to
the active site, but in the outer regions of the protein, where the cold-active enzyme has
higher degree of softness. Stiffening the outermost loop regions in cold-adapted trypsin
completely changes the enzyme from cold- to warm-adapted in terms of enthalpy and
entropy. Several structural mechanisms for softening the protein surface in warm-
adapted trypsin are also identified, together with key mutations responsible for this
effect. The effect to the thermodynamic activation parameters induced by remote
mutations was further investigated utilizing purine nucleoside phosphorylase (PNP).
Here the exact reaction mechanism was not known, and it was thus necessary to resolve
this first. The presented reaction mechanism reproduce experimental trends for both
reaction rates and thermodynamic activation parameters in native and mutated PNP.
Our calculations also show that the human PNP substrate specificity for 6-oxopurines
over 6-aminopurines originates from significant differences in electrostatic
preorganization. Both calculations on trypsin and PNP show that mutations distant to
the active site alter the enthalpy-entropy balance without significantly changing the
reaction rates. The enthalpy-entropy compensation induced by the mutations originates

from altered protein surface softness.
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1 Introduction

Almost 200 years has passed since the French chemist Anselme Payen discovered the
first enzyme, distase (1). Since then the enormous catalytic power utilized by enzymes
has remained one of the key secrets in biology. Catalytic power here means the ability to
significantly increase the rates that chemical reactions use from reactants to products.
Enzymes play fundamental roles in almost all life processes, allowing cells to carry out
reactions that otherwise would not occur on biological useful timescales, rendering
them literally indispensable for any living organism. Their involvement in transcription
and translation of genetic information, signaling control, energy transduction and a great
variety of metabolic reactions, underscores why there exists a broad interest in
understanding the origin of this catalytic power on a molecular level. However, the
complexity of the numerous bonded and non-bonded interactions functioning as the
machinery behind enzyme-catalyzed reactions makes the problem of identifying the
responsible mechanisms at a molecular level far from intuitive.

One very useful way of narrowing the problem down is to investigate nature’s
own enzyme design strategy by studying differently adapted enzyme orthologs. A
particularly fascinating aspect in this respect regards the mechanisms involved in the
adaptive capabilities for life in extreme environments. For example, enzymes from cold
and warm adapted organisms typically display very similar three dimensional (3D)
structures and regions with highly conserved amino acid sequences, but their
operational temperature optima are significantly different. A comprehensive
understanding of such enzyme structure - activity relationships is of considerable
interest, not only to provide information regarding evolutionary adaptation processes,
but potentially also to enable rational design of enzymes. Mutational experiments have
been useful for identifying catalytic factors in enzymatic reactions (2), but they cannot
uniquely identify the mechanisms of catalysis or environmental adaptation. That is, no
current experimental techniques can provide direct correlations between enzyme-
substrate (ES) complexes and the detailed contributions to their transition states (3). In
principle, computer simulations can provide a unique way of analyzing enzyme reaction

energetics and establishing such correlations.



The ability to efficiently calculate free energies reflecting reality is of uttermost
importance as the energetics often provides the most important and useful link between
structure and function of biomolecular systems. Moreover, binding free energies,
solvation energies and activation free energies from thermodynamic and Kkinetic
experiments are directly comparable to results obtained with simulations techniques. It
is however difficult to evaluate enzyme - structure activity relationships solely based on
the catalytic barriers for different temperature adapted enzyme orthologs as they

usually are similar at room temperature (4). It thus becomes critical that

thermodynamic activation parameters (AH* and AS*) are reproduced in addition to high
precision free energy profiles along the reaction pathway. The only way to do this
computationally is to obtain Arrhenius plots for the activation free energy as a function
of the temperature. As this involves calculating a significantly large number of free
energy profiles over a suitable temperature range, the extensive sampling by molecular
dynamics (MD) simulations precludes the use of most standard quantum mechanics
(QM) / molecular mechanics (MM), QM /MM approaches. However, the empirical valence
bond (EVB) model (5, 6) utilized in the presented work provides a very efficient method

for this purpose.

1.1 Objectives of Study
The main objectives of the presented work in this thesis can be summarized as follows:
e Develop a graphical user interface for high-throughput setup and analysis of free
energy calculations and EVB simulations in biological systems.
e Investigate the molecular mechanism of trypsin temperature adaptation.
e Investigate the catalytic mechanism of purine nucleoside phosphorylase (PNP).
e Investigate the impact on the enthalpy - entropy balance induced by distant
mutations to the active site in trypsin and PNP.
The software development was crucial for the presented work as it enabled
comprehensive submission and analysis of high precision free energy calculations that
otherwise would be exceedingly time dependent and cumbersome. It was utilized
advantageously for exploring enzyme structure - activity relationships through
extensive free energy -calculations. The possible origin of trypsin temperature

adaptation was reviewed, and the enthalpy - entropy balance was explored as a function



of distant mutations/modifications to the active site in both trypsin and human PNP. In
the latter case, the exact enzyme reaction mechanism for the glycosidic bond cleavage

step was not known and it was thus necessary to resolve this first.






2 Enzyme Catalysis: Quid Agis?

In this chapter some relevant concepts and proposals put forward to rationalize the
catalytic effect of enzymes will be introduced to emphasize the motivation for the

presented work.

2.1 Defining the Catalytic Effect

Enzymes catalyze the conversion of substrates (S) into corresponding products (P).
However, before catalysis takes place a substrate has to diffuse and fit into the active site
generating an enzyme-substrate (ES) complex. The ES complex is then converted to an
enzyme-product (EP) complex prior to release of the product (P). The process can be

illustrated schematically by the following simple generic enzymatic reaction:

E+Se——ES—EP — E+P (1)

1

Here k1, k-1and kcat are the reaction rate constants for the formation and dissociation of
the ES complex, and the catalytic step resulting in the EP complex, respectively. It has
previously been shown that many enzymes appear to have evolved to optimize the

catalytic efficiency (7) given by kcar/Km where
(k, +k.)
KM — k cat (2)

1

is known as the Michaelis constant, which represents the substrate concentration at
which the reaction rate is half of the maximum rate. Either maximizing kc.: or minimizing
Kwm can optimize the catalytic efficiency. In the work presented in this thesis ket has been
considered through its relation to the activation free energy from transition state theory:

k.T —AG* k.T ¥ ¥
k =x-L—exp AG =x—L2—exp AS| _AH (3)
@ p kT h k, kT

B

Here k is the transmission coefficient (generally assumed close to 1), ks is the Boltzmann
constant, h Planck’s constant, T the temperature and AG*, AH* and AS* are the activation
free energy, activation enthalpy and activation entropy, respectively. However, to
quantitatively evaluate enzyme catalysis it is necessary to define the catalytic effect
relative to something.

The most logical reference to an enzyme-catalyzed reaction is the uncatalyzed

reaction in water (see Figure 1). Obviously, the mechanism of the reaction can be



different in water than in the enzyme, and this must be taken into consideration. As
previously pointed out by Warshel and co-workers (5, 6), investigating how enzyme
environments are able to accelerate reactions can instead be more beneficially
compared to a reference reaction in water with the same mechanism. As illustrated in

Figure 1, this involves comparing the free energy for the solvent cage relative to that of

the same reaction in the enzyme.
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Figure 1: Free energies along a reaction coordinate illustrated for a reaction in solution (blue dotted circles) and in
enzyme (gray shape). In solution, the substrate (S) and the reactive group (R) must move from separate solvent shells
to become within reacting distance in a single solvent cage. It is the free energy required to form the solvent cage

transition state (Agﬁage) that is of interest since it is comparable to the activation free energy of the enzyme-substrate

complex (Agt,,).

Here the solvent cage refers to the situation of moving the substrate and the reactive
group from individual water shells to a reacting distance in the same solvent cage. Thus,
the effect of the enzyme to the reaction rate can be observed simply in terms of changing
the surrounding environment of the reacting fragment. Relevant k .4, values can
furthermore be obtained both from experimental information and ab initio calculations

for appropriate reactions in solutions (5, 6). The task then reduces to finding the true

origin for the fact that Agfat is significantly lower than Agfage. Thus, catalytic power is in



the context of the work presented in this thesis referred to as the reduction in Agfat

relative to an appropriate reference reaction in water, Agfage.

2.2 Are Free Energies the Answer to Everything?

As indicated above, free energies are unquestionably a key parameter for understanding
enzymatic reactions and also chemical reactions in general. This is particularly true from
a computational point of view since energetics from thermodynamic and Kkinetic
experiments are directly comparable to those obtained with simulations techniques.
Moreover, in Biochemistry 5 edition by Berg et al. (8) under section 8.2 it is stated that:
“To fully understand how enzymes operate, we need to consider two
thermodynamic properties of the reaction: 1) the free-energy difference between
the products and reactants (AGy) and 2) the energy required to initiate the
conversion of reactants to products (AG#)".
From this statement it is easy to get the impression that the catalytic power of enzymes
can be rationalized solely based on AGoy and AG*. Clearly, a key feature of enzymatic
reactions is the observed lowering of the activation free energy compared to the
uncatalyzed reaction. However, the free-energy difference between the products and the
reactants is completely independent of the enzyme. That is, AGy (S =2 P) is a state
function and therefore unaffected by the reaction pathway and corresponding energetics
between its initial and final state. Considering the free energy difference between the
products (P) and the reactants (R) can consequently not reveal how enzymes operate. As
can be recognized from Eq. 1 and Figure 1, it makes more sense in this context to
consider the free energy difference between the EP and ES complex relative to an
appropriate solvent cage reaction. Furthermore, realizing that enzymes are able to
drastically increase chemical reaction rates by lowering the activation free energy does
not explain the origin of the catalytic effect. It has, however, been obvious for decades
(9) that enzymes must reduce the catalytic barrier by interacting differently with the ES
and ES* states compared to the relevant reference reaction. However, as the concept of
rationalizing the origin of the catalytic power is an energy issue, resolving it without the
ability of dissecting the observed energy into individual contributions becomes very

difficult.



Computer simulations provide a unique way of analyzing enzyme reaction
energetics at a molecular level. However, analysis of indirect or circumstantial factors
such as electrostatics, hydrophobicity and flexibility alone does not suffice for obtaining
conclusive evidence. In this respect it is critical that reliable free energy profiles for the
reaction pathway reproducing experimental reaction rates can be obtained. That is, it is
essential that the observed Agffat — Agfage can be reproduced. If this is accomplished,
revealing which energy components are responsible for the observed effect is in
principle simple. Along the appropriate reaction coordinate, it must ultimately be
possible to translate the corresponding energy components to the enzyme 3D structure.
Such free energy calculations have for example previously been applied to identify the
general notion that electrostatic effects play an important role in stabilizing the

transition state of enzymatic reactions (10, 11).

2.3 Electrostatic Preorganization Explains Enzyme Catalysis
From extensive EVB studies reported in the literature, it has consistently been found
that the largest catalytic effect is associated with electrostatic contributions (6, 12-17).
As also mentioned above, it is the electrostatic stabilization of the transition state that is
improved in the enzyme with respect to the solvent cage. This conception has become
more or less the general notion for understanding and explaining the origin of enzyme
catalysis. However, even though the importance of electrostatic contributions to enzyme
catalysis was proposed as early as 1967 (18), the finding is not as trivial as implied here.
Enzyme electrostatic contribution to catalysis was at first seemingly inconsistent
with studies prior to computer modeling. This was for example challenging since
experiments with model compounds in solutions were not able to reproduce large
electrostatic effects, even with ionized groups covalently linked to the enzyme aligned to
stabilize the ionic transition state (19, 20). It has also been argued that protein active
sites must have low dielectric constants to enhance the electrostatic effects relative to a
reaction in aqueous solution where the dielectric constant is large (21). A problem with
the last statement was that ionized groups that were supposed to be the source of
electrostatic effects in proteins would not be ionized in low dielectric sites. In fact, it has
been shown that the activation barrier will increase in a hypothetical low dielectric

protein site due to desolvation effects (22). However, as pointed out in references (3, 23,



24), protein active sites are usually very polar heterogeneous sites. Consequently, such
arguments become irrelevant in this respect. Thus, it could be argued that the same
stabilization effect as for enzymes can be obtained in other polar solvents that can
reorient their dipoles toward the charge distribution of the transition state. The fact
that the average electrostatic (q) interaction between the transition state of an enzyme
and the surrounding dipoles (), (4 Ugﬂ), is not larger than the corresponding interaction
in the solvent cage, (4Uy},), became the big puzzle in explaining the electrostatic
stabilization effect (23). However, in solution it costs substantial energy to reorient the
solvent dipoles to their transition-state configuration. Generally, it is found that about
half of the solvation free energy (4G, ) associated with charge-dipole interactions is

spent on dipole-dipole repulsion, (4U,,), so that (23)

AG. = <AUW>+<AUW> = %<AUW> (4)

The explanation to this, as demonstrated in reference (23), is that enzymes have already
paid a significant part of (4 Uuu> during the folding process. The folding energy is used to
compensate for the dipole-dipole repulsion and to align the active site dipoles in a way
that allows the solvation of the transition state (4Gs,) to approach (4U,,). In other
words, enzymes are preorganized with respect to their dipoles, and this is the true
origin of the observed electrostatic stabilization of the transition state (5, 23). The
dipole-dipole repulsion term here is basically the reorganization energy (5, 25) involved
in the process of forming the transition state charges. Thus, the observed electrostatic
stabilization is a result of smaller reorganization energies in enzyme-catalyzed reactions
with respect to the solvent cage reaction.

The electrostatic preorganization concept is today well established and has
existed for decades (23) explaining the origin of enzyme’s catalytic power. It has been
applied numerous times in the literature to argue for and against popular assumptions
and misconceptions aiming at explaining how enzymes are able to significantly increase
chemical reaction rates. For further reading beyond the cases mentioned above, see e.g.
references (3, 5, 16, 17, 26, 27) and references cited therein. However, the origin of
catalytic rate optimization in cold-adapted enzymes, in terms of actual structure-

function relationships, still remains one of the most intriguing problems in biology.



2.4 Clues from Nature’s Enzyme Design in Cold Adaptation

Organisms adapted to survive in cold environments (psychrophiles) display a
remarkable ability to grow and colonize at temperatures close to the freezing point of
water. As can be recognized from Eq. 3, a key problem from the viewpoint of chemical
kinetics is the exponential decrease in reaction rates upon decreasing the temperature.
Decomposing the activation free energy (AG*) into entropic (—TAS*) and enthalpic
(AH*) contributions further reveals that it is AH* giving rise to the temperature
dependency (Eq. 3). Lowering the temperature from 37°C to 0°C for a mesophilic
enzyme typically results in a 20 - 250 fold reduction of the activity (28). Obviously, life
in cold environments requires a vast array of adaptive features at nearly all level of the
cell architecture and function, including protein stability and enzyme kinetics.

The fact that different temperature adapted enzyme orthologs usually display
similar overall activation free energies around room temperature (29), renders it
challenging to reveal the molecular source of such adaptations. Thus, in light of the
discussions in the previous sections, the origin of catalytic rate optimization cannot be
resolved solely by reproducing A giat — Agfage. However, there exist a seemingly
universal characteristic that catalyzed reactions of cold-adapted enzymes display lower
enthalpy and a more negative entropy of activation compared to their mesophilic and
thermophilic counterparts (28-30). The decrease in AH* is furthermore believed to be
the primary adaptation in psychrophilic enzymes (4, 31, 32) rendering the reaction rates
less temperature dependent (Eq. 3). The observed lowering of AS* at the expense of AH*
has also led to the long-standing assumption that cold-adaption originates from
increased flexibility of the active site (30). Surely, increased flexibility in the active site
would require more ordering of the substrate and the active site along the reaction
coordinate as the reaction barrier is surmounted (i.e., a more negative AS¥). Regardless
of this, no strong experimental support for this hypothesis seems to exist. For example,
X-ray analysis of warm- and cold-active trypsins did not indicate any overall flexibility
differences between the two enzymes (33). Moreover, recent computer simulations for
different temperature adapted citrate synthases, reproducing the important trends with
respect to the thermodynamic activation parameters, showed that the flexibility of the
highly conserved active site residues was close to identical (34). Instead, it was indicated
that differences in protein softness outside the active site appeared to be correlated with

the differences in the thermodynamic activation parameters.

10



If computer simulations are to successfully aid in resolving the origin of cold
adaptation, it is crucial that the characteristic enthalpy-entropy balance can be
reproduced in addition to reliable free energy profiles along the reaction pathway. As
already stated in the introduction chapter, activation enthalpies and entropies can be
obtained from Arrhenius plots, but this is extremely demanding in terms of
computational costs and time. This is likely the reason why there to date exist very few
examples of Arrhenius plots obtained with simulation techniques for enzyme reactions
in the literature. In the work presented in this thesis, enzyme kinetics has been
extensively calculated for trypsin (papers II and III) with a particular focus on the

distinctive enthalpy-entropy balance obtained from high precision Arrhenius plots.
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3 Computational Approaches

In this chapter the theoretical framework that the presented work is based upon will be

introduced.

3.1 Force Fields

The interactions between atoms in a system are in molecular mechanics described by an

empirical or semi-empirical derived energy function (U,,.), which typically takes the

form
U = Z Sk, (b=, +Z Sk, (0=0,)°
. bonds angles
+ ) —k (E-&)) +tz 5k¢(1+cos(nq)—5)) (5)
Imprapers orsions
q. AA BB
nonbonded 4‘7(7607’;.]. nonbonded ri] r;‘j

The first 4 terms in Eq. 5 describe the bonded interactions in the system. Here the k’s
represent the varying force constants for bond lengths (b), angles (), improper dihedral
angels (£) and torsions (¢). Bond stretching, angle bending and improper dihedral
bending are described with harmonic functions relative to the reference bond length
(bo), angle (6o) and improper dihedral angle (&o), respectively. Torsions are described in
terms of a series of periodic functions with periodicity n and phase shift 6. The last two
terms in Eq. 5 define the non-bonded electrostatic and van der Waals interactions in
terms of the interatomic distances (rj;). The electrostatic interaction energy between
each atom pair is calculated according to Columb’s law, where q; and g; are the partial
charges of atoms i and j and & denotes the electric permittivity of vacuum. Finally, the
van der Waals interactions between two atoms i and j are defined by the Lennard-Jones
potential with corresponding atom type dependent parameters A;, 4, Bi and B; where the
' and rij‘6 terms describe the short-range Pauli repulsion and the attractive long-
range dispersion, respectively.
The parameters described above and in Eq. 5 are typically determined by
calibration against results from experimental methods such as spectroscopy and

crystallography and from QM calculations. In the work presented in this thesis, the

OPLS-AA (35, 36) force field was applied.

13



3.2 Molecular Dynamics

Potential energy functions can be utilized to locate energy minima of molecules, but real
biological systems are not static entities trapped in a frozen energy minimum. They are
constantly changing due to thermal motions. To reflect reality computationally it is
necessary that these motions are captured so that the potential energies can be related
to experimentally measurable thermodynamic properties. Thus, an ensemble of
thermally accessible configurations must be generated and sampled according to the
Boltzmann distribution. That is, the probability P of a system being in a state with

potential energy Upoc at a temperature T must be related as
P o< exp(—Upot /k,T) (6)

where kg is the Boltzmann constant. Such configurations can be obtained by moving the
atoms as a function of time according to Newton’s law of motion, a common method

known as molecular dynamics (MD) simulations. The force acting on any atom i (Fi) at

any time ¢t is computed from the gradient (V) of the given force field potential energy

function (Eq. 5). This is then used for calculating the acceleration (a;) of the atom

according to Newton's second law

F
a(t)=—-= —ivium (7)
m. m.

i i
where mj is the mass of the given atom. By using a suitable time-step, At, new velocities
and coordinates at time t+At can be approximated from truncated Taylor series
expansions. In the presented work, the molecular dynamics package Q (37) was used for
generating configurations for the time development of the molecular systems. Here the

leap-frog Verlet MD algorithm is utilized for obtaining the velocities (vi) and positions

(ri):

g(tmt):ri(t)wi[u%]m 8)

vi(t+%j=vi£t—%j+ai(t)m (9

The initial velocities (t = 0) are assigned randomly from the Maxwell-Boltzmann

distribution, P(vi), at a given temperature
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Pv) m, mv’ (10)
V. )= -ex
P\ 2wk T P\ 2k T

Upon simulating biomolecules, the time step is usually set to 1 or 2 fs to properly sample
the fastest vibrations. MD simulations were utilized to generate configurations for the

molecular systems in all the included papers, I-V.

3.3 Statistical Mechanics

The information generated at the microscopic level, including atom’s positions and
velocities, from MD simulations would not have been very useful if it could not have
been linked to experimentally determined macroscopic properties. Fortunately this
connection is made possible through statistical mechanics (38) where a given

macroscopic property is formulated in terms of an ensemble average, (A):
(4) i = | AP DI (D 1YID" " (1

The desired property A is given as a function of momenta p;(t), ..., px(t) and positions
r;(t), ..., ry(t) of N particles at time ¢ in the abbreviated 6N-dimensional integral above.
Every configuration with momenta p and position r is weighted by the corresponding
probability density p. In the canonical ensemble where the number of particles N,
volume V and temperature T are constant, the probability density takes the form of the

Boltzmann distribution
exp(-BE(p.r))
(FNY) " [[exp(~BECp.r))dp" dr"

where f = 1/kgT, h is the Planck’s constant, and N! is the quantum correction for

p(p,r)= (12)

indistinguishable particles, which is the general case for nearly all of matter. The
denominator in Eq. 12 is known as the classical canonical partition function, Q. The
(h3NN!)~1 term is a correction factor for agreement with the quantum behavior in the
high temperature limit, where quantum systems behave like classic ones. The partition
function can be simplified since the total energy, E, is the sum of potential (U) and kinetic

(K) energies that are independent and thus separable:

1
"N

Q(T,V,N)= ![ [exp(~Bu(r))dr" || [exp(-BK(p))dp" | (13)
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The first integral in the above equation is the configurational integral Z that only
depends on the positional part of the degrees of freedom and the potential energy

function. The last integral can be evaluated analytically and has the general solution

£l

2mm | 2
[ exp(-BK(p))dp" =(7] (14)
Thus, the total canonical partition function simplifies to
3N
1(2mzm)? Z(T,V,N)
T,V,N)=— exp(—BU(r))dr" =——2121-~= 15
QT.V.N) N!(hzﬁ] Jexp(-Bu(r)) NG (15)

where A(T) = (Bh?/2mrm)*/? is the thermal de Broglie wavelength. Thus, the task of
evaluating a property A actually amounts to the task of evaluating the configurational
partition function Z. Moreover, the fundamental principle in statistical mechanics, the
ergodic hypothesis, states that the time averages for a single system equal the ensemble

average. In MD simulations the time average of 4 is determined from

M

(4),=(4) =1 | A(BEVX(O)de = T A(pIXC) (16)

! t=1
where A(p(t), r(t)) is the instantaneous value of the property 4, t is the simulation time
and M is the number of time steps in the simulation. One goal of MD simulations is
therefore to generate enough representative conformations such that the equality in Eq.
16 is satisfied. When this is fulfilled, experimentally relevant information regarding
structural, dynamic and thermodynamic properties may be calculated using a feasible

amount of computer resources.

3.4 Free Energy Perturbation

MD simulations can be utilized to generate an ensemble average of thermally accessible
configurations of an equilibrium state. From this average, corresponding potential
energies can readily be calculated. More commonly, the interesting and desired
information is relative energetics related to changes such as ligand binding or chemical
modifications to the enzyme or ligand. However, the time scales involved in for example
ligand binding events are extremely long compared to what is typically reached

computationally. Instead of waiting for these processes to happen spontaneously, free
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energy calculations can be formulated in terms of estimating the relative free energy
difference, AG, between two related equilibrium states.
The free energy difference between two states (¢, = ¢,) can be obtained from

the Zwanzig’s exponential formula (39):

AG=—B"In(exp(~PAc)) (17)

¢

Ac is the difference (&2 - €1) of the potential energies (e.g. AUpo: in Eq. 5) for the two
states, § = 1/kpT and (...}, denotes averaging over the configurations representative
of the initial state. The Zwanzig’s formula thus enables free energy calculations from
simulation methods by replacing the ensemble average by an average over many
sampled conformations. It should be noted that Eq. 17 assumes that the configurational
sampling is carried out in the isothermal-isobaric ensemble. That is, applying constant
temperature (T) and pressure (P). Using the canonical ensemble (N, V, T) would instead
yield the corresponding Helmholtz free energy (AF). For Eq. 17 to be useful It is
however critical that the thermal accessible regions of the two potentials have a
significant degree of overlap. Thus, the configurations sampled on the potential €; must
have at least a non-vanishing probability of also occurring on €, and vice versa. This
means that the two sampled states need to be very similar and this is generally not the
case. The solution to this rather hopeless situation is the division of the free energy
calculation into smaller steps.

In the free energy perturbation (FEP) scheme an alchemical transformation
between two states (¢; — ¢,) is driven by a linear combinations of the corresponding

potential energy functions (€; and €,) via a set of intermediate mapping potentials:
e =A e +(1-2 )¢, ;A €[0,1] (18)

In the above equation, €, denotes the effective potential energy of a particular FEP
window where the coupling parameter 4,, is decremented from 1 to 0 in n steps. The
resulting series of unphysical hybrids between state 1 and 2 are thus made sufficiently
similar for Eq. 17 to be valid. Obviously, such hybrid molecules would never exist in
reality. The fact that the free energy is a thermodynamical state function however
implies that such intermediate states still can be used with confidence. Finally, the total
free energy difference associated with the perturbation is calculated as a sum over the n

intermediate states by modifying Eq. 17 accordingly
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AG = ﬁlniln<exp[—[3(.sm+1 -.)]) (19)

where (...),, denotes the average on the mapping surface €,,. Combining the FEP
method with a thermodynamic cycle (Figure 2) enables calculation of relative binding

free energies between two similar compounds, as presented in paper L.

B ¥

+ o ——> 22
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AGA—)B AGA—)B
B
AW ) AG"bind N
vku:(R
+ g, 28 s % *
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Figure 2: Thermodynamic cycle of ligands A and B binding to a protein. The horizontal paths are measured
experimentally, whereas the vertical paths are calculated computationally. The blue arrow indicates the ligand region
that is changing.

The FEP calculations, represented in Figure 2 by the vertical lines, are performed with
the ligand transformation A - B in solution and bound to the protein. The horizontal
lines represent the experimentally obtained binding free energies of A and B to the
target protein. Historically FEP has been limited to situations where the differences
between molecules A and B are small due to convergence problems. However, recent

published works addressing this issue indicate that more complex transformations can

be accomplished by introducing improved FEP schemes (40-42).

3.5 Linear Interaction Energy

Upon predicting ligand binding free energies, the FEP method presented in the previous
section is often limited to situations where the difference between the two potentials of

interest is small. However, several semi-empirical methods have been proposed for the
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determination of absolute binding free energies, for example linear response
approximation (LRA) (43, 44), molecular mechanics/Poisson-Boltzmann/surface area
(MM-PBSA) (45) and the linear interaction energy (LIE) method (46). In the presented
work, the LIE method has been implemented and utilized for predicting binding free
energies (paper I). Performing two separate MD simulations, one with the solvated
ligand and one with the solvated protein-ligand complex, allows the binding free energy

to be estimated as

AG,,, =0 (<U1Vdsw >bound - <Ulviw >free ) B (<U1€15 >bound - <Ule*15 >f,~ee ) Y (20)

where el and vdW are electrostatic and van der Waals interactions of the ligand with
surroundings (I-s), respectively, in water (free) and in the protein (bound). In the above
equation, a and 3 are theoretically and empirical derived scaling constants for the polar
and non-polar components of the free energy of binding, respectively. Initially, § was
derived from the linear response approximation (LRA) for electrostatic forces with a
value of 0.5 (43, 47). However, minor deviations from the exact LRA scaling of 0.5 have
been demonstrated for hydration free energies and these are important to take into
account in order to improve the accuracy (48, 49). The non-polar scaling factor, a, has
been estimated using a pure empirical approach to a value of 0.18 (46). The final
parameter in Eq. 20, y, is an offset parameter usually necessary upon estimating
absolute binding free energies, but not required for calculations of relative binding
affinities. The parameter has been found to correlate to the hydrophobicity of the
binding site (50) and could be interpreted as reflecting the energetics of water expulsion

from the binding site (51).

3.6 Empirical Valence Bond

Being able to calculate free energy profiles along the reaction pathway is essential to
gain a quantitative understanding of enzyme catalysis. Chemical reactions involving
bond breaking and formation and their corresponding potential energy surfaces are
most commonly obtained with ab initio QM approaches. Such methods have become
quite effective in treating small molecules in gas phase (52), but quickly grow too
computationally expensive for larger systems. This has to some extent been addressed
by ab initio QM/MM methods (53, 54), but despite recent advances it is still not at a

stage where these methods can be used in fully quantitative studies of enzyme catalysis
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(54-57). However, using a semi-empirical QM/MM approach that is calibrated on the
energetics of an appropriate reference reaction can drastically reduce the computational
costs. In the presented work, the EVB method (5, 6) has been heavily utilized (papers I-
V) as it provides probably the most effective way of simulating enzyme reactions, and
also for comparing reactions in different environments.

With the EVB method (5, 6) a reactive potential energy surface is obtained by
letting the reactant and product diabatic energy functions (resonance structures)
interact via an empirical Hamiltonian. The diagonal elements of the Hamiltonian are

described by a potential energy function somewhat similar to that in Eq. 5

H =c=U +U +U +U +U +U
ii i bnd ang tor imp nb,rr nb,

LU +a™ (21)
where the subscripts bnd, ang, tor, imp and nb are abbreviations for bond, angle, torsion,
improper and non-bonded, whereas r and s denotes the reacting fragments and the
surroundings, respectively. Here, the use of Morse rather than harmonic potentials
allows the changing bonds to be broken and formed. The last term of the Hamiltonian,
a'*1, represents the intrinsic gas-phase energy of the given resonance structure with all
fragments at infinite separation. The off-diagonal matrix element, Hj, represents the
quantum mechanical coupling of the states. That is, the adiabatic mixing of the diabatic
free energy functions necessary for calculating the reaction free energy profiles. It can be

applied as a simple constant or an exponential function
HU, :Hﬁ :Al.j exp(—/,tl_]_ r,) (22)

where A;; and pj; are fitting parameters for the two states (i and j) and ry is the distance
between a specified pair of atoms (k and 1). In the presented work, Hjj has been used
simply as a constant by setting u;; = 0. For a 2-state reaction the resulting Hamiltonian

thus becomes:
H: 1 12 (23)

The adiabatic ground-state energy (E4) of the system can be obtained by solving the

characteristic equation:

‘H—IEg‘zO (24)
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g

1 2
Eg:E(61+62)— (6,-¢) +4H,, (26)
In similarity, the adiabatic ground-state energy and the corresponding eigenvector

coefficients (Cy) are obtained by solving
HC =EC, (27)
that for a 2-state reaction yields the general solution
2 2
Eg =ce +C6,+2cc,H (28)
The free energies are evaluated by adiabatically changing the system from one diabatic
state to another. This is done as linear combinations of the corresponding potential
energy functions (€; and €,) via a set of intermediate mapping potentials, €,, (see Eq. 18
). The free energy, AG,,, of stepwise decreasing A from 1 to 0 (Eq. 18) is then evaluated
using the FEP procedure described in section 3.4 (Eq. 19). The free energy functional,

AG (4€,), which corresponds to trajectories moving on the actual adiabatic ground state

potential is finally obtained from the FEP-umbrella sampling (FEP/US) method (5, 58)

AG(Ae )= 2 Wm(AGm -B7 ln<exp—[ﬁ(Eg(Aen)—em(Aen))Dm)/ 2 w (29)

m>Ae,

where A€, is the discretized reaction coordinate that is defined as the energy gap
(€1 — €3). This reaction coordinate can be particular powerful when one is attempting to
represent the entire multidimensional conformational space of the solvent by means of a
single reaction coordinate (5, 59). The w,,,/Y.w,,, term in Eq. 29 furthermore ensures that
the different contributing vectors to the reaction coordinate interval are weighted
proportionally to the total contribution to the respective interval.

A key feature of the EVB method with respect to enzyme catalysis is that it relies

on the calibration of empirical parameters (a‘*! and H; in Eq. 21 and 22, respectively)
for the energetics of a suitable reference reaction (e.g. Agiage in section 2.1). Once

calibrated, the same parameters are used to describe the same process in the enzyme, or
any other different environment for that matter. Not only does this procedure eliminate

many potential force field errors, it allows one to directly compare how the presence of a
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different electrostatic environment affects the energetics of the studied reaction (see

Figure 1).

3.7 Thermodynamic Activation Parameters
With the EVB method described in the previous section, activation free energies can
readily be computed. However, as already discussed in the introduction and section 2.4,
it is critical that also the enthalpy-entropy balance can be reproduced upon studying
enzyme structure-activity relationships involved in temperature-adaptation, so that

AG* = AH* —TAS* (30)
The activation enthalpy is in principle the difference in energy between ES* and ES
(Figure 1) in terms of heat content given as

AH* = AU* + PAV? (31)
where P is the pressure and V the volume. However, the pressure-volume term is
completely negligible and AH* is determined by the corresponding change in the total
internal energy of the system. The latter can be decomposed into contributions from the
reacting fragments (i.e., the EVB atoms whose interaction parameters change), rr, their
interactions with the surrounding, rs, and the interactions within the surrounding, ss:

AH* = AUfr +AUfS +AUfS (32)

The activation entropy, which depending on whether the degree of order is lower
(4S* > 0) or higher (4S* < 0) with respect to the ground state, can then in its most

simplistic terms express how easy the ES*is formed through
AS*= (AH* —AGH )T (33)

However, as the last term of Eq. 32 pertains to a huge number of interactions within the
surrounding protein (p) and solvent (w)

AUjS = AU; +AU;W + AUfVW (34)
the resulting energy is extremely large. Consequently, it becomes practically impossible
to obtain a converged value for this quantity directly from MD simulations. Thus,
obtaining reliable values for AH* and AS* through the seemingly simple relationship of
Eq. 32 and 33 becomes very difficult. A solution to this hopeless situation is to calculate
AG* with sufficient high precision as a function of the inversed temperature over a

suitable temperature range
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AGHT")=AH*-T" - AS* (35)
Thus, the activation entropy and enthalpy can be obtained from simple linear regression

from the corresponding Arrhenius plot so that

n

{1 ~{rae 7-{oe 1)

AH* =1 (36)

(=)

i=1

AS*=(AGH T )— AHH(T™) (37)

where (... ) denotes average values.

3.8 Reorganization Energies

As discussed in section 2.3, the improved electrostatic stabilization of the transition
state in enzyme catalyzed reactions compared to the solvent cage reactions originate
from significantly smaller reorganization energies, A (5, 23). The EVB diabatic free
energy profiles represent microscopic equivalents of the Marcus Parabolas in electron-
transfer theory (60) and can be used to obtain A. From the diabatic free energy profiles
illustrated in Figure 3, the reorganization energy corresponds to the energy required to
force the reactants (Ag;) to have the same configuration as the products (Ag,) without
allowing any charge transfer. If the diabatic free energy profiles illustrated in Figure 3

have the same curvature, we can for simplicity express the parabola for state 1 as

2
Ag, =(Ae) (38)
This is completely general because we have not assigned any scale to the axes. The

second parabola is then just Ag; shifted with the diabatic free energy difference between

the two parabolas, AG,, and displaced along the reaction coordinate direction by V2:
Ag,=Ag, - AG, = (Ae—VAY = (Ac) —28e\ A + A (39)
At the intersection point (transition state) we furthermore have that

Ag,(A€")=Ag,(A€") (40)
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Figure 3: Two methods for obtaining the reorganization energy from the EVB diabatic free energy profiles
representing microscopic equivalents of the Marcus parabolas in electron-transfer theory.

Solving Eq. 40 gives the following solution for the transition state with respect to the

reaction coordinate:

Ae* = M (41)
22
Finally, putting this result back into the original expression for Ag, (Eq. 38) gives:
.. (AG,+2)
Ag,(Ae’)= Tl (42)

From Eq. 42 it can immediately be recognized that if the minimum of Ag, is shifted to
the same height as Ag, (Ag; in Figure 3), AG, becomes 0 and the reorganization energy

is simply obtained as

A=4Ag,(A") (43)

In the work presented in this thesis, two methods have been utilized for
estimating the reorganization energy (see Figure 3): The first locates A simply as the
diabatic free energy of Ag; at the minimum (product intermediate) of Ag,. The second
methods involves shifting the minima of Ag, to the same height as Ag, (Ag,’ in Figure 3)
and taking the resulting height of the intersection, the intrinsic barrier, as A/4. However,
as pointed out by Liu et al. (61), the EVB free energy profiles of the diabatic states do not
correspond to perfect parabolas and the curvature between the states can be different.

The reported reorganization energies in the presented works are therefore computed by
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fitting the diabatic free energy profiles up to the intersection point to perfect parabolas
by polynomial regression. There may also exist small variations in A obtained from the
two methods presented above, and in such cases it may be useful to take an average of

the two values.

25



26



4 Development of a GUI for Free Energy Calculations ()

In this chapter the development of Qgui (paper I) and its key features will be presented.

4.1 Introduction

The use of classical MD simulations to calculate free energies (Figure 4) is rapidly
becoming a high-throughput technique due to advancements in algorithms together
with the tremendous increase in computer power witnessed the last decade. As a
consequence it has become not only more efficient to capture larger parts of phase space
with respect to time, but also feasible to perform quantitative calculations on highly
complex systems such as the ribosome (62). More importantly, the ability to accurately
predict free energies renders it possible to characterize the structure and energetics of
molecular complexes, and is often the key to understand many biological functions. High
accuracy is usually obtained by conducting several replicas of the simulations with
different starting conditions to ensure that statistically significant results with adequate
sampling of the relevant parts of phase space are achieved. However, most MD software
packages suited for these types of calculations, including Q (37) used in the presented
work, are command line interfaces. The main challenge with this is management and
handling of input files and the enormous amount of data generated. For example, upon
studying enzyme structure-activity relationships with the EVB method (papers I-V) the
overall process can be divided into 3 main stages as illustrated in Figure 4. Stage 1
typically involves manually assignment of atom parameters (charges, bonds, angles,
torsions, impropers etc.), which depending on the number of reacting atoms quickly

becomes a very tedious and time-consuming task.

<AG> / Mutate
trajectory

Calibrate EVB @ Parameterize/ ﬁ AG* = AH - TASH | AG* = AH* - TASH I

Hamiltonian

Topology
MD/FEP/EVB H Analyze/ structure KJ

Figure 4: Flowchart illustrating the typical workflow upon doing enzyme structure activity calculations with the

empirical valence bond method.
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After calibrating the reference reaction(s) (manually adjusting a*** and H;j; in Eq. 21 and
22) and successfully reproducing the desired experimental k.. of the enzyme reaction,
the next stage typically involves obtaining activation enthalpies and entropies. If stage 2
succeeds, stage 3 is similar, but with mutations selected based on careful analysis of the
enzyme energetics and structures obtained in stages 1 and 2. Moreover, stage 2 and each
mutation in stage 3 typically involve 500 - 1000 unique EVB simulations each
distributed over a suitable temperature range (~6 - 10 temperatures). Clearly, both
generating input files and analyzing the resulting free energy profiles, corresponding
energy components and relevant structures/trajectories is a challenging task.

In comparison to command line utilities, graphical user interfaces have the
potential not only to lower the barrier for new user, but also of making the process of
calculating free energies more efficient. In light of the increasing availability of
computational power and the need for extensive free energy calculations in for example
ligand binding and design, enzyme catalysis and mechanisms of action of biological
macromolecules, we have developed a graphical user interface, Qgui, specialized for a

wide array of these purposes (Figure 5).

EVB

. Topologies

LIE FEP

Figure 5: Qgui is a graphical user interface developed for high-throughput setup and analysis of free energy
calculations and empirical valence bond simulations in biological systems using the molecular dynamics package Q.
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4.2 What is Qgui?

Qgui is a graphical user interface developed for extensive free energy calculations and
empirical valence bond simulations using the molecular dynamics package Q (37). It
should however be noted that Qgui is not limited to Q, and can in principle be extended
to function with other MD software packages. The software has been written in the
Python language using object oriented design principles based on the Tkinter GUI
library. A key feature of the interface is gluing together all the tasks involved in the
various setups and analyzes of MD simulations and free energy calculations as
illustrated in Figure 5. In addition to communicating with Q, the software also
(optionally) communicates with any version of the Open Source PyMOL (Schrédinger,
LCC, New York), which is freely available, for visualization and manipulation of 3D
structures and the ffld_server utility that comes with Maestro (Schrodinger, LCC, New
York) for force field parameter assignment. PDB files can also be imported directly from

the RCSB Protein Data Bank (http://www.pdb.org). From a simplistic main window that

is always present and functioning as a feedback/logging window, all the available tools

are easily accessed from four dropdown menus (Figure 6).

8 00 X Qgui

File Prepare Setup Analyze Help
Structure:{ | I Clear ’
Ny -

Topology:|[77= . top | Load Clear
cz1 022 T6I( high B4 |
c2l 022 ( high B4

Change workdir I 0 high 64
! high B4
Import structure 76 high 64
=+ Import topology omment
Settings 1;1 'Cnlﬂtl'l: atom

C romatic atom
Cz1 a2 romatic atom
cr2 PDB 14 - romatic atom
ol pp—— high aromatic atom
HZE TOpO'OgY high arcmatic atom
L‘; \j‘ Parameters | C h %K;m aromat ,"LC atom
HZ9 high arcmatic atom

C H40D high arcmatic atom
C c19 high arcmatic atom
czo H41 high arcmatic atom
c19 H4a2 high arcmatic atom
Reference reaction
oypme § 3 5 completed.
Alway - nd v T % .= Reaction energies o
" 4
q {Thermodynamlc parameters l—
P
Quit

Figure 6: Qgui main window with illustrated overview of dropdown menus and their contents.
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4.3 Key Features

Qgui is designed for efficient preparation of necessary input files and analysis of the
resulting output files from MD, LIE, FEP and EVB (Figure 5). Much effort has been put
into automating typical time consuming tasks such as generation of force field
parameter and topology files, preparation of MD equilibration procedures and
calibration of EVB reference reactions, to mention a few. The software has particularly
aimed at enabling efficient calculations of thermodynamic activation parameters as
illustrated in Figure 4. More importantly, Qgui is not a black box. That is, all settings and
parameters are visible and editable for the user at any time. In the following, some key

features of the software presented in paper I will be summarized.

Visualize, click and auto-generate force field parameters

Defining state dependent force field parameters in the context of changing atoms in FEP
or bond breaking and formation in EVB is efficiently handled in Qgui. It automatically
maps all parameters for each defined state to the corresponding atom numbers in the
topology. In addition, syncing with PyMOL allows different states in FEP or EVB to be
defined and visualized simply by clicking on the atom(s) of interest. This is particularly
convenient because it is both fast and the different states can be visualized together with
their parameters (charges, bonds, angles, torsions etc.), making it easy to verify that the
prepared simulation is going to be as intended. After defining the desired FEP or EVB
states, force field parameters can furthermore be auto-generated and assigned based on
template structures generated through PyMOL utilizing the ffld_server utility. In Figure
7, the auto-generation scheme is illustrated for a 2-state EVB, but 3- and 4-state
EVB/FEP are also implemented. Parameter and library files can also efficiently be
generated independently using the ‘Prepare Parameters’ tool (Figure 6), which is
typically done prior to MD or LIE. Once generated, they can be loaded and organized
through the settings window (Figure 6) for future use. Thus, there is no need to specify
parameter and library files again when preparing simulations since they are globally

defined in the settings. Moreover, there is no limit to how many files that can be loaded.
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Figure 7: Auto-generation of state dependent force field parameters from PyMOL template structures utilizing the
ffld_server illustrated for the Qgui EVB setup using 2 states.

Intuitive fitting and visualization of predictive LIE models

The LIE method is implemented in Qgui and approximates ligand binding free energies
as described in section 3.5 through Eq. 20. Normally this involves applying o = 0.18 and
assigning B as described by Hansson et al. (63). The y parameter is system dependent
and usually fitted so that the calculated absolute binding free energies coincide with
those experimentally obtained. We have implemented an automatic scheme for
generating predictive LIE models by combining available experimental binding free
energies with the MD energy terms. In addition to the y parameter, « and {3 can also be
optimized, which in some cases can be useful to generate predictive models. The optimal
parameter(s) are obtained by mapping the sum of squared errors (SSE) between the
calculated and the experimental binding free energies until sufficient information exist

to compute the polynomial regression on the form:
2 .
SSE=bx“+bx+b ;xela,By] (44)

The optimal parameter value minimizing SSE is then obtained simply by solving
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SSSE
Sx

The resulting LIE parameter(s) from this approach will ensure that the SSE is at its

0 ;XG[OC,ﬁ,'}/] (45)

minimum. The fitting of LIE binding data for five ligands bound to the estrogen receptor
a presented in paper I is illustrated in Figure 8 with the Qgui LIE window to the left and
the SSE function exemplified to the right.
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Figure 8: Fitting of the LIE binding data for five ligands bound to the estrogen receptor with the unfitted data points
(top) and the data points fitted to experimental values (bottom). The blue dotted line indicates the optimal linear
regression line to the calculated binding free energies independently of the experimental values. The solid black line

is the experimental binding free energies. The SSE plots (top and bottom right) illustrate how SSE is minimized to
optimize the LIE model (not visible in the Qgui window).

The fit LIE parameters tool (Figure 8) allows for visualization of the calculated and
experimental data in real time together with the corresponding linear regression lines.
The models can be generated by manually or automatically adjusting the parameters.
Moreover, visualizing both the linear regression line for the predicted data points
independently of the experimental data (blue dotted) together with the experimental
line (black solid) makes it easy to validate the predictive power of the model outside the
computed region (Figure 8). It can easily be recognized from Figure 8 that the model
generated using ligands 1-5 is excellent in the binding free energy region. However, the
minor difference in slopes indicate that the predictive power will become weaker when

computing ligands outside the binding range used here with more than ~4 kcal/mol.
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Automatic calibration of EVB reference reactions

A prerequisite for doing successful reaction dynamics with the EVB method described in
section 3.6 is that a free energy surface for a suitable reference reaction is fitted to
existing experimental or ab initio data. This is typically done by manually adjusting a*!
and Hj (Eq. 21 and 22) until the target activation and reaction free energies are
reproduced. The resulting parameters often vary between individual runs and it is thus
desirable to run several reference reactions and use the more reliable average obtained
from these. This is however a tedious and time-consuming task. We have therefore
developed and implemented a protocol for automatic reference reaction calibration

(RRC) in Qgui (Figure 9). It is possible to calibrate single runs individually or several

runs merged together.
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Figure 9: EVB reference reaction calibration (RRC) tool in Qgui.

In summary, the target activation and reaction free energies (blue dotted lines in Figure
9) are efficiently located by taking advantage of the approximate linear relationship
between H; and a'*! against AG* and AG,, respectively. Thus by mapping Eq. 29
iteratively with a'*! constant varying H; and then with Hj constant varying a‘*?, the
parameters corresponding to the target values are approached by standard linear

regression:

AGH(H,)=B,+BH, (46)

AG (o")=pB,+ B0 (47)
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Two iterations utilizing the above equations, applying updated parameters in each
round, typically brings the reaction free energy profile very close to the target values. If
necessary, a fine-tuning stage is automatically launched where the parameters are
adjusted in an iterative manner until the target values are within a threshold (AAG = 0.2
by default). The reaction free energy profile is updated in real time during the automatic
calibration procedure, which also can be performed by manually adjusting the
parameters. In addition, visualizing the reaction free energy profiles is an important tool
for revealing potential sampling problems along the reaction coordinate, which typically

results in discontinuous points or uneven spacing between the energy gaps.

Thermodynamic activation parameters

Qgui is written with a particular focus on automating the task of obtaining
thermodynamic activation parameters (4H# and AS#) from EVB simulations. Specialized
setup and analyze tools automatically generating and recognizing directory hierarchies
consisting of a range of temperatures with a series of subdirectories have been

implemented (Figure 10).
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Figure 10: [llustration of how Qgui organizes submission and analysis of EVB simulations over range of temperatures
with several runs for each temperature.

The analyze EVB thermodynamic parameters tool (Figure 6) efficiently goes through all
the directories computing reaction free energy profiles and locating the transition and
product state free energies as illustrated in Figure 10. The thermodynamic activation
parameters are then obtained by computing the activation free energy as a function of
the inversed temperature as described in section 3.7. The resulting Arrhenius plots
together with the corresponding regression statistics can be visualized and modified in

Qgui. In addition, we have also implemented tools for obtaining the EVB activation
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potential energy terms (4U#) given in Eq. 21. This is particularly useful for efficiently
identifying the energy term(s) contributing to the catalytic effect. Moreover, combined
with the activation enthalpy it gives a way to obtain the EVB activation potential energy

for the interactions within the surroundings (Eq. 34 in section 3.7) as:

AU* = AH* — AU (48)

s rrrs
However, computing AU# from the corresponding lambda windows’ MD energies is not
as straightforward as for the Arrhenius plot thermodynamic activation parameters.
Locating the energy gaps corresponding to the reactant and transition state is trivial, but
every energy gap in the reaction coordinate typically originates from several lambda
windows with different weights. For example, the energy gap corresponding to the
transition state (Ae*) illustrated in Figure 11 originates from a total of 5 lambda

windows (0.44 - 0.52) with different weights ranging from 0.05 - 0.35.
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Figure 11: Several lambda windows (1) contribute with different weights (w) to the transition state energy gap (Ae¥).
Qgui computes the exact EVB potential activation energy terms by collecting all lambda
windows (4,,) contributing to the energy gaps corresponding to the transition and
reactant state. The energies originating from each lambda value are then scaled by w;
according to the actual state contribution so that

v=2,w,(U, +U,) siea, (49)
where );; w; = 1. From the general solution of the secular equation given in Eq. 28 for a
2-state reaction, the potential activation energy within the reacting region and to the

surroundings, AUfHTS, is then calculated exactly as
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AUt =, VA, ) A(ce,) +2a(ceH,) (50)
where all terms are scaled according to Eq. 49. Together with the activation enthalpy,
the relationship of Eq. 48 can be used to evaluate the interactions within the
surroundings, Uss, which is not obtained directly from the EVB calculations due to slow
convergence. The reaction free energy profiles with the corresponding EVB potential

activation terms are easily visualized and compared using the EVB reaction energies tool

(Figure 6).

4.4 Qguiin the Future

As the field of computational chemistry is continuously advancing and changing for
better reflection of the reality, Qgui can obviously not be considered as completed. There
are always new features that can and should be implemented and existing ones that
could be improved. The development of Qgui has been, and still is, a continuous project
where every new molecular system investigated reveals features that would be
convenient to implement. Most of the initial code was developed simultaneously with
the study presented in paper II and many additional features and improvements have
been implemented during the works presented in papers III-V. The list of potential
things to implement and improve is growing almost exponentially. However, some
examples include implementing automatic generation of force field parameter and
library files for other force fields than OPLS, which is currently the only option for the
automatic assignment scheme in Qgui. We are also planning to implement alternatives to
the Zwanzig’s formula for FEP calculations, such as BAR (64) and WHAM (65). It would
furthermore be interesting to investigate the possibility for automatic calibration of EVB
reference reactions applying more than 2 states, which is the current limit for the EVB

RRC tool.
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5 Trypsin Cold-Adaptation (Il and lll)

In this chapter the key findings for the adaptive mechanisms responsible for trypsin
cold-adaption presented in papers II and III will be summarized. The reader is referred

to section 2.4 for a general introduction to the topic of cold-adaptation.

5.1 Arrhenius Plots Reveal Characteristics of Cold-Adaptation

Trypsin belongs to the serine protease class of enzymes that catalyze the cleavage of
peptide bonds in proteins and polypeptides. This class of enzymes has been extensively
studied for many decades and is in this respect very well suited for generating reliable
model systems. As an approach to investigate key aspects of enzyme cold-adaption
(section 2.4), we have in the works presented in papers Il and III modeled the rate-
limiting step of the peptide bond cleavage reaction, the formation of the tetrahedral
intermediate (66-68), in psychrophilic anionic salmon trypsin (AST) and mesophilic
bovine trypsin (BT) utilizing the MD/EVB method (Figure 12). The imidazole-catalyzed
methanolysis of formamide in water was used as a reference reaction and fitted to
activation and reaction free energies of 26 and 20 kcal/mol, respectively (69). The
results from the simulations at 300 K are shown in Figure 12 as free energy profiles
along the reaction coordinate for the two enzymes together with the reference reaction.
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Figure 12: Calculated free energy profiles (300 K) for tetrahedral intermediate formation in the acylation step of
anionic salmon trypsin (AST), bovine trypsin (BT) and in the imidazole catalyzed reference reaction in water (wat).
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The EVB simulations yield activation energies at 300 K of 18.2 + 0.2 kcal/mol and 19.0 =
0.2 kcal/mol for the Cys-Lys-Ala (CKA) substrate in AST and BT, respectively, and are in
excellent agreement with the substrate dependent barrier of 15 - 20 kcal/mol (66). This
difference in activation free energies corresponds to a 4-fold increase in kca for AST and
is in remarkable good agreement with experiments that shows a 2- to 4-fold increase in
kcar depending on the temperature (70). Since the catalytic rates of AST and BT are well
reproduced at room temperature, stage 1 illustrated in Figure 4 is completed and it is
possible to move on to stage 2 examining the actual temperature dependence.

The thermodynamic activation parameters were obtained by computing 100 -
150 independent reaction free energy profiles at each temperature in a range of eight
temperatures from 275 K to 310 K (see section 3.7). From the resulting Arrhenius plots
in Figure 13 it can immediately be seen that the cold-adapted trypsin (AST) has a
significantly smaller slope compared to the mesophilic counterpart (BT).
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Figure 13: The clear difference in slopes from calculated Arrhenius plots for BT (black) and AST (blue) demonstrate
that cold adapted trypsin has a lower activation enthalpy compared to the warm-active ortholog.

The calculated activation parameters at 300 K are AH#¥= 20.4 kcal/mol and TAS* = 1.4
kcal/mol for BT, while the corresponding values for AST are AH*= 9.9 kcal/mol and TAS#
= -8.3 kcal/mol. This is thus a remarkable example of enthalpy-entropy compensation
where the large differences in AH* are balanced by TAS# to yield similar activation free
energies. It is also noteworthy that computer simulations reproduce both the absolute
rates at 300 K and the characteristic balance between activation enthalpy and entropy
for mesophilic and psychrophilic enzymes. Thus, with both stages 1 and 2 in Figure 4
successfully completed, the controversial question regarding what the origin of this

effect really is remains to be answered.
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5.2 Protein Surface Softness Regulates Trypsin Cold-Adaptation

As discussed in section 2.2, resolving the origin of the difference in the thermodynamic
activation parameters renders it necessary to dissect the observed energies into
individual contributions. The source of the difference in activation enthalpies is from the
relationship given in Eq. 32, however, relatively straightforward to identify. Table 1

shows the breakdown of the energetics (Eq. 32) where AU}, . is calculated as in Eq. 50.

Table 1: Calculated thermodynamic activation parameters for native and mutant bovine (BT) and salmon (AST)
trypsin at 300 K.

Enzyme AGH* AH# TAS# AU}, .2 AUZ

BT native 19.0+1.4 204+1.0 1.4+£1.0 14.6 £ 0.7 58+1.3
BTs1s0p 18.6 1.3 14.5+0.9 -41+1.0 149+1.1 -04+1.5
BTno7y 184+1.3 10.6 £ 0.9 -7.8+1.0 159+1.1 -53+15
AST native 18.2+ 0.8 9.9+0.6 -8.3+0.6 13.1+£0.9 -3.2+x1.1
ASTpis0s 18.0+1.1 14.7£0.8 -3.2+0.8 11.5+19 32+1.2
ASTygrn 184 1.1 12.0+£0.8 -6.4+0.8 139+1.2 -19+1.4

ASTyoe7 5 18.1+0.9 12.2£0.6 -59+0.6 123+1.1 -0.1+1.3
ASTris 0.1 175+1.1 12.6£0.8 -49+0.8 12.2+1.7 04=+19
ASTris 05 175+1.0 15.6 £ 0.7 -1.9+0.7 131+2.1 2522
ASTris.1 18.0+1.9 219+1.3 39+£1.3 12.8+1.9 9.1+£2.3
ASTrig s 178+ 1.7 20.6£1.2 2812 129x2.4 7727
ASTris 100 178+1.1 19.5+0.8 1.6+0.8 13.7+1.9 58+21

a Subscripts 1T, rs and ss denote, respectively, interactions among atoms in the EVB region, their interactions with the surroundings,
and the internal interactions within the surroundings. Error bars denote standard deviations of the mean.

It can immediately be seen from Table 1 that the source of the decreased activation
enthalpy in AST is not associated with a more favorable AUerS, as could have been
expected, but rather a significantly lower AUS*S. That is, the contribution from the
surroundings (Eq. 34) is predicted to be about 9 kcal/mol more favorable for AST than
BT, whereas the internal energy change involving the reacting groups is similar. Thus, at
any rate we can conclude that the reduction of the activation enthalpy originates from
interactions outside the active site (mainly protein - water and protein - protein). From
an evolutionary point of view, this is perhaps not so strange since the active site residues
surrounding the substrate are conserved between the two proteins. The fact that AUS*S is
lower in AST compared to BT, furthermore suggest that the surroundings of the active

site are effectively softer in the cold-adapted enzyme. This was further demonstrated by
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computing the enzyme backbone root-mean-square fluctuations (RMSF) averaged over
100 ns simulation time in the reactant and transition state for AST and BT (paper II). In
similarity to a previous work on different temperature adapted citrate synthases by
Bjelic et al. (34), we found that the active site and substrate mobilities were virtually
identical for cold- and warm-adapted trypsin. Note that these findings are a direct
contrast to the assumption that the more negative activation entropy observed for cold-
adapted enzymes could be interpreted in terms of increased flexibility of the active site
(32). Instead, it was found that both enzymes have a rather hard core that becomes
softer towards the surface (Figure 14) where AST contains regions that are significantly

softer compared to BT.

lojoel-g

Figure 14: B-factor representation of anionic salmon trypsin averaged over 100 ns MD simulation at the reactant
state illustrating that the enzyme core is rather rigid, whereas the surface contains regions with high flexibility.

Interestingly, from the sequence alignment of 7 different temperature adapted
trypsins presented in paper II, the strictly conserved residues within cold-adapted
trypsins are typically located around the flexible surface regions illustrated in Figure 14.
In particular, the NB5-Nf36 and the autolysis loops were found to be significantly more
flexible in AST compared to BT. The direct effect of the conserved residues 97 and 150
located in the NB5-NB36 and the autolysis loops, respectively, to the thermodynamic

activation parameters were investigated by point mutations. The resulting calculated
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activation free energies remain essentially unchanged by the mutations (Table 1), which
underscores the general notion that mutations far away from the active site do not
significantly affect the catalytic rates (71). As can be seen from Table 1, both mutations
in warm-adapted trypsin (BTn97vy and BTsisop) render the entropy-enthalpy balance
remarkably similar to that of the cold-adapted enzyme. BTno7y was predicted with
thermodynamic activation parameters virtually identical to those of AST with AH* = 10.6
kcal/mol and TAS# = -7.8 kcal/mol. Similar to the cold-adapted trypsin, it is the lowering
of the interactions within the surrounding that is the origin of the decrease in the
activation enthalpy. Moreover, the backbone RMSF profile averaged over 100 ns in the
reactant state reveal a significant increase in mobility of the NB5-NB6 loop for the

mutant compared to the native enzyme as illustrated in Figure 15.
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Figure 15: Average backbone RMSF profiles in the reactant state for native bovine trypsin and the N97Y mutant.

A very similar result was also observed in the autolysis loop for BTsis0op with predicted
AH#* = 14.5 kcal/mol and TAS* = -4.1 kcal/mol. In both mutations, it is the lowering of
AUES that is responsible for the remarkable enthalpy-entropy balancing rendering the
warm-adapted trypsin cold-adapted like. The origin to this reduction is a softer protein
surface. For the reverse mutations ASTys7ny and ASTb1s0s, the thermodynamic activation
parameters are rendered more mesophilic like. However, the ASTyo7n mutation yields
relatively smaller effects on both the activation parameters and AU;FS. This probably just
reflects that it easier to disrupt the H-bonding networks rigidifying local parts of the
enzyme as in BTno7y, whereas correlated mutations may be needed to build up the same

network, so that a single-point mutation does not suffice.
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As an alternative to the complex task of succeeding with correlated mutations, we
have in paper III calculated the thermodynamic activation parameters upon restraining
the mobility of the surface atoms in AST. Restraining the backbone of residues 95 - 99 in
NB5-NB6 loop to their initial positions (AST97 5) resulted in thermodynamic activation
parameters and AUjS virtually identical to ASTy9o7n. This clearly demonstrates that the
mutational effects predicted for ASTy97n originates from altered surface softness (Table
1). To further test our hypothesis, we performed a series of simulations restraining all
protein atoms outside a given radius centered on the AST active site. Seven different
radii in the range 18 - 35 A were examined, and the thermodynamic activation

parameters were extracted from each radius. Upon decreasing the radius, both the

enthalpy-entropy balance and AU;CS were gradually rendered more warm-adapted like
without altering AG*. Moreover, at 18 A (ASTris 100) the calculated thermodynamic
activation parameters were virtually identical to that of warm-adapted trypsin.
However, restraining the mobility of atoms closer to the active site than 18 A resulted in
altered AG* values. This shows that when the restraints on the enzyme start to affect the
interior parts closer to the active site the reaction free energy profile indeed changes, as
expected. We also run a series of simulations increasing the force constant from 0 to 100

kcal/mol/A? for the protein atoms outside a sphere of 18 A as illustrated in Figure 16.
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Figure 16: Thermodynamic activation parameters obtained by restraining all protein atoms outside a spherical

boundary with radius 18 A centered around the active site to their initial positions with force constants, F, of 0 - 100
kcal/mol/Az.
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Restraining the atoms with a force constant of 1 kcal/mol/A? is sufficient to completely
render the thermodynamic activation parameters warm-adapted like (Table 1). As can
be seen from Figure 16, there is a close to perfect linear correlation upon increasing the
force constant from 0 to 1 kcal/mol/A? with respect to transforming the enthalpy-
entropy balance from cold- to warm-adapted in AST. What is rather remarkable is that
the calculations predict significant changes to AS*# and AH#, but these are again nearly
perfect compensating. This is to our knowledge the first time computational evidence is
presented showing that protein surface softness controls trypsin cold-adaptation. It
should also be noted that presented data in papers Il and III is based on analysis from a
tremendous amount of simulations and unique reaction free energy profiles. The data
presented in Table 1 alone involves the analysis of approximately 10 000 reaction free
energy profiles distributed over 5 ps simulation time, which roughly amounts to 5

million CPU hours.

5.3 How can Point Mutations Soften the Protein Surface?

With the potential of some time being able to successfully design enzymes, it is obviously
important that we understand the mechanisms involved in temperature adaption. The
works presented in papers II and III strongly suggest that the surface of cold-adapted
enzymes is softer compared to their warm-adapted counterpart. From a mutational
point of view, softening the enzyme surface is in light of the above discussion seemingly
easy. However, the key question that remains to be answered is how this can be
accomplished. In this respect, ultra-high resolution (0.75 - 1.00 A) crystal structures of
both BT (72) and AST (73) provide useful clues since a large numbers of surface bound
water molecules are resolved in these structures. The BTno7y mutation, for example,
effectively renders the thermodynamic activation parameters virtually identically to
those of AST. In this case, the surface is softened through the mutation of a polar to a less
polar residue, which effectively disrupts the water mediated H-bond network as
illustrated in Figure 17. The similar result obtained for BTsisop on the other hand
originates from a complete change of H-bonding network, which also significantly alters
the entire autolysis loop conformation. This mechanism is however achieved by

correlated mutations (T21E and V154K) in addition to S150D (Figure 17).
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Figure 17: Different mechanisms for increasing the surface softness in cold-adapted trypsin (right) relative to warm-
adapted trypsin (left): (a) Disruption of an H-bond network by mutation of polar residue into a less polar (N97Y). (b)
Complete change of H-bond network and loop orientation (S150D and correlated mutations). (c) Disruption of an H-
bond network by mutation of a polar residue into a charged one (S110D). (d) Destabilization of the packing of
hydrophobic surface patches by mutation of a nonpolar residue into a charged one (VOOR).
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The ultra-high resolution trypsin structures further reveal that a surface H-bonding
network can also be disrupted by mutations of a polar residue into a charged one, since
the latter one may prefer to interact with bulk solvent. This is exemplified by the
mutation S110 to K110 in AST. Finally, one can also identify mutations that destabilize
the packing of hydrophobic surface patches by mutation of nonpolar residue into a
charged one, as is the case for the mutation of V90 in BT to R90 in AST (Figure 17). Of
the examples mentioned above, we have demonstrated the validity of these through the

mutations BTS150p and BTno7y presented in Table 1.

5.4 Concluding Remarks and Future Perspectives

The works presented in papers II and III clearly reproduce the characteristic balance
between activation enthalpy and entropy for cold adapted versus warm-active enzymes.
However, what is rather surprising is that it is the protein-water surface that appears to
regulate the activation enthalpy-entropy balance. Softening the protein surface of warm-
adapted trypsin is easily achieved through single point mutations that efficiently
rearrange the thermodynamic activation parameters and AUES to become cold adapted
like. The phenomena of changing the balance between AH* and AS* due to surface
mutations have, in fact, also been experimentally observed for other orthologous
enzymes (74). We have shown that modifying the surface softness, either through
mutations or by restraining the surface atom mobilities simply by force, apparently
change the activation enthalpy of the catalyzed reaction at the expense of the activation
entropy without altering activation free energy. Mutations softening the surface are
beneficial for adaption to low temperatures as they, not only make the rate more
temperature insensitive by reducing AH#¥ but also counteract the structural rigidity
imposed by lowering the temperature. Moreover, given that the active site residues are
basically always conserved between highly similar orthologous warm- and cold-adapted
enzymes, it seems not so far-fetched to assume that the difference in protein surface
properties presented in papers II and III is the general feature of cold-adapted enzymes.

Our results successfully identifies the same loop regions important for adaption
to cold as those reported by previous studies on trypsin thermostability (75). However,
experimental characterization is needed to examine whether the reported mutations
presented here only change the thermodynamic activation parameters or whether they

affect thermostability as well. As indicated above, softening the enzyme surface is
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seemingly easy, but the task of stiffening it (e.g. make the enzyme more warm-adapted
like) through mutations is not as trivial. A future work could in such respect examine the
possibility of regenerating the H-bond network responsible for the surface rigidity in
warm-adapted trypsin through correlated mutations in cold-adapted trypsin. More
importantly, we need to investigate a wider range of enzymes to verify if the findings for
trypsin temperature adaptation apply to enzymes in general. Thus, the grand question
remaining is whether or not the protein-water surface softness is globally used in
nature’s enzyme design strategy as a tool to fine-tune both the enthalpy-entropy balance

and the thermostability as the mechanism responsible for temperature adaptation.
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6 Human Purine Nucleoside Phosphorylase (IV and V)

In this chapter the reaction mechanism for the glycosidic bond cleavage step in human
purine nucleoside phosphorylase, PNP, (paper IV) and the thermodynamic activation

parameters calculated for native and mutant PNP (paper V) will be discussed.

6.1 Introduction

Purine nucleoside phosphorylase (PNP) catalyzes the reversible cleavage of the
glycosidic bond of ribo- and deoxyribonucleosides to generate the corresponding purine
base and ribose/deoxyribose-1-phoshapte (76). Human PNP (HsPNP) is a homotrimer
(low-mm) with the catalytic site located near the subunit-subunit interface as illustrated

in Figure 18.

Figure 18: Human purine nucleoside phosphorylase homotrimer with guanosine (yellow) in the active site of the
black subunit with the F159* loop from the adjacent subunit (orange) covering it from accessible solvent. The red
dashed circle illustrates the 25 A simulation sphere centered on the active site.
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HsPNP is specific for 6-oxopurines, e.g. inosine (INO) and guanosine (GUO), and shows
only marginal affinity for 6-aminopurines (e.g. adenosine, ADO). Thus, this class of PNPs
is often referred to as “Ino-Guo phosphorylases” (77, 78). Molecular structures of INO,

GUO and ADO are illustrated in Figure 19.
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Figure 19: Structures of the included substrates inosine (INO), guanosine (GUO) and adenosine (ADO). The general
atom-numbering scheme is illustrated for INO.

Besides potential important applications within the field of medicinal chemistry, a
recent publication with experimental mutations of distant residues to the active site
altering the thermodynamics of human toward bovine PNP (74) is intriguing in the
context of the work presented in papers II and IIL

Despite being studied for decades, the catalytic mechanism for low-mm PNPs is
still not adequately elucidated and a number of key questions remain. Firstly, the
catalytic role of the phosphate and in particular its protonation state is unclear. Previous
works have proposed inconsistent reaction mechanisms in the sense that they employ
singly, doubly or even a triply protonated phosphate group (78-80). Secondly, the amino
acids stabilizing the transition state and their role are not completely elucidated. Finally,
the protonation state of the purine ring during the glycosidic bond cleavage is highly
controversial. Even though fluorescence studies have shown that the purine base binds
in the anionic form in the reverse reaction (81), indicating that protonation (at N7 or
N9) occurs after phosphorolysis, proposed mechanisms employing a positively charged
ribonucleoside protonated at N7 still exist (82). However, many suggested mechanisms
seem to agree with the fluorescence studies, but with the conflict of whether the
negative charge is distributed between N7 and N9 (80, 83) or mainly on 06 (78). A
puzzle here is the fact that there is no obvious proton donor to facilitate the protonation
of the anionic base after phosphorolysis in the vicinity of neither the base N7 nor N9 in
the active site of HsPNP. Clearly, it is of considerable interest to resolve both the HsPNP

reaction mechanism and the origin of the observed substrate specificity.
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6.2 Computer Simulations Reveal the HsPNP 6-Oxopurine Specificity

In papers IV and V we have applied extensive EVB simulations to investigate the
glycosidic bond cleavage step (¢; — ¢, in Figure 20) in HsPNP. The EVB reference
reactions for GUO, INO and ADO were fitted to free energy surfaces obtained at the DFT-
level utilizing a singly protonated phosphate nucleophile. The alternative doubly
protonated phosphate group resulted in an increased activation barrier and a

substantial more endergonic reaction energy. In addition, the reaction was rendered
more Sn1 like, compared to Sn2 utilizing HPOi', which generally reflects the weaker

nucleophilicity of H,PO,. To our knowledge, the DFT profiles for purine phosphorolysis

have not been reported previously.

¢1 o ¢2 0
N . 7 NH
HO </ | /J\“ <N | /)
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Figure 20: EVB resonance structures applied in the phosphorolytic cleavage of the glycosidic bond of inosine,
guanosine and adenosine (¢4 = ¢;).

The EVB reference reactions were fitted to AG¥ of 30.6, 28.5 and 30.6 kcal/mol and AG,
of 9.2, 7.2 and 9.4 kcal/mol for GUO, INO and ADO (Figure 19), respectively. The EVB
parameters applied in the enzyme-catalyzed reactions were taken as an average of 10
calibrated reference reactions for each substrate. Trimeric HsPNP was modeled using a
25 A simulation sphere centered on the active site of the reacting subunit as illustrated
in Figure 18. A total of 100 EVB simulations were run for the enzyme reactions, resulting
in a simulation time of 51 ns for each substrate. The resulting reaction free energy
profiles for the glycosidic bond cleavage step in HsPNP and water are illustrated in
Figure 21. The average activation free energies from the EVB simulations in the enzyme-

catalyzed reactions are 12.8, 13.0 and 20.2 kcal/mol for GUO, INO and ADO, respectively.
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Figure 21: Calculated reaction free energy profiles for the glycosidic bond cleavage step (¢p; = ¢5) for adenosine
(red), guanosine (blue) and inosine (black) in HsPNP together with the corresponding reference reactions in water
(dashed lines).

It must, however, be emphasized that the rate-limiting step is generally assumed to be
the release of purine (74, 84, 85). Consequently, experimentally measured ke values
and corresponding thermodynamic parameters cannot be used directly to evaluate the
glycosidic bond cleavage step, but rather as an upper threshold for the activation free
energies. Thus, the calculated barriers presented in Table 2 are fully compatible with the
experimentally measured kcac values reported by Stoeckler et al. (86). More importantly,
the calculated AG* for GUO is in excellent agreement with the experimentally
determined AG* of 14 % 1 kcal/mol for the glycosidic bond cleavage step obtained from
pre-steady-state kinetics (74).

Table 2: Average activation and reaction free energies calculated at 298 K for the glycosidic bond cleavage step
together with the experimental activation free energies for the reaction in native and N243D HsPNP for inosine (INO),
guanosine (GUO), and adenosine (ADO)

(AG¥) (AGy) AG:xm (AG*)nzasp  (AGodnaasp Aijpt,Nmsu
INO 13.0+0.2 -7.0£0.3 15.1+0.1 159+0.2 -23+0.3 17.0+0.1
GUO 12.8+0.1 -7.1+0.2 15,5+ 0.1 16.8 0.4 -43+0.5 16.8+0.2
ADO 20.2£0.2 09+0.5 21.0+0.1 14.7£0.2 -6.9+0.3 16.0 £ 0.3

Aijpt calculated from Kea: (s'1) values reported by Stoeckler et al. (86) where substrate release is assumed rate limiting

It is rather remarkable that our simulations are able to reflect the fact that HsPNP

display negligible activity for 6-aminopurines (ADO) and not 6-oxopurines (GUO and

50



INO). Nevertheless, the enzyme lowers both the activation and reaction free energies for
all substrates compared to the reference reactions in water as illustrated in Figure 21.
The lowering is significantly smaller for ADO, and this clearly demonstrates that HsPNP
catalyzes the chemical step with ADO as substrate, but at much lower rates compared to
GUO and INO.

Analysis of the transition state structures reveal a rather comprehensive H-bond
network stabilizing both the ribonucleoside and the phosphate group ( Figure 22). This
is also reflected by a significant reduction in the EVB potential activation energy (mainly
the electrostatic part) in HsPNP compared to the reaction in water. With the exception of
one additional H-bond between E201 and the base C2 amine group for GUO, the two 6-
oxopurines display literally identical transition state configurations. This is not
surprising considering that both are natural substrates of HsPNP and with similar
reaction rates. The EVB simulations furthermore indicate that the low activity for ADO
originates from the chemical step where AG* is ~7 kcal/mol higher compared to INO
and GUO. It is therefore likely that the rate-limiting step with ADO as substrate is the
glycosidic bond cleavage step and not adenine release. Moreover, the increased
reorganization energy of ~20 kcal/mol for ADO clearly demonstrate that HsPNP is
significantly more electrostatically preorganized for the 6-oxopurines.

In an attempt to structurally understand the increased barrier for ADO we found
that the residues stabilizing the phosphate group illustrated in Figure 22 were critical
for the reaction free energies. In particular S33 together with H64 and H86 were found
to play key roles upon orienting the phosphate group properly for the nucleophilic
attack in the glycosidic bond cleavage step (paper IV). In our initial simulations
optimizing the EVB starting structures, we observed a few simulations with GUO or INO
as substrates where these interactions where randomly disrupted. This resulted in
increased activation energies of 4 - 6 kcal/mol. These observations are in agreement
with a recent study that entitled S33-H64-H86 the “catalytic triad” and also proposed it
to stabilize the phosphate in the active site (87). Interestingly, the phosphate group and
the S33-H64-H86 triad does not share identical interactions along the reaction

coordinate for ADO as is the situation with INO and GUO.
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Figure 22: Snapshot of the transition state for inosine in HsPNP as observed from the EVB simulations. The dashed
red lines represent the reaction coordinate (Op4-C1'-N9).

Analysis of the ADO transition state structure reveal a different interaction pattern with
the base where E201 is shifted away (no H-bond partner to N1) and N243 has flipped
making H-bond interactions to both N7 and the C6 amino group. As a result the entire
ribonucleoside position is shifted slightly downwards in the active site compared to INO
and GUO. Moreover, the zigzag pattern of H-bond interactions between N243, W2 and
E201 to the base Figure 22), which previously has been suggested by Tebbe et al. (78)
as a potential key for substrate recognition, is not present with ADO as substrate. Thus,

the low activity for ADO could originate from altered interactions to N243 and E201.

6.3 N243D Mutation Renders HsPNP 6-Aminopurine Active

The fact that the EVB simulations are able to nicely differentiate between the HsPNP
specificity for 6-oxo and 6-aminopurines is very encouraging. In light of the above
discussion, and to further test the robustness of the presented reaction mechanism for
the chemical step, we chose to compute the N243D mutation. This mutation is of notable
interest as it is able to eliminate the HsPNP selectivity rendering it active for both 6-oxo

and 6-aminopurines, but with slightly higher specificity for ADO compared to GUO and
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INO (86). From the results presented in Table 2 it is evident that our model is able to
reproduce the experimental trends also for the N243D mutation with all 3 substrates.
The average AG¥ 0f 16.8, 15.9 and 14.7 kcal/mol for GUO, INO and ADO, respectively, are
in excellent agreement with the experimentally obtained values (Table 2). Thus, the
predicted reduction of ~6 kcal/mol in AG* for ADO perfectly reproduces the
experimentally measured ~5000-fold increase in kca: with respect to wild-type HsPNP
(86). From the transition state structure of ADO in N243D HsPNP illustrated in Figure
23, it can immediately be seen that the H-bond zigzag pattern discussed above is not
present. It was furthermore rather surprising that the pattern remained present for INO
and GUO, though bridged by water molecules to E201 instead of N243. This interesting
observation thus indicates that the previously proposed H-bond pattern is rather

unimportant for the glycosidic bond cleavage step.

1]
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Y88

M219

H86

E89

R84

H64

Figure 23: Snapshot of the transition state for adenosine in N243D HsPNP as observed from the EVB simulations. The
dashed red lines represent the reaction coordinate (Op4-C1'-N9).

Common for all three substrates is that D243 is observed shifted away from the
original position of N243 and a water molecule stabilizes the negative charge on N7. In

the case of ADO, the H-bonds between W3 and the base N7 and C6 amino group is

53



preferable compared to that of N243 since the amino - amino repulsion is eliminated
and the water molecule (W3) establishes a significantly better H-bond interaction to N7.
It is also notable that the ADO N7 is linked to D243 through a stable chain of 3 water
molecules (Figure 23). In the case of GUA and INO, one additional water molecule is
observed stabilizing 06, resulting in a chain of 4 water molecules bridging to D243. The
key improvement for ADO compared the 6-oxopurines is, however, the average
electrostatic interaction energy between the C6 amino group and residue 243, which is
significantly improved upon replacing asparagine with glutamic acid. Moreover, the
water molecule interacting directly with the base N7 (W3 in Figure 23) has enhanced
the electrostatic interaction compared to wild-type HsPNP. This is also reflected by the
difference in reorganization energy (AA) between native and mutated HsPNP, which was
estimated to be ~ -10 kcal/mol. INO and GUO on the other hand were estimated with AA
of ~10 kcal/mol, which is the opposite of that to ADO. This strongly suggest that the
N243D mutation has rendered the enzyme more electrostatic preorganized for 6-amino

purines (i.e. ADO) and less for 6-oxopurines (i.e. GUO and INO).

6.4 Nucleobase Protonation is Not Rate-Limiting

It is rather remarkable that the presented EVB model is able not only to reproduce the
HsPNP specificity, but also the experimental trends for the N243D mutation. As
discussed above, substrate release is indicated as the rate-limiting step in
phosphorolysis, but prior to release the anionic product intermediate must be
protonated. However, we were not able to locate any suitable residues in the range of
the base that could potentially serve as a proton donor. As a consequence, we ran
several 5 ns long simulations of ¢, (Figure 20) completely unrestrained in the active site
of HsPNP. Interestingly, 2 different stable conformations with the potential of shuttling a
proton from ribose-1-phosphate to the base N9 were observed. The calculated DFT
barrier for ¢p, — ¢; illustrated in Figure 24 of 4.9 kcal/mol supports the possibility of
this type of proton shuttle mechanism. The average activation free energies in HsPNP

from the EVB simulations are 6.7 kcal/mol.
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Figure 24: The EVB resonance structures used for modeling the hypothesized proton shuttle to hypoxanthine
(glycosidic bond cleave product of inosine).

Other alternatives for potential routes of course exist, and one observed
conformation (paper IV) suggests that the proton could be linked through a chain of four
water molecules. Nevertheless, there probably exist numerous travel routes for the
proton, and it is a complex task to suggest the exact mechanism of the nucleobase
protonation. The key point in this matter is that the nucleobase protonation has a
barrier that is significantly lower compared to the glycosidic bond cleavage. In our
example, the activation free energy is only 6.7 kcal/mol for the proton shuttle from the
phosphate group to the base N9. Consequently, the glycosidic bond cleavage step would
be rate limiting compared to potential protonation steps. To our knowledge, this is also

the first time this kind of proton shuttling has been suggested and tested for HsPNP.

6.5 Remote Mutations Altering the Enthalpy-Entropy Balance

In context of the workflow illustrated in Figure 4 (section 4.1), the work presented in
paper IV focused on stage 1 resolving the glycosidic bond cleavage step. With the
encouraging results obtained utilizing the reaction mechanism illustrated in Figure 20,
we have in paper V advanced to stage 2 and 3 investigating the thermodynamic
activation parameters related to the chemical step in HsPNP. In papers II and III we
found that the protein - water interactions in trypsin regulates the enthalpy-entropy
balance. Point mutations altering the trypsin surface softness furthermore predict
significant changes to AH* and AS* that are nearly perfect compensating. The importance
of such enthalpy-entropy compensation is however likely easy to overlook since
mutations far away from the active site generally do not significantly affect the catalytic

rates (71). A recent publication with experimental remote mutations in HsPNP altering
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the enthalpy-entropy balance (74) is thus of considerable interest. The double mutation
K22E and H104R (HsPNP E:R) with GUO as substrate was reported by Ghanem et al. to
render the HsPNP thermodynamics similar to that of bovine PNP (BtPNP). As illustrated
in Figure 25, residues 22 and 104 are far away from the active site. To capture these, the
entire homotrimer was soaked in a spherical droplet of water molecules with radius 53
A. All simulations were run between 50 and 100 times at 6 different temperatures in the

range 283 - 308 K for HsPNP and HsPNP-E:R.

A

\
§ /’V/_ I\

Figure 25: [llustration of the positions of the distant residues K22 and H104 relative to the active site in HsPNP.

The activation free energy upon simulating the entire homotrimer is 13.1 *+ 1.2
kcal/mol and in excellent agreement with the experimental AG* = 14.3 + 1.0 kcal/mol
(Table 3). Moreover, the calculated AH* and —TAS* for GUO of 14.7 and -1.6 kcal/mol
are in very good agreement with the values obtained by extrapolating stopped-flow
fluorescence rates using the Arrhenius equation of 18.5 + 1 and -4.1 * 1 kcal/mol,
respectively (74). The slight underestimation of the parameters is largely justified by the
fact that the calculated activation free energy is ~1.2 kcal/mol lower compared to that
obtained from the Arrhenius plot in ref. (74). This could in principle have been corrected
for by fitting the EVB reaction free energy surface for the enzyme-catalyzed reaction to
coincide with the experimental rates. This is nevertheless irrelevant since it is the
relative values that are interesting here. What is however rather remarkable, is the fact
that the EVB simulations are able to perfectly reproduce the experimentally observed
enthalpy-entropy balance. It should also be noted that the same thermodynamic
activation parameters with GUO as substrate was obtained using the smaller 25 A

simulations sphere (paper V).
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Table 3: Calculated thermodynamic activation parameters at 298 K for the glycosidic bond cleavage step in HsPNP
and HsPNP-E:R with guanosine as substrate together with experimental data including BtPNP adapted from ref. (74).

HsPNP E:R-PNP BtPNP
Parameter EVB expt EVB expt EVB expt

AH? 14.7 £ 0.8 18.6 £ 0.7 18.3+1.0 20.5+0.7 - 16.1 £ 0.7
—TAS* -1.6+£0.8 -4.1+0.2 -3.8+1.0 -6.2£0.2 - -21+0.1
E, 15.3+0.8 19.1£0.7 18.9+1.0 20.8+0.7 - 16.7 £ 0.7
AGH# 13.1+1.2 145%1.0 144+14 143 1.0 - 13.9+0.7

Aufrm 19.7 £ 2.0 - 33.9+4.2 - - -

AUS*S -5.0+2.2 - -15.6 £4.3 - - -

Our calculations thus indicate that it is possible to extract accurate activation enthalpies
and entropies without including the entire enzyme. This can be of great importance
upon reducing the high computational costs involved in simulating large enzymes like
the homotrimer described here. Nevertheless, in order to capture effects of surface
mutations and corresponding changes in external and internal potential activation
energies obviously render it necessary to include the entire enzyme.

The computed free energy of activation for HsPNP-E:R is 14.4 #* 1.4 kcal/mol and in
good agreement with the experimental AAG* of ~0 kcal/mol for the mutation (Table 3).
This again just underscores the general notion that mutations far away from the active
site do not significantly alter the catalytic rates (71). The calculated AAH* and —TAAS*
of 3.6 kcal/mol and -2.2 kcal/mol, respectively, are furthermore in excellent agreement
with the experimentally obtained AAH* = 1.9 kcal/mol and —TAAS* = -2.1 kcal/mol
(Table 3). This type of remarkable enthalpy-entropy compensation induced by
mutations distant to the active site is consistent with the results presented for trypsin in
section 5 (papers II and III). It should however be noted that the observed changes in
the thermodynamic activation parameters presented here are relatively small compared
to those for trypsin. Thus, it is in this respect rather remarkable that our EVB
simulations are able to capture these trends. The internal and external potential
activation energies contributing to the activation enthalpy (Eq. 32) are however
significantly different between native and mutated HsPNP. From the results presented in
Table 3 it can immediately be recognized that AUZ is rendered significantly more
favorable in HsPNP-E:R compared to the native enzyme. This is reflected by the
calculated backbone RMSF values at the transition state (Figure 26), which
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demonstrates that the mutations have rendered the protein softer in the mutated
regions (residues 22 and 104). The average RMSF for HsPNP and HsPNP-E:R is 0.56 and
0.55, respectively, which is not significantly different. In similarity to the results
obtained with trypsin, it is thus smaller regions that become more flexible. However, in
contrast to our previous works, the favorable AU, term is here cancelled by AU;.FT +rs that
has increased by ~10 kcal/mol in mutated HsPNP. This is not surprising considering the
fact that total charge of the surroundings (the enzyme) to the reacting fragment is
rendered more negative by the K22E and H104R mutations. Thus, the electrostatic
stabilization of the substrate’s anionic development in the transition state becomes less

favorable, which is also evident from the increased enthalpy of activation.
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Figure 26: Average backbone fluctuations at the transition state demonstrates that HsPNP-E:R is rendered softer
around the mutated (K22E and H104R) regions compared to native HsPNP.

As also recognized by Ghanem et al.,, the K22E and H104 mutations do not alter
the thermodynamics of HsPNP towards BtPNP (74). That is, AAH* and —TAAS* for
BtPNP is -2.5 kcal/mol and 2.0 kcal/mol, respectively, compared to HsPNP, which is the
exact opposite to the enthalpy-entropy compensation obtained with HsPNP-E:R. Based
on the experimental data presented in ref. (74) and from our calculations it must be
concluded that the these mutations do not alter the thermodynamics of human towards

bovine purine nucleoside phosphorylase. Nevertheless, these long-ranged mutations still
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serve as a perfect example to how protein surfaces can regulate the enthalpy-entropy

balance without significantly altering the free energy of activation.

6.6 Concluding Remarks and Future Aspects

In the works presented in papers IV and V we have successfully reproduced both the
reaction rates and the thermodynamic activation parameters for the glycosidic bond
cleavage step in native and mutant human purine nucleoside phosphorylase. Our
calculations strongly suggest that HsPNP is significantly more electrostatically
preorganized for catalysis of 6-oxopurines compared to 6-aminopurines. This is
furthermore reflected by the thermodynamic activation parameters presented in paper
V where the AH* for ADO is ~2-fold higher compared to that of INO and GUO. The
presented reaction mechanism furthermore reproduces the active site mutation, N243D,
rendering HsPNP highly active also for adenosine. Our calculations demonstrate that the
mutation significantly improves the electrostatic preorganization for catalysis of ADO
compared to the native enzyme.

In paper V we computed long-ranged mutations in HsSPNP changing the enthalpy-
entropy balance without significantly affecting the reaction rates. However, the
thermodynamic activation parameters for HsPNP-E:R are only altered ~+2-3 kcal/mol
with respect to the native enzyme. Thus, it is rather remarkable that our EVB
simulations are able to capture the mutational trends for these marginal changes.
Nevertheless, the internal and external potential activation energies showed significant
changes. The enzyme surface is rendered softer in the mutated regions, which is also
reflected by the favorable AU;S calculated for HsPNP-E:R. However, this effect is almost
completely cancelled by the unfavorable AUerS term, which explains the small change
in AH*. Nevertheless, the presented EVB simulations combined with the available
experimental data provide valuable insight to how orthologous enzymes regulate the
enthalpy-entropy balance through surface mutations.

Clearly it is challenging to derive the exact origin of the observed effect to the
thermodynamic parameters for the double mutation K22E and H104R. This is
particularly true with only the experimental data presented in ref. (74) available.
However, our calculations indicate that the H104R mutation is the most likely source of

the improved external activation potential energy, whereas K22E counteracts the effect
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by acting unfavorable to AUerS. Thus, the mutation H104R could in fact render the
thermodynamics of human towards bovine PNP when not counteracted by K22E. A
future study should therefore do these mutations individually. Moreover, in light of the
work presented in papers II and III, our EVB model could in a future project also be used

for studying different temperature adapted PNP orthologs.
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