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Summary  
 

Bacteria are the most abundant organisms and can be found in different habitats, from polar 

regions, deserts and volcanoes, deep ocean trenches to the upper atmosphere. In all these 

environments, they are exposed to various chemical hazards, such as antibacterial chemicals 

(antibiotics) produced by other organisms that are found in the same habitat. In addition, they 

are exposed to threats from infection by bacteriophages. In order to protect themselves, bacteria 

have evolved several mechanisms towards avoiding antibiotics and phage infection. In this 

work, enzymes involved in these protection mechanisms have been attempted characterized 

both functionally and structurally. Specifically two DNA modifying enzymes have been 

studied. They are involved in bacterial protection from phages, namely the type II restriction 

enzyme DpnI and the C5-DNA-MTase ParI, both originating from the psychrophilic bacterium 

Psychrobacter arcticus. The third enzyme that has been investigated is a metallo-β-lactamase 

(ALI-1) from the cold adapted marine bacterium Aliivibrio salmonicida. Since all these 

enzymes originate from organisms adapted to a cold environment, the presence of cold adapted 

enzyme features like heat lability and high activity at low temperature, were investigated.  

In Manuscript I and in Manuscript III the type II restriction enzyme DpnI and the C5-DNA-

MTase ParI were partially characterized. In addition to being important for the bacterial cell, 

these types of enzymes are valuable in several molecular biology techniques and the 

development of more efficient enzymes is necessary in terms of reducing cost and increasing 

efficiency. Due to their characteristics such as higher activity at lower temperatures and heat 

lability cold adapted enzymes became very attractive targets. Both DpnI and ParI were 

recombinantly expressed, but with some difficulties, that were overcome by usage of 

specialized E. coli strains. Both enzymes were partially characterize with regards to function, 

DpnI showed activity in vitro, while MTase was shown to have methylating activity in vivo.  

One of the mechanisms in antibiotic resistance is the acquirement and development of β-

lactamases, enzymes that can cleave the amide bond in the β-lactam ring, a common structure 

in all β-lactam antibiotics, and thus inactivate it. This presents a huge problem in usage of β-

lactam antibiotics, which are widely used against bacterial infections in both humans and 

animals. In Paper II, the metallo-β-lactamase ALI-1, from the cold adapted marine bacterium 

Aliivibrio salmonicida, was characterised. When compared to a mesophilic counterpart (VIM-



 

 

2 from Pseudomonas aeruginosa) it was shown to be adapted to its natural habitat, in terms of 

being more active at lower temperatures and in higher salt concentrations. In addition, in this 

work it was found that the gene encoding ALI-1 is present in environmental bacterial samples. 

This could point towards a broader role for ALI-1, such as in regulating quorum sensing 

signalling in bacteria.   
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I. INTRODUCTION 

1 Host defence in bacteria  
Bacteria are exposed to various hazards from the environment they live in; chemical as well as 

threats from infection by bacteriophages. One of the biggest threats bacteria have to deal with 

are various antibacterial chemicals (antibiotics) produced by other organisms that are found in 

the same habitat (1). In order to protect themselves, bacteria have evolved several mechanisms 

towards avoiding antibiotics (Figure 1). As one of four main mechanisms, β-lactamases have 

been very efficient in the bacterial protection against antibiotics (Figure 1). The problem with 

antibiotic resistance has steadily increased since the 1950s when the β-lactam antibiotic 

penicillin was discovered and became widely used against bacterial infections in both humans 

and animals (2).  

 

 
Figure 1. Schematic representation of the major antibiotics resistance mechanisms in bacteria. 1. Alteration 
of specific targets (here presented as spiral), which have a necessary role in microbial growth that leads to loss or 
decrease in drug affinity. 2. Production of enzymes by the host that can inactivate or modify the antibiotic 
chemical, such as β-lactamases. This is a major mechanism of resistance to antibiotics. 3. The development of 
energy-dependent pumps and removal of the drug by active efflux, which limits intracellular accumulation of toxic 
compounds. It is mediated by membrane-based efflux proteins acting as pumps. 4. Impermeability by mutation of 
a porin channel (pore in the external membrane involved in selective transport) causing very low permeability of 
antibiotics. Pentagon in all steps presents antibiotic molecule. The figure is made in ChemDoodle based on (3) . 
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In addition to antibiotics, bacteria have to deal with continued threats of bacteriophage 

(bacterial virus) infections. In order to protect themselves, bacteria have developed several 

antiviral mechanisms. These mechanisms can be divided into four groups: 

1. Prevention of phage adsorption, where bacteria can either change the three-dimensional 

conformations of cell surface receptors, produce extracellular polymers that serve as 

protectants of the bacterial cell or produce competitive inhibitors that bind specifically 

to phage receptors (4).  

2. Prevention of phage DNA entry by super infection exclusion (Sie) systems. This system 

comprises a group of proteins that are anchored in the membrane and block the entry of 

phage DNA into the bacterial cell (5, 6). 

3. Digestion of phage nucleic acids by the restriction-modification systems (RM systems), 

which are comprised of a restriction endonuclease (REase) and a methyltransferase 

(DNA-MTase).  REase cleaves non-self (phage) DNA, while DNA-MTase modifies 

self-DNA at the same site as the REase recognizes and thus protects it from restriction 

(7, 8). 

4. Usage of abortive infection systems (Abi systems), which are a group of proteins that 

provide resistance to phages by acting on replication, transcription or translation of the 

phage. This system leads to death of the bacterial cell (9, 10). 

 

In this thesis, three case studies with focus on metallo-β-lactamase and enzymes from RM-

systems will be presented. 
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2  Bacterial defence against antibiotics  
Based on their chemical structure, substrate and target preferences, antibiotics are classified 

into several groups, e.g. the ß-lactams, the aminoglycosides and the tetracyclines (3). A 

common feature of all ß-lactam antibiotics is the 4-membered ß-lactam ring (Figure 2). In the 

bacterial cell wall, the β-lactam antibiotics, such as penicillins and cephalosporins, block cell 

wall synthesis. The cell wall is a mechanical protection from the environment and preserves 

cell shape and rigidity. Synthesis of the cell wall occurs in several steps in the cytoplasm. First, 

the muramyl pentapeptide is synthesized and translocated to the outside of the cell membrane. 

The synthesis of the cell wall is then completed by cross-linking of peptidoglycan units by 

transglycosylases and transpeptidases. It is this second step that is targeted by the ß-lactam 

antibiotics and causes cell death (11, 12). Antibiotics can also affect prokaryote development 

and propagation through the inhibition of protein biosynthesis or inhibition of DNA replication 

(3).  

 

 
Figure 2. Structures of β-lactam antibiotics. The β-lactam antibiotics, such as penicillins, cephalosporins, 
monobactams and carbapenems, are grouped together based upon a shared structural feature, the beta-lactam ring 
a four-membered cyclic amide (in blue). The classes of β-lactams are distinguished by the variation in the ring 
adjoining the β-lactam ring and the side chain (R in the figure) at the α position. The figure has been adapted from 
(13).  
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2.1 β-lactamases  
The increased occurrence of mobile, plasmid-borne β-lactamases among human pathogens in 

the recent decades has become a huge problem in health care (14, 15). β-lactamases cleave the 

amide bond of the β-lactam ring and thereby inactivate the antibiotic (Figure 3). The production 

of β-lactamases is thought to have evolved as a defence against antibiotics produced by other 

organisms in their natural habitat (1, 16, 17). Allen et al conducted research in the Alaskan 

environment and found many different freshwater species of Enterobacteria with broad 

spectrum of antibiotic resistance as well as a diverse set of lactamases (1). This area has been 

free from human influence, and demonstrates the existence of β-lactamases before human 

antibiotic overuse, which indicates that β-lactamases also have other roles. For example, 

production of low concentrations of antibiotics might be used in communication between 

bacteria, and in that case, β-lactamases may have a role in the adjustment of such quorum 

sensing signals (16, 18).  

There are several classification schemes for the β-lactamases. Richard P. Ambler suggested the 

first complete classification in the beginning of the 1980s, based on sequence similarity (19). 

According to his classification, the β-lactamases are divided into the four classes A, B, C, and 

D. Classes A, C and D are all serine β-lactamases having serine in the active site, while class B 

contains the metallo-β-lactamases (MBL), requiring divalent cations (zinc), for activity (19, 

20). This classification was later complemented by Karen Bush to include functional and 

mechanistic criteria such as the β-lactamases’ ability to hydrolyse specific β-lactam antibiotics 

and their inhibition. Based on these criteria, β-lactamases are divided into groups 1, 2, 3, and 4. 

Group 1 consists of cephalosporinases that are weakly inhibited by the β-lactamase inhibitor 

clavulanic acid. Group 2 consists of penicillinases and extended spectrum β-lactamases, which 

are sensitive to clavulanic acid. Group 3 contains the metallo-β-lactamases, and group 4 

includes other β-lactamases that are not sensitive to clavulanic acid (21, 22).  

The genes encoding β-lactamases can be found on bacterial chromosomes, plasmids and 

transposons. Their appearance on transposons makes them highly mobile and can explain the 

increasing number of β-lactamases that appear in bacterial strains (12). Additionally, β-

lactamase-encoding genes have been discovered on integrons (23, 24), genetic elements that 

vary in length and are able to acquire and rearrange open reading frames embedded in gene 

cassette units and convert them to functional genes by ensuring their correct expression.  



5 

 

 
Figure 3. Hydrolysis of the β-lactam ring by β-lactamases. Following hydrolysis by the β-lactamase the β-
lactam ring is opened and thus the molecule's antibacterial properties are deactivated. For simplicity, residual 
groups on the antibiotic structure have been removed and are here represented by wavy lines. Republished with 
permission from (25). 
 

2.2  Metallo β-lactamases  
The first MBL enzyme was described in the mid-1960s and originated from the non-pathogenic 

bacterium Bacillus cereus (26). Shortly after, other MBLs from Stenotrophomonas 

(Pseudomonas) maltophilia, Serratia marcescens, Aeromonas hydrophila and Bacteroides 

fragilis were described (27-30). All of these enzymes were localized extracellularly or in the 

periplasm and encoded from chromosomal genes, and were not considered harmful. In the 

beginning of the 1990s the first plasmid-borne MBL was detected from Pseudomonas 

aeruginosa (31). Not long after that, an MBL was then isolated from B. fragilis found in clinical 

isolates in Japan and Italy, which pointed to the possibility of horizontal gene transfer from one 

bacteria to another and to the potential spread of MBL-encoding genes, carried on mobile DNA 

elements among major Gram-negative pathogens (32, 33). An additional risk of the spreading 

of these enzymes comes from their ability to degrade almost all β-lactam antibiotics while being 

resistant to therapeutic β-lactamase inhibitors (34).  

In the Bush classification, group 3 of the β-lactamases are metallo-enzymes that require Zn2+ 

cations for catalysis and were additionally divided into three functional subgroups, a-c (Table 

1). Most of the MBLs have a broad substrate profile (table 1) and can be expressed in 

combination with other β-lactamases (32).  

  



6 

 

Table 1. Bush’s classification of class B MBLs. Data is based on (22, 35, 36). 

Functional 
group Spectrum Zn1 site Zn2 site Comment Examples 

Group 3a Broad spectrum 3 His Asp-Cys-His Two Zn atoms for 
optimal hydrolysis 

Bc II, IMP-I, CcrA, 
VIM, GIM, SPM-1 

Group 3b Carbapenems 2 His 
1Asn 

Asp-Cys-His Second Zn atom is 
inhibitory 

CphA, Sfn-1 

Group 3c Cephalosporins 3 His Asp-His-His Two Zn atoms for 
optimal hydrolysis 

LI, FEZ-1, Gob-1, 
CAU-1 

 

Structurally these enzymes have a similar fold (Figure 4A). They all possess an αββα-structure 

composed of two central β-sheets and five α-helices, with the active site placed on the external 

edge of the ββ-sandwich near the N-terminal end of a helix (Figure 4) (25, 34, 37). Due to the 

fact that the N- and C-terminal parts of the molecule can be superposed by a 180° rotation 

around a central axis, it has been suggested that the structure of MBLs arose from a gene 

duplication event (25). Almost all MBLs are monomers (25, 37, 38), with only the L1 metallo-

β-lactamase from Stenotrophomonas maltophilia known as a tetramer (39). All MBLs require 

zinc ions for their activity (Table 1). The active site consists of two zinc-binding regions, the 

Zn1 and Zn2 sites, which are conserved among all groups (Table 1, Figure 4B). Most MBLs 

are active as di-zinc compounds (as shown in Figure 4), with the exception of enzymes 

belonging to the 3b group, which are active as mono-zinc compounds and are inhibited by a 

second zinc ion (32). 
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Figure 4. Three-dimensional structures of three homologous metallo-β-lactamases of B. fragilis (left), B. 

cereus (center), and S. maltophilia (right). A. Comparison of overall structures. All homologs share an αββα-

structure composed of two central β-sheets (blue) and five α-helices (red), with the active site placed on the external 

edge of the ββ-sandwich near the N-terminal end of a helix The green spheres represent the two bound Zn-ions in 

the active site. The yellow sphere in the B. fragilis structure represents a Na-ion.  

B. Comparison of the dinuclear Zn (II) centers of the MBLs. Relevant side chain residues are shown in stick-

representation. The conserved histidine triad and a bridging water molecule in the histidine site tetrahedrally 

coordinate Zn1 ion. The Zn2 site has a trigonal-bipyramidal orientation, which includes two water molecules and 

conserved His or Cys. The water molecule from Zn2 site is believed to behave as a strong nucleophile. The green 

spheres represent Zn-ions. The red spheres represent oxygen atoms of the bridging water/hydroxide molecule and 

the apical water molecule. The figure is adapted from (25). 

 

2.2.1 The catalytic mechanism of metallo-β-lactamases 

In the catalytic mechanism proposed for the mono-zinc form of the BCII enzyme from B. cereus 

(Figure 5A), zinc acts as a nucleophile attacking the carbonyl group of the β-lactam ring (25, 

34). This forms a tetrahedral intermediate, which is stabilized by interactions with Zn2+. Asp120 

deprotonates OH- and creates a second tetrahedral intermediate stabilized by Zn2+. Following 
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this, Asp120 protonates the nitrogen of the β-lactam ring and, thus, opens it. The proposed 

mechanism for di-zinc enzymes is based on the structure of the CcrA enzyme from B. fragilis 

(Figure 5B) (25). In this mechanism, the OH- ion between the two Zn2+ ions is responsible for 

the nucleophilic attack on the amide bond of the β-lactam ring. A negatively charged 

intermediate is formed that is stabilized by the enzyme’s oxyanion hole. The nitrogen from the 

amide bond in the β-lactam ring is protonated by an apical water molecule bound to Zn2+ (25, 

34, 37, 40, 41).  

 

 
Figure 5. Proposed catalytic mechanisms for mono-zinc and di-zinc MBLs. A) Mono-zinc enzymes. The zinc 

behaves as a Lewis acid by decreasing the pKa of the water and thus generating an OH- ion that acts as a 

nucleophile attacking the carbonyl group of the β-lactam ring (step I). A tetrahedral intermediate is formed and is 

stabilized by interactions with Zn2+, while Asp120, acts as a base and deprotonates OH-. A second tetrahedral 

intermediate, stabilized by Zn2+ is formed (step II). Following this Asp120 protonates the nitrogen of the β-lactam 

ring causing it to open (step III). B) Di-zinc enzymes. The OH- ion between the two Zn2+ ions makes a nucleophilic 

attack on the amide bond of the β-lactam ring (step I). The newly formed negatively charged intermediate is 

stabilized by the enzyme´s oxyanion hole. The apical water molecule bound to Zn2+ protonates nitrogen from the 

amide bond in the β-lactam ring (step II). Only the functional groups of the amino acids involved are presented, 

while the rest of the molecule is represented with wavy line. The figure has been adapted from (25).  
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3  Restriction of phage nucleic acids by bacterial RM systems 

3.1 DNA-interacting proteins  
Deoxyribonucleic acid (DNA) is a carrier of the genetic instructions in all known living 

organisms and many viruses.  DNA is a chemically stable molecule that can be inert for long 

periods (42). Recognition and binding of proteins to specific sites on DNA is important for 

many cellular processes in both eukaryotes and prokaryotes, such as regulation of transcription, 

gene expression, DNA repair, recombination and replication. In order to bind double stranded 

DNA (dsDNA), relevant proteins harbour specific structures that are complementary to the 

DNA double helix, both structurally and electrostatically. The binding process starts with the 

formation of a tight complex between DNA and protein, involving distortions to both 

molecules. DNA-binding proteins utilize two main interacting modes, specific or non-specific. 

In the specific interaction mode, bases from the major groove of DNA provide hydrogen bond 

donors and acceptors, as well as non-polar groups that are recognized and “read” by specific 

amino acids side chains on the protein. The non-specific interaction mode is purely electrostatic 

and involves base pairs forming specific structures that can be recognized by the protein (43, 

44). In regulation of gene expression, covalent modifications of DNA bases such as 

phosphorylation, acetylation and methylation are very important (45, 46). These base 

modifications can form favourable interactions between proteins and DNA and thereby 

strengthen the recognition.  

3.1.1 Structure of DNA  

In 1953, Francis Crick and James Watson published the structure of the DNA molecule, based 

on the x-ray image of DNA taken by Rosalind Franklin (47). The Watson-Cricks DNA model 

is a double helix with two strands coiled around the same axis (47). Basic DNA units are 

deoxyribonucleotides, which are built from 2-deoxyribose and phosphate groups linked with 

phosphodiester bonds in forming the DNA backbone. Deoxyribose is in turn covalently linked 

to one of four bases, thymine, cytosine, adenine and guanine (Figure 6) (48). 

The two DNA strands are oriented in opposite directions to each other, i.e. antiparallel, and are 

held together by hydrogen bonds between opposing bases and base-stacking. The bases are 

paired depending on their structures and their abilities to form hydrogen bonds. Adenine is 

paired with thymine by two hydrogen bonds, while guanine and cytosine share three hydrogen 

bonds (Figure 6). The bases can be aligned in any order along one DNA strand and these 
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sequences represent the genetic information. Due to this base pairing, the sequence of bases on 

one strand determines the sequence on the complementary strand. The bases are planar and 

almost completely perpendicular to the helix axis spaced at a distance of 3.4 Å. The two strands 

form a right handed helix with a helical repeat every 34 Å and 10 bases per turn (42). Due to 

the stacking of the bases and the twisting of the helix there are two grooves that can be 

distinguished by their size, a wider major groove and narrower minor groove (Figure 6). Both 

grooves may be involved in protein binding, with the major groove usually having a more 

important role. The width of the major groove is similar to the width of an α helix in proteins, 

which allows for a tight fit between them. The major groove also contains both polar and 

nonpolar groups that are easy accessible and can be recognized by DNA-binding proteins. The 

minor groove is narrower than the major groove and contains fewer functional groups from the 

bases, which decreases its potential for interaction with other molecules, such as proteins. To 

achieve successful binding through the minor groove of DNA, structural distortions have to 

take place (42, 48, 49). 

 

 
Figure 6. A simplified model of the DNA double helix. To the left a DNA double helix model is shown, followed 
by a schematic representation of complementary base pairing in DNA. In the structure of DNA, the sticks represent 
base pairs, and the ribbons represent the deoxyribose phosphate backbones of the antiparallel strands. In the 
schematic representation of the base pairing, dotted lines represent hydrogen bonds between bases. The bases are 
denoted with the letters A for adenine; T for thymine; C for cytosine and G for guanine; phosphate is denoted with 
the letter P. The figure has been adapted from (50). 
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3.1.2 Protein-DNA recognition and binding  

One of the first steps in protein-DNA recognition is direct contact of the protein with exposed 

edges of the DNA bases, usually those located at the major groove of DNA. These contacts 

typically involve hydrogen bonds and van der Waals interactions between the DNA bases, and 

the amino acid residues of the protein. Small molecules that are bound to either the DNA or the 

protein, such as water molecules, can provide additional contacts (51, 52). This non-specific 

protein-DNA complex then allows diffusion of the protein along the DNA as the protein “scans” 

the DNA in search for a specific recognition site. The protein translocates along the DNA while 

it is loosely bound to the DNA with its catalytic centre distant from the phosphate backbone. 

There are several hypotheses for how proteins move along the DNA molecule. In a mechanism 

called one-dimensional diffusion, the enzyme is constantly bound to DNA and slides in a helical 

movement along a groove of the DNA until it reaches a specificity site. Since the enzyme is 

constantly bound to DNA no sites are ignored, however, ligands or other proteins interacting 

with both minor and major grooves can be obstacles for this movement. The second mechanism 

of DNA movement is called three-dimensional (3D) diffusion, where the enzyme dissociates 

and re-associates with the DNA. A problem with the latter mechanism is that when the enzyme 

is dissociated from DNA, some specificity sites may be ignored. On the other hand, small 

ligands bound to DNA would not cause hindrance. A third mechanism of moving is called 

intersegment transfer. This movement requires two DNA binding sites on the enzyme. While 

the DNA is bound to one site on the enzyme, the other binding site of the enzyme can dissociate 

from the DNA and bind to the same DNA molecule on the more distant site (53-55).  

When an interaction between the DNA molecule and a protein occurs, there will be a change in 

the Gibbs free energy (ΔG). The interaction involves conformational changes of both the 

protein and the DNA, as well as a release of water and counter-ions from the protein-DNA 

interface (56). This result in a favourable entropic change (ΔS) that compensates for 

unfavourable entropy contributions that originates from immobilization of amino acid side 

chains at the protein-DNA interface. The enthalpy change (ΔH) from direct non-covalent 

protein-DNA interaction is additionally decreased by distortions on the DNA due to the base 

pair destacking (57). 

Some proteins, such as restriction endonucleases (REases) and DNA methyltransferases (DNA-

MTases), recognize and interact with a specific base sequence in DNA. Other proteins have 

structural features that are important for recognition, but are non-specific with regard to the 
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DNA sequence. The most important role in interaction is played by hydrogen bonds between 

the protein and the DNA base pairs. Side chains of certain amino acids such as Ser, Thr, Tyr, 

Asn, Gln and His are considered the best hydrogen bond donors and/or acceptors. In addition, 

the positively charged amino acids can make hydrogen bonds and salt bridges with the 

phosphate backbone of the DNA (43, 58, 59). Hydrogen bonds also have an important role in 

the selectivity that amino acids have towards bases, which is very important when it comes to 

specific recognition (Figure 7). Besides the hydrogen bonds in these interactions, van der Waals 

interactions, hydrophobic interactions and electrostatic interactions between functional groups 

in bases and proteins also play important roles (57, 60).  

 

Figure 7. Examples of protein-DNA contacts. A) Bidentate contacts between arginine side chain and guanine 
base (yellow dashed lines) and hydrophobic contacts to a thymine methyl (green dashed lines). B) Bidentate 
contact between glutamine and adenine. In addition to contacting the adenine, this side chain hydrogen bonds 
to a second glutamine side chain, which in turn contacts a phosphate group. C) Water-mediated hydrogen bonds 
at the protein-DNA interface of the Trp repressor-DNA complex. The figure has been adapted from (58) 
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The α-helix is the most frequent structural element involved in protein-DNA interactions. It fits 

into the major groove, as it has a similar diameter (12Å), while the side chains on the helix can 

interact with bases on DNA. Small β-sheets can pack against the major groove, and side chains 

from exposed amino acids can interact with neighbouring bases. Since larger β-sheets are more 

rigid and often twisted, DNA has to be distorted in order for the β-sheet to insert into either of 

the grooves (e.g. TATA-box binding proteins). Loops are more flexible and can take up a 

variety of conformations. They can also take up various positions towards DNA in order to be 

placed in the best way to make favourable interactions to the DNA helix. Loops are common 

elements in DNA binding motifs (e.g. in helix-loop-helix motifs) (46, 49). Various 

combinations of α-helices, β-sheets and loops constitute different binding motifs. So far, several 

different structural motifs are known, with the helix-turn-helix-, leucine zipper- and zinc-

finger- motifs being the best studied (49). These motifs may appear alone or be part of larger 

domains.  

The recognition of specific sequences in DNA is the basis of the recognition and interaction of 

the proteins structural motifs with the DNA. For example, those enzymes that are involved in 

DNA replication, transcription and recombination depend on sequence specific DNA 

interactions. The best known example is the Lac repressor, the first regulatory system 

discovered whose binding site on DNA consists of a 17 bp palindromic sequence 

(TTGTGAGCSGCTCACAA; where S corresponds to either G or C) (61). Some proteins 

consist of several domains that have individual, but related functions, such as recognition 

domains that recognize a specific DNA sequence and catalytic domains. Examples in this group 

are DNA-MTases, type II REases, DNA polymerases, deoxyribonucleases and DNA repair 

enzymes (60). 

3.2 Restriction-modification systems 
Restriction-modification (RM) systems are widespread among microorganisms, but are 

predominantly found in bacteria (7). Additionally, certain cyanobacterial viruses possess RM 

systems that degrade host DNA and provide free deoxyribonucleotides that the virus can 

incorporate into its own DNA (62-64). RM systems consist of two components: restriction 

endonucleases (REases) that cleave foreign DNA (e.g. phage DNA) at specific recognition 

sites, and the DNA-MTases that modify adenosine or cytosine of the host DNA preventing host 

DNA cleavage (65). Recently, Kobayashi and colleagues introduced yet another role of RM 

systems in bacteria, defining them as selfish elements with the ability to maintain themselves 
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in a cell population regardless of the consequences for their host cell. If the cell loses the RM 

system, for example through a recombination with a competitive gene, the cell would undergo 

a process resembling post-segregation killing resulting in its death, while the RM system would 

be preserved in neighbouring cells that do not have such interactions (66-68).  

RM systems were first suggested by Luria and Bertani in the early 50s when they noticed that 

some bacteria could limit growth of bacteriophage λ (69, 70). Since their discovery, in the 60s 

many different types of restriction and modification enzymes have been discovered and 

characterized (71). Initially, for classification purposes, newly discovered enzymes were named 

according to the genus and species from which they were discovered, followed by the existing 

strain designation. Multiple RM systems identified from the same organism are distinguished 

by roman numbers. For example, HindII is the second out of four restriction enzymes isolated 

to date from Haemophilus influenzae serotype d (72, 73).  

3.3 Types of Restriction-modification systems  
All RM systems have the same overall function, that is, protection of host DNA. Based on the 

differences in composition, co-factor requirements and specificity, they are divided into types 

I, II, III and IV (detailed in Table 2) (7, 72). A key point of this division is whether the 

endonuclease function, responsible for cutting the DNA, and the methyltransferase function, 

responsible for protecting the DNA, are carried out by the same enzyme (as in types I and III), 

or whether these functionalities are encoded by separate proteins (as in types II and IV). In this 

thesis, enzymes of the type II RM systems have been studied. As single enzymes from type IV 

RM systems have been applied in laboratory techniques, these will also be briefly outlined in 

the following subsections.  
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Table 2. Characteristics of the four types of restriction modification systems. Modified from (74) and (75-
77).  
Features Type I Type II Type III Type IV 
Nature of enzyme Single, 

multifunctional 
enzyme 

Separate 
endonuclease and 
methylase 

Single, multifunctional 
enzyme 

Single enzyme 

Protein structure 3 different subunits 
(R2M2S1)1 

2 distinct proteins 
(RM)1 

2 different subunits 
(R2M2)1 

3 different subunits 

Numbers of genes 3 
 
 

2 2 2 

Location of genes Chromosomal Chromosomal or 
plasmid 

Chromosomal or 
plasmid 
 

Chromosomal 

Cofactor SAM, ATP, Mg2+  Mg2 ATP, Mg2+, SAM 
stimulates restriction, 
but not required 
 

Mg2, GTP 

Cleavage sites Random, ~1000bp 
from recognition site 

Within recognition 
site 

24-26 bp to the 3´of 
recognition site 

C5 or N4 methylated 
cytosine following a 
purine 

DNA translocation Yes No No Yes 

Site of methylation Recognition site Recognition site Recognition site Does not possess 
methyltransferase 
activity 

Restriction versus 
methylation 

Mutually exclusive Separate reactions Simultaneous Possess only 
restriction activity 

Examples EcoAI, EcoKI R.EcoRI /M.EcoRI 
R.HhaI/M.HhaI 

EcoP1I, EcoP15I Mrr, McrBC 

1 R indicates restriction subunit; M modification subunit and S specificity subunits of the enzyme complexes. 
 

 

3.3.1 Type II RM systems 

The type II RM systems are the most common and most studied RM systems (62). According 

to REBASE1, an online database that contains information about restriction enzymes and DNA 

methyltransferases, there has been an increase in the discovery and characterization of type II 

restriction enzymes and methyltransferases in the last decades (78). In type II RM systems 

individual genes encode the MTase and the REase that can act dependently or independently 

of each other. The recognition sequences are defined, and are often symmetric, palindromic and 

usually 4-8 bp long (for example, EcoRI recognizes the sequence G↓AATTC, where ↓ indicates 

                                                 

1 http://rebase.neb.com/rebase/rebase.html 
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the restriction site). The recognition sequence can also be asymmetric or degenerate. Some 

enzymes, termed isoschizomers, recognize the same sequence and cleave at the same site. 

Neoschizomers are enzymes that cut at different positions within the same recognition sequence 

(79, 80). Cleavage occurs either, as just described, at the recognition site, or at a neighbouring 

site. As cofactors, REases usually require Mg2+ (or other divalent metal ions) while DNA-

MTases require S-adenosyl methionine (SAM). The DNA-MTases catalyse the transfer of a 

methyl group from SAM to an adenine or cytosine in the recognition sequence on both DNA 

strands, which subsequently leads to the formation of N6-methyladenine, N4-methylcytosine 

or C5-methylcytosine (Figure 8).  

 

 
Figure 8. Structures of methylated DNA bases. The structure of each of the modified bases, N6-methyladenine, 
C5-methylcytosine and N4-methylcytosine, is presented in the context of AT and GC base pairs, respectively. In 
all cases, the methyl group is located in the major groove of the DNA and does not interfere with the Watson–
Crick base pairing. The figure has been adapted from (81).  
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Non-modified DNA is the preferred substrate for restriction enzymes that cleave DNA within 

or close to the recognition sequence (82, 83). The vast numbers of enzymes that belong to this 

group differ in their preferred recognition site, their need for a cofactor, or their subunit 

structure. Due to their diversity, the type II RM enzymes are further divided into several 

subtypes (Table 3, section 3.4.1) (84). In addition to these regular types, some DNA-MTases 

and REases occur as so-called orphans or solitaires, i.e. unaccompanied by the counterpart 

enzymes. Orphan DNA-MTases are more common than orphan REases and have been found 

to be involved in mismatch repair, regulation of initiation of DNA replication, regulation of 

transcription of housekeeping and virulence genes and cell cycle control (63). All orphan 

REases have specificity towards methylated substrate (85, 86). 

In this thesis, we have explored an orphan type II REase, DpnI, which restricts DNA once 

adenines are methylated in DNA, and the orphan C5-DNA MTase ParI. Enzymes that belong 

to type II RM systems are discussed in detail in Sections 3.4 and 3.5.  

3.3.2 Type IV RM systems 

Type IV RM systems consist only of restriction enzymes and lack an accompanying 

methyltransferase. For this reason, they only cleave modified DNA, such as methylated, 

hydroxymethylated and glucosyl-hydroxymethylated DNA and cannot be strictly considered as 

members of RM systems. The best studied type IV restriction enzyme is the McrBC from E. 

coli (K12), where mcr stands for “modified cytosine restriction” and BC stands for the two 

subunits encoded by the genes mcrB and mcrC, which are required for a functional enzyme (77, 

85, 87). The enzyme consists of three proteins, two of which are encoded by the mcrB gene and 

both contain a conserved motif required for GTP binding, while one protein is encoded by the 

mcrC gene and contains the motif involved in protein-protein interactions. The McrBC 

enzymes require Mg2+ and GTP hydrolysis for restriction and translocation of the enzyme along 

DNA. The requirement of GTP for translocation makes them unique among nucleases (75). 

The GTP binds first to the McrB subunit that leads to its stabilization, and then subsequent 

DNA binding and the initial formation of the McrBC interaction (76, 88, 89). These enzymes 

recognize C5- or N4-methylated cytosines following a purine, for example in the DNA 

sequence 5`-GC-3`. For cleavage, these enzymes require two modified sites typically separated 

by 40-80 bp, but can also be separated up to 3 kb. The restriction occurs at a random position 

between these two sites. During translocation along the DNA the enzyme binds to the 

recognition site and stalling of the enzyme initiates cleavage. Due to the unspecific cleavage 



18 

 

pattern, type IV enzymes have not been commercialized and applied in biotechnology, but they 

have recently been found to be useful for detection of methylation patterns in eukaryotes. In 

prokaryotes, the E. coli McrBC system is considered a technical problem in experimentation 

during the study of novel DNA-MTases due to the restriction of cloning or expression plasmids 

carrying functional methylase genes (90). Once DNA-MTases are translated they will 

methylate the recognition sequence leading to cleavage of self-DNA and subsequent cell death. 

To overcome this, several strains have been engineered by deletion of these genes, such as the 

Mcr-negative E. coli T7 Express strain (from New England Biolabs).  

3.4 Restriction enzymes that belong to the type II RM systems 
3.4.1 The structure of type II restriction enzymes  

According to REBASE more than 4000 type II restriction enzymes, the nuclease component of 

the type II RM systems, are characterized so far with ~300 different specificities, which 

illustrates the diversity of this group of enzymes (78). On a sequence level there is no sequence 

identity, but homology can be identified when proteins are compared on a structural level (84).  

Canonical type II REases are homodimers that recognize a palindromic DNA sequence of 4-8 

bp and cleave within or next to the recognition sequence leaving 5´-phosphate and 3´-hydroxyl 

ends (62). All enzymes are composed of three subdomains including a conserved catalytic 

domain, and two domains that are more diverse; the DNA binding domain and the dimerization 

domain. In addition to these structural features, many enzymes have additional unique 

characteristics that divide these enzymes into subgroups (Table 3). However, this division is 

not definite since some enzymes have characteristics that can be attributed to more than one 

subgroup (72, 84). As mentioned above, common structural features can be observed when 

comparing the structures of type II enzymes, despite their low sequence similarities. A common 

core contains the active site and a stabilization center, which can also be found in various other 

DNA interacting enzymes that participate in DNA replication, repair and recombination (62). 

The common structural core is composed of four mixed β-strands flanked by α-helices where a 

Pro-Asp-X10-20-(Asp/Glu)-X-Lys motif, in short termed PD…(D/E)XK, where X denotes any 

amino acid, is generally found (Figure 9) (91-93). The acidic and basic residues from Asp, Glu 

and Lys are involved in cofactor binding and restriction.  
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Table 3. Subtypes of type II REases. Characteristics of the subgroups are based on the review by Roberts, R.J., 
et al (72). 
 

Subtype  Characteristics Examples Recognition 
sequence1 

Ref. 

A   Asymmetric recognition sequence  FokI.  GGATG (9/13) (94) 

B   Cleaves both sides of target on both DNA strands  BplI  (8/13)GAG(N)5CTC 

(13/8) 

(95) 

C   Have both restriction and modification domains 
within a single polypeptide, which has quaternary 
structure A2B, with both domains in A subunit and 
target recognition domain (TRD) located in the B 
subunit. Recognize symmetric or asymmetric target. 

BcgI  (10/12) 
CGANNNNNNTGC 
(12/10)  

(96) 

E   Needs to interact with two copies of the recognition 
sequence; one copy of the recognition sequence 
serves only as allosteric effector while the other one 
is the actual target.  

EcoRII  

NaeI  

↓CCWGG  

GCC↓GGC  

(97) 

(98) 

F   Homotetrameric enzymes, cleave both copies of the 
recognition sequence cooperatively. 

Cfr10I  

NgoMIV  

R↓CCGGY  

G↓CCGGC  

(99) 

(100) 

G   Modification and restriction domains are combined 
into one polypeptide. Stimulated by SAM. 
Recognize symmetric or asymmetric target. 

BpuSI  (10/14) GGGAC  (101) 

H   Combine behavior of type II enzymes with genetic 
organization of type I enzymes. The active enzyme 
complex is composed of one restriction subunit and 
two modification and specificity subunits. 
Recognize symmetric or asymmetric target. 

AhdI  GACNNN↓NNGTC  (102) 

M   Require methylated target. Appear alone without a 
modification counterpart. Solitary endonucleases 

DpnI  Gm6 A↓TC  (86) 

S   Homodimers; each monomer is composed of two 
domains. One is responsible for identifying the 
recognition sequence and the other is responsible for 
restriction and dimerization. They cleave at least one 
strand of targeted DNA outside of the recognition 
sequence. 

MmeI  TCCRAC (103) 

T  Symmetric or asymmetric target. R genes are 
heterodimers 

BslI  CCNNNNN↓NNGG  (104) 

1 ↓ represents cleavage site; in numbers in brackets e.g. (8/13) the one preceding the recognition sequence indicates number of bases in front 
of the sequence where cleavage occurs while the second number indicates number of bases before the sequence on the complementary 
strand. The number in brackets following the recognition sequence indicates cleavage number of bases after the recognition sequence on both 
strands.  
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Figure 9. The commonly conserved core of the PD…(D/E)XK motif. Active site residues that are involved in 

cofactor binding and restriction (Asp, Glu and Lys) are shown as red sticks and marked in the corresponding 

sequence. α-helices are in blue while β-strands are in green. The figure has been adapted from (93). 

 

In addition to the PD…(D/E)XK family some REases belong to other families, such as the H-

N-H family and the GIY-YIG family (105, 106). For all type II REases, Mg2+ is essential for 

cleavage, but it can be substituted by other divalent cations that severely reduces activity, most 

often by Mn2+, but also by Co2+, Zn2+, Fe2+, and Ni2+ (82). In such situations, where Mg2+ is 

replaced, the enzyme cleaves sequences that are similar but not identical to their defined 

recognition sequence. This is known as “star activity” of the enzyme and is found under 

suboptimal in vitro conditions, such as the abovementioned substitution of Mg2+, high 

concentrations of the enzyme, non-optimal buffer, prolonged reaction time, or presence of 

organic solvents (e.g. DMSO, ethanol) (107). Based on their structural similarities, type II 

REases can be divided into two families, the α-subfamily (EcoRI family) and the β-subfamily 

(EcoRV family) (Figure 10).  
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Figure 6. Crystal structures of specific REase in complex with DNA. A. EcoRI-like (α subfamily). Enzymes 

belonging to the α-subfamily, such as EcoRI, BamHI and MunI, bind the major groove of the DNA and use an α-

helix and loop in recognition of DNA and leave 5´overhangs on the DNA after cleavage. B. EcoRV-like (β 

subfamily). Members of this family, such as EcoRV, PvuII, and BglI, bind DNA through the minor groove and 

generate blunt ends or 3´ overhang DNA products. For recognition and interaction with the specificity site these 

enzymes use a β-strand (56, 108). In all structures, the two subunits of the enzymes are shown in yellow and green. 

The strictly conserved β-strands and α-helix of the common core are red. DNA is coloured in blue. The figure has 

been adapted from (84).  

 

3.4.2 Sequence recognition by type II REases - binding and cleavage 

The first step in DNA cleavage by the REase is binding of the enzyme to DNA. It is assumed 

that the enzyme binds to DNA in either a specific- or a non-specific manner (section 3.1). In 

non-specific binding, water molecules from the DNA surface are lost and the protein undergoes 

conformational changes that facilitate DNA-binding. Here the protein-DNA complexes are less 

compact, there are no contacts between the protein and the DNA phosphate backbone and the 

overall contact surface is smaller than in the specific complex (56). When it comes to 

recognition of specific sites on DNA by REases, some common events based on available 
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crystallographic data of REase-DNA complexes can be observed (84). In specific binding, 

DNA undergoes structural distortions, which bring key residues from the REase into proximity 

with the specificity site on DNA and its phosphates, allowing hydrolysis of the phosphodiester 

bond. Additionally, some structural changes occur in the protein upon DNA binding. In a fully 

formed REase-DNA complex, DNA is completely encircled by the enzyme (62). Upon the 

assembly of a specific complex, a highly cooperative hydrogen bond network is created. It is 

composed of direct contacts between the protein and the DNA bases and contacts to the sugar-

phosphate backbone of the DNA. Additionally, van der Waals interactions are formed with the 

bases of the recognition sequence (62). Among REases all types of movement along DNA 

previously introduced, one dimensional, three dimensional moving and intersegment transfer, 

can be observed (Section 3.1.2) (56, 62). Which of these movements prevails depends mostly 

on the conditions in the surroundings, especially on ion strength and concentration of Mg2+ ions, 

as well as on the structures of both the enzyme and the DNA (62, 109).  

 

3.4.3 The mechanism of DNA cleavage by REases  

Cleavage of the phosphodiester bond in DNA by type II REases follows an SN2-type 

mechanism once all base-specific contacts have been established. The cleavage mechanism is 

characterized by the inversion of the stereochemical configuration at the phosphorous atom in 

the DNA backbone. The general mechanism is divided into three steps (Figure 11). 
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Figure 7. The mechanism of DNA cleavage by REase. In the first step (1) the attacking nucleophile is 

deprotonated by a base (B) from the PD-(D/E)XK motif . The second step (2) is characterized by the formation of 

a pentavalent transition state by a nucleophilic attack of the hydroxide ion on the phosphorous. The pentavalent 

transition state is stabilized by a Lewis acid with two negative charges. In the third (3) and final step of the 

mechanism the 3´ hydroxyl group is released after protonation by the acid (62, 110).  B, Y and Z-H are a general 

base, Lewis acid and general acid, respectively. The figure is made in ChemDoodle based on (56). 

 

The negatively charged side-chains of Glu (E) or Asp (D) in the PD-(D/E)XK motif coordinate 

the divalent cation (Mg2+, Section 3.3.1 ). The main role of the cations in REases is to stabilize 

the pentavalent transition state. The number and exact position of the cations involved in the 

cleavage is still unknown, but three alternative catalytic mechanisms have been proposed (62). 

It is still unknown which base is involved in stabilization of the attacking nucleophile. The most 

likely candidate for the water deprotonation event is a second molecule of water, which, with 

the help of metal ions, lowers the pKa of the neighbouring atoms. This assumption is supported 

by molecular dynamics simulations performed on EcoRI and EcoRV (111) and based on 

experimental data (62, 84). 

3.5 The methyltransferases of type II RM systems  
The DNA-MTases are the second member of bacterial type II RM systems and are responsible 

for methylation of the DNA recognition sites, thereby protecting the host DNA from cleavage 

by the accompanying REases. The DNA-MTases are translated and acting independently of the 

restriction enzyme component. In rare cases, the DNA-MTase can occur without a REase 

counterpart and these are known as orphan DNA-MTases.  
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Some DNA-MTases recognize and modify only non-methylated DNA as substrate and are 

known as de novo DNA-MTases. DNA-MTases that recognize hemimethylated DNA (where 

only one strand of the DNA duplex is methylated) and modify it are known as maintenance 

DNA-MTases (112).  

The C5-methylcytosine is considered as an additional base of the genetic code that carries 

heritable information that is not encoded in the DNA sequence itself and is present in all 

domains of life with only a few exceptions. Generally it is accepted that with increased genome 

size, the regulatory role of methylation becomes increasingly important (113, 114). In 

prokaryotes most DNA-MTases are members of an RM system and have a role in 

discrimination between self- and non-self DNA. Additionally, DNA-MTases have roles in 

controlling gene expression, DNA replication, cell cycle and DNA post replicative mismatch 

repair (81, 115, 116). The latter activities are mostly coordinated by N-DNA-MTases (117, 118) 

and will not be further discussed here. In most higher eukaryotes, DNA methylation is involved 

in controlling gene expression, maintenance of genome integrity, parental imprinting, 

chromatin condensation, silencing of genes, controlling cellular differentiation and 

development (114, 119-122).  It is believed that DNA methylation has an important role in 

protein-DNA interaction, either by enhancing or disrupting the binding of proteins to DNA 

(123). Changes in methylation patterns are closely related to the development of various 

diseases, such as cancer, but also neurological and genetic disorders in humans, which 

underlines their biological importance (115, 124-127).  

In the following sections, prokaryotic C5-DNA-MTases will be detailed. 

 

3.5.1 The structure of C5-DNA-MTases  

There is an overall low sequence similarity between C5 DNA-MTases, both prokaryotic and 

eukaryotic. Ten highly conserved motifs (I-X) are, however, present among all DNA-MTases 

(Figure 12) (81, 115, 128). Whereas prokaryotic DNA-MTases contain one catalytic domain, 

eukaryotic DNA-MTases are multidomain proteins wherein the C-terminal catalytic domain 

has DNA-MTase activity and contains the ten conserved motifs mentioned above (128). The 

most conserved motifs are important for catalysis or are involved in binding of the cofactor 

SAM and DNA. Motifs that are identified in all DNA-MTases are motif I (FGG), which is 

involved in SAM binding, motif IV (PCQ), a catalytic motif involved in the transfer of the 

methyl group, and motif VI (ENV), involved in DNA binding (Figure 12). The variable target 
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recognition domain (TRD) region is located between motifs VIII and IX (116). All catalytic 

DNA-MTase domains studied so far have the same structural organization; they are comprised 

of two sub-domains, one large domain and one small domain (Figure 12). The large domain is 

composed of a central, mixed seven-stranded β-sheet flanked by α-helices, known as the 

AdoMet-dependent fold, which is conserved among different SAM-dependent enzymes (129). 

A topological switch point is located between strands one and four, which loosely divides the 

SAM binding domain into two parts, one that is involved in binding of the cofactor SAM and 

a second that is involved in forming the catalytic part of the enzymes (Figure 12A). The SAM 

binding part of the large domain is composed of conserved amino acid motifs, including the 

highly conserved motif I, and residues from motifs II, III, V and IX. The structure of the 

catalytic part is composed mostly of motif IV, but includes also motifs VII and VIII (112, 115, 

117, 129).  

 

 
Figure 12. Schematic representation of both prokaryotic and eukaryotic DNA-MTase motifs and domains. 

A. Structure of MTases. An idealized representation of the structure of a C5-MTase. β-strands are represented 

by arrows and are numbered 6, 7, 5, 4, 1, 2, and 3, from left to right, α-helices are presented by rectangles and 

loops by curved lines. Grey wavy double lines indicate DNA. B. Schematic representation of MTase motifs and 

domains. The prokaryotic C5-DNA-MTases, and the C-terminal catalytic domain of eukaryotic enzyme families 

all share the same motif and domain arrangement. The DNA-MTase structure is divided into three domains, the 

SAM binding domain (filled grey oval), the catalytic domain (filled cyan rectangle), and the target recognition 

domain (open brown rectangle). Motifs I through X are shown and are represented by the same colour in both 

parts (A and B) of the figure. The figure has been adapted from (116). 
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The small domain of various DNA-MTases is significantly less conserved in size, sequence and 

structure. It contains the variable TRD domain that is involved in the sequence-specific DNA 

recognition, which explains its diversity (115). The DNA is bound in a cleft between the large 

and small domain such that the minor groove faces the small domain, while the major groove 

faces the large domain (112). A similar structural organization can be observed also in other 

DNA-MTases that methylates proteins and RNA molecules (129). 

3.5.2 DNA recognition by C5-DNA-MTases  

In order for the transfer of the methyl group from SAM to DNA to occur, the enzyme needs to 

recognize and bind to a specific DNA sequence. This sequence specific recognition arises from 

contacts between the enzyme and specific bases in the DNA, which are located in the minor 

and major grooves and the phosphodiester backbone. As previously stated in section 3.5.1, the 

small domain of the DNA-MTase interacts with the minor groove of DNA, while the large 

domain interacts with the major groove, and the complex formation can lead to strong bending 

of the DNA. The degree of sequence specificity varies between different the DNA-MTases with 

some having similar specificities as the REases, while others are more promiscuous when it 

comes to DNA interaction (81). DNA-MTases bind DNA in two steps. The enzyme binds first 

to any site on the DNA in a non-specific manner, after which it slides along the DNA by 

facilitated diffusion in a one-dimensional movement in search of a target sequence (section 

3.1.2). In cases where there is more than one recognition sequence on the same DNA molecule, 

this movement can either be in a processive manner similar to a one-dimensional diffusion, 

where the DNA-MTase remains bound to the DNA until all target sites are modified. It can also 

move in a distributive manner in which case the enzyme dissociates from the DNA after every 

turnover, a movement resembling three-dimensional movements of the protein on DNA 

(Section 3.1.2). Solitary DNA-MTases (M.SssI, CcrM, and Dam) modify the DNA in a 

processive manner, while DNA-MTases that are members of RM systems (e.g. M.Hpal, M.Hhal) 

move in a distributive manner. This difference in the mode of movement between solitary and 

RM-related DNA-MTases might be explained by their biological roles. DNA-MTases that are 

members of the RM systems protect host DNA as their main role and should not act too fast in 

order to prevent protection of phage DNA, while rapid methylation of newly replicated DNA, 

which is done by solitaire MTases, is more desirable. (81).  
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3.5.3 Catalytic mechanism of C5-DNA-MTases and target base-flipping  

For a successful transfer of the methyl group from SAM to the aromatic ring of the DNA base, 

proximal contact between the catalytic site of the enzyme and the base is required. These 

contacts are impossible to achieve while the target base is located inside in the double helix and 

paired by Watson-Crick base pairing. To overcome this problem, DNA-MTases have 

developed the special mode of action to expose the base to be methylated (Figure 13). 

According to this mechanism, the base, together with the sugar phosphate backbone, is rotated 

by 180° from the DNA helix into the catalytic pocket of the enzyme. During this rotation, the 

DNA helix is not distorted, whereas the hydrogen bonds between the base pairs and the stacking 

π interactions with neighbouring base pairs are disrupted. This mechanism was first identified 

in M.HhaI, the DNA-MTase from Haemophilus haemolyticus (130).  

 

 
Figure 13. Base flipping mechanism. A. Structure of M.HhaI (grey, blue, and red) showing the target base 
(yellow) flipped out of the DNA helix (green). B. DNA base flipping. The DNA (shown from the side and end-
on) backbone is grey with orange phosphates and the bases are cyan. With the exception of the flipped cytosine, 
the structure is a classical B-form DNA. The figure has been adapted from (81). 
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In M.HhaI the cavity created by the flipped-out base is filled by a Gln residue from the small 

domain that is further stabilized by hydrogen bonds to a Ser from the catalytic loop (112, 130). 

Other C5-DNA-MTases have been shown to use different amino acid residues for stabilization, 

for example in M.HaeIII, the DNA-MTase from Haemophilus aegypticus (112, 131).  

The exact mechanism of base flipping is still unknown, but it is assumed to follow three steps. 

In the first step, the MTase locates and binds to DNA. The second step involves MTases 

“invasion” of the DNA and flipping out the base. The third step involves trapping of the flipped 

DNA base and its stabilization by interactions between the flipped base and the residues from 

motifs IV, V and VIII (129, 132). This mechanism is also observed in other enzymes that need 

access to bases buried in the DNA helix, such as DNA glycosylases and AP endonucleases (112, 

115, 129, 130, 133, 134).  

In C5-DNA-MTases, the C5 atom of cytosine is not reactive enough to perform the attack on 

the methyl group of SAM itself, so in order to obtain an effective transfer, the methyl group is 

first activated then involved in a nucleophilic addition, a process called the Michael addition 

(Figure 14). The key point in this reaction is the formation of a transient covalent complex 

between the enzyme and the DNA (120, 135). After the transfer of the methyl group from SAM 

to the DNA, C5-methylcytosine and S-adenosyl-L-homocysteine (SAH) are produced and 

released. SAH acts as an inhibitor of the reaction both in vivo and in vitro (45, 136, 137).  

 

 
Figure 14. Schematic representation of the catalytic mechanisms of DNA C5-methylation. The conserved 

motifs VI and IV are indicated. In step I the C5 atom of cytosine is activated by nucleophilic addition, thus forming 

a transient covalent complex between the enzyme and the DNA. Here a thiol group from cysteine (shown in green) 

from motif IV starts with nucleophilic attack on the C6 carbon of the cytosine pyrimidine ring, forming a covalent 

DNA-protein intermediate. In step II, Glu in motif VI (shown in brown) protonates the N3 nitrogen of the 

pyrimidine ring, while an Arg residue from motif VIII additionally aids the process. Activated C5 carbon attacks 

the methyl group (shown in red) of SAM (blue). After methyl transfer is accomplished, SAH (shown in blue) is 

released, and by additional β-elimination of proton from position 5, the protein-DNA complex dissociates (step 

III). The figure has been adapted from (81, 115). 
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4 Adaptations to prosper in a cold environment 
On Earth, we find life in many different habitats, for example places with extremely high or 

low temperature or pressure; high or low content of available oxygen or carbon dioxide; high 

levels of radiation, acidity, or alkalinity; absence of water or water containing a high 

concentration of salt; presence of sulphur, and other toxic substances. Examples of extreme 

environments include the geographical poles, extremely dry deserts, volcanoes, deep ocean 

trenches, the upper atmosphere, or even outer space. Organisms are classified intro groups 

depending on which habitat they occupy, and their optimal growth temperature. Thermophiles 

grow and survive at high temperatures up to 113ºC (138), mesophiles thrive in moderate 

temperature in range between 20 and 45 ºC, and psychrophilic organisms are able to grow and 

live below this temperature range (139-141). Within these categories, the psychrophiles are the 

most abundant group, due the fact that permanently cold environments dominate more than 80% 

of Earth’s surface, including the Arctic and Antarctic regions, mountain regions, and deep-sea 

waters and glaciers (142, 143). In these areas, a wide range of species is found, from Gram-

positive and Gram-negative bacteria to multicellular organisms such as yeast, algae, various 

invertebrates and polar fish (144-146). To survive in such environments psychrophiles have 

evolved a variety of different structural and physiological adaptations, including regulation of 

membrane fluidity and ion channel permeability. Additionally, many of these organisms 

express cold-shock proteins that regulate synthesis of cellular proteins, especially at the 

transcription level and at the initiation of translation. Many species synthesize cryoprotectors 

and antifreeze molecules that stabilize proteins and prevent formation of ice crystals inside cells 

(142). Psychrophilic organisms have evolved enzymes that tolerate and act at low temperatures 

(147, 148). 

4.1 Cold adaptation of enzymes 
One of the biggest challenges to organisms that are living in cold environments, is dealing with 

the slow reactions rates caused by the low temperature (142). Cold-adapted enzymes have a 

high catalytic activity at low temperatures, but are less thermally stable (147). It is generally 

believed that the high activity of cold-adapted enzymes is achieved through destabilizing of the 

active site allowing it to be more flexible at lower temperatures than for mesophilic and 

thermophilic enzymes homologs (149). This increased flexibility also contributes to decrease 

in activation enthalpy and more negative entropy (150, 151). For most psychrophilic enzymes, 

the increased flexibility is localized only in the active site, while other parts of the proteins are 
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more stable (147, 152). Additionally, psychrophilic enzymes have a larger catalytic site, that 

makes binding of substrates and the release of products easier (142). This can be achieved by 

replacing bulky amino acids with amino acids that have smaller side chains or by changing 

conformations of loops surrounding the active site. A consequence of this adaptation is that 

these changes in the active site dynamics reduce the strength of substrate binding in the active 

site (151, 153). Other adaptations to low temperatures include a lower frequency of Pro residues 

and higher occurrence of Gly residue clusters, a decrease in the number of disulfide bonds, salt 

bridges and hydrogen bonds (147). In addition, a change in the electrostatic distribution of the 

protein is observed. A plausible explanation for this is that by a change in the electrostatics, the 

binding of protein to its substrate is increased (148, 153-155).  

  

4.2 Psychrobacter arcticus 
This thesis focuses on two enzymes from a member of the gamma proteobacteria genus 

Psychrobacter. Members of this genus are Gram-negative, aerobic, spherical or rod-shaped 

bacteria, they are chemo- and osmotolerant, non-motile, grow at neutral pH and are almost all 

cold-adapted (156). They are primarily found in cold, saline habitats such as glacials, sea ice, 

but can also be found in chilled meat and clinical samples. Because many members of the genus 

Psychrobacter are living in constantly cold environments they are considered as good model 

organisms for investigation of cold adaptation of enzymes (157). In our work, we focused 

predominantly on P. arcticus, a species isolated from permafrost sediment cores in the Kolyma 

region in Siberia (158, 159). Some isolates of P. arcticus have been shown to grow at 

temperatures ranging from -10°C to 28°C and can survive up to 12% NaCl (158). One isolate 

was also shown to have a generation time of 3.5 days at -2.5°C and can survive for a long time 

under freezing conditions (160). By comparison to homologues proteins from mesophilic 

counterparts, some general strategies for cold adaptation can be elucidated, such as reduction 

in Pro and Arg residues and increase in Lys, and a generally lower number of hydrophobic and 

acidic residues (160, 161). In addition, enzymes involved in DNA double strand break repair 

systems that are active down to -15°C have been identified (160, 162-164).  

In two independent case stories in this thesis, we have recombinantly expressed a type II REase 

(DpnI) and a C5-DNA-MTase (ParI) from P. arcticus. 
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4.3 Aliivibrio salmonicida 
Aliivibrio salmonicida (previously known as Vibrio salmonicida (165)) is a marine, pathogenic, 

Gram-negative bacterium discovered in the late 1970s in Norwegian salmon fish farms (166). 

This bacterium is curved, rod-shaped and motile, possesses nine polar flagella and is salt 

tolerant. Members of this genus can grow on NaCl concentrations from 0.5-4% w/v (166). It 

causes the disease cold-winter vibriosis (Hitra disease) in salmon and cod (166, 167). A. 

salmonicida grows at temperatures between 1-22°C with optimum growth occurring between 

6-15°C. As with P. arcticus, the enzymes of A. salmonicida have been used as a model system 

to study cold adaptation mechanisms (153, 168, 169). The enzymes of A. salmonicida are 

shown to be more flexible than their mesophilic homologues; they have a decreased number of 

hydrophobic residues and show an increase in charged and uncharged residues and increase of 

volume of the core of the protein (170).  

As part of this thesis, we have recombinantly expressed and characterized a metallo-β-

lactamase (MBL) from A. salmonicida, ALI-1.  

5 Biotechnological application of enzymes from cold adapted bacteria 
Due to their specificity and precision, both type II REases and DNA-MTases have potential 

application areas in biotechnology. Since their discovery, REases have been extensively used 

in molecular biology, most notably in DNA cloning and recombinant DNA technology. 

Commonly used REases for molecular cloning includes EcoRI, SalI, NotI and HindIII (171, 

172). The orphan DpnI is frequently used in downstream reactions following mutagenesis PCR 

to remove parental DNA templates (173). More recently, the type IIS restriction enzymes, such 

as SapI, are used in high-throughput gene cloning methods like ‘Golden gate cloning’ or the 

‘FX-cloning’ approaches (174-176). Type II REases have also been applied in Restriction 

Fragment Length Polymorphism analyses, a technique used in determination of differences in 

gene sequences between individuals, based on the restriction cleavage pattern on specific areas 

in the genome (177).  

Based on their function in transferring a methyl group to specific sequence on DNA, DNA-

MTases are used as a tool in studying the binding of proteins to DNA as well as in regulation 

of gene expression (178). DNA-MTases are used in many applications, such as in vivo and in 

vitro foot printing (179), targeted DNA methylation, targeted gene silencing and studying of 

protein-DNA interaction(180, 181). In all these application areas a DNA-MTases with known 
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specificity is fused to a targeting module, which can be a small molecule, polynucleotides or 

protein domains (e.g. zinc-finger) that direct the DNA-MTase to the target on the DNA (182, 

183).  

Lately, cold-adapted enzymes became more used in biotechnology. The biggest advantage is 

their susceptibility to heat compared to their mesophilic and thermophilic counterparts, as seen 

for example in alkaline phosphatase (AP). E. coli AP is resistant to heat inactivation, while AP 

from Arctic shrimp or from Antarctic bacteria can be irreversibly inactivated at 65°C or 55°C, 

respectively, after a shorter period of heating (184-186). In addition, cold adapted enzymes 

have higher catalytic activity at lower temperatures compared to their mesophilic counterparts 

(187).  
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II. Aims of the project 

 

REases and DNA-MTases are sold on the market and are highly used in molecular biology 

research. We were interested in investigating the applied potential for two of the putative cold-

active enzymes we were working with, namely the DpnI and ParI. 

 

Because of the wide impact bacteria have on environment, it is important to thoroughly 

understand how they adapt to the environments they are exposed to. In this project, we have 

investigated three independent cases that contribute to our understanding of some of the defence 

mechanisms bacteria possess against both extrinsically applied chemical threats as well as 

infection by bacteriophages. The three independent cases are: 

1. Protection against antibiotics: Resistance by metallo-β-lactamases 

2. Protection against phage infections: DpnI restriction of non-self adenine-methylated 

DNA 

3. Protection against phage infections: DNA-MTase-directed cytosine methylation of self-

DNA 

The common aim of these case studies was to functionally and structurally characterize the 

enzymes and to elucidate the role they have in the bacteria. In addition, as all three enzymes 

originate from cold-adapted organisms we were interested in describing structural determinants 

for cold-adaptation. 
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III. Description of the work 
 

Manuscript I - A study of a type II restriction endonuclease from the cold-adapted organism 

Psychrobacter arcticus. Manuscript. In prep. 

Grgic Miriam, Altermark Bjørn, Leiros Ingar  

 

Cold-active restriction endonucleases are attractive reagents in molecular biology due to their 

higher activity at lower temperatures. A great advantage of such cold-active enzymes is that 

many can be irreversibly heat-inactivated by a moderate heat step. In this work, we attempted 

to functionally and structurally characterize the restriction endonuclease DpnI from the cold-

adapted P. arcticus. Thorough understanding of this enzyme by solving its 3-dimensional 

structure and describing the catalytically mechanism, as well as the features responsible for its 

cold-adaptation would provide better insight and also improve molecular biology techniques 

where this enzyme type is currently applied. Several expression trials were performed using 

different expression conditions and modified E. coli host strains. In addition, purification of 

recombinant DpnI was pursued, but despite all attempts to characterize the the enzyme, this 

part of the project was terminated before publishable results were obtained. The main problem 

was achieving sufficient yield and purity of the enzyme. Therefore, to describe the work that 

was conducted as part of this thesis, we have chosen to present it in a manuscript form. 

 

Paper II - Properties and distribution of a metallo-β-lactamase (ALI-1) from the fish pathogen 

Aliivibrio salmonicida LFI1238. Published in J. Antimicrob. Chemother.; Oct 31, 2014. 

Kristiansen Anders; Grgic Miriam; Altermark Bjørn; Leiros Ingar.  

 

The increase in occurrence of antibiotic resistant bacteria among hospitalized patients is a 

global problem and a serious threat to human welfare. As antibiotics are the most important 

treatment we have against bacterial infections, understanding the mechanisms of bacterial 

resistance to antibiotics is necessary. One way to achieve this is thorough characterization of 

the enzymes involved in resistance, such as the metallo-β-lactamases (MBLs). In Paper II we 

functionally characterized the MBL from A. salmonicida. The protein was recombinantly 

expressed and kinetic parameters, NaCl dependence, pH optimum and temperature optimum 

were determined using purified enzyme. Our data expands the current knowledge regarding 
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these important enzymes and may be useful in future inhibitor development towards 

homologous enzymes found in human and animal pathogens. 

 

Manuscript III - Initial characterization of ParI, an orphan C5-DNA methyltransferase from 

Psychrobacter arcticus 273-4. Manuscript. To be submitted to BMC Biochemistry 

Grgic Miriam, Bjerga Gro Elin Kjæreng, Williamson Adele Kim, Altermark Bjørn, Leiros Ingar  

 

DNA methylation is important for healthy growth and development in both prokaryotes and 

eukaryotes. In prokaryotes, in addition to having roles in various cellular events, they are part 

of a host protection system as members of the restriction modification (RM) systems where 

their function is protection of self-DNA from cleavage. DNA methylation also has an important 

role in protein-DNA interaction, either by enhancing or disrupting binding of proteins to DNA. 

By better understanding the function of these enzymes, we can gain knowledge of the processes 

they are involved in. This manuscript describes a preliminary study of a C5-DNA 

methyltransferase (C5 DNA-MTase) from the bacterium P. arcticus. The protein was 

recombinantly expressed and characterized in terms of thermal stability and activity, both in 

vivo and in vitro. In addition, experiments to determine the sequence specificity of the ParI 

protein has been performed.   
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IV. Discussion and Conclusion 

6 Discussion 
Bacteria can be found in all habitats, either as free-living organisms, or in different symbiotic 

relationships. Many are pathogenic towards humans, animals and plants. In their environment, 

bacteria are exposed to various chemical threats (antibiotics) produced by nearby 

microorganisms as well as the threat of being infected by bacteriophages.  

In order to protect themselves, bacteria have evolved several resistance mechanisms.  

6.1 Environmental adaptation 
Depending on the environment where they thrive, organisms have adapted differently, making 

them successful in surviving in the surrounding conditions, such as a cold environment (142, 

143, 145, 188). To survive in such environments bacteria have evolved a variety of different 

structural and physiological adaptations, such as regulation of membrane fluidity and ion 

channel permeability, expression of cold-shock proteins that regulate synthesis of cellular 

proteins, or synthesizing cryoprotectors and antifreeze molecules that stabilize proteins and 

prevent formation of ice crystals inside cells (142). In addition, psychrophilic organisms have 

evolved enzymes that tolerate and act at low temperatures. One of the adaptations is increased 

molecular flexibility of the enzymes that compensates for the higher activity at low 

temperatures. However, the increase in molecular flexibility is causing intrinsic molecular 

instability, which makes these enzymes more temperature labile (147, 152, 189). In this work, 

we characterized three enzymes originating from cold adapted organisms. The MBL ALI-1 

from the marine bacterium A. salmonicida, and a DpnI-like REase and a C5-DNA MTase, both 

from P. arcticus. These two bacteria have an active metabolism in their respective environments 

(158, 160, 166, 190) and it would be reasonable to assume that they both possess proteins that 

are cold adapted as well. As it can be seen in Paper II, Figure 3, ALI-1 has a lower temperature 

optimum when compared to VIM-2 that originates from the human pathogen Pseudomonas 

aeruginosa. In addition, it showed higher tolerance with respect to NaCl concentration, 

retaining high activity in the concentration range 500 mM up to 2 M, while the optimal NaCl 

concentration for VIM-2 is 200 mM. These results are fully understandable when the origin of 

the organisms is considered as well as the fact that ALI-1 is secreted into the periplasm of a 

marine bacterium and thus faces higher salinity.  
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6.2 The DpnI-like enzyme from Psychrobacter arcticus  
REases also have very important roles in molecular biology and are being used in many 

different types of experiments (i.e. cloning, mutagenesis). Enzymes that have higher activity at 

lower temperature (i.e. RT or even 4 ºC) and display heat lability (i.e.  they would not have to 

be exposed to high temperatures (> 60 ºC) to inactivate), would be very beneficial as well as 

cost reducing (187). Due to its specificity towards only methylated DNA, DpnI has many 

applications in molecular biology. Since the DpnI-like enzyme we worked on (Manuscript I) is 

from a psychrophilic organism, we started with the assumption that the enzyme itself could be 

cold adapted, and due to that possess some of the very attractive characteristics and thus can 

have further application in molecular biology.  

 

REases have a very important role in bacterial cells where they are considered as the immune 

system of bacteria and are protecting bacteria against bacteriophage attack by restricting its 

DNA before it has a chance to replicate. By inhibiting the bacterial REase, the phage could be 

efficient in killing bacteria. This method, where bacteriophages are used for treatment against 

bacterial infections, is completely safe for humans or animals, is called phage therapy and is 

nowadays seen as a possible replacement for antibiotics (191-195).  

By combining inhibitors for REases with a phage cocktail (196), it could serve as an efficient 

treatment against bacteria and in order to achieve that, better characterization of REases should 

be done. In our work, we attempted to characterize a DpnI-like protein from P. arcticus, a 

REase that specifically cleaves methylated DNA.  

 

Recombinant protein was produced and purified form the original organism (Manuscript I, 

Figures 3, 4 and 7). When purified from a P. arcticus culture and as a native construct (without 

any additional tags) DpnI showed activity towards methylated substrate (Manuscript I, Figures 

9 A and B).  

In all cases, the amounts of protein acquired were very low and in addition, protein was highly 

unstable and lost activity after a short time at 4 ºC. In addition to a low amount, contamination 

from other proteins was posing a problem. Unfortunately, due to the difficulties in producing 

protein in decent amounts, we could not proceed with experiments that could help in better 

structural and functional understanding of this protein.  
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Recent publications on S. pneumoniae DpnI (197, 198) also showed difficulties in production 

of the recombinant protein. The authors managed to overcome their problems with expression 

by adding a cleavage site after the N-terminal his-tag for tag-removal as well as adding more 

steps in protein purification (198). This enabled them to produce protein in sufficient amounts 

for crystallization studies (197, 198). Based on their success, we believe that in order to increase 

protein expression and produce stable recombinant protein some changes should be done. One 

such change is improving the expression by using removable solubility tags e.g. maltose 

binding protein (MBP),the sumo fusion partner, CPD tag (199-201) or cloning of the dpnC gene 

downstream a cold-shock promoter for low-temperature expression (202). Alternative 

expression systems, such as yeast or cell-free protein expression, may also be used to further 

explore the recombinant expression of DpnI because eukaryotes do not possess adenine specific 

methyltransferases and thus DpnI would not have a substrate to act upon while being produced. 

 

6.3 Characterization of the Metallo-β-lactamase ALI-1 from Aliivibrio 

salmonicida 
Investigation on environmental DNA samples can give us insight into how enzymes have 

developed and what their original function was. In Paper II the chromosome-encoded marine 

MBL from A. salmonicida (ALI-1) was characterized and compared with the plasmid-borne 

MBL (VIM-2) encoded by a human pathogen (P. aeruginosa). Both enzymes showed activity 

towards degradation of β-lactam antibiotics, but they exhibit different adaptations, which 

correlates with the origination of enzymes from organisms adapted to different environments. 

ALI-1 is secreted in periplasm of the marine bacteria living in a cold and salty environment, 

while VIM-2 originates from a human pathogen living in warmer and less salty conditions in 

body fluids. When the effect of NaCl on activity is compared, ALI-1 had its highest activity at 

NaCl concentrations up to 500 mM, which is approximately the same as seawater. VIM-2 has 

a less salt-dependent activity, with optimum NaCl concentration at 200 mM. Both KM and kcat 

are affected at higher NaCl concentration. In the presence of NaCl, KM decreases dramatically 

while the kcat increases slightly (Paper II, Figure 2). NaCl probably favours the substrate 

binding by increasing the hydrophobic interactions between substrate and enzyme, thereby 

lowering the KM, but the detailed mechanism for an increased catalytic efficiency with 

increased concentration of NaCl remains yet to be fully explored. 
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The two enzymes also showed significant differences in optimum temperature for activity. As 

expected, the ALI-1 enzyme is more cold-active compared with VIM-2, showing increased 

activity at lower temperatures and a lower optimum temperature (Paper II, Figure 3). This can 

be explained by decreased temperature stability, leading to a more rapid temperature-induced 

denaturation. In addition, with increased NaCl concentration in the reaction buffer, a shift in 

optimum temperature for activity was observed, as can be seen in Paper II, Figure 4 which 

indicates increase in protein stability. This stabilizing effect may come from NaCl´s ability to 

reduce repulsive interactions between charges on the surface of the protein and by strengthening 

the hydrophobic effect. 

 

Testing the effect of different reducing agents showed loss of activity when using 5 mM TCEP 

in the reaction buffer. This is likely due to the strong redox potential of TCEP that was enough 

to reduce the cysteines thiolate (S-) to the sulfhydryl form (SH). Since cysteine coordinates the 

second zinc ion in the active site, reducing it can in turn disturb the Zn coordination, which may 

disrupt the activity of the enzyme. Recently, TCEP has been proposed as a treatment for 

botulinum toxin due to its ability to reduce key disulfide bonds (203). Since at a concentration 

of 1 mM, TCEP is not cytotoxic, genotoxic or mutagenic (204) it could be used in some cases 

as a combined treatment together with β-lactam antibiotics to abolish the MBL activity of a 

pathogen, but this remains to be tested. 

 

The screening of different environmental isolates, as well as strains originating from the fish-

farming industry, also suggests that the gene is common in both habitats and could indicate an 

additional role of MBLs such as their involvement in quorum sensing and communication 

among bacteria (16).  

 

6.4 Investigating DNA Methylation in Psychrobacter arcticus  
In Manuscript III, the C5-DNA MTase ParI from the psychrophilic bacterium P. arcticus was 

characterized. Despite low yields of protein (2.5 mg/l culture), we performed some 

characterization experiments.  

a set of experiments was completed, where we investigated the thermal stability of ParI, using 

DSC, TF and CD. In the CD measurements, no secondary structures were observed at 65 ºC 

meaning that the protein is unfolded at that temperature (Manuscript III, Figure 7). The DSC 
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and TF results confirmed this, and showed that the protein unfolds at temperatures of 54 ºC and 

53 ºC, respectively. In both cases, the melting curves were gradual and stretched over a long 

temperature range, which indicates that the protein is unstable (Manuscript III, Figures 5 and 

6).  

 

In the in vivo activity assays, we determined that ParI is active inside the bacterial cell as well 

as being active when expressed recombinantly in E.coli (Manuscript III, Figure 8). This raised 

a question regarding the possible biological role of ParI in P. arcticus. When compared with 

other species from the genus Psychrobacter that have a sequenced genome, P. arcticus is the 

only one that possesses an orphan C5-DNA MTase (Manuscript III, table 1 and additional data 

from Rebase (78)). This could indicate that ParI does not have an important role in the bacterial 

cell, but evolutionary, ParI could have been part of a functional type II RM system that over 

time has lost its REase member as it became redundant (205). The reason why ParI has survived 

through evolution may be that it bares the same specificity as other members of type II RM 

system found in P. arcticus, thus, complementing it, and by that providing more efficient 

protection of the host DNA. A similar system exists in E. coli, where Dcm, an orphan C5-DNA 

MTase, has the same recognition sequence as the EcoRII RM system (CCWGG). One of the 

hypothesis that might explain this is that Dcm serves as a backup for methylation of E. coli 

DNA (205, 206) and in case the methylation member of the host RM system is lost, it may 

protect the host from being restricted by the remaining REase (207). 

 

Surrounding genes to parI are showing strong similarity to phage proteins, which may indicate 

that parI, as well as surrounding genes, may have been horizontally transferred, and are of 

phage origin, although they are no longer part of an intact temperate phage.  

 

To determine the specific sequence that ParI recognizes and modifies on DNA we performed 

bisulfite conversion (208). For this we used a commercially available kit from ZYMO Research 

as well as substrate they provided. Despite various try-outs we did not manage to get conclusive 

results in this case (Manuscript III, figure 9). One of reasons for the lack of success of this 

experiment might be that the substrate used was not optimal. It being only 362 bp long means 

that the specific site that ParI recognizes might have been omitted among this short DNA 

stretch. In addition, there is a possibility that ParI does not have a specific site, but it is rather 
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more promiscuous when it comes to DNA methylation, and methylates most of the available 

cytosines as seen in (209). This would explain our results as well (Manuscript III, Figures 8 and 

9). It is also possible that the reaction conditions were suboptimal, causing ParI to act in a 

nonspecific manner. In order to determine the exact site that ParI is methylating, more 

experiments should be done, possibly including radioactive labeling or detection of a methyl 

group on DNA by Matrix-assisted laser desorption ionization time-of-flight mass spectrometry 

(MALDI-TOF) (210). Single molecule real time sequencing (SMRT sequencing) of the E. coli 

genome cultured in the presence and absence of the ParI encoding plasmid could also provide 

data needed for elucidation of methylated cytosines in genome (211, 212).  

 

When comparing the protein sequence of ParI to other MTases we noticed one curiosity. In 

catalytic motif IV, which is highly conserved among MTases, Asp replaces Pro. It is assumed 

that Pro in this motif has a role in the orientation of the activated cytosine and SAM so that the 

methyl group can be transferred successfully (213). By doing this the ProCys dipeptide 

stabilizes a transient tertiary complex and therefore has a very important role in catalysis. 

Substitutions of Pro with Ala, Ser, Cys, Phe, Val, Arg, His and Leu in this motif caused a 

destabilization of the intermediate, which in turn decreases the catalysis rate (213). Pro is 

generally characterized as a rigid amino acid, and in protein structures, it imposes rigidity. It 

also has less conformational freedom, especially in unfolded structures. Cold adapted enzymes 

are characterized by increased flexibility in the catalytic site, which is in order to overcome 

challenges of low temperature. Pro, due to its characteristics cannot provide this much-needed 

flexibility and is usually substituted with a more flexible amino acid, which might be the reason 

why ParI has Asp in catalytic site instead of Pro (147, 152, 214).  
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7 Conclusion  
In Manuscript I and Manuscript III, we characterized two DNA interacting and modifying 

enzymes from the psychrophilic bacterium P. arcticus. In both cases, we had problems with 

stability of the proteins. Due to that, it was difficult to obtain reasonable amounts of protein to 

work with and therefore the project described in Manuscript I was terminated. In Manuscript 

III, we characterized C5-DNA MTase ParI in terms of thermal and structural stability and 

detected activity.  

Both these enzymes are considered to play a role in bacterial protection against invading 

bacteriophages, either by disrupting invading DNA (DpnI) or by protecting its own DNA (ParI). 

We managed to produce both enzymes and detect their activity, based on which we can 

conclude that they do still have a role in P. arcticus.  

 

Elucidating the specificity of the ParI enzyme proved to be difficult and we could detect only 

very broad specificity. To obtain results that are more conclusive additional experiments should 

be run.   

 

Paper II deals with MBL from the marine bacterium A. salmonicida. The enzyme was 

characterized in terms of kinetic parameters, NaCl dependence, pH optimum and temperature 

optimum and compared with the MBL VIM-2 from a human pathogen. From our data we 

conclude that ALI-1 shows similar in vitro optima in terms of NaCl and temperature to that of 

A. salmonicida in its natural cold and marine environment. 

 

The existence of bacteria encoding ALI-1 in environmental samples that had no contact with 

fish farms and thus have not been exposed to synthesized antibiotics, can suggest a “protective” 

role of this enzyme in the bacterium. It is assumed that MBLs serve as protection against 

antibacterial chemicals that some organisms, living in the same environment, are producing (for 

example penicillin from the mold Penicillium notatum).  In addition, these enzymes can have a 

role in adjustment of quorum sensing signals and be part of bacterial communication.  

 

We conclude that all three enzymes, DpnI, ParI and ALI-1, are active enzymes that can be used 

by bacteria in order to protect themselves from enviromental threats. In order to get better 
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insight into all of them and get better understanding of their function and exact role in the 

bacterial cell, additional research should be done, in both structural and functional studies. 
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