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We study the 𝑝(⋅) → 𝑞(⋅) boundedness of weighted multidimensional Hardy-type operators𝐻𝛼(⋅)

𝑤
andH𝛼(⋅)

𝑤
of variable order 𝛼(𝑥),

with radial weight 𝑤(|𝑥|), from a variable exponent locally generalized Morrey space L𝑝(⋅),𝜑(⋅)

(R𝑛, 𝑤) to another L𝑞(⋅),𝜓(⋅)

(R𝑛, 𝑤).
The exponents are assumed to satisfy the decay condition at the origin and infinity. We construct certain functions, defined by
𝑝, 𝛼, and 𝜑, the belongness of which to the resulting space L𝑞(⋅),𝜓(⋅)

(R𝑛, 𝑤) is sufficient for such a boundedness. Under additional
assumptions on 𝜑/𝑤, this condition is also necessary. We also give the boundedness conditions in terms of Zygmund-type integral
inequalities for the functions 𝜑 and 𝜑/𝑤.

1. Introduction

Influenced by various applications, for instance, mechanics
of the continuum medium and variational problems, in the
last two decades the study of various mathematical problems
in the spaces with nonstandard growth attracts the attention
of researchers in various fields. This notion relates first of all
to the generalized Lebesgue spaces 𝐿

𝑝(⋅)

(Ω), Ω ⊆ R𝑛, known
also as Lebesgue spaces with variable exponent𝑝(𝑥).We refer
to the existing books [1–3] in the field.

This variable exponent boom naturally touched Morrey
spaces. Morrey spaces L𝑝,𝜆 (with constant exponents) in
its classical version were introduced in [4] in relation to
the study of partial differential equations and presented in
various books; see, for example, [5–7]; we refer also to a
recent overview of Morrey spaces in [8], where various
generalizations of Morrey spaces may be also found.

They were widely investigated during the last decades,
including the study of classical operators of harmonic anal-
ysis, maximal, singular, and potential operators on Morrey
spaces, and their generalizations were studied. We refer
for instance to papers [9–16] and the references therein;

in particular, Hardy operators in Morrey type spaces with
constant 𝑝 were studied in [17–20].

The Morrey spaces 𝐿
𝑝(⋅),𝜆(⋅)

(Ω) with variable exponents
𝜆(⋅) and 𝑝(⋅) were introduced and studied in [21–23]. Gen-
eralized Morrey spaces M𝑝(⋅),𝜔(⋅)

(Ω), Ω ⊆ R𝑛 with variable
exponents were studied in [24]; see also another version of
Morrey-type spaces in [25]; we also refer to [26] for the so-
called complementary Morrey spaces of variable order in the
spirit of ideas of [24].

In the above cited paper maximal, singular, and potential
operators were studied. This paper seems to be the first one
whereHardy-type integral inequalities are studied inMorrey-
type spaces with variable exponents. Concerning Hardy-type
inequalities and related problems and applications, we refer
to the books [27, 28].

The paper is organized as follows. In Section 2, we give
necessary preliminaries on variable exponent Lebesgue
spaces. In Section 3, we define ourmain object-variable expo-
nent Morrey spaces and prove important weighted estimates
of functions in Morrey spaces; see Theorem 10.

By means of these estimates in Section 4, we prove our
main statements for Hardy operators in variable exponent



2 Journal of Function Spaces and Applications

generalized Morrey spaces. We also consider the necessity of
the obtained conditions. In Section 4.4, under some addi-
tional assumptions on 𝜑(0, 𝑟) we obtain the boundedness
conditions in a different form via Zygmund-type conditions
on 𝜑(0, 𝑟)/𝑤(𝑟) and provide a direct relation between 𝜑(0, 𝑟)

and 𝜓(0, 𝑟).
In Theorem 18 of this section, we specially single out the

nonweighted case where we show that the Hardy inequalities
in Morrey spaces are completely determined by the values
𝑝(0) and 𝑝(∞).

In the appendix we recall some notions related to the
Bary-Zygmund-Stechkin class andMatuszewska-Orlicz indi-
ces which sporadically are used in the paper.

2. Preliminaries on Variable Exponent
Lebesgue Spaces

We first recall the basic definitions related to variable expo-
nent spaces. By Ω, we always denote an open set in R𝑛, Ω ⊆

R𝑛, and ℓ = diamΩ, 0 < ℓ ≤ ∞. Let also 𝐵(𝑥, 𝑟) = {𝑦 ∈ R𝑛 :

|𝑥 − 𝑦| < 𝑟} and 𝐵(𝑥, 𝑟) = 𝐵(𝑥, 𝑟) ∩ Ω.
Let 𝑝(⋅) be a measurable function on Ω with values in

[1,∞). We suppose that

1 ≤ 𝑝
−
≤ 𝑝 (𝑥) ≤ 𝑝

+
< ∞, (1)

where 𝑝
−
:= inf

𝑥∈Ω
𝑝(𝑥) > 1, 𝑝

+
:= sup

𝑥∈Ω
𝑝(𝑥) < ∞.

We denote by 𝐿
𝑝(⋅)

(Ω) the space of all measurable func-
tions 𝑓(𝑥) on Ω such that 𝐼

𝑝(⋅)
(𝑓) = ∫

Ω

|𝑓(𝑥)|
𝑝(𝑥)

𝑑𝑥 < ∞.
Equipped with the norm ‖𝑓‖

𝑝(⋅)
= inf{𝜂 > 0 : 𝐼

𝑝(⋅)
(𝑓/𝜂) ≤ 1},

this is a Banach function space. For the basics on variable
exponent Lebesgue spaces, we refer to [2, 29, 30].

We denote by 𝑝
󸀠

(⋅) = 𝑝(𝑥)/(𝑝(𝑥) − 1), 𝑥 ∈ Ω, the
conjugate exponent of 𝑝(𝑥). The notation Plog

(Ω) will stand
for the set of variable exponents 𝑝(⋅) satisfying condition (1)
and the local log-condition

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (𝑦)
󵄨󵄨󵄨󵄨 ≤

𝐴

− ln 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

,
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 ≤
1

2
𝑥, 𝑦 ∈ Ω, (2)

where 𝐴 = 𝐴(𝑝) > 0 does not depend on 𝑥, 𝑦.
We will use also the following decay conditions:

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (0)
󵄨󵄨󵄨󵄨 ≤

𝐴
0

|ln |𝑥||
, |𝑥| ≤

1

2
, (3)

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝
∞

󵄨󵄨󵄨󵄨 ≤
𝐴
∞

|ln |𝑥||
, |𝑥| ≥ 2. (4)

For brevity, by P
0,∞

(Ω) we denote the set of bounded
measurable functions (not necessarily with values in [1,∞)),
which satisfy the decay conditions (3) and (4).

Let 𝑝 satisfy the log-condition (2). The inequality
󵄩󵄩󵄩󵄩𝜒𝐵(𝑥,𝑟)

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(Ω)
≤ 𝐶𝑟

𝑛/𝑝(𝑥)

, (5)

for bounded open sets Ω is known and proved in [31]. For
unbounded sets, if, besides (2), the exponent 𝑝 satisfies the
decay condition (3), then we have

󵄩󵄩󵄩󵄩𝜒𝐵(𝑥,𝑟)
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(Ω)

≤ 𝐶𝑟
𝑛/𝑝𝑟(𝑥), (6)

where

𝑝
𝑟
(𝑥) := {

𝑝 (𝑥) , if 0 < 𝑟 < 1,

𝑝 (∞) , if 𝑟 ≥ 1.
(7)

See [2, Corollary 4.5.9]. The following lemma was proved in
[32], Lemma 2, and a simpler proof given in [33].

Lemma 1. Let 𝑝(𝑥) be a bounded function. Then
1

𝑐
0

𝑟
𝑛/𝑝(0)

≤
󵄩󵄩󵄩󵄩𝜒𝐵(0,𝐷𝑟)\𝐵(0,𝑟)

󵄩󵄩󵄩󵄩𝑝(⋅)
≤𝑐
0
𝑟
𝑛/𝑝(0)

𝑓𝑜𝑟 0< 𝑟≤𝑎<∞,

1

𝑐
∞

𝑟
𝑛/𝑝∞ ≤

󵄩󵄩󵄩󵄩𝜒𝐵(0,𝐷𝑟)\𝐵(0,𝑟)
󵄩󵄩󵄩󵄩𝑝(⋅)

≤𝑐
∞

𝑟
𝑛/𝑝∞ 𝑓𝑜𝑟 0<𝑏≤𝑟<∞,

(8)

under conditions (3) or (4), respectively, where 𝐷 > 1 and 𝑐
0
≥

1 and 𝑐
∞

≥ 1 depend on 𝐷 and 𝑎, 𝑏, but do not depend on 𝑟.

Wewill use a consequence of the estimates of Lemma 1 in
the form

󵄩󵄩󵄩󵄩𝜒𝐵(0,2𝑟)\𝐵(0,𝑟)
󵄩󵄩󵄩󵄩𝑝(⋅)

≤ 𝑐
0
𝑟
𝑛/𝑝∗(𝑟), 𝑟 ∈ R

+
, (9)

where we denoted

𝑝
∗
(𝑟) = {

𝑝 (0) , 𝑟 ≤ 1

𝑝 (∞) , 𝑟 ≥ 1
(10)

for brevity.
We refer to the appendix for the definition of the classes

𝑊(R
+
) and 𝑊(R

+
) used in the following lemma.

Lemma 2. Let 𝑝 ∈ P
0,∞

(R𝑛) and 1 ≤ 𝑝
−

≤ 𝑝
+

< ∞ and a
function 𝑎(𝑥, 𝑟) belongs to 𝑊(R

+
) ∩ 𝑊(R

+
) with respect to 𝑟

uniformly in 𝑥. Then

󵄩󵄩󵄩󵄩𝑎 (𝑥, 𝑟) 𝜒
𝐵(0,𝑟)

󵄩󵄩󵄩󵄩𝑝(⋅)
≤ 𝐶∫

𝑟

0

𝑡
𝑛/𝑝∗(𝑡) 𝑎 (𝑥, 𝑡)

𝑑𝑡

𝑡
, 𝑟 > 0, (11)

where 𝐶 > 0 does not depend on 𝑟 and 𝑥.

Proof. Let 𝐵
𝑘(0,𝑟)

:= 𝐵(0, 2
−𝑘

𝑟) \ 𝐵(0, 2
−𝑘−1

𝑟). We have

󵄩󵄩󵄩󵄩𝑎 (𝑥, 𝑟) 𝜒
𝐵(0,𝑟)

󵄩󵄩󵄩󵄩𝑝(⋅)
≤

∞

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝑎 (𝑥, 𝑟) 𝜒

𝐵𝑘(0,𝑟)

󵄩󵄩󵄩󵄩󵄩𝑝(⋅)
. (12)

Since 𝑎 ∈ 𝑊, we obtain

󵄩󵄩󵄩󵄩𝑎(𝑥, 𝑟)𝜒𝐵(0,𝑟)
󵄩󵄩󵄩󵄩𝑝(⋅)

≤ 𝐶

∞

∑

𝑘=0

𝑎 (𝑥, 2
−𝑘

𝑟)
󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵(𝑥,2
−𝑘
𝑟)

󵄩󵄩󵄩󵄩󵄩𝑝(⋅)
. (13)

By (9), we have

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵(0,2
−𝑘
𝑟)

󵄩󵄩󵄩󵄩󵄩𝑝(⋅)
≤ 𝑐(2

−𝑘

𝑟)
𝑛/𝑝∗(2

−𝑘
𝑟)

. (14)

Therefore,

󵄩󵄩󵄩󵄩𝑎 (𝑥, 𝑟) 𝜒
𝐵(0,𝑟)

󵄩󵄩󵄩󵄩𝑝(⋅)
≤ 𝐶

∞

∑

𝑘=0

𝑎 (𝑥, 2
−𝑘

𝑟) (2
−𝑘

𝑟)
𝑛/𝑝∗(2

−𝑘
𝑟)

≤
𝐶

ln 2
∫

𝑟

0

𝑡
𝑛/𝑝∗(𝑡)𝑎 (𝑥, 𝑡)

𝑑𝑡

𝑡
,

(15)
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and we arrive at (11). The last passage to the integral is
verified in the standard way with the use of the monotonicity
properties of the function 𝑡

𝑛/𝑝∗(𝑡)𝑎(𝑥, 𝑡) in 𝑡, imposed by the
assumptions of the lemma on 𝑎(𝑥, 𝑡) as

∫

𝑟

0

𝑡
𝑛/𝑝∗(𝑡)𝑎 (𝑥, 𝑡)

𝑑𝑡

𝑡

=

∞

∑

𝑘=0

∫

2
−𝑘
𝑟

2
−𝑘−1
𝑟

𝑡
𝑛/𝑝∗(𝑡)𝑎 (𝑥, 𝑡)

𝑑𝑡

𝑡

≥

∞

∑

𝑘=0

𝑎 (𝑥, 2
−𝑘

𝑟) (2
−𝑘

𝑟)
+𝑛/𝑝∗(2

−𝑘
𝑟)

∫

2
−𝑘
𝑟

2
−𝑘−1
𝑟

𝑑𝑡

𝑡

= ln 2

∞

∑

𝑘=0

𝑎 (𝑥, 2
−𝑘

𝑟) (2
−𝑘

𝑟)
𝑛/𝑝∗(2

−𝑘
𝑟)

.

(16)

The class Z𝛽0,𝛽∞(R1
+
) used in the following corollary is

defined in (A.18).

Corollary 3. Let 𝑎(𝑥, ⋅) belong to the class Z𝛽0,𝛽∞(R1
+
) uni-

formly in 𝑥, where 𝛽
0
= 𝑛/𝑝(0) and 𝛽

∞
= 𝑛/𝑝(∞). Then

󵄩󵄩󵄩󵄩𝑎 (𝑥, 𝑟) 𝜒
𝐵(0,𝑟)

󵄩󵄩󵄩󵄩𝑝(⋅)
≤ 𝐶𝑟

𝑛/𝑝∗(𝑟)𝑎 (𝑥, 𝑟) , 𝑟 > 0. (17)

Proof. The statement follows from (11) by the definition of the
class Z𝛽0,𝛽∞(R1

+
).

Corollary 4. Let 𝑝 ∈ P
0,∞

(R𝑛) and 1 ≤ 𝑝
−
≤ 𝑝

+
< ∞ and a

bounded function ](𝑥) satisfies the conditions

inf
𝑥∈R𝑛

[𝑛 + ] (𝑥) 𝑝 (0)] , inf
𝑥∈R𝑛

[𝑛 + ] (𝑥) 𝑝 (∞)] > 0. (18)

Then
󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
](𝑥)

𝜒
𝐵(0,𝑟)

󵄩󵄩󵄩󵄩󵄩󵄩𝑝(⋅)
≤ 𝑐𝑟

](𝑥)+(𝑛/𝑝∗(𝑟)), 𝑟 > 0, (19)

where 𝑐 > 0 does not depend on 𝑟 and 𝑥.

Proof. The statement follows directly from (11) with 𝑎(𝑥, 𝑟) =

𝑟
](𝑥), since ∫

𝑟

0

𝑡
](𝑥)+(𝑛/𝑝∗(𝑡))(𝑑𝑡/𝑡) = 𝑟

](𝑥)+(𝑛/𝑝(0))
/(](𝑥) +

(𝑛/𝑝(0))) when 0 < 𝑟 ≤ 1 and ∫
𝑟

0

𝑡
](𝑥)+(𝑛/𝑝∗(𝑡))(𝑑𝑡/𝑡) =

1/(](𝑥) + (𝑛/𝑝(0))) + (𝑟
](𝑥)+(𝑛/𝑝(∞))

− 1)/(](𝑥) + (𝑛/𝑝(∞)))

when 𝑟 ≥ 1.

3. Variable Exponent Morrey Spaces

3.1. Definitions and Some Auxiliary Results for Variable Expo-
nent Morrey Spaces. Let 𝜑(𝑟) be a nonnegative function on
[0, ℓ], positive on (0, ℓ]. Morrey type spaces, called also
generalized Morrey spaces, with constant 𝑝, 1 ≤ 𝑝 < ∞ are
known in two versions: global L𝑝,𝜑

(Ω) and local L𝑝,𝜑

loc;𝑥0
(Ω)

(we refer, for instance, to the survey paper [8]) and are defined
as the spaces of functions 𝑓 ∈ 𝐿

𝑝

loc(Ω) such that

sup
𝑥∈Ω,𝑟>0

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥,𝑟))

𝜑 (𝑟)
< ∞,

sup
𝑟>0

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐵(𝑥0 ,𝑟))

𝜑 (𝑟)
< ∞,

(20)

respectively, where 𝑥
0
∈ Ω.

Morrey spaces with variable exponent 𝑝(𝑥) correspond-
ing to the classical case 𝜑(𝑟) = 𝑟

𝜆/𝑝, but with variable 𝜆(𝑥) as
well, were introduced and studied in [21]. More general
approach admitting the variable function𝜑(𝑥, 𝑟)were studied
in [24, 25].

Following [24], we introduce the variable exponent
Morrey-type space by the definition below, but note that our
notation differs from that of [24].

Definition 5. Let 1 ≤ 𝑝
−

≤ 𝑝
+

< ∞ and let 𝜑(𝑥, 𝑡) be a non-
negative function almost increasing in 𝑟 uniformly in 𝑥 ∈ Ω.
The generalized variable exponent Morrey spaceL𝑝(⋅),𝜑(⋅)

(Ω)

is defined by the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L𝑝(⋅),𝜑(⋅) = sup

𝑥∈Ω,𝑟>0

1

𝜑 (𝑥, 𝑟)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝐵(𝑥,𝑟)). (21)

We will also refer to the space L𝑝(⋅),𝜑(⋅)

(Ω) as global
generalized variable exponent Morrey space in contrast to its
local versionL

𝑝(⋅),𝜑(⋅)

𝑥0 ;loc
(Ω) defined by the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L𝑝(⋅),𝜑(⋅)
𝑥0;loc

= sup
𝑟>0

1

𝜑 (𝑥
0
, 𝑟)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝐵(𝑥0 ,𝑟))

, (22)

where 𝑥
0
∈ Ω.

For𝑤 a weight function onΩ, the weightedMorrey space
L𝑝,𝜑

(Ω, 𝑤) is defined by 𝐿
𝑝,𝜑

(Ω, 𝑤) := {𝑓 : 𝑤𝑓 ∈ 𝐿
𝑝,𝜑

(Ω)}.
By the definition of the norm in the variable exponent

Lebesgue space, we the can also write that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L𝑝(⋅),𝜑(⋅)

= sup
𝑥∈Ω,𝑟>0

inf{𝜆=𝜆 (𝑥, 𝑟)>0 :∫
𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑦)

𝜆𝜑 (𝑥, 𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑦)

𝑑𝑦≤1} .

(23)

From which one can see that for bounded exponents 𝑝 one
has

𝑓 ∈ L
𝑝(⋅),𝜑(⋅)

(Ω) ⇐⇒ sup
𝑥,𝑟

∫
𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑦)

𝜑 (𝑥, 𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑦)

𝑑𝑦 < ∞.

(24)

The following lemma provides some minimal assump-
tions on the function 𝜑(𝑥, 𝑟) under which the so-defined
spaces contain “nice” functions.
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Lemma 6. Let ≤ 𝑝
−
≤ 𝑝

+
< ∞. Under the decay condition

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (𝑥
0
)
󵄨󵄨󵄨󵄨 ≤

𝐴
0

󵄨󵄨󵄨󵄨ln
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨

,
󵄨󵄨󵄨󵄨𝑥 − 𝑥

0

󵄨󵄨󵄨󵄨 ≤
1

2
, (25)

the assumption

sup
𝑟>0

[min {1, 𝑟}]
𝑛/𝑝(𝑥0)

𝜑 (𝑥
0
, 𝑟)

< ∞ (26)

is sufficient for bounded functions 𝑓 with compact support (in
the case of unbounded set Ω) to belong to the local Morrey
space L𝑝(⋅),𝜑(⋅)

𝑥0;𝑙𝑜𝑐
(Ω). Similarly under the log-condition (2), the

condition

sup
𝑥∈Ω,𝑟>0

[min {1, 𝑟}]
𝑛/𝑝(𝑥)

𝜑 (𝑥, 𝑟)
< ∞ (27)

guarantees that such functions belong to the global Morrey
spaceL𝑝(⋅),𝜑(⋅)

(Ω).

Proof. Use (19) and (5), respectively.

Everywhere in the sequel we assume that the assumptions
(26) and (27) for the spaces L

𝑝(⋅),𝜑(⋅)

𝑥0 ;loc
(Ω) and L𝑝(⋅),𝜑(⋅)

(Ω),
respectively, are satisfied.

We need the following lemma on variable exponent
powers of functions in Bary-Stechkin class. For this class,
Matuszewska-Orlicz indices, and all the related notation, we
refer to the appendix.

Lemma 7. Let 1 ≤ 𝑝
−

≤ 𝑝
+

< ∞, 𝜑 ∈ 𝑊([0, ℓ]) ∩ 𝑊([0, ℓ]),
and 𝑝 satisfy the decay condition (3). Then

1

𝐶
𝜑
𝑝(0)

(𝑟) ≤ 𝜑
𝑝(𝑦)

(𝑟) ≤ 𝐶𝜑
𝑝(0)

(𝑟) , 𝑓𝑜𝑟
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 ≤ 𝑟 ≤ ℓ,

(28)

where ℓ < ∞ and 𝐶 ≥ 1 do not depend on 𝑟 and 𝑦.

Proof. We have to prove that 1/𝐶 ≤ [𝜑(𝑟)]
𝑝(𝑦)−𝑝(0)

≤ 𝐶; that
is,

󵄨󵄨󵄨󵄨𝑝 (𝑦) − 𝑝 (0)
󵄨󵄨󵄨󵄨 ⋅

󵄨󵄨󵄨󵄨ln𝜑 (𝑟)
󵄨󵄨󵄨󵄨 ≤ 𝐶

1
(= ln𝐶) . (29)

It suffices to consider the case 𝑟 ≤ 1. By Theorem A.4, the
assumption 𝜑 ∈ 𝑊([0, ℓ]) ∩ 𝑊([0, ℓ]) implies that the
function𝜑has finite indices𝑚(𝜑) and𝑀(𝜑), and (A.11) holds.
Bounds in (A.11) yield the inequality | ln𝜑(𝑟)| ≤ 𝑐

1
+ 𝑐
2
| ln 𝑟|

with some positive 𝑐
1
and 𝑐

2
.Then (29) follows from the decay

condition at the origin, since ln(1/𝑟) ≤ ln(1/|𝑦|).

In papers [17, 18], there were given various conditions
for radial type functions to belong to Morrey spaces with
nonvariable characteristics.The reader can easily adjust them
for the case when they are variable. We do not dwell on this,
but in the next lemma we give a certain example of a function
in the spaceL𝑝(⋅),𝜑(⋅)

0;loc (R𝑛), important for our further goals.

Lemma 8. Let ≤ 𝑝
−

≤ 𝑝
+

< ∞ and 𝑝 satisfy the decay
condition (3) at the origin and 𝜑(0, ⋅) ∈ 𝑊([0, 𝜀

0
])∩𝑊([0, 𝜀

0
])

for some 𝜀
0
> 0, and

∫

ℎ

0

𝜑 (0, 𝑡)

𝑡
𝑑𝑡 ≤ 𝑐𝜑 (0, ℎ) (30)

for small ℎ and some 𝑐 > 0. Then the function 𝑓
0
(𝑥) =

(𝜑(0, |𝑥|)/|𝑥|
𝑛/𝑝(𝑥)

)𝜒
𝐵(0,𝑅)

(𝑥), where 0 < 𝑅 < ∞, belongs to
L
𝑝(⋅),𝜑(⋅)

0;𝑙𝑜𝑐
(R𝑛).

If additionally we suppose that 𝑝 satisfies the decay condi-
tion (4) at infinity, 𝜑(0, ⋅) ∈ 𝑊([𝑁,∞))∩𝑊([𝑁,∞)) for some
𝑁 > 0, the inequality (30) holds also for large ℎ, 𝜑(0, 𝑟) ≥ 𝑐 > 0

for large 𝑟 → ∞ and 𝑝
−

= 𝑝(∞); then the same holds with
𝑅 = ∞.

Proof. We have to check that

sup
𝑟

∫
𝐵(0,𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
0
(𝑦)

𝜑 (0, 𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑦)

𝑑𝑦

= sup
0<𝑟<𝑅

∫
𝐵(0,𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑 (0,
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)

𝜑 (0, 𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑦)

𝑑𝑦

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑛

< ∞.

(31)

By Lemma 7, this is guaranteed by the condition

sup
𝑟

1

𝜑𝑝(0) (0, 𝑟)
∫

𝑟

0

𝜑
𝑝(0)

(0, 𝑡)
𝑑𝑡

𝑡
< ∞. (32)

The latter is equivalent to the condition 𝑚(𝜑
𝑝(0)

(0, 𝑡)) > 0,
that is, 𝑚(𝜑(0, 𝑡)) > 0, which in its turn is equivalent to (30)
and consequently holds.

In the case of 𝑅 = ∞, the proof follows the same lines.
This time instead of (31) it suffices only to check that

sup
𝑟>𝑁

∫
𝐵(0,𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑 (0,
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)

𝜑 (0, 𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑦)

𝑑𝑦

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑛

< ∞ (33)

for some large𝑁 > 0. Here 𝜑(0, |𝑦|)
𝑝(𝑦)

∼ 𝜑(0, |𝑦|)
𝑝(∞) by the

decay condition at infinity imposed on 𝑝. Therefore,

sup
𝑟>𝑁

∫
𝐵(0,𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑 (0,
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)

𝜑 (0, 𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑦)

𝑑𝑦

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑛
≤ sup
𝑟>𝑁

∫
𝐵(0,𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜑 (0,
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)

𝜑 (0, 𝑟)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(∞)

𝑑𝑦

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑛
,

(34)

after which the arguments are similar to those for the case
𝑅 < ∞.

Corollary 9. Let 1 ≤ 𝑝
−

≤ 𝑝
+

< ∞ and 𝑝 satisfy the decay
conditions (3) and (4), 𝜑(0, ⋅) ∈ 𝑊(R

+
) ∩ 𝑊(R

+
), and the

inequality (30) holds for all ℎ ∈ R
+
, 𝜑(0, 𝑟) ≥ 𝑐 > 0 for large

𝑟 → ∞ and 𝑝
−
= 𝑝(∞); then

𝜑 (0, |𝑥|)

|𝑥|
𝑛/𝑝∗(|𝑥|)

∈ L
𝑝(⋅),𝜑(⋅)

0;𝑙𝑜𝑐
(R
𝑛

) . (35)
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3.2. Some Weighted Estimates of Functions in Morrey Spaces

Theorem 10. Let 1 ≤ 𝑝
−

≤ 𝑝
+

< ∞ and 𝑝 ∈ P
0,∞

(R𝑛).
Suppose also that 𝑢 ∈ 𝑊(R

+
), 𝜑(0, ⋅)/𝑢(⋅) ∈ 𝑊(R

+
) and V ∈

𝑊(R1
+
), V(⋅)𝜑(0, ⋅) ∈ 𝑊(R1

+
). Then

∫
|𝑧|<𝑟

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

𝑢 (|𝑧|)
𝑑𝑧 ≤ 𝑐A (𝑟)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L𝑝(⋅),𝜑(⋅)
0;𝑙𝑜𝑐

,

∫
|𝑧|>𝑟

V (|𝑧|)
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧 ≤ 𝑐B (𝑟)
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L𝑝(⋅),𝜑(⋅)
0;𝑙𝑜𝑐

(36)

with

A (𝑟) = ∫

𝑟

0

𝑡
(𝑛/𝑝∗(𝑡))−1

𝜑 (0, 𝑡)

𝑢 (𝑡)
𝑑𝑡,

B (𝑟) = ∫

∞

𝑟

𝑡
(𝑛/𝑝
󸀠

∗
(𝑡))−1

𝜑 (0, 𝑡) V (𝑡) 𝑑𝑡,

(37)

where 𝑟 ∈ R
+
and 𝑐 > 0 do not depend on 𝑟 and 𝑓.

Proof. We have

∫
|𝑧|<𝑟

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

𝑢 (|𝑧|)
𝑑𝑧 =

∞

∑

𝑘=0

∫
𝐵𝑘(𝑦)

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

𝑢 (|𝑧|)
𝑑𝑧, (38)

where 𝐵
𝑘
(𝑦) = {𝑧 : 2

−𝑘−1

𝑟 < |𝑧| < 2
−𝑘

𝑟}. Making use of the
fact that there exists a 𝛽 such that 𝑡𝛽𝑢(𝑡) is almost decreasing,
we observe that 1/𝑢(|𝑧|) ≤ 𝐶/𝑢(2

−𝑘

𝑟) on 𝐵
𝑘
(𝑦). Applying

this in (38) and making use of the Hölder inequality with the
exponent 𝑝(𝑥), we obtain

∫
|𝑧|<𝑟

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

𝑢 (|𝑧|)
𝑑𝑧

≤

∞

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)
(𝐵𝑘)

𝑢 (2−𝑘𝑟)
⋅
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝐵(0,2−𝑘𝑟)).

(39)

By (9), we have ‖𝜒
𝐵𝑘

‖
𝐿
𝑝󸀠(⋅)
(𝐵𝑘)

≤ 𝐶(2
−𝑘

𝑟)
𝑛/𝑝∗(2

−𝑘
𝑟), so that

∫
|𝑧|<𝑟

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

𝑢 (|𝑧|)
𝑑𝑧

≤ 𝐶

∞

∑

𝑘=0

(2
−𝑘

𝑟)
𝑛/𝑝
󸀠

∗
(2
−𝑘
𝑟)

𝜑 (0, 2
−𝑘

𝑟)

𝑢 (2−𝑘𝑟)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L𝑝(⋅),𝜑(⋅)
0;loc

.

(40)

It remains to prove that

∞

∑

𝑘=0

(2
−𝑘

𝑟)
𝑛/𝑝
󸀠

∗
(2
−𝑘
𝑟)

𝜑 (0, 2
−𝑘

𝑟)

𝑢 (2−𝑘𝑟)
≤ 𝐶A (𝑟) . (41)

We have A(𝑟) = ∑
∞

𝑘=0
∫
2
−𝑘
𝑟

2
−𝑘−1
𝑟

𝑡
(𝑛/𝑝
󸀠

∗
(𝑡))−1

(𝜑(𝑡)/𝑢(𝑡))𝑑𝑡.
Since the function 𝑡

𝑛/𝑝
󸀠

∗
(𝑡) is increasing for all 𝑡 ∈ R

+
and the

function 𝜑(0, 𝑡)/𝑡
𝑏

𝑢(𝑡) is almost decreasing with some 𝑏, we
obtain

A (𝑟) ≥ 𝐶

∞

∑

𝑘=0

(2
−𝑘

𝑟)
𝑛/𝑝
󸀠

∗
(2
−𝑘
𝑟)𝜑 (0, 2

−𝑘

𝑟)

𝑢 (2−𝑘𝑟)
≥ 𝐶, (42)

which proves (41) and completes the proof of the first
inequality in (36).

For the second inequality in (36), we proceed in a similar
way as

∫
|𝑧|>𝑟

V (𝑡)
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧 =

∞

∑

𝑘=0

∫
𝐵
𝑘(𝑦)

V (𝑧)
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧, (43)

where 𝐵
𝑘

(𝑦) = {𝑧 : 2
𝑘

𝑟 < |𝑧| < 2
𝑘+1

𝑟}. Since there exists a
𝛽 ∈ R such that 𝑡𝛽V(𝑡) is almost increasing, we obtain

∞

∑

𝑘=0

∫
𝐵
𝑘(𝑦)

V (|𝑧|)
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧

≤ 𝐶

∞

∑

𝑘=0

V (2
𝑘+1

𝑟) ∫
𝐵
𝑘(𝑦)

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧.

(44)

Applying the Hölder inequality with the variable exponent
𝑝(⋅) and taking (9) into account, we get

∫
|𝑧|>𝑟

V (|𝑧|)
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧

≤ 𝐶

∞

∑

𝑘=0

V (2
𝑘+1

𝑟)
󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑘(𝑦)

󵄩󵄩󵄩󵄩󵄩𝑝󸀠(⋅)

󵄩󵄩󵄩󵄩󵄩
𝑓𝜒
𝐵(0,2
𝑘+1
𝑟)

󵄩󵄩󵄩󵄩󵄩𝑝(⋅)

≤ 𝐶

∞

∑

𝑘=1

V (2
𝑘

𝑟) (2
𝑘

𝑟)
𝑛/𝑝
󸀠

∗
(2
𝑘
𝑟)

𝜑 (0, 2
𝑘

𝑟) ⋅
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩L𝑝(⋅),𝜑(⋅)
0;loc

.

(45)

It remains to prove that ∑
∞

𝑘=1
V(2𝑘𝑟)(2𝑘𝑟)

𝑛/𝑝
󸀠

∗
(2
𝑘
𝑟)

𝜑(2
𝑘

𝑟) ≤

𝐶B(𝑟), which easily follows by the monotonicity of the
involved functions as

B (𝑟) =

∞

∑

𝑘=0

∫

2
𝑘+1
𝑟

2
𝑘
𝑟

𝑡
𝑛/(𝑝
󸀠

∗
(𝑡)−1)V (𝑡) 𝜑 (𝑡) 𝑑𝑡

≥ 𝐶

∞

∑

𝑘=0

V (2
𝑘

𝑟) 𝜑 (2
𝑘

𝑟) (2
𝑘

𝑟)
𝑛/𝑝
󸀠

∗
(2
𝑘
𝑟)

.

(46)

4. On Weighted Hardy Operators in
Generalized Morrey Spaces

4.1. Pointwise Estimations. We consider the following gener-
alized Hardy operators:

𝐻
𝛼(⋅)

𝑤
𝑓 (𝑥) = |𝑥|

𝛼(𝑥)−𝑛

𝑤 (|𝑥|) ∫
|𝑦|<|𝑥|

𝑓 (𝑦) 𝑑𝑦

𝑤 (
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)
,

H
𝛼(⋅)

𝑤
𝑓 (𝑥) = |𝑥|

𝛼(𝑥)

𝑤 (|𝑥|) ∫
|𝑦|>|𝑥|

,
𝑓 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑛

𝑤 (
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨)
,

(47)

where 𝛼(𝑥) is a non-negative measurable function on R𝑛. In
the one-dimensional case, their versions

𝐻
𝛼(⋅)

𝑤
𝑓 (𝑥) = 𝑥

𝛼(𝑥)−1

𝑤 (𝑥)∫

𝑥

0

𝑓 (𝑡) 𝑑𝑡

𝑤 (𝑡)
,

H
𝛼(⋅)

𝑤
𝑓 (𝑥) = 𝑥

𝛼(𝑥)

𝑤 (𝑥)∫

∞

𝑥

𝑓 (𝑡) 𝑑𝑡

𝑡𝑤 (𝑡)
, 𝑥 > 0

(48)
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on the half-axis R1
+
may be also admitted, so that the sequel

R𝑛 with 𝑛 = 1 may be read either as R1 or R1
+
.

We also use the notation 𝐻
𝛼(⋅)

= 𝐻
𝛼(⋅)

𝑤
|
𝑤≡1

.
Our next result on the boundedness of weighted Hardy

operators presented inTheorem 13 is prepared by our estima-
tions inTheorem 10. It is in fact a consequence ofTheorem 10.
We find it useful to divide this consequence into two parts.
First, in Theorem 11, we reformulate Theorem 10 in the form
to emphasize that we have pointwise estimates of Hardy
operators 𝐻

𝛼(⋅)

𝑤
andH𝛼(⋅)

𝑤
in terms of the Morrey norm of the

function𝑓.Then as an immediate consequence ofTheorem 11
we formulate Theorem 13 for global Morrey spaces.

Theorem 11. Let 𝑝 ∈ P
0,∞

(R𝑛) and 1 ≤ 𝑝
−

≤ 𝑝
+

< ∞. Let
also the weight 𝑤 satisfy the conditions

𝑤 ∈ 𝑊(R
+
) ,

𝜑 (0, ⋅)

𝑤 (⋅)
∈ 𝑊 (R

+
) , (49)

in the case of the operator 𝐻𝛼(⋅)
𝑤

, and the conditions

1

𝑤
∈ 𝑊(R

+
) ,

𝜑 (0, ⋅)

𝑤 (⋅)
∈ 𝑊 (R

+
) . (50)

in the case of the operatorH𝛼(⋅)

𝑤
. The conditions

∫

𝜀

0

𝑡
(𝑛/𝑝
󸀠
(0))−1

𝜑 (0, 𝑡)

𝑤 (𝑡)
𝑑𝑡 < ∞,

∫

∞

𝜀

𝑡
−(𝑛/𝑝(∞)) −1

𝜑 (0, 𝑡)

𝑤 (𝑡)
𝑑𝑡 < ∞,

(51)

with 𝜀 > 0, are sufficient for the Hardy operators 𝐻
𝛼(⋅)

𝑤
and

H𝛼(⋅)

𝑤
, respectively, to be defined on the space L

𝑝(⋅),𝜑(⋅)

0;𝑙𝑜𝑐
(R𝑛).

Under these conditions,
󵄨󵄨󵄨󵄨󵄨
𝐻
𝛼(⋅)

𝑤
𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝐾

𝑤,𝛼
(𝑥)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L𝑝(⋅),𝜑(⋅)
0;𝑙𝑜𝑐

,

󵄨󵄨󵄨󵄨󵄨
H
𝛼(⋅)

𝑤
𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶K

𝑤,𝛼
(𝑥)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩L𝑝(⋅),𝜑(⋅)
0;𝑙𝑜𝑐

,

(52)

where

𝐾
𝑤,𝛼

(𝑥) = |𝑥|
𝛼(𝑥)−𝑛

𝑤 (|𝑥|)A (|𝑥|)

= |𝑥|
𝛼(𝑥)−𝑛

𝑤 (|𝑥|) ∫

|𝑥|

0

𝑡
(𝑛/𝑝
󸀠

∗
(𝑡))−1

𝜑 (0, 𝑡)

𝑤 (𝑡)
𝑑𝑡,

K
𝑤,𝛼

(𝑥) = |𝑥|
𝛼(𝑥)

𝑤 (|𝑥|) ∫

∞

|𝑥|

𝑡
−(𝑛/𝑝∗(𝑡))−1𝜑 (0, 𝑡)

𝑤 (𝑡)
𝑑𝑡.

(53)

Proof. The sufficiency of the conditions in (51) and estimates
in (52) follows from (36) under the choice V(𝑡) = 𝑤(𝑡), for the
operator𝐻𝛼(⋅)

𝑤
and V(𝑡) = 1/𝑡

𝑛

𝑤(𝑡) for the operatorH𝛼(⋅)

𝑤
.

4.2. On the Necessity of the Conditions in (51). Observe that
the conditions in (51) are natural in the sense that they
are necessary under some additional assumptions on the
function 𝜑 defining the Morrey space.

Lemma 12. Let 𝑝 be as in Theorem 11 and 𝜑(0, ⋅) ∈

𝑊([0, 𝜀
0
]) ∩ 𝑊([0, 𝜀

0
]) for some 𝜀

0
> 0, and (30) holds. Then

the conditions in (51) are necessary for the Hardy operators
𝐻
𝛼(⋅)𝑊 and H𝛼(⋅)𝑊 , respectively, to be defined on the space

L
𝑝(⋅),𝜑(⋅)

0;𝑙𝑜𝑐
(R𝑛).

Proof. Choose 𝑓
0
(𝑥) = (𝜑(0, |𝑥|)/|𝑥|

𝑛/𝑝(𝑥)

)𝜒
𝐵(0,𝑅)

(𝑥). Then
𝑓 ∈ L

𝑝(⋅),𝜑(⋅)

0;loc (R𝑛) by Lemma 8. It remains to note that the
conditions in (51) are nothing else but the statement that
𝐻
𝛼(⋅)

𝑤
𝑓
0
andH𝛼(⋅)

𝑤
𝑓
0
, respectively, exist.

4.3. Weighted 𝑝 → 𝑞 Norm Estimates for Hardy Operators.
The statements of Theorem 13 are well known in the case of
Lebesgue space, that is, in the case 𝜑 ≡ 1, with constant expo-
nents, when 1 < 𝑝 < 𝑛/𝛼; see for instance [27, pages 6, 54].
For the classicalMorrey spacesL𝑝,𝜆

(R𝑛)with constant expo-
nents 𝑝 and 𝜆, statements of such type for Hardy operators
have been obtained in [17, 19].

Hardy inequalities in the variable exponent Lebesgue
spaces were studied in [34–36]; see also the references
therein.

Note that, in contrast to variable exponent Lebesgue
spaces, inequalities for the Hardy operators in Morrey spaces
admit the case inf

𝑥
𝑝(𝑥) = 1 when 𝜑(0, 0) = 0 in the case of

local Morrey spaces and sup
𝑥
𝜑(𝑥, 0) = 0 in the case of global

Morrey spaces.
We suppose that the condition

sup
𝑟>0

[min {1, 𝑟}]
𝑛/𝑝(0)

𝜑 (0, 𝑟)
< ∞ (54)

holds, which ensures that the spaceL𝑝(⋅),𝜑(⋅)

0,loc (R𝑛) is nonempty
by Lemma 6.

Theorem 13. Let 1 ≤ 𝑝
−

≤ 𝑝
+

< ∞, 1 ≤ 𝑞
−

≤ 𝑞
+

< ∞

and 𝑝 ∈ P
0,∞

(Ω) as well as the functions 𝜑 and 𝜓 satisfy the
assumption (54). Let also the weight𝑤 satisfy the conditions in
(49) in the case of the operator𝐻𝛼(⋅)

𝑤
and the conditions in (50)

in the case of the operatorH𝛼(⋅)

𝑤
. Then the operators 𝐻𝛼(⋅)

𝑤
and

H𝛼(⋅)

𝑤
are bounded fromL

𝑝(⋅),𝜑(⋅)

0,𝑙𝑜𝑐
(R𝑛) toL𝑞(⋅),𝜓(⋅)

0,𝑙𝑜𝑐
(R𝑛), if

𝐾
𝑤,𝛼

∈ L
𝑞(⋅),𝜓(⋅)

𝑙𝑜𝑐;0
(R
𝑛

) , K
𝑤,𝛼

∈ L
𝑞(⋅),𝜓(⋅)

𝑙𝑜𝑐;0
(R
𝑛

) , (55)

respectively. If 𝑝 and 𝜑(0, 𝑟) satisfy the assumptions of
Corollary 9, then the conditions in (55) are also necessary for
the boundedness of the operators 𝐻𝛼(⋅)

𝑤
andH𝛼(⋅)

𝑤
.

Proof. The sufficiency of the conditions in (55) for the
boundedness follows from the estimates in (52).

As regards the necessity, the requirements in (55) are
nothing else but the statement that

𝐻
𝛼(⋅)

𝑤
(𝑓
0
) ∈ L

𝑞(⋅),𝜓(⋅)

loc;0 (R
𝑛

) ,

H
𝛼(⋅)

𝑤
(𝑓
0
) ∈ L

𝑞(⋅),𝜓(⋅)

loc;0 (R
𝑛

) ,

(56)
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respectively, where

𝑓
0
(𝑥) =

𝜑 (0, |𝑥|)

|𝑥|
𝑛/𝑝∗(|𝑥|)

. (57)

The function 𝑓
0
belongs to L

𝑝(⋅),𝜑(⋅)

0,loc (R𝑛) by Corollary 9.
Consequently, the conditions, (55) are necessary.

Corollary 14. Under the same assumptions on𝑝, 𝜑 and𝑤 as in
Theorem 13, the Hardy operators 𝐻𝛼(⋅)

𝑤
andH𝛼(⋅)

𝑤
are bounded

from the global Morrey spaceL𝑝(⋅),𝜑(⋅)

(R𝑛) to the global space
L𝑞(⋅),𝜓(⋅)

(R𝑛), if

𝐾
𝑤,𝛼

∈ L
𝑞,𝜓

(R
𝑛

) , K
𝑤,𝛼

∈ L
𝑞,𝜓

(R
𝑛

) , (58)

respectively.

Proof. Since ‖𝑓‖
L
𝑝(⋅),𝜑(⋅)

0,loc (R𝑛)
≤ ‖𝑓‖L𝑝(⋅),𝜑(⋅) , the statement imme-

diately follows from the pointwise estimates in (52).

Remark 15. Theorem 18 is specifically a “Morrey-type” state-
ment in the sense that the case of Lebesgue spaces (the case
𝜆 = 0) is not included. This, in particular, is reflected in the
admission of values 𝑝(𝑥) = 1 in Theorem 18, which is
impossible for Lebesgue spaces.

4.4. Finding 𝜓(0,𝑟) by a Given 𝜑(0,𝑟). The main theorem of
the preceding section, Theorem 13 on the L

𝑝(⋅),𝜑(⋅)

0,loc (R𝑛) →

L
𝑞(⋅),𝜓(⋅)

0,loc (R𝑛) boundedness, provides a relation between the
given function 𝜑(0, 𝑟) and 𝜓(0, 𝑟) in an indirect form, via
the conditions in (55). In the theorems below, under some
additional assumptions on the functions 𝜑(0, 𝑟)we obtain the
boundedness conditions in a form of Zygmund-type integral
conditions imposed on 𝜑(0, 𝑟)/𝑤(𝑟) and give a direct relation
between 𝜑(0, 𝑟) and 𝜓(0, 𝑟).

In these theorems, we use the following assumptions on
the function 𝜑(0, 𝑡) defining the data spaceL𝑝(⋅),𝜑(⋅)

0,loc (R𝑛):

𝜑 (0, 𝑟) ∈ 𝑊 (R
+
) ∩ Z

̃
𝛽0,
̃
𝛽∞ (R

+
) , (59)

where

𝛽
0
=

𝑛

𝑝 (0)
−

𝑛

𝑞 (0)
− 𝛼 (0) ,

𝛽
∞

=
𝑛

𝑝 (∞)
−

𝑛

𝑞 (∞)
− 𝛼 (∞)

(60)

(see (A.18) for the definition of the classesZ𝛽0,𝛽∞(R
+
)). Recall

that the assumption 𝜑(0, 𝑟) ∈ Z
̃
𝛽0,
̃
𝛽∞(R

+
) in (59) may be

equivalently rewritten in terms of the Matuszewska-Orlicz
indices 𝑚(𝜑),𝑚

∞
(𝜑) of the function 𝜑(0, 𝑡) as

𝑚(𝜑) > 𝛽
0
, 𝑚

∞
(𝜑) > 𝛽

∞
. (61)

Theorem 16. Let 1 ≤ 𝑝
−

≤ 𝑝
+

< ∞, 1 ≤ 𝑞
−

≤ 𝑞
+

< ∞,
and 𝑝, 𝑞 ∈ P

0,∞
(R𝑛) as well as the function 𝜑 satisfy the

assumption in (54) and (59) and let the weight 𝑤 fulfill the
conditions in (49). If

𝜑 (0, 𝑟)

𝑤 (𝑟)
∈ Z

𝛽0,𝛽∞ (R
+
) 𝑤𝑖𝑡ℎ 𝛽

0
= −

𝑛

𝑝󸀠 (0)
,

𝛽
∞

= −
𝑛

𝑝󸀠 (∞)
,

(62)

then the Hardy operator 𝐻
𝛼(⋅)

𝑤
is bounded from L

𝑝(⋅),𝜑(⋅)

0,𝑙𝑜𝑐
(R𝑛)

toL𝑞(⋅),𝜓(⋅)

0,𝑙𝑜𝑐
(R𝑛), with

𝜓 (0, 𝑟) = 𝑟
𝛼∗(𝑟)−(𝑛/𝑝∗(𝑟))+(𝑛/𝑞∗(𝑟))𝜑 (0, 𝑟) . (63)

Proof. By (69), we have

𝐾
𝑤,𝛼

(𝑥)

= |𝑥|
𝛼(𝑥)−𝑛

𝑤 (|𝑥|) ∫

|𝑥|

0

𝑡
(𝑛/𝑝
󸀠

∗
(𝑡))−1

𝜑 (0, 𝑡)

𝑤 (𝑡)
𝑑𝑡

≤ 𝐶|𝑥|
𝛼∗(|𝑥|)−(𝑛/𝑝∗(|𝑥|))𝜑 (0, |𝑥|) .

(64)

To check that 𝐾
𝑤,𝛼

∈ L
𝑞(⋅),𝜑(⋅)

loc;0 (R𝑛), by the definition in (20),
we have to estimate the norm

󵄩󵄩󵄩󵄩󵄩
|𝑥|
𝛼∗(|𝑥|)−(𝑛/𝑝∗(|𝑥|))𝜑 (0, |𝑥|) 𝜒

𝐵(0,𝑟)

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(⋅)
. (65)

We apply Lemma 2 with 𝑎(𝑥, 𝑟) = 𝑟
𝛼∗(𝑟)−(𝑛/𝑝∗(𝑟))𝜑(0, 𝑟), which

is possible by (59) and obtain
󵄩󵄩󵄩󵄩󵄩
|𝑥|
𝛼∗(|𝑥|)−(𝑛/𝑝∗(|𝑥|))𝜑 (0, |𝑥|) 𝜒

𝐵(0,𝑟)

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(⋅)

≤ 𝐶∫

𝑟

0

𝑡
𝛼∗(𝑡)−(𝑛/𝑝∗(𝑡))+(𝑛/𝑞∗(𝑡))𝜑 (0, 𝑡)

𝑑𝑡

𝑡
.

(66)

Then by (59) we get
󵄩󵄩󵄩󵄩󵄩
|𝑥|
𝛼∗(|𝑥|)−(𝑛/𝑝∗(|𝑥|))𝜑 (0, |𝑥|) 𝜒

𝐵(0,𝑟)

󵄩󵄩󵄩󵄩󵄩𝐿𝑞(⋅)

≤ 𝐶𝑟
𝛼∗(𝑟)−(𝑛/𝑝∗(𝑟))+(𝑛/𝑞∗(𝑟))𝜑 (0, 𝑟) .

(67)

Therefore,
󵄩󵄩󵄩󵄩󵄩
|𝑥|
𝛼∗(|𝑥|)−(𝑛/𝑝∗(|𝑥|)) 𝜑 (0, |𝑥|)

󵄩󵄩󵄩󵄩󵄩L𝑞(⋅),𝜑(⋅)loc;0 (R𝑛)

≤ 𝐶
𝑟
𝛼∗(𝑟)−(𝑛/𝑝∗(𝑟))+(𝑛/𝑞∗(𝑟))𝜑 (0, 𝑟)

𝜓 (0, 𝑟)
,

(68)

and we arrive at (63).

Theorem 17. Let 1 ≤ 𝑝
−

≤ 𝑝
+

< ∞, 1 ≤ 𝑞
−

≤ 𝑞
+

< ∞,
𝑝, 𝑞 ∈ P

0,∞
(R𝑛), and𝜑 satisfy (54) and (59) and let the weight

𝑤 fulfill (50). If

𝜑 (0, 𝑟)

𝑤 (𝑟)
∈ Z

𝛾0,𝛾∞
(R
+
) 𝑤𝑖𝑡ℎ 𝛾

0
=

𝑛

𝑝 (0)
, 𝛾
∞

=
𝑛

𝑝 (∞)
,

(69)

then the Hardy operator H𝛼(⋅)

𝑤
is bounded from L

𝑝(⋅),𝜑(⋅)

0,𝑙𝑜𝑐
(R𝑛)

toL𝑞(⋅),𝜓(⋅)

0,𝑙𝑜𝑐
(R𝑛), where 𝜓(0, 𝑟) is the function (63).
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Proof. By (69), we have

K
𝑤,𝛼

(𝑥) = |𝑥|
𝛼(𝑥)

𝑤 (|𝑥|) ∫

∞

|𝑥|

𝑡
−(𝑛/𝑝∗(𝑡))−1𝜑 (0, 𝑡)

𝑤 (𝑡)
𝑑𝑡

≤ 𝐶|𝑥|
𝛼∗(|𝑥|)−(𝑛/𝑝∗(|𝑥|))𝜑 (0, |𝑥|) ,

(70)

after which the proof is the same as that of Theorem 16.

We single out an important case of non-weighted Hardy
operators

𝐻
𝛼(⋅)

𝑓 (𝑥) = |𝑥|
𝛼(𝑥)−𝑛

∫
|𝑦|<|𝑥|

𝑓 (𝑦) 𝑑𝑦,

H
𝛼(⋅)

𝑓 (𝑥) = |𝑥|
𝛼(𝑥)

∫
|𝑦|>|𝑥|

𝑓 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝑛

(71)

in variable exponent Morrey spaces of classical type, that is,
with the function 𝜑(0, 𝑟) = 𝜑

𝜆/𝑝
(0, 𝑟), defined by

𝜑
𝜆/𝑝

(0, 𝑟) = {
𝑟
𝜆/𝑝(0)

, 𝑟 ≤ 1 = 𝑟
𝜆/𝑝∗(𝑟),

𝑟
𝜆/𝑝(∞)

, 𝑟 ≤ 1 = 𝑟
𝜆/𝑝∗(𝑟),

(72)

where 0 < 𝜆 < 𝑛 and then 𝜓(0, 𝑟) = 𝜑
𝜆/𝑞

(0, 𝑟) = 𝑟
𝜆/𝑞∗(𝑟) by

(63).

Theorem 18. Let 𝜑
𝜆/𝑝

be of form (72), 1 ≤ 𝑝(𝑥) ≤ 𝑝
+

< ∞,
let 𝑝, 𝑞, 𝛼 ∈ P

0,∞
(R𝑛) be such that 𝛼(0) ≥ 0, 𝛼(∞) ≥ 0, and

1

𝑞 (0)
=

1

𝑝 (0)
−

𝛼 (0)

𝑛 − 𝜆
,

1

𝑞 (∞)
=

1

𝑝 (∞)
−

𝛼 (∞)

𝑛 − 𝜆
.

(73)

Then the Hardy operators 𝐻
𝛼(⋅) and H𝛼(⋅) are bounded from

L
𝑝(⋅),𝜑𝜆/𝑝(⋅)

0,𝑙𝑜𝑐
(R𝑛) toL𝑞(⋅),𝜑𝜆/𝑞𝑖(⋅)

0,𝑙𝑜𝑐
(R𝑛), if

𝛼 (0) 𝑝 (0) < 𝑛 − 𝜆, 𝛼 (∞)𝑝 (∞) < 𝑛 − 𝜆. (74)

In the case of inf
𝑥∈R𝑛𝑝(𝑥) = 𝑝(∞), the conditions in (74) are

also necessary.

Proof. In the sufficiency part, the theorem may be derived
from Theorems 16 and 17, but we find it more convenient to
derive it from more general statement of Theorem 13, since
the functions 𝐾

𝑤,𝛼
and K

𝑤,𝛼
may be explicitly calculated in

this case and

𝐾
𝑤,𝛼

(𝑥) = |𝑥|
𝛼(𝑥)−((𝑛−𝜆)/𝑝∗(|𝑥|)),

K
𝑤,𝛼

(𝑥) = |𝑥|
𝛼(𝑥)+(𝜆/𝑝∗(|𝑥|))−(𝑛/𝑝

󸀠

∗
(|𝑥|))

.

(75)

Since 𝛼 ∈ P
0,∞

, we have

𝐾
𝑤,𝛼

(𝑥) ∼ |𝑥|
𝛼∗(|𝑥|)−((𝑛−𝜆)/𝑝∗(|𝑥|)),

K
𝑤,𝛼

(𝑥) = |𝑥|
𝛼∗(|𝑥|)+(𝜆/𝑝∗(|𝑥|))−(𝑛/𝑝

󸀠

∗
(|𝑥|))

,

(76)

where the notation 𝛼
∗
(|𝑥|) has the same meaning as in (10).

To check that 𝐾
𝑤,𝛼

∈ L
𝑞(⋅),𝜑(⋅)

loc;0 (R𝑛), by the definition
in (20) we have to estimate the norm ‖|𝑥|

𝛼∗(|𝑥|)−((𝑛−𝜆)/𝑝∗(|𝑥|))

𝜒
𝐵(0,𝑟)

(𝑥)‖
𝑞(⋅)

. To this end, we may apply Corollary 4 with
](𝑥) = 𝛼

∗
(|𝑥|) − ((𝑛 − 𝜆)/𝑝

∗
(|𝑥|)) and 𝑝 replaced by 𝑞. The

assumptions on ](𝑥) of that corollary are satisfied if 0 < 𝜆 <

𝑛 and max{𝛼(0), 𝛼(∞)} < 𝑛 − 𝜆, which holds under the
assumptions of the theorem. Thus, by Corollary 4,

󵄩󵄩󵄩󵄩󵄩
|𝑥|
𝛼∗(|𝑥|)−((𝑛−𝜆)/𝑝∗(|𝑥|))𝜒

𝐵(0,𝑟)
(𝑥)

󵄩󵄩󵄩󵄩󵄩𝑞(⋅)

≤ 𝐶𝑟
𝛼∗(𝑟)−((𝑛−𝜆)/𝑝∗(𝑟))+(𝑛/𝑞∗(𝑟)).

(77)

Then the required condition

1

𝑟𝜆/𝑝∗(𝑟)

󵄩󵄩󵄩󵄩󵄩
|𝑥|
𝛼∗(|𝑥|)−((𝑛−𝜆)/𝑝∗(|𝑥|))𝜒

𝐵(0,𝑟)
(𝑥)

󵄩󵄩󵄩󵄩󵄩𝑞(⋅)
< ∞ (78)

is guaranteed by (77) and (73).
Similarly the case of the operatorH𝛼(⋅) is treated.
The necessity of the conditions (74) becomes evident if we

note that in the case under consideration they are just
the same as the conditions in (55) which are necessary by
Theorem 13.

Appendix

A. Zygmund-Bary-Stechkin (ZBS) Classes and
Matuszewska-Orlicz (MO) Type Indices

The reader can find more details and facts with proofs on
the notions of this section for instance in [37–40]; see also
the references therein. We recall some basic definitions and
properties on which we based in our paper.

In the sequel, a non-negative function 𝑓 on [0, ℓ], 0 <

ℓ ≤ ∞, is called almost increasing (almost decreasing), if
there exists a constant 𝐶(≥1) such that 𝑓(𝑥) ≤ 𝐶𝑓(𝑦) for
all 𝑥 ≤ 𝑦 (𝑥 ≥ 𝑦, resp.). Equivalently, a function 𝑓 is
almost increasing (almost decreasing), if it is equivalent to
an increasing (decreasing, resp.) function 𝑔, that is, 𝑐

1
𝑓(𝑥) ≤

𝑔(𝑥) ≤ 𝑐
2
𝑓(𝑥), 𝑐

1
> 0, 𝑐

2
> 0.

Definition A.1. Let 0 < ℓ < ∞.

(1) We denote by 𝑊 = 𝑊([0, ℓ]) the class of continuous
and positive functions 𝜑 on (0, ℓ] such that the limit
lim

𝑥→0
𝜑(𝑥) exists and is finite.

(2) We denote by 𝑊
0

= 𝑊
0
([0, ℓ]) the class of almost

increasing functions 𝜑 ∈ 𝑊 on (0, ℓ).
(3) We denote by 𝑊 = 𝑊([0, ℓ]) the class of functions

𝜑 ∈ 𝑊 such that 𝑥𝑎𝜑(𝑥) ∈ 𝑊
0
for some 𝑎 = 𝑎(𝜑) ∈

R1.
(4) Wedenote by𝑊 = 𝑊([0, ℓ]) the class of functions𝜑 ∈

𝑊 such that𝜑(𝑡)/𝑡
𝑏 is almost decreasing for some 𝑏 ∈

R1.

Definition A.2. Let 0 < ℓ < ∞.

(1) We denote by 𝑊
∞

= 𝑊
∞

([ℓ,∞]) the class of
functions 𝜑 which are continuous and positive and
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almost increasing on [ℓ,∞) and which have the finite
limit lim

𝑥→∞
𝜑(𝑥).

(2) We denote by 𝑊
∞

= 𝑊
∞

([ℓ,∞)) the class of
functions 𝜑 ∈ 𝑊

∞
such 𝑥

𝑎

𝜑(𝑥) ∈ 𝑊
∞

for some
𝑎 = 𝑎(𝜑) ∈ R1.

Finally, we denote by 𝑊(R
+
) the set of functions on R

+

whose restrictions onto (0, 1) are in𝑊([0, 1]) and restrictions
onto [1,∞) are in 𝑊

∞
([1,∞)). Similarly, the set 𝑊(R

+
) is

defined.

A.1. ZBS Classes and MO Indices of Weights at the Origin. In
this subsection we assume that ℓ < ∞.

Definition A.3. We say that a function 𝜑 ∈ 𝑊
0
belongs to the

Zygmund class Z𝛽, 𝛽 ∈ R1, if

∫

𝑥

0

𝜑 (𝑡)

𝑡1+𝛽
𝑑𝑡 ≤ 𝑐

𝜑 (𝑥)

𝑥𝛽
, 𝑥 ∈ (0, ℓ) , (A.1)

and to the Zygmund class Z
𝛾
, 𝛾 ∈ R1, if

∫

ℓ

𝑥

𝜑 (𝑡)

𝑡1+𝛾
𝑑𝑡 ≤ 𝑐

𝜑 (𝑥)

𝑥𝛾
, 𝑥 ∈ (0, ℓ) . (A.2)

We also denote

Φ
𝛽

𝛾
:= Z

𝛽

⋂Z
𝛾
, (A.3)

the latter class being also known as Bary-Stechkin-Zygmund
class [41].

It is known that the property of a function to be almost
increasing or almost decreasing after themultiplication (divi-
sion) by a power function is closely related to the notion of the
so calledMatuszewska-Orlicz indices.We refer for instance to
to [37, 40, 42–44], for the properties of the indices of such a
type. For a function 𝜑 ∈ 𝑊, the numbers

𝑚(𝜑) = sup
0<𝑥<1

ln(lim sup
ℎ→0

(𝜑 (ℎ𝑥) /𝜑 (ℎ)))

ln𝑥

= lim
𝑥→0

ln(lim sup
ℎ→0

(𝜑 (ℎ𝑥) /𝜑 (ℎ)) )

ln𝑥
,

𝑀 (𝜑) = sup
𝑥>1

ln(lim sup
ℎ→0

(𝜑 (ℎ𝑥) /𝜑 (ℎ)))

ln𝑥

= lim
𝑥→∞

ln(lim sup
ℎ→0

(𝜑 (ℎ𝑥) /𝜑 (ℎ)))

ln𝑥

(A.4)

are known as the Matuszewska-Orlicz type lower and upper
indices of the function 𝜑(𝑟). Note that in this definition, 𝜑(𝑥)

needs not to be an𝑁-function: only its behaviour at the origin
is of importance. Observe that 0 ≤ 𝑚(𝜑) ≤ 𝑀(𝜑) ≤ ∞ for

𝜑 ∈ 𝑊
0
, and −∞ < 𝑚(𝜑) ≤ 𝑀(𝜑) ≤ ∞ for 𝜑 ∈ 𝑊, and the

following formulas are valid:

𝑚[𝑥
𝑎

𝜑 (𝑥)] = 𝑎 + 𝑚 (𝜑) ,

𝑀 [𝑥
𝑎

𝜑 (𝑥)] = 𝑎 + 𝑀(𝜑) , 𝑎 ∈ R
1

,

(A.5)

𝑚([𝜑 (𝑥)]
𝑎

) = 𝑎𝑚 (𝜑) ,

𝑀 ([𝜑 (𝑥)]
𝑎

) = 𝑎𝑀(𝜑) , 𝑎 ≥ 0,

(A.6)

𝑚(
1

𝜑
) = −𝑀(𝜑) , 𝑀(

1

𝜑
) = −𝑚 (𝜑) , (A.7)

𝑚(𝑢V) ≥ 𝑚 (𝑢) + 𝑚 (V) , 𝑀 (𝑢V) ≤ 𝑀 (𝑢) + 𝑀 (V)
(A.8)

for 𝜑, 𝑢, V ∈ 𝑊.
The following statement is known; see [37, Theorems 3.1,

3.2, and 3.5]. (In the formulation of [37, Theorem 5.4] it was
supposed that 𝛽 ≥ 0, 𝛾 > 0, and 𝜑 ∈ 𝑊

0
. It is evidently true

also for 𝜑 ∈ 𝑊 and all 𝛽, 𝛾 ∈ R1, in view of formulas (A.5).)

Theorem A.4. Let 𝜑 ∈ 𝑊 and 𝛽, 𝛾 ∈ R1. Then

𝜑 ∈ Z
𝛽

⇐⇒ 𝑚(𝜑) > 𝛽, 𝜑 ∈ Z
𝛾
⇐⇒ 𝑀(𝜑) < 𝛾.

(A.9)

Besides this

𝑚(𝜑) = sup{𝜇 > 0 :
𝜑 (𝑥)

𝑥𝜇
is almost increasing} ,

𝑀 (𝜑) = inf {] > 0 :
𝜑 (𝑥)

𝑥]
is almost decreasing} ,

(A.10)

and for 𝜑 ∈ Φ
𝛽

𝛾
the inequalities

𝑐
1
𝑥
𝑀(𝜑)+𝜀

≤ 𝜑 (𝑥) ≤ 𝑐
2
𝑥
𝑚(𝜑)−𝜀 (A.11)

hold with an arbitrarily small 𝜀 > 0 and 𝑐
1
= 𝑐
1
(𝜀), 𝑐

2
= 𝑐
2
(𝜀).

A.2. ZBS Classes and MO Indices of Weights at Infinity

Definition A.5. Let −∞ < 𝛼 < 𝛽 < ∞. We put Ψ𝛽
𝛼

:= Ẑ𝛽 ∩

Ẑ
𝛼
, where Ẑ𝛽 is the class of functions 𝜑 ∈ 𝑊

∞
satisfying the

condition

∫

∞

𝑥

(
𝑥

𝑡
)

𝛽𝜑 (𝑡) 𝑑𝑡

𝑡
≤ 𝑐𝜑 (𝑥) , 𝑥 ∈ (ℓ,∞) , (A.12)

and Ẑ
𝛼
is the class of functions 𝜑 ∈ 𝑊([ℓ,∞)) satisfying the

condition

∫

𝑥

ℓ

(
𝑥

𝑡
)

𝛼𝜑 (𝑡) 𝑑𝑡

𝑡
≤ 𝑐𝜑 (𝑥) , 𝑥 ∈ (ℓ,∞) , (A.13)

where 𝑐 = 𝑐(𝜑) > 0 does not depend on 𝑥 ∈ [ℓ,∞).
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The indices𝑚
∞

(𝜑) and𝑀
∞

(𝜑) responsible for the behav-
ior of functions 𝜑 ∈ Ψ

𝛽

𝛼
([ℓ,∞)) at infinity are introduced in

the way similar to (A.4) as

𝑚
∞

(𝜑) = sup
𝑥>1

ln [lim inf
ℎ→∞

(𝜑 (𝑥ℎ) /𝜑 (ℎ))]

ln𝑥
,

𝑀
∞

(𝜑) = inf
𝑥>1

ln [lim sup
ℎ→∞

(𝜑 (𝑥ℎ) /𝜑 (ℎ))]

ln𝑥
.

(A.14)

Properties of functions in the class Ψ
𝛽

𝛼
([ℓ,∞)) are easily

derived from those of functions in Φ
𝛼

𝛽
([0, ℓ]) because of the

following equivalence:

𝜑 ∈ Ψ
𝛽

𝛼
([ℓ,∞)) ⇐⇒ 𝜑

∗
∈ Φ

−𝛽

−𝛼
([0, ℓ

∗

]) , (A.15)

where 𝜑
∗
(𝑡) = 𝜑(1/𝑡) and ℓ

∗
= 1/ℓ. Direct calculation shows

that

𝑚
∞

(𝜑) = −𝑀(𝜑
∗
) ,

𝑀
∞

(𝜑) = −𝑚 (𝜑
∗
) , 𝜑

∗
(𝑡) := 𝜑 (

1

𝑡
) .

(A.16)

By (A.15) and (A.16), one can easily reformulate prop-
erties of functions of the class Φ

𝛽

𝛾
near the origin, given in

Theorem A.4 for the case of the corresponding behavior at
infinity of functions of the class Ψ𝛽

𝛼
and obtain that

𝑐
1
𝑡
𝑚∞(𝜑)−𝜀 ≤ 𝜑 (𝑡) ≤ 𝑐

2
𝑡
𝑀∞(𝜑)+𝜀, 𝑡 ≥ ℓ, 𝜑 ∈ 𝑊

∞
,

𝑚
∞

(𝜑)

= sup {𝜇∈R
1

: 𝑡
−𝜇

𝜑(𝑡) is almost increasing on [ℓ,∞)} ,

𝑀
∞

(𝜑)

= inf {]∈R1 : 𝑡
−]

𝜑 (𝑡) is almost decreasing on [ℓ,∞)} .

(A.17)

We say that a continuous function 𝜑 in (0,∞) is in the
class𝑊

0,∞
(R1
+
), if its restriction to (0, 1) belongs to𝑊([0, 1])

and its restriction to (1,∞) belongs to 𝑊
∞

([1,∞]). For
functions in 𝑊

0,∞
(R1
+
), the notation

Z
𝛽0,𝛽∞ (R

1

+
) = Z

𝛽0 ([0, 1]) ∩ Z
𝛽∞ ([1,∞)) ,

Z
𝛾0,𝛾∞

(R
1

+
) = Z

𝛾0
([0, 1]) ∩ Z

𝛾∞
([1,∞))

(A.18)

has an obvious meaning (note that in (A.18) we use
Z𝛽∞([1,∞)) and Z

𝛾∞
([1,∞)), not Ẑ𝛽∞([1,∞)) and Ẑ

𝛾∞

([1,∞))). In the case where the indices coincide, that is,
𝛽
0
= 𝛽

∞
:= 𝛽, we will simply write Z𝛽(R1

+
) and similarly for

Z
𝛾
(R1
+
). We also denote

Φ
𝛽

𝛾
(R
1

+
) := Z

𝛽

(R
1

+
) ∩ Z

𝛾
(R
1

+
) . (A.19)

Making use of Theorem A.4 for Φ
𝛼

𝛽
([0, 1]) and relations

(A.16), one easily arrives at the following statement.

Lemma A.6. Let 𝜑 ∈ 𝑊(R1
+
). Then

𝜑 ∈ Z
𝛽0,𝛽∞ (R

1

+
) ⇐⇒ 𝑚(𝜑) > 𝛽

0
, 𝑚

∞
(𝜑) > 𝛽

∞
,

𝜑 ∈ Z
𝛾0,𝛾∞

(R
1

+
) ⇐⇒ 𝑀(𝜑) < 𝛾

0
, 𝑀

∞
(𝜑) < 𝛾

∞
.

(A.20)
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