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We study three-dimensional boundary value problems for the nonhomogeneous wave equation,
which are analogues of the Darboux problems in R

2. In contrast to the planar Darboux problem the
three-dimensional version is not well posed, since its homogeneous adjoint problem has an infinite
number of classical solutions. On the other hand, it is known that for smooth right-hand side
functions there is a uniquely determined generalized solution that may have a strong power-type
singularity at one boundary point. This singularity is isolated at the vertex of the characteristic light
cone and does not propagate along the cone. The present paper describes asymptotic expansion
of the generalized solutions in negative powers of the distance to this singular point. We derive
necessary and sufficient conditions for existence of solutions with a fixed order of singularity and
give a priori estimates for the singular solutions.

1. Introduction

In the present paper some boundary value problems (BVPs) formulated by M. H. Protter for
the wave equation with two space and one time variables are studied as a multidimensional
analogue of the classical Darboux problem in the plane. While the Darboux BVP in R

2 is
well posed the Protter problem is not and its cokernel is infinite dimensional. Therefore
the problem is not Fredholm and the orthogonality of the right-hand side function f to the
cokernel is one necessary condition for existence of classical solution. Alternatively, to avoid
infinite number of conditions the notion of generalized solution is introduced that allows
the solution to have singularity on a characteristic part of the boundary. It is known that
for smooth right-hand side functions there is unique generalized solution and it may have
a strong power-type singularity that is isolated at one boundary point. In the present paper
we prove asymptotic expansion formula for the generalized solutions in negative powers of
the distance to the singular point in the case when f is trigonometric polynomial. We leave
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for the next section the precise formulation of the paper’s main results and the comparisons
with recent publications concerning Protter problems, including a semi-Fredholm solvability
result in the general case of smooth f but for somewhat easier (3 + 1)-D wave equation
problem. First we give here a short historical survey.

Protter arrived at the multidimensional problems for hyperbolic equations while
examining BVPs for mixed type equations, starting with planar problems with strong
connection to transonic flow phenomena. In the plane, the problems of Tricomi, Frankl, and
Guderley-Morawetz are the classical boundary-value problems that appear in hodograph
plane for 2D transonic potential flows (see, e.g., the survey of Morawetz [1]). The first two of
these problems are relevant to flows in nozzles and jets, and the third problem occurs as an
approximation to a respective “exact” boundary-value problem in the study of flows around
airfoils. For the Gellerstedt equation of mixed type, Protter [2] proposes a 3D analogue to the
two-dimensional Guderley-Morawetz problem. At the same time, he formulates boundary
value problems in the hyperbolic part of the domain, which is bounded by two characteristics
and one noncharacteristic surfaces of the equation. The planar Guderley-Morawetz mixed-
type problem is well studied. Existence of weak solutions and uniqueness of strong solutions
in weighted Sobolev spaces were first established by Morawetz by reducing the problem to
a first order system which then gives rise to solutions to the scalar equation in the presence
of sufficient regularity. The availability of such sufficient regularity follows from the work of
Lax and Phillips [3] who also established that the weak solutions of Morawetz are strong.
On the other hand, for the 3D Protter mixed-type problems a general understanding of the
situation is not at hand—even the question of well posedness is surprisingly subtle and
not completely resolved. One has uniqueness results for quasiregular solutions, a class of
solutions introduced by Protter, but there are real obstructions to existence in this class. To
investigate the situation, we study a simpler problem—the Protter problems in the hyperbolic
part Ω of the domain for the mixed-type problem. For the wave equation

�u ≡ ux1x1 + ux2x2 − utt = f(x, t), (1.1)

this is the set

Ω :=
{
(x1, x2, t) : 0 < t <

1
2
, t <

√
x2
1 + x

2
2 < 1 − t

}
. (1.2)

It is bounded, see Figure 1, by two characteristic cones of (1.1)

S1 =
{
(x1, x2, t) : 0 < t <

1
2
,
√
x2
1 + x

2
2 = 1 − t

}
,

S2 =
{
(x1, x2, t) : 0 < t <

1
2
,
√
x2
1 + x

2
2 = t

}
,

(1.3)

and the disk S0 = {(x1, x2, t) : t = 0, x2
1 + x

2
2 < 1}, centered at the origin O(0, 0, 0).

One could think of the Protter problems in Ω as three-dimensional variant of the
planar Darboux problem. The classic Darboux problem involves a hyperbolic equation in
a characteristic triangle bounded by two characteristic and one noncharacteristic segments.
The data are prescribed on the noncharacteristic part of the boundary and one of
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Figure 1: The domain Ω.

the characteristics. Actually, the set Ω could be produced via rotation around the t-axis in
R

3 of the flat triangle Ω2 := {(x1, t) : 0 < t < 1/2; t < x1 < 1 − t} ⊂ R
2—a characteristic

triangle for the corresponding string equation

ux1x1 − utt = g(x1, t). (1.4)

As mentioned before, the classical Darboux problem for (1.4) is to find solution in Ω2 with
data prescribed on {t = 0} and {t = 1 − x1}, for example. In conformity with this planar BVP,
Protter [2, 4] formulated and studied the following problems.

Problems (P1) and (P2)

Find a solution of the wave equation (1.1) in whichΩ satisfies one of the following boundary
conditions:

u|S0 = 0, u|S1 = 0, (P1)

or

ut|S0 = 0, u|S1 = 0. (P2)

Nowadays, it is known that the Protter Problems (P1) and (P2) are not well posed,
in contrast to the planar Darboux problem. In fact, in 1957 Tong [5] proved the existence
of infinite number nontrivial classical solutions to the corresponding homogeneous adjoint
problem (P1∗). The adjoint BVPs to Problems (P1) and (P2) were also introduced by Protter.

Problems (P1∗) and (P2∗)

Find a solution of the wave equation (1.1) in Ω which satisfies the boundary conditions:

u|S0 = 0, u|S2 = 0 (adjoint to Problem (P1)), (P1∗)
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or

ut|S0 = 0, u|S2 = 0 (adjoint to Problem (P2)). (P2∗)

Since [5], for each of the homogeneous Problems (P1∗) and (P2∗) (i.e., f ≡ 0 in (1.1)),
an infinite number of classical solutions has been found (see Popivanov, Schneider [6], Khe
[7]). According to this fact, a necessary condition for classical solvability of Problem (P1) or
(P2) is the orthogonality in L2(Ω) of the right-hand side function f(x, t) to all the solutions of
the corresponding homogenous adjoint problem (P1∗) or (P2∗). Although Garabedian proved
[8] the uniqueness of a classical solution of Problem (P1) (for its analogue in R

4), generally,
Problems (P1) and (P2) are not classically solvable. Instead, Popivanov and Schneider [6]
introduced the notion of generalized solution. It allows the solution to have singularity on
the inner cone S2 and by this the authors avoid the infinite number of necessary conditions
in the frame of the classical solvability. In [6] some existence and uniqueness results for the
generalized solutions are proved and some singular solutions of Protter Problems (P1) and
(P2) are constructed.

In the present paper we study the properties of the generalized solution for Protter
Problem (P2) in R

3. From the results in [6] it follows that for n ∈ N there exists a smooth
right-hand side function f ∈ Cn(Ω), such that the corresponding unique generalized solution
of Problem (P2) has a strong power-type singularity at the originO and behaves like r−n(P,O)
there. This feature deviates from the conventional belief that such BVPs are classically
solvable for very smooth right-hand side functions f . Another interesting aspect is that the
singularity is isolated only at a single point the vertex O of the characteristic light cone,
and does not propagate along the bicharacteristics which makes this case different from the
traditional case of propagation of singularity (see, e.g., Hörmander [9], Chapter 24.5).

The Protter problems have been studied by different authors using various types of
techniques likeWiener-Hopf method, special Legendre functions, a priori estimates, nonlocal
regularization, and others. For recent known results concerning Protter’s problems see the
paper [6] and references therein. For further publications in this area see [7, 10–16]. On
the other hand, Bazarbekov gives in Ω another analogue of the classical Darboux problem
(see [17]) and analogously in R

4 (see [18]) in the corresponding four-dimensional domain
Ω. Some different statements of Darboux type problems in R

3 or connected with them
Protter problems for mixed type equations (also studied in [2]) can be found in [19–25].
Some results concerning the nonexistence principle for nontrivial solution of semilinear
mixed type equations in multidimensional case, can be found in [26]. For recent existence
results concerning closed boundary-value problems formixed type equations see for example
[27], and also [28] that studies an elliptic-hyperbolic equation which arises in models
of electromagnetic wave propagation through zero-temperature plasma. The existence of
bounded or unbounded solutions for the wave equation in R

3 and R
4, as well as for the

Euler-Poisson-Darboux equation has been studied in [7, 13–16, 29].
Further, we aim to find some exact a priori estimates for the singular solutions of

Problem (P2) and to outline the exact structure and order of singularity. For some other
Protter problems necessary and sufficient conditions for existence of solutions with fixed
order of singularity were found (see [15] in R

3 and [16] in R
4) and an asymptotic formula for

the solution of Problem (P1) in R
4 was obtained in [30].

Considering Protter Problems, Popivanov and Schneider [6] proved the existence of
singular solutions for both wave and degenerate hyperbolic equation. First a priori estimates
for singular solutions of Protter Problems, involving the wave equation in R

3, were obtained
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in [6]. In [10] Aldashev mentioned the results of [6] and, for the case of the wave equation in
R
m+1, he notes the existence of solutions in the domain Ωε (Ωε → Ω and S2,ε approximates

S2 if ε → 0), which blows up on the cone S2,ε like ε−(n+m−2), when ε → 0. It is obvious that for
m = 2 this results can be compared to the estimates in Corollary 2.4 here. Finally, we point out
that in the case of an equation, which involves the wave operator and nonzero lower terms,
Karatoprakliev [24] obtained a priori estimates, but only for the sufficiently smooth solutions
of Protter Problem.

Regarding the ill-posedness of the Protter Problems, there have appeared some
possible regularization methods in the case of the wave equation, involving either lower
order terms ([11, 31]), or some other type perturbations, like integrodifferential term, or
nonlocal one ([12]).

In Section 2 the result of the existence of infinite number of classical solutions to
the homogeneous Problem (P2∗) (Lemma 2.1) and the definition of generalized solution of
Problem (P2) are given. The main results of the paper, concerning the asymptotic expansion
of the unique generalized solution u(x, t) of Problem (P2) (Theorem 2.3) are formulated and
discussed. The expansion of u(P) is given in negative powers of the distance r(P,O) to
the point O of singularity. An estimate for the remainder term and the exact behavior of
the singularity under the orthogonality conditions imposed on the right-hand side function
of the wave equation is found. Necessary and sufficient conditions for the existence of
only bounded solutions are given in Corollary 2.4. In Section 3, the auxiliary 2D boundary
value Problems (P2.1) and (P2.2), which correspond to the (2 + 1)-D Problem (P2), are
considered. Actually, these 2D problems are transferred to an integral Volterra equation,
which is invertible. Using the special Legendre functions Pν, some exact formulas for the
solution of the Problem (P2.2) are derived in Lemma 3.4. Some figures showing the effects
appearing near the singularity point are also presented. Section 4 contains the most technical
part of the paper. In this section the results concerning the asymptotic expansions of the
generalized solution of the 2D Problem (P2.1) are proved and the proof of the main Theorem
2.3 is given.

2. Main Results on (2 + 1)-D Protter’s Problem (P2)

Define the functions

Enk(x, t) =
k∑
i=0

Bki

(
x2
1 + x

2
2 − t2

)n−1/2−k−i
(
x2
1 + x

2
2

)n−i , n, k ∈ N ∪ {0}, (2.1)

where the coefficients are

Bki := (−1)i (k − i + 1)i(n + 1/2 − k − i)i
i!(n − i)i

, Bk0 = 1, (2.2)

with (a)i := a(a + 1) · · · (a + i − 1), (a)0 := 1. Then for the functions

Wn
k,1(x, t) := Enk(x, t)Re

{
(x1 + ix2)n

}
,

Wn
k,2(x, t) := E

n
k(x, t) Im

{
(x1 + ix2)n

}
,

(2.3)

we have the following lemma.
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Lemma 2.1 (see [29]). Let n ∈ N, n ≥ 4. For k = 0, . . .,[(n − 3)/2] and i = 1, 2 the functions
Wn

k,i(x, t) are classical C
2(Ω) ∩ C∞(Ω) solutions to the homogeneous Problem (P2∗).

A necessary condition for the existence of classical solution for Problem (P2) is the
orthogonality of the right-hand side function f to all functionsWn

k,i
(x, t), which are solutions

of the homogeneous adjoint Problem (P2∗). To avoid these infinite number necessary
conditions in the framework of classical solvability, one needs to introduce some generalized
solutions of Problems (P2)with possible singularities on the characteristic cone S2, or only at
its vertex O. Popivanov and Schneider in [6] give the following definition.

Definition 2.2. A function u = u(x1, x2, t) is called a generalized solution of the Problem (P2)
in Ω if:

(1) u ∈ C1(Ω \O), ut|S0\O = 0, u|S1 = 0,

(2) the identity

∫
Ω

(
utwt − ux1wx1 − ux2wx2 − fw

)
dx1dx2dt = 0 (2.4)

holds for all w ∈ C1(Ω), wt = 0 on S0, and w = 0 in a neighborhood of S2.

The uniqueness of the generalized solution of Problem (P2) and existence results for
f ∈ C1(Ω) can be found in [6].

Further, we fix the right-hand side function f as a trigonometric polynomial of order l
with respect to the polar angle:

f(x1, x2, t) = Re

{
l∑

n=2

fn(|x|, t)(x1 + ix2)n
}
, (2.5)

with some complex-valued function-coefficients fn(|x|, t). For n = 0, . . . , l; k = 0, . . . , [n/2]
and i = 1, 2, denote by βn

k,i
the constants

βnk,i :=
∫
Ω
Wn

k,i(x, t)f(x, t)dxdt. (2.6)

Note that actually β0k,i = 0 and β1k,i = 0 in cases of n = 0 and n = 1, due to the special
form of the functions Wn

k,i and the fact that in the representation (2.5) of the function f the
sum starts from n = 2.
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The main result is as follows.

Theorem 2.3. Suppose that the function f(x, t) ∈ C1(Ω) is a trigonometric polynomial (2.5). Then
there exist functions Fn(x, t), Fn

k,i
(x, t), F(x, t) ∈ C2(Ω \O) with the following properties:

(i) the unique generalized solution u(x, t) of Problem (P2) exists, belongs to C2(Ω \ O) and
has the asymptotic expansion at the origin O:

u(x, t) =
l∑

m=0

(
|x|2 + t2

)−m/2
Fm(x, t) +

(
|x|2 + t2

)1/4
F(x, t) ln

(
|x|2 + t2

)
, (2.7)

(ii) for the coefficient functions Fm(x, t) the representation

Fm(x, t) =
[(l−m)/2]∑

k=0

2∑
i=1

βm+2k
k,i Fm+2k

k,i (x, t), m = 0, . . . , l, (2.8)

holds, where the functions Fnk,i(x, t) are bounded and independent of f ,

(iii) if in the expression (2.8) for Fm(x, t) at least one of the constants βm+2k
k,i is different from zero

(i.e., the corresponding orthogonality condition is not fulfilled), then there exists a direction
(α1, α2, 1) with (α1, α2, 1)t ∈ S2 for 0 < t < 1/2, such that limt→+0F

m(α1t, α2t, t) = cm =
const /= 0,

(iv) if in the expression (2.8) for F0(x, t) at least one of the constants β2kk,i is different from
zero (i.e., the corresponding orthogonality condition is not fulfilled), then the generalized
solution is not continuous at O,

(v) for the function F(x, t) the estimate

|F(x, t)| ≤ C
{
max
Ω

∣∣f(x, t)∣∣ +max
Ω

∣∣ft(x, t)∣∣
}
, (x, t) ∈ Ω, (2.9)

holds with a constant C independent of f .

As a consequence of Theorem 2.3 one gets the following results that highlight the two
extreme cases of the assertion. The first part gives rough estimate of the expansion (2.7) and
describes the “worst” possible singularity. The second part shows that one could control the
solution by making some of the defined by (2.6) constants βnk,i in (2.8) to be zero, that is, by
taking f to be orthogonal in L2(Ω) to the corresponding functionsWn

k,i defined in (2.3).

Corollary 2.4. Suppose that f ∈ C1(Ω) has the form (2.5).

(i) Without any orthogonality conditions imposed, the unique generalized solution u of
Problem (P2) satisfies the a priori estimate

|u(x, t)| ≤ C
(
|x|2 + t2

)−l/2∥∥f∥∥C1(Ω), (x, t) ∈ Ω. (2.10)
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(ii) Let the orthogonality conditions,

βnk,i ≡
∫
Ω
Wn

k,i(x, t)f(x, t)dx dt = 0, (2.11)

be fulfilled for all n = 2, . . . , l; k = 0, . . . , [(n − 1)/2] and i = 1, 2. Then the generalized
solution u(x, t) belongs to C2(Ω \O), is bounded and the a priori estimate

sup
Ω

|u| ≤ C
{∥∥f∥∥C(Ω) +

∥∥ft∥∥C(Ω)

}
(2.12)

holds.

(iii) In addition to (ii), if the conditions (2.11) are fulfilled for k = [n/2] also, then u ∈ C(Ω) is
a classical solution and u(O) = 0.

Let us point out that in the case (ii), the generalized solution u is bounded if and
only if the conditions (2.11) are fulfilled for k ≤ [(n − 1)/2] due to Theorem 2.3(iii). In
addition, if all the conditions (2.11) are fulfilled for k ≤ [(n − 1)/2], but for some k = [n/2]
the corresponding orthogonality condition is not satisfied, then u is not continuous at O,
according to Theorem 2.3 (iv). Such a solution is illustrated in Figure 4.

Notice that some of the functionsWn
k,i
(x, t) involved in the orthogonality conditions in

Corollary 2.4(ii) and (iii) are not classical solutions of the homogenous adjoint Problem (P2∗)
in view of Lemma 2.1, although they satisfy the homogenous wave equation in Ω. In fact,
for some k, Wn

k,i or their derivatives may be discontinuous at S2. For example when n is an
odd number and k = (n − 1)/2, the functionsWn

k,i
are not continuous at the origin O. On the

other hand, when n is even and k = n/2,Wn
n/2,i are singular on the cone S2 and do not satisfy

the homogeneous adjoint boundary condition there. However, this singularity is integrable
in the domain Ω.

To explain the results in Theorem 2.3 and Corollary 2.4 we construct Table 1. It
illustrates the connection between the singularity of the generalized solution and the
functionsWn

k,i
.

Both functionsWn
k,i
, i = 1, 2 are located in column number n and row number (n − 2k)

in Table 1. Thus, Wn
0,i form the rightmost diagonal, the next one is empty—we put in these

cells “diamonds” �,Wn
1,i constitute the third one, and so on. The row number designates the

order of singularity of the generalized solution.
Corollary 2.4 shows that the generalized solution u(x, t) is bounded, when the right-

hand side function f is orthogonal to the functions in Table 1, except the ones in row number
0. If f is orthogonal to all the functions in the Table 1 (including the row 0), then u is
continuous in Ω. When the right-hand side f satisfies orthogonal conditions (2.11) for all
the functions from the rows in Table 1 with row-number larger then m, 0 < m < l, but there
is a function Wp

q,i with p − 2q = m from m th row which is not orthogonal to f (i.e., βpq,i /= 0),
then the solution behaves like r−m at the origin, according to the expansion (2.7). If there are
no orthogonality conditions, then the worst case with singularity r−l appears.

Figures 2–5 are created using MATLAB and represent some numerical computations
for singular solutions of Problem (P2) (actually the behaviour in (r, t)-domain D1, not
including the terms sinnϕ and cosnϕ). They illustrate different cases according to the
main results for the existence of a singularity at the origin O depending on orthogonality



Abstract and Applied Analysis 9

Table 1: The order of singularity of the solution and the functionsWn
k,i
.

l l − 1 l − 2 l − 3 · · · p · · · 4 3 2
0 · · · · · · · · · · · · · · · · · · · · · W4

2,i � W2
1,i

1 · · · · · · · · · · · · · · · · · · · · · � W3
1,i �

2 · · · · · · · · · · · · · · · · · · · · · W4
1,i � W2

0,i

3 · · · · · · · · · · · · · · · · · · · · · � W3
0,i

4 · · · · · · · · · · · · · · · · · · · · · W4
0,i

... · · · · · · · · · · · · · · · · · · · · ·
p − 2q · · · · · · · · · · · · · · · W

p

q,i · · ·
· · ·

... · · · · · · · · · · · · · · ·
l − 3 � Wl−1

1,i � Wl−3
0,i

l − 2 Wl
1,i � Wl−2

0,i

l − 1 � Wl−1
0,i

l Wl
0,i
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Figure 2: No orthogonality conditions.

conditions. Figure 2 is related to Corollary 2.4(i)—it gives the graph of the solution for
the worst case without any orthogonality conditions fulfilled and the solution is going to
−∞ at the singular point O. In Figure 3, only one of orthogonality conditions (2.11) for
k ≤ [(n − 1)/2] is not fulfilled and the solution tends to ±∞. Figures 4 and 5 are connected
to Corollary 2.4(ii) and (iii): Figure 4 presents the case when all the orthogonality conditions
(2.11) for k ≤ [(n − 1)/2] are satisfied and the solution is bounded but not continuous at
(0, 0), while Figure 5 concerns the last part (iii) from Corollary 2.4, when conditions (2.11)
are additionally fulfilled for k = [n/2] and the solution is continuous.

Remark 2.5. Wemention some differences between the results given here for the Problem (P2)
and some other results in R

3, but for the Problem (P1), like that from [15].

(i) In [15], assuming the right-hand side function f is smooth enough (i.e., f ∈ Cl)
only the behavior of the singularities was studied using some weighted norms
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Figure 3: One orthogonality condition is not fulfilled.
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Figure 4: Orthogonality conditions fulfilled for k ≤ [(n − 1)/2].
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Figure 5: All orthogonality conditions fulfilled for k ≤ [n/2].
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(analogous to the weighted Sobolev norms in corner domains). In the present paper
we need only f ∈ C1 and find in addition the explicit asymptotic expansion of the
generalized solution. The bounded but not continuous at the origin solutions are
also studied here.

(ii) Comparing the power of singularity of the generalized solution for Problem (P2)
here and for Problem (P1) in [15] for the worst case without any orthogonality
conditions one can see that the power in the estimate (2.10) from Corollary 2.4(i)
is (|x|2 + t2)−l/2, while in the analogous estimate in Conclusion 1 [15] it is (|x|2 +
t2)−(l−1)/2.

(iii) It is interesting to compare the results [14, 15], published in 2002. Going in a
different way in both cases the authors asked for singular solutions of Problem
(P1) in R

3. However, in [14] there are absent any analogues to the orthogonality
conditions presented in [15], and in contrast to [15] in [14] the dependence of the
exact order of singularity on the data is not clarified.

Remark 2.6. Let us also compare the present expansion and the results in [30], where an
asymptotic expansion of Problem (P1) is found for somewhat easier four-dimensional case.

(i) Both for Problem (P2) in R
3 here and Problem (P1) in R

4 as in [30], the study
is based on the properties of the special Legendre functions. Instead of Legendre
functions Pν with non-integer indices ν = n − 1/2 here, in the four-dimensional
case one has to deal with integer indices ν = n, that is, simply with the Legendre
polynomials Pn. One can easily modify both these techniques to obtain similar
results for the (m + 1)-dimensional problems: for evenm (analogous to the present
case R

3) or for odd m (similarly to R
4 case). Some different kind of results for the

Protter problems in R
m+1 are presented in [10, 11].

(ii) For the four-dimensional Problem (P1) in [30], the Corollary 3.3 gives only that the
solution is bounded, it could be discontinuous at the origin. On the other hand,
here Theorem 2.3 gives us also the control over the bounded but not continuous
parts of the generalized solution (through the coefficient F0(x, t) for m = 0 in
the expansion formula (2.7)). As a sequence, Corollary 2.4(iii) guarantees that the
solution is continuous.

(iii) Based on the formulae and the computations from [30], the general case in R
4 is also

treated, when the right-hand side f is smooth enough, but not a finite harmonic
polynomial analogous to (2.5). The results are announced and published in [32,
33]. For right-hand side functions f ∈ C10(Ω) in [33] the necessary and sufficient
conditions for the existence of bounded solution are found. They involve infinite
number of orthogonality conditions for f that comes from the fact that this is not
a Fredholm problem. On the other hand, the results from [33] show that the linear
operator mapping the generalized solution u into f is a semi-Fredholm operator
in C10(Ω). Let us recall that a semi-Fredholm operator is a bounded operator that
has a finite dimensional kernel or cokernel and closed range. Additionally, in [32]
a right-hand side function is constructed such that the unique generalized solution
of Protter Problem (P1) in R

4 has exponential type singularity. One expects that
similar results could also be obtained for the Problem (P2) in R

3 studied here. These
questions correspond to the Open Problem (1) below.
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Remark 2.7. Let us mention one obvious consequence of Theorem 2.3 and all the arguments
above, concerning construction of functions orthogonal to the solutions Wn

k,i
of the

homogeneous adjoint Problem (P2∗). Take an arbitrary C2(Ω) function U(x, t) satisfying
the boundary conditions (P2). Then the function F := �U with the wave operator �, is
orthogonal to all the functionsWn

k,i, n = 1, 2, . . ..

Finally, we formulate some still open questions, that naturally arise from the previous
works on the Protter problem and the discussions above.

Open Problems

(1) To study the more general case when the right-hand side function f ∈ Ck(Ω), for an
appropriate k. The smooth function f could be represented as a Fourier series rather than,
the finite trigonometric polynomial (2.5) in the discussions here.

(i) Find some appropriate conditions for the function f under which there exists a
generalized solution of the Protter problem (P2).

(ii) What kind of singularity can the generalized solution have? The a priori estimates,
obtained in [6, 31], which indicate that the generalized solutions of Problem (P2)
(including the singular ones), can have at most an exponential growth as ρ → 0.
The natural question is as follows: is there a singular solution of these problems
with exponential growth as ρ → 0 or do all such solutions have only polynomial
growth?

(iii) Is it possible to prove some a priori estimates for generalized solutions of the Problem
(P2) with smooth function f which is not a harmonic polynomial?

(iv) Find some appropriate conditions for the function f under which the Problem (P2)
has only regular, bounded solutions, or even classical solutions.

(2) To study the Protter problems for degenerate hyperbolic equations. Up to now it is
only known that some singular solutions exist.

(i) We do not know what is the exact behavior of the singular solution even when the
right-hand side function f is a finite sum like (2.5). Can we prove some a priori
estimates for generalized solutions?

(ii) Is it possible to find some orthogonality conditions for the function f , as here, under
which only bounded solutions exist?

(3) Why does there appear a singularity for such smooth right-hand side even for the
wave equation? Can we numerically model this phenomenon?

(4) What happens with the ill-posedness of the Protter problems in a more general
domain (as in [2, 4])when the maximal symmetry is lost if the cone S2 is replaced by another
light characteristic one with the vertex away from the origin.
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3. Preliminaries

We have a relation between the functionsWn
k,i

and the Legendre functions Pν. For ν > −1/2,
the functions Pν could be defined by the equality (Section 3.7, formula (6), from Erdélyi et al.
[34]),

Pν(z) =
1
π

∫π
0

(
z +

√
z2 − 1 cos t

)ν
dt, z ≥ 0, (3.1)

where for z < 1 in this formula
√
z2 − 1 := i

√
1 − z2.

Let (ρ, ϕ, t) be the cylindrical coordinates in R
3, that is, x1 = ρ cosϕ, x2 = ρ sinϕ. For

simplicity, define the function En
k
(ρ, t) := En

k
(x, t)|x|n. The following result is in connection

with Lemma 5.1 from [15]. Actually, to prove this result one could formally follows the
arguments of Lemma 2.3 from [16], where the four-dimensional analogue of Problem (P2)
is treated.

Lemma 3.1. For n ∈ N and ν = n − 1/2 define the functions

hνk
(
ξ, η
)
:=
∫ ξ
η

skPν

(
ξη + s2

s
(
ξ + η

)
)
ds, (3.2)

for 0 < η < ξ. Then in {ρ > t} the equality

ρ−1/2
∂

∂t
hνν−2k

(
ρ + t
2

,
ρ − t
2

)
= ankE

n
k

(
ρ, t
)

(3.3)

holds for k = 0, 1, . . . , [n/2] with some constants an
k /= 0.

Proof. Lemma 5.1 from [15] for k ≥ 0 gives

ρ−1/2hνν−2k−2

(
ρ + t
2

,
ρ − t
2

)
= Cn

kH
n
k

(
ρ, t
)
, (3.4)

where Cn
k = const/= 0 and according to Lemma 2.2 from [29]

∂

∂t
Hn

k

(
ρ, t
)
= 2(n − k − 1)Enk+1

(
ρ, t
)
. (3.5)

Therefore the equality (3.3) holds for k ≥ 1. We have to prove it for k = 0. In the proof of
Lemma 5.1 from [15] the integrals hνk were calculated using the Mellin transform. In order to
compute hν

k
(ξ, η) in the same way let us first introduce the variables x and z:

ξ =
ρ + t
2

; η =
ρ − t
2

; x =
ρ2

ρ2 − t2 ; z =

(
ρ2 − t2)1/2

2
. (3.6)
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As a consequence after some calculations, formulas (2.2.(4)), (1.10), and (1.4) from Samko et
al. [35], show that

z−ν−1hνν
(
ξ, η
)
= Cνx

(ν+1)/2I10+

(
x−ν−3/2(x − 1)1/2+

)
(x), (3.7)

where Iα0+(u)(s) is the Riemann-Liouville fractional integral (for its properties see e.g., [34,
35]); in our case we have I10(u)(s) =

∫s
0 u(τ)dτ . As usual, we denote also λ+(s) := λ(s) for

s > 0, λ+(s) := 0 for s ≤ 0. The substitution of (3.6) in (3.7) shows that

∂

∂t

{
zν+1x(ν+1)/2I10+

(
x−ν−3/2(x − 1)−1/2+

)}
=
∂

∂t

{
zν+1x(ν+1)/2

∫x
0
τ−ν−3/2(τ − 1)−1/2+ dτ

}

=
∂

∂t

{
ρν+12−ν−1

∫x
1
τ−ν−3/2(τ − 1)−1/2dτ

}
= 2−ν−1ρν+1x−ν−3/2(x − 1)−1/2

∂x

∂t

= 2−ν−1ρν+1
(
ρ2 − t2)ν+3/2

ρ2ν+3

(
ρ2 − t2)1/2

t

2tρ2(
ρ2 − t2)2 = 2−ν

(
ρ2 − t2)ν
ρν

(3.8)

and thus

ρ−1/2
∂

∂t
hνν

(
ρ + t
2

,
ρ − t
2

)
= an0E

n
0

(
ρ, t
)
. (3.9)

The next result is crucial for construction of solutions of Problem (P2) in the
discussions later.

Lemma 3.2. Let ν ∈ R, ν > 1/2 and the functions F(ξ) ∈ C1(0, 1/2] satisfy F(1/2) = 0. Then all
solutions λ ∈ C1(0, 1/2] of the Volterra integral equation of first kind

∫ ξ
1/2

λ′(ξ1)Pν
(
ξ

ξ1

)
dξ1 = F(ξ) (3.10)

are

λ(ξ) = λ
(
1
2

)
+ F(ξ) +

∫1/2

ξ

P ′
ν

(
ξ1
ξ

)
F(ξ1)
ξ1

dξ1. (3.11)
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Proof. Formulas (35.17) and (35.28) from Samko et al. [35] state that the solution of the
integral equation (3.10) is given by

λ′(ξ) = −ξ d
2

dξ2

(
ξ

∫1/2

ξ

Pν

(
ξ1
ξ

)
F(ξ1)
ξ21

dξ1

)

= − d

dξ

(
ξ2
d

dξ

∫1/2

ξ

Pν

(
ξ1
ξ

)
F(ξ1)
ξ21

dξ1

)
.

(3.12)

Then, using that F(1/2) = 0, an integration gives (3.11).

One could use the Mellin transform to calculate the following integral.

Lemma 3.3 (see [16]). Let ν ∈ R, ν > −1/2, then
∫1/2

ξ

Pν

(
ξ1
ξ

)
Pν(2ξ1)
ξ21

dξ1 =
1 − 2ξ
ξ

. (3.13)

According to the existence and uniqueness results in [6], it is sufficient to study
Problem (P2) when the right-hand side f of the wave equation is simply

f
(
ρ, t, ϕ

)
= f1

n

(
ρ, t
)
cosnϕ + f2

n

(
ρ, t
)
sinnϕ, n ∈ N ∪ {0}. (3.14)

Then we seek solutions for the wave equation of the same form:

u
(
ρ, t, ϕ

)
= u1n

(
ρ, t
)
cosnϕ + u2n

(
ρ, t
)
sinnϕ. (3.15)

Thus Problem (P2) reduces to the following one.

Problem (P2.1)

Solve the equation

(un)ρρ +
1
ρ
(un)ρ − (un)tt −

n2

ρ2
un = fn

(
ρ, t
)

(3.16)

in D1 = {0 < t < 1/2; t < ρ < 1 − t} ⊂ R
2 with the boundary conditions

(un)t
(
ρ, 0

)
= 0 for 0 < ρ ≤ 1, un

(
ρ, 1 − ρ) = 0 for

1
2
≤ ρ ≤ 1. (P2.1)

Let us now introduce new coordinates

ξ =
ρ + t
2

; η =
ρ − t
2

, (3.17)
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and set

v
(
ξ, η
)
= ρ1/2un

(
ρ, t
)
; g

(
ξ, η
)
= ρ1/2fn

(
ρ, t
)
. (3.18)

Denoting ν = n − 1/2, one transforms Problem (P2.1) into the following.

Problem (P2.2)

Find a solution v(ξ, η) of the equation

vξη − ν(ν + 1)(
ξ + η

)2 v = g
(
ξ, η
)

(3.19)

in the domain D = {0 < ξ < 1/2; 0 < η < ξ}with the following boundary conditions:

(
vξ − vη

)(
η, η

)
= 0, v

(
1
2
, η

)
= 0 for η ∈

(
0,

1
2

)
. (P2.2)

Problems (P2.1) and (P2.2)were introduced in [6], although the change of coordinates
ξ = 1 − ρ − t and η = 1 − ρ + twas used there instead of (3.17). Of course, because the solution
of Problem (P2) may be singular, the same is true for the solutions of (P2.1) and (P2.2). For
that reason, Popivanov and Schneider [6] defined and proved the existence and uniqueness
of generalized solutions of Problems (P2.1) and (P2.2), which correspond to the generalized
solution of Problem (P2). Further, by “solution” of Problem (P2.1) or (P2.2)we mean exactly
this unique generalized solution.

Lemma 3.4. Let ν ∈ R, ν > 1/2 and g ∈ C1(D). Then the solution v(ξ, η) of Problem (P2.2) is
given by the following formula:

v
(
ξ, η
)
= τ(ξ) +

∫1/2

ξ

τ(ξ1)
∂

∂ξ1
Pν

((
ξ − η)ξ1 + 2ξη

ξ1
(
ξ + η

)
)
dξ1

−
∫1/2

ξ

(∫η
0
Pν

((
ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη(

ξ1 + η1
)(
ξ + η

)
)
g
(
ξ1, η1

)
dη1

)
dξ1,

(3.20)

where

τ(ξ) =
∫ ξ
1/2

Pν

(
ξ1
ξ

)
G(ξ1)dξ1, (3.21)

G(ξ) =
∫1/2

ξ

∫ ξ
0
Pν

(
ξ1η1 + ξ2

ξ
(
ξ1 + η1

)
)(

∂

∂ξ1
− ∂

∂η1

)
g
(
ξ1, η1

)
dη1dξ1

−
∫ ξ
0
Pν

(
η1 + 2ξ2

ξ
(
2η1 + 1

)
)
g

(
1
2
, η1

)
dη1 −

∫1/2

ξ

Pν

(
ξ

ξ1

)
g(ξ1, 0)dξ1.

(3.22)



Abstract and Applied Analysis 17

Proof. Notice that the function

R
(
ξ1, η1; ξ, η

)
= Pν

((
ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη(

ξ1 + η1
)(
ξ + η

)
)

(3.23)

is a Riemann function for (3.19) (Copson [36]). Therefore, following Aldashev [10], we
can construct the function v(ξ, η) as a solution of a Goursat problem in D with boundary
conditions v(1/2, η) = 0 and v(ξ, 0) = τ(ξ) with some unknown function τ(ξ) ∈ C2(0, 1/2],
which will be determined later:

v
(
ξ, η
)
= τ(ξ) +

∫1/2

ξ

τ(ξ1)
∂

∂ξ1
R
(
ξ1, 0; ξ, η

)
dξ1

−
∫1/2

ξ

∫η
0
R
(
ξ1, η1; ξ, η

)
g
(
ξ1, η1

)
dη1dξ1.

(3.24)

Now, the boundary condition

(
∂

∂ξ
− ∂

∂η

)
v

∣∣∣∣
η=ξ

= 0. (3.25)

gives an integral equation for τ(ξ). For that reason, let us define the function G(ξ):

G(ξ) :=
(
∂

∂ξ
− ∂

∂η

)∫1/2

ξ

(∫η
0
R
(
ξ1, η1; ξ, η

)
g
(
ξ1, η1

)
dη1

)
dξ1

∣∣∣∣∣
η=ξ

=
∫1/2

ξ

(∫ ξ
0
P ′
ν

(
ξ1η1 + ξ2

ξ
(
ξ1 + η1

)
)

ξ1 − η1
ξ
(
ξ1 + η1

)g(ξ1, η1)dη1
)
dξ1

−
∫ ξ
0
g
(
ξ, η1

)
dη1 −

∫1/2

ξ

g(ξ1, ξ)dξ1 = −
∫ ξ
0
g
(
ξ, η1

)
dη1 −

∫1/2

ξ

g(ξ1, ξ)dξ1

−
∫1/2

ξ

(∫ ξ
0
g
(
ξ1, η1

)( ∂

∂ξ1
− ∂

∂η1

)
Pν

(
ξ1η1 + ξ2

ξ
(
ξ1 + η1

)
)
dη1

)
dξ1

=
∫1/2

ξ

(∫ ξ
0
Pν

(
ξ1η1 + ξ2

ξ
(
ξ1 + η1

)
)(

∂

∂ξ1
− ∂

∂η1

)
g
(
ξ1, η1

)
dη1

)
dξ1

−
∫ ξ
0
Pν

(
η1 + 2ξ2

ξ
(
2η1 + 1

)
)
g

(
1
2
, η1

)
dη1 −

∫1/2

ξ

Pν

(
ξ

ξ1

)
g(ξ1, 0)dξ1.

(3.26)

Obviously, G ∈ C2[0, 1/2]. The condition (3.25) leads us to the following equation:

τ ′(ξ) − 1
ξ
τ(ξ)P ′

ν(1) −
∫1/2

ξ

τ(ξ1)
ξ21

P ′′
ν

(
ξ

ξ1

)
dξ1 = G(ξ). (3.27)
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Then, using τ(1/2) = v(1/2, 0) = 0, we have

∫ ξ
1/2

d

dξ1

{
ξ21τ

′(ξ1)
}
Pν

(
ξ

ξ1

)
dξ1 = ξ2G(ξ) − τ ′(1/2)

4
Pν(2ξ). (3.28)

A necessary solvability condition for the unknown function τ ∈ C2(0, 1/2] is: τ ′(1/2) =
G(1/2). One could solve this Volterra integral equation of the first kind, using Lemma 3.2.
The result is

ξ2τ ′(ξ) − 1
4
τ ′
(
1
2

)
= ξ2G(ξ) − 1

4
τ ′
(
1
2

)
Pν(2ξ) +

∫1/2

ξ

P ′
ν

(
ξ1
ξ

)4ξ21G(ξ1) − τ ′(1/2)Pν(2ξ1)
4ξ1

dξ1.

(3.29)

Integrate, we find

τ(ξ) =
∫ ξ
1/2

(
G(z) +

1
z2

∫1/2

z

P ′
ν

(
ξ1
z

)
ξ1G(ξ1)dξ1

)
dz

+
τ ′(1/2)

4

∫ ξ
1/2

(
1
z2

− Pν(2z)
z2

− 1
z2

∫z
1/2

P ′
ν

(
ξ1
z

)
Pν(2ξ1)ξ−11 dξ1

)
dz.

(3.30)

Now, using Lemma 3.3 and the equality

∫ ξ
1/2

1
z2

(∫1/2

z

P ′
ν

(
ξ1
z

)
F(ξ1)dξ1

)
dz =

∫ ξ
1/2

(
Pν

(
ξ1
ξ

)
− 1
)
F(ξ1)
ξ1

dξ1, (3.31)

for F(ξ) = Pν(2ξ)ξ−1 one finds that the coefficient of τ ′(1/2) in (3.30) is zero. Using again
(3.31) for F(ξ) = ξG(ξ), τ is simply

τ(ξ) =
∫ ξ
1/2

Pν

(
ξ1
ξ

)
G(ξ1)dξ1. (3.32)

Obviously, τ ∈ C2(0, 1/2] and τ(1/2) = 0, τ ′(1/2) = G(1/2). Finally, the solution of Problem
(P2.2) is given by the formulae (3.20), (3.21), and (3.22).

4. Proofs of Main Results

In order to study the behavior of the generalized solution of Problem (P2), in view of relations
(3.18) and Lemma 3.4, we will examine the function v(ξ, η) defined by the formulae (3.20),
(3.21), and (3.22). It is not hard to see that the part “responsible” for the singularity is the
integral in (3.21) for the function τ(ξ). In fact, τ(ξ) blows up at ξ = 0, since the argument ξ1/ξ
and thus the values of the Legendre function Pν in (3.21) go to infinity when ξ → 0. Actually,
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Pν(z) grows like |z|ν at infinity. In the next lemma we find the dependance of the exact order
of singularity of τ(ξ) on the function G(ξ). It is governed by the constants

γk :=
∫1/2

0
ξν−2kG(ξ) dξ for k = 0, . . . ,

[
ν + 1
2

]
. (4.1)

Actually, these numbers are closely connected to the constants βnk,i from Theorem 2.3. We will
clarify this relation later in Lemma 4.1 and the proof of Theorem 2.3.

Lemma 4.1. Let ν = n − 1/2, where n ∈ N, n ≥ 2, and let the function G(ξ) ∈ C1[0, 1/2]. Then the
function

τ(ξ) =
∫ ξ
1/2

Pν

(
ξ1
ξ

)
G(ξ1)dξ1 (4.2)

belongs to C2(0, 1/2] and satisfies the representation

τ(ξ) =
[(ν+1)/2]∑

k=0

Cν
kγkξ

−(ν−2k) + ψ(ξ), ξ ∈
(
0,

1
2

)
, (4.3)

where the function ψ(ξ) ∈ C2(0, 1/2], |ψ(ξ)| ≤ Cξmax{|G(ξ)| : ξ ∈ 0, 1/2]} and the nonzero
constants Cν

k
and C are independent of G(ξ).

Proof. The argument of the Legendre function Pν in (4.2) satisfies the inequality ξ1/ξ ≥ 1,
which allows us to apply the representation (3.1):

τ(ξ) =
1
π

1
ξν

∫ ξ
1/2

∫π
0

(
ξ1 +

√
ξ21 − ξ2 cos t

)ν

G(ξ1)dt dξ1. (4.4)

We will study the expansion at ξ = 0 of the function

F(ξ) :=
∫1/2

ξ

∫π
0

(
ξ1 +

√
ξ21 − ξ2 cos t

)ν

G(ξ1)dt dξ1. (4.5)

Let us define the functions

Mν
k(ξ1, ξ) := (−1)k (ν − 2k + 1)2k

2k(1/2)k

∫π
0

(
ξ1 +

√
ξ21 − ξ2 cos t

)ν−2k
sin2kt dt, (4.6)

for ξ ≤ ξ1 ≤ 1/2. Then, obviously

F(ξ) =
∫1/2

ξ

Mν
0(ξ1, ξ)G(ξ1)dξ1. (4.7)
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First, we will examine the properties of the functions Mν
k(ξ1, ξ) and their derivatives with

respect to ξ. We start with the equality

Mν
k(ξ, ξ) = a

ν
kξ

ν−2k, aνk /= 0. (4.8)

Further, the index k will be less than ν. Notice that for k < ν + 1/2 the integrals
∫π
0 (1 ±

cos t)ν−2ksin2ktdt are convergent. Then, for ξ ≤ ξ1 we have the equality

Mν
k(ξ1, 0) = b

ν
kξ

ν−2k
1 , bνk /= 0, (4.9)

and the inequality

∣∣Mν
k(ξ1, ξ)

∣∣ ≤ cνkξν−2k1 . (4.10)

Differentiating with respect to ξ one finds

(−1)k+1 ∂
∂ξ
Mν

k(ξ1, ξ)

=
(ν − 2k + 1)2k(ν − 2k)

2k(1/2)k

∫π
0

(
ξ1 +

√
ξ21 − ξ2 cos t

)ν−2k−1 ξ√
ξ21 − ξ2

sin2kt cos tdt

=
(ν − 2k)2k+1(ν − 2k − 1)

2k(1/2)k(2k + 1)

∫π
0
ξ

(
ξ1 +

√
ξ21 − ξ2 cos t

)ν−2k−2
sin2k+2tdt

= (−1)k+1ξMν
k+1(ξ1, ξ).

(4.11)

Therefore, for the derivatives ofMν
0 we find by induction

∂kMν
0

∂ξk
(ξ1, ξ) =

[k/2]∑
i=0

Ck
i ξ

k−2iMν
k−i(ξ1, ξ), (4.12)

where the coefficients Ck
i are positive constants. We want to evaluate these derivatives ofMν

0
at ξ = 0. Let us estimate the terms in the last sum for k < ν:

(i) when i is such that ν − 2(k − i) < 0 the inequality (4.10) gives the estimate

∣∣∣ξk−2iMν
k−i(ξ1, ξ)

∣∣∣ ≤ ξk−2icνkξν−2(k−i)1 ≤ cνkξν−k; (4.13)

(ii) when ν − 2(k − i) ≥ 0 and k/2 > i, we have

∣∣∣ξk−2iMν
k−i(ξ1, ξ)

∣∣∣ ≤ cνkξk−2i. (4.14)
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Hence ξk−2iMν
k−i(ξ1, ξ)|ξ=0 = 0 for 2i < k. Therefore, at the point ξ = 0 the only one nonzero

term in the sum (4.12) is for 2i = k, that is,

∂kMν
0

∂ξk
(ξ1, 0) =

{
0, if k is odd
Ck
k/2b

ν
k/2ξ

ν−k
1 , if k is even.

(4.15)

The last observation is that (4.8) and (4.12) imply

∂kMν
0

∂ξk

∣∣∣∣∣
ξ1=ξ

= dνkξ
ν−k, (4.16)

where dν
k
=
∑[k/2]

i=0 Ck
i a

ν
k−i are constants.

Now, we go back to the function F(ξ). We want to differentiate [ν] times and evaluate
at ξ = 0. Differentiating (4.7)we find the following:

F ′(ξ) = −aν0G(ξ)ξν +
∫1/2

ξ

∂

∂ξ
Mν

0(ξ1, ξ)G(ξ1)dξ1. (4.17)

Next, since the assertion for G(ξ) is only G(ξ) ∈ C1[0, 1/2], instead of F ′(ξ) we will
differentiate the function

F1(ξ) := F ′(ξ) + aν0G(ξ)ξ
ν =

∫1/2

ξ

∂

∂ξ
Mν

0(ξ1, ξ)G(ξ1)dξ1. (4.18)

Notice that it belongs to C[0, 1/2] ∩ C1(0, 1/2] and the derivative is

F ′
1(ξ) = −dν1G(ξ)ξν−1 +

∫1/2

ξ

∂2

∂ξ2
Mν

0(ξ1, ξ)G(ξ1)dξ1. (4.19)

In the same way, after denoting F0(ξ) ≡ F(ξ), define for j = 1, . . . , [ν] the functions

Fj(ξ) := F ′
j−1(ξ) + d

ν
j−1G(ξ)ξ

ν−j+1 (4.20)

with the constants dνj from (4.16). Then, using (4.16), it follows by induction that Fj is
continuous in [0, 1/2] and

Fj(ξ) =
∫1/2

ξ

∂j

∂ξj
Mν

0(ξ1, ξ)G(ξ1)dξ1, j = 0, . . . , [ν]. (4.21)

On the other hand,

Fj(0) =
∫1/2

0

∂j

∂ξj
Mν

0(ξ1, 0)G(ξ1)dξ1, j = 0, . . . , [ν] − 1. (4.22)
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Hence, according to (4.15), for j ≤ [ν] − 1,

Fj(0) =

{
0, if j is odd
γ ′i , if j is even.

(4.23)

The next step is to evaluate the integral F[ν]. Using (4.12), one could rewrite it in the
form

F[ν](ξ) =
∫1/2

ξ

∂[ν]

∂ξ[ν]
Mν

0(ξ1, ξ)G(ξ1)dξ1 =
[[ν]/2]∑
i=0

C
[ν]
i

∫1/2

ξ

ξ[ν]−2iMν
[ν]−i(ξ1, ξ)G(ξ1)dξ1. (4.24)

For all the terms in the last sum, except one, the estimate is straightforward.
(1) When i is such that [ν] − 2i ≥ 2, for the corresponding terms we have

∣∣∣ξ[ν]−2iMν
[ν]−i(ξ1, ξ)

∣∣∣ ≤ ξ2ξ[ν]−2i−21 cν[ν]−i ξ
ν−2([ν]−i)
1 ≤ cν[ν]−i ξ2ξ−3/21 , (4.25)

and, therefore,

∣∣∣∣∣
∫1/2

ξ

ξ[ν]−2iMν
[ν]−i(ξ1, ξ)G(ξ1)dξ1

∣∣∣∣∣ ≤ cν[ν]−iAξ2
∫1/2

ξ

ξ−3/21 dξ1 ≤ CAξ3/2, (4.26)

where A := max{|G(ξ)| : ξ ∈ 0, 1/2]}.
(2) For the last term in (4.24)with i = [[ν]/2] there are two cases:

(2a) when [ν] = 2m is an even number this is the integral

∫1/2

ξ

Mν
m(ξ1, ξ)G(ξ1)dξ1; (4.27)

(2b) when [ν] = 2m − 1 is an odd number, the integral is

∫1/2

ξ

ξMν
m(ξ1, ξ)G(ξ1)dξ1. (4.28)

For simplicity let us define some constants γ ′i

γ ′i :=
∫1/2

0
Mν

i (ξ1, 0)G(ξ1)dξ1, (4.29)



Abstract and Applied Analysis 23

related to the constants γi given by (4.1). Indeed, due to (4.9) the equality γ ′i = bνi γi
holds. Let us begin with the following case.

(2a): [ν] = 2m, that is, ν = 2m + 1/2. We will evaluate the difference:

∣∣∣∣∣
∫1/2

ξ

Mν
m(ξ1, ξ)G(ξ1)dξ1 − γ ′m

∣∣∣∣∣ =
∣∣∣∣∣
∫1/2

ξ

Mν
m(ξ1, ξ)G(ξ1)dξ1 −

∫1/2

0
Mν

m(ξ1, 0)G(ξ1)dξ1

∣∣∣∣∣

≤
∣∣∣∣∣
∫1/2

ξ

{Mν
m(ξ1, ξ) −Mν

m(ξ1, 0)}G(ξ1)dξ1
∣∣∣∣∣

+

∣∣∣∣∣
∫ ξ
0
Mν

m(ξ1, 0)G(ξ1)dξ1

∣∣∣∣∣.

(4.30)

For the first integral, using the estimate (4.10), we calculate

|Mν
m(ξ1, ξ) −Mν

m(ξ1, 0)| =
∣∣∣∣∣
∫ ξ
0

∂

∂ξ2
Mν

m(ξ1, ξ2)dξ2

∣∣∣∣∣

=

∣∣∣∣∣
∫ ξ
0
ξ2M

ν
m+1(ξ1, ξ2)dξ2

∣∣∣∣∣ ≤ cνm+1ξ
2ξν−2m−2

1 = cνm+1ξ
2ξ−3/21 ,

(4.31)

and, therefore,

∣∣∣∣∣
∫1/2

ξ

{Mν
m(ξ1, ξ) −Mν

m(ξ1, 0)}G(ξ1)dξ1
∣∣∣∣∣ ≤ C1Aξ

3/2. (4.32)

For the second integral

∣∣∣∣∣
∫ ξ
0
Mν

m(ξ1, 0)G(ξ1)dξ1

∣∣∣∣∣ ≤ cνmA
∫ ξ
0
ξν−2m1 dξ1 = CA

∫ ξ
0
ξ1/21 dξ1 = C2Aξ

3/2. (4.33)

From the last two inequalities we get the estimate

∣∣∣∣∣
∫1/2

ξ

Mν
m(ξ1, ξ)G(ξ1)dξ1 − γ ′m

∣∣∣∣∣ ≤ CAξ3/2. (4.34)

Therefore, in the case [ν] = 2m,m ∈ N,

F[ν](ξ) = γ ′m + ψ[ν](ξ), (4.35)

where |ψ[ν](ξ)| ≤ CAξ3/2.
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(2b) When [ν] = 2m − 1, that is, ν = 2m − 1/2, we have to study the integral (4.28).
Obviously,

∣∣∣∣∣
∫1/2

ξ

ξMν
m(ξ1, ξ)G(ξ1)dξ1 − γ ′mξ

∣∣∣∣∣

≤ ξ
∣∣∣∣∣
∫1/2

ξ

{Mν
m(ξ1, ξ) −Mν

m(ξ1, 0)}G(ξ1)dξ1
∣∣∣∣∣ + ξ

∣∣∣∣∣
∫ ξ
0
Mν

m(ξ1, 0)G(ξ1)dξ1

∣∣∣∣∣.
(4.36)

For the last integral we have

∣∣∣∣∣
∫ ξ
0
Mν

m(ξ1, 0)G(ξ1)dξ1

∣∣∣∣∣ ≤ cνmA
∫ ξ
0
ξν−2m1 dξ1 = 2CAξ1/2. (4.37)

Now, to estimate the first term in the right-hand side of (4.36), there are two cases:

(i) when m ≥ 2, we have ν > [ν] = 2m − 1 ≥ m + 1 and similarly to the previous
case (2a) we can apply inequality (4.31). Thus, we estimate the difference:

|Mν
m(ξ1, ξ) −Mν

m(ξ1, 0)| =
∣∣∣∣∣
∫ ξ
0

∂

∂ξ2
Mν

m(ξ1, ξ2)dξ2

∣∣∣∣∣ =
∣∣∣∣∣
∫ ξ
0
ξ2M

ν
m+1(ξ1, ξ2)dξ2

∣∣∣∣∣

≤
∫ ξ
0
cνm+1ξ2ξ

ν−2m−2
1 dξ2 ≤ cνm+1ξ

2ξ−5/21 ,

(4.38)

(ii) when m = 1, denote for simplicity p :=
√
1 − ξ2/ξ21, then p ∈ [0, 1] and directly

from the definition (4.6) of the functionsMν
m, we get

∣∣∣M3/2
1 (ξ1, ξ) −M3/2

1 (ξ1, 0)
∣∣∣

= Cξ−1/21

∣∣∣∣∣
∫1

−1

{(
1 − pz)−1/2 − (1 − z)−1/2

}√
1 − z2dz

∣∣∣∣∣

≤ Cξ−1/21

∫1

−1

(
1 − p)|z|√1 + z√

1 − pz
(√

1 − pz +√
1 − z

)dz

≤ C1ξ
−1/2
1

(
1 − p) + C1ξ

−1/2
1

(
1 − p)

∫1

0

1√(
1 − pz)(1 − z)

dz

≤ C1ξ
−1/2
1

(
1 − p)

⎡
⎢⎣1 +

∫1

0

1√(
1 − p + pτ)τ

dτ

⎤
⎥⎦

≤ C2ξ
−1/2
1

√
1 − p ≤ C2ξ

−1/2
1

√
1 − p2 = Cξξ−3/21 .

(4.39)



Abstract and Applied Analysis 25

Thus form ≥ 1, both cases lead to

∣∣∣∣∣
∫1/2

ξ

{Mν
m(ξ1, ξ) −Mν

m(ξ1, 0)}G(ξ1)dξ1
∣∣∣∣∣ ≤ CAξ1/2. (4.40)

Finally, substituting (4.37) and (4.40) in (4.36), we find the estimate

∣∣∣∣∣
∫1/2

ξ

Mν
m(ξ1, ξ)G(ξ1)dξ1 − γ ′mξ

∣∣∣∣∣ ≤ CAξ3/2. (4.41)

Summarizing, in the case (2b) of odd [ν] = 2m − 1, we have

F[ν](ξ) = γ ′mξ + ψ[ν](ξ), (4.42)

where |ψν](ξ)| ≤ CAξ3/2.
Now, we are ready to go backwards from F[ν](ξ) to F0(ξ). Integrating (4.20) we find

Fj(ξ) = Fj(0) +
∫ ξ
0
Fj+1(ξ1)dξ1 + dνj

∫ ξ
0
ξ
ν−j
1 G(ξ1)dξ1, (4.43)

for j = 0, . . . , [ν] − 1. Using (4.43) and (4.23), one can find the relation between the functions
F(ξ) ≡ F0(ξ) and F[ν](ξ). Starting from (4.43)with j = 0 one expresses F1(ξ) by applying again
(4.43) in the right-hand side but for j = 1:

F(ξ) ≡ F0(ξ) = F0(0) +
∫ ξ
0
F1(ξ1)dξ1 + dν0

∫ ξ
0
ξν1G(ξ1)dξ1 = F0(0) + F1(0)ξ

+
∫ ξ
0

(∫ t
0
F2(ξ1)dξ1

)
dt +

∫ ξ
0

{
dν1

∫ t
0
ξν−11 G(ξ1)dξ1 + dν0 t

νG(t)

}
dt.

(4.44)

Similarly, (4.43) gives a representation of F2(ξ) through F3(ξ) and so on. Finally, we get the
sum

F(ξ) = F0(0) +
F1(0)
1!

ξ +
F2(0)
2!

ξ2 + · · · + dν0
∫ ξ
0
G(ξ1)ξν1dξ1

+ dν1

∫ ξ
0
G(ξ1)ξν−11 (ξ − ξ1)dξ1 +

dν2
2

∫ ξ
0
G(ξ1)ξν−21 (ξ − ξ1)2dξ1 + · · · ,

(4.45)

by consequently substituting Fk+1(ξ) in the resulting expression at each step by applying the
same formula (4.43) for j = k + 1. Thus, for F(ξ) we find inductively

F(ξ) =
∑
j

Fj(0)
j!

ξj + · · · =
∑
k

γ ′k
(2k)!

ξ2k + · · · , (4.46)
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since F2i+1(0) = 0 and F2i(0) = γ ′i , in view of (4.23). The process ends when F[ν], integrated
[ν] times, appears and we can apply (4.35) or (4.42) instead of (4.43). Therefore, according to
(4.35), when [ν] = 2m is an even number, the last γ ′i in this sum will be γ ′m, and its coefficient
will be (1/(2m)!)ξ2m, while when [ν] = 2m − 1 is an odd number, formula (4.42) shows that
the last term will be also (γ ′m/(2m)!)ξ2m. In both cases m = [(ν + 1)/2] and the constant
coefficients are independent of G(ξ). Then, for the function F(ξ) we have the representation

F(ξ) =
[(ν+1)/2]∑

k=0

γ ′k
(2k)!

ξ2k + Ψ(ξ), (4.47)

where the function Ψ(ξ) is defined by

Ψ(ξ) :=
[ν]−1∑
j=0

dνj

j!

∫ ξ
0
G(ξ1)ξ

ν−j
1 (ξ − ξ1)jdξ1 +

∫ ξ
0
ψ[ν](ξ1)

(ξ − ξ1)[ν]−1
([ν] − 1)!

dξ1. (4.48)

Therefore |Ψ(ξ)| ≤ CAξν+1, because |G(ξ)| ≤ A and |ψ[ν](ξ1)| ≤ CAξ3/21 .
Finally, recall that γ ′k = bνkγk, with coefficients bνk /= 0 from (4.9) and τ(ξ) = −π−1ξ−νF(ξ)

from (4.4), and, therefore,

τ(ξ) =
[(ν+1)/2]∑

k=0

Ckγkξ
−(ν−2k) + ψ(ξ), (4.49)

where Ck = −π−1bνk/(2k)!/= 0 and |ψ(ξ)| ≤ CAξ.

This lemma, due to formula (3.20), helps us to examine the solution v(ξ, η) of Problem
(P2.2) and therefore due to (3.18), the solution un(ρ, t) = ρ−1/2v of Problem (P2.1). First, for
k = 0, . . . , [n/2], denote by αn

k
the parameters

αnk :=
∫1/2

0

(∫1−t

t

Enk
(
ρ, t
)
fn
(
ρ, t
)
ρdρ

)
dt. (4.50)

Theorem 4.2. Let fn ∈ C1(D1). Then the generalized solution un(ρ, t) of Problem (P2.1) belongs to
C2(D1 \ (0, 0)) and has the following asymptotic expansion at the origin (0, 0):

un
(
ρ, t
)
=

[n/2]∑
k=0

ρ−1/2
(
ρ + t

)−(n−2k−1/2)
αnkF

n
k

(
ρ, t
)
+ ρ1/2

(
ln ρ

)
Fn
(
ρ, t
)
, (4.51)

where Fn
k
(ρ, t), Fn(ρ, t) ∈ C2(D1 \ (0, 0)),

∣∣Fnk(ρ, t)
∣∣ ≤ C, ∣∣Fn(ρ, t)∣∣ ≤ C

{
max
D1

∣∣fn(ρ, t)∣∣ +max
D1

∣∣(fn)t(ρ, t)
∣∣
}
, (4.52)

with functions Fn
k
and a constant C independent of fn and limt→+0F

n
k
(t, t) = const /= 0.
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First, let us shortly outline the proof. In order to find the behavior of un we apply
the relation (3.18) and study the function v. Actually, Lemma 3.4 uses Lemmas 3.2 and 3.3
to describe v by formulas (3.20)–(3.22) and the analysis passes to τ , G, and the Legendre
function Pν. This way the base for the asymptotic expansion (4.51) is the expansion found in
Lemma 4.1 for τ given by (3.21).

Proof of Theorem 4.2. Denote

A := max
D1

∣∣fn(ρ, t)∣∣ +max
D1

∣∣(fn)t(ρ, t)
∣∣ (4.53)

and thus |g(ξ, η)| ≤ CA, |G(ξ)| ≤ CA with the constant C independent of fn. Our goal is to
apply Lemma 4.1.

The key of this will be the equality

∫1/2

0
ξν−2kG(ξ)dξ

=
∫1/2

0

∫1/2

ξ

(∫ ξ
0
ξν−2kPν

(
ξ1η1 + ξ2

ξ
(
ξ1 + η1

)
)(

∂

∂ξ1
− ∂

∂η1

)
g
(
ξ1, η1

)
dη1

)
dξ1dξ

−
∫1/2

0

(∫ ξ
0
ξν−2kPν

(
η1 + 2ξ2

ξ
(
1 + 2η1

)
)
g

(
1
2
, η1

)
dη1

)
dξ

−
∫1/2

0

(∫1/2

ξ

ξν−2kPν

(
ξ

ξ1

)
g(ξ1, 0)dξ1

)
dξ

=
∫1/2

0

∫ ξ1
0

(∫ ξ1
η1

ξν−2kPν

(
ξ1η1 + ξ2

ξ
(
ξ1 + η1

)
)
dξ

)(
∂

∂ξ1
− ∂

∂η1

)
g
(
ξ1, η1

)
dη1dξ1

−
∫1/2

0

(∫1/2

η1

ξν−2kPν

(
η1 + 2ξ2

ξ
(
1 + 2η1

)
)
dξ

)
g

(
1
2
, η1

)
dη1

−
∫1/2

0

(∫ ξ1
0
ξν−2kPν

(
ξ

ξ1

)
dξ

)
g(ξ1, 0)dξ1

= −
∫1/2

0

∫ ξ1
0

(
∂

∂ξ1
− ∂

∂η1

)(∫ ξ1
η1

ξν−2kPν

(
ξ1η1 + ξ2

ξ
(
ξ1 + η1

)
)
dξ

)
g
(
ξ1, η1

)
dη1dξ1

= −
∫1/2

0

∫ ξ1
0

(
∂

∂ξ1
− ∂

∂η1

){
hνν−2k

(
ξ1, η1

)}
g
(
ξ1, η1

)
dη1dξ1, k = 0, . . . ,

[n
2

]
,

(4.54)

according to Definition (3.2) of functions hν
k
in Lemma 3.1.

On the other hand, Lemma 3.1 gives

(
∂

∂ξ
− ∂

∂η

)(
ξ + η

)−1/2
hνν−2k

(
ξ, η
)
= ankE

n
k

(
ξ + η, ξ − η), (4.55)
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and by definition f = (ξ + η)−1/2g. Therefore, we have the following relation between αnk
defined in (4.50) and the constants γk from Lemma 4.1:

αnk =
∫1/2

0

(∫1−t

t

Enk
(
ρ, t
)
f
(
ρ, t
)
ρdρ

)
dt

=
2
ank

∫1/2

0

(∫ ξ1
0

(
∂

∂ξ1
− ∂

∂η1

){(
ξ1 + η1

)−1/2
hνν−2k

(
ξ1, η1

)}
g
(
ξ1, η1

)(
ξ1 + η1

)1/2
dη1

)
dξ1

= − 2
an
k

∫1/2

0
ξν−2k1 G(ξ1)dξ1 = − 2

an
k

γk,

(4.56)

with coefficients ank /= 0 from (3.3). Then Lemma 4.1 gives

τ(ξ) =
[(ν+1)/2]∑

k=0

Cn
kα

n
kξ

−(ν−2k) + ψ(ξ), (4.57)

where the constants Cn
k /= 0 are independent of f and |ψ(ξ)| ≤ CAξ. Hence, for the solution

v(ξ, η) of Problem (P2.1) we have

v
(
ξ, η
)
= τ(ξ) +

∫1/2

ξ

τ(ξ1)
∂

∂ξ1
Pν

((
ξ − η)ξ1 + 2ξη

ξ1
(
ξ + η

)
)
dξ1

−
∫1/2

ξ

(∫η
0
Pν

((
ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη(

ξ1 + η1
)(
ξ + η

)
)
g
(
ξ1, η1

)
dη1

)
dξ1

=
[(ν+1)/2]∑

k=0

Cn
kβ

n
kG

n
k

(
ξ, η
)
ξ−(ν−2k) + Ψ1

(
ξ, η
)
,

(4.58)

where

Gn
k

(
ξ, η
)
= 1 + ξν−2k

∫1/2

ξ

ξ2k−ν1
∂

∂ξ1
Pν

((
ξ − η)ξ1 + 2ξη

ξ1
(
ξ + η

)
)
dξ1, (4.59)

Ψ1
(
ξ, η
)
= ψ(ξ) +

∫1/2

ξ

ψ(ξ1)
∂

∂ξ1
Pν

((
ξ − η)ξ1 + 2ξη

ξ1
(
ξ + η

)
)
dξ1

−
∫1/2

ξ

∫η
0
Pν

((
ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη(

ξ1 + η1
)(
ξ + η

)
)
g
(
ξ1, η1

)
dξ1dη1.

(4.60)
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Notice that the arguments of the Legendre’s functions Pν in (4.58), (4.59) and (4.60) vary in
the interval [0, 1]. Thus,

∣∣Gn
k

(
ξ, η
)∣∣ ≤ 1 + C1

ηξν−2k+1

ξ + η

∫1/2

ξ

ξ2k−ν−21 dξ1 ≤ 1 +
C1

ν + 1 − 2k
= C. (4.61)

Therefore, the functions

Fnk
(
ρ, t
)
:= 2ν−2kCn

kG
n
k

(
ρ + t
2

,
ρ − t
2

)
(4.62)

are also bounded. On the other hand, v(ξ, 0) = τ(ξ) and therefore

Fnk (t, t) = 2ν−2kCn
kG

n
k(t, 0) = 2ν−2kCn

k (4.63)

with coefficients Cn
k /= 0 from (4.57).

Let us now evaluate the function Ψ1 defined in (4.60). We have |ψ(ξ)| ≤ CAξ,
∣∣∣∣∣
∫1/2

ξ

ψ(ξ1)
∂

∂ξ1
Pν

((
ξ − η)ξ1 + 2ξη

ξ1
(
ξ + η

)
)
dξ1

∣∣∣∣∣ ≤ CA
ξη

ξ + η

∣∣∣∣∣
∫1/2

ξ

ξ−11 dξ1

∣∣∣∣∣ ≤ CAξ|ln ξ|
∣∣∣∣∣
∫1/2

ξ

∫η
0
Pν

((
ξ − η)(ξ1 − η1) + 2ξ1η1 + 2ξη(

ξ1 + η1
)(
ξ + η

)
)
g
(
ξ1, η1

)
dξ1dη1

∣∣∣∣∣ ≤ CAξ.
(4.64)

Finally, let us return to (ρ, t) coordinates using (3.17) and (3.18). The representation (4.58)
gives (4.51), where the function

Fn
(
ρ, t
)
:= ρ−1/2

(
ln ρ

)−1Ψ1

(
ρ + t
2

,
ρ − t
2

)
(4.65)

is continuous in D1 and the estimate |Fn(ρ, t)| ≤ C1Aρ
1/2, holds with C1 = const.

Finally, we are ready to prove our main result.

Proof of Theorem 2.3. The uniqueness and the existence of the generalized solution when f ∈
C1(Ω) is a trigonometric polynomial, follows from the results in [6]. Now the right-hand side
function satisfies (2.5), and thus it can be written in the form

f(x1, x2, t) =
l∑

n=2

{
f1
n(|x|, t) cosnϕ + f2

n(|x|, t) sinnϕ
}
. (4.66)

According to [6] the unique generalized solution u(x1, x2, t) also has the form

u(x1, x2, t) =
l∑

n=2

{
u1n
(
ρ, t
)
cosnϕ + u2n

(
ρ, t
)
sinnϕ

}
, (4.67)
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where the functions uin(ρ, t) are solutions of Problem (P2.1) with right-hand side function
fin ∈ C1(G) and are described in Theorem 4.2. Then, for the constants αn

k
from Theorem 4.2

and βn
k,i

from (2.6), we have the following relation:

αnk =
∫1/2

0

(∫1−t

t

Enk
(
ρ, t
)
fin
(
ρ, t
)
ρdρ

)
dt = π−1

∫
Ω
Wn

k,i(x, t)f(x, t)dx dt = π
−1βnk,i. (4.68)

Therefore, from Theorem 4.2 it follows that

uin
(
ρ, t
)
= π−1

[n/2]∑
k=0

ρ−1/2
(
ρ + t

)−(n−2k−1/2)
βnk,iF

n,i
k

(
ρ, t
)
+ ρ1/2

(
ln ρ

)
Fn,i

(
ρ, t
)
, (4.69)

where the functions Fn,i
k

are independent of f , |Fn,i
k
(ρ, t)| ≤ C and

∣∣∣Fn,i(ρ, t)∣∣∣ ≤ C
(
max
D1

∣∣∣fin
∣∣∣ +max

D1

∣∣∣(fin
)
t

∣∣∣
)

≤ C1

(
max
Ω

∣∣f(x, t)∣∣ +max
Ω

∣∣ft(x, t)∣∣
)
. (4.70)

Summing over n and i in (4.67) we get the expansion

u(x, t) =
l∑

n=2

2∑
i=1

[n/2]∑
k=0

(
|x|2 + t2

)k−n/2
βnk,iF

n
k,i(x, t)

+
(
|x|2 + t2

)1/4
F(x, t) ln

(
|x|2 + t2

)
,

(4.71)

where

Fnk,1(x, t) = π
−1ρ−1/2

(
ρ2 + t2

)k−n/2(
ρ + t

)2k−n+1/2
Fn,1
k

(
ρ, t
)
cosnϕ,

Fnk,2(x, t) = π
−1ρ−1/2

(
ρ2 + t2

)k−n/2(
ρ + t

)2k−n+1/2
Fn,2
k

(
ρ, t
)
sinnϕ,

F(x, t) =
|x|1/2 ln|x|(

|x|2 + t2
)1/4

ln
(
|x|2 + t2

)
l∑

n=2

(
Fn,1

(
ρ, t
)
cosnϕ + Fn,2

(
ρ, t
)
sinnϕ

)
.

(4.72)

Obviously the functions Fnk,i(x, t) are bounded and independent of f . Also, we have

|F(x, t)| ≤ C
(
max
Ω

∣∣f(x, t)∣∣ +max
Ω

∣∣ft(x, t)∣∣
)
. (4.73)



Abstract and Applied Analysis 31

Notice that the singularity (|x|2+t2)−m/2 for fixedm appears in the sum for the solution
u(x, t) when n = m,m + 2, m + 4, . . ., and the corresponding coefficients are βm0,iF

m
0,i; β

m
1,iF

m+2
1,i ;

βm2,iF
m+4
2,i ; an so on, until n ≤ l. Therefore, (4.71) is equivalent to

u(x, t) =
l∑

m=0

(
|x|2 + t2

)−m/2 [(l−m)/2]∑
k=0

2∑
i=1

βm+2k
k,i Fm+2k

k,i (x, t)

+
(
|x|2 + t2

)1/4
F(x, t) ln

(
|x|2 + t2

)
.

(4.74)

Thus, the properties (i), (ii), and (v) are proved.
Finally, let us prove the properties (iii) and (iv). For a fixed direction (α1, α2, 1)t =

(cos γ, sin γ, 1)t ∈ S2, 0 < t < 1/2, γ ∈ [0, 2π) we have the expressions

Fnk,1(α1t, α2t, t) = π
−122k−n+1/2Fn,1

k (t, t) cosnγ,

Fnk,2(α1t, α2t, t) = π
−122k−n+1/2Fn,2

k (t, t) sinnγ,
(4.75)

with the functions Fn,ik (ρ, t) from (4.69) and Fnk,i(x1, x2, t) from (2.8). Therefore, according to
(2.8) and (4.74),

lim
t→+0

Fm(α1t, α2t, t)

=
[(l−m)/2]∑

k=0

{
Cm
k,1β

m+2k
k,1 cos(m + 2k)γ + Cm

k,2β
m+2k
k,2 sin(m + 2k)γ

} (4.76)

with some constants Cm
k,i /= 0. Thus, this expression is zero for all γ ∈ [0, 2π] if and only if

all the constants βm+2k
k,i involved are zero, because the trigonometric functions are linearly

independent in [0, 2π]. Thus, if at least one βm+2k
k,i /= 0, one could choose γ , that is, a direction

(α1, α2, 1), such that limt→+0F
m(α1t, α2t, t) = Cm = const/= 0, which proves (iii).

For (iv) in the casem = 0 we have

lim
t→+0

F0(α1t, α2t, t) =
[l/2]∑
k=1

{
C0
k,1β

2k
k,1 cos 2kγ + C

0
k,2β

2k
k,2 sin 2kγ

}
, (4.77)

and the sum starts at k = 1 since β00,1 = β00,2 = 0 according to Definition (2.6) and the special
form (2.5) of f . Now, F0 is continuous at (0, 0, 0) only when the expression in the right-hand
side of (4.77) is a constant. However, the constant 1 and the trigonometric functions involved
in (4.77) are linearly independent. Therefore, if at least one β2k

k,i
is not zero, then F0 is not

continuous at the origin.
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Matemàtiques, vol. 52, no. 1, pp. 195–234, 2008.

[29] M. K. Grammatikopoulos, N. I. Popivanov, and T. P. Popov, “New singular solutions of Protter’s
problem for the 3 − D wave equation,” Abstract and Applied Analysis, vol. 2004, no. 4, pp. 315–335,
2004.

[30] N. Popivanov, T. Popov, and R. Scherer, “Asymptotic expansions of singular solutions for (3 + 1)-
D Protter problems,” Journal of Mathematical Analysis and Applications, vol. 331, no. 2, pp. 1093–1112,
2007.

[31] M. K. Grammatikopoulos, T. D. Hristov, and N. I. Popivanov, “Singular solutions to Protter’s problem
for the 3 − D wave equation involving lower order terms,” Electronic Journal of Differential Equations,
vol. 2003, no. 3, pp. 1–31, 2003.

[32] N. Popivanov, T. Popov, and R. Scherer, “Semi-Fredholm solvability or exponential growth for (3+1)-
D Protter problems,” Comptes Rendus de l’Academie Bulgare des Sciences, vol. 63, no. 7, pp. 953–960,
2010.

[33] N. Popivanov, T. Popov, and R. Scherer, “Protter-Morawetz multidimensional problems,” Proceedings
of the Steklov Institute of Mathematics, vol. 278, pp. 179–198, 2012.

[34] A. Erd’elyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, vol. 1,
McGraw-Hill, New York, NY, USA, 1953.

[35] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and
applications, Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993.

[36] E. T. Copson, “On the Riemann-Green function,” Journal of Rational Mechanics and Analysis, vol. 1, pp.
324–348, 1958.


