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ABSTRACT. We consider homogenization of Steklov spectral problem for a di-
vergence form elliptic operator in periodically perforated domain under the
assumption that the spectral weight function changes sign. We show that the
limit behaviour of the spectrum depends essentially on wether the average of
the weight function over the boundary of holes is positive, or negative or equal
to zero. In all these cases we construct the asymptotics of the eigenpairs.

1. Introduction. The paper studies Steklov spectral problem in a periodically per-
forated domain for the Laplace operator or for more general divergence form elliptic
operator with periodic coefficients, under the assumptions that the Steklov condi-
tion is imposed on the perforation boundary and that the corresponding periodic
weight function changes sign.

Previously, periodic homogenization of a bulk spectral problem with sign-changing
density for an elliptic operator or an elliptic system was carried out in recent works
[20], [19]. Tt was shown that the asymptotic behaviour of spectrum depends crucially
on whether the mean value of the weight function is positive, or negative, or equal
to zero.

The idea of studying Steklov and other spectral problems with sign-changing
weight function arose during the conference “Differential Equations and Related
Topics” in Moscow in 2007. It occurs after the talk “Homogenization in perforated
domains with Fourier boundary conditions” that focused on homogenization of el-
liptic problems with Fourier boundary condition on the perforation surface under
the assumption that the coeflicient of the boundary operator changes sign. It turned
out that the limit behaviour of solutions depend crucially on whether the average
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of this coefficient over the perforation surface is positive, or negative, or equal to
zero (see [8] for further details).

Steklov spectral problem, although has many common features with the bulk
problem, differs essentially from the bulk problem due to the facts that the surface
volume of the perforation tends to infinity, as the period vanishes, and that the
perforation geometry is asymptotically singular. This leads to a different scaling
of the eigenpairs asymptotics. Also, the technique used here relies on a number
of scaled versions of the trace and Poincare inequalities. There are also serious
difficulties related to the non-trivial interaction of the perforation and the exterior
boundary of the domain (see the last section of the paper).

In the existing literature the homogenization of Steklov spectral problem in pe-
riodically perforated domain with a constant positive weight function was studied
for the first time in [24], where the effective spectral problem was constructed and
the convergence of spectra was proven. The estimates for the rate of convergence
have been obtained in [22].

In the case of inclusions situated along the exterior boundary the averaging of
Steklov problem was considered in [23].

Boundary value problems in perforated domains with Robin and Dirichlet bound-
ary condition have been considered in many works, see, for instance, [10], [11], [7].

In the case of sign-changing weight function the asymptotic behaviour of spec-
trum changes drastically. The detailed formulation of the Steklov problem studied
in the present paper is

—Au, =0 in Q,

gﬁj = Aepetie, on ¢, (1)
ue =0, on 0%,

here () is a smooth bounded domain, §2. is the corresponding perforated domain, I'.
is the surface of a smooth periodic perforation consisting of disjoint inclusions, v,
is the exterior unit normal on I';, and ¢ is a small positive parameter. We assume
that the function p is periodic and changes sign (see Section 2 for further details).

By exactly the same methods one can study a slightly more general problem of
the form

g:fé = Aepelle, on I, (2)
ue =0, on 052,

with a periodic symmetric matrix a(y) that satisfies the uniform ellipticity condi-
tions, v = a(x/e)v,.

We first prove that the spectrum of the considered Steklov problem (1) (or (2))
is discrete and, since the weight function p defines an indefinite metric on the
perforation border (see [6])), the spectrum consists of two infinite sequences, one
converges to +oo and another to —oo.

We show that the asymptotic behaviour of spectrum in (1) and (2), as € — 0,
depends essentially on whether the average of p over the surface of the hole is greater
than zero, or less than zero, or equal to zero.

If the average of p is positive (negative), then the positive (negative) part of the
spectrum behaves in a regular way and admits homogenization like in the classical
case when p > 0. In particular, for any k € N, the k-th positive eigenvalue is of order
e, and the corresponding eigenfunction has a bounded H' norm. The convergence
result in this case is presented in Theorem 2.1.
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If p has zero average then both positive and negative eigenvalues have finite
limits and the limit behaviour of the corresponding eigenpairs can be described
in terms of the effective quadratic operator pencil. This operator pencil has a very
simple structure and can be reduced to a standard eigenvalue problem for an elliptic
operator in €. Notice that in this case the k-th negative and positive eigenfunctions
are bounded in H'-norm. The asymptotic behaviour of the spectrum in the case of
zero average p is described in Theorem 2.3.

Finally, if the average of p is positive then the negative part of the spectrum
of (1) (or (2)) shows a singular behaviour. Namely, for any & € N the k-th neg-
ative eigenvalue is of order 1/e and the corresponding eigenfunctions are rapidly
oscillating.

We show that studying the negative part of the spectrum can be reduced to
studying the negative part of the spectrum of an auxiliary problem that exhibits
more regular behaviour. This reduction is done by means of factorization with the
first negative eigenfunction of the corresponding cell periodic spectral problem.
Further details can be found in Theorem 2.2 and its proof.

The factorization principle has been widely used in the homogenization theory.
It applies efficiently when studying both spectral and boundary value problems for
singularly perturbed operators or problems in perforated domains with Robin and
Dirichlet boundary conditions. We refer to [15], [3], [4] for further details.

Independently of our work and at the same time closely related problem was
considered in the recent preprint [13]. Several convergence results obtained there
are similar to ours. However, the methods used there do not allow one to obtain
estimates for the rate of convergence. This makes an essential difference with the
present work. Also, we have serious doubts about the statement of Theorem 3.3
n [13]. Under the geometric assumptions made in [13], there might be additional
eigenpairs supported in the vicinity of the exterior boundary of the perforated do-
main. Thus, the series of eigenpairs introduced in Theorem 3.3 need not be at the
bottom of the negative part of spectrum.

2. Setting of the problem and main results. In this section we provide a
detailed set up of the studied Steklov spectral problem, introduce necessary notation
and auxiliary problems, and then formulate the main results of the paper.

Let © be a smooth bounded domain in R™. We denote by Y = (0,1)" the unit
cube of R, and by w = Y \ B the perforated reference cell, for a given closed set
B C Y with sufficiently smooth boundary 0B = I'. We assume that w is a connected
set. Setting

Je={z€Z" : (Y +2) C Q}, (3)
we define B. = |J e(z+ B), I'. = U e(2 +7T). Then a perforated domain is
introduced as © ©

Q. =Q\ B..

It should be noted that, under our assumptions, the perforation B, consists of an
asymptotically large number of non-intersecting closed inclusions. Notice also that,
according to (3), B does not intersect the external boundary 9€2.

Remark 1. Another possibility is not to remove the perforation in the vicinity
of 0N). Instead, we can keep this part of perforation and impose the homogeneous
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Dirichlet boundary condition on it. We denote

0. =0\ |J e(z+B). (4)

ZEL™

If the perforation has an unbounded connected component, then the interface
between Steklov and Dirichlet boundary conditions might be rather irregular. This
leads to additional technical difficulties. We do not consider this case.

Throughout this paper we assume that the exterior boundary 052 has the regular-
ity C%. In many our statements this regularity can be replaced with just Lipschitz
continuity of the boundary. However, in this case we obtain only convergence results
without estimating the rate of convergence.

In what follows the symbol Iy stands for the periodic extension of I' in R™. Also,
the lower index # in the functional space notation indicates that the corresponding
functions are periodic.

Given a function p € L (I'), we study the asymptotic behaviour of the eigenvalue
problems
—Au, =0 in €,

glljz = )\Epausy on Fsa (5)
ue = 0, on 092,
as € — 0. The corresponding weak formulation reads
u. € He,
(6)
/ Vu. - Vodr = )\E/ peucvdo, Vv € He,
QE 5

where
H.={ve H (Q.):v=0on 00N}
is a Hilbert space equipped with the scalar product

(u,v)m. :/ Vu - Vude,
Q.

and o, denotes the (n — 1)-dimensional surface Lebesgue measure.
We also consider a similar problem in €2,

—Au. =0 in ﬁ;,

gz: = Acpelle, oOn Fi’ (7)
u: = 0, on 90\ T..

Every solution u. of problem (5) or (7) can be extended to the whole domain 2 as
a function 4. € H}(Q2), with uniform estimates

/\Vﬂ5|2dx§co/ |Vu|? da, /|ﬁ5|2dx§co/ uc|? dx
Q Q. Q Qe

for all € > 0 and for some ¢ > 0 that does not depend on € (see, for instance, [1]).
In the sequel, abusing slightly the notation, we still denote this extension by u.. Let
us notice that, thanks to the above inequality, the usual Friedrichs inequality in H,
holds true with a constant ¢; independent of ¢, i.e.,

/ u? dr < cl/ |Vul? do Yu € H.. (8)
Q. Q

€
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Throughout this paper we assume that the coefficient p satisfies the condition of

indefinite sign

oy({yeT:p(y) >0}) >0 and o,({y eI :ply) <0})>0; (9)

here and in the sequel o, stands for the (n — 1)-dimensional surface Lebesgue mea-
sure. The limit behaviour of problems (5) appears to be different if the mean value

p of p,
1

= om

| oty ) (10)

is zero or non zero.
We begin by considering problem (5) for a fixed positive €.

Proposition 1. For each € > 0 the spectrum of problem (5) consists of two se-
quences of eigenvalues

0<A <A5 <. <A = +oo (11)

0>)\€_12)\€_22...2)\6_j—>—oo as j — +oo (12)
Moreover, for all e > 0 there exists an orthonormal basis in H. of eigenfunctions
ul € H. which are solutions to problem (5) corresponding to Ae = A5, and for all

i,j € Z\{0}
/ Vu; - Vuj dx = §;. (13)
Qe

Furthermore,
Al and Mo, are simple. (14)

The proof of this proposition will be given in Section 2.
Similar statement holds true for problem (7). Orthogonality condition in this
case reads

/ﬁ Vu; - Vuj dz = d;;. (15)

If p > 0, the asymptotic analysis of the positive eigenvalues (11) as € — 0 involves
the spectral properties of the Dirichlet problem

~div(a®®Vu) = \poy(T)u in Q, (16)

u=0 on 0f).

where a°f is a symmetric positive definite constant (n x n)-matrix whose associated

quadratic form is defined by
a*fe . ¢ = inf {/ 1€+ Vu(y)Pdy : w € H;(Y)} VE e R, (17)

and H(Y) denotes the space of Y-periodic functions ¢(y) with finite norm

1/2
lellry = ([ (o + (ToPyay)
Y

The function we that provides a minimum in (17) has the form we = £ - x with the
vector-function y being a periodic solution to the classical cell problem

{AXzO in w,

Vx-v=-v(y) onT. (18)
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From the classical theory of elliptic operatotrs it follows that the spectrum of (16)
is discrete and comnsists of a sequence {\;};en of positive eigenvalues,

0<A <A <...<)\ = +oo asj— +oo, (19)

and that the corresponding eigenfunctions {u;};en € H{(2) form, under proper
normalization, an orthonormal basis in L?(2). For our purposes it is convenient to
normalize u;, j € N, as follows

/ aeHVui . VUde = (SZJ (20)
Q
Then
/ Ui Uy dr = (ﬁ)\idz(r))_léw (21)
Q
In what follows we use the notation
A= {)\J : j S N}

The asymptotic analysis of negative eigenvalues in (12) as € — 0 requires two
more auxiliary spectral problems. The first one is stated in the periodicity cell with
periodic boundary conditions:

—Ap=0 in w,
P = app, onT, (22)

P is Y-periodic.

The corresponding weak formulation reads

Vp~dey:a/ppwday VwGH%&(Y),
w 1 I (23)
p € Hy(Y).

Here, « is the spectral parameter. The statement below describes the behaviour of
spectrum of problem (22). This statement will be proved in Section 2. The proof
is more involved than that of Proposition 1 because the quadratic form related to
(23) is not coercive.

Proposition 2. Let p > 0. Then the spectrum of problem problem (22) is discrete
and consists of two sequences of eigenvalues
0= < <...<a; =400 asj— 400, (24)
0>a1>a9>...2a_j = —00 asj— +oo. (25)
Moreover ay, a1 are simple and the associated eigenfunctions p1,p_1 € H;#(Y) N
L>(w) can be normalized as follows

p+1 >0 inw, / p(ps1)? do, = +1. (26)
r

Finally, if Ow € C** and p € C*(0B), then p+ € C?(@), and 0 < C_ < py < CT
for some constants C_ and C™T.

Now, we introduce the second spectral problem, which is stated in the whole set
Q and involves a new weight function p* = p*(y) and its mean value p*:

pr=pp’, (27)

7= i L Wi (28)
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Due to Proposition 2,

/ Vp_af* dy = a_l/pz)_lpday >0,
w r

and hence
—x 1 / * / 2
p'=—= | p*do,= | p=,pdo, <O. (29)
oy(') Jr Y rot Y
Define by @°ff the constant positive definite (n x n)-matrix whose associated qua-
dratic form is defined by

&Cﬁf-szinf{ / 5+vw<y>2<p_1<y>>2dy:weH;<Y>} VEER",  (30)

Notice that a minimum in (30) is attained at the function we = & - X with the
vector-function y being a periodic solution to the following cell problem

div((p-1)*I+Vx)) =0 in w, (31)
Vx-v=-v(y) on I,
here I stands for the unit matrix.
We now introduce the effective spectral problem:
—div(a*®Vv) = »p*o,(T)v  in Q, (32)
v=20 on 012,

where s is a spectral parameter.
Problem (32) is classical. Since p* < 0, the spectrum of this problem consists of
a sequence

O>%_1>%_22%_3Z"'Z%_j—>700, as j — oo. (33)

The corresponding eigenfunctions {v_,} en, under proper normalization, form an
orthonormal basis in L?(2). However, we normalize them in a different way. Namely,
we assume that

/ deHV’U,i . Vv,jdx = (5” (34)
Q

The following results concern the case of p > 0. It should be noted that, in
this case, the positive and the negative parts of the spectrum show totally different
behaviour. We first deal with the positive part of the spectrum.

Theorem 2.1. Let p > 0, and let (\;,u5) be the j-th eigenpair of problem (5),
(18), or problem (7) with j > 0. Then
(i) For all j € N
€

N ase—0, (35)
g

where \; is the j-th eigenvalue of problem (16).

(ii) Under the additional assumption that Q is a C*° domain with some § > 0 the
rate of convergence in (40) can be estimated as follows: for every j € N there
exist constants €5,C; > 0 such that

€
TN <CVE foralle € (0.)). (36)
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(i11) If, for j € N, A; is an eigenvalue of problem(16) of multiplicity mj, A\j_1 <
Aj = Ajr1 = o = Njpm,;—1 < Ajym,, then there exist orthogonal mj X my
matrices U and constants €; > 0 and C; > 0 such that, for all € € (0,¢;],

U1 — Zufk Ujt+k—1 <Cjve, l=1,---,m;, (37)
k=1 L2(Q)
M
W = ) U Uiipa|| SCjVE L=1-my (38)
k=1 He

with Us (x) = u;(z) + ex(z/e)Vu;(x), here x is a solution of problem (18).
(iv) The function {U5} are almost orthogonal and normalized in H. that is

(UF, Uy, — 014 < CVE. (39)

The same results hold true for problem (7)

We turn to the negative part of the spectrum. Here, in addition to the above
assumptions, we suppose that the boundary of B has regularity C%® and that p is
Holder continuous, p € C*(0B). Here we only consider problem (7).

Theorem 2.2. Let p > 0, and let ()\‘S_j,ua_j) be the j-th negative eigenpair of
problem (7), (15). Then
(i) For allj €N
1
€
where a_q is defined in (25), and »_; is the j-th (negative) eigenvalue of
problem (32).
(i) If Qis a C*° domain for some & > 0 then for every j € N there exist constants
€j,Cj > 0 such that

- 22)

(i11) If, for j € N, s_; is an eigenvalue of problem (52) of multiplicity m_;, »_; =
H_(j41) = .-+ = H_(j4+m,; 1), then there exist orthogonal m_; X m_; matrices

(Xij - %) —x_j ase—0, (40)

< C]\/g‘ for all € € (0,6]'). (41)

U® and constants e_; > 0 and C_; > 0 such that, for all e € (0,e_;],

£ m;

U (ri-1)

SC,j\/g, l:17"'7mj7 (42)
L2(9)

: =D Ui
19 il =

with v ;(z) = (Hv_j||L2(Q))_1v_j(m)f)_l(x/e); here p_1 is the eigenfunction

of problem (22) that corresponds to a1 and is normalized by

(iv) The functions {UZ;}, U< ;(z) = v_;(z) +ex(x/e)Vv_;(z), are almost orthog-
onal and normalized in H, that is

\<Uik, US )i, — 0| < C . (43)
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Remark 2. In contrast with problem (7) we cannot assure that the interval (<=, 0)
belongs to the resolvent set of spectral problem (5). If there are eigenvalues of
problem (5) on this interval, then the corresponding eigenfunctions concentrate in

the vicinity of 02 that is they are of boundary layer type.

In order to write down the limit problem in the case p = 0 we introduce one
more cell problem:

—A6=0 in w,
o onT, (44)

0 is Y-periodic ,
Since p = 0, this problem is solvable, its solution is unique up to an additive
constant. Denote

=- / p(y)6(y)dor, = / Vo(y) - VO(y)dy > 0,
I w

and consider the following operator pencil

{ —div(a®®Vu) = N?Zu in Q, (45)
u=20 on 0N).
and a spectral problem
{ —div(a®TVu) = vEu  in Q, (46)
u=20 on 0N).

with a* defined in (17).

Since (46) has a discrete spectrum 0 < 17 < g < wg < -+ < v; — 0o, and all
the eigenvalues v; are positive, the spectrum of (45) is discrete, real and consists of
two series

S =Ty A==y, =12, (47)
Here, for the corresponding eigenfunctions, we impose the following normalization
conditions

/ TV, - Vujdx + 2, /vv; / uujdar = 0. (48)
Q Q

Theorem 2.3. Let p = 0, and let (\j,u5), j € Z\ {0}, be the j-th eigenpair of
problem (5), (13). Then
(i) For all j €N
i )\ji, as € — 0, (49)
where )\;-t are defined in (47).
(ii) Under the additional assumption that Q is a C*° domain with some § > 0,
for every j € N there exist constants €;,C; > 0 such that
A%, — AT < CjvE foralle € (0,e5). (50)
(i) If, for j € N, v; is an eigenvalue of problem(46) of multiplicity m;, vj—1 <
Vi = Vjt1 = ... = Vjtm,;—1 < Vjtm,, then there exist orthogonal m; x m;
matrices U® and constants €; > 0 and C; > 0 such that, for all e € (0,¢;],
m;
U (jpi-1) — Zufk Ujk—1 <Cjve =1, my, (51)
k=1 12(9)
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mj

UL (jpi-1) — Zufk UL (j+r-1)
k=1

SCJ‘\@, l:1,~-~,mj (52)
He(Q)
with UL ;(x) = uj(x) + ex(z/e)Vu;(x) + /\jie(;v/e)uj(m), here x and 6 are
solutions of problems (18) and (44), respectively.
(iv) The function {Us} are almost orthogonal and normalized in H. that is

(U8 U )i = dka| <CVE b j€Z)\ {0}, (53)

3. Preliminary statements. We begin this section by recalling some inequalities
valid in H,.. In what follows we denote

wt = e(w +1), It =gl +i), ieZ™

Poincaré- Wirtinger inequality. Under our assumptions on 2. and I'., there exist a
positive constant k such that for each u € H the following inequality holds:

/ lu — . |2do, < ks/ |Vu|? da, (54)
T Qe

where we denote by . () the piece-wise constant function obtained by taking the
mean value of u over each perforated cell W, i.e.,

TREIES 1

i
A
el Jwi

ulydy, i e w; (55)

here |wt| stands for the Lebesgue measure of w?. The above inequality remains valid
if u, is replaced with the piece-wise constant function being equal in each w! to the
surface average of u over I'..

Trace inequality

/ luf2do, gk:t(g‘l/ |u|2dm+5/ Vul?) dz), (56)
FS QE QE

Both inequalities can be easily obtained from the standard Poincaré-Wirtinger and
trace inequalities, (see [2], [25]) by means of scaling arguments.

Given g € L?(T'.), consider the following boundary value problem with non-
homogeneous Neumann boundary conditions on I'.

—Au., =0 in Q,,
Gu=—yg, onT,, (57)

ue = 0, on 0.
The corresponding weak formulation reads
us € Hy,

(58)
/ Vue - Vodx = / gvdo, Yv e Hg,
Q.

where
H.={ve H(Q):v=0ondN}
is a Hilbert space equipped with the scalar product

(u,v) . :/ Vu - Voudz.
Qe
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Proposition 3. For every g € L*(T'.) there exists a unique solution u. € H. to
problem (57). Moreover u. satisfies the following a-priori estimate

luella. < e 2|gll2(r.), (59)
where the constant ¢ > 0 s independent of €.

Proof. The existence and uniqueness of u. is a straightforward consequence of the
Reisz representation theorem for the problem

a(u,v) = F(v) Yv e H,
where

a(u,v):/ Vu - Voudz, F(v)z/ gvdo,, H=H..
Q. T.

Moreover, replacing v = u, in the weak formulation (58), and using Friedrichs and
trace inequalities (8), (56),we obtain that

a3y, = / Ve[ dar = / e dog < |1glle e lluel 22 <

FE

1/2
< llgllezqr.) (kt(5_1/ |u|2dx+s/ |Vu|2)dx)> <
Q. Q.

< e gl aroy llue |,

N

Dividing by ||ue||m. we obtain the desired inequality (59). O

We introduce the operator K. : H. — H. in the following way. For every u € H,,
we define K.u as the unique solution to the problem

/ V(K.u) - Vodr = / peuv doy, Vv € H,. (60)
Q. r

€

The existence and uniqueness of K.u follows directly from Proposition 3.
Proposition 4. The operator K. : H. — H. is linear, compact and self-adjoint.

Proof. The linearity and self-adjointness of K. follows directly from its definition
(see (60)). In order to prove the compactness of K. notice that formula (60) defines
a bounded linear operator K. that maps L?(T:) in H.. Since K_ is the composition
of the trace operator H. ~ L?(T'.) and K., the desired compactness follows from
the compactness of the mentioned trace operator (see, for instance, [16]). O

Assume that p. # 0 is an eigenvalue of the operator K. and wu, is a corresponding
eigenfunction. It means that

K.ou, = Hele
i.e.
—Au, =0 in €,
gzz = ipsusy on Fsu
ue = 0, on 0,
Thus, A\. = i is an eigenvalue of problem (5). Now, we recall the spectral properties
of K..

From general spectral theory, the spectrum of the operator K. is at most count-
able, it consists of two sequences (possibly finite or empty) of positive and negative
eigenvalues, and of zero. The latter implies the essential spectrum of K.. Every
non-zero eigenvalue has finite multiplicity. We denote by p5, u ; the positive and
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negative eigenvalues, for every j € N\ {0}, with the convention that the positive
eigenvalues are enumerated in decreasing order, the negative ones in increasing or-
der, and each eigenvalue is repeated a number of times equal to its multiplicity.
Moreover, we denote by u$, and uZ; a sequence of corresponding H.-normalized
eigenfunctions. The following variational characterizations hold true

/ U2pa do,
e

:U’i = max , (61)
ue He, |Vu|? dx
u#0 Q.
/ UQPE do,
e, = min e (62)
ue He, \Vu|? dz
uF#0 Q.

For each j € N, 7 > 2 one has also

/ U2P5 doy / U2psad0x
€ I'. _ : I.

ps = max in max ———— | (63)

= m
(’U«,uf)Hs_Zov / |VU|2d1‘ dimV=j-1 uGVJ—/ |V’U,|2d$
Qe Q

i=1,...,j—1

=

/ u?pe doy / u?pe doy
P = min = gomax minL _, (64)
mV=5— \Y4
(uu ;). =0, / |Vul|? de e / \Vu|? da
1=1,...,7—1
Qa Qa

where V+ stands for the orthogonal complement of V in H..

Remark 3. From (56) and the fact that p € L>°(T"), it follows that there exists a
positive constant kg such that

1
ep; < ko (62 + BE) foralle >0, j €N, (65)
J

where 5 is the j-th eigenvalue of the Laplacian with homogeneous Neumann
boundary conditions at the boundary of the perforation. More precisely, {35}52,,

0 < pf <p5 < ..., is the spectrum of the problem
€ __ € ,,E 3
gvéevj = Bjv; in Q,
o =0, on I', (66)
ve =0, on 012,

It is known (see, for instance, [24]) that for all j € N
B5 — Bj as € — 0, (67)
with 8; eigenvalue of the corresponding homogenized problem
~div(a*®Vv;) = Bjlw|v; in Q,
v; =0, on 0f),
and
B — +o0, as j — 4oo. (69)
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Proposition 5. If p satisfies condition (9), then for each € > 0 the sets
{7eN:pu;>0} and {jeN:pus; <0}
have infinitely many elements.
Proof.
Step 1. We first prove that
pey <0< pi.
Letting
ps =max {p, 0} p- =min{pe, 0},
under our assumption (9) on p we have

/ pept do, > 0.

€

Denote by {u,},~0 a family of functions u, € H. such that ||\/p —upll,, — 0,

(FE)
as 7 — 0. Such functions u,, can be easily constructed by means of smoothing 1/ pe

on I'.. Since
/ peu% dog —>/ pep;r dog,
I e

as n — 0, then for all sufficiently small n > 0 it holds

/ pgu% dog > 0. (70)

It remains to combine the last inequality with (61) in order to conclude that u§ > 0.
In a similar way, one can prove that u°,; < 0.

Step 2. Our next goal is to show that for any j € N the inequalities pu° ; < 0 and

5 > 0 hold.
Assume that p§ > 0,...,p45 1 > 0, and let uf,...,u5_; be the corresponding
normalized eigenfunctions, (u,uf)n. = d; with 4,k =1,2,...,j— 1.

Consider a collection of sets {SF}/_, with S5 C {z € T, : p(z) > 0}, 0,(SF) > 0,
S: NS, =0, 1i+#k, and denote x¢ the characteristic functions of these sets.

Let leia, e X‘;’e be elements of H. such that ||x§ — Xf’€||L2(pE) <8, i=1,...,5.

It is clear that for sufficiently small § > 0 the functions x3°, ..., X?’E are linearly

independent. Therefore, there is a non-trivial linear combination Z = ﬁf’gxf’s +

<+ BYx0F such that (2, uf)y, =0,i=1,...,j — L.

It is also clear that for sufficiently small 6 > 0 we have

/ 22pT do, > 0.
e

Using Z as a test function in (63) we conclude that p5 > 0. In the same way one
can show that p2 ; <O0.
It remains to use the induction.

Proof of Proposition 1. All the statements of Proposition 1 except for (14) follow
from the spectral properties of the operator K., the fact that A; = (u?)*l, and
from Proposition 5.

It remains to prove (14): we will do it for A, the proof for A% ; being analogous.
We first show that each eigenfunction u related to A does not change sign in €.
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Assume the contrary. Then there is an eigenfunction u related to Aj such that
ut = max {u,0} and v~ = min {u, 0} are non-trivial functions. Clearly,

/ pe(u)do, >0 and / pe(u™)?*do, > 0.
T T.

Indeed, if [ pe(ut)*do, < 0, then [ pe(u™)*do, > 1. Since [, [Vu~[?dx <
Jo. IVu|?dz, this contradicts the variational principle (63). Therefore,

/ pe(u™)?do, > 0.
.

Similarly, [ pe(u~)*do, > 0.
By (63) we have

/ |Vu_|2dx§)\§/ pe(u™)?do,, / |Vu+|2dx§)\§/ pe(u™)?do,.
Qe Q.

. e

Summing up these inequalities and considering the relation
/ |Vul|?dx = )\i/ pe(u)?do,
QE €

\Vu™ [2de = Xi/ pe(u™)?do,.
Qe r.
Thus, u™ is an eigenfunction related to AS. Then u™ is a non-negative solution of
the equation Au™ = 0 in ., and the fact that u* is equal to zero at interior points
of €. contradicts the maximum principle.
If we assume that there are two linearly independent positive eigenfunctions
u,v € H, related to \{, then

—1
/ (u—cv)dz =0, for ¢ = (/ vda:) / udx.
Q. Q. Q.

Therefore, u — cv is an eigenfunction that changes sign. This contradiction shows
that Aj is simple. O

we conclude that

Proof of Proposition 2. Our goal is to show that for sufficiently small § > 0 the
quadratic form

) = [ [Vuy)dy+3 / o) (u(y))*dor,
is coercive that is
T () > CO)l[ully, — forallue Hy(Y) (71)

with C(4) > 0. The spectral problem for the operator associated with J reads

/Vp-dey+5/ppwdoy:d/ppwdoy VwEHj#(Y),
r r

. (72)
p e HL(Y).

The spectrum of this problem coincides with the spectrum of problem (23) shifted
by §. Exploiting (71) by the same arguments as in the proof of Proposition 1 one
can deduce that the spectrum of (72), and thus of (23), is discrete and consists of
two infinite sequences of eigenvalues, one of these sequences tends to —oo, another
to +o0.
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Other statements of Proposition 2 can be justified in the same way as in the
proof of Proposition 1.

To prove (71) we represent p as p =
arbitrary function u € H;L(Y) denote w

/PUQde = / (pu® + p(T + 0)°)do, = / (pu® + 2puii + pi’))do,
r r r

P+ p with p > 0 defined in (10). For an
= (0y(T)~! [ru(y)doy, & = u— . Then

> / (pu® — Cy (i + 42))do,
T

with C, = 2||p|/ze. Using the trace and Poincare inequalities we deduce that for
any 6, > 0

/FCP(WH +@?)do, < /Fcp (5@2 + (% n 1)'&2)d0y

1
§/0p51u2d0y+cl(—+1>/|Vu|2dy.
r 61 w

Combining the last two inequalities and choosing d; in such a way that C,6; = %ﬁ
we obtain
1 1
/quday > / —pudo, — Cy (— + 1) / |Vu|dy.
T T 2 51 w
This yields

0 1
J(u) > / |Vul?dy 4+ = / ﬁuZday — 01(5(— + 1) / |Vu|dy.
w 2 )r o1 w
Finally, taking 0 such that C10((1/01) + 1) < 1/2, we get
1 o [_
T =g [ IVuldy+ 5 [ mitdo, > CO)lulfn
O

4. The case p > 0. The aim of this section is to prove Theorem 2.1. We begin
with an auxiliary statement.

Lemma 4.1. Let u.,u € H}(Q), |uellaz < ¢, ue = u strongly in L3(Q) and p > 0.
Then

E/ peu’ do, — ﬁay(F)/ u?dz, as € — 0. (73)
r. Q

Moreover, for all v € Hg ()
E/ Pl doy — ﬁay(l")/ uvdzx, as e — 0. (74)
r. Q

Proof. Let us denote by 4. the piece-wise constant function that takes the value of
the average of u. in each e-cell that is

Ue(z) = d; ifreY,,

N 1
uj = T/ ucdx.
|wj| wj.
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Note that, by our assumptions and Poincaré inequality, it follows that . — u
strongly in L?(Q) as ¢ — 0. In fact

/ lue — te |2 dr = E / |ue — uAj|2dx < ¢e? g / |Vu8|2dx < ce2. (75)
Q ~ Jyi ~ Jyi
j e j e

In order to prove (73), we write

6/ peul do, zs/ P2 do’,;!—&/ pe(u? —a2) doy. (76)

€ . e

The first term can be rearranged as follows

e / peiZdo, =ey / pe(u5)*b0, =
. j F;

=<3 [ ot doy =po, ) ( [ (@2 o).
J
Hence, by (75), we can conclude that
5/ petitdo, — ﬁoy(l")/ u? da
r. Q

as € — 0. The second term in (76) is negligible, since

a/ pe(u? —0?) do,

€

1/2 1/2
<5</ |p€||u5—ﬂ5|2doz> (/ |p5||u5—|—ﬂ€2d0z> .
I T.

The first term on the right hand side can be estimated by means of Poicaré inequal-
ity. We have

Se/ ol e — 1| [t + ic] dos <

=

1/2

1/2
([ ol - an) < elollf2 (= [ 1VuPar) < e,
T Qc

The second term can be estimated by means of the trace inequality:

([ todlue+ a0, ) < (2ol [ doa+ 20l oy () [ aa)
Sc(s_l/ u?dm—&—s/ |Vu5|2da:>.
Q. Q.

Hence, combining the last two inequalities, we finally have

5/ pe(u? —a2) doy| < ce'/?,
r.
and (73) follows.
To prove (74) it suffices to notice that
1 1 1
UV = §(uE +v)? — §u§ — 5112,

then (73) applies. O
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Proof of Theorem 2.1. We begin by obtaining the following estimates
¢ <e'X<¢ foralle >0, 0<c <¢ <oo. (77)

Let us first justify the lower bound. Due to (61), (56) and the Poincaré inequality,
one has
1 . fFE u2p5 do, <1l fFE u? doy
T =pf = sup e < o SUp
A§ i wet. [q_ |Vul?dz Pl wed. Jq_ [Vul?dx
with a constant k that does not depend on e. This yields the desired lower bound.
Let us now prove the upper bound in (77) for j = 1. From (61) we derive

< Kllpll oo™

1 Jo, Wpedoy _ [i Ppedo,
_— = = Sup =
N T T, Nulde T T Vel dr

for any ¢ € H.. In particular, if we choose ¢ € C§°(Q2), ¢ # 0, then
/ |Vo|? de — \w|/ |V|? dz > 0,
Q. Q
where |w| denotes the Lebesgue measure of w. By Lemma 4.1 with u. = ¢, we get
5/ pep? do, — ﬁay(F)/ ©?dx > 0.
€ Q

Therefore, there exist two constants €9 > 0 and ¢ > 0 such that

c fFe pe‘PQ doy
ML Ledais
fQE |V30‘ dx

> g Ve € (0, ). (78)

This implies the estimate
0< A <
c

It remains to denote ¢; = 1/c.

In order to justify the upper bound for j > 1, we consider a set of non-zero C§°(2)

functions ¢1, ..., ¢; with disjoint supports. Since these functions are orthogonal in
H., there is a non-trivial linear combination ¢° = 7fp1 + -+ +7jp; such that
(0%, ul)m. = ... = (6%, uj_1)n. = 0.

Then, by (63),
e fFE (¢€)2ps do,
Hj Z sz V|2 dx
Using the fact that the functions ¢; have disjoint supports, it is easy to check that

J J

/ () 2pedos = 3 (35)? / (¢0)?2p2 dors, /Q Vo dr = (5)? /Q Vil d

- i=1 Te i=1
By (78), there are ¢ > 0 and ¢ > 0 such that

/psgo?darrzg/ |Vgai|2dx for alle € (0,e9), i=1,...,].
£ QE

Multiplying these inequalities by (7{)? and summing up the resulting relations yields

c
€
/JjZ;

This implies the required upper bound in (77).
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The proof of (40)-(52) relies on several technical statements.

Proposition 6. Let {()‘3(5)7 uj(s))} be a family of normalized eigenpairs of;)aroblem

7(e)

(5) or, equivalently, (6), and assume that, perhaps for a subsequence, —

_ — €
A,  ase — 0. Then X\ is an eigenvalue of the limit problem (16). If, in addition,
uj(e) converges to u weakly in H}(Q) for the same subsequence of ¢, then U # 0,
and (\, ) is an eigenpair of (16).
Proof. Since the family {uj( 6)} is bounded in H}(f2), we may assume without loss
of generality that 5, — @ weakly in Hj(). Then uf, — @ in L*(Q2), and by
Lemma 4.1,

1= / |V |* doe = )\6/ psuf(e) do, — Xﬁay(I‘)/ wdz.
QE FE Q

Therefore, [, wdz > 0, and T # 0.
Our goal is to show that

/ a®V - Vdr = Xpo, (T) / Tpdr Yo € HY () (79)
Q Q
with a*® defined in (17). To this end, we consider the following auxiliary homoge-
nization problem
Apoy (T
/ V. - Vodr = L()/ updr Yo € H, (80)
Q. || Q.

stated in the perforated domain §2.. It is well-known in homogenization theory (see,
for instance, [1]) that, as ¢ — 0, the (extended) solution v. tends weakly in H} ()
and strongly in L?(Q) to a function v € H}(Q) being a unique solution of the
homogenized problem

/ a*Vu - Vopdr = Xﬁay(F)/ updr Ve € Hy(Q). (81)
Q Q

By the lower-semicontinuity of the H'-norm and the boundedness of the extension
operators, we have

/ |Vv — Va|?dr < liminf/ Ve — Vue 2 dz < co liminf/ Vv — Vu|*da.
Q e—0 Q e—0 Q.
Using in equations (6) and (80) the test functions ¢ = v, and ¢ = u., yields

/ |Vv. — Vu|2de = / |V |*dx +/ |Vuc|?dx — 2/ Ve - Vuedr =
Q. Qe Qe Qe

Apo, (T
= L()/ ﬂvedx—i—)\g/ peu’ do,+
Qe

|l r.

Apo, (T
—)\5/ PelleVe d%—m/ Tuedx.
1—\ QE

|l

€

Since u® — U and v* — v in L?(Q), the following limit relations hold, as € — 0:

Mpo, (T
Ly()/ Tvedr — /\ﬁay(F)/ﬂvdaz,
Qe

|w] Q

Yoo (T -
—L"()/ Tucdr — —)\ﬁay(F)/ﬂ2dm.
w] Q. Q
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Furthermore, by Lemma 4.1,

)\5/ peul do, %Xﬁay(F)/Hde,
T Q

e

,)\E/ PelieVe dog %f)\ﬁay(lﬂ)/ﬂvd:c.
€ Q

Combining the above inequalities, we arrive at the estimate
/ |Vv — Va|?dr < ¢ liminf/ |V, — Vu|*dz = 0,
Q e—0 0.

which implies that v = @. Thus, (79) holds true. O

The proof of the fact that any eigenpair of the limit operator is approached by
the eigenpairs of e-problems relies on the so-called Lemma on “eigenvalues and
eigenvectors” (see [21]). For the reader’s convenience we formulate it here.

Lemma 4.2. Let A: H — H be a linear compact self-adjoint operator in a Hilbert
space H. Suppose that there are a real number p and a vector w € H, such that
[lullg =1 and

| Au — uul i < o (s2)
Then, there is an eigenvalue p; of the operator A such that
lwi — pf < a. (83)
Moreover, for any d > « there exists a vector w such that
lu— @l < 20d™, |[alln =1, (84)

and U is a linear combination of eigenvectors of the operator A corresponding to
eigenvalues of A in the closed segment [ — d, p + d).

In the sequel we refer to p and u in (82) as almost eigenvalue and eigenvector of
A.

We proceed with other technical statements.

Lemma 4.3. Let f € L3 (w) and g € L*>(0w) satisfy

/w f(y) dy /F 9ly) dory = 0. (85)

Then there exists ¢ > 0 such that

/st(:) uvdm—e/rgg(z)uvdow

for all u,v € H. such that V(uv) € L*(.). Also, for any u,v € H. it holds

/ng(z) uvdm—s/rsg(j)uvdax

If for f € Li(w) and g € L?(0w) condition (85) is fulfilled then there is ¢ > 0 such

that
/ng (g) uvda:—a/rsg(i) uwv doy,

for all u € W1>°(Q) and v € H..

< cel|V(w)|lz2 (o) (86)

SCEHu”Ha”’UHHa' (87)

< cel|V(w)lz2a.) (88)
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Proof. Let ¢ € H(w) be a solution to problem

AY=f inw,
% =g, onT, (89)
P Y -periodic.

Then te(x) =1 (£) is €Y -periodic, it belongs to H}:

loc

_ x _ X
Vathe =€ I(Vy%//) (g) , AgYe=c¢ 2(Ay77[}) (g) .
Writing down the integral identity

/95 (A7) (g) wo dz = /Q f (g) wo dz,

after integration by parts one has

[ 7 (E)uwte—c [ o(2)uvdo = [ (@00 (2) V.

from which (86) and (88) follow immediately.
In order to justify (87) we consider the functions u. and T, introduced in (55).
Notice that

(R™) and satisfies

ellza () < lullzenyy  ellTelliar,) < dlulzzq,)-

Denoting f¢ = f(z/e) and ¢g° = g(x/e), and using (54) and Cauchy-Schwartz

inequality, we get
/ ffuvdr — 5/ g uv doy, / ffa.vdx — 5/ g uvdoy,
Qe T Q. e

/ fflu—u)vde — 5/ 9" (u —u.)vdoy, / ffuvde — 5/ 9 U vdoy,
Q. r. Q. r.

<

+ <

Cellulla vla. < \ R R SR
Q. r.

[ Fuw-vyde—c [ o -2 do| + Cellulm. o],
Qe r.
< Cellul|a.[[v]l1.s
here we have also used (85). O

The proof of the next statement is quite similar to the proof of (87) and can be
found, for instance, in [9, Ch.1, Lemmal.1].

Lemma 4.4. Let h € Ly (Y) be such that
[ oy =o. (90)
Y
Then there exists ¢ > 0 such that for all u,v € H}(Q)

/Qh(g)uvdx

We will also need cut-off functions in the vicinity of the exterior boundary 9f).
For v > 0 denote Q(v) = {x € Q : dist(z,9Q) > ~v}.

< cellull gy oy lIvll @) (91)
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Lemma 4.5. Let ¢ € L2, (Y), and let h > 0 be a positive number. Then, there
exists ¢ > 0 such that

s ()

and, if T. N (Q\ Q(he)) # 0,

/ P <£> vdo,
L-N(Q\Q(he)) €

for all e >0, and all v € H} ().

< 2 2(|Vol| o g (92)

< c\/gvaHLQ(Q)' (93)

Proof. By the Hardy inequality (see, for instance [18]), there exists a constant ¢ > 0
such that

H’U”L2(Q\ﬁ(y)) < V|| Vol 2 (94)
for all constants v > 0 and for all v € Hg(£2). Then, combining this estimate with
the Cauchy-Schwartz inequality, we get

’fﬂ\ﬁ(hs) (4 (%) de’ < v (%) HLQ(Q\E(ha))HU”LQ(Q\Q(hs)) (95)
< cellY (%) ||L2(Q\ﬁ(he))||VU||L2(Q)-
Denote J(he) = {j € Z™ : e(Y +7) N (2\ Q(he)) # 0}, and let #.J(he) be the
cardinality (the number of elements) of J(he). Clearly, #.J(he) < C(h)e'=™. Thus,
< n
1 (2) Iaonminey < #T ()" 6]y < Ce.

To obtain (92) it remains to combine this inequality with (95). The proof of (93)
relies also on the fact that for all e-cell Y;°

/ v?do, <c 5_1/ v2dx+€/ |Vo|?dz | .
l—‘er"YiE YiE )/":E

Summing up these estimates over ¢ € J(he) and using (94) yields

/ vido, <c 671/ v2dx—|—5/ |Vol2dz | .
. NQ\Q(he) O\Q(he) O\Q(he)

Combining the preceding inequality with (94) and the fact that |2\ Q(he))| < ce
we immediately obtain (93). O

Proposition 7. Let \;, j € N, be an eigenvalue of problem (16). Then there exist
a family {k(g)}es0, k() € N, such that

Ak
I3

—Aj, ase—0, (96)
where )\i(s) is an eigenvalue of problem (5).

Proof. Let ¢ be a family of C§°(€2) functions such that ¥¢(x) = 1 if the distance
from x to 0N is greater than 2e, 0 < ¥¢ < 1, and |VU(x)| < 2/e for all z € Q.
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Denote Uf(z) = ul(z) + e¥(x)x(z/e)Vul(z), and US(z) = ul(z) +

ex(z/e)Vul(z). Tt is straightforward to check that, under our assumptions on reg-
ularity of 02, we have
HU; — U;‘:HL2(§2) < 083/2, ||U; - U;HHI(Q) < Cet/2,

Let us compute the norm of U 5 in H.. Denoting the unit n X n matrix by I we have

/vﬁ;.vz};dx
Qe
~ T €T x
- /Q [Vuf + 07V, x (2 ) Vi) + 0y (2 )Vl + eV ey (£ ) V2

= / |(T+ Vyx(x/s))Vugﬁdx + O(e);

e

here we have used the facts that |eV¥¢| < C, the support of V¥°¢ is a subset of
2e-neighbourhood of 912, and ujQ is a C?(Q) function. Recalling the formula for the
effective matrix a°, normalization condition (20), and using once again the C?
smoothness of u? we conclude that

; g _ i, 0 0 _
/Q VU;-VU;dx—/Qae Vuj - Vujdr + O(e) = 14+ O(e). (97)
Similarly, one can show that
‘/Q VUJE -Vodz —/QaeHVug Vedz| < CVellgllui o) (98)

for any ¢ € H} ().
We proceed with estimating the norm || KU — (e\;) " U¢|| .. After straightfor-
ward rearrangement we have

N 1
KU — —0° ., = KU — —0°
|50 = S0, = sup (K°O° = 0%,
. 1
— sup / V(KU?) Vi — —VU* w)dx
peBe JQ. eNj

with B = {p € H}(Q) : ||¢||z. = 1}. By Lemma 4.3,

‘/ psﬁegadax—/ U pdo,
r. r.

< Cllelm:-
Thus,

N 1 -
|07 - -0

. 1 .
. < sup (/ ﬁU‘E(pdaw——/ VUE-Vgpdx)—i—C.
© " pene \Jr, eAj Ja.
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It remains to use (98) and once again Lemma 4.3 to obtain

- 1 -,
|0 O,

poy(T) / 0 1 / eff 7, 0 > &
< su - w;pode — — | a®'Vu; -Vodz | +C + —
wegs (5 |w] Q. % eNj Ja / 4 NG

p 0 1 eff, 0 > Ci
< su —o, (T w;pode — — | a®'Vu; -Vodr | +C+ —
sup (B [ hoan = o [ v v Ve

Cq
=C+ —.

+ 7

This estimate combined with (97) and Lemma 4.2 yields

Gy
e _ _= < C -
K EAj = + \ﬁ
for some k = k(e) and for all sufficiently small . Therefore,
Moy — eNj| < C%2, (99)
and (96) follows. O

We should also understand better the convergence of spectrum in the vicinity of
multiple eigenvalues of the limit operator.

Lemma 4.6. Let A\; be an eigenvalue of (16) of multiplicity m, X\j_1 < A\; =

= Ajgm—1 < Ajym. Then there are at least m famalies {\y )}, ---. {AL o)}
ki(e) # ki(e) if i # 1, such that
(5)71>\Z1‘,(5) — Aj, ase — 0.

Proof. Foreachi € {0,1,...,m—1} we construct U5, ; = ul,;+ex(z/e)¢ () VuI,;
as in the proof of Proposition 7. Then

1 C

KeUS, . — —US,. <—, 1=0,...,m—1. 1

KUz U, = e i=0m (100)
In the same way as in the proof of Proposition 7 one can check that

(US40 Us ). — 0ul <CVE, 0<il<m—1. (101)
Denote by )\il(s)7. . AiN(E) the eigenvalues that belong to the interval e(\; —
et/4 \; + /) with N = N(g). According to Lemma 4.2 there are linear combi-

N(e)

nations of the corresponding eigenfunctions VF = 21 Bisui, () such that US54 —
=

VE|| g, < Ce'/%. From (100) and (101) it follows that N(g) > m for all sufficiently
small e, this yields the desired statements. O

The opposite inequality is granted by

Lemma 4.7. Assume that there are families ki(g), ..., kn(€), ki # ki if i # 1,
such that, for a subsequence,

1
“Ahi(e) — Ao ase—0, i=1,...,N.
o ki

Then the multiplicity of A\; is at least N.
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Proof. Consider the eigenpairs (A} ), uj, .)) with the eigenfunctions satisfying (20).
Then, for a subsequence,

Uj, (o) = Vi weakly in H}(Q), i=1,...,N.

)

It was shown in Proposition 6, that v; are eigenfunctions of the homogenized prob-
lem with eigenvalue );, and that

Oi = ;1_1)% (“ii(s)vuil(a))Ha = Ajpoy(L) (vi,v1) 2(0)-

Therefore, {v;}}¥, are nontrivial and orthogonal in L?(f2), and thus the multiplicity
of \; is at least V. 0

Now the statements (), (i) and (iv) of Theorem 2.1 are immediate consequence
of Propositions 6 and 7, Lemmata 4.6 and 4.7 and estimate (99).

In order to justify the statement (4ii) we consider an eigenvalue A; of (16) that has
multiplicity m;, m; > 1,0 that \; = -+ = A4, —1. Choosing d; = $ min(1/\;_1—
1/X;,1/Xj =1/Xj4m;), with the help of item (i) we conclude that for all sufficiently
small ¢ an eigenvalue (A$) ™! belongs to the interval e 1 ((A;) ™t —d;, (A;) ! +d;) if
and only if j < i < j+m;—1. Using (100) and applying Lemma 4.2 with d = e~ 1d;,
we obtain that there exist 35 such that

mjfl

1Uses— > Biu§lly < Cve.
=0

This estimate combined with (101) implies the desired statement (iii). The proof
can be found in [18]. We omit the details. This completes the proof of Theorem 2.1.

Remark 4. If in the conditions of Theorem 2.1 we suppose that Q and w are
just Lipschitz continuous domains then the statements on convergence of the spec-
trum remain valid, however, the estimates for the rate of convergence might fail to
hold. More precisely, in the case of Lipschitz continuous 02 and dw the following
statement holds:

e For any j € N the limit relation (40) is valid.
o Let \; be an eigenvalue of (16) of multiplicity m; with m; > 1, that is A; =
“++ = Ajym;—1. Then there is a orthogonal matrix 85, 0 <i,l < m; — 1, such

that
mj—1
lim [|uf, ; — ; 5fzuz+jHL2(m =0. (102)

The proof follows the same strategy as in the case of smooth domains €2 and w. We
leave the details to the reader.

Remark 5. The convergence of eigenspaces related to multiple eigenvalues of the
effective spectral problem can be expressed in terms of the so-called Mosco conver-
gence, see [17] for its definition. Namely, if A; is an eigenvalue of (16) of multiplicity
mj with A\j = -+ = Ajim;—1, my; < 1, then span{uj, ..., u§+mrl} Mosco-converges
to span{u;, ..., Ujim, 1}
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5. The case p = 0. In this section we prove Theorem 2.3. Our first goal is to show
that there exists x1 > 0 such that for all sufficiently small € > 0 the estimate holds

with p§ defined in (61). To justify this estimate we substitute in (61) a test function
of the form u.(z) = ¢(z)(TW + em (2)) with 7 € R, ¢ € C§°(Q), ¢ # 0, and
m € C32(Y) such that

e = / p(y)7(y) doy > 0.

It is easy to check that

lim |Vu5|2dx:ﬂz|w|/ |Vg0\2d:v+/g02dx/ |V (y)|*dy > 0.
Q Q Y

e—0 Q.

The surface integral can be estimated as follows

e—0
. 2 (2T . 2 2 2 (7
+ lim 25/ pep uT (7) dog + lim ¢ / pep T (—) do, =
e—0 I, 3 e—0 r. £

= EQ/yp(y) doy / V(?)dx + 2%5/(@2 da = 27@/(@)2 dx > 0;
T Q Q Q

here we have also used Lemma 4.1. This implies (103) for all sufficiently small €.

Similar lower bounds can be obtained for p5 with j > 1. However, since these
bounds will follow from the asymptotics constructed later on in this section, we do
not bother the reader with their proof here.

lim peuldo, = lim/ P00 doy
r. e—0 I.

An upper bound for 5 easily follows from (87). Indeed, since p = 0, for any
u € HY(Q) by (87) we have

[ et do. < clulfpa, < el Vula,.

e
In view of (61) this yields
pi < ka. (104)

Estimates (103) and (104) suggest that the asymptotic series for A3 ; and ug;
should be of the form
L= Ate M+, Uy = (@) feur(z,z/e) + .

with wi(x,y) being periodic in y. Substituting these series in (5) and collecting
power-like terms in the resulting equation and boundary condition, we conclude
that

ui(z,y) = ex(y) Vu(z) + ers;0(y)u(z),
where x and 6 are solutions of problems (18) and (44), respectively, and

—div(a®Vu) = Zu inQ, wu=0 on .

Remark 6. Notice that the first order term in A is not presented in the limit
equation. Indeed, the formal derivation yields a first order term of the form

ADu(z) - ( /F O(y)v(y) doy — /w Vy‘)(y)dy)’

this term is equal to zero.
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Proof of Theorem 2.3.
The following statement can be proved in exactly the same way as Proposition
7 and Lemma 4.6 in the previous section. We leave its proof to the reader.

Lemma 5.1. Let \; be an eigenvalue of (45) of multiplicity m, m > 1, A\j_1 < A\j =

= Njgm—1 < Ajym. Then there are at least m famalies {\j )}, - {N, o}
such that k;(€) # ki(e) ifi # 1, and
A27(E) H)\J, as € — 0.

The statements similar to those of Proposition 6 and Lemma 4.7 also remain
valid.

Proposition 8. Let {(/\j(e),uj(e))} be a family of normalized eigenpairs of prob-
lem (5) or, equivalently, (6), and assume that, perhaps for a subsequence, Aje) =
A, ase — 0. Then X\ is an eigenvalue of the limit problem (45). If, in addition,
uj(s) converges to u weakly in H}(Q) for the same subsequence of €, then u # 0,
and (\, @) is an eigenpair of (45).

Lemma 5.2. Assume that there are families ki(g), ..., kn(€), ki # ki if i # 1,
such that, for a subsequence,

)\ii(s)HAj, ase—0, +1=1,...,N.
Then the multiplicity of \; is at least N.

Lemmata 5.1 and 5.2 and Proposition 8 imply the desired statements of Theorem
2.3. O

6. Proof of Theorem 2.2. The goal of this section is to prove Theorem 2.2. Thus
it is assumed here that p > 0. We recall that out technique relies essentially on
the factorization principle. The factorization principle has been widely used in the
homogenization theory when studying singularly perturbed problems.

We begin by introducing a new unknown function and a new spectral parameter
in (7). Namely, we set

Us('r):p—l(f)va(-r)a A= EJ’_S‘
€ €

with p_1 and a_ defined in (22)—(26), respectively. Substituting these expressions
in (7) we deduce after straightforward rearrangements that in terms of v. and A
problem (7) reads

—div(a(z/e)Vve) =0 in Q.,
a(z/e)Dv, - ve = Np_1(z/2))?p(z/e)ve on T, (105)
ve =0 on 6§E\I‘E;

here we have denoted a(y) = (p—1(y))? L. For the sake of brevity in this section we
use the notation a°(x) = a(z/e) and p°(z) = (p_1(x/€))?p(x/e). We remind that
under our regularity assumptions, p(+) is a smooth positive function.

Since by construction (see (26))

/F (91 () 0(y) dor, < 0,
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Theorem 2.1 applies to the negative part of the spectrum of problem (105). Al-
though, in contrast with (7), in (105) we do not deal with the Laplacian but with a
more general divergence form elliptic operator with periodic coefficients, the results
stated in Theorem 2.1 remain valid. Namely, using exactly the same arguments as
in the proof of Theorem 2.1 one can show that the statements (i)—(iv) of Theorem
2.1 hold true for the negative part of the spectrum of problem (105).

In order to complete the proof of Theorem 2.2 it remains to prove that on the

interval (%%, 0) there are no eigenvalues of problem (7).

[e%

Proposition 9. The interval ( ,0) belongs to the resolvent set of problem (7).

—1
€

Proof. The proof relies on Floquet-Bloch representation of u. and follows the line
of the proof of Theorem 5 and Lemma 11 in [19]. 0
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