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Summary

This thesis addresses the control problem of rigid bodies with applications to con-
trolled synchronization of leader-follower spacecraft formations for both the ro-
tational and translational cases. All control solutions throughout this thesis are
based on the robotic controllers of Paden and Panja, and Slotine and Li necessar-
ily adopted to fit the appropriate models and quaternion parametrization. After
a short introduction including previous work, contributions and delimitations, the
thesis is divided into three parts.

The first part is named "Modeling of leader-follower spacecraft formations" con-
taining Chapter 2 which includes presentation of the classical equations of motion
of ideal Keplerian orbits, attitude kinematics and dynamics, relative attitude and
translational dynamics for leader-follower spacecraft formations; the latter param-
eterized using the different representations including true anomaly of the leader
spacecraft and Euclidian parameters represented in either leader orbit frame or
follower body frame. Furthermore, we present mathematical models of the most
common orbital perturbing forces and torques and show through simulations how
these forces affect the relative orbits.

The second part is named "Control of rigid bodies" and is divided into three
chapters where we treat continuous and hybrid tracking control of rigid bodies,
respectively in Chapter 3 and 4, while we discuss the choice of preferable equilibrium
point for rotational maneuvers in Chapter 5. In the third chapter the attitude
tracking control problem is considered where uniform exponential stability in the
large of the equilibrium point is obtained for state feedback where disturbances are
assumed to be known, while uniform practical exponential stability in the large of
the equilibrium point is obtained for unknown but bounded disturbances; additional
analysis also shows that the equilibrium point of the system in closed loop with the
sliding surface-based control law can be proven uniformly asymptotically stable,
almost in the large. Next, we introduce state dependent gains where the idea is
to have large gains while working away from the equilibrium for fast trajectory
convergence and small gains close to the equilibrium point to reduce sensitivity to
measurement noise. We also treat the topic of "output" feedback (without velocity
measurement) using similar non-linear gains proving uniform practical asymptotical
stability of the equilibrium point. All results (except the result called "almost in the
large") are based on the assumption that the attitude error never increases beyond
180 degrees relative to the chosen equilibrium point' and similar restrictions are

1By choosing between two equilibria we in some sense choose the rotational direction for a
maneuver.
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made for the estimated attitude error. In Chapter 4 we remove this assumption by
introducing switching control laws with hysteresis, and similar stability results are
obtained except that they are asymptotic instead of exponential for state feedback.
We combine the two presented control laws through a hybrid supervisor, showing
improved performance compared to using each one individually, and furthermore,
revisit the output feedback controller applying switching for both the dynamics
and observer, entirely removing the previous mentioned assumption on maximum
allowed attitude error. In Chapter 5 we present two different schemes to choose the
preferable equilibrium point based on either numerical analysis of simulation results
or using an optimization technique on the linearized equations. Both methods
include the initial rotational motion into the analysis where previous results usually
choose equilibrium point based on the shortest rotation only.

The third part is named "Applications" where we consider the synchronization
problem of leader-follower spacecraft formations in Chapter 6, autonomously gen-
erated references in Chapter 7 and collision avoidance in Chapter 8. In Chapter
6 we present two different control laws for attitude synchronization of rigid bodies
where uniform asymptotic stability of the equilibrium point is obtained for known
disturbances while practical results for unknown but bounded disturbances, where
both analysis are based on cascaded theory; a similar result is also obtained for a
leader-follower spacecraft formation based on the hybrid control solution; for rel-
ative translational control we show uniform global practical exponential stability
of the equilibrium point. The latter result is extended in two different directions;
first we assume that the total disturbance has a constant mean and by adding I2
action we show that the residual can be reduced, and secondly by implementing
exponential varying gain matrices where the gains are individually varying along
each axis, we show that the performance for maneuvers can be increased from a
fuel consumption point of view without increasing sensitivity to measurement noise
compared to our previous results on state dependent gains. In Chapter 7 we present
two different schemes for autonomously generated references based on leader and
relative position coordinates for a leader-follower formation. In the first scheme
considered the leader spacecraft is assumed to be nadir pointing while the reference
for the follower spacecraft is generated to point at the leader nadir foot-print? at
all time, even during formation reconfiguration while in the second scheme, refer-
ences are generated for both the leader and follower to point their instruments at
a common fixed or time varying target on the Earth surface specified by longitu-
dinal and latitudinal coordinates. In Chapter 8 we treat the problem of collision
avoidance during spacecraft reconfiguration utilizing what is called the null-space
based (NSB) behavioral control concept where different tasks are merged together
through use of a supervisor. We propose three different collision avoidance tasks
where collision spheres® are either statically sized or dynamically sized along with
a move to target-task which are combined with the control law through stability
analysis to prove that collisions will not occur.

2By nadir foot-print we here mean the longitude and latitude obtained in the intersection
between the Earth surface and a vector pointing from an orbiting spacecraft pointing towards the
center of the Earth.

3When these spheres - which are located around each member - are entered, evasive maneuvers
are performed.
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Chapter 1

Introduction

The work presented in this thesis are various results on control of rigid bodies with
a special focus on leader-follower spacecraft formations. While working on this
topic, new ideas were constantly appearing as the work proceeded and obstacles
were encountered. The development has been as follows. In previous work typ-
ically only the relative motion between the leader and follower is analyzed while
the leader is assumed to be perfectly controlled. This leads to results more similar
to tracking control than synchronization, and thus we started investigating control
of rigid bodies in general, extending the synchronization analysis through use of
cascaded theory. Since fuel and energy consumption are very important aspects
concerning orbiting spacecraft, we have focused on developing methods to reduce
energy consumption without reducing overall performance. This has been done by
introducing variable gains to reduce sensitivity to measurement noise and hybrid
supervisory control. Furthermore, the problem of choosing preferable rotational
direction during attitude stabilization has received some attention of ours, compar-
ing both continuous and hybrid control and also through use of energy functions
or optimization. The topic of output feedback has also been addressed because of
the possibility to reduce spacecraft mass and volume and then cost by replacing
physical equipment with observers. Since many of the planned missions contain up
to 30 members, we have investigated the topic of autonomous obstacle and collision
avoidance showing that by introducing a dynamical scheme, the allowed passing
distance between members can be reduced leading to a possible reduction in energy
consumption during formation maneuvers. Also, because of the large number of
members, we have developed schemes for autonomous attitude reference generation
where each follower points at the same location on the Earth surface as the leader
to reduce the workload of ground station personnel.

As a lot of the presented results are in some sense reducing energy consumption
or external workload we do not speak of optimality as in the sense of the word from
an engineering point of view. We want our work to be autonomous without needing
large amount of computation - since computational resources often are spares on
board a spacecraft - which often is required for optimal control solutions. We want
to keep the onboard computations and ground station workload at a minimum
because in our vision, the members of a spacecraft formation should be small, light



1.

INTRODUCTION

and cheap to reduce cost, while on the other hand be able to perform accurate
maneuvers to bring out the best from the concept of spacecraft formations.

1.1 Control of rigid bodies

Attitude control of rigid bodies is an interesting control problem which has a lot
of applications including control of aircraft, unmanned aerial vehicles (UAV), he-
licopters, spacecraft and autonomous underwater vehicles (AUV) to name a few,
and has also many similarities to robotic control. The dynamics of rigid bodies are
described by the Euler equations, with the angular velocity vector and the tensor of
inertia appearing as necessary components also referred to as Euler’s moment equa-
tions or the Euler-Poisson equations (Euler, 1752). The integration problem of these
equations has been widely studied by the most outstanding scientists throughout
time similar to Fermat’s Last Theorem (Wiles, 1995). See (Kovalev and Savchenko,
2001) and references therein for a selection of the most important results in rigid
body dynamics obtained in 20th century as well as a statement of the problems
representing the greatest interest and promoting to the completion of solution, and
the work of Tsiotras and Longuski (1996) for an example of what kind of solutions
which are already obtained.

A lot of results have been presented yielding different solutions to the prob-
lem of controlling the angular motion of rigid bodies using the Lyapunov method.
Mortensen (1963) used the second Lyapunov method to construct the external con-
trol torques ensuring the asymptotic stabilization of the rotation of a rigid body.
The result was later extended in Mortensen (1968) where a linear feedback law with
constant coefficients for attitude control of an arbitrary rigid body was designed
through use of Lyapunov techniques. In most cases these designs are based on sound
physical insight, but they result in systems that are difficult to analyze, and the
analysis is not carried out. It is, therefore, desirable to approach the design problem
from a general point of view by taking advantage of the basic similarity of all atti-
tude control systems; namely, that their primary control objective is to maintain the
real attitude as close to the desired attitude as is necessary for successful operation,
and their basic nonlinearity is that of three-dimensional rotations which were gener-
alized by Meyer (1971). Smirnov (1974) studied the active control of the rotational
motion of a rigid body using the Lyapunov function. In such study, a non-linear
control law was derived with the help of the Lyapunov technique. The stability of
uniform rotations of a rigid body with a fixed point about its first principal axis
was studied by Kovalev and Savchenko (1975), while Belikov (1981) investigated
the effect of gyroscopic forces on the stability of uniform rotation of a rigid body
about its principal axis. In (Lebedev, 1981) triaxial orientation was investigated
for a rigid body with an arbitrary mass geometry in the case when the constraints
on the components of the controlling moment, which is a linear combination of
independent vectors, are specified in implicit form, and control problems for both
time-optimality and asymptotic stability were investigated. Brockett (1983) pre-
sented both necessary and sufficient conditions for existence of a smooth feedback
which renders an equilibrium point of a nonlinear system locally asymptotically
stable by means of two torques, each applied along a principal axis. It was later
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Figure 1.1: Robots can do jobs faster and better than humans with precision,
intelligence and endless energy levels making them an integral part of industry.
Reproduced with courtesy to Asea Brown Boveri (ABB).

shown by Aeyels (1985) that the results also hold for one available torque along an
appropriately chosen principal axis, while Crouch (1984) reported similar results
for attitude control using geometric control. Furthermore, Aeyels and Szafranski
(1988) showed that single control aligned with a principal axis cannot asymptoti-
cally stabilize the system. Sontag and Sussmann (1988) complimented this result
by proving that the angular velocity equations can be smoothly stabilized with a
single torque controller for bodies having an axis of symmetry. Byrnes and Isidori
published a series of papers on global results for state feedback, but showed in
(Byrnes and Isidori, 1989) (see references within) that a system which can be glob-
ally stabilized using state feedback, cannot be locally asymptotically stabilized by
static output feedback. The problem was revisited by Outbib and Sallet (1992) us-
ing the Jurdjevic-Quinn techniques, leading to simpler feedback laws than previous
results.

As most of the cited work above is concerned with control of the dynamic equa-
tions, results on attitude control have been developed in parallel. The rotation
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Figure 1.2: A Remotely Operated Vehicle (ROV) in support of oil and gas drilling,
construction, and production activities working in ocean depths inaccessible for
most human activity. Reproduced with courtesy to Oceaneering.

between two frames is usually given by the rotation matriz also called the direction
cosine matriz where many different parameterizations have been proposed over
time. A widely used set of parameters for the rotation matrix is called the Fu-
ler angles where the rotation matrix is given as a composite rotation of selected
combinations of rotations about the three principal axis often called roll-pitch-yaw
(Egeland and Gravdahl, 2002). This representation has an inherent singularity
at # = 90° which justifies use of other parameterizations such as the angle-axis
parametrization which has four parameters; three parameters describing a rotation
vector while one parameter describing the rotation angle about this vector; the
parametrization is based on Euler’s theorem stating that any rotation of a rigid
body can be described by a single rotation about a fixed axis. FEuler parameters
and especially the unit quaternion (Hamilton, 1844) are both singularity free pa-
rameterizations based on the angle-axis parametrization, where the latter has been
developed and utilized for representation of the rotational motion of rigid bodies
as early as the 1950’s; see (Shuster, 2008) for a historically retrospective, prob-
lems and formulations. Among other three parameter representations utilized we
find the Euler rotation vector, the (modified) Euler-Rodrigues parameters and the
w parameter (Tsiotras and Longuski, 1995) to name a few. See Tsiotras (1996)
for a discussion on how different choices of parameters may suit different control
problems and Shuster (1993) for a survey of representations.

Early results on attitude control were reported by the National Aeronautics
and Space Administration (NAsA) (Meyer, 1971) presenting quaternion-based con-
trol laws and the European Space Agency (ESA) (Crouch et al., 1980) among others,



1.1. CONTROL OF RIGID BODIES

Figure 1.3: Unmanned Aerial Vehicles (UAV)s have become increasingly popular
in military industry for reconnaissance as well as attack missions along with civil
applications, such as firefighting or security work, such as surveillance of pipelines.
Reproduced with courtesy to Andgya Rocket Range (ARR).

which in some sense serves as what can be called a base for later work. A linear de-
coupled model-independent control law based on quaternion feedback was presented
by Wie and Barba (1985), control laws where the inertia matrix is represented along
with constrained gain matrices based on unit-quaternion representation in (Wie et
al., 1989), while Koditschek (1988) reported adaptive results obtaining what was
called "almost-global" asymptotically exact tracking. An important paper on the
subject of attitude control was written by Wen and Kreutz-Delgado (1991) where
a thorough review of previous work was given along with a general framework for
the analysis of the attitude tracking control problem for rigid bodies. These results
only hold for three independent actuators, and the case of feedback stabilization
using only two independent controls was investigated in (Byrnes and Isidori, 1991),
and furthermore, it was shown by Morin et al. (1995); Morin and Samson (1997)
that asymptotic/exponential convergence can be obtained by letting the feedback
be time-varying. Joshi et al. (1995) also studied the problem of global asymptotic
stability of the attitude of a rigid spacecraft using model-independent quaternion
feedback with gain matrices and simpler Lyapunov function and stability proof
compared to what was reported in (Wen and Kreutz-Delgado, 1991). A different
approach was proposed by Bullo and Murray (1999) where they use the Riemannian
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structure of the configuration manifold of a fully actuated simple mechanical control
system to derive a full state, coordinate-free feedback-plus-feedforward controller
that locally exponentially tracks a general bounded reference trajectory.

As can be seen, the control solutions span in a lot of different directions, but
naturally, attitude tracking control lies on a bulk of literature on tracking control of
robot manipulators and, more generally Euler-Lagrange (EL) systems ¢f. Ortega
et al. (1998); see also Van der Schaft (1996) and references within for more on
passivity and applications. The so-called passivity-based approach to robot control
has gained much attention, which, contrary to computed torque control, handles
the robot control problem by exploiting the robots’ physical structure (Berghuis
and Nijmeijer, 1993). A simple solution to the closed-loop passivity approach was
proposed by Takegaki and Arimoto (1981) on the robot position control problem.
The natural extension and a classic in robot control literature is the PD+ controller
of Paden and Panja —cf. (Paden and Panja, 1988) which, together with the Slotine
and Li controller (Slotine and Li, 1987), were the first algorithms for which global
asymptotic stability was demonstrated.

The passivity-based approach has successfully been applied to the rigid body
control problem in numerous examples such as in (Slotine and Di Benedetto, 1990)
where accurate attitude tracking control of rigid spacecraft handling large loads
of unknown mass properties were investigated, Egeland and Godhavn (1994) pre-
sented an adaptive control scheme using a linear parametrization of the equation of
motion, while Quottrup et al. (2001) obtained similar passive results for the Rgmer
satellite and global asymptotic stability for an input and output strictly passive
system in feedback interconnection. In (Li et al., 2006) the authors presented a
passivity-based nonlinear attitude regulator for a rigid spacecraft subjected to con-
trol saturation, and in the recent paper by Casagrande et al. (2011) the authors
proposed a controller that asymptotically stabilizes a passive system feeding back
only the integral of the output based on the sampled integral stabilization technique.

Along with the passivity based approach, examples of other design methods
that appeared in the eighties were called (integrator) backstepping and adaptive
backstepping which yield the advantage of design flexibility compared to other
design methods; see (Krsti¢ et al., 1995; Fossen, 2002) and references within for
thorough presentations. The techniques have successfully been utilized on rigid
bodies in many forms over the years —cf. e.g. (Wie et al., 1989; Joshi et al., 1995;
Jensen and Wisniewski, 2001; Kristiansen et al., 2009).

Output feedback control has received an increased amount of attention the last
years, where for rigid bodies the technique is mostly used for angular velocity es-
timation by replacing measurement instruments such as gyroscopes, thus saving
weight and money. Typically by output it is meant measurement of position or
attitude but, although the phrase output feedback often is used, the correct term
for rotational control would be without velocity measurement since the output from
the sensors are measurement vectors of e.g. sun, stars, magnetic field and then the
attitude is propagated through use of algorithms such geometric-based methods
(TRIAD) (Wertz, 1978), QUEST (Shuster and Oh, 1981), Kalman filters (Lefferts
et al., 1982) etc. Such an angular velocity observer was presented by Salcudean
(1991) using unit quaternions and a mechanical energy function approach which
were proven globally convergent, while a passivity approach was considered by
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Figure 1.4: The Hubble telescope is one of the largest and most versatile space
telescopes, and is well-known as both a vital research tool and a public relations
boon for astronomy. Reproduced with courtesy to NASA.

Lizarralde and Wen (1996) where the passivity properties were exploited in a non-
linear controller to ensure asymptotic stability without need of a model-based ob-
server for angular velocity reconstruction. Similar results were presented in (Ortega
et al., 1994) where a class of EL systems were determined, satisfying a dissipation
propagation condition, while output feedback tracking control of a class of EL sys-
tems subjected to monotonic loads were investigated in (Aamo et al., 2000). Tsio-
tras (1998) established passivity for the rigid body attitude equations where linear
asymptotical stabilizing controllers and control laws followed naturally, while As-
tolfi (1999) revisited the problem of stabilizing the angular velocity of a rigid body
where only two of the three states are measured and showed construction of a hy-
brid control law yielding exponential convergence. In (Caccavale and Villani, 1999)
two different schemes were presented based on results for output control of robot
manipulators ¢f. (Berghuis and Nijmeijer, 1993); in the first scheme, a second-
order model-based observer is adopted for estimation of the angular velocity, while
the second scheme is based on a lead-filter for estimation of the angular velocity
error. An alternative approach using Modified Rodrigues Parameters (MRP) was
presented in (Akella, 2001) simplifying the structure of the control law. The topic
of output feedback was further pursued for spacecraft control in (Costic et al.,
2000), where the inertia matrix was assumed unknown and the problem was solved
using a quaternion-based adaptive approach while Wong et al. (2001b) reported
similar results using the MRP kinematic representation. Maithripala et al. (2004)
presented an intrinsic formulation of an observer for a class of simple mechanical
systems on a Lie group, that is, no coordinates are needed to be introduced on the



1.

INTRODUCTION

S5133E011051

Figure 1.5: The International Space Station (ISS) as seen from Discovery, serves as
a research laboratory that has a microgravity environment in which crews conduct
experiments in biology, human biology, physics, astronomy and meteorology, among
other things. Reproduced with courtesy to NASA.

manifold which is a Lie group, hence a single formulation is valid for all coordinate
patches, followed by an output feedback reference tracking controller based on the
same principles converging from almost every initial condition (Maithripala et al.,
2006). Tayebi (2006) presented a scheme based on a unit quaternion observer and
a linear feedback control law to prove asymptotic stability of the equilibrium point,
thus avoiding the use of lead filter. The problem was further pursued in Astolfi
and Lovera (2002); Tayebi (2008) where first-order dynamic output feedback con-
trollers based on unit-quaternion representations were proposed obtaining global
and almost global results, respectively, and almost global exponential stability for
stabilization on SE(3) in (Cunha et al., 2008). Bertrand et al. (2009) obtained re-
sults working directly on SO(3) where the gains in the control design can be tuned
in advance to ensure that the torque inputs satisfy arbitrary saturation bounds.

The problem of global stability for manifolds in general and especially on SO(3)
has submerged as an interesting problem which has received some attention the last
couple of years but surprisingly little in general. It is well known that representa-
tion on SO(3) has four equilibria and that all three-parameter parameterizations
such as Euler angles have singularities (Hughes, 1986). Euler parameters and unit
quaternions are non-singular parameterizations of SO(3) though the mapping from
S3 to SO(3) is two-to-one on the manifold, that is, for each point p € SO(3), there
are exactly two unit quaternions, +q. From an analytical view-point the two equi-
libria must be considered as different hence, one may not expect to achieve global
stability properties in closed-loop using continuous feedback (Bhat and Bernstein,
2000). It was shown in (Mayhew et al., 2009) that global stability properties of the
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dual equilibrium points is achievable by lifting the trajectory in SO(3) to a con-
tinuous path on S® through use of hybrid feedback, hence the global stabilization
problem on SO(3) is equivalent to stabilizing both quaternions corresponding to
the same attitude, but, if one takes a look at the literature well known text books
such as Hahn (1967) and Khalil (2002) clearly states that the term global refers to
the whole state space R™ which is not the case for systems working on a manifold
such as SO(3), S3 etc.; from this point of view, the term global has widely been
misused in literature.

As previously mentioned, hybrid control is a suitable tool for solving the prob-
lem of the dual equilibrium points associated with quaternion feedback, among
other things. Hybrid systems are dynamic systems that exhibits both continuous
and discontinuous dynamic behavior that is, the system can both flow and jump.
The field has gained a lot of attention the recent years; see e.g. (Van der Schaft and
Schumacher, 2000; Goebel et al., 2009) and references within for a thorough tutorial
on modeling the dynamics of hybrid systems, on the elements of stability theory
for hybrid systems, and on the basics of hybrid control; also see Liberzon (2003)
for a thorough introduction on switching control. Discontinuous feedback has suc-
cessfully been applied on rigid bodies such as in (Krishnan et al., 1995) where the
authors considered the case of two momentum wheel actuators using pseudo-Fuler’s
angles where the spacecraft equations are not asymptotically stabilized to any equi-
librium attitude using a time-invariant, continuous feedback control law, but showed
that it can be accomplished using discontinuous feedback control. A discontinuous
control approach was also presented by Fragopoulos and Innocenti (2004), inspired
by the work of Fjellstad and Fossen (1994b), where a signum function was utilized
in the feedback controller, but, as pointed out by Mayhew et al. (2009), does not
lead to a robust result because the rigid body may be stuck 180 degrees away from
the equilibrium for infinite time when measurement noise is introduced. This par-
ticular problem was solved by including hysteresis to the switching (Mayhew et al.,
2009).

Numerous other techniques and applications for control of rigid bodies can be
found such as time and fuel optimal control (Junkins and Turner, 1986; Spindler,
1996; Tsiotras et al., 1996; Krsti¢ and Tsiotras, 1997; Toslovich, 2003; Lee et al., 2008;
El-Gohary and Tawfik, 2010); magnetic attitude control (Wisniewski and Blanke,
1999; Lovera and Astolfi, 2004; Bhat, 2005); solar panel deployment (Kuang et al.,
2004); underactuated control (Tsiotras and Luo, 2000; Casagrande et al., 2008);
actuator failure (Tsiotras and Doumtchenko, 2000); flexible spacecraft (Bloch et al.,
1992; Song and Agrawal, 2001; Di Gennaro, 2003; Bang and Oh, 2004; Erdong and
Zhaowei, 2010) and underwater vehicles (Fjellstad and Fossen, 1994 a; Pettersen and
Egeland, 1999; Astolfi et al., 2002) to name a few. Target tracking for spacecraft is
another application that has been addressed, such as in (Goerre and Shucker, 1999;
Chen et al., 2000; Tsiotras et al., 2001; Steyn, 2006). To generate target tracking
references usually a vector pointing from the spacecraft towards the desired point
along with the first and second derivatives of the vector is calculated and then
transformed into desired quaternions and angular velocities to ensure high accuracy
tracking of the specified target point when fed as desired trajectories into the control
law.
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1.2 Synchronization

Synchronization in nature has puzzled and inspired scientists for centuries. The
thought of termites and ants organizing and construct their mounds and anthills
without any work leaders or architectures, based on very limited local information
of the whole process (no global overview) spanning over several lifetimes of the
participants, is fascinating. This kind of synchronization is rather ordinary in bi-
ological systems and are called self-organization or self-synchronization, defined as
(Camazine et al., 2003)

Self-organization is a process in which pattern at the global level of a system emerges
solely from numerous interactions among the lower-level components of the system.
Moreover, the rules specifying interactions among the systems’ components are ex-
ecuted using only local information, without reference to the global pattern.

It should be noted that even as we often talk of biological systems such as fish
schools, bird formations, flashing of fire flies etc. when synchronization is discussed,
patterns of wind-blown ripples on the surface of a sand dune is also an example
of self-synchronization. The group behavior is motivated by increased benefits for
each member compared to living on its own. Typically this includes better pro-
tection against predators and increased probability to find food; also aero- and
hydro-dynamical effects because of group behavior leads to e.g. increased range for
geese flying in their characteristic V-formation. The control of self-organization is
divided into two basic modes of interaction: positive and negative feedback. The
first one enables phenomenons as flocking or schooling where birds nesting or fishes
in schools attracts new members based on the total size of their formations, that
is, the reason for a specific bird to nest at a specific mountain is not necessarily
that it finds this particular place as the best but, because so many other birds
are nesting there it has to assume that this is a good spot. Negative feedback is
typically information which is gathered on small scale such as the distance towards
the neighbors of each member thus, the size and shape of a formation can typically
be described by the two previous mentioned mechanisms.

Although self-organization is particulary present in nature, alternatives are of-
ten observed, such as patterns formed by humans, since the pattern-formation pro-
cesses with human groups are easily perceived, and are divided into four groups:
leader, blueprint, recipe and template (Camazine et al., 2003). The leader directs
the building activity of the group and provide each group member with detailed
instructions about what to do to contribute to building the overall pattern; the
blueprint forms a compact representation of the spatial or temporal relationships
of the parts of a pattern, the recipe which can be understood as sequential in-
structions that precisely specify the spatial and temporal actions of the individ-
ual’s contribution to the whole pattern, and the templates can be understood as
a full-size guide or mold that specifies the final pattern and strongly steers the
pattern-formation process. Examples of the alternatives in order could be the row-
ing crew, where stroke synchronization and coordinated shifts in stroke frequency
are largely responses to the coxswain’s commands; a crew of construction workers
receiving a detailed and virtually complete description through a blueprint; a cook
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Figure 1.6: Ducks swimming in formation. The V-formation allows birds to com-
municate more easily and provides them with good visual contact of each other to
keep the flock together. Reproduced with courtesy to the U. S. Fish and Wildlife
Service Refuge Staff.

preparing food using a detailed recipe (without introducing feedback through tast-
ing); and a die or mold used as template for e.g. producing tools or minting coins.
This is according to Blekhman et al. (1997) called controlled synchronization, see
Blekhman et al. (1997) for a formalized mathematical definition. In addition to self-
synchronization and controlled-synchronization Blekhman et al. (1997) also defines
natural-synchronization as disconnected systems that present synchronous behav-
ior, and refers to the example that all precise clocks are synchronized in the sense
of frequency. Controlled-synchronization is divided by Nijmeijer and Rodriguez-
Angeles (2003) into internal (mutual) synchronization, where all synchronized ob-
jects occur on equal terms in the unified-multi-composed system, and external syn-
chronization, where it is supposed that one object in the multi-composed system
is more powerful than the others and its motion can be considered as independent
of the motion of the other objects. Kyrkjebe (2007) defined it as degree of syn-
chronization where cooperation reflects internal synchronization while coordination
reflects external synchronization.

Synchronization of dynamical systems was first studied by Christian Huygens in
the XVIIth century where he studied two clocks operating simultaneously from the
practical requirement of redundancy for maritime clocks (Huygens, 1669), whereas
he later found that the pendulum clocks swung in exactly the same frequency and
180° out of phase (Huygens, 1673; Bennett et al., 2002). Ultimately, the innovation
of the pendulum clock did not solve the longitude problem, however, Huygens’s
synchronization observations have served to inspire study of sympathetic rhythms
of interacting nonlinear oscillators in many areas of science. Another interesting
observation was done by Cassini (1693) and formulated as
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Cassini’s first law: the Moon has 1:1 spin-orbit resonance. This means that the
rotation / orbit ratio of the Moon is such that the same face is always facing the
Earth.

Strutt (1896) also made an important discovery on self-synchronization for two
tuning forks with electromagnetic excitation which were coupled either electrically,
mechanically or by using a resonator box. The phenomenon of self-synchronization
was in some sense "rediscovered" when a particular case of self-synchronizing me-
chanical vibro-exciters mounted on the same vibrating organ was discovered by
chance in the U.S.S.R (Blekhman, 1988). Blekhman (1988) describes the synchro-
nization phenomenon as

several man-made or natural objects performing in the absence of interaction os-
cillations or rotational motions with different frequencies (angular velocities); the
start moving with the same multiple or commensurable frequencies (angular veloc-
ities) in the presence of even very weak interactions. In such cases, definite phase
correlations between oscillations and rotations are being established.

In recent years, the problem has obtained increasing interest in various research
areas due to its impact in technology development and challenges it imposes see
e.g. (Blekhman, 1988; Rodriguez-Angeles, 2002; Nijmeijer and Rodriguez-Angeles,
2003; Efimov, 2005; Kyrkjebg, 2007) and references within for more detailed and
mathematical rigorous definitions and general results. In (Kyrkjebg, 2007) con-
trolled synchronization is divided into three main approaches: model-based, behav-
ioral and wvirtual object.

Model-based controlled synchronization consists in using the laws of physics and
control theory in order to induce synchronization in dynamical systems. Successful
instances include synchronization of robot manipulators (Rodriguez-Angeles and
Nijmeijer, 2001; Bondhus et al., 2004), leader-follower spacecraft formations (Law-
ton and Beard, 2000; Bondhus et al., 2005; Kristiansen, 2008; Grotli, 2010), ship
replenishment operations (Fu et al., 2004; Kyrkjebg et al., 2006), rigid bodies (Bai
et al., 2008, 2009; Sarlette et al., 2010) to name a few, and even synchronization
schemes with multiple leaders have been considered as in (Meng et al., 2010).

Behavioral based controlled synchronization is based on a group of systems
which is controlled in a way such that each member collaborate in order to achieve
a task as a team of agents. Examples may be found in the areas of autonomous
vehicles (Lawton et al., 2000; Ogren et al., 2004; Antonelli and Chiaverini, 2006;
Arrichiello, 2006), under-actuated marine vessels (Arrichiello et al., 2006; Cui et
al., 2010) and rigid bodies (Nair and Leonard, 2007; Bai et al., 2007, 2009; Sarlette
et al., 2009; Dimarogonas et al., 2009). An instance of behavioral based control
is consensus, in which a group of systems coordinate their motion without any
subsystem having a higher hierarchy with respect to the others —see (Ren and
Beard, 2008) and references within.

Virtual structure controlled synchronization was defined by Tan and Lewis
(1996) as a collection of elements,e.g. robots, which maintain a (semi) rigid geo-
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Figure 1.7: Navy and Japan Air Self-Defense Force aircraft fly in formation over
U.S. Navy and Japan Maritime Self-Defense Force ships. In military activities
traveling and maneuvering together in a disciplined, synchronized, predetermined
manner, reduces losses and increases the chance of victory. Reproduced with cour-
tesy to the United States Navy.

metric relationship to each other and to a frame of reference. The overall motion of
this structure is then utilized to generate translational and rotational references for
each individual member to track using individual tracking controllers, thus trans-
forming the regulation problem into several local tracking-control problems and
also removing the need of a leader. The approach has successfully been utilized
in areas such as control of mobile robots/vehicles (Tan and Lewis, 1996; Young et
al., 2001; Egerstedt et al., 2001; Lalish et al., 2006) and marine crafts (Skjetne et
al., 2002), but can also be utilized in combination with model-based and behav-
ioral approaches to achieve synchronization on different levels of abstraction as in
(Beard et al., 1998, 1999, 2001; Ren and Beard, 2004; Ogren et al., 2004; Cong et
al., 2011) for control of spacecraft formations and mobile robot sensor networks,
and consensus. The adjective virtual has also been used in other forms such as
virtual vehicle (Crowley, 1989; Kyrkjebg et al., 2006), virtual leader (Leonard and
Fiorelli, 2001; Gu et al., 2006) and wvirtual center (Tillerson et al., 2003).

For large systems, e.g. complex dynamical systems such as spacecraft forma-
tions, the expression divide and conquer may seem appealing, and for good rea-
sons; by dividing a system into smaller parts, the difficulties of stability analysis
and control design can be greatly reduced. A particular case of such systems is the
cascaded structure which consists of a driving system working as an input to the
driven system through an interconnection, similar to leader-follower' based dynam-

INote that leader-follower also in literature is referred to as master-slave, chief-deputy or
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ical systems. Correspondingly, the synchronization controller inevitably couples the
follower to the dynamics of the leader. However, the synchronization controller is
demanded to achieve the task regardless of the leader dynamics as well as the ref-
erence that system intends to track. The ability to control two coupled systems
separately, is called separation principle and is known not to hold in general for
nonlinear systems see (Mazenc et al., 1994) for examples. This is where cascades
theory enters in play —see (Loria and Panteley, 2005) and references therein and
Appendix A.5 for more details on stability of cascaded systems.

A general result on autonomous cascaded system was presented by Seibert and
Suarez (1990) where they proved that two interconnected systems with globally
asymptotically stable (GAS) equilibria with bounded solutions (BS) resulted in
GAS for the equilibrium point of the total system. Jankovié¢ et al. (1996) stud-
ied the problem of global stabilizability of feed-forward systems by a systematic
recursive design procedure for autonomous systems and linear growth restrictions
of the interconnection term. Time-varying systems were considered in (Jiang and
Mareels, 1997) for stabilization of robust control, while Panteley and Loria (1998)
established sufficient conditions for uniform global asymptotical stability (UGAS)
of cascaded nonlinear time-varying systems. The aspect of practical and semi-global
asymptotic stability for nonlinear time-varying systems in cascade were pursued in
(Chaillet, 2006; Chaillet and Loria, 2008) while exponential results were reported by
Grotli (2010). Cascaded systems have successfully been applied to a wide number
of applications; in (Fossen and Fjellstad, 1993) a cascaded adaptive control scheme
for marine vehicles including actuator dynamics was introduced, while Loria et
al. (1998) solved the problem of synchronizing two pendula through use of cas-
cades, and dynamic positioning of ships where discussed by (Loria et al., 2000)
applying output feedback control. Stability analysis of leader-follower spacecraft
formations was presented in (Grgtli, 2010) where the controller-observer scheme is
proven input-to-state-stable; in (Cui et al., 2010) tracking errors of a leader-follower
formation of n autonomous underwater vehicles (AUVs) was proven to be bounded
and converging to a compact set through use of output feedback and backstepping
design.

1.3 Spacecraft formations

In the last two decades formation flying has become an increasingly popular subject
of study. This is a new method of performing space operations, by replacing large
and complex spacecraft with an array of simpler micro-spacecraft bringing out
new possibilities and opportunities of cost reduction, redundancy and improved
resolution aspects of onboard payload. Formation flying is defined by Scharf et al.
(2003) and Scharf et al. (2004) as a set of more than one spacecraft whose dynamic
states are coupled through a common control law. In particular, at least one member
of the set must

1. track a desired state relative to another member, and

target-chaser to name a few.
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Figure 1.8: The Earth Observing-1 (EO-1) satellite in formation with Landsat 7
trailing by one minute, permitting scientists to obtain unique measurements by
combining data from several satellites rather than by flying the full complement of
instruments on one costly satellite. Reproduced with courtesy to NASA.

2. the tracking control law must at the minimum depend upon the state of this
other mempber.

The key point is the word relative which marks the difference between forma-
tions and constellations such as the Global Positioning System (GPS) since each
satellite only require an individual satellite’s position and velocity for orbit correc-
tions (Scharf et al., 2003).

One of the main challenges is the requirement of synchronization between space-
craft; robust and reliable control of relative position and attitude are necessary to
make the spacecraft cooperate to gain the possible advantages made feasible by
spacecraft formations. For fully autonomous spacecraft formations both path- and
attitude-planning must be performed on-line which introduces challenges like col-
lision avoidance and restrictions on instrument pointing requirements, with the
lowest possible fuel expenditure. For spacecraft formations one typically differs
between deep-space missions where the relative spacecraft translational dynamics
are approximated by a double integrator, and planetary orbital environments where
spacecraft are subjected to significant orbital dynamics and environmental distur-
bances. The latter is furthermore divided into two categories: active relative orbits
which are periodic relative spacecraft trajectories that require open loop control to
maintain their periodicity, and passive relative orbits which are orbits that remain
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constant in e.g. geometry or size throughout the orbit or at certain points on the
orbit without active control, although many of these kind of orbits are ruined when
disturbances are added to the analysis (Scharf et al., 2003).

The system model is a key element to achieve an reliable and robust controller.
Basically there are two different approaches for modeling spacecraft formations:
Cartesian coordinates and orbital elements which both have their pros and cons.
The orbital element method is often used to design formations concerning low fuel
expenditure because of the relationship towards natural orbits, typically passive
relative orbits, while Cartesian models often are used where orbits with fixed di-
mensions are studied, typically active relative orbits. Also for both modeling and
control of spacecraft formation we divide into two areas: relative translation and
rotation whereas some consider both with or without coupling.

The simplest model of relative translation between two spacecraft is linear and
known as the Hill (Hill, 1878) or Clohessy-Wiltshire equations (Clohessy and Wilt-
shire, 1960). These linear models are based on assumptions of circular orbits,
no orbital perturbations and small relative distance between spacecraft compared
with the distance from the formation to the center of the Earth. Another model,
known as the Lawden equations (Lawden, 1954), or Tschauner-Hempel equations
(Tschauner, 1967), is an extension to the elliptical Keplerian orbits which neither
considers orbital perturbations. Based on the Hill’s equations Sabol et al. (2001)
investigated four formation classes: in-plane, in-track, circular and projected circu-
lar designs and investigated the stability based on realistic perturbations through
simulations, concluding that an active control action is needed to keep the satellites
in any formation. As new mission applications appeared, the need of more detailed
models arose, such as the problem of multiple-satellite rings (McInnes, 1995), non-
linear models for relative rotation and translation (Wang and Hadaegh, 1996), and
later in (Yan et al., 2000b; Schaub and Junkins, 2003; Ploen et al., 2004a) and (Kris-
tiansen, 2008) derived for arbitrary orbital eccentricity and with added terms for
orbital perturbations; see (Alfriend et al., 2010) and reference within for a thorough
presentation. Although most previous work focus on relative translation, authors
such as Wang and Hadaegh (1996); Pan and Kapila (2001); Ploen et al. (2004b);
Kristiansen et al. (2007); Svendsen et al. (2007) presents coupled models of both
relative translation and rotation.

Lawton (2000) defined three main formation flying control architectures, namely
leader-follower, behavior-based and virtual structure strategies which are similar to
the definitions for controlled synchronization in the previous section. Furthermore,
Scharf et al. (2004) adds to the previous list multiple-input, multiple-output (MIMO)
and cyclic architectures. In MIMO architecture a dynamical model for the total
formation is used similar to a multivariable plant, thus all the tools available for this
kind of system are applicable, at the cost of heavy communication requirements.
Cyclic architecture on the other hand is more similar to leader-follower control
where each member is connected to at least one other member, but not hierarchical,
thus not too different, from consensus algorithms.

A lot of work on relative control of spacecraft formations has been presented
over the last two decades including numerous different techniques; see (Scharf et
al., 2004; Kristiansen and Nicklasson, 2009) for thorough reviews, and utilization
of PD+, sliding surface, different techniques of backstepping and output feedback
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Figure 1.9: The Laser Interferometer Space Antenna (LISA) constellation is a joint
NASA-ESA mission to detect and accurately measure gravitational waves from as-
tronomical sources, possibly from sources of cosmological origin, such as the very
early phase of the Big Bang, and test Einstein’s theory of gravity. Reproduced with
courtesy to Astrium.

in the latter reference. Notable results are (Wang and Hadaegh, 1996) where a
thorough discussion on the formation control problem is presented including con-
trol laws for formation keeping and relative attitude alignment based on nearest
neighbor-tracking, which later was extended in (Wang et al., 1999) obtaining expo-
nential stability of the equilibrium points. A different approach was presented by
Yeh et al. (2000) based on Hill’s equations using a sliding mode approach to min-
imize fuel required to maintain a rigid formation, while Lawton and Beard (2002)
considered the problem of maintaining attitude alignment throughout a formation
maneuver based on behavior approaches. Behavior-based control was also utilized
by VanDyke and Hall (2006) for designing a class of decentralized attitude control
laws.

By including adaptation laws Hadaegh et al. (1998) proved that the relative
translational tracking error converges towards zero with time for constant distur-
bances, while de Queiroz et al. (2000) develops a globally adaptive feedback con-
troller despite the presence of unknown, constant, or slow-varying spacecraft masses,

17



1.

INTRODUCTION

18

disturbance forces and gravity forces for a leader in circular orbit, later developed
for elliptic orbits in (Yan et al., 2000b). Similar results were also reported by Pan
and Kapila (2001) proving global asymptotic convergence of the error states for
both translational and rotational tracking control, while Wong et al. (2001a) re-
ports similar results for translational tracking based on a learning controller which
also accounts for periodic disturbances. The mass uncertainty problem is also
considered by Lawton et al. (1999) where the derived control law under certain
conditions ensures that the relative tracking error is kept within certain bounds
during a formation rotational maneuver. The results of Wong et al. (2001a) were
later extended by Pongvthithum et al. (2005) with a series of new features includ-
ing independency for the control law of both satellites’ parameters, leader position,
orbit and control inputs, allowing unknown and time varying parameters, no re-
quirement for periodic disturbances, although, it is assumed among other things,
that the relative position is bounded. Another adaptive solution for relative atti-
tude was presented in (Krogstad and Gravdahl, 20065) where two control laws were
presented; one for the leader and an adaptive synchronizing for the follower, though
without considering disturbances. Consensus-based algorithm has also been pre-
sented as in e.g. Sarlette et al. (2007) driving the satellite swarm towards attitude
synchronization from any initial configuration, without using any leader or exter-
nal reference, and for various satellite interconnection topologies. Pan and Kapila
(2001); Kristiansen et al. (2008); Krogstad and Gravdahl (2006a) also presented
solutions to the 6DOF control problem where the first considered mutual synchro-
nization of a fleet of followers and the second and third considered leader-follower
formations, all obtaining asymptotic results although the latter utilized deep-space
translational dynamics (double integrator). A different approach was proposed by
Shan (2008) utilizing the concept of adaptive coupling control introduced by Sun
(2003) although asymptotic properties were not proven, and Chang et al. (2010)
presented a cooperative control law using adaptive time-varying Laplacian gains
proving incremental input-to-state stability based on contraction analysis.

Output feedback control has also been utilized on spacecraft formations where
the earliest result to the authors knowledge is the work of de Queiroz et al. (1999)
using a model-independent velocity "observer" with a high-pass filter like structure
yielding global uniform ultimate boundedness? of the relative position and velocity
tracking errors; similar results also appeared in (Yan et al., 2000a; Wang et al.,
2000). The results were later extended by Wong et al. (2002) assuming that the
leader spacecraft in the formation follows a no-thrust, natural, elliptical orbit, while
Pan et al. (2004); Wong et al. (2005) obtained similar results for the 6DOF case,
also here through use of a high-pass filters.

Relative translational control was considered by Serrani (2003) where a robust
decentralized controller using an internal model based approach was derived, han-
dling parametric uncertainties, unknown disturbances and uncertainties on the ref-
erence trajectory. Kristiansen et al. (2006) obtained §-weak uniform semi-global
practical asymptotic stability? where adaptation of true anomaly rate and rate
of change bounds for the leader spacecraft and spacecraft masses in the control

2See (Khalil, 2002) for definition of ultimate boundedness.
3See (Chaillet, 2006) for definition.
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law were included. Grotli and Gravdahl (2007) presented two different controller-
observer schemes based on the sliding surface (Slotine and Li) and PD+ (Paden
and Panja) control laws, obtaining exponential results for both controllers assuming
known disturbances, and asymptotic results for unknown but bounded disturbances,
which in (Gretli et al., 2008) was improved to exponential stability using presented
definitions and theorems of sufficient conditions for nonlinear time-varying systems
to be exponentially stable with respect to balls that can be arbitrarily reduced by
a convenient tuning of gains.

Integrator backstepping was utilized by Bondhus et al. (2005) to prove asymp-
totic stability for relative attitude in leader-follower formations, Kristiansen et al.
(2009) obtained uniform practical asymptotic stability? using a lead filter based on
approximate differentiation, and Krogstad and Gravdahl (2009) obtained similar
stability results based on a sliding surface design using the followers angular veloc-
ity to estimate the relative angular velocity. An alternative solution was presented
by Tayebi (2006) using a unit quaternion observer and a linear feedback control
law leading to a passive mapping between the observer input and the vector part of
the estimation-error quaternion, claiming global asymptotic stability without the
use of a lead filter for regulation and almost global asymptotic stability results for
tracking (Tayebi, 2008). In (Abdessameud and Tayebi, 2009) auxiliary dynamical
systems were introduced to generate the individual and relative damping terms in
the absence of the actual angular velocities and relative angular velocities, obtain-
ing asymptotically convergence of all members to a given reference or in the spirit
of consensus when no reference attitude is specified.

1.4 Contributions and scope of thesis

The scope of this thesis is control of rigid bodies and synchronization of rigid bodies
and spacecraft formations, that is, when analyzing coordination through leader-
follower formations it is natural to also analyze the behavior of the leader. Our main
focus has been to make leader-follower spacecraft formations more suitable for the
technology of today by, among other things, reducing the amount of energy required
for control for fixed formations and reducing the overall workload for the ground
station crew by increasing the degree of autonomy through autonomously generated
references. We also try to fill a gap in previous work where the term global stability,
as we see it, has been widely misused and "reintroduce" the property stability in
the large which is not very commonly used but, in our view, is more precise when
working with stability on manifolds. All control laws presented throughout this
thesis are based on the robotic control laws of Paden and Panja (1988) and Slotine
and Li (1987) adapted for quaternion representation.

1.4.1 Contributions and summary

e Chapter 2: Previous modeling results of relative rotation, translation and
disturbances are collected in this chapter along with a derived model of rel-
ative translational represented in the follower body frame. The reason for

4See (Hahn, 1967) or Appendix A.2.2 for definition of practical stability.
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the latter is because the control forces applied to the follower originate from
use of physically mounted thruster(s), thus producing a thrust vector which
orientation is constant relative to the body frame. Since simulation results
might be confusing with this representation we have added functions rotating
the state vectors to leader orbit coordinates.

Chapter 3: Especially when working with attitude control it is difficult not
to get obsessed with the nature of quaternions and the difficulties following
by applying them. Different solutions have been worked out throughout the
years with different results, not all of them applicable from a practical point
of view, while others have either quietly brushed the problems under the rug
or not mentioned them at all. In this chapter we have applied techniques pre-
viously presented by Kristiansen (2008) assuming that the quaternion never
leaves the half of the sphere where it initially starts and almost-global re-
sults of Rantzer (2001) adapted for quaternions for control of a single rigid
body. Two state-feedback controllers are derived, and stability analysis shows
that both controllers renders the equilibrium point uniformly exponentially
stable in the large, and uniformly asymptotically stable in the large when
scalar non-linear state dependent proportional and derivative gains are intro-
duced; the latter to reduce sensitivity to measurement noise. Furthermore, a
controller-observer scheme is derived and shown to be uniformly practically
asymptotically stable without angular velocity measurements, with similar
but, simpler structure compared to the scheme presented in Caccavale and
Villani (1999). This control solution is also proven to have similar stability
properties when exponentially growing state dependent gains are introduced.
Through simulations we show that both controllers and observers are less
affected by measurement noise when nonlinear gains are introduced.

Chapter 4: In this chapter we introduce hybrid switching based on the frame-
work of Goebel et al. (2009) to solve the problem of dual equilibrium points
for quaternion representation using a hysteresis based approach similar to
the results reported in (Mayhew et al., 2009) where backstepping design was
utilized. The two derived control laws are then combined through a hystere-
sis based supervisor originally presented in (Efimov et al., 2009) to combine
the best properties of each controller improving the overall performance and
achieve "certain optimality". The controller-observer scheme from Chapter
3 is also revisited where we include an additional jump set for the estimated
attitude in the observer to solve a technicality which in previous results such
as Caccavale and Villani (1999) has been addressed by restricting the norm
of allowed initial states. We have also presented numerous simulation results
trying to compare the behavior and performance between the continuous and
hybrid control approaches.

Chapter 5: The performance issue in the previous chapter caught our atten-
tion; in previous work typically the shortest rotational direction is preferred
when an equilibrium point is chosen (Kristiansen et al., 2008). Although this
scheme is very easy to implement we investigated if there were anything to
gain by also including initial angular velocities into the analysis. The results
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were two-fold: first we found general rules to determine preferable equilibrium
based on numerous simulations of the system, while secondly, we utilized a
simple optimization technique to find the optimal choice. Although the result
rely on a solution based on the linearized equations, a series of simulations
show that the approach is able to predict the preferable equilibrium in all the
applied cases.

e Chapter 6: The leader-follower synchronization problem is analyzed in this
chapter. We start out by proposing two different control laws for a desig-
nated follower to synchronize with its leader which in turn is tracking a given
reference, where the first is proven to be uniformly asymptotically stable in
the large while we obtain similar but practical results for the latter through
use of analysis tools for cascaded systems. We also use a similar technique
to analyze the relative synchronization of a leader-follower formation where
both members are utilizing switching controllers and confirm through simula-
tion that both members do not need to settle at the same® equilibrium point.
The relative translational case is also studied where first, we show uniform
global practical asymptotic stability applying a sliding surface-based control
law, while secondly, we present an adaptive version of the controller. For
the latter, it is assumed that a part of the unknown perturbation vector is
constant mean and nonlinear gains which are based on matrices instead of
scalars, further improving performance compared to the scheme presented for
attitude control. The reason lies in the fact that since both relative position
and velocity are represented along the same axis the gains can be split up
in accordance and thus gains increase along axes where the tracking error is
large and vice versa for small tracking error.

e Chapter 7: This chapter is devoted to the study of autonomously gener-
ated references. In the first scheme we assume that the leader spacecraft is
pointing its instrument towards the center of the Earth (nadir-pointing) while
references are generated for the follower based on relative coordinates such
that it autonomously points its instrument at the same target. The scheme
is then generalized to include target-tracking which means that by choosing
target coordinates based on longitude and latitude, references are generated
for both the leader and follower spacecraft ensuring that they both point their
instruments at the same target. Since we combine this scheme with tracking
controllers, the input might be constant or time-varying. Note that the first
scheme is a particular case of the last by using the nadir foot-print of the
leader as input.

e Chapter 8: The topic of collision avoidance is addressed in this chapter where
the concept of Null-space based (NSB) behavioral control is utilized to avoid
collisions between spacecraft during formation reconfiguration. In particular
we want to improve previous work by combining the control law with the be-
havioral control in the stability analysis to ensure that no collision will occur.

5Using the word same is not very precise since the two systems have different closed-loop
dynamics, but what we try to express is that the system is stable even if the spacecraft are not
rotating in similar directions.

21



1. INTRODUCTION

In general, two different strategies are examined; first we scale the output
vector of NSB-approach such that the derivative part of the control law dom-
inates the proportional part to ensure that members move away from each
other when they enter a fixed sized collision sphere, and secondly we develop
the results by introducing dynamically sized spheres. Simulation results show
that the second scheme might reduce fuel consumption and furthermore, since
the dynamical sphere reduces relative spacecraft velocity based on whether
they are on collision course or moving in parallel, the minimum allowed pass-
ing distance may be reduced further, decreasing the fuel consumption.

1.4.2 Delimitations

In this thesis we have made several implicit assumptions for purpose of analyzing
the problems at hand to avoid getting nested into peripheral/out of scope prob-
lems which are commonly encountered for control of rigid bodies and spacecraft
formations. These problems include but is not limited to:

e We have not treated control saturation explicitly, only included it in some
simulations where it seems appropriate; thus, practical stability does not hold
per se since tuning the gains to infinity will not reduce the radius of the ball
(residual) obtained from practical stability to zero exactly.

e Throughout the thesis we have only presented model-based control laws with-
out considering uncertainties in mass, inertia, thruster alignment etc., al-
though these types of considerations are well treated throughout literature.

e Only leader-follower formations have been considered for control purposes
except for the collision avoidance scheme presented in Chapter 8 where it is
combined with a behavioral strategy although the behavioral control solution
is more similar to a guidance scheme.

e Full actuation of both rotational and translational control torque and force
have been considered for all presented control solutions. Especially for trans-
lational control available thrust is typically available in one direction along a
single axis only.

e When considering spacecraft formations, no communication constraints as
in available bandwidth, delays, uncertainties in information/packet loss etc.
have been considered which is especially evident for large formations, both in
number and relative distance.

1.4.3 Publications

The following list includes all submitted, accepted and published material based on
the work contained in this thesis.
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Chapter 2

Modeling

In this chapter we start by defining basic notations in Section 2.1 and proceed with
orbital dynamics in Section 2.2, reference frames in Section 2.3, frame transforma-
tions in Section 2.4, mathematical modeling of relative translational and rotational
motion in Section 2.5 and 2.6, respectively, orbital perturbations in Section 2.7 and
simulation results of a spacecraft formation with uncontrolled follower in Section
2.8.

2.1 Basic notations

In the following, we denote R as the set of all real numbers which are expressed by
italic small letters, occasionally Greek letters, and N as the set of natural numbers,
that is, the set of all positive integers. We denote R>p = {a € R: a € [0,00)} as
the set of all non-negative numbers, Ry = {a € R: o € (0,00)} as the set of all
positive numbers, and the absolute value of a real number x € R is denoted |z|.
The Euclidian n-dimensional space is denoted R™, that is, the set of all vectors x
of dimension n formed by n real numbers in the column form

T
To T "
X = : = [x1, 2, ...,z,] €R"Y (2.1)
Tn
where z1, x2, ... , z, € R. The associated vectors are denoted by small bold

letters. We denote R™*"™ the set of real matrices formed by n rows and m columns,

ai;p a2 - Aim
@21 @22 cer A2m

A={ay}t=1] . _— : . (2.2)
Gnp1 QAp2  **° Anpm

The transpose matrix AT = {a;;} € R™*" is obtained by interchanging the rows
and columns of A. The associated matrices are denoted by capitalized bold let-
ters. We denote by x the time derivative of a vector x, i.e. % = dx/dt =
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[dxy/dt, dxo/dt, ..., dx,/dt]T, and moreover, ¥ = d*x/dt?>. We denote functions
f with domain D and taking values in a set R by f : D — R or alternatively by
f(x) where x € D, and the solution of a nonlinear differential equation x = f(t,x)
with initial conditions (¢p,xo) where xo = x(to) is denoted by x(¢,t9,x0). Two
different gradient operators are defined as Vg = [g—fl aa—fl , g:R" - R, and

V-h=2844...4 Fu h:R" - R". We denote by [|-[| the Euclidian norm of a
vector and the 1nduced ﬁg norm (spectral norm) of a matrix (¢f. Section A.1 for
more details on norms). For the open ball in R™ centered at the origin we denote
Bs = {x € R" : ||x|| < 6}, and B, = {x € R" : ||x|| < 7} for the closed ball
with 6 € R4 and v € R>¢. The Euclidian distance from a given point y to the set
associated with the closed ball B;s is given as

[ylls = inf fly —x]|. (2.3)
x€eB;s

We use the notation H(0,A) := {x € R" : § < ||x|| < A} for a spherical shell with
inner radius ¢ and outer radius A, or strictly speaking H(5, A) = Ba\Bs. I denotes
the identity matrix of appropriate dimension, and the cross-product operator is
denoted S(-), such that S(x)y = x x y with the property S(x)y = —S(y)x for all
x,y € R3.

Reference frames are denoted by (), and we denote by wy , the angular velocity
of F@ relative to F?, referenced in F¢. Matrices representing rotation or coordinate
transformation from F2 to F° are denoted RY.

When the context is sufficiently explicit, we may omit to write arguments of a
function, vector or matrix.

2.2 Orbit dynamics

Orbit dynamics are based on the Laws of Kepler and the Laws of Newton, where
the first presents three basic empirical laws describing motion in unperturbed plan-
etary orbits, while the latter formulates the more general physical laws governing
the motion of planets ¢f. (Sidi, 1997).

Laws of Kepler
1. The orbit of a planet is an ellipse with the sun at one focus;

2. the radius vector from the sun to the planet sweeps out equal areas in equal
time intervals;

3. planetary periods of revolution are proportional to the [mean distance to sun]3/2.

Laws of Newton

1. Every particle remains in a state of rest or uniform motion in a straight line
with constant velocity, unless acted upon by an external force;
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2. the rate of change of linear momentum of a body equals the force f applied
to it, where mv is the linear momentum and

d(mv)

f= :
dt '

(2.4)

3. if a particle exerts a force f on another particle, the other particle exerts an
equal force with opposite direction, on the first particle;

4. the gravitational force between any two particles with mass m; and msy is
given by

Gmlmg

f r, where G = 6.667 x 10~ "m? kg — s*. (2.5)

r3

To fully describe an orbit we make use of the classical orbit parameters which are
sufficient to describe the orbit in the plane, the position of the spacecraft in the
orbit as in Figure 2.1 and the position of the orbit as in Figure 2.2 (Sidi, 1997)
where the parameters are defined follows:

Classical orbit parameters

a, the semimajor axis;

e, the eccentricity;

i, the inclination;

), the right ascension of the ascending node;
w, the argument of perigee;

M, the mean anomaly;

where
M =n(t —ty) =1 — esin(¥) (2.6)

is the mean anomaly, n is the mean motion defined as n = /u/a®, p = Gm is
the gravitational constant, t is time, ¢y is the time of passage at the perigee and
1 is the eccentric anomaly as shown in Figure 2.1. All parameters may be used
to described the vector a = [a, e, i, Q, w, M]T. The angle Q is defined in the
equatorial plane which separates the node line and X', which is called the vernal
equinoz vector, and w is the angle between r, and the node line. The node line is
the line of intersection between the equatorial and orbit plane. The semimajor axis

can be written as

e +7Tp p
= = 2.7
a 5 Pt (2.7)

IThe vernal equinox vector intersect the celestial sphere at a point named the first point of
the Aries, Y, which corresponds to the vector pointing from the center of the Earth toward the
center of the Sun during the vernal equinox.
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) fa /

\ /

Figure 2.1: Orbit parameters (Sidi, 1997).

where p is called the semi-latus rectum and is defined as

h2

2
p=alg—e’)=—, (2.8)
I
where h = ||h|| is the length of the momentum of momentum vector h = S(r)mv.
The apogee distance r, is defined as
p
= 2.9
O (2.9)
and the perigee distance r, as
p
= 2.10
Tp 1—e¢ ( )
The eccentricity can be defined as
_Ta”T"p (2.11)
e +7Tp
and the total energy of a body with unit mass in an orbit can be written as
2
v K H
E=—-E=-_1 2.12
2 r 2a ( )
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Periapsis

Figure 2.2: Orbit location parameters (Sidi, 1997).

where v = ||v||. By reorganizing equation (2.6), ¢ can be found by iteration of

wn+1(t) = M(t) + €Sin(wn(t))a (2'13)

but note that this algorithm only converges for elliptical orbits (0 < e < 1) Sidi
(1997). The orbital position angle or true anomaly v, as shown in Figure 2.1, can
then be found by
cos(v) = cos(y) —e (2.14)
~ 1—ecos(v)’ '

The true orbit rate can be found using
n(1 + ecos(v))?

U= R (2.15)

and the rate of change may be written as

—9n2e e cos(v))3 sin(v
5 —2nPe(l Ekl L 62()3)) ) (2.16)

2.3 Cartesian coordinate frames

The coordinate reference frames utilized throughout this thesis are presented through-
out this section and some of them are shown in Figures 2.3 and 2.4.
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2.3.1 Earth-centered inertial frame

The Earth-centered inertial (ECT) frame is denoted F?, and has its origin fixed at
the center of the Earth. The axes are denoted x’, y*, and z’, where the z’ axis is
directed along the axis of rotation of the Earth toward the celestial North Pole, the
x' axis is pointing in the direction of the vernal equinox vector, X+, which is the
vector pointing from the center of the sun toward the center of the Earth during
the vernal equinox, and finally the y’ axis complete the right handed orthonormal
frame.

2.3.2 Earth-centered Earth fixed

The Earth-centered Earth-fixed reference frame (ECEF) is denoted F¢/, and has
its origin fixed at the center of the Earth. The axes are denoted x°/, y¢f and z°/,
where z¢/ is parallel to the z’ axis, and rotates about this axis with a constant
angular rate of w, = 7.292115 x 10~° rad/s, thus Fel' coincides with F? once per
day. This frame can typically be used for describing position of targets which are
located on the Earth’s surface.

2.3.3 North-east-down frame

The north-east-down frame (NED), denoted F", is defined relative to the Earths’
reference ellipsoid at the tangent plane of the surface of the Earth, where the x™
axis is pointing toward true north, y™ towards true east, and z" points downwards

normal to the surface of the Earth.

2.3.4 Leader orbit reference frame

The leader orbit frame, denoted F* and depicted in Figure 2.3, has its origin located
in the center of mass of the leader spacecraft. The e, axis in the frame coincide
with the vector r; € R? from the center of the Earth to the spacecraft, and the
e, axis is parallel to the orbital angular momentum vector, pointing in the orbit
normal direction. The ey axis completes the right-handed orthonormal frame. The
basis vectors of the frame can be defined as

h
e, = ﬁ, ep:=S(ep)e, and ep: (2.17)
1

" [’

where h = S(r;)f; is the angular momentum vector of the orbit; see (Schaub and
Junkins, 2003) for description.

2.3.5 Follower orbit reference frame

The follower orbit frame has its origin in the center of mass of the follower space-
craft, is denoted F7/ and depicted in Figure 2.3. The vector pointing from the center
of the Earth to the frame origin is denoted ry € R3, and the frame is specified by
a relative orbit position vector p = [z, v, z]T expressed in F! components, and its
unit vectors align with the basis vectors of F'. Accordingly,

szé(rf—rl):xer+yeg+zeh:>rf:pr+rl. (2.18)



2.4. FRAME TRANSFORMATIONS

Figure 2.3: Inertial and leader-orbit reference frames (Schaub and Junkins, 2003).

2.3.6 Body fixed frames

The body axis frame of a spacecraft is denoted either F* or F/? for leader and
follower spacecraft respectively. The axes are denoted x'*, y'* and z'® for the leader
spacecraft and xf° yf® and 2/ for the follower spacecraft and coincide with its
principal axes of inertia. The frames have their origins in the center of mass of the
spacecraft.

2.3.7 Auxiliary frame

Because of the nature of the aerodynamic drag and the fact that it always acts along
the velocity vector of the spacecraft we need an auxiliary orbit frame, denoted
F?, when elliptic orbits are considered; see Figure 2.4. The first basis vector is
parallel with the orbit frame e,, e, is pointing in the direction of the spacecraft
velocity vector, and e,, is completing the right-handed orthonormal frame such that
e, = S(e,)ey.

2.4 Frame transformations

Since the spacecraft rotation and translation are presented in different frames, it is
important to define proper transformations between the appropriate frames. The
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Elliptic
orbit

Figure 2.4: Auxiliary reference frame (Schaub and Junkins, 2003).

attitude of a rigid body can be represented by a rotation matrix R € SO(3) fulfilling

SOB)={ReR*>*3 : R'TR=1, det(R) =1}, (2.19)
which is the special orthogonal group of order three, where I denotes the identity
matrix. Animportant property for rotation matrices is that (R%)~! = (R%) " = R¢,
and coordinate transformation of a vector r from frame a to frame b is written as

b _ pb,a
r’=R;r®
2.4.1 NED to ECEF frame
The rotation from F" to F¢/ can be expressed as (Fossen, 2002)
—cosAsing —sinA  —cosAcos¢
RS = | —sinAsing cosA —sinAcos¢ |, (2.20)
cos ¢ 0 —sin p

where ) is the longitude? while ¢ is the latitude®.

2Longitude is the angular distance of a point’s meridian from the Greenwich meridian ex-
pressed in degrees, minutes and seconds.

3Latitude of a point is the angular distance of that point north or south of the equator
expressed in degrees, from 90° N, 0° at the equator and —90° S.
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2.4.2 ECEF to ECI frame

The rotation from F¢/ to F* can be expressed as

‘ cos(wet + )  —sin(wet +a) 0
ef = | sin(wet +a) cos(wet+a) 0 |, (2.21)
0 0 1

where ¢ is time and « is an initial phase between the x°f and x* at ¢t = 0, and
we = 7.292115 x 107° rad/s is the constant angular rate of the Earth around its
rotation axis z°/.

2.4.3 ECI to orbit frame

The rotation from the ECI frame F? to the orbit frame F*, where s = f,[ for
leader and follower, respectively, can be described by three composite rotations
(Sidi, 1997), e

R =R.(w+v)R,(/)R (2.22)
clw+v) w + 1/ 0 1 0 0 2 sQ 0
=| —s(w+vr) clw —|— v) 0 0 ci si —sQ 2 0 (2.23)
0 1[0 —si c 0 0 1
[ c(w+v)+cQ—cis(w+v)s

c(w+v)sQ+s(w+v)cic)  s(w+v)si
= | —s(w+v)cQd—cisQc(w+v) —s(w+rv)sQ+c(w+rv)cic) clw+v)si |,
51582 —sic§2 ci

where v is the true anomaly defined as the angle between the major axis pointing
to the perigee and the vector r pointing at the appropriate spacecraft, from the
prime focus F' and ¢(-) and s(-) denotes cosine and sine, respectively. The inverse
rotation is obtained by reversing the order of rotations (Sidi, 1997)

R =R 'QR;'()R (w+v). (2.24)

Since RY = (Rg)~! = (R$)7T, (2.24) can be written as

R: = RT(QRI()HRT (w +v). (2.25)

2.4.4 Orbit to body frame

Because of the singularity issue in the kinematics using Fuler angles —cf. (Sidi,
1997) unit quaternions are often preferred to parameterize members of SO(3). The
rotation matrix can be described as a rotation by an angle # about the corresponding
unit eigenvector k as (Egeland and Gravdahl, 2002)

R = cos()I + sin(6)S(k) + [1 — cos(6)]kk ", (2.26)
which is called the angle-azxis parameterization of the rotation matrix. Euler param-

eters are often used to parameterize members of SO(3), defined by n = cos (6/2) €
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R as the scalar part and € = ksin (6/2) € R? as the vector part, leading to a
corresponding rotation matrix

R =1+ 27S(e) + 2S?%(e). (2.27)

The vector g = [, €']" of Euler parameters can be treated as a unit quaternion
vector defined as q € S = {x € R* : x"x = 1}, where the set S3 forms a
group with quaternion multiplication, which is distributive and associative, but not
commutative, and the quaternion product defined as

_ T
mmne €] €2 (228)

® pu—
areqz €+ €+ S(er)er

The inverse rotation can be performed by using the conjugate of q given by q =
[7, —€']T and the rotation can be expressed as

Qc,a = qb,a & db,c = Ya,b ® Qb,c- (229)

Note that because of the unit length of the quaternion vector, we have that q"q =
n? + €' € = 1 where it follows that R = I & q = [£1, 0]" often expressed as

q = +q;q-

2.4.5 Auxiliary to orbit frame

The rotation from the auxiliary frame to the orbit frame can be expressed as
(Schaub and Junkins, 2003)

L L esinv 0
C’=— | —esinv b 0 |, (2.30)
Py 0 0o

where p = h?/p1 is the semi-latus rectum of the spacecraft orbit, x is the geocentric
gravitational constant of the Earth, v is the magnitude of the velocity vector, e is
the orbit eccentricity, and v is the true anomaly. Note that CJ is not in general a
proper rotation matrix since

det(C%) = 1 + e? + 2e cos(v), (2.31)

thus only holds for circular orbits where the rotation matrix becomes identity.

2.5 Relative translation

In this Section we will present different types of translational models for leader-
follower spacecraft formations in elliptic orbits. What is common is that they are
all derived from the N-body problem based on the Newtonian mechanics.
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2.5.1 The N-body problem

Objects in space are affected by gravitational attraction from celestial bodies, where
the sum of all forces working on an object can be written as (Sidi, 1997)

j=n
mg;m;
fi =G (v — 1), i # 7, 2.32
;;T%(w r), i (2:32)

where G is the universal constant of gravity, and r;; is the distance between any to
particles defined as
Tij = ||I‘j — I‘l” (233)

Using Newton’s second law of motion (2.4), (2.32) can be written as

= m; . .
dt2 Z —3 (rj —ry), i#7]. (2.34)

From the N-body problem, (2.34) can be reduced to the differential equation of the
two body problem

v p
w + —I‘ = 0 (235)
where
r:=ry—r] (2.36)

is the relative position between the two masses, and
1= Glmy +ms), (2.37)

where G is the gravitational constant, and m; and mo are the masses of the two
bodies.

2.5.2 Formation dynamics using true anomaly

The orbit equation describes the dynamics of the spacecraft under ideal conditions,
but conditions like solar wind, uneven gravity field etc. contribute with external
disturbances. These disturbances are denoted fy and f4 for the leader and follower
spacecraft respectively, and the input vectors from actuators on board the spacecraft
are denoted f,; and f, for leader and follower, respectively; (2.35) may then be
expressed as

N fau | fu

r=—=r+—+— (2.38)
l my mp

. f f,

rf:—%rf—ki—kff. (2.39)
Tf mg mg

The relative position vector can according to Schaub and Junkins (2003) be written
as p =ry —r; = ve, + yegy + zey, thus obtaining

f f, f, £,
LA A (2.40)
l
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and by manipulation we obtain

.. r+p T my
= — -5 — 4 fa f - fa, f . 241
mgp = —mgspu [(”er)g T?] + foy + for —ml( 1+ far) (2.41)

The dynamics of the follower orbit frame can be expressed in the leader orbit frame
according to
rg=r+p=(r+z)e, +yeg+ zep, (2.42)

and by differentiating twice we obtain
ry = (fl+i‘)er+2(7"l+i‘)ér+(’r'l+$)ér+yeg+2yé9—i—yéa—i—éeh—l—ZZéh—l—zéh. (2.43)
The following relations can be shown (Kristiansen et al., 2007)

e, = ey 6. = ey — i'’e, (2.44)

€ = —re, €= —ie, —i’ep, (2.45)
where it should be noted that e is pointing out of the plane, thus
ep=¢,=0 (2.46)

since out-of-plane motion is not considered. Then by inserting (2.44)—(2.46) into
(2.43) we obtain

iy = (4@ =200 =0 (ri+a) —yie,+(i+20 (7 +&) + 0 (r+a) —yi? e+ Zen. (2.47)
Note that the position of the leader spacecraft can be expressed as
r; = re,, (2.48)
and when differentiated twice we obtain
I, = e, + 27€, + 1€y, (2.49)
and by inserting (2.44) into (2.49) we obtain
¥ = (7 — ro)e, + (270 + riv)ey. (2.50)

Subtracting (2.50) from (2.43) formulates the second order derivative of the relative
position vector written as

p=r; iy = (& — 290 — 022 — yi)e, + (j + 20d + v — yir¥)eq + Fep.  (2.51)

Substituting equation (2.51) into (2.40) leads to the final position dynamics model
(Kristiansen et al., 2007)

mfp —+ Ct(y)p + Dt(D7 l'/', ’I"f)p + nt(’l"l, T'f) = Fa + de (252)
where

Ci(¥) = 2myw (2.53)

o = O
o O O
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is a skew-symmetric Coriolis-like matrix,

% -2 - 0
. . .2
Dy, v,rf)p = my - 0 0p (2.54)
0 0 L
¥
may be viewed as a time-varying potential force, and
o 1
v T2
n(r;,rp) =myep 0 (2.55)
0

as a nonlinear term. The disturbance force and relative control force can be ex-

pressed as

m m
Fy=fy — ijdla F,="f. — ijalv (2.56)

respectively.

2.5.3 Formation dynamics using Euclidian parameters in leader
orbit coordinates

The time derivative of the rotation matrix can be expressed as
R =S (wi,) R} =R{S (w),). (2.57)

According to (2.18) the relative position between the leader and follower spacecraft
may be expressed as

Rip=r; —1, (2.58)
and by differentiating twice and inserting (2.57) we obtain
b+ 2RIS(W! )b+ R (S2wl)) + (@) ) p=iy —f.  (259)

By inserting (2.38)—(2.39), the right hand side of (2.59) may be written as

.. .. f f f f
I‘f—I‘l:—%I‘f—Fﬁ—i—ﬁ—F%rl—ﬂ—ﬂ, (260)
T’f mg my T my my

and by inserting (2.18) into (2.60), we find that

. . 1 1 Rip
my(iy — 1) = —mpp K—s - ﬁ) T+ réﬁ

my
+fro +fra — —(fio + f1a). (2.61
3 f fd ml(l 1d)- (2.61)

Moreover, by inserting (2.61) into (2.59), and rearranging the terms we obtain

mygp + Ct(wé,l)f) + Dt(“}é,zv wé,zv Ti)P + (v, 7p) = Fo + Foy, (2.62)
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where
Cilwly) = 2msS(wh) (2.63)

is a skew-symmetric matrix,

Dy (6, wiy,rp) = my lsz(wé,l) +S(wj,) + %I (2.64)
!
may be viewed as a time-varying potential force, and
! 1
ny(ry,rp) = pmsR; | — — | 11 (2.65)
e

is a nonlinear term. The composite perturbation force F4; and the composite relative
control force F, are respectively written as

Fd = Ri (ffd — Tnffld) and Fa = Ri (ffa - ’rnffla> . (266)
my my
Note that all forces f are presented in the inertial frame. If the forces are computed

in another frame, the rotation matrices in (2.66) should be replaced accordingly.
The orbital angular velocity and angular acceleration can be expressed as

wﬁjl = S(r))vi/r/ 1, (2.67)
and
i _ TmSEna — v nS@E v, (2.68)
il (r] 1) ’ -

respectively, and wé}l = Réw;l, wil = Rﬁ[S(wﬁ’l) + wil]

Note that the model presented in (2.62) have many similarities compared to
(2.52) although one difference is that the assumption of out-of-plane motion has
been removed.

2.5.4 Formation dynamics using Euclidian parameters in
follower body coordinates

The actuator forces exercised by a spacecraft are typically represented in a fixed
body frame, and along with the fact that the relative rotation also is derived in
the body frame (which is presented in the next section), it seems natural also to
derive the relative translation in the same frame. This becomes especially evident,
for 6DOF modeling since it seems natural that both models are expressed in the
same frame. According to Fossen (2002) and Kyrkjebg (2007) the position of the
spacecraft in the body frame does not have any immediate physical interpretation
as the integral p® = fot vldt, but its mathematical representation is still valid.

We start by applying a rotation of (2.18) to the follower body frame such that

R}bp =ry—1, (2.69)
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and by differentiating twice and inserting (2.57) we obtain

Rl + 2R}, S(w!h, )b + RY, (52( w!h) + 8w Zfb))p:ff—fl. (2.70)

Using (2.38) (2.39), the right hand side of (2.70) may be written as

.. .. f f f f
I‘f—I‘l:—%I‘f—Fi—i—Lf—F%rl—ﬂ—ﬂ, (2.71)
Tf mg my T my my

and by insertion of (2.18) into (2.71), we obtain

.. .. 1 1 Rl}bp
my(fy —¥1) = —myp || 5= 5|+ —3
;o 7

Moreover, by inserting (2.72) into (2.70), and rearranging the terms we obtain

m
+ faf + fdf — Ff(fal + fdl)-

(2.72)

mysp + Ct(w{,l}b)i’ + Dt(“;’{,l}bv ""zf,l}bv re)p+n(ry,rp) = Fo+ Fa, (2.73)

where

Ci(w {fb) = 2mS(w; fb) (2.74)

is a skew-symmetric matrix,

- fb b I
Dy (!, wlly rp) =my lS2( b)) + 8w, + fI , (2.75)
may be viewed as a time-varying potential force, and
1 1
ni(ry,rp) = pmsRI® [3 — | (2.76)
Ty

is a nonlinear term. The composite perturbation force F 4y and the composite relative
control force F, are given respectively by

Fd = R{b <fdf — Tnffdl) and Fa = R{b (faf — ’rnffal) . (277)
my my

Note that all forces f are given in the inertial frame. If the forces are computed in
another frame, the rotation matrices in (2.77) should be changed accordingly. As
the forces acting on a spacecraft typically are given in the body frame, (2.77) can
simply be written as

b b b (M b b (M
F)’ =]’ — R} (mll‘fg;> and FJ*=f/? - R}/ <m’;f$). (2.78)

The angular velocity between the follower body frame and the inertial frame may
be written as

b ; b b
w; fb =R}/ RI'Rlw;;, + R}/ wi’), + wlfb,fb' (2.79)
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Note that the model presented in (2.73) are quite similar to the model presented
in (2.62) except for rotation matrices and which frame the angular velocity and its
derivative are represented in.

One drawback is that using follower body frame coordinates may be confus-
ing and hard to intuitively understand and compare with other models where the
relative translation is represented in the leader orbit frame. As to solve this incon-
venience we may give the initial values in the leader orbit frame as p; = [a, b, ]| =
ae, + beg + cey, and utilize a rotation such as

p=R{"p:. (2:80)
and by differentiation of (2.80) we obtain
p = —S(wj fb)bepl + bepl (2.81)

For plotting we solve (2.80) for p; and differentiate for p;.

2.6 Relative rotation

In this section we present rigid body kinematics and dynamics along with a model
of relative rotation for a leader-follower system, which is derived from Euler’s mo-
mentum equations using unit quaternion attitude representation.

2.6.1 Rigid body kinematics

The kinematic differential equations based on the rotation from F° to F® can
according to Egeland and Gravdahl (2002) be expressed as

—er
q=T(q)wg, T(q) =% [ L+ S(e) } € R**3, (2.82)

)

2.6.2 Rigid body dynamics

With the assumptions of rigid body movement, the dynamical model can be found
from Euler’s momentum equations as (Sidi, 1997)

J‘?wl sb — _S( i, sb) wagb + T:Z + T:ZZ (283)

where J = diag{Jsz, Jsy, Js-} € R3*3 is the rigid body moment of inertia matrix,
TSZ € R3 is the total disturbance torque, ng € R3 is the total actuator torque and
sub-/super-script s = [, f denotes the leader and follower spacecraft, respectively.
For a spacecraft it might be preferable to control relative to the orbit frame i.e. for
nadir pointing spacecraft. Then the angular velocity might be expressed as

sb sb
ws,sb z sb R

(2.84)

195

where w! , can be expressed as in (2.67). To obtain the dynamical model we
dlﬁeren‘rla‘re (2.84) and insert (2.83), leading to

st sb — _S(wzl?sb)']‘?wz sb + J S( i, sb)Rgb Jstb‘i’i,s + Tsd + Tsa, (285)
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where wl . can be expressed as in (2.68). Utilizing the model (2.85) leads to more
complex control laws, that is, the control structure gets more complicated because
of the extra terms compared to (2.83). Instead, the relation can be applied to the
references although, the inconvenience is only moved, but from a practical view-
point the manipulation can be performed on ground before sending the references
to the spacecraft, saving valuable computational resources on board the spacecraft.
Furthermore, the stability analysis’ as presented in this thesis are not altered be-
cause we do not consider guidance-in-the-loop hence, we only use this relationship
to define reference trajectories if otherwise is not stated.

2.6.3 Relative attitude

The attitude of the leader body frame relative to the inertial frame is denoted
qi,1p, while the attitude of the follower body frame relative to the inertial frame
is denoted q;,y,. Relative attitude between the follower and leader body frame is
found by applying the quaternion product (cf. (2.28)) expressed as

Aiv, o = Ai,ib @ i, fb 5 (2.86)

and from now on, with a slightly abuse of notation we denote q; = q;;» and
df = d,fp- The relative attitude dynamics may be expressed as (Yan et al.,
2000a; Kristiansen, 2008)

b
Jpi+ JpS(RY, ‘-"1 hp)w — IR IS (Wil Tiwlh, (2.87)
+ S(w + Rlb wj lb)‘]f(w + Rlb "-’z ) =Yq+ Ya,
where
fb
W= Wy = "-’z fb Rlb ""z Ib (2.88)
is the relative angular velocity between the F7/* and F' expressed in F7/°, and

Y=l - LRI, Yo=7f - IR I (2.89)

are the relative perturbation torque and actuator torque, respectively. For simplic-
ity (2.87) may be rewritten as

Jiw+Cr(ww+n,(w) ="Tq+ Y, (2.90)
where
Cr(w) = IrS(Rfwly) + SREW)Iy = ST p(w + Riwy)  (291)
is a skew-symmetric matrix, and
n,(w) = S(Rlb w; lb)Jleb Wz b JfszbbJ 'S (w;] i, zb)le (2.92)

is a nonlinear term.

43



2.

MODELING

44

T 1 [ I I 1 1 i 1 1 I I i I !
0 Earth's Gravity i
F P ot
o 2T 32 :
s £\ T S B 0 i A 58 8 B
S 4k Lunar Gravity .
g' Solar Gravity
g -6 .
=2
) s i N et i " — o 7 — — - — " w— e | — 4
8 bt o — ol - —  — . —— P ke . T S S G —  — ]
<8 O _Solar Pressure 1
-0 | -
| l |
0 500 1000 1500 2000

Altitude, km

Figure 2.5: Influence of different disturbing forces at different altitude. Reproduced
with courtesy to Wiley; (Fortescue et al., 2007).

2.7 Orbital perturbations

In this section we present modeling of orbital perturbing forces and torques made by
external sources working on Earth orbiting spacecraft including aerodynamic drag,
Jo, gravitational forces from other bodies, solar radiation and solar wind, gravity
gradient and torques produced by forces working on a spacecraft with displace-
ment of the center of mass. Accurate models of the perturbations are important
because of the high precision required in e.g. formation flying guidance and control
applications, and because of the relative distances between members and possibly
differences in design the perturbations may act differently on each individual space-
craft participating in the formation, causing a challenging problem to the control of
the overall formation. Although the disturbances are small, they have to be consid-
ered because over time large deviations will occur, thus small velocity vectors have
to be produced by each spacecraft to cope with the disturbances on each satellite
individually. Some of these disturbances are shown in Figure 2.5 where it can be
seen that most of the disturbing forces are near constant at low Earth orbits (LEO)
except atmospheric drag which is reduced rapidly with increasing altitude.
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Figure 2.6: Coordinates for the derivation of the Earths’ external gravitational
potential.

2.7.1 Orbital perturbing forces

In this section we will present disturbance forces working on a spacecraft in orbit.
The main disturbance forces are caused by gravitational perturbations, atmospheric
drag, solar radiation, solar wind and third-body perturbing forces.

Gravitational perturbation

A spacecraft is attracted by the gravitation force of the Earth which can be de-
scribed by a gradient of a scalar depending on the distance between the Earth and
the spacecraft by the function U(r) = —u/r. The Earth is not a mass concentrated
in a single point or a perfect sphere, but rather an oblate body without homoge-
neous mass distribution. Because of this correction factors have to be added to the
gravitational potential and may be expressed as (Wertz, 1978)

Ulr, ¢, \) = —% + B(r, ¢, \), (2.93)

where ;4 = Gm, r is the geocentric distance to any point P outside the sphere of
the Earth, and B(r, ¢, \) is the appropriate spherical harmonic expansion used to
correct the scalar gradient because of the uneven mass distribution of the Earth.
The parameter ¢ denotes the geocentric latitude and A the geographical longitude
of the body position as shown in Figure 2.6.
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Table 2.1: Tesseral and sectoral harmonic coefficients up to degree and order three.

n | m Snm Chm

2 0 0

2| 2] —09x10% | 1.57x10°°
31 1] 027x10°% | 219%x10°©
32| -021x10"%] 0.31 x10°6

Table 2.2: Zonal harmonic coefficients of order 0.

n Jn

2 | 1082.6 x 106

3] —253x10°°

4| =—-161x10"6

The spherical harmonic expansion can be written as

oo

B0y =" {3 [ (R) JuPa(sin(@) + 3 (R) (2.94)
n=2 m=1
X (Crpm cos(mA) + Sy sin(mA)) P (sin(qﬁ))} },

which is the infinite series of the geopotential function at any point P. Utilizing
the coordinates shown in Figure 2.6, the parameters are defined as follows

R, - mean equatorial radius of the earth;

cos(mA) and sin(mA) - harmonics in A;

Jnm - zonal harmonic coefficients;

Jn - zonal harmonic coefficients of order 0;

P, - associated Legendre polynomial of degree n and order m;
P,, - Legendre polynomial degree n and order 0;

Chm - tesseral harmonic coefficients for n # m; and

Spm - sectoral harmonic coefficients for n = m.

These coefficients are a result of the Earth’s oblateness, and the values are found
by satellite observation and appropriate measurements. Note that the values are
changing with time; some of the values for the World Geodetic Survey (WGS) from
1984 are presented in Tables 2.1 and 2.2.

Tt is important to notice that the coefficients doesn’t necessarily decrease when
the order increases however, the factor (R./r)" in (2.94) has great influence on
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Table 2.3: Legendre polynomials.

n|m P (u) P, (sin(¢))
010 1 1

110 u sin(¢)

1] 1 (1—u?)2 cos(¢)

2] 0] 13Bu2-1) | 2(Bsin’(¢) — 1)
2| 1 | 3u(l—u?)2 | 3cos(e)sin(¢)
2 2| 3(1—u?) 3 cos?(9)

the series. The magnitude of Js is at least 400 times larger then the other J,
coefficients. For engineering purposes a simplified form of (2.94) may be used.

U~ —% [1 - i <R7>n Jo P, sin(qﬁ)] -

n=2

[U0+UJ2+UJ3+...], (2.95)

RS

where the Legendre polynomials P,,, are polynomials of cos(¢) and sin(¢) and are
defined as

m
m
2

du™
A number of Legendre polynomials is presented in Table 2.3 calculated based on
(2.96), and based on these, the terms in (2.95) are obtained as

P (u) = (1 —u?) P, (u). (2.96)

Up = —1, (2.97)
2

Ujs = %Jg (RT) (3sin?(¢) — 1), (2.98)
3

Ujs = %J:; (Z:) (5sin®(¢) — 3sin(¢)), (2.99)

where P, = Pys and P3 = Py3 were used. By considering that Js is so much larger
then the other coefficients it is the most important factor to be used. By inserting
(2.97) and (2.98) into (2.95) we obtain an approximated gravitational potential
function written as

2
U =L+ U = £ {—1 + (R—) Jog[3sin?(6) - 1]} . (2.100)

As can be seen from (2.100) the perturbing potential is only dependent on the
latitude of the spacecraft. The term sin(¢) expressed in F* can be written as

sin(gp) = - = (2.101)

r 22 + 42 + 22
where z, y and z are the components of r which is the vector pointing from the center
of Earth to a point P in space. The gravitational force acting on the spacecraft is
then found by
F=-VU(z,y,%), (2.102)
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and by combining (2.102) with (2.100) and (2.101) we find the gravitational forces
on vector form as

oUu [z 1 o x2? x
F, = _% =L __7"_3 + §J2Re <157‘_7 - 37"_5>:| (2-103)
oU I Y 1 2 922 Y
- _ 7 < 4 - 3= 2.104
Fy==G, =n|=5 3Rk <15 3% (2.104)
oU [z 1 23 z
Fo=—""=p|—-2 4= 2152~ —9Z2 ). 2.105
| T3+2J2Re< 5 97«5” (2.105)

Eq. (2.103) (2.105) may also be written on a more compact form
—2 4+ 15R? (1522 — 3%
F=u| —%+35R2 (154 —34) |, (2.106)
% 4+ 1LR? (155—3 - 955)

and the perturbation caused by the J, gravitation force for Earth is the latter terms
of (2.106) and may be written as

. 1503—272 -3z
fyran = 5;uQJi%ijb 15% -3% |- (2.107)
15% - 9%
Note that the Jo perturbation causes changes in the orbital parameters €2, w and
M over time.

Atmospheric drag

Atmospheric drag is a disturbance which exists only in the lower orbits, especially
low earth orbits (LEO) are affected, that is, orbits of 600 km or less altitude,
because the atmospheric density decreases exponentially with increasing altitude.
The density of the atmosphere p is defined as

p(r) = poel 7], (2.108)

where pg is reference density and rg is the reference orbit radius; if a circular orbit is
assumed, the density p is constant. The perturbing force F,;,,, working in opposite
direction of the spacecraft velocity, can be expressed as (Sidi, 1997)

1
Fotm = 5pv%’ds, (2.109)

where v is the spacecraft velocity, Cy is the drag coefficient of the spacecraft and S
is the equivalent spacecraft surface in the direction of the motion. The acceleration
of the spacecraft caused by the atmospheric drag can be found by

Fam
fo = —am (2.110)
m

atm
s
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where my is the spacecraft mass and Fus, = [0, — Fam, 0]7. Rearranging and
substituting (2.110) and (2.109) leads to
— 2048
v £ = —vlpv'Cad) ), (2.111)
2my

where the term CyS/2mg is known as the ballistic coefficient. The aerodynamic
drag can be expressed as

0
1
foutm = —R«;bcgipv?cds% =RCE | —L1p02CyS |, (2.112)
0

where f,;,, is the perturbing force acting in opposite to the direction of motion of
the spacecraft, C? denotes the transformation matrix from auxiliary to orbit frame,
and e, denotes the unit velocity vector. By further manipulation the relationship

da CqS
< = —pan

can be obtained showing that the semi-major axis a is decreasing over time because
of the atmospheric drag and extra force is needed to counteract the disturbance force
to maintain a constant spacecraft orbit.

(2.113)
ms

Solar radiation and solar wind

Solar radiation is an aggregate expression for all the electromagnetic waves radiated
by the Sun, while the Solar wind is mainly ionized nuclei and electrons radiated
by the Sun. The radiation from both phenomena produces a physical pressure
on the spacecraft body causing a disturbance force; the pressure is proportional
to the momentum flur (momentum per unit area per unit time) of the radiation.
Note that the solar radiation momentum flux is 100 to 1000 times greater than the
solar wind (Sidi, 1997). The mean solar energy fluz at the Earth’s position can be
expressed as
P 1358
© " 1.0004 + 0.0334 cos(D)’

where D is the "phase" of the year, which is calculated as starting on July 4
(Wertz, 1978). The typical value for the mean solar energy flux at Earth is
F, ~ 1367 Wm~2. The total perturbation from solar radiation can be written
as

(2.114)

fr00 = —RibE c08(Osun ) A[(1 — €)esun + 2¢ cos(0syun )0, (2.115)
c

where c¢ is the velocity of light, A is the cross-sectional area of the spacecraft per-
pendicular to the Sun line, n is the normal vector of the body, egy, is the vector
pointing towards the Sun, g, denotes the angle between the vector eg,, and the
normal vector n, and ¢ is the absorption characteristic of the spacecraft. The value
of ¢ lies between 0 and 1 where ¢ = 0 is a black body* while ¢ = 1 is describing a
body which is perfectly reflecting all light. Typical values ranges from 0.2 — 0.9 for
spacecraft materials.

4A black body is a physical body which is considered perfectly absorbing, that is, it absorbs
all incident electromagnetic radiation.
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2z

Figure 2.7: Simplified model for the n-body dynamics perturbing forces.

Third-Body perturbing force

A third-body, like the Sun or the Moon, creates a perturbing force with respect to
an orbiting spacecraft which can cause changes to its nominal Keplerian orbit. A
generalization of this problem leads to the n-body problem which is a system includ-
ing n different bodies as derived in Section 2.5.1. Based on (2.32) the accelerations
for my1 and mo are found as

d2I'1 mi m;

ap =G, T FG s () (2.116)
Jj=3 J

d*r m 2,

— 2 =G (r1 —12) + G Y L (rj —12), (2.117)

dt el puri 7

where (2.116)—(2.117) represents the motion with respect to the inertial coordinate
axis. For an Earth orbiting spacecraft we denote m; = M, the mass of the Earth,
mg = m, the mass of the spacecraft and m; the mass of the j-th perturbing body
e.g. Moon or Sun. Since F? is located at the center of the Earth we have that
r; = 0, and by subtracting (2.116) from (2.117) we obtain

d?r

b (2.118)

r ry; ry;
+ G (M +my) = GZ l———

TQJ le

where we in general denote r;; :=r; —r; for all ¢ # j. The perturbing force due to
the n — 2 perturbing bodies can then be written as

I‘QJ I‘U
fbody R § 3 T 3
7"2; 7’13

(2.119)

)

where p1; = Gm;.
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Total perturbation force

The total perturbation force working on an Earth orbiting spacecraft may be sum-
marized as

fd = fatm + fgrav + frad + fbodya (2120)

where fu, is caused by aerodynamic drag, f4,q, is caused by mass distribution
of the Earth, f,.,4 caused by solar radiation and fj,q, is a gravitational perturba-
tion caused by a third body. The total disturbance force can be included in the
spacecraft control law to counteract the external forces working on the spacecraft.

Remark 2.1 Disturbances working on spacecraft such as aerodynamic drag, Jo
effect caused by uneven mass distribution of the Earth and third-body perturbing
forces can all be seen as state dependent, slow varying and even in some cases
constant. In the control laws and simulations presented throughout this thesis we
will assume that all constants are unknown but bounded such as ||£2(t)|| < Ba,
but as many of the disturbances for spacecraft can be reasonably well modeled as
shown in this section, e.g. fd(t), we could add this to the overall analysis such
that £4(t) = f4(t) — f£4(t). This strategy could reduce the upper bound such that
£a(2)]| < B < Ba, based on the quality of the disturbance modeling.

2.7.2 Orbital perturbing torques

In this section we will present disturbances torques working on a spacecraft in orbit
as in Section 2.7.1. The main disturbance torques are caused by gravity gradient
and perturbing forces working on a spacecraft where the center of mass is displaced.

Gravity gradient

Gravity gradient torque is forcing the spacecraft to align its axis of minimum mo-
ment of inertia vertically and can be expressed as (Sidi, 1997)

Tog = beBT%S(r)Jr (2.121)

Note that 744 = 0 if the inertia matrix is on the form J = ol where a € Ry or if
the position vector is parallel with any of the principal body axes.

Perturbing torque caused by perturbing forces

The rotational torque caused by perturbing forces can be found from the relation
(Egeland and Gravdahl, 2002)

Tj = S(I‘c)fj, (2.122)

where r.. is the vector from the spacecraft center of mass to the line of action of the
force f;.
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Total perturbation torque

The total perturbation torque working on an Earth orbiting spacecraft may be
summarized as
Ta=Tgg+ S(re)(fa). (2.123)

Remark 2.1 also holds for modeled disturbance torques.

2.8 Simulations

In this section we present simulation parameters utilized throughout this thesis
in Section 2.8.1 and simulation results based on the derived models for relative
translation presented in Section 2.5.3 and 2.5.4 in Section 2.8.2. Simulation results
for the relative translational model presented in Section 2.5.2 and the model for
relative rotation presented in Section 2.6 can be seen in (Kristiansen et al., 2007).

2.8.1 Simulation parameters

Simulation results will be included in each succeeding chapter throughout this the-
sis to validate the mathematical results. For simplicity, the authors have tried to
utilize similar simulation parameters for all simulations to make comparison be-
tween results easier. Therefore, if nothing else is explicitly stated, we make use of
the following parameters.

All simulations were performed in Simulink™ using either a variable sample-
time Runge-Kutta ODE45 solver with relative and absolute tolerance of 10~9 for
simulations without noise or a fixed time Runge-Kutta ODE4 solver with step size
of 1 x 1072 s when noise is included. The rigid body moments of inertia were
chosen as J, = diag{4.35, 4.33, 3.664} kgm? and masses as m, = 100 kg, and for
simulations of spacecraft the orbit was chosen with perigee at 600 km, apogee at
750 km, inclination at 71°, and the argument of perigee and the right ascension
of the ascending node at 0°. For leader-follower formations it was assumed both
perfect control and that all perturbations were known and accounted for regarding
the leader spacecraft.

Measurement noise was introduced as oB" = {z € R" : ||z|| < o} and were
added to the error functions so that the measured states q, satisfies q,, = (q +
0.05B%)/|/q+0.05B*|| and w,, = w +0.01B? for rotational control and p,, = p+1 x
1072B3 and p,, = p+ 5 x 10~ *B3 for translational control. The major contributors
for disturbance forces and torques in LEO were added to the simulations including
atmospheric drag, J> and gravity gradient with a displacement in center of gravity
by r¥ =[0.1, 0, 0] T.

To evaluate and compare the performance of the rotational controllers we have
defined performance functionals

ty ty ty

J, = / eledt, J,= / ele,dt, J,= / T T, dt, (2.124)
to to to

where tg and ¢y defines the start and end of the simulation window, respectively.

The functionals J, and J,, describe the integral of the attitude and angular velocity

error, while J,, describes the integral of the applied control torque.
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To evaluate and compare the performance of the translational controllers we use
the functionals

ty ty . ty

Jpos = / ppdt, Jye = / p'pdt, Jpow = / £, fapdt, (2.125)
to to to

where the functional J,,s and Jye describes the integral functional error of the

relative position and velocity error, while Jp,,,, describes the integral of the applied

control force.

2.8.2 Simulation results

The simulation results presented in this section are based on the results derived in
Section 2.5.3 and Section 2.5.4. We have chosen to compare these results with the
simulation results presented by Kristiansen et al. (2007) where the model derived
in Section 2.5.2 were utilized. Therefore, we have chosen for the leader spacecraft
a circular Earth orbit with an altitude of 250 km, inclination at 22.5° and the
argument of perigee and the right ascension of the ascending node at 0°. The
initial relative position and velocity were chosen as standstill (p(tp) = 0 m/s) at
p(to) = [0, — 100, 0] "m.

Figure 2.8 shows a plot over four orbital revolutions of the relative position and
velocity without any orbit perturbations. As can be seen, the follower spacecraft
trails the leader spacecraft with a more or less constant relative position and ve-
locity, that is, since the leader orbit is circular and the point —100 m along the
ey vector is not part of the same circular orbit and since both have same initial
velocity, the follower follows a slightly elliptic orbit which deviates compared to the
circular one as can be seen from the topmost plot in Figure 2.9, along with the
relative angular velocity between the leader and follower orbit as the bottommost
plot.

Figure 2.10 represents simulation results applying the perturbation model for
atmospheric drag working on the follower spacecraft. The equivalent spacecraft
area and drag coefficient are both set to 1 for simplicity. The plot shows that the
altitude of the follower spacecraft decreases because of the negative evolution along
e,, which probably means that it starts to loose altitude because of the aerodynamic
drag working opposite of the velocity vector. This effect causes the orbital angular
velocity of the follower spacecraft to increase, while the orbital period is decreasing,
which reflects the increasing position along ey. The same effect is also seen from
the plot of the relative velocity. The main reason why the aerodynamic drag causes
such a large impact on the follower orbit is because of the high density of the local
atmosphere at 250 km orbit altitude.

In Figure 2.11 simulation results including atmospheric drag and J> perturbation
force are presented. The J> perturbing force increases the effect from the previous
simulation, that is, the effect causes the follower spacecraft to be pulled towards
the Earth in an oscillating way, thereby increasing the distance along e,.. The effect
also causes an oscillation about the ej-axis because of the inclined orbit.

Lastly, simulation results for an elliptic orbit with perigee at 250 km and apogee
at 500 km are presented in Figure 2.12 including atmospheric drag and J5 perturba-
tion. The effect caused by the perturbations on the follower spacecraft is reduced
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Figure 2.8: Relative position and velocity between leader and follower spacecraft
without perturbations.

compared to the circular orbit of 250 km altitude because the density of the lo-
cal atmosphere is lower in all parts of the elliptic orbit except the perigee, while
the increased distance also have negative impact on the contribution from the J,
perturbation.

By utilizing the same initial condition as described in this section and trans-
forming them according to (2.81), along with the model presented in follower body
(2.73) and transforming them back to leader orbit coordinates for representation,
we obtain the exact same results as presented above and conclude that the models
are in some sense equal.

By comparing the results presented above with the results presented by Kris-
tiansen et al. (2007) where the model presented in Section 2.5.2 were utilized we see
that the behavior is different. In (Kristiansen et al., 2007) the follower obtain an
increasing altitude (growth along e,.) while decreasing along cross-track (eg), which
is natural since since the orbital period is increasing with the growth in altitude.
After a close inspection it might seem that the results are quite alike except for
opposite signs.
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Figure 2.9: Relative position (zoomed) between leader and follower spacecraft and
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perturbations.
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Figure 2.12: Relative position and velocity between leader and follower spacecraft
including aerodynamic drag and J, perturbation force in an elliptic orbit.
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Chapter 3

Continuous attitude control of rigid
bodies

In this chapter we present different control strategies for continuous attitude con-
trol of rigid bodies. The control laws are reminiscent of classic controllers for
robot manipulators, adapted to the topology of the quaternion space, in which the
model of rigid bodies are expressed. The controllers in question are the passivity-
based PD+ controller presented by Paden and Panja (1988) and the wrongly-called
“sliding-mode” controller of Slotine and Li (1987), which is continuous and may
rather be casted in the passivity-based framework (Slotine and Li, 1988), while the
sliding-mode controller alters the dynamics of a nonlinear system by application of
a discontinuous control signal (switching function). The rest of this chapter is or-
ganized as follows: we start by discussing different solutions from previous work on
the tracking problem formulation and give a formal definition in Section 3.1, present
exponential stability results and stability almost in the large for state feedback con-
trol in Section 3.2. We present a state feedback controller utilizing nonlinear gains
in Section 3.3, which is extended to output feedback control in Section 3.4 and wrap
up with simulation results and discussion in Section 3.5. The results presented in
this chapter are based on (Schlanbusch et al., 20105, 2011b,d,¢).

3.1 Tracking problem formulation

The attitude control problem consists of making the actual attitude converge to-
wards a given reference attitude qq satisfying the kinematic equation

qa = T(qq)wa. (3.1)

We define the quaternion error as q := qq ® q where q = [ij, €']T yielding the
error kinematics according to (2.82) to be expressed as

q="T(Q)o, (3.2)
b b

where T(q) is defined as in (2.82) and w(t) := w;, — wy 4(t). The tracking control
goal is then to steer €(t) and @(t) to zero. Due to the mapping from S3 to SO(3)

3
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for each point on SO(3) there exists two unit quaternions, and therefore we are not
able to achieve global representation using continuous control, and furthermore,
since the term global refers to the whole state space R™ according to Hahn (1967)
while S? is a covering manifold only; see also discussion on globality in Section 1.1.

To overcome this particular difficulty several strategies have been proposed. In
(Fjellstad, 1994) an approach was presented for control of unmanned underwater
vehicles and properties for a scalar function was presented as

e H(:) : [-1,1] = Ry; (non-negative)
e H(—1)=0and/or H(1) = 0;
e H(-) is Lipschitz on [—1,1]:
|H () — H(7j2)| < L|ih — 72|; (L finite, positive),

and a function was chosen as H(7) = 1 — |fj| yielding a corresponding feedback
vector

0H

2(d) =~ €= sen(i)e (3.3)
where the signum function is defined as
-1, ifz<0
= ’ . 34
sgn(e) {1, if 2 >0 (34

Using this feedback results in two asymptotically stable equilibrium points in q =
[+1, 0]T, but the solution is not robust when measurement noise is introduced.
Letting F := {q € S* : 1 =0}, and v(x) := [0,x"]T, the non-robustness issue
was defined by Mayhew et al. (2009) as

Theorem 3.1 (Mayhew et al. (2009)) Let o > 0. Then, for each q(ty) €
(E + oB*) N S3, there exist a piecewise constant function e : [0,00) — oB* and an
absolutely continuous q : [0,00) — S3 satisfying q(t) = 1/2q(t) @v(—z(q(t) +e(t)))
for almost all t € [0,00), and q(t) € (E + oB*) N S3 for all t € [0,00).

Theorem 3.1 states that for initial values arbitrary close to E, there is a possibility
that the solution stays close to E for finite time.

Another approach was presented in (Kristiansen, 2008) for control of a leader-
follower spacecraft formation, where the equilibrium point which require the short-
est rotation was chosen a priori, minimizing the path length. Hence g, :=[1, 0T]"
was chosen if 7j(tg) > 0, and q_ := [~1, 0T]" was chosen if 7j(ty) < 0. Then for
stability purposes, the equilibrium points were shifted to the origin using error
functions defined as e, :=[1 — 17, ET]T for the positive equilibrium, while for the
negative equilibrium point the error function was chosen as e, := [1 + 7, ET]T7
thus ||eq+|| € [0,2], and the angular velocity error vector was denoted e, = @. In
accordance with general kinematic relations

€+ = Te(egs)ey , (3.5)
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where

LI e’ ] . (3.6)

Teleqx) = 5 [ il + S (&)

The drawback of this method is that once the appropriate error function is chosen,
7 is not allowed to switch sign as can be formalized as follows.

Assumption 3.1 We assume that sgn(7j(to)) = sgn(7(t)) for all t > 1.

Note that although q € S? this is not true for e,, thus we define two sets, one for
each half of the rotational sphere, as e, € S, := {[1 -7, € |7 : % > 0,q € S%}
and e, € S3_:={[1+7, €T :7<0,q€ S} and find that e,+ € S3, US_ =
S3:={[1—|q|, €"]" : q € §?}. The tracking control problem can then be described
as follows.

Jim € — &(t) & lim qa(t) ® q = [E1, 0" = Jim [legs ]| =0, (3.7)
lim w — wq(t) & lim ||w —wq(t)]] =0 < lim |le,|| — 0. (3.8)
t—o0 t—o0 t—o0

For our stability results we also make the following hypothesis’.

Assumption 3.2 There ezists B, fu, > 0 such that |wq(t)|| < Bw, and ||wa(t)]] <
B, for all t > ty.

Assumption 3.3 There exists B;, 85 > 0 such that the inertia matriz J is con-
stant, symmetric and positive definite, and satisfies the inequality

8; < 131 < B (3.9)

To complete the proofs presented in this chapter we make use of the following
technical lemmas.

Lemma 3.1 Let e+ and T.(eqs) be defined as in (3.5) and (3.6). Then, the
inequality
1
e;riTeT:eqi > ge;rieqi (3.10)
holds fore,. YO<n<1lande, V —1<7<0.

Proof: See Appendix B.1.

Thus, Lemma 3.1 hold because of Assumption 3.1. The assumption of sign-
definiteness was discussed in (Kristiansen, 2008) though no analytical proof that
the assumption holds could be found. Following the lines of Caccavale and Villani
(1999) a bound on the initial states could be introduced such as in the extreme case
if 77(tp) = 0 then w(tg) = 0 has to be fulfilled, or more generally, let x = [eqT, el
and ||x(to)| < pv/em/cm == A where 0 < p < 1 and ¢, and ¢p; are the lower
and upper bound, respectively, fulfilling c,,[|x||? < V(x) < car||x||? where V(x) is
a Lyapunov function. Then, sign(7(t)) = sign(7(to)) for all ¢ > ¢y for all initial
values starting in the domain

x(tg) € Ba = {xesf x R3: ||x| <p1/2—m}, (3.11)
M
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and a similar line of arguments can be used for 7(t9) < 0.
Based on the findings of Kristiansen (2008) we pose the following lemma.

Lemma 3.2 The derivative of Te(q:I:) satisfies

Te(egt)eqr = Gzew, (3.12)

where
G — i{i[ﬁI +S@)] 1) (3.13)

Proof: See Appendix B.2.

3.2 State feedback control

In this section we present continuous state feedback control of rigid bodies based
on the previously mentioned PD+ and sliding surface controllers.

3.2.1 Passivity-based PD+ control

Theorem 3.2 Let Assumptions 3.1, 3.2 and 3.3 hold. Then, the dual equilibria
(eqt,ew) = (0,0) of system (2.82) and (2.83), in closed loop with the controller

To =Jwg — S(Jw)wy — qu:eq —koe, — T4, (3.14)

where kg > 0 and k,, > 0, are uniformly asymptotically stable in the large with set
of initial conditions I = S2 x R3.

Proof: See Appendix B.3.

Remark 3.1 In words, Theorem 3.2 establishes that the desired attitude qq may
be reached from any initial posture and any initial velocity. However, it must be
clear from the previous proof that it is wrong to conclude global asymptotic stability
since besides the fact that the system possesses two equilibria, the trajectories are
supposed to remain in a manifold where 7 (which is part of the state) does not
change sign; —see Definition A.3.

Furthermore, by invoking (Panteley et al., 2001, Lemma 3) the result of Theorem
3.2 can be shown to hold exponentially.

Theorem 3.3 Let Assumptions 3.1, 3.2 and 3.3 hold. Then, the dual equilibria
(eqr,ew) = (0,0) of system (2.82) and (2.83), in closed loop with the controller
(3.14) are uniformly exponentially stable in the large with set of initial conditions
=52 xR3.

Proof: See Appendix B.4.
Remark 3.2 Note that Remark 3.1 also holds for Theorem 3.3.

In Theorem 3.2 uniform asymptotic stability clearly follows under the assumption
that 74 is known and accounted for in the control law. This assumption can be
relaxed by replacing it with the following assumption.
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Assumption 3.4 Assume there exists Bq > 0 such that ||74(t)|| < Ba for allt > to.
We then obtain the following result.

Corollary 3.1 Let Assumptions 3.1 8.4 hold. Then, the dual equilibria (eq+,e.) =
(0,0) of system (2.82) and (2.83), in closed loop with the controller

To=Jwg — S(Iw)wg — k, T, e, — koe., (3.15)

where kg > 0 and k, > 0, are uniformly practically asymptotically stable in the
large with set of initial conditions T = S2 x R3.

The proof is omitted, but follows along the same lines as the proof of Theorem 3.9;
see Appendix A.2.2 for definition and sufficient conditions for practical stability.

Remark 3.3 Note that Remark 3.1 also holds for Corollary 3.1.

3.2.2 Sliding surface control

Theorem 3.4 Let Assumptions 3.1, 3.2 and 3.3 hold. Then, the dual equilibria
(eqr,s) = (0,0) of system (2.82) and (2.83), in closed loop with the controller

Ta = Ji, —SIw w, —k,T. e, —kos— T4 (3.16a)
w, = wyg—9T/e, (3.16b)
W = W4F %[f]l +5(e)] (3.16¢)

s = w-w,=e, +7T]e,, (3.16d)

where kg > 0, k, > 0 and v > 0, are uniformly exponentially stable in the large
with set of initial conditions T' = S3 x R3,

Proof: See Appendix B.5.
Remark 3.4 Note that Remark 3.1 also holds for Theorem 3.4.

The reference vector w, represents a notational manipulation that allows translation
of energy-related properties expressed in terms of the actual velocity vector w into
trajectory control properties expressed in terms of the virtual velocity error vector
s. This is performed by shifting the desired velocities w, according to the attitude
error g (eq), cf. (Slotine and Li, 1987; Berghuis and Nijmeijer, 1993).

By relaxing the assumption of known disturbances with Assumption 3.4 we have
the following.

Theorem 3.5 Let Assumptions 3.1, 3.2 and 3.3 hold. Then, the dual equilibria
(eqr,8) = (0,0) of system (2.82) and (2.83), in closed loop with the controller

To=J&, —S(Jw)w, — k, T} e, — ks, (3.17)

(3.16b) and (3.16d) where kg > 0, k, > 0 and v > 0, are uniformly practically
exponentially stable in the large with set of initial conditions T' = S2 x R3.

Proof: See Appendix B.6.
Remark 3.5 Note that Remark 3.1 also holds for Theorem 3.5.
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3.2.3 Sliding surface - almost in the large

In this section we relax the assumption that the sign of 7(t) is constant for all ¢
and consider that the state space of the closed-loop system is S2 x R3. In this
space, the closed-loop system possesses two equilibria: the positive equilibrium
(eg+,€w) = (0,0) and the negative equilibrium (e,_,e,) = (0,0).

As in (Rantzer, 2001; Angeli, 2004, 2001), we use a notion of stability for all
initial states except for a zero-measure set. For systems with state space R", we
speak of almost global asymptotic stability see (Rantzer, 2001) if the origin is
asymptotically stable for all all initial states in R™ except for a set of measure zero.
If not because the system’s state space is a subset of R® (hence, we cannot use the
qualifier ‘global’) this is the property that we establish in Theorem A.6, relying on
a refinement, of the main theorem in (Rantzer, 2001) for non-autonomous systems
and restated from! (Monzon, 2006).

Theorem 3.6 Let Assumptions 3.2 and 3.8 hold. Then, the equilibrium point
(eq+,€w) = (0,0) [respectively, the equilibrium (e,—,e,,) = (0,0)] of system (2.82)
and (2.83), in closed loop with the controller (3.16) is asymptotically stable in the
large with respect to S5 x R3, taken away a set of measure zero which includes the
dual equilibrium {(e,—,e,) = (0,0)} [respectively, with respect to S2 x R3, taken
away a set of measure zero including the dual equilibrium {(eq+,e,) = (0,0)}].

Proof: See Appendix B.7.

Remark 3.6 In other words, the equilibrium point (€41, e.) = (0,0) [respectively,
the equilibrium (e,—,e,) = (0,0) | is stable and attracts almost all trajectories in
S3 x R3.

3.3 State feedback control with nonlinear gains

In this section we present similar control laws as in Section 3.2.1 but with added
nonlinearities in the controller gains for improved performance in the sense of re-
duced sensibility to sensor noise. The control law ensures faster convergence to the
desired operating point during attitude maneuver, while keeping the gains small
for station keeping. A direct consequence is a drop in energy consumption when
affected by sensor noise.

Assume, for the time-being that the disturbances 74 are known. The following
theorem establishes uniform asymptotic stability of the closed-loop system under a
modified version of the PD+ controller presented in Section 3.2.1.

Theorem 3.7 Let Assumptions 3.1, 3.2 and 3.3 hold. Then, the dual equilibrium
points (eqt,e,) = (0,0) of the system (2.82) and (2.83), in closed-loop with the
control law

To =Jwyg — S(Jw)wd — T4 — kpekle:eqT;req — kdekzele“’ew, (3.18)

where k, > 0, kg > 0, k1 > 0 and ky > 0 are feedback gains, are uniformly
asymptotically stable in the large with set of initial conditions T' = S3 x R3,

'In Theorem A.6 we enforce the integrability assumption on p to be uniform in ¢.
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Proof: see Appendix B.8
Remark 3.7 Note that Remark 3.1 also holds for Theorem 3.7.

To obtain increasing gains when the error is increasing we need to choose k; > 0
and kg > 0. By choosing k; = k2 = 0 we see that (3.18) is reduced to (3.14).

Now we want to generalize the previous results. First, we want to design a con-
trol law with a special set of properties considering the proportional and derivative
gains; we want the proportional gain to be large and derivative gain to be small
when the attitude error is large independent of the angular velocity; we want the
proportional gain to be small and the derivative gain large when the attitude error
is small and angular velocity error is large; and we want both gains to be small when
the attitude and angular velocity errors are small. These properties are chosen such
that the system will have fast response, little overshoot and low gains when the er-
ror is small to reduce the effect of measurement noise on the system. Secondly,
we introduce a number of scalar gain dependent nonlinear feedback functions such
that the behavior of the system can be altered based on the choice of functions.

Theorem 3.8 Let Assumptions 8.1, 3.2 and 3.3 hold. Let o, B : [0,a) — [1,00) be
strictly increasing continuous functions where «(0) = 5(0) = 1 and a(r), B(r) — o
as r — oo, and let v : [0,a) — (0,1] be a strictly decreasing continuous function
where v(0) = 1 and v(s) — 0 as s — oo. Then, the dual equilibrium points
(eqx,ew) = (0,0) of the system (2.82) and (2.83), in closed-loop with the control
law

7o =Jwg — S(Jw)wyg — T4 — kpa(||eq||2)T;req
— kaB(llew)*)v(lleql*)ew, (3.19)

where ky, > 0 and kg > 0 are feedback gains, are uniformly asymptotically stable in
the large with set of initial conditions T' = S3 x R3.

Proof: see Appendix B.9.
Remark 3.8 Note that Remark 3.1 also holds for Theorem 3.8.

Some example functions for «, 8, v and related £ are given in Table 3.1 which can
be chosen arbitrarily for the controller.

In the next two theorems we extend the results presented in Theorem 3.7 and
3.8 by relaxing the assumption of known disturbances.

Theorem 3.9 Let Assumptions 3.1-3.4 hold. Then, the dual equilibrium points
(eqr,€,) = (0,0) of the system (2.82) and (2.83), in closed loop with the control
law

To =Jwg — S(Jw)wy — kpekle;eQTeTeq — kgetreiee,, (3.20)

where k, > 0, kg > 0, k1 > 0 and ko > 0 are feedback gains, are uniformly

practically asymptotically stable in the large with set of initial conditions T’ = S2 x
R3.
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Table 3.1: Sample functions for convergence and divergence of gains and related
Lyapunov function terms.

a (l1x01) . 8 (lIx]I*) & (IIxI1%) v (IIx[I)
eklex (1/.1{71) (eklex _ 1) e—kaTx
aklex, a>0 1/(ki1n(a)) (aklex - 1) aik?XTx, a>0

cosh (klex) (1/k1) sinh (klex) cos (5 tanh(kgx—rx))
1 + sinh (k1x ' x) (1/k1) cosh (kix'x) + ||x|| — 1 1 — tanh (kax"x)
(1/k1) [ (e + klex) In (e + klex)
In (e + k1xTx) — (e + klex) ] 1— %atan (k:ngx)

Proof: see Appendix B.10.

Remark 3.9 Note that Remark 3.1 also holds for Theorem 3.9.

Theorem 3.10 Let Assumptions 3.1 3.4 hold. Let o, 5 : [1,a) — [1,00) be strictly
increasing continuous functions where a(0) = £(0) = 1 and «o(r),5(r) — oo as
r — oo, and let v : [0,a) — (0,1] be a strictly decreasing continuous function
where v(0) = 1 and v(s) — 0 as s — oo. Then, the dual equilibrium points
(eq+,€ew) = (0,0) of the system (2.82) and (2.83), in closed-loop with the control
law

To =Jwg — S(Jw)wy — kpa(|le,|*) T, e,
— kaB(|lew|*)v(|leq]?)ew, (3.21)

where k, > 0 and kq > 0 are feedback gains, are uniformly practically asymptotically
stable in the large with set of initial conditions I' = S3 x R3.

Proof: see Appendix B.11.

Remark 3.10 Note that Remark 3.1 also holds for Theorem 3.10.

3.4 Output feedback control

As mentioned in the introduction, we want to stress that by using the expression
output feedback we strictly speak of without measurement of the angular velocity,
thus we start by defining the estimation error e, := wf’b — wf,e, where super-/sub-
script e denotes the estimated frame, together with an attitude estimation error
defined as Qe,b: = [ne,ln elb]T = qi,e @ qib-

The desired angular velocity of a rigid body is usually given with reference to
the inertial frame as w;d. By rotating to the body frame we obtain

w? ;= Riw! , (3.22)
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hence,

"'-’?,d = ngﬁ,d + R?w;d (3.23)
b oy.,b b s i
= —S(wip)w; 4 + Riw; 4. (3.24)
We see that to evaluate the derivative of the reference w?’d we need to know the

actual angular velocity of the rigid body wf’b. For control purposes we use the mod-
ified acceleration vector where wf’b is substituted with wf’d, obtaining (Caccavale

and Villani, 1999)
ag = —S(w; Jwi g + Riw 4 (3.25)
=R}, (3.26)

We also make use of the following assumption.

Assumption 3.5 We assume that there exists a constant §, such that nep(t) >
0y >0V t>t>0.

Assumption 3.5 is similar to Assumption 3.1 for 7 and its necessity will become
evident during the proof of the following theorem. Since this state is measured
we can choose qep(tg) = [1,0]T, and thus define the error vector as e, := [1 —
Ne,b, ezb]—'— with T, accordingly. The state only evolves on the positive half of the

rotational sphere thus, e, € qu ={[1 = Nep, e;rb]T i Meb > Oy Qe €SB}

Theorem 3.11 Let Assumptions 3.1 8.5 hold. Then, the dual equilibria
(eqt,€u,€eqs€e) = (0,0,0,0) of the system (2.82) and (2.83), in closed-loop with
the control law

T, =Jag — S(wa}e)wf’d - kpekleqT%T;req - kde_erqTQng’e, (3.27)

with ky, kq, k1, k2 > 0 as constant gains, and the observer
z=a,+J! [lpeksequE‘IT;;eeq - kpekleqT%TeTeq}, 3.28)
w?, =2+ 23 T] e, (3.29)

with l,,lg, ks > 0 considered as constant gains, are uniformly practically asymptot-
ically stable.

Proof: see Appendix B.12.

Remark 3.11 Remark 3.1 does not hold for Theorem 3.11 because of Assumption
3.5 where ne, s not allowed to go to zero.

Remark 3.12 In (3.18) a PD+ based state feedback control law was presented
using exponential gains with the derivative term as —kde’”elewew. One difference
is that in (3.27) the damping has a relatively small effect on the system while the
solutions are located ‘far’ away from the equilibrium point, and increases when the
attitude error is going towards zero. This helps in reducing trajectories overshoot.
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Remark 3.13 Note that instead of using de in the modified acceleration vector
(3.25), the estimated angular velocity wi?’e might be utilized. This will lead to added

restrictions for the lg gain, but might result in better performance when the estima-
tion error has converged.

Assumptions 3.1 and 3.5 might look restrictive, but in fact they are not; they are
only an ad hoc hypothesis that is made for the purpose of the analysis, and can be
removed at the price of restricting the domain of attraction as we do next.

Theorem 3.12 Let Assumptions 3.2, 3.3 and 3.4 hold and let e, be defined either
by eq = €4 or e = e,_. Then, the closed-loop system is uniformly practically
asymptotically stable on ]R7>O. That is, for any positive numbers 9, a, b, any &, €
(0,1) and any subset T of R = {x € S2 x R® x S5 x R® : || > 0, [e,| €
[0,a),mep > 0, > 0, |lecw|| € [0,b)} there exist control gains in RZ, such that
the set Bs = {x € R : ||x|| < ¢} is uniformly stable for all initial conditions in
I'. Furthermore, all trajectories originating in I' converge to Bs asymptotically and
uniformly in the initial conditions.

Proof: see Appendix B.13.

Remark 3.14 Remark 3.1 does not hold for Theorem 3.12 because 7 and 1.y are
not allowed to be zero.

For purpose of comparison we pose the following controller-observer structure with-
out variable gains.

Corollary 3.2 Assume that all assumptions made in Theorem 3.11 hold. Then,
the set of equilibrium points (eqt,€u,€eqt,€ew) = (0,0,0,0) of the system (2.82)
and (2.83), in closed-loop with the control law

To =Jag — S(waﬁe)wfﬁd —k,T)e, - kwwgﬁe, (3.30)
with ky, k, > 0 considered as constant gains, and the observer

z=aq+J [T ecq — kT e, (3.31)
Wb, =z+2J 1, T e, (3.32)

with lg,l, > 0 considered as constant gains, are uniformly practically asymptotically
stable.

The proof is omitted, but follows along the same lines as the proof of Theorem 3.11.

3.5 Simulation results

In this section we present simulation results based on the control laws presented
in this chapter. Our main focus is to compare performance of the control laws
using linear gains (static) with nonlinear gains (exponential/variable). We utilize
simulation data as presented in Section 2.8.1 if otherwise is not stated.
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Table 3.2: Values of performance functionals for attitude maneuver.

Ty | J, | T
Static PD+ 2.409 | 4.202 | 0.767
Exponential PD+ | 2.719 | 4.015 | 0.765

Table 3.3: Values of performance functionals for attitude maneuver over one orbital
period (5896 s).

JIp Jq Jw
Static PD+ 6.476 | 4.489 | 0.850
Exponential PD+ | 3.961 | 4.171 | 0.797

Table 3.4: Average value of performance functionals for rigid-body over 10,000
simulations.

Ty | J | T
Static PD+ 2.140 | 2.060 | 0.947
Exponential PD+ | 4.174 | 1.382 | 0.916

3.5.1 State feedback PD+ versus PD+ with exponential gains

For our simulations we have chosen the initial conditions as q(tg) = [-0.3772, —
0.4329, 0.6645, 0.4783]7, w(ty) = [0.1, —0.3, 0.2]7, to =0 s and t; = 30 s. The
control laws were tuned to achieve similar performance for sake of comparison thus
using parameters k, = k,, = 2 for (3.15), and k, =1, kg = 1.6 and k1 = ko =1 for
(3.20).

The simulation results are summarized in Table 3.2 and depicted in Figures
3.1 and 3.2. The performance functionals show that both controllers have similar
performance though the static controller has slightly higher attitude and angular
velocity error while the power consumption is slightly lower, while the maximum
control torque is similar.

The simulation results for one orbital period (5896 s) is presented in Table 3.3
and as can be seen the performance functionals are less affected for the controller
(3.20) compared to the controller (3.15). This is because as e; ~ 0 and e, ~ 0,
the controller gains for (3.20) are kpekle;e‘l ~ ky and kqeh2eee ~ k4 and since the
gains k, and kg are smaller for (3.20) compared to k, and k,, for (3.15) for a similar
maneuver, the sensitivity to measurement noise is reduced as can be seen from the
performance functionals.

In table 3.4 we present simulation results from a wide number of simulations for a
general rigid-body without disturbances and noise with controller gains k; = k, = 2,
kyw = kq = 1 for (3.14) and (3.18), and using random initial values for the quater-
nion vector, while the initial angular velocity was found randomly with standard
deviation in equal steps from 0.01 to 0.5 rad/s during 10,000 consecutive runs.
This is done to show that the exponential gains makes the trajectories converge
faster than constant gains, at the price of increased power consumption, without
increasing the sensitivity to measurement noise.
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Table 3.5: Values of performance functionals for attitude maneuver.

Jp Jq Jo
Static PD+ 0.839 | 4.147 | 0.468
Variable PD+ | 0.833 | 4.151 | 0.822

Table 3.6: Values of performance functionals for attitude maneuver over one orbital
period (5896 s).

Jp Jy Jo
Static PD+ 1.005 | 4.149 | 0.469
Variable PD+ | 0.850 | 4.152 | 0.822

Table 3.7: Average value of performance functionals for rigid-body over 10,000
simulations.

T T Ju
Static PD+ | 3.6435 | 1.6795 | 1.1596
Variable PD+ | 4.2109 | 1.3939 | 1.0880

3.5.2 State feedback PD+ versus PD+ with nonlinear gains

For our simulations we have chosen the same initial conditions as in Section 3.5.1
with tg = 0 s, t; = 50 s. The control laws were tuned to achieve similar performance
for sake of comparison thus using parameters k, = 1.8 and k,, = 3 for (3.15), and
a(|x[?) = B(|Ix[I*) = cosh(ki[[x[[?), v(]|x||?) = 1 — tanh(kz|x[|*) with &, = 0.7,
kd = 2.3 and kl = kg =1 for (321)

The simulation results are summarized in Table 3.5 and depicted in Figures
3.3 and 3.4. The performance functionals show that both controllers have similar
performance except that the angular velocity error for the static gain controller are
lower, while Figure 3.4 shows that a higher absolute torque is needed.

The simulation results for one orbital period (5896 s) is presented in Table 3.6
and as can be seen the performance functionals are much less affected for (3.21)
compared to (3.15) as expected based on the results presented in Section 3.5.1
where similar reasoning is used. The noise have thus less effect on both the energy
consumption, and the attitude and angular velocity error as depicted in Figure 3.5.

In Table 3.7 we present simulation results from a wide number of simulations
for a general rigid-body without disturbances and noise with variable functions as
a(lleql?) = log(c-+e] e), B(lleu|2) = 2o and v(lle,|) = cos((r/2) tanh(e] e,))
with controller gains k; = k), = 3, k, = kq = 1 for both (3.15) and (3.19), and using
random initial values for the quaternion vector, while the initial angular velocity was
found randomly with standard deviation in equal steps from 0.01 to 0.5 rad/s during
10,000 consecutive runs. Notice the difference in the performance functionals in
Table 3.5/3.6 compared to Table 3.7, which is a result obtained by choosing different
«, B and v leading to different behaviors for the solution trajectories.
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Table 3.8: Values of performance functionals for attitude maneuver.

Jp Jy Jeq
Static gains 96.3 | 0.778 | 0.013
Variable gains | 96.1 | 0.800 | 0.013

Table 3.9: Values of performance functionals for attitude maneuver over one orbital
period (5896 s).

Ip Jq Jeq
Static gains 236.9 | 0.785 | 0.014
Variable gains | 156.7 | 0.803 | 0.013

3.5.3 Output feedback PD—+ versus PD-+ with exponential gains

We introduce the performance functional

ty
Jog = / el et (3.33)

to

which is an expression of the integral attitude estimation error similar to .Jg, and
we apply measurement noise o, = o,, = 0.01. For our simulations we have chosen
the initial conditions as q; (o) = Qi.e(to) = [0.3772, — 0.4329, 0.6645, 0.4783] T,
wli’yb(to) =1[0.1, 0.2, —0.3]" rad/s, z(tp) =[000]", o =0s and t; = 15s. The
control laws are tuned to achieve similar performance for sake of comparison thus
using parameters k, = 10, kg = 7, [, = 100, lg = 75, and k; = ky = k3 = 1 for
(3.27)-(3.29), and kg = 49, k, = 11, l; = 240 and [,, = 150 for (3.30)—(3.32). The
spacecraft is commanded to follow smooth sinusoidal trajectories around the origin
with velocity profile

wj 4(t) = [3.2cos(2 x 107%t), 0.12sin(1 x 107°¢), (3.34)
—3.2sin(4 x 1073¢)] " x 107 rad/s.

The simulation results are summarized in Table 3.8 and depicted in Figures 3.6
and 3.7. From the performance functionals we see that both controllers lead to
similar performance, as imposed. One difference is that the controller with variable
gains utilizes lower maximum torque as seen in Figure 3.7, but experiences larger
overall angular velocity errors.

Simulation results for one orbital period (5896 s) is presented in Table 3.9 and
Figures 3.8 and 3.9, and as can be seen from the performance functionals the control
law containing variable gains is less effected by the measurement noise compared
to the control law using static gains, as expected based on the results presented
in Section 3.5.1 where similar reasoning is used. From Figure 3.9 we see similar
behavior for the observer; the noise has less effect on both attitude and angular
velocity between estimated and body frame.
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Figure 3.1: Attitude and angular velocity error, and power consumption using PD+
controller and PD+ controller with exponential gains controllers during spacecraft
attitude maneuver.
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Figure 3.2: Control torque using PD+ controller and PD+ controller with expo-
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Figure 3.3: Attitude and angular velocity error, and power consumption using PD+
controllers with static and variable gains during spacecraft attitude maneuver.
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Figure 3.5: Attitude and angular velocity error for PD+ controller with static (left)
and variable (right) gains.
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Chapter 4

Hybrid attitude control of rigid
bodies

In this chapter we will present different control strategies for hybrid attitude control
of rigid bodies based on the general framework briefly presented in Appendix A.3.
The control laws treated are modified versions of the same classical control laws as
presented in Chapter 3. The rest of the chapter is organized as follows: we start
by presenting the problem formulation in Section 4.1 along with some technical
lemmas utilized throughout this chapter. In Section 4.2 we present hybrid state
feedback versions of the controllers and combine them through a supervisor. Then
we revise the output feedback controller for the hybrid approach in Section 4.3 and
end with simulation results and discussion in Section 4.4. The results presented in
this chapter are based on (Schlanbusch et al., 2010a; Schlanbusch and Nicklasson,
2011; Schlanbusch et al., 2011b,e,f).

4.1 Problem formulation

The problem at hand is tracking of a given reference similar to what is presented
in Section 3.1 except that in order to use the methods of (Sanfelice et al., 2007) for
the controlled rigid bodies we define the error variable

Chq = [1 - hfh ET]T7 (41)
fulfilling the kinematic equation
€hg 1= TZ (€nqg)ew, (4.2)

where

—he! ] , (4.3)

-
T (enq) = [ 7l + S(&)
h € H := {-1,1} is the hybrid switching parameter and ey, € S; = {[1 —
hn, ET]T :q € S% h e H}. To complete the proofs presented in this chapter we
make use of two technical lemmas adopted for hybrid systems. The first one is a
version of Lemma 3.1 while the latter is a version of Lemma 3.2 adapted to the
sliding surface closed-loop equations.
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Lemma 4.1 Let epq and Th(enq) be defined as in (4.1) and (4.3). Then the in-
equality

1
e;thT;ehq > ge;qehq (4.4)
holds for all @ € S® and h € H.
Proof: See Appendix B.14.

Lemma 4.2 The derivative of Th(ehq) satisfies

Th(ehq)ehq = H(ehq, S), (45)

where

H = i (Wil +S@)] -1} [s - ;*yhé] . (4.6)

Proof: See Appendix B.15.

We see from (3.12) and (3.13) that by replacing h for &+ and e, = s —vT} ey, =
s — 1/2yhé from the sliding surface control structure, we obtain (4.6). A hybrid
version of Lemma 3.2 can be stated as follows.

Corollary 4.1 The derivative of Th(ehq) satisfies

Th (ehq)ehq - Gheo.n (47)

where
G = %{h[ﬁl +S(@)] -1 (4.8)

4.2 State feedback control

In this section we will present hybrid state feedback control of rigid bodies based
on the previously mentioned PD+ and sliding surface controllers.

4.2.1 Passivity-based PD+ control

We start by considering a switching controller based on Paden & Panja’s controller.
Let the input control torque be given by

To =Jwg —SJw)wqg — 714 — ka;ehq — kqe,,, (4.9)

where k,, kq > 0 are constant feedback gains, and the state x := [egq, el h]". The

w

switching law is defined as follows. Let C' and D denote the flow and jump sets
respectively and be defined as

C ={xeS}xR¥x H:hij> -0} (4.10a)
D ={xeS}xR*x H:hj<—0o}, (4.10b)

for a given value o € (0,1) which determines the hysteresis margin to ensure ro-
bustness to measurement noise along the lines of Theorem 3.1. Note that both the
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flow and jump sets are closed, thus there exists a point hij = —o were the sets are
overlapping, and that by setting o = 0 leads to feedback similar to (3.3) using a sign
function. To ensure robustness to measurement noise we need to choose o > 20, B7,
where 0,B” denotes the noise vector for the total state. If o > 1 switching of i will
never occur. Also note that CUD = S} x R? x H. The switching law is defined as

h=0 x eC (4.11a)
xt =G(x) = [e;q,eT -n" x €D. (4.11Db)

w

We then have the following.

Theorem 4.1 Let Assumptions 3.2 and 8.3 hold. Then, the equilibrium set
A={xe€ S} xR*x H: (ene,) =(0,0)} (4.12)

for (2.83) and (4.2) (4.3) in closed-loop with the hybrid controller (4.9) (4.11) is
uniformly asymptotically stable in the large on the set' S3 x R3.

Proof: See Appendix B.16.

What we see here is that the "sphere" described by the quaternion in S3 is
roughly divided in half by 77 = 0 plus hysteresis, such that the switching control law
always will choose the rotational direction based on the shortest path. Note also
that by applying switching we do not need to consider Assumption 3.1 and Remark
3.1. By removing the assumption of known disturbances we obtain the following
result.

Corollary 4.2 Let Assumptions 3.2, 3.3 and 3.4 hold. Then, the equilibrium set
A={xe€ S} xR®x H: (en,s) € Bs} (4.13)

for (2.83) and (4.2) (4.3) in closed-loop with the hybrid controller
To =Jwg — S (Jw)wy — k, T} eng — kaew, (4.14)
and (4.10) (4.11) is uniformly asymptotically stable in the large on the set Sj x R3.

The proof is omitted, but follows along the same lines as the proof of Theorem 3.9
with k1 = ko = 0 adapted for hybrid control according to the proof of Theorem 4.1.

Note that uniform asymptotic stability of a set as defined in (4.13) is equivalent
to uniform practical asymptotical stability of the origin for § > 0, while for § =0
the set is reduced to the origin, which corresponds to uniform asymptotic stability
of the origin.

INote that throughout literature, the stability of sets are defined in many different ways;
see for instance (Goebel et al., 2009) for set convergence and (Chaillet and Panteley, 2006) for
stability of sets. Our understanding is that all trajectories x(t, to,xo) will enter the closed set A
at t = to + 7T and stay in A for all t > to + T
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4.2.2 Sliding surface control

The hybrid controller is composed of the continuous-time control law

To = Jwp —SJw)wp, —Tg— qu;ehq — ko sh, (4.15a)
WhHr = Wqg— *yT;ehq, (415b)
S, = W—Wh =W —wg+ ’yT,Tehq, (4.15c¢)

where kg, ko, 7> 0 are considered constant gains, the switching law

xt = G(x) = [e},,s),—h] x€D (4.16)
where x =: [e;q, s, ,h]T, and the flow and jump sets
1

c = {x €SS xR x H : h[kqﬁ - ifyéTJew] > —0} (4.17a)
1

D = {x €SI xR x H: h[kqﬁ - ifyéTJew] < —0} . (4.17h)

where again o defines the switching hysteresis. We state the following theorem.

Theorem 4.2 Let Assumptions 3.2 and 3.3 hold. Consider the system (2.83) and
(4.2) (4.3) in closed-loop with the controller (4.15) (4.17). Then, the set

A={xe€ S} xR*x H: (enysn) = (0,0)} (4.18)
is asymptotically stable in the large on the set S3 x R3.

Proof: See Appendix B.17.
By removing the assumption of known disturbances we obtain the following
result.

Corollary 4.3 Let Assumptions 3.2, 3.8 and 3.4 hold. Consider the system (2.83)
and (4.2) (4.3) in closed-loop with the controller

To =Jwpnr — S (Jw) wp, — qu;ehq — ky(w — wpy), (4.19)
(4.15b), (4.15¢) and (4.17). Then, the set
A={x€ S} xR*x H: (en,ss) € Bs} (4.20)
is asymptotically stable in the large on the set S3 x R3.

The proof is omitted, but follows along the same lines as the proof of Theorem 4.2.

A notable difference with respect to the controller in Section 4.2.1 is that the
switching condition depends on both the attitude and angular velocities, which may
lead to different behaviors as pointed out by Mayhew et al. (2009). Another notable
point is that the flow and jump sets (4.17) for the sliding surface controller are very
similar to the ones derived in (Mayhew et al., 2009) using backstepping technique.
In (Kristiansen, 2008) an analysis of the structures of the two mentioned controllers
were given, and vast similarities were shown, which also seems to be evident for the
hybrid case as well.
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4.2.3 Hybrid supervisor

We now introduce a supervisor to take advantage of the features of each of the
switching controllers presented in Section 4.2 in order to improve performance in
closed-loop, where our primary goal is to reduce energy consumption i.e. control
effort. As we show, this may be achieved by designing a second switching law
which determines which hybrid controller to use at which instant. The supervisor
is based on the work of Efimov et al. (2009). According to the latter, the design
method consists in defining a partition of the real positive semi-line with respect
to the values of the norm of the output to be controlled. Then, the semi-line is
divided in regions, for which each of them a controller is associated. For instance,
one may want to apply “controller 3” which provides fast convergence on “region 4”
which corresponds to ‘large’ errors. In the actual context ¢.e., the attitude control
problem, the real positive semi-line consists on the line 77 € [—1,1].
We start by dividing the line of values for 7 into suitable domains with local
optimality? according to
M
1,1 = [ J[Ap Api1), Ao =—1, Ay =1. (4.21)
p=0
The approach is to use controller 1 to reduce large angular velocities and then to
switch to controller 2 when the attitude error is small thus, the following imposed
partition is set in an intuitive manner and then tuned based on simulation results

Ay =—-1, A} =-0.8, Ay =0.05, A3 =0.85, Ay =1. (4.22)
We also introduce hysteresis to the switching logic by defining
Xo, (A1) = —0.85, xp, (A2) = —0.05, xa,(As) = 0.80, (4.23)

where 0, = i if controller 7 is used. Based on simulations we assign the sliding

surface controller for 6y and 3 for negative and positive h respectively, and the

PD+ for 6; and 6> again for negative and positive h respectively, since the sliding

surface controller behaved better close to the equilibrium, while the latter behaved

well during stabilization, thus obtaining a partition as illustrated in Figure 4.1.
The hysteresis supervisor is given by

to =0, i(t()) =nrrec {0, Ce ]\4}7 ne [Ar, AT+1); (424)

t, =arg,s, f{i € [Arxo, (M)}, k€ {ilty) - Li(ty) +1}  (4.25)

tjiy1 = i b} 4.26

I iy U (4.26)
i(tj_H) =k such that 77 S [Ak,ng (Ak+1)) C [Ak;Ak—H)- (427)
where t;, with j = 1,2, 3, ..., are switching times; j is the number of the last switch

and the signal i(¢) has constant value in the hysteresis set

N = L_JO[Xep (Apt+1); Apt1). (4.28)

21t should be noted that strictly speaking, we do not obtain an optimal solution of the total
system but, by carefully choosing the switching conditions the switched control leads, if not in
general to optimal performance, to an improvement.
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X0, (A1) = —0.85 Xo, (A2) = —0.05 Xo,(A3) =0.8
Ayg=—1 A1 =-0.8 Ay = 0.05 Az =0.85
I — — 1 |
n
=1 01 =2 Oy =2 03 =1

Figure 4.1: Illustration of the 7 partitions.

The switching works as follows: the system starts in a mode i(ty) based on the
initial value of 7. Then, at ¢, the value of 7 leaves the specified interval (including
hysteresis), and t;41 denotes the shortest time where this interval is abandoned,
thus a switch occur to the appropriate interval i(¢;41) = k where k denotes either
a switch "left" or "right" based on an decrease or increase of 7.

4.3 Output feedback control

In the control laws presented in this section we have used hybrid feedback to remove
the assumption of no sign change of 7(¢) as suggested by Assumption 3.1 based
on the analysis due to Lemma 3.1 similar to what was presented in the previous
sections. One challenge is still left, the assumption that n.,(t) > 6, for all ¢ > ¢,
describing the rotation between the body and estimated frame as suggested in
Assumption 3.5. Based on this discussion we propose the following controller

7o =Jag — S(Jw! Jw! ;= kyT) eng — kaw? ., (4.29)

with ky, kq > 0 considered as constant gains and wg’e = wge — wf’d as the angular

velocity of the estimated frame relative to the desired frame presented in the body
frame, and the observer

z=aq+J3 ' [1,T/ ecq — kT engl, (4.30)

w?, =2+ 23 14T} e, (4.31)

with 1,14 > 0 constants to be defined. Next, let x := [e;q, el, e;rq, el,,h]" and
define the flow sets as

1
Cr={xeS*xR*xS*xR¥*x H:h (ﬁ - ﬂ)\éTJew) > 0} (4.32)
P
Cri={x€S*xR*x S*xR> x H:nep >dy,}, (4.33)

where C' = Cy N Cy, and §,, and 4, are constants to be defined. The set (4.32)
can be seen as hysteresis such that if 7 switches sign, it has to grow larger than
some constant d,, before the trajectory leaves the flow set. The second set (4.33)
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is introduced to ensure that 7, ;, remains separated from zero. Then, the jump sets
should be assigned according to

Dy :={x €S xR3xS*xR*x H:h (n - %)\ETJew) < =0} (4.34)
P
Dy :i={x€ S* xR*x S3 x R* x H :ne, < 6,}, (4.35)

where D = Dy U D5, and the switching laws defined as

h=0vxeC (4.36)
XJr = GI(X) = [e;qve;;ra e;rqve;rwv _h]T Vx € Dl (437)
xt = GQ(X) = [e;q, ezv 0, e:zrwv h]T Vx € Ds. (438)

G1(x) ensures that h switches sign when the hysteresis value is passed such that
the product h7 is positive, while G2(x) ensures that e.; = 0 = 7.5, = 1. During
flows (that is Vx € '), we have h = 0. We can now state the following theorem.

Theorem 4.3 Consider the system (4.2) and (2.83), in closed loop with the hybrid
controller (4.29)—(4.38). Let Assumptions 3.2, 3.3 and 3.4 hold. Then, for each §,
A there exist control gains ky, ka, l, and lq such that the set As = {x € 5% x R3 x
S3 <R3 x H : ||x|| <6} is uniformly asymptotically stable for all initial conditions
in Ap = {x € 3 xR3 x 3 xR3x H : ||x|| < A}.

Proof: See Appendix B.18.

Remark 4.1 Note that Remark 3.13 also hold for Theorem 4.3.

Corollary 4.4 If in addition to the conditions of Theorem 4.3, the disturbances
T4 = 0 the equilibrium x = 0 is uniformly asymptotically stable.

4.4 Simulation results

In this section we present simulation results based on the control laws presented
in this section. Qur main focus is to compare performance between continuous
and hybrid control laws, and between different hybrid controllers compared with a
combination through supervisory control. We utilize simulation data as presented
in Section 2.8.1 if otherwise is not stated.

4.4.1 Continuous versus hybrid state feedback

We have performed several series of simulations to compare the hybrid controller
of Section 4.2.2 to the continuous controller of Section 3.2.2. In the simulations
setting we assume that the rigid body is a spacecraft and naturally, the primary
goal is to improve performance. The latter is measured in terms of (reducing) fuel
consumption i.e., control effort.
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For the continuous controller in Section 3.2.3 the reference equilibrium point
is chosen a priori according to the method presented in Chapter 5. This is done
considering both initial rotation and orientation for ‘small’ initial values,

et if  kyii(to) + k7i(to) > 0
_ . 4.39
Ca { e, if  ksn(to) + kﬁﬁ(to) <0 [’ ( )

where 7j(t) and 7j(to) are initial values and k; and k; are chosen parameters. Note

that ﬁ = —1/2éTew. By this rule of choice we can make a fair comparison with the
hybrid sliding surface controller as presented in Section 4.2.2. Also, an appropriate
tuning is made; for the continuous controller the parameters k; and kﬁ can be tuned
to fit a given system while for the switching strategy tuning consists in choosing
appropriately the hysteresis threshold ¢ and the gains k, and . Note that when
choosing equilibrium point a priori we only need to tune external parameters while
for the hybrid approach controller gains have to be chosen which reduces the tuning
flexibility of the control law itself.

An interesting natural scenario to consider is when the initial conditions are
‘large’; particularly, when the spacecraft’s attitude is ‘close’ to the desired one but
turning rapidly away from it that is, ||e,(to)|| > 1 and €(tp) ~ 0. Note that the
switching law in (4.17) consists in verifying whether

1
ci=h (kqﬁ — QWETJew) > 0. (4.40)

Hence, if we have &' e, ~ 0 the effect of (large) angular velocities may be trans-
parent to the hybrid controller.

The simulations are made for two cases of initial angular velocities. Figure
4.2 shows simulation results using (q(tp),w(tg)) = ([1,0]7,1.5v") where v =
[3,—4,5]7/||[3,—4,5]T||, and the gains are set to k, = 1, k, = 2, v = 1. The
switching threshold (hysteresis) is chosen as ¢ = 0.1. As it may be appreciated the
negative equilibrium point is preferable but the switching threshold for the hybrid
controller is never met; the state trajectory never enters the jump set. One may
think that the hysteresis switching threshold is not chosen properly however, Fig-
ure 4.3 illustrates the opposite, showing that the value of the switching condition
(4.40) does not reach the switching threshold for any ¢ > 0. It may be argued
that the initial angular velocity may not be recognized by the continuous controller
(3.2.2) based on the prediction (4.39) either. Yet, this expression only accounts
for small initial angular velocity errors; for large initial angular velocity errors the
equilibrium point giving the largest initial rotational error is in generally preferred.

Next, we increase the initial velocity to e,,(tg) = 3.5v " to provoke switching; see
Figure 4.4 for simulation results. Now, the system under either controller, that is
continuous or hybrid, eventually settles at the negative equilibrium point, although
the continuous controller has lower power consumption compared to the hybrid
controller while the integrated attitude and angular velocity errors are larger.

To compare further the performances of the hybrid versus the continuous con-
troller we performed a simulation decreasing the derivative gain to k, = 1. On one
hand, this entails a change in the preferred reference equilibrium point when using
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Table 4.1: Values of performance functionals.

Jq Jo JIp
Continuous controller (Fig. 4.2) | 2.80 | 7.19 | 9.50
Hybrid controller (Fig. 4.2) 1.47 | 1.15 | 21.07
Continuous controller (Fig. 4.4) | 1.86 | 18.00 | 70.11
Hybrid controller (Fig. 4.4) 1.69 | 13.44 | 76.89
Continuous controller (Fig. 4.5) | 4.52 | 20.02 | 83.16
Hybrid controller (Fig. 4.5) 4.53 | 19.44 | 80.95

Table 4.2: Values of performance functionals without noise.

Jq Ju JIp
Sliding surface | 4.040 | 0.774 | 5.021
PD+ 3.861 | 0.556 | 4.439
Supervisor 4.002 | 0.556 | 4.438

Table 4.3: Values of performance functionals including noise and perturbations for
one orbital period (5896 s).

Jy Jw JIp
Sliding surface | 4.058 | 0.7776 | 10.840
PD+ 3.874 | 0.561 | 22.780
Supervisor 4.024 | 0.533 7.921

the continuous controller (3.2.2). On the other hand, using the hybrid controller
with less damping results in lower energy consumption compared to the continu-
ous controller while the integrated attitude error is similar for both controllers; see
Figure 4.5 for plotted results. The energy consumption under hybrid control may
be further diminished by increasing the hysteresis threshold o.

A comparison of the controllers in function of the performance indexes Jg, J,,
and J), for all three simulations discussed above is presented in Table 4.1.

4.4.2 Hybrid versus supervisory control

In this section we compare the hybrid controllers presented in Section 4.2.1 and
4.2.2 with the supervisory strategy presented in Section 4.2.3, where the primary
goal is to compare performance features.

The initial conditions were set to q(to) = [-0.3772, —0.4329, 0.6645, 0.4783]"
and w?,(tg) =[0.1 —0.3 0.2]". The controller gains were chosen as k, =4, kg =5
for the PD-+ controller, and k; = 1, k, = 2 and v = 1 for the sliding surface
controller, while the supervisor gains were chosen as k, = 4, kg = 5, k;, = 0.5
k, = 1 and v = 1. Our objective for the tuning process was to obtain similar
performance for the different controllers.

We ran two series of simulations to compare the hybrid sliding surface con-
troller, the PD+ hybrid controller and the supervisor-based controller. The simu-
lation results from the first simulation are summarized in Table 4.2 and depicted
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sumption and actuator torque for switching and continuous sliding surface control
of a rigid body. (k; =1, ko, =2, w = 1.5v).
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Figure 4.3: Switching criterion evolving over time.

in Figure 4.6. The performance for each controller is similar; the hybrid sliding
surface controller lead to slightly higher power consumption and slower transient.
Yet, regarding instant-power overshoot, it is worth remarking that the maximal
torque required from the actuators was a little smaller as can be seen in Figure 4.7.

In a second run of simulations we introduced measurement noise and input
disturbances. The simulation time was set to one orbital period (5896 s) to show
the effect of the noise and disturbances on the error functionals. The results are
summarized in Table 4.3. The attitude and angular velocity errors were very similar
to those showed in Figure 4.6 and therefore is not showed here. The difference is
better appreciated in regards to the input torques; see Figure 4.8. As it may be
expected, supervisory control again yielded the lowest power consumption. One
important property which should be noted is that for the controller working far
away from the equilibrium the gains are picked large while the controller working
close to the equilibrium has smaller gains. This strategy is not too different from
the control strategy presented in Section 3.3 where the variable terms in the gains
caused the same effect, though in a continuous manner, but the result of reduced
sensibility to measurement noise is similar.

4.4.3 Output feedback control

In this section we show that the controller presented in Section 4.3 works properly.
For our simulations we have chosen the initial conditions as q;;(to) = [1, 0, 0, 0],
wli),b = [47 0.2, — 0'3]T= h(tO) =1 z(tO) = [07 0, O]T and qi,e(to) = qi,b(to):
controller and estimator gains as k, = 1, kg = 3, [, = 40, I = 25, and switching
variables as 6, = 0.1 and 9, = 0.9. The spacecraft was commanded to follow
smooth sinusoidal trajectories around the origin with velocity profile

w} 4= [3.2cos(2 x 107%t), 0.12sin(1 x 107°¢), (4.41)
—3.2sin(4 x 1073¢)] " x 107 rad/s.
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Figure 4.6: Attitude and angular velocity error, and power consumption using slid-
ing surface, PD+ and combination of both by supervisory control during spacecraft
rotational maneuver.
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The simulation results are depicted in Figure 4.9 and show that the large initial
velocity error provoked switching for both the dynamical system and the observer
after about 1 s and 0.4 s, respectively, as can be seen in the topmost plot, which
means that h is set to —1 and 7., is set to 1, respectively. In the second plot it is
shown that the angular velocity of the body frame relative to the estimated frame
converges faster than the angular velocity of the body frame relative to the desired
frame, as is expected since from (B.223) we observe that l; > k4 and we can expect
that in most cases [} > k3. When both angular velocity errors have converged, we
conclude that also wg’e ~ 0% since wg)e = wg)b — ‘-"Z,b- The actuator torques are
depicted in the bottommost plot where it can be seen that the applied torques were

3We denote approximate zero because unknown disturbances and measurement noise are
added.

95



4. HYBRID ATTITUDE CONTROL OF RIGID BODIES

2 ~ ’ ’ ’ ’
.‘.‘\ Tz
\
- =Ty
T, |]
15 20 25 %
4 ' ! ' ' '
Tx
- \ e T?
g 2R TZ} |
g )
&
& 0/ T
-2 : | | ‘ |
0 5 10 10 20 ® ?
4 ~ ! ’ | ’
Tx
- =Ty
T |1
-2 : ‘ ‘ ‘
0 5 10 15 20 ® ”

Time (s)
Figure 4.8: Control torque using sliding surface, PD+ and combination of both
by supervisory control during spacecraft rotational maneuver including noise and
disturbances.

96



4.4. SIMULATION RESULTS

=1 W‘——f
£ SO T -
K KW i
_Gé ot \ Ne,b
= ™. ———
e N
+ | Sl
< _1 L \__ - ;_—;\ Il Il Il Il Il Il 7
0 2 3 4 5 6 7 8 9 10
ot
E 20 ‘
= b, T b
> WapWap
£ - - - WA
o
= i
=
P
<
=
é{) i .y i i i i
< 4 5 6 7 8 9 10
5
Tz
..... Ty M
—__-T

4 5 6 7 8 9 10
Time (s)

Figure 4.9: Attitude error, angular velocity error and control torque during space-
craft maneuver with hybrid PD+ based output feedback tracking controller.

consequently reduced after each jump. Note that if 7. ;(¢0) < 6,, then x(t9) € D>
which will provoke a switch before any control torque is calculated, thus V(X) is
negative and the same is then also true for V(x) for all time (see Appendix B.18
for details).
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Chapter 5

Considerations choosing attitude
equilibrium point

Based on the discussion in Section 3.1, in general three different strategies are
presented for stabilization of the attitude equilibrium points; continuous feedback
with choice of either shortest path, almost any initial condition (almost "global"
stability) and through hybrid feedback. For a system which is standstill at ¢g, the
equilibrium point leading to the shortest path is the obvious best choice, but the
problem at hand gets more complicated when initial angular velocity is introduced.
In Section 5.1 we present a motivating example of a cart moving along a line to give a
better understanding of the problem. Next, we analyze the system behavior of rigid
body attitude control by an extensive amount of simulations to look for patterns
leading to general rules in Section 5.2, and then we utilize an optimization technique
to find the optimal equilibrium point based on a cost function in Section 5.3. In
Section 5.4 we present simulation results showing that the proposed schemes are able
to predict which choice of equilibrium leads to the cheapest rotation based on energy
consumption. The results presented in this chapter are based on (Schlanbusch et
al., 2010e,d).

5.1 Cart example

To clearly illustrate the main motivation of this topic, we present an example where
a cart needs to choose between two ending points causing the cheapest travel as
illustrated in Figure 5.1. The dynamics of a cart moving in one direction without
influence of friction is expressed as F' = ma, where F' is the control force, m is the
mass of the cart, and a is the acceleration. The velocity of the cart is expressed as
the time derivative of the position, which leads to the state space representation

B1(t) = zo(t) , da(t) = —u(t) (5.1)

where x1(t) is the position and xz5(t) the velocity of the cart, and u(t) is the control
signal. The initial states of the cart at t( are given as x1(ty) = x19 and z2(ty) = 20,
and the final states at ¢ty are x1(ty) = x1y and z2(ty) = xos for simplicity of
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Figure 5.1: Cart moving along a line, a linear view of traveling on a circle.

notation. Assume that the cart starts at a position restricted by —p < z19 < p,
where p € R\{0} is an arbitrary distance. The problem is to find which way the
cart should be moving, either towards —p or p to minimize the position error at
time ¢y and energy consumption for the total maneuver, cf. Appendix A.4 for a
short review on solving linear optimal control problems. This is done by considering
two cost functionals, one for each ending point
1 1
J= iq(ajlf +p)? —|—/ §Tu2dt , (5.2)

to

where ¢ and r are weighting constants. The final value of the adjoint vector is

i) = [ dlors ) ] = { i;g;% } : (5.3)

while the differential equation that describes the time history of the adjoint vector
is according to (A.63)

o R T R W

Solving (5.4) by integration from ¢y to ¢, results in

t

M(t) = Mi(ty) + / (0)dt = g(z1s +p) (5.5)
ty
t

Ma(t) = Aafty) — / M(t)dt = glary +p)(ty — 1), (5.6)
ty

and then the control history is found by applying (A.64), such that
+p)
H+[0 al@rs =0
ru() 10 5 ] { a(ary £ (7 — 1)
q
t) = —— + ter —1). 5.7
u(t) rm(xlf p)(ty —1t) (5.7)
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Inserting the control signal (5.7) into the dynamics of (5.1), leads to

x0=| 0 o |x0-| o, s , (538)

ez (w1 £p)(ty — 1)
and solving (5.8) for the final position at ¢ =t yields

r10 + T20(ty —to) £ pT

= , 5.9
T1f 1£T (5.9)
where
q Ls | o 2, 13
= — |—=t t5to — trt, —tg| - 5.10
=38+ Bt — 83 + 513 (5.10)
We define the ending position error as Z+ = | £ p — x|, and assume that the cart

starts standstill at 19 = 0 where tg = 0 with ¢ =7 =m =1, p = 100 and t; = 10.
This gives an error of 0.3009 for both £p, in other words it is indifferent which way
the cart moves, which seems logical. If the cart starts standstill at x19 = 10 the
error for —p is 0.3310 while for p it is 0.2708, which means that the closest point is
the optimal one, which also seems logical. If the cart now starts at the exact same
spot but has an initial velocity of x99 = —3 we get an error of 0.2407 for —p while
0.3611 for p. Hence, because of the initial velocity the farthest point is the optimal
one. To verify the results we ran simulation for both the positive and negative p
with (5.7) as control signal, which can be seen in Figure 5.2 where we see that both
points are reached at the specified time although the initial velocity makes —p the
preferable ending point as can be seen from the total applied control signal. Note
that the above example easily can be extended to also include ending velocity as
well.

5.2 Statistical choice of equilibrium point

In this section we present a scheme developed to choose the favorable equilibrium
point based on statistical analysis such that the criteria described as

J = min{J,¢, J,_} (5.11)

is satisfied where J,1 is called a performance functional defined as

ty
in:/ T;(eqi)Ta(eqi)dt, (5.12)

to

where tg and ¢y are the respective start- and end-time of the maneuver. Notice that
the argument e,+ now is used to denote if the positive or negative equilibrium is
chosen according to e,. = [1 F 7, ET]T. We start by presenting simulation results
from a wide variety of randomly generated initial values, where a maneuver on
SO(3) is considered with desired values as qq = [£1, 07]" and wy = Wy = 0 using
simulation parameters as described in Section 2.8.1 utilizing the control law (3.14)
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Figure 5.2: Simulation results including position, velocity and power consumption
for the example cart moving towards +p = £100 with initial conditions x1y = 10
and To0 = —3.

with k, =1, kg = 2 constant gains. We did not apply disturbances or measurement,
noise.

Figure 5.3, 5.4 and 5.5 shows 1000 simulation results; each where the initial
quaternion was randomly generated and initial angular velocity was generated as
normal values with zero radians per second mean and standard deviation of 0.01,
0.1 and 1 rad/s respectively. We have plotted the results such that z = 1 and
z = —1 if stabilization at the positive and negative equilibrium point requires least
energy, respectively. From the figures we can identify some features; in essence we
have obtained three different behaviors: in Figure 5.3 the distribution of preferred
equilibrium points is such that 7 is the dominant part, in Figure 5.4 we see that
choice of preferred equilibrium is dominated by the 7 parameter, while in Figure
5.5 the preferred equilibrium is opposed to the initially closer one.

The ideal approach is to use one single function to describe the behavior of the
system; a positive result would indicate that the positive equilibrium is preferable
while a negative result would indicate that the negative equilibrium is preferable.
However, since we have detected three different behaviors we split into three dif-
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Figure 5.3: Simulation results from random initial values with 0.01 rad/s standard
deviation for angular velocity.
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Figure 5.4: Simulation results from random initial values with 0.1 rad/s standard
deviation for angular velocity.
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Figure 5.5: Simulation results from random initial values with 1 rad/s standard
deviation for angular velocity.

ferent rules depending on the initial angular velocity. Case 1 is for small initial
angular velocities and the choice is made according to

oy =4 G I Kai(to) +kzi(fo) 2 0 (5.13)

eq— if  kgi(to) + kzn(to) <0
where 7(to) and 7)(to) are initial values, and k; and k; could be considered as scaling
constants. The idea is to tune the gains based on trial and error or statistical anal-
ysis such that we obtain the equilibrium point from (5.13) that results in fulfillment
of (5.11).

As simulation results show in Figure 5.3, (5.13) leads to a good approximation
for small e, (t9), while when larger initial angular velocities are considered (Case 2),
as can be seen in Figure 5.4, the system tends to prefer the equilibrium point based
solely on ﬁ(to); a plane is splitting up the accumulated points through ﬁ(to) =0
and thus an alternative function for choosing equilibrium point can be expressed as

. €q+ if ﬁ(t0)>0 <
e={ o T Vit 20 (5.14)

while for 7j(tg) = 0 we choose according to

_ [ eq+ if i(te) =0
eq_{ e, if di(to) <0 (5.15)

When even larger initial angular velocities are considered, the system tends
to prefer the opposite equilibrium compared to 7(tp) independently to the sign of
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7(to) as can be seen in Figure 5.5. This behavior (Case 3) can be described by the
function

_ €+ if ’ﬁ(to) >0 ~
€q = { e, if ﬁ(tO) >0 v T](t()) 7é 07 (516)
while for 7j(tp) = 0 we choose according to
egr if 7(to) >0
= ! , 5.17
G { eq if i(ty) <0 (5.17)

The rationale for this may be explained as follows: if the system starts with
an initial attitude close to the desired attitude, but the initial angular velocity is
large, it is more fuel efficient to use this initial velocity to do one rotation and then
stop instead of first stopping the initial rotation, reverse the rotation and then stop
again at the originally closest equilibrium. What is observed in Figure 5.5 is that the
system tends to favor the opposite equilibrium point even ifﬁ =~ 0, in contrast with
the results shown in Figure 5.3. The reason for this is the relation 7 = —0.5¢ ' e,,
which means that the system may initially have a large initial angular velocity error,
but since € ~ 0, it cannot be observed by the 77 parameter, which is similar for the
switching sliding surface controller as presented and discussed in Section 4.2.2 and
4.4.1, respectively.

As we now have rules that cover all initial values we need to determine which
case is appropriate based on a given set of initial values. The angular velocity
seems to be a key element and therefore we suggest to introduce two "cut-off"-
frequencies named w¢; and wes accordingly; dividing such that we apply: Case
1 when |le,(t0)]] < wer, Case 2 when we < |lew(to)]| < wee, and Case 3 when
llew (to) || = wea.

Remark 5.1 An alternative approach is to let the goal (5.11) instead be described
by a performance functional such as

ty
Ty :/ €' (eg+)€(eqs )dt. (5.18)
to

Then a similar technique as presented above can be used to find the equilibrium point
giving the least attitude error, and furthermore, the functionals can be combined as

min {0.J,4 + (1 — 0)Jyy, 00, + (1 —0)J,_}, (5.19)

where 0 < 0 <1 is a weighting constant.

5.3 Optimal choice of equilibrium point

As the obvious choice of equilibrium point would be to define two cost functions J; =
e, Qeqgq + fttof T4 R7adt and J, = e, Qe, + ftzf T/ RT,dt, where Q € R**4 =
diag{Q1, Q2, Q3, Q4} and R € R™7 = diag{R;, ..., Rz}, and then choose the
equilibrium point requiring the cheapest rotation, such that J = min{J;, Jo}, but
this would require to solve two nonlinear optimal control problems which is far too
computationally consuming for most tasks such as spacecraft attitude maneuvers;
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a long computation time would change the initial conditions thus possibly ruining
the end result when initial angular velocity is considered. Instead we linearize the
equations of motion. The system equations can be written as

q=T.(q)& (5.20)
J&o =1, — S(w)Jw — Jwgy(t), (5.21)

and by linearization we obtain (Schaub and Junkins, 2003)
x(t) ~ Ax(t) + Bt,(t), (5.22)

where x1(t) = q(t), x2(t) = @(t), x(t) = [x1(t) T, x2(¢) "] T,

of(x,74) of(x,74)
A=——"" B=—"""" 5.23
ox 0T, ( )

around the equilibrium points (q,@) = (£1, 0, 0), where

O1x3
1
Amir| O g 0| o | 07 ] (5.24)
O3x4 J

O3x4  O3x3

By introducing an attitude error vector defined as e,x = [1 F 17, ET]T we evaluate

both the positive and negative rotation around the rotational axis. Linearization
causes the first row of A to disappear, resulting in a loss of 7. Instead of doing
the normal rotation from (Zp) to q = [+1, 0T]T we rotate by @ for the positive
equilibrium and for the opposite rotation we rotate by ¢ = 6 — 27 yielding —q,
(see Section 2.4.4 for more on angle-axis parametrerization and Euler parameters),
and thus utilize an error vector defined as e, (to) = [1 —7i(to), +& (to)]". A cost
function is defined as

1 1Y
J = ie;riQeqi + 5/ TIRTadt, (525)

to

the final value of the adjoint vector is found to be

A(ty) = [ Qe‘%(tf) ] : (5.26)

and solving the adjoint vector according to (A.63) yields
1~
Au(t) = Qeqi(ty), Xo(t) = 5QEs(ty — 1), (5.27)

where Q = diag{Q2, Q3, Q4} and €r = €(ty). The control history is found by
applying (A.64) resulting in

T Qe . -
Rr,+ B [ %Qéf(tqf y ] =0 (5.28)
ra=—rt | % - (5.29)
a7y J Qe |V '
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which leads to the state equation

. . 0
%(t) = Ax — 3BR ! { 3108 ] (ty —t). (5.30)
Solving (5.30) yields
%o (t) = x5 (t) — %J_lf{_lJ_lQéf {tf(t C ) — %(t? - tg)] , (5.31)

where R = diag{Rs, R, R7}, and

L7 o J
x1(t) =x1(to) £ = t . 5.32
=y [ ] (5.32)
As we are interested in finding which equilibrium point we want the dynamical
system to converge to resulting in the smallest attitude error, we consider €y since
7y is lost, evaluated at ¢ = t; yielding

1
Ere =H! [éo + ?aotf} : (5.33)
where EQ = E(t()) and (:)0 = (:J(t()), and
1 - -
H=1+ 6J*1R*1J*1Q1$ : (5.34)

The weighting matrices Q and R and time constant ty should be selected such that
rank(H) = 3.

To sum up we have the following. To find the cheapest rotational direction
for the system (2.82) and (2.83) in closed-loop with a state feedback control law
according to the cost function (5.25) we choose the equilibrium point satisfying
either eq4 if 7(tg) > 0 or eq— if 7)(to) < 0 for &(tg) = 0, or eqy if ||€54 | < ||€f—]|
or g if ||€s_|| < ||€p4] for @w(ty) # 0, according to (5.33) and (5.34), where e,+
denotes positive and negative equilibrium point, respectively.

Remark 5.2 The time constant ty can be considered as a weighting variable be-
tween nitial attitude and initial angular velocity; a large time constant tends to
utilize the initial angular velocity more.

Remark 5.3 As our result is achieved by performing linearization of the system
equations the resulting equilibrium point will not necessarily be the optimal one.
Nevertheless, we observe that the preferable equilibrium is chosen in most cases
when simulations of the full nonlinear model are performed, and solutions in the
boundary area (||€ry| =~ ||€s—]|) tends to provide little saving of power consumption
or none at all if either point is chosen compared to the other.

Remark 5.4 It is assumed that the rigid body has available torque and is tuned to
stop the rotation at the chosen equilibrium point given the initial conditions.

107



5.

CONSIDERATIONS CHOOSING ATTITUDE EQUILIBRIUM POINT

108

5.4 Simulation results

In this section we present simulation results based on the two different schemes of
finding the cheapest rotation from an energy consumption point of view as presented
in this section. We utilize simulation data as presented in Section 2.8.1 if otherwise
is not, stated.

5.4.1 Statistical method

In the following, results are presented to illustrate the performance of our equi-
librium test by presenting simulation results of a rigid body with arbitrary initial
values, where power consumption is compared for both equilibrium points according
to (5.11). The simulations were performed using the same parameters as described
in Section 5.2 except for the standard deviation which was varying for the different
simulations. The simulations were performed in the following way: first the initial
values were randomly generated, and we proceeded by predicting which equilibrium
was the preferable according to the rules in Section 5.2. Subsequently, two maneu-
vers were performed utilizing the control law (3.14); one for each equilibrium, and
the preferable equilibrium, that is, the equilibrium leading to the cheapest maneu-
ver was noted and compared with the prediction.

We start by presenting simulation results for a single case as an example. For
all simulations the following parameters were used: k;j = 1, kﬁ = 70, we1 =
0.1 and wez = 0.4. The initial values were chosen as q(tg) = [-0.3772, —
0.4329, 0.6645, 0.4783]" and w(tg) = [0.0212, — 0.0283, 0.0354]". Since the
initial angular velocity ||w(to)|| = 0.05 < w1 we applied the rule in Case 1. Using
(5.13) and (3.2) we obtain 1-(—0.3772)—70-0.5-[—0.4329, 0.6645, 0.4783](0.0212, —
0.0283, 0.0354]T = 0.0096 > 0. Thus the positive equilibrium point should give the
cheapest rotation, and therefore we chose e, = e,. The simulation results includ-
ing attitude error, angular velocity error, power consumption and control torque are
depicted in Figures 5.6 and 5.7, and we find that even if the negative equilibrium
point was initially the closest, the maneuver using the positive equilibrium point
lead to the cheapest rotation, as expected from the calculation. It is also interesting
to note that the positive rotation was performed with a smaller peak torque, which
is preferable especially in cases when actuator saturation is introduced.

The simulation results for statistically purposes are summarized in Table 5.1
where the three different cases were simulated using standard deviation for the
randomized angular velocities of 0.01, 0.1 and 1 rad/s for case 1, 2 and 3 respectively.
The simulation denoted total was performed using varying standard deviation in
equal steps from 0.01 to 1.5 rad/s during 100,000 consecutive runs. As can be
seen, each simulation were run numerous times and "Hits’ are the number of times
we were able to predict which equilibrium point that gave the cheapest rotation.
The percentage of hits for all cases and the number of runs indicate that there is a
relationship between prediction and actual results.

Remark 5.5 It should be noted that the presentations and discussions presented
in this section are based on maneuvers with well-defined initial moments tracking
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Figure 5.6: A comparison of attitude, angular velocity and power consumption for
attitude maneuver of a rigid body using both positive and negative equilibrium.
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Figure 5.7: A comparison of control torques for attitude maneuver of a rigid body
using both positive and negative equilibrium point.

Table 5.1: Simulation results.

Trials Hits Percentage
Case 1 | 10,000 9969 99.7%
Case 2 | 10,000 8554 85.5%
Case 3 | 10,000 9201 92.0%
Total 100,000 | 89,234 89.2%
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Table 5.2: Initial values and results for three set of simulations predicting optimal
equilibrium point.

Sim. 1 Sim. 2 Sim. 3
& [deg] 180 0 30
0 [deg] 0 90 “130
1 [deg] 0 0 150
Wy [rad/s 0.01 0.01 0.01
wy [rad/s 0 0 0.04
w, [rad/s 0 0 0.02
llef+| 8.12x1073 | 5.10x 1073 | 7.82x 103
lles—| 6.09x1073 | 5.18 x 1073 | 9.39x 1073
Pry 0.3358 0.1402 0.3015
Py_ 0.2923 0.2221 0.3109

a given reference where the equilibrium point is chosen in advance of the maneu-
ver. However, if the control goal is tracking of a given reference, also running the
presented algorithms continuously, care should be taken. This is because if we end
up with situations where the result of (5.13) =~ 0 and by adding a suitable amount
of measurement noise, the system might theoretically get stuck for infinite time
switching between the equilibrium points. This problem can be solved by introducing
hysteresis, but will lead to a result more similar to switching control —f. (Liberzon,
2003).

5.4.2 Optimal method

In the following, the performance of our equilibrium test is illustrated by presenting
simulation results of a rigid body with arbitrary initial values, where power con-
sumption were compared for both equilibrium points. Again, the controller (3.14)
was utilized with gains chosen as k, = 1, kg = 2, the simulation time was chosen
as to = 0 and ty = 30 and all disturbances were omitted to better illustrate the
purpose of the scheme.

All simulation results are summarized in Table 5.2 where we have presented
the initial attitude as Euler angles in degrees to give a better understanding of the
physical orientation and initial angular velocities. The total power consumption
was calculated using Pry = fttgf TL74dt for choosing the positive and negative
equilibrium point, and ||€;+|| was found according to (5.33). We do not present
simulation results without initial velocities because the result is obvious; shortest
rotation gives cheapest maneuver.

The results from the first simulation is presented in Figure 5.8 where the quan-
tity of initial rotational error was equal for both equilibrium points, but with a
small initial velocity favoring the negative equilibrium point. Choosing the optimal
equilibrium gave 14.88 % energy saving which is a considerable amount especially
for applications such as spacecraft maneuvers where the fuel cost is extremely high.
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Figure 5.8: Comparison in power consumption between choosing positive and neg-
ative equilibrium during an attitude maneuver where rotational error is equal but
with initial angular velocity error of @ = [0.01, 0, 0] .

The results from the second simulation is presented in Figure 5.9 showing a
maneuver where the positive equilibrium had the shortest path and the initial
velocity was about a different axis. The result shows that the positive equilibrium
also was the optimal one, which is of no surprise.

In the third simulation presented in Figure 5.10 we chose an arbitrary attitude
and angular velocity where it apparently is hard to tell which equilibrium is the op-
timal one. Even though the path length for the positive equilibrium was larger and
the angular velocity was higher during all parts of the simulation, it was confirmed
that the positive equilibrium was the optimal equilibrium and resulted in 3.12 %
energy saving.

The choice of optimal equilibrium tends to favor the positive equilibrium point
when small initial angular velocities are considered combined with a low value for ¢,
even if the path length is larger. An initial value of w = [107%, 0, 0] T using initial
attitude as in the first simulation will favor the positive equilibrium even if the
negative is the optimal, but simulation result shows that the energy consumption
is 0.3138 and 0.3134 for the positive and negative equilibrium point respectively,
only a 0.13 percent difference. By increasing to ¢y = 300 s the switch of equilibrium
point is moved down to about w = [1078, 0, 0] before the non-optimal is chosen,
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Figure 5.9: Comparison in power consumption between choosing positive and neg-
ative equilibrium during an attitude maneuver where with initial rotational and

angular velocity error of § = [v/2, 0, v/2, 0]T and @ = [0.01, 0, 0]T.

which will result in theoretical difference in energy consumption.
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Figure 5.10: Comparison in power consumption between choosing positive and
negative equilibrium during an attitude maneuver where with initial rotational
and angular velocity error of q = [—1.209, 0.8739, — 0.1209, 0.4550]" and @ =
[-0.01, 0.04, 0.02] .
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Chapter 6

Leader-follower synchronization

In this chapter we present two different, results on synchronization. First, we start
by introducing the problem formulation in Section 6.1, and then continue in Section
6.2 by presenting two different control laws for attitude synchronization of two rigid
bodies based on the framework of cascaded systems presented in Appendix A.5.
In Section 6.3 we study the synchronization problem of two spacecraft in leader-
follower formation for both translational and rotational control where a hybrid
solution is incorporated for the latter. One main difference is that in Section 6.2 we
show that two similar systems can be synchronized via control, while in Section 6.3
we work on relative coordinates. Furthermore, in Section 6.4 we extend the results
using exponential gains presented in Section 3.3 for translational control where each
axis is weighted differently and also include I? action in the control law to reduce the
residual for constant mean disturbances. In the end we present simulation results
in Section 6.5 to verify our results along with discussions. The results presented in
this chapter are based on (Schlanbusch et al., 2011a; Schlanbusch and Nicklasson,
2011).

6.1 Synchronization problem formulation

The control problem at hand is a combined tracking and synchronization problem,
that is, we want the leader to track a certain reference qq4(t) € S* as presented
in Section 3.1, that is, we want the state q; € S% and wéf’lb € R3 to fulfill (3.7)
and (3.8), respectively, while at the same time, we want the follower rigid body
represented by the states qf € S3, w{l}b € R? to synchronize with its leader such
that

Jm €y — & < lim q©qp — [+1, 0], (6.1)
—
hm wl fb — Rlb wl b = hm ||w Rlb wl lb” — 0. (62)
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Alternatively, the follower can track a second reference q/j(t) € S3, w/,(t) € R?
relative to the leader, thus we require that

im € ! im T

Jim € — €(t) < lim qq(t) ©q = [£1, 07] ", (6.3)
. / . /

Jm w = wj(t) < lim [jw —wy(t)] =0, (6.4)

where q = q; ® qf and w = w{l}b — R{bbwé?lb are relative attitude and angular

velocity, respectively.

6.2 Synchronization of two rigid-bodies

For meaningful stability analysis, we make use of error functions es;q+ = [1 F
Ms, Ts;r]T where s = [7)s, EST]T = qq(t) ® qs and s = [, f for the leader and the
follower rigid body, respectively, and T4 (€544 ) is defined according to (3.6), thus
we obtain the error kinematics

ésq:l: = Tgex (esqzl:)esw ’ (65)

where e, = Wi, — Ri%w! ,(t). For leader-follower tracking and synchronization

we pose the foll(;wing theorem.

Theorem 6.1 Let Assumptions 3.1, 3.2 and 3.3 hold for both the leader and fol-
lower rigid bodies. Then, each of the equilibria (ejq+, €, €fq+,€f,) = (0,0,0,0)
of the two systems described by (2.82) and (2.83), in closed-loop with the control
law (3.14) for the leader and

b - fb b b
i =3 !t = STl Wl (6.6)
T T b b
_ kfp (Tfeefq — Tleelq) — /Cfd (efw — leb elw) — T;d

for the follower, where ky, > 0 and kyq > 0 are feedback gain scalars, are uniformly
asymptotically stable in the large with the set of initial conditions T = S2 x R? x
S3 x R3.

Proof: See Appendix B.19.

Remark 6.1 Note that Remark 3.1 also holds for Theorem 6.1 for both the leader
and follower.

Again we note that the result is based on removing all disturbances in the control
law. The result can be extended by introducing unknown bounded disturbances
as suggested in Assumption 3.4. We use a control law reminiscent of the Slotine
& Li controller as presented in Section 3.2.2, based on a control structure which
has often shown to be favorable from a stability analysis point of view as in this
case. In the case of bounded additive non-vanishing disturbances, a steady-state
error is unavoidable, hence only practical asymptotic stability may be obtained.
The previous theorem for stability must be adapted to this case, however their
extension is involved and therefore the technical tools that we use are presented in
Appendix A.5.2. We pose the following theorem.
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Theorem 6.2 Let Assumptions 3.1-3.4 hold for both the leader and follower rigid
bodies. Then, each of the equilibria (eig+, €, €fq+,€5,) = (0,0,0,0) of the two
systems described by (2.82) and (2.83), in closed-loop with the control law (3.17)
for the leader and

=300 -8 (wagf§b) w!l’ —kpq (T epg — Tihery) — kpw (sp—s1)  (6.7)

for the follower, where w{?, and sy are defined similar to (3.16b)-(3.16d), and ks, >

0 and kg, > 0 are feedback gain scalars, is uniformly asymptotically stable in the
large with the set of initial conditions T' = S x R? x S§3 x R3.

Proof: See Appendix B.20.

Remark 6.2 Note that Remark 3.1 also holds for Theorem 6.7 for both the leader
and follower.

6.3 Synchronization of spacecraft formations

In this section we present state feedback control laws for relative attitude switching
control of a leader-follower spacecraft formation in cascade with a separately con-
trolled leader, similar to what was presented in Section 6.2 for two arbitrarily rigid
bodies with similar dynamics, and relative translational control of a leader-follower
spacecraft formation with assumed perfectly controlled leader.

6.3.1 Rotational control

In this section we make use of the results on hybrid control presented in Chapter 4
for synchronized attitude control of a leader-follower formation. The main difference
between the approach presented in this section and what was presented in Chapter
4 is that now we make use of relative coordinates for the follower spacecraft, thus
the two models of the hybrid system (A.65)—(A.66) will in general differ, along with
the connection term. Furthermore, we incorporate reasoning similar to what was
used for cascaded systems for analysis of the synchronization part.

The spacecraft error quaternions qs = [7s, EI]T are found by applying the
quaternion product —cf. (2.28)

-~ _ & _ NsNsd + 6sTe;rd

Qs = Qsd © s = Nsd€s — Ns€sd — S(esd)es ' (68)
It is important to notice that q; is the rotation between leader body and inertial
frame while q; is the (relative) rotation between the follower body and the leader
body frame, and thus the leader is commanded to follow one reference while for
the follower a second reference relative to the leader. We define error variables as
€shg = [1 — hgfls, €]]7 where the state variables hy € H = {~1,1} determines

the choice of desired equilibrium points, and the error kinematics may be presented
analogous to (4.2) as

éshq =T, (eshq)eshoua (69)
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where
1 hee!
= — - 1
Tsh(eshq) 2 |: 77514-8(63) (6 0)
Clhw = wﬁ)zb - Rébwﬁ,zd (6.11)
b b b b ;
€fhw = wlfb,fb ~R/ Wiy, fa = wlfb,fb - R/ (Wi pa—win) (6.12)

where we from now on denote w = wlfbbfb. The control law for the follower
spacecraft is expressed as

Tfa = chbfr + Cr(w)wfr + nr(w) — quT}rheth — /wath, (6.13&)
b

wpr = wly 1 = V7T n(€rhg)esha, (6.13b)

Sfh =W — Wfr = €fpy + ’yfT}h(eth)eth, (6.13c)

where kgy > 0, kf,, > 0and ¢ > 0 are constant gains. Next, let x; = [e}hq, S;h, hell €
S3 x R3 x H and, for a given hysteresis margin oy > 0 define the flow and jump
sets, respectively as

- 1
Cr:= {X1 S S]?; xR3x H : hf(k‘fqnf — §’Yf5}r-]fefhw) > —O’f} , (6.14a)
- 1
Dy = {X1 S Sg xR3x H : hf(k‘fqnf — §’Yf5}r~]fefhw) < —O’f} . (6.14b)
Then, the switching law is defined by
hy =0 x,€Cy, (6.152)
x§ =Gr(x1) = [e}q,s}h, ~hs]" x1 €Dy . (6.15b)

For the leader spacecraft we make use of the results presented in Section 4.2.2 and
thus define xy = [ej),,, 8, lu] T € Si X R® x H as the leader state, and the state of

the total system is defined as x = [x{ , x5 ]T. We now state the following theorem.

Theorem 6.3 Let Assumptions 3.2, 3.3 and 3.4 hold for both the leader and fol-
lower spacecraft. Consider the system (2.82) and (2.83) in closed-loop with the
controller (4.15) (4.17) for the leader spacecraft, as input for the system (6.9) and
(2.90) in closed-loop with the controller (6.13) (6.15) for the follower spacecraft.
Then, the set

A= {X S S}:); x R x H x S}:); x R3 x H : (elhq,elhw,eth,efhw) S Bgr}, (616)

where §, > 0, is uniformly asymptotically stable in the large on the set S3 x R3 x
S3 x R3.

Proof: See Appendix B.21.

Remark 6.3 The cascaded system in Theorem 6.3 is in fact two practically stable
systems which are interconnected. Therefore, we state in the proof that for any

given §;>0, the set of the total system is asymptotically stable instead of the usual
notation for practical systems, because when lims, oo B14(02) — 0.

120



6.3. SYNCHRONIZATION OF SPACECRAFT FORMATIONS

6.3.2 Translational Control

For the translational case we start by making the following assumptions.

Assumption 6.1 There ezists op,, 0p,, p, > 0 such that |pa(t)|| < ap,, [Pa(t)]] <
apy, and ||Pa(t)]] < ap, for all t > to.

Assumption 6.2 It is assumed that the mass mg of each spacecraft is positive,
constant and bounded.

t > to, where s =1, f denotes the leader and follower spacecraft, respectively.

Assumption 6.3 Assume there ezists asqg > 0 such that ||[fsq4(t)|| < asq for all

In this case we only consider control of the follower spacecraft since orbital ma-
neuvers for the leader spacecraft is not considered in this thesis, which means that
the synchronization can be viewed as tracking of a disturbed reference trajectory.
Furthermore, we assume that the leader spacecraft compensates for disturbances
such that f,; = —fy.

The control goal is to make the follower synchronize with its leader according to
the given time varying reference p4(t), pa(t), pa(t) € R similar to the rotational
case described in Section 6.1, i.e.

lim p — py(t) < lim ||p]| = 0 (6.17)
t—o0 t—o0
Jm p = pa(t) < lim [[p[| =0, (6.18)

where p = p — pa(t) is the relative position error and p=p-— pa(t) is the relative
velocity error. We state the following theorem.

Theorem 6.4 Let Assumptions 6.1, 6.2 and 6.3 hold. Then, the equilibrium point
(D, P) = (0, 0) of the system (2.62) in closed-loop with the control law

f.r =msDr + Ct(wﬁ-,l)pr + Dt(wﬁ,l,wﬁjl,rf)p +n(r;,ry) —K,p—Kgs  (6.19)
Pr =Pa — 7P, (6.20)
s=p—pr=pP+P, (6.21)
where K, and K both are symmetric positive definite constant matrices, and there

extst kpm, kpni,s kam, kanr > 0 such that ky,, < K, < kpnr and kg, < Kg < kay
and v > 0, is uniformly globally practically exponentially stable.

Proof: See Appendix B.22.

Remark 6.4 We note that even if we state global stability, this is not precise from
a theoretical viewpoint since when Rép = —ry, i.e.when the follower is located at the
center of the orbit, there is a singularity in (2.62) and according to (Hahn, 1967)
the adjective global pertains to the case and only to the case when the state space
is R™. From a practical viewpoint this is not an issue because a physical body will
never reach this point because of the celestial body i.e. Farth centered at this point.
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Remark 6.5 The assumption of perfectly control leader and its bounded orbital
angular velocity can be relaxed by following the lines of Grotli (2010), where a
control law for the leader is utilized in closed-loop with the dynamics leading to a
stability proof based on cascaded system and instead a bound on the leader references
similar to Assumption 6.1 for the follower spacecraft.

6.4 Spacecraft formation control with improved
performance

In this section we will extend the results from Section 6.3.2 by introducing dif-
ferent kinds of exponential gains than presented in Section 3.3 and adaptivity for
disturbance rejection. We pose the following assumption.

Assumption 6.4 The perturbation vector can be written as
fdf(t) =a-+ b(t) (6.22)

where a is considered a constant mean while b(t) is considered as a continuous
higher frequency component, and the latter is assumed upper bounded such that
IIb(t)|| < aq (and ||b(t)|| < o  because of continuity) for all t > t.

The assumption given in (6.22) holds for typical disturbances working on spacecraft
such as aerodynamic drag, Jo effect caused by uneven mass distribution of the
Earth, Solar radiation and third-body perturbing forces which all can be seen as
state dependent, slow varying and even in some cases constant.

Theorem 6.5 Let Assumptions 6.1, 6.2 and 6.3 hold. Then, the solution trajec-
tories of the system (2.62) in closed-loop with the control law

fof =mypr + Ct(wli,z)Pr + D(wli,l’ "-’i,l’ TP+ ng(ry,ry)

—K,p — ki€ — ko — Kgs (6.23)

¢ =p, (6.24)
€ =kuD, (6.25)
S:[Sry Sy Sz]T =p—pr :ﬁ+7f)7 (6'26)
Pr =Pa — 7P, (6.27)
Pr =Pa — 7P, (6.28)

where K, =k, diag{e*1P> ehy, ehpi) = K, andKg = kq diag{ek2s7, k25, eh2si) =
Kg, tuning parameters kp, ki, ka, ka € R, and v := k;/k2, uniformly converge

to the set {(p,p,¢, &) € R2 : |[p, pl|l < 8}, where § can be made arbitrarily
small by increasing the controller gains, for all initial values as t — oo.

Proof: See Appendix B.23.

Remark 6.6 By inserting (6.26) and v = k;/k? into (6.23) we obtain a propor-
tional term on the form —(Kak;/k?> + K,)p which means that the proportional
gain will increase by increasing the gain for the integral of the position error, while
decrease with fast integration of the velocity error.
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Remark 6.7 The results of Theorem 6.5 might be further extended showing uni-
form asymptotic stability by following along the lines of (Loria et al., 2005) where
persistency of excitation is utilized, thus also guaranteeing certain robustness vis-a-
vis disturbances. Also, the result can be generalized by introducing functions similar
as in (3.21).

For convenience, the system equations for relative rotation and translation may be
"stacked" as a 6DOF (3+3DOF) system —cf. (Kristiansen et al., 2008).

6.5 Simulation results

In this section we present simulation results based on the control laws presented
in this chapter. Our main focus is to show that the follower spacecraft is able to
synchronize with its leader, along with showing that by utilizing exponential gains
independent for each axis we can reduce energy consumption without hampering
the position and velocity errors and furthermore, showing that the residual can
be decreased by introducing I? action. We utilize simulation data as presented in
Section 2.8.1 if otherwise is not stated.

6.5.1 Synchronization of two rigid bodies

In this section we present two different simulation results to verify the two syn-
chronizing controllers presented in Section 6.2. The initial conditions for both
simulations were chosen as q(tg) = [~0.3772, —0.4329,0.6645, 0.4783]", qs(to) =
0.5[1, 1, 1, 1]7, wi(to) = [0.1, — 0.3, 0.2]" and wy(ty) = [0.2, — 0.3, 0.1]T.
The controller gains for the first simulation were chosen as ks, = 1, ksq = 2
for the leader (3.14) and follower (6.6) controllers, and for the second simula-
tion we chose ksq = 1, ks, = 2 and I'y = I for the leader (3.17) and follower
(6.7) controllers. The desired trajectory used for both simulations was chosen as
wa(t) = 0.1[-10c3 cos(8cot), 48c3sin(16cot), — 8c3cos(4cot)], walty) = 0, and
qa(to) = [1, 0T]T, where ¢y = 7/t, and t, denotes the orbital period.

In Figure 6.1 simulation results are presented where the PD+ based control laws
for the leader and follower spacecraft were applied without added disturbances and
noise. From the top left we see that the leader spacecraft settles at the negative
equilibrium, the angular velocity error goes towards zero, while the actuator torque
is presented in the bottommost plot. On the right hand side we see that the
relative attitude and angular velocity error goes towards zero and thus the follower
spacecraft is able to synchronize with the leader spacecraft. The bottommost plot
on the right hand depicts the follower actuator torque.

In the second set of simulation results we introduce measurement noise and
disturbances as presented in Section 2.8.1, and as it can be seen from Figure 6.2
the sliding surface-based control laws derived for unknown disturbances are also
able to make the leader track the reference and make the follower synchronize with
the leader, similar to the results from the first simulation. One notable difference
is that these control laws are in general faster than the results presented in Figure
6.1, though demanding larger absolute control torque.
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Table 6.1: Values of performance functionals (6.29) and (6.30) without disturbances.

Jq Jp
Synchronizing | 8.302 | 0.977
Tracking 10.158 | 0.884

Table 6.2: Values of performance functionals (6.29) and (6.30) including distur-
bances on leader spacecraft,.

Jq Jp
Synchronizing (100 s) 4.452 | 3.190
Tracking (100 s) 5.189 | 6.341
Synchronizing (1 orbit) | 4.529 | 13.151
Tracking (1 orbit) 8.448 | 14.52

Now we compare the presented control laws with a more naive approach where
two spacecraft are tracking a common reference using the same control law to show
that synchronization does not necessarily follow. For sake of comparison between
the two control strategies we use performance functionals defined as

ty
Jq,sy/tr :/ é;l;//trésy/trdt (629)
t
t
JP;S}’/‘EY :/ T;g//trTsy/trdt (630)
to

where the subscripts sy and tr means either synchronization (the follower utilize
the control law presented in Section 6.2 and utilized in the previous presented
simulation) or tracking (the follower uses the same control law as the leader) for
the follower spacecraft, respectively. The parameters €, and €, are found by
applylng QSy/tr =q® Asy /tr-

Table 6.1 show the performance functionals for an unperturbed and noiseless
system where the synchronizing and tracking controllers are compared (note that
we now control the leader spacecraft as a set point at the origin). What can be seen
is that the synchronizing controller is able to achieve its objective with a smaller
integral attitude error with a slightly increase in power consumption, which makes
sense because of the added synchronizing terms in the control law, compared with
using two similar tracking controllers.

Now we add disturbances to the leader spacecraft as 7!%= [0.02sin(0.005¢),
—0.04c0s(0.005¢), 0.025sin(0.01¢)] T, and from Figure 6.3 and the performance func-
tionals in Table 6.2 it can be seen that the tracking follower is not able to synchronize
with its leader because of the rise in J, 4 over one orbital period. Thus we conclude
that having two spacecraft following the same reference does not necessarily mean
that they are synchronized.
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Figure 6.1: Attitude and angular velocity error and control torque for leader (left)
and synchronizing follower (right) spacecraft during attitude maneuver without
measurement noise and disturbances.

6.5.2 Synchronization of spacecraft formation

We have run a set of simulations to verify the hybrid synchronizing attitude con-
troller presented in Section 6.3.1 and the translational controller presented in Sec-
tion 6.3.2. The initial conditions were chosen as q;;(to) = 0.5[1, 1, 1, 1]T,
i, (t0) = [—0.866, 0.5, 0, 0], w!¥, (to) = [0.8, —0.2, 0.05]" and w{ﬁcb(to) =
[0.8, — 0.2, 1]T. The desired trajectory was chosen as wﬁ’ld(t) = wf‘b_’fd(t) =
0.1[=10c5 cos(8cot ), 48c5 sin(16¢ot), — 8cf cos(4egt)], with w} 4(to) = wj, ;4(to) =
0, and q; 14(t0) = amw, ra(to) = [1, 0"]", where cq = 7/t, and t, denotes the orbital
period. For relative position the follower started standstill at p(to) = [0, —100, 0] "
with desired values as standstill at pg = [0, — 1000, 500]". As gains we used
ksq =1, ksw = 2 and 75 = 1 for control of relative rotation using control laws (4.15)
and (6.13) for leader and follower, respectively, and K, = 0.1I and Ky = 2I for
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Figure 6.2: Attitude and angular velocity error and control torque for leader (left)
and synchronizing follower (right) spacecraft during attitude maneuver including
measurement noise and disturbances.

control of relative translation (6.19). The measurement noise was added according
tor;, =r;+0.01B%, p, = p+0.01B3, vi,, = v +5x 107 3B>, p,, = p+5 x 1073B3.

The simulation results for rotational control are presented in Figure 6.4 and
it can be seen that the high initial angular velocities of the leader and follower
spacecraft provokes switching for both controllers. What we want to show in these
simulations is that there is no connection between h; and hy, that is, if the leader
settles at a specified equilibrium point, the follower can without problem settle at
the opposite because the equilibrium points are only separated mathematically and
not physically. What also can be seen is that because of the cross-term defined in
the jump sets (4.17) for the leader and (6.14) for the follower, the switching occurred
even if 775 was on the "correct" side of the rotational sphere. This is easiest seen on
the topmost plot on the right hand side where 7y was about —0.6 when hy switched
from —1 to +1. This was possible because there were still high angular velocities
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Figure 6.3: Relative attitude error error for synchronizing (top) and tracking (bot-
tom) controlled follower spacecraft during station keeping including measurement
noise and periodic disturbances on leader spacecraft.

present at this time instant, as also was discussed in Section 4.4.1. In Figure 6.5
the relative position and velocity error and control force are depicted and it can be
seen that the state variables settled close to the origin even if perturbations were
present.

6.5.3 Adaptive spacecraft formation with improved performance

In this section we have performed several simulations to validate the control law pre-
sented in Section 6.4. Furthermore, for sake of comparison regarding performance,
we included the sliding surface control law (6.19) and

)pT+D( 7,l7 7li,l7rf)p+nt(rlarf)

— kpehilIBIPp — fyeh2lsl®s

fop =mypr + Cy(w)
(6.31)
in the simulations, where the latter has similar exponential gains as the controller

(3.20), which can be shown uniformly globally practically exponentially stable by
following the lines of proof of Theorem 6.5. Our idea is to show that by weighting
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Figure 6.4: Attitude and angular velocity error and control torque for leader (left)
and follower (right) spacecraft during attitude maneuver including measurement
noise and disturbances.
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Figure 6.5: Relative position and velocity error and control force during stabiliza-
tion left) and station keeping (right).

the gains along each axis individually, the overall performance increases compared
to (6.31) where the gains are scalar based on the norm of the whole relative position
and velocity (sliding) vector.

Two different scenarios are presented to show the features of the derived control
law. First we present simulation results to show that the integral action manages
to reduce the residual of the practical result, while the latter results show that by
utilizing the variable gain matrix, the energy consumption can be reduced without
increasing the response time of the system compared to (6.31).

All perturbations were added according to Section 2.8.1 which typically are
(state dependent) continuous and slowly varying, while atmospheric drag often can
be considered close to constant for near circular orbits. For our simulations we
have chosen the initial conditions as p(to) = [20, — 80, 0], p(ts) = 0, ps =
[10, 20, —30]T and py = 0. What we compare is the control law (6.23) with a
version where the integral action is removed, i.e. k, = k; = 0. Simulation results
for a translational maneuver is depicted in Figure 6.6 and performance functionals
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Table 6.3: Values of performance functionals for translational maneuver.

Jpos Jvel Jpow
Controller (6.23) 3.43 x 10° | 133 | 5803
Controller (6.23), ko = k; = 0 | 2.40 x 10° | 159 | 5551

Table 6.4: Average value of performance functionals for rigid-body over 10,000
simulations.

Jpos Jvel Jpow
Controller (6.23) | 1.29 x 10% | 1.13 x 103 | 3.76 x 10?
Controller (6.19) | 2.01 x 10° 884 2.67 x 10%
Controller (6.31) | 1.25 x 10% | 1.37 x 103 | 5.48 x 10?

presented in Table 6.3, which both show that introducing integral action leads to a
slower system response, while looking at Figure 6.7 it can be seen that the residual
of the physical state vector is reduced. One of the reasons that the result looks like
this, might be because the atmospheric density is divided into regions (¢f. (Wertz,
1978)) where it is constant within each region, thus, since the spacecraft is following
an elliptic orbit the disturbance will wary in steps when the orbit altitude moves
between two regions, in addition to the sinusoidal variations caused by the Js effect.
The issue regarding atmospheric density could be solved differently by introducing a
continuous function of the density using altitude as argument or interpolate between
the centers of each neighboring regions.

In Table 6.4 we present simulation results from 10,000 simulations for transla-
tional maneuvers without disturbances and noise using controller gains k, = 0.1,
kq = 10 and v = 0.001 for (6.19), and including k; = 1 x 10~* and ky = 1 x 1072 for
(6.31), and furthermore including k; = k, = 0 for (6.23), with random initial values
for the initial relative position and velocity, with standard deviation of 50 and 5,
respectively. This was done to show two different properties; first we see that the
exponential gains makes the system work faster, though consuming more energy
without increasing sensitivity to measurement noise compared to using static gains;
and furthermore, we see that by using gain matrices where each axis is weighted dif-
ferently, we obtained a marginal increase in J,,5; while the power consumption Jpq,
was reduced by over 30 percent without increasing the sensitivity to measurement
noise; —cf. Section 3.5.
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action.
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Chapter 7

Autonomous attitude reference
generation for leader-follower
formations

For minimizing the workload on the ground station operator it is important for
a spacecraft formation to be as autonomous as possible. The topic of reference
generation is to have the spacecraft themselves generate their needed references to
fulfill the mission requirements in real-time. In this chapter we present two different
solutions on how to generate rotational references for both the leader and follower
spacecraft. In the first scheme presented in Section 7.1 we assume that the leader
spacecraft is pointing its instrument towards the center of the Earth (nadir pointing
leader), while in the second scheme presented in Section 7.2 we assume that the
leader is assigned a target (target pointing leader). In both cases, references are
generated such that the leader and follower are able to track the common target
point on the Earth surface which could be either constant or time varying which is
verified through simulations in Section 7.3. The results presented in this chapter
are based on (Schlanbusch et al., 20085, 2010¢; Schlanbusch and Nicklasson, 2011).

7.1 Nadir pointing leader

The target reference frame F* with unit vectors [x!, y*, z'], as depicted in Figure
7.1, is located at the Earth surface specified by the vector r.r;/|r;| relative to F¢,
where 7. is the Earth radius. It is assumed a perfect spherical Earth; alternatively
a function r.(\, ¢) of the Earth radius may be used with longitude and latitude as
arguments. Unit vectors of the target reference frame align with the basis vectors of
the leader orbit reference frame F'. A vector pointing from the follower spacecraft
towards the target is first derived in target and follower orbit frames as

I'= —w(r)e, — Rip, I/ = —w(r)Rfel - Rp, (7.1)

respectively, where w(r;) = ||r;|| — r. is the orbit height. A desired reference frame
F?, as depicted in Figure 7.1, is located at the center of mass of the follower
spacecraft, and defined as zq = 1/ /||l ||, ya = S(za)p/||S(z4)p|| and x4 = S(ya4)Za-
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Follower

Figure 7.1: Inertial, leader, desired and target reference frames.

It should be noted that the vectors p and 1¢ are not necessarily perpendicular, and
in some instances, when p = [e, 0, O]T, c € R, the vectors are parallel, which will
give a zero vector in the defined reference frame. When this occur it means that the
two spacecraft are lined along the r; vector and one of the spacecraft is blocking the
field of view for the other. As a solution for this instance the generated rotational
reference is set to nadir pointing.

7.1.1 Angular velocity reference

The angular velocity of the desired frame relative the target frame is expressed in
the desired reference frame as w,‘id = Wz, Way, wdz]T. The derivative of the target
pointing vector in the follower orbit frame can be expressed in the desired frame as
(Tsiotras et al., 2001)

1= (1 xa)xa + (V- ya)ya + (1 - 2a)za. (7.2)
Alternatively the vector may be expressed as

where 9dl/dt is the derivative taken in the desired reference frame, and 1 = ||1*| zq.
By combining (7.2) and (7.3) we obtain the expression

. . T
. [—lf-yd I xy ]

wi = | T Ye LoXa (7.4)
O N T

It should be noted that the desired angular velocity about the z4-axis is set to
zero to ensure that the instrument is not rotating while performing measurements
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e.g. causing blurry pictures when a camera is utilized. The derivative of (7.1) is
IV =—w(r)S(w] ;)R] e,—~R](w(r;,vi)e, +w(r1)é,) —S(w} )R/ p—Rfp. (7.5)

Since F/ and F! are aligned, the relative velocity wlff =0and R/ =1 The same

is also true for 7t and F! which means that R, = I and w{f = w/ —|—w£l —|—wlff =

tyi
—w{t —i—w{l —|—wlff = 0, since w{t = wlfl, as both reference frames are located along
the same vector r; rotating about F* with equal angular velocity. Finally, &, = 0
since a change in the radial vector will have no impact on the angular velocity

between the target and follower orbit frames. Equation (7.5) is then rewritten as

1V = —&(r;, v))e, — p. (7.6)

7.1.2 Angular acceleration reference

The angular acceleration reference wg{d = [Wdz, Way, de]T is obtained by differen-
tiating the angular velocity reference (7.4) leading to

-y a+2wa, |1 |

- 17 +wdywdz
. e T
Wy = I xa—2way |1 7.7
fd ] — WdzxWdz ( )

Since the angular velocity about the z-axis is set to zero in (7.4), the last terms of
Wz and wgy are zero. The derivative of (7.6) is

If = —zb(rl,vl, al)er — w(rl,vl)ér — p = —ﬁ(rl,vl, al)er — p (78)

7.2 Target pointing leader

In this scheme our objective for the spacecraft formation is to have each spacecraft,
including the leader, tracking a fixed point located at the surface of e.g. the Earth
by specifying a tracking direction of the selected pointing axis where a measurement
instrument is mounted such as a camera or antenna. The target is chosen by the
spacecraft operator as a given set of coordinates such as longitude (A) and latitude
(¢). The vector pointing from the center of Earth to the target in an Earth Centered
Earth Fixed (ECEF) frame is obtained by applying

cos(¢) cos(A)
vl = v, | cos(¢)sin(N) |, (7.9)
sin(¢)

where r, = 6378.137 x 10® m is the Earth radius. It is assumed a perfect spherical

Earth; alternatively a function of the Earth radii may be used as r.()\, ¢) with

longitude and latitude as arguments. We rotate the target vector to ECI coordinates
by utilizing

r, = Rifr,ff, (7.10)

where R/, can be found in (2.21).
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7.2.1 Leader reference

For the leader spacecraft we start by defining a target pointing vector in inertial
coordinates as

lld =TIy —TIy, (7.11)
which is used to construct a leader desired frame called F'@ as
Lia S(x1a)(—hy)
Xid= -7, Yd= 7o —~—3 and z1a = S(X14)Y1d; (7.12)
([ Lial| 1S (xza) (=)l

and thus we can obtain a desired quaternion vector by transforming the constructed
rotation matrix and require continuity of solution to ensure a smooth vector over
time. By differentiating (7.11) twice we obtain

g =1 — ¥; (7.13)
lig = ¥ — 14, (7.14)
where
i, = S(w) ;) REpry! (7.15)
r, = SQ(wﬁ,ef)Ri,frifa (7.16)
and w{, = [0, 0, we]" which is constant along with rf . According to Wertz

(1978) the relationship between the desired angular velocity and the normalized

target vector is . ,
by = S(w;ld)eld, (7.17)

where

00 = [laz, iy, laz)" = La/|lal- (7.18)

The set of equations in (7.17) are linearly dependent, thus the desired angular
velocity is not uniquely specified. On component form (7.17) is written as

gz = —wizdliay + Wiyalia- (7.19a)
gy = wizdlide — Wizdlidz (7.19b)
l1a> = —wiyalide + Wizaliay, (7.19¢)

where wild = [Widz, Widy, wle]T. This particular problem was solved by Chen et
al. (2000) by adding a cost constraint to minimize the amplitude of wild such as

1 .
J = Ekw;:l—;w;,lda (7.20)

where k is a positive scalar. We then define a Hamiltonian function based on (7.19b)
and (7.19¢) leading to

1 . . .
H = Eszj;wﬁ,ld + M (Uay — wiazlide + wideliaz) + A2 (laz + Widylide — Widzlidy)

(7.21)
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where A\, A2 are constant adjoint scalars. By differentiating (7.21) with respect to
w; 14 and setting the result to zero, we obtain

kwigz + Aliaz — Aoliay =0 (7.22a)
kwiday + A2l = 0 (7.22Db)
kwiaz — Alige = 0. (7.22¢)

By inserting (7.22b) and (7.22c) into (7.22a) we obtain the relation
Wi yq - =0, (7.23)

which implies that the desired angular velocity will be orthogonal to the desired
tracking direction. By solving (7.17) and (7.23) for the angular velocity, we obtain

Wi 14 = S(ia)tua, (7.24)

which is a solution resulting in no rotation about the desired pointing direction
during tracking maneuvers. By inserting (7.18) and its differentiated into (7.24), it

can be shown that .
; S(Lia)lia

Wi, = = 7.25
JAd ||1ld||2 ( )
and obtain the desired angular acceleration we differentiate (7.25), which leads to

the expression

o S(Lia)Liallall* — 21,38 (Lia)lia
H [iall® '

Since the leader body frame is utilized in the dynamic equations (2.83), we simply
rotate (7.25) and (7.26), obtaining

(7.26)

wél,)ld :Rlibwz:,ld (7.27)

- lb ; . q
Wig=— S(wl?lb)Rébwz,ld + Rébwizd- (7.28)

i

7.2.2 Follower reference

The procedure to generate a follower reference is similar to the one presented in
Section 7.2.1. We start by defining a target pointing vector in the inertial frame as

lfd =TIy —I — Rliop, (729)

which is used to construct a follower desired reference frame called F/? as

Ly _ S(xrd)(—hy)

Xfg=——="""—", Y=o ————— and Zfq = S(Xfq)yra- (7.30)
=Tl YT TS (pa) ()] fa.=S(sa)y s

We can now construct a rotation matrix between F/% and F?, and because the rel-
ative rotation is between F7* and F' we apply composite rotation, thus obtaining

R}, = R/Rj,, (7.31)
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and transform the rotation matrix (7.31) to the desired quaternion —cf. (Sidi,
1997). By differentiating (7.29) twice, we obtain
lra =t — i1 — S(w] 1) R,p — R{,D (7.32)
Ifd =1 — 1 — (S(wz,lo) + Sz(wi,lo))Rliop - 2S(w§,lo)Rliop - R;op (733)

The same optimization technique as presented in Section 7.2.1 can then be applied,
leading to

i _ Sya)lga

ST Tl

G S(Lra)lyalllyall® — 217,8(1ra)lya
wld |11 yall® ’

(7.34)

(7.35)

and the desired angular rotation and acceleration vectors can be transformed ac-
cording to the relative dynamics of (2.87), resulting in

b b, i b .lb
wlfb,fd = sz Wi fq — leb Wb s (7.36)

- fb b b b b b Ib b - 1b
wlfb,fd = _S(wzf,fb)sz Wi rat+ sz w;,fd + S(wlfb,fb)leb Wilb — leb Wi (7.37)

7.3 Simulation results

In this section we present simulation results based on the reference generation
schemes presented in this chapter. Our main focus is to show that the presented
schemes are generating smooth and correct references which the followers are able to
track by utilizing translational and rotational synchronizing control laws presented
in Section 6.3. We utilize simulation data as presented in Section 2.8.1 if otherwise
is not, stated.

7.3.1 Nadir pointing leader

In this section we present simulation results where the leader was commanded to
be nadir pointing while the follower spacecraft were tracking the same point on the
Earth surface during a translational maneuver, based on the reference generation
scheme presented in Section 7.1. For the leader spacecraft we chose a circular Earth
orbit with an altitude of 600 km, with an inclination of 79°, and the maximum
available force and torque was limited to 0.2 N and 0.05 Nm respectively, while for
control we utilized a 3+3DOF PD+ controller

uy = Mxge + C(0,w)xq2 + D0, 0, r¢)x1 + n(w,rp,7) — Wy — KpA;rel - Kgeo,

with gains K, = diag{0.003L,I} and K, = 2diag{I,I}, which can be proven to
lead to uniform asymptotic stability of the equilibrium point of the closed-loop
system; —¢f. (Kristiansen, 2008) for details on the controller and stability analysis.
The initial relative position and attitude for the follower spacecraft were chosen as
standstill at p(tg) = [200, 100, —300]", and q(tg) = [1, 0T]", while the desired
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Figure 7.2: Generated attitude, angular velocity and angular acceleration.

relative position was chosen as standstill at pg = [—200, 1000, — 300]—r and desired
attitude and rotational motion according to what was presented in Section 7.1. The
simulation was performed without perturbations to better illustrate its purpose.
Also note that the generated references are presented with respect to the leader
orbit frame.

Figure 7.2 shows the generated references for relative attitude, angular veloc-
ity and angular acceleration which are transient in the first 3000 s because of the
translational motion of the follower spacecraft and, because of the circular orbit,
the reference is constant when the translational maneuver is completed because the
representation is relative to the orbit frame. In Figure 7.3 the relative position and
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Figure 7.3: Settling of relative position and velocity error, and actuator force.
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Figure 7.4: Settling of relative attitude and angular velocity, and actuator torque.

velocity errors are presented showing the translational motion during the reconfig-
uration. The bottommost plot depicts the actuator force during two consecutive
orbits and as can be seen, is quite active during all parts of the simulation, which
is because the follower spacecraft is commanded to keep a fixed relative position to
the leader spacecraft thus challenging the natural orbital motion. The relative atti-
tude and angular velocity is depicted in Figure 7.4 which shows that the controller
is able to track the generated reference. Lastly, Figure 7.5 shows both latitude and
longitude on the Earth surface of where the follower and leader spacecraft are point-
ing their instruments. The follower spacecraft is not pointing at the Earth surface
during the first eight seconds, and after this it can be seen that both measuring
points coincides even as the follower is performing a translational maneuver.
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Figure 7.5: Latitude and longitude of intersection point between instrument point-
ing vector and Earth surface during maneuver for leader and follower spacecraft.

7.3.2 Target pointing leader

In this section we present simulation results where one leader and one follower
spacecraft were tracking a common point on the Earth surface based on the ref-
erence generation scheme presented in Section 7.2. For this simulation we uti-
lized an inclination of 79°, and the tracking point was located at the Earth sur-
face at zero degrees latitude (¢) and longitude (\), and both spacecraft contin-
ued tracking the point even if it was outside the field of view. The initial condi-
tions were set to p(tp) = [0, — 100, 0]7, p(to) = P(to) = 0, ai(to) = qy(to) =
0.9437, 0.1277, 0.1449, —0.2685]", w!’; (to) = [1.745 —3.491 0.873] T x 102 and
wlf,l}b(to) = [0, 0, 0]". The desired conditions for relative translation were set to
pa = [0, —1000, 500]" m, ps = pa = 0, while the desired values for relative rota-
tion were calculated based on the results presented in Section 7.2. We utilized the
control laws presented in Section 6.3 for this simulation where the controller gains
were set to K, = Kgq = 0.5I for control of relative translation, and kj, = kyq = 5,
ki, = kyo = 10 and ~y; = vy = 1 for control of relative rotation.

Noise was added to the measured vectors such that r;,, = r; + 0.01B3, p,, =
p+0.01B3, v;,, = v;+5x107°B3, p,, = p+5x1072B3. The measured states q;,, and
q,, satisfies qu, € (q;+[0, (0.001B3)T]")NS*! and q,, € (q+[0, (0.001B3) "] T)NS3,

INoise is added to the vector €; and the quaternion is normalized through ;.



7.3. SIMULATION RESULTS

1000
N €
500 o e
L - — e
o L e
-500 "~
-1000 . . . . -0.05 . . . .
0 100 200 300 400 500 1000 2000 3000 4000 5000
10
[S78
5 T T %
I~ E—c
2Q of - B
. \\ P -
\/
-10 . . . . -5 - - - -
100 200 300 400 500 1000 2000 3000 4000 5000
5
—F. — e
- fay - fay
- —Jaz - 7 “JazA
0
; ; -5 ; ; ; ;
300 400 500 1000 2000 3000 4000 5000

Time (s) Time (s)

Figure 7.6: Relative position error, relative velocity error and control force with
uncompensated disturbances and unfiltered sensor noise.

and wy, = wéf’lb +2x107%B3 and w,, = w+2 x 1073B>. The simulation time is set
to one orbital period (5896 s) to show the performance of the reference generation
scheme. Note that the generated references are presented with respect to the inertial
frame.

Figure 7.6 shows the relative position, velocity and control force during both
settling and station keeping phase. As can be seen the position of the follower
spacecraft converged to the desired position and kept within a few centimeters
during one orbital period. Figure 7.7 shows the relative attitude, angular velocity
and control torque during settling and station keeping phase, and results similar to
the relative translation can be observed for relative rotation as well thus, all states
are converging towards the equilibrium point and kept close during the following
orbit. The three topmost plots in Figure 7.8 shows the desired attitude, angular
velocity and angular acceleration for the follower spacecraft during one orbit. What
can be seen is that there is no rotation about the z-axis during the orbital period
which is expected because of the assumption of no rotation along the pointing axis.
It should also be mentioned that the desired angular velocity and acceleration is
smaller during the second pass compared to the first. This is because the Earth is
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Figure 7.7: Relative attitude error, relative angular velocity error and control torque
with uncompensated disturbances and unfiltered sensor noise.

rotating, thus the distance between the spacecraft and target is longer, causing less
fluctuation of the components. Also note that 7jr4 is negative after one revolution
which is because the rotation is generated with respect to the inertial frame, thus
leading close to a 27 rotation. The bottommost plot in Figure 7.8 shows the €4
components of the difference in desired attitude between the leader and follower,
defined as qq = Ma€ra — Nya€ia — S(€ra)€1q. Here it can be seen that the follower
spacecraft was moving away from the leader spacecraft during the first 500 seconds
because of the increasing desired relative attitude during the same period.
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Chapter 8

Leader-follower formation
reconfiguration with collision
avoidance

In this chapter we utilize a concept called Null-Space Based (NSB) behavioral
control for collision avoidance and reconfiguration of spacecraft formations, which
is a concept based on work done for control of robot manipulators. For correctness
we start by extending our previous model and control for n followers in Section
8.1 and present the framework of inverse kinematics which the NSB concept is
based on in Section 8.2, following with several different collision avoidance tasks in
Section 8.3. A thorough stability analysis of the leader-follower dynamics, control
law and NSB-guidance in closed-loop is presented in Section 8.4 and validated in
Section 8.5 through simulations. The results presented in this chapter are based on
(Schlanbusch et al., 2008a, 2011g).

8.1 Multiple followers

In this section we expand the translational modeling presented in Section 2.5.3 for
multiple followers, and similar for sliding surface control of multiple followers as
presented in Section 6.3.2.

8.1.1 Modeling of multiple followers
We start by expanding the model presented in Section 2.5.3 for a formation con-
sisting of multiple follower spacecraft. In the following, we consider a formation

consisting of one leader and n followers and denote the dynamics for each follower
te{l,...,n} as

mf,LijL + Ct,L(wél)pL + Dt,/,(wély wé,ly Tf,/,)p/, + nt,L(rl7 Tf,L) - F(z,L + Fd,L; (81)
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where

Crulwi,)) =2my,S(wi)) (8.2)

Dtab(wi,lv wli,lv Tf.) :mf,L[Sz(wﬁ,l) + S(wiz) + IH/T?,L] (8.3)
(v, 7p.) =pmp Ri1/r%, —1/r}]r.

The composite perturbation force Fy, and the composite relative control force F, ,
are expressed as

Fd,L - Ré(fdf,b - fdlmf,L/ml)7 Fa,L = Ré(faf,L - falmf,L/ml)7 (85)

respectively. Note that all forces f are expressed in the inertial frame. If the forces
are computed in another frame, the rotation matrix should be replaced accordingly.

8.1.2 Control of multiple followers

The control problem is to design controllers such that each follower is tracking
a desired trajectory pq(t) = [pll(t), e ,pdT)n(t)]T with corresponding py(t) and
pa(t) defined likewise, which are all bounded functions. Reference trajectories' are
defined for each follower as p, ,(t) = pa,.(t) — V.D., Pp(t) = [pll(t), . ,p;n(t)]T
and p,(t) = [P} 1 (t),..., D, . (t)] its derivative, 4, > 0 is a constant gain, p, =
P. — Pa,.(t) is the position error and p = [p1T,...,p,]". The sliding surface is
defined as

S, =P, — pp,b = f’b + 7Py, (8.6)

and we denote s = [s],...,s]T. Model based control laws based on (6.19) for

= n

each spacecraft individually are expressed as

fof =myg.Pp. + Ct,b(wli,z)ﬁ’p,b + Dt,b("'-’é,l’ "-’i,l’ Tf.0)Pu
=+ 1’115,L(I‘l7 Tf)b) — fdf,L — Kp7bf)b — Kdybsb, (87)

where K, , and K, are both symmetric positive definite matrices and K, ,, Kq4, €
R3*3. By inserting (8.6) and (8.7) into (8.1) and stack the resulting systems, the
closed-loop dynamics may be written as

mfé—i— (Ct +Kd)S+Kpf) =0, (8.8)
where K, = diag{Kp1,...,K,,} € R K, = diag{Ka1,...,Ka,} € R¥*3"
and Ct(wéyl) = diag{Ctyl(wﬁ’l), cey Ct,n(wéyl)} € R3nx3n,

8.2 Inverse kinematics

The general goal is to control each spacecraft while performing different tasks. For
compactness we use the notationp = [p{,...,p,]T € R® andp = [p],...,p, ] €

"We denote reference trajectories by p instead of r.
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R3". The tasks to be controlled are represented by a task variable defined as

o= f(p1,...,Pn) € R™, and its derivative can be expressed as
. =0f(p). .
G=>y al())p =J(p)p, (8.9)
i=1 ¢

where J € R™*3" is the configuration-dependent Jacobian matrix. Often 3n > m,
and thus we achieve infinite number of solutions, and an optimization technique
is required. This is usually solved for by requiring minimum-norm velocity using
least-square solution

pa=J6,=3"IJI") 1o, (8.10)

where o4(t) is the desired time history of o(t), and pg(t) is the desired relative
velocity between the leader and follower spacecraft. Position references can be
obtained by time integration of pg utilizing the Closed-Loop Inverse Kinematics
(CLIK)-algorithm (Antonelli and Chiaverini, 2006). By defining & = o4 — o, we
obtain

Pa(tr) :JT(dd+A&)|t:tk (8.11)

and
pa(tr) = Pa(te—1) + Palte) At (8.12)

where t is the k-th time sample, At is the sampling period, and A is a constant
positive definite matrix of gains. By projecting the different sub-task velocities onto
the null-space created by the Jacobian matrices of higher prioritized sub-tasks, the
competitive problem is solved. FEach sub-task first has to calculate the desired
velocity as

Pjd ZJ;(d'jd—FAj&j), (8.13)

where j denotes the j-th task, such that o;4 and &; is 64 and & for the j-th
task, respectively. By solving each sub-task individually the tasks can be merged
together using

. (7 . . (74+1 .

pf = pja+A-IIpf ™, j=m,..0 (8.14)
where péj) is the current vehicles velocity vector including the tasks with priority
from m to j. The initial condition is set to be pg’”“) = 0, and the final desired

velocity pqg = pgl). By putting together three different sub-tasks we obtain

pa = p1 + (I— I[T1)[p2 + (I — I3 T2)ps). (8.15)

A sketch of the architecture of the NSB method is depicted in Figure 8.1 where
the supervisor may change the priority (and weighting) of the different sub-tasks
throughout the mission if new requirements are given. This architecture leads to a
velocity output as shown in Figure 8.2. The process is performed individually by
each follower.
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Figure 8.2: Velocity output using null space projection.

8.3 NSB tasks

With the general dynamics for the NSB approach introduced, we proceed to present
the sub-tasks for controlling the spacecraft. Two different tasks will be presented
in this chapter, but additional tasks can be introduced according to other mission
requirements. Each task function is presented as o, 7 € {m,...,1}, where the
subscript describes the priority of the task, ranging from m (lowest) to one (highest).
All task functions for each follower ¢ € {1,...,n} produces a driving velocity p;aq,,
for each task j.

8.3.1 Collision avoidance

The collision and obstacle avoidance task function is used to ensure that collision
between spacecraft does not occur during formation reconfiguration. If one or more
of the spacecraft is out of control, it is treated as an obstacle which the remaining
spacecraft must avoid. The task is built individually for each spacecraft, and not
as an aggregate task function. The current obstacle for each follower is chosen
as the closest obstacle at any given time. An alternative approach to choosing
the nearest obstacle is to introduce a weighting function considering each obstacle,
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but this could lead to cases where e.g. the output velocity is equal to zero, and
thus the mission can be delayed while control is lost, or even worse; consider a
formation of three followers positioned along a line intersecting all three, where two
of the followers both are moving towards the central follower, a collision might be
unavoidable.

We present, two different approaches: by static collision avoidance we mean that
the sphere surrounding each obstacle is of constant size d, while by dynamical col-
lision avoidance we speak of a state dependent sphere surrounding each obstacle
where the size is determined by the relative position and velocity between the fol-
lower and the respective obstacle. In each case, a unit vector is calculated pointing
at the closest obstacle expressed as

A P. — Po

= (8.16)
[P — Poll

where p, is the obstacle closest to the (-th spacecraft which position is given relative
to the leader spacecraft. The Jacobian matrix can be written as J,, = £, and for
compactness we write pog = [pjd)l, e ,pjd)n]T eR™and J,=[J) ..., 3], ]" €
R1><3n.

Static collision avoidance with constant gain

The task function for each follower ¢ € {1,...,n} produces a driving velocity away
from an obstacle, represented as

Tou = [IP. = Pol; (8.17)

and each obstacle is covered by a virtual sphere

BO,L = {PMPo eR3: ||pb - po” < db}, (8.18)

where we denote 0,4, = d, where d, is the minimum allowed distance between the
spacecraft and the obstacle. The general equation (8.13) can then be written as

pOd,L - JZ,L)\O,L&O,L — )\O,L(d - ||PL - po”)f‘w (819)

That is, if a follower enters the static safety sphere d, of an obstacle, a desired
velocity vector based on the relative position p,, := p, — po scaled by the constant
gain J, , is produced.

Static collision avoidance with variable gain

The task function for each follower ¢ € {1,...,n} produces a driving velocity away
from an obstacle, represented as

o = (max{[[p. = Poll,di} + d = [|P. = Poll) , (8.20)

where each spacecraft is surrounded by a virtual sphere

By, ={pPo € R : ||p, — pPol| < d.}. (8.21)
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Then the general equation (8.13) can then be written as

pod,L = JZ,L)\O,L&QL (822)
=0 ([P ls D)) (max{d, — [|p. — Poll, 0} + [[B. — Do) £o,

where A, ,(||P.|l, [|P.l]) > 0 is a variable gain to be defined. Note that &,, > 0
when the task is active and we define 6,, = 0 when the task is inactive. That
is, if a follower enters the static safety sphere d, of an obstacle, a desired velocity
vector based on relative position p,, and velocity p,,, scaled by the variable gain
X (1B, 1)) s produced.

Dynamic collision avoidance with constant gain

The task function for each follower ¢ € {1,...,n} produces a driving velocity away
from an obstacle, represented as

0. = [|P. — Pol; (8.23)

and each obstacle is covered by a virtual sphere

BO,L(pO,La pO,L) = {po,mpo,L S ]RS : ||PL - po” < Uod,L(po,upo,L)} 5 (824)

where we denote
. m .
UOd,L(pO,u pO,L) ‘= max {dL - kO,L Tr{l’Lpo,L *Po,.s dL} ; (825)

where k,, > 0 is determining the growth rate of the sphere, i.e. the sphere is
centered at the obstacle and d, is the minimum radius of the sphere. The term
—Po,. - Po,. is positive when the spacecraft and obstacle are on collision course, zero
when their relative position and velocity are perpendicular, and negative when they
move away from each other. This enables us to reduce the size of the constant d,
compared with static collision avoidance, such that the spacecraft can pass closer to
another spacecraft without increasing the danger of collision. The general equation
(8.13) can then be written as

pod,L - J(];L/\O,L(po,u po,t)&o,L(po,La po,t) (826)
- )\O,L(po,bpo,b)[ood,L(po,La po,L) - ||PL - po”]f‘o,u

where A\, , > 0 is considered a constant gain. Note that we have assumed d,q,, =
0 for simplicity since differentiation also includes relative acceleration which can
be challenging to measure?. Nevertheless, this term can be added according to
(8.13) by differentiation of (8.25). Also note that because of the relative velocity
considered in the desired task variable 0,4, a collision can be detected between
the spacecraft and an obstacle which is not necessarily the closest one because of

variations in size of the spheres, thus each follower now calculates spheres for all

2Relative acceleration between two bodies can be found e.g. by differentiation of relative
velocity although sensor noise is amplified.
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obstacles/members and only consider each obstacle which has a sphere covering the
follower in question. Furthermore, we choose the appropriate obstacle as the one
which gives the lowest relationship between relative distance and size of sphere.
That is, if a follower ¢ € {1,...,n} is considered a threat according to (8.26), we
assign it to aset / = {1,...,n'} C i (the follower in question can not consider itself
as an obstacle) such that n’ < n. Then we choose the target fulfilling

mln{ ||p071|| R ||p07nl||. } . (827)
Uod,l(po,la po,l) Ood,n' (po,n’apo,n’)

8.3.2 Rigid formation

The rigid body sub-task is used to ensure that each follower moves to the designated
location forming a given formation. This task can be performed in several differ-
ent ways; we propose two different strategies, one where the formation is formed
around the barycenter and another where the formation is formed around the leader
spacecraft.

Barycenter

This task performs the movement of each spacecraft to a predefined position rel-
ative to the formation barycenter. The task function is defined as o, = [(p1 —
po) .. (Pn—pb)"]", where p, = 1/n """ | p, is the coordinate of the barycenter,
and 0,4 denotes the desired formation for all the follower spacecraft, such that
0, = 0,4 — 0,. The Jacobian matrix can be written as

A 0 0
Jb=|0 A 0 (8.28)
0 0 A
where J, € R3"*37 0 ¢ R"*", and
11 _1 _1
_1t M _1
A= " " M| errxn, (8.29)
_1 1 11

It can be shown that A has one zero eigenvalue and (n — 1) eigenvalues equal to
one, thus the Jacobian matrix is singular with rank(J,.) = 2n, but a pseudo-inverse
JI exists. Since J, is symmetric and idempotent as shown in Appendix B.24, we
have that J. = J,. The velocity-vector from this task can then be written as
Prda = JIAT&T where 6,4 = 0 when a fixed formation is desired.

Leader spacecraft

This task performs the movement of each spacecraft to a predefined position relative
to the leader spacecraft which is an easier strategy compared to the task above.
The task function is defined as o, = [p],...,p,]" leading to the Jacobian matrix
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J, =1 € R**3" and by denoting 0,4 as the desired position for all the follower
spacecraft such that o, = 0,4 — 0. The velocity vector from this task can then
be written as p,q = J;[AT&T where 6,4 = 0 for fixed formations. Note that
this task has an obvious drawback which makes it suited (only) for lowest priority
since (I — JIJ,) = (I — I'T) = 0 which means that lower prioritized tasks will be
completely removed through projection onto the null space since rank(J,.) = 3n
(full rank). This can be shown to hold in general by seeing that since for any
A € {X € R™" : rank(X) = n} we have that AAT has a non-zero determinant
and thus we can apply (A.15) obtaining (I — ATA) = (I—-(ATA)"!ATA)=0.

8.4 INSB stability analysis

In this section we will analyze the stability of the NSB behavioral approach. In
general, the proof is quite straight forward, but it gets more involved when some
assumptions are removed or new elements are considered.

8.4.1 Task error analysis

To analyze the convergence of the global task, each task may be evaluated to
check for convergence to the desired value. The output of (8.15) is considered,
multiplying both members by J; which is supposed to be full rank and observing
that J,(I—J1J;) = 0, then

o :dl,d+A1(0'1,d—0'1), (830)
which can be rewritten as .
o1 =—A1(61) (8.31)
where 61 := 01 — 01,4. Consider the Lyapunov function candidate
1_+.
V(1) = 56161 (8.32)
yielding .
V=—6,A6, (8.33)

which proves (uniform) global asymptotic stability of the equilibrium point, thus
the primary task is always fulfilled where rate of convergence of the kinematic error
is influenced by the constant positive definite NSB gain A;.

The lower level tasks can only be fulfilled if they do not conflict with the higher
level tasks. The relationship between non-conflicting tasks can be evaluated by
considerations of the Jacobians of the task functions. These can be evaluated
mathematically by considering the range R(-) and null-spaces N'(-). By multiplying
both members of the secondary task of (8.15) by Jo, then (Arrichiello, 2006)

6o =323 (61.0+ Ai(010— 1)) + Gad+ As(0a0 — 09). (8.34)

Assume that there is no conflict between the two tasks, then an interesting property
of the Jacobian matrices is utilized saying that the non-conflicting relationship
between two tasks can be expressed as

JJi=o, (8.35)
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which means that two tasks re-projected onto the spacecraft velocity space are
orthogonal and therefore may be fulfilled simultaneously —cf. (Chiaverini, 1997).
The property of (8.35) may also be expressed as

R(JIL) L RID). (8.36)
By substituting (8.35) with (8.34), we obtain
o9 = 0.'2’(1 + Ag(O‘g)d — 0’2), (8.37)

and thus (uniform) global asymptotic stability of the equilibrium point of the task
can be shown by applying a quadratic Lyapunov function candidate. Tt should be
noted that this condition is implied by

R(I) C1- 313, = N(31). (8.38)

If a third task is to be added, the stability of the first two tasks is unchanged
because of the higher priority of the tasks and the projection into the null-space of
the lower tasks. Following the procedure for two tasks, a third task can be analyzed
the same way. This implies that the third task is decoupled from the first two tasks
if

R(IL) € N(I1) NN (I2)] (8.39)
is fulfilled.

8.4.2 NSB general stability

The task functions of the NSB produce desired velocity vectors for the spacecraft
as described in section 8.2. The desired relative velocity for two tasks is found by
using (8.13) merged with (8.14), where in our case i = 2, expressed as

pa=Jd(61.a+AM61)+ (T —=T13)I (2.4 + AsGs). (8.40)

Assuming that each spacecraft is perfectly following the desired trajectory, p =
pa(t), the stability analysis is reduced to only prove convergence of each task func-
tion to the desired value. A suitable LFC is chosen as

- 1. +.
Vl(O'l) = 50’10’1, (841)

and by differentiating along (8.9), V; can be written as

Vi=6i0 (8.42)
=61 (61,0 — J1Pa) (8.43)
=T 161a— 313610+ A61) — T (T = TTT)IL (600 + Asda)]  (8.44)
= 1T[01d—J I (61,0 + A161)] (8.45)
= —61AiG1. (8.46)
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Because A; is positive definite, the convergence of o1 to 0 is proved. In other
words, the first task is always achieved. For the second task, a suitable LFC is
chosen as

g &2 (8.47)

Goa—Jodb (6144 A161) — To(T—T131) T (60,4 + A2b2)]

T
2
=62 (62.0— JaDa)
4
T=A262 — 3231 (61.0+ A161) + T2T 13, T8 (60,4 + As6s)). (8.48)

As explained in Section 8.4.1, the secondary task is only accomplished when it is
not conflicting with the primary task. By inserting (8.35) into (8.48), the last two
expressions are zero, leading to

Vo = —&§A25'2, (8.49)

where Ao is positive definite, and convergence of a5 to 0 is proved. Thus, we
conclude that the primary task is always stable, and the secondary task is also
stable when it is not conflicting with the primary task.

8.4.3 NSB stability for collision avoidance

Now we present a more involved stability analysis. First of all, since the collision
avoidance task function is not a vector but a scalar, the proof of general stability
does not hold, and therefore we define 6, = >_""_| 6,,, where 6, = 0 when collision
avoidance is inactive for all followers, and 6, > 0 when it is active for one or more
followers. Secondly, we remove the assumption that p = p,(t), and thus we need to
show that collisions do not occur during reconfiguration, and lastly, we tie the NSB
behavioral control approach with the control law by scaling the length of the desired
relative velocity vector produced by the collision avoidance task. The reason for
this is that peq, = JZ’L)\O,L&O,L and since ||J,,.|| =1, Ao, is constant and & < d for
static collision avoidance, ||Pod,.|| < ¢, and in the typical PD control structure there
are terms —k,p — kdf), where the last term can be dominated by the first term if
the current spacecraft is far away from the desired position. Or, in other words, for
any given X, ,, k, and kg there exists initial conditions such that the proportional
term of the control law can push the spacecraft towards an obstacle.

In this particular analysis we utilize the sliding surface control structure as
presented in Section 6.3.2 for each follower individually. We start by finding the
desired relative velocity by utilizing (8.13) together with (8.14), where m =2,0=1
and r = 2, where we utilize the static sphere with variable gain presented in Section
8.3.1, thus obtaining

Pd = Pod + T —IIT)ITA,G,. (8.50)

A suitable LFC is chosen as

1
V(x) = E(Al&g &) NG, +sTmfs+fFKpf,), (8.51)
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where x = [f)—r,ST,(}O,&:]—r and A1, Ay > 0 are considered as design parameters.

By differentiation and insertion of (8.8) and (8.9), we obtain

V =—6,MJIopa — 6, AaJ,pa—s Cis —s' K,p
—s"Kys +p K,p. (8.52)

Using the fact that Ct(wli)l) is skew-symmetric, we further obtain

V== 6GoM [JoTi G0 + 3, (T—T1T,) JIA, 6, ]

=& A [3: TIN50 + 3, (T T13,) JiIA, 6]
—(s"—=pK,p—s"Kys (8.53)

== Moo — 6] N [3 TIN5 + I, TIN5,

- JTJLJOJIAT&T] P TK,p s Kus, (8.54)

where T' = diag{111,...,7,I} € R¥*3" From this point the proof goes in two
different directions; conflicting and non-conflicting tasks, which will be discussed
separately. By assuming that there are no conflict tasks we can apply the property
(8.35), and by inserting (8.35) into (8.54), we obtain

V =—x"Px (8.55)

where P = diag{T'K,,K,, \oA\1, A, A2}. Thus the secondary task is only accom-
plished when there is no conflict with the primary task. Hence, convergence of V'
towards the origin is proved. Accordingly, from the above analysis and according
to standard Lyapunov analysis —¢f. (Khalil, 2002), we find that the primary task,
which is the collision avoidance task, is always stable, and the secondary task per-
forming formation shaping is also stable when it is not conflicting with the primary
task. Thus we find that the equilibrium point of the closed-loop system is uniformly
globally exponentially stable.

On the other hand, if the collision avoidance task is active and the tasks are
conflicting we see that the system is on the form

V=—x'"Qx, (8.56)

where Q = [q;;], 4,7 = 1,2,3,4, with sub-matrices given by qi11 = TK,, g2 =
K,, 33 = AoA1, Q3 = q;4 = )\o)\QJfJJL); Q44 = AQJfJ}Af — )\QJfJZJOJ}Af and
the rest of the sub-matrices are equal to zero. Next, we apply 2|ab| < a? + b? for
any a,b € R to obtain

XTQX Z((hl,m —qi12,mM — q13,M — (]14,M)||f)||2 (8-57)
+ (q22,m — G210 — Q23,00 — G2a,01) IS
+ (g33,m — G31,M — G320 — QB4,M)5'§
+ (qaa,m — Qa1 M — Qa2 M — (143,M)||‘~7f||2
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where g;;,» and g¢;;a denote lower and upper bounds on the induced norms of
the sub-blocks q;; of Q respectively. Hence, x" Qx > 1(q11,m||P|*> + q22,mlIs||* +
433,m02 + qua,m||G¢]|?). We see that since J1J, = I, || J,| = ||J,|| = 1, we obtain
qaa,m = qua,m = 0, and thus control of & is lost. Also we need ¢33, > 2qg34,m
resulting in A1 > 2)5. This analysis show that when the collision avoidance task
is active, we may end up with moving away from the desired position which is a
necessity; consider for example a scenario where the spacecraft is located at its
equilibrium and has to move away when an obstacle is passing close by to avoid
collision. Since the NSB method is acting on the dynamics through the desired
relative velocity and not also the desired relative position, we have to ensure that
the relative velocity error is dominating the relative position error in the control
law, thus avoiding being "pulled" towards an obstacle. This is done by scaling
the length of the desired relative velocity vector utilizing the collision avoidance
task gain Ao ,(Po,., Po,.). The sliding surface (8.6) is containing both position and
velocity error. By inserting pg, from (8.50) into (8.6) and applying the fact that
if the second task is conflicting with the first, the counteracting components are
removed by projection, meaning that the contribution from &, can be removed.
Therefore we require that

(pL - JZ’LAO,La.O,L)TKd,L(pL - JZ’L)\O,L&O7L) > (858)
kanr YD [2(00 — IF XonFor) + Bu) + kpar B V7P
where kpp o < [[Kp, |l < kpar, and kg, < ||Ka,|l < kanr,.. By taking the norm

on each side of (8.58) and manipulate as an equality from a conservative point of

view?, we obtain

2 ~ ~ . ~
(A5.) kam,oG5, = A5 2kaniGo, (1D + 1B.1]) (8.59)
= kang, D1 = 2kang, ||l
=% (kipar + kare) [B]I* =0

*
0,L)

and solve for the largest value of \* | leading to

b, + /b2 + da,c, (8.60)

2a,

AS (Bl 1) =

where @, = kdm,L&i“ bL = deM,L&O,L(”pLH + ||I3L||) and C, = de,L||pL||2

+2kare, [Pl +7e (kpar,e + vokanr,) [[B.]|*. Thus by choosing Ao, ([B.l, [[D.]]) =
A5 (Bl [P.]l)+6., where 6, > 0 is chosen based on robustness to e.g. measurement
noise, it is ensured that the derivative part of the control law is dominating the
proportional part, and therefore the task function will make the spacecraft move
away from the obstacle. Note that the state dependent gain only scales the desired
velocity vector produced by the obstacle avoidance task when a safety sphere is
entered and does not influence the size of the sphere itself.

3By this we mean that the inequality in (8.58) will hold if we substitute the left side with the
minimum eigenvalue and makes it equal to the maximum eigenvalue of the right side.



8.5. SIMULATION RESULTS

Remark 8.1 What we have proved in this section is that if we have no conflicting
tasks, the equilibrium point of the closed-loop system is uniformly globally expo-
nentially stable for each follower spacecraft. For tasks to be conflicting, the col-
lision avoidance has to be activated, which may lead to situations where a space-
craft is forced to move such that the position error increases, thus the expomen-
tial/asymptotical property does not hold. Arrichiello (2006) states that this is es-
pecially evident for robots if the robot is going to frontally collide with the obstacle
(the velocity elaborated by the other tasks is in the vehicle-obstacle direction), then
the projection along the tangential direction is null. This particular situation gives
rise to a local minimum that makes the robot stop. Nevertheless, the experimental
results showed that the presence of measurement noise allows the vehicle to avoid
the local minima; this is, in fact, an unstable stationary point. Another requirement
related to this consideration is that each spacecraft can only reach their equilibrium
point if it is not located within a collision sphere for all time. In other words, the
desired relative distance between each spacecraft has to be greater than d.

Remark 8.2 If the assumption of known disturbances of the follower spacecraft is
reduced to unknown but bounded disturbances such that ||fg|] < B8, a similar analysis
as above can be performed leading to

V< —x"Px+sfy (8.61)
é _pm||xl|2 + BHXH ) (862)

where py, > 0 is the smallest eigenvalue of P. Thus V < 0 when ||x|| > 6 = 8/pm
and § can be diminished by increasing p,, which is done by increasing the controller
gains, and we can conclude that equilibrium point of the closed-loop system is uni-
formly globally practically exponentially stable (cf. (Grotli, 2010)), when Remark
8.1 is considered.

Remark 8.3 Note that Remark 6.4 also holds for the present analysis.

A similar analysis can be given utilizing the dynamic collision avoidance with vari-
able gain task as presented in Section 8.3.1 scaling the size of the safety sphere
through the gain k,, instead of the desired relative velocity vector.

8.5 Simulation results

In this section we present simulation results based on the NSB behavioral con-
trol method presented in this chapter comparing the different obstacle avoidance
schemes presented in Section 8.3.1, where our main focus is to show the difference
in performance.

We assumed a perfectly controlled leader spacecraft in a circular Low Earth
Orbit (LEO) at 600 km altitude, inclination (7), the argument of perigee (w) and
the right ascension of the ascending node (€2) at 0°. Since we are considering a
LEQO, we only model the disturbance forces which are the major contributors to
these kind of orbits; namely, atmospheric drag and the J, effect. All disturbances
are considered continuous and bounded. The noise is considered to be contained in
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a compact set oB™ = {x € R" : ||x|| < ¢} and is added to the the measured states
according to p,, = p + 0.1B3 and p,, = p,, + 0.02B3. The parameter for minimum
length between two objects is set to d = 10 m. If the distance between objects is
higher, the velocity output for the current object is set to zero, and if one or more
objects are closer than the minimum distance, the closest object is given highest
priority.

In the simulations, the obstacle avoidance task was set as first priority while the
rigid formation task as second, where for simplicity the task presented as Leader
spacecraft in Section 8.3.2 was utilized since the task had lowest priority. The
rigid body task gain was chosen as A, = 0.1I while for collision avoidance we chose
Ao, = 0.5 for constant gain or calculated according to (8.60) with §, = 1 for all ¢ for
dynamic gain. The controller gains were chosen as K, = 0.8, Kq =1, and I" =1,
and the maximum control force (if saturation was introduced) as 27 N for each
spacecraft. For comparison of performance we utilize the performance functional
Jpow,. as defined in (2.125) for each follower ¢.

Two different scenarios are considered. In the first scenario, a formation of
six spacecraft is reconfigured from an initial state to a desired configuration while
avoiding collisions between spacecraft. In the second scenario, one spacecraft is
assumed to malfunction and start drifting through the formation, and is therefore
considered an obstacle that is avoided by evasive maneuvers of the other spacecraft.

8.5.1 Formation shaping

In this scenario five followers were relocating and shaping a new formation while
avoiding collisions by setting the collision avoidance task as first priority and rigid
formation as second, relative to a leader spacecraft. In this simulation the initial
relative positions and velocities were chosen as standstill at

p(to) = [(=40 —300), (=15 —405), (0 —400), (15 —40 —5), (30 —400)]" m

and the desired relative positions and velocities for the follower spacecraft were
standstill at

ora=1[(—20200), (0300), (—15 —200), (15 —200), (20 20 0)]" m.

As some of the followers never encounter a possible collision we only present the
results where the collision avoidance task is enabled during the maneuver.

Static collision avoidance with constant gain

Figure 8.3 shows the result of the formation shaping maneuver without saturated
control force where relative position between the second follower and leader are
depicted in the first and second (zoomed) plot, while control torque for the second
follower in the bottommost plot. As can be seen, the control torque is quite large
because of the relative initial errors and controller gains. After about six seconds,
the second follower enters the safety sphere centered on the leader spacecraft (rela-
tive distance drops below 10 m), and thus the collision avoidance task is activated
as can be seen in the bottommost plot where a spike occur. It should be noted that
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Figure 8.3: Formation reconfiguration without saturated control force and constant
obstacle avoidance task gain where switching in actuator force is provoked when
relative distance between spacecraft is less than 10 m due to the static collision
avoidance task. The plots from the top represents relative distance between the
second follower and the leader, a zoomed version of the topmost plot and actuator
force for the second follower.

the relative distance drops to about eight meters because of the inertia present in
the dynamics.

Figure 8.4 shows the results of the same maneuver as above with saturated
control force. First of all, we now see that more spacecraft are involved with
collision avoidance, that is, the topmost plot (left) shows relative distance between
the second follower and the third follower, and the second follower and the leader,
while the third plot shows the relative distance between the forth follower and the
fifth follower. The actuator force of the second (top) to the fifth follower are shown
on the right side. What can be seen now is that switching in the actuator force
is located at the same time instant as the respective followers are entering each
others (and the leaders) safety zones. Another important difference compared to
the results without saturation is that the minimal relative distance drops to about
six meters, and it can be concluded that if the relative velocity is to high when the
collision avoidance task is activated, collisions might be unavoidable because of the
saturation along with the inertia.
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Figure 8.4: Formation reconfiguration with saturated control force and constant
obstacle avoidance task gain where switching in actuator force is provoked when
relative distance between spacecraft is less than 10 m due to the static collision
avoidance task. The plots from the left top represents relative distance between
second and third follower, and second follower and leader, and relative distance
between forth and fifth followers, both with zoom. The plots from the right top
represents actuator force for second, third, fourth and fifth follower.
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Static collision avoidance with variable gain

Figure 8.5 shows the result of the formation shaping maneuver without saturated
control force where relative position between the second follower and leader are
depicted in the first and second (zoomed) plot, while control torque for the second
follower in the bottommost plot. As can be seen, the control torque is quite large
because of the relative initial errors and controller gains. After about six seconds,
the second follower enters the safety sphere centered on the leader spacecraft (rela-
tive distance drops below 10 m), and thus the collision avoidance task is activated
as can be seen in the bottommost plot where a spike occurs. As was shown in the
proof of Section 8.4.3 the scaling of the desired velocity vector (variable task gain)
is calculated to ensure that the spacecraft are instantaneously driven away from
each other, which is seen in the zoomed plot, though at the cost of high actuator
output.

Figure 8.6 shows the results of the same maneuver as above with saturated
control force. First of all, we now see that more spacecraft are involved with
collision avoidance, that is, the topmost plot (left) shows relative distance between
the second follower and the third follower, and the second follower and the leader,
while the third plot shows the relative distance between the forth follower and
the fifth follower. The actuator force of the second (top) to the fifth follower are
shown on the right side. What can be seen now is that switching in the actuator
force is located at the same time instant as the respective followers are entering each
others (and the leaders) safety zones. Another important difference compared to the
results without saturation is that the minimal relative distance drops to about five
meters, which is the same as the results presented in the previous section. Thus,
the method can secure that collision will not occur at the cost of high actuator
output, which is hampered by saturation.

Dynamic collision avoidance with constant gain

Replacing the fixed d with the dynamical sphere from (8.25) with k, = 0.15 it can
be seen in Figure 8.7 that the relative distance between each spacecraft never was
below 10 m, and furthermore, the spike shown in the bottommost plot in Figure
8.3 is replaced by a more smooth behavior.

Figure 8.8 shows the results of the same maneuver as above with saturated
control force. The topmost plot (left) shows relative distance between the second
follower and the third follower, and the second follower and the leader, while the
third plot shows the relative distance between the forth follower and the fifth fol-
lower. The actuator force of the second (top) to the fifth follower are shown on the
right side. What can be seen now is that switching in the actuator force is located
at the same time instant as the respective followers are entering each others (and
the leaders) safety zones. It should be noted that even when including saturation
force, the relative distance between all followers never dropped below 10 meters
which is what is truly sought in this work. It should also be noted that in Table
8.1 it is shown that the energy consumption is slightly reduced for all followers
compared to using static collision avoidance.
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Figure 8.5: Formation reconfiguration without saturated control force and variable
obstacle avoidance task gain where switching in actuator force is provoked when
relative distance between spacecraft is less than 10 m due to the static collision
avoidance task. The plots from the top represents relative distance between the
second follower and the leader, a zoomed version of the topmost plot and actuator
force for the second follower.

Table 8.1: Simulation results, Jyo,,(x10%)

1 2 3 4 )

Static (10m) 2.125 | 5.406 | 2.721 | 1.311 | 2.629
Dynamic (10m) | 2.114 | 5.223 | 2.273 | 1.162 | 2.537
Dynamic (5m) 2.114 | 3.852 | 1.835 | 0.722 | 2.185

By reducing the minimum distance to d = 5 m we see from Table 8.1 that
the energy consumption for all followers involved with the collision avoidance task
is greatly reduced. This is because the spacecraft now can travel closer together
because close maneuvers are only allowed when spacecraft do not move directly
towards each other. It can again be shown through simulations that the spacecraft
never are within five meters of each other during the reconfiguration, which is
similar to the results for static collision avoidance with d = 10 m.

Note that we do not present dynamic collision avoidance with variable gain since
the variable gain causes very long desired velocity vectors when a safety sphere is
entered which in turn leads to large actuator forces. This in turn leads to large
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Figure 8.7: Formation reconfiguration where switching in actuator force is provoked
when relative distance between spacecraft is less than 10 m due to the static collision
avoidance task. The plots from the left top represents relative distance between
second and third follower, and second follower and leader, and relative distance
between forth and fifth followers, both with zoom. The plots from the right top
represents actuator force for second, third, fourth and fifth follower.
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velocities which increases the dynamic spheres leading to bad behavior during re-
configuration, especially without saturation in available control force.

8.5.2 Drifting spacecraft

The initial configuration for this scenario was an arrowhead formation, maintained
by the rigid formation task. One of the spacecraft was assumed to malfunction and
loose actuator control, thus drifting through the formation due to orbital mechanics
and perturbations. The individual positions of the followers relative to the leader
where pinie = [(—=50 — 0 0), (=25 15 0), (0 30 0), (25 15 0), (50 0 0)]T, and
O f.d = Pinit, While the leader spacecraft was located at the origin. The simulation
results are presented in Figure 8.9, and shows that when the drifting spacecraft
entered the sphere of another spacecraft, the latter moved away from the desired
position in a looping motion to avoid collision. This behavior was maintained until
the drifting spacecraft exited the area presented by a sphere with radius 10 m
centered at the desired position for the first follower, thus the controlled spacecraft
moved back to its desired position in the formation.
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Figure 8.9: The left plot shows follower one, marked by [0, avoiding the second
follower, marked by V, which is out-of-control and drifting. The right plot shows
the relative distance between spacecraft one and two.
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Chapter 9

Conclusions and future work

9.1 Conclusions

Since this thesis in some sense is a continuation of the work by Kristiansen (2008)
we have tried to expand the results in several different directions where appropriate
challenges for leader-follower spacecraft formation have been sought to be solved.
All the control laws presented in this thesis are based on the classical controllers for
robot manipulators introduced as passivity-based PD+ by Paden and Panja (1988)
and passivity-based sliding surface by Slotine and Li (1987).

In the first part of this thesis we presented previous work on modeling of leader-
follower spacecraft formations for relative translational motion based on orbital pa-
rameters and relative rotation. Furthermore, we derived the relative translational
dynamics using Euclidian parameters represented in the leader orbit frame and
follower body frame. The latter was developed because a real spacecraft typically
measures the relative position to the leader spacecraft using body mounted instru-
ments, thus obtaining measurements represented in the body frame, and similar for
actuation.

In the second part we focused our attention on attitude tracking control of rigid
bodies which in our applied case represents the leader spacecraft. We presented ex-
ponentially growing proportional and derivative gains to reduce sensitivity to mea-
surement noise during station keeping, and thus reduction in energy consumption
and improved pointing accuracy which is crucial for orbiting spacecraft, without
reducing the performance during attitude maneuvers. This method was solved for
both state feedback and output feedback control and generalized for different kinds
of nonlinear gain functions. Another problem which received some of our atten-
tion was the assumption that in previous work the attitude error is not allowed to
increase beyond 7 rad during attitude maneuvers which is quite restrictive. This
problem was solved in two different ways; by proving stability almost in the large
for continuous control, or using hybrid feedback, both for state feedback and output
feedback. The solution of stability almost in the large opens the door for a new
problem which was considered, namely choosing the preferable rotational direction
from an energy consumption point of view. This was solved for based on statisti-
cal analysis and an optimal control approach. For hybrid control we also presented
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work where a supervisor was introduced switching between the two previously men-
tioned control laws to further increase the performance regarding maneuvers and
sensitivity to measurement noise.

The third part of this thesis treated problems of rotational and translational
synchronization of rigid bodies in the leader-follower framework for both absolute
and relative coordinates. Based on the work from the second part, we proved uni-
form global asymptotic stability for the formation as a whole where the leader and
follower are controlled separately through use of cascaded system theory. This was
done for both the continuous and hybrid case. The technique using variable gains
was also investigated, and it turned out that further improvements were provided
for systems where the position and velocity works along the same axis compared to
rotations where this is not necessarily true. Furthermore, we developed a scheme for
autonomously generating references for either nadir or target tracking leader where
the follower tracks the exact same point based on relative coordinates. In the last
chapter we presented results for real-time autonomous collision avoidance by the
null space based (NSB) behavioral control approach. Based on stability analysis
of the coupling between the control law and NSB approach we were able to prove
that collisions will not occur during configurational maneuvers, and furthermore,
we developed different kind of strategies to increase safety while reducing energy
consumption during these maneuvers.

9.2 Recommendations for future work

Although the authors feel they obtained adequate results for the specific problems
which were analyzed, there are a lot of remaining issues still unanswered which
would be interesting to solve in future work.

9.2.1 Choosing equilibrium point based on energetic function

The results in Chapter 5 may be further developed by also consider the angular
velocity at ¢ty or utilizing an energetic function based on e.g. potential and kinetic
energy to improve the accuracy of estimating the preferable equilibrium point.

9.2.2 Synchronization through output feedback control

In 6.3.1 we develop results for switching state feedback synchronization of a leader-
follower formation. This result could be extended to the output-feedback case
utilizing the results presented in Section 4.3 for the leader and a similar control
structure for the follower.

9.2.3 Underactuated control

Based on the results in Section 6.3.2 a possible extension would be to consider
thrust only available along one axis, and thus for proving stability a 6DOF analysis
where relative attitude is coupled with relative translation needs to be provided.



9.2. RECOMMENDATIONS FOR FUTURE WORK

9.2.4 Guidance in-the-loop

In Chapter 7 we presented autonomously generated references based on the space-
craft states and showed through simulations that our scheme behaved as expected
for both nadir pointing and target tracking using a derived control law from Section
6.3. One possible extension would be to present a more complete stability analysis
by including the guidance law in the loop as feedback for the control law.
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Appendix A

Background material

In this chapter we present mathematical tools utilized throughout this thesis to
make it self-contained. Section A.1 starts with basic linear algebra and functional
properties recovered from (Horn and Johnson, 1985; Edwards and Penney, 1988;
Kreyzig, 1993); Section A.2 reviews definitions and theorems for Lyapunov stabil-
ity analysis recovered from (Hahn, 1967; Rouch and Mawhin, 1980; Khalil, 2002;
Kelly et al., 2005; Loria and Panteley, 2006); almost-global stability, recovered from
(Rantzer, 2001) in Section A.2.1; and for practical and semi-global results in Section
A.2.2 recovered from (Hahn, 1967; Chaillet, 2006; Grgtli, 2010). A short introduc-
tion on hybrid switching control is given in Section A.3 recovered from (Goebel et
al., 2009), basic optimal control theory is revisited in Section A.4 recovered from
(Lewis and Syrmos, 1995; Glad and Ljung, 2000), while in Section A.5 we review re-
sults on stability analysis of cascaded systems, recovered from (Loria and Panteley,
2005; Chaillet, 2006; Grotli, 2010).

A.1 Mathematical review

The inner product of two vectors x,y € R" is defined as x'y = >oi, iyi, where
the inner product of vectors satisfy x'y = y'x Vx,y € R” and x' (y +z) =
x'y +x'z, Vx,y,z € R". The Euclidian norm of a vector x € R" is defined as

and satisfy the following axioms and properties

e ||x|| =0 if and only if x =0 € R™;

e ||x|| > 0 for all x € R™ with x # 0 € R";

o ||ax|| = |a||x|| for all @ € R and x € R™ (Homogenity);
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o x| =yl < llx+ vyl < lIx[ + [ly]l for all x,y € R" (Triangle inequality);

o |x"y| < |x|l[lyll for all x,y € R™ (Schwartz inequality),

where O in general denotes the null matrix of dimension n x m which may be
written as 0, %, € R™ ™ where each element is zero. Other useful inequalities
include Young’s Inequality where for x,y € R™ and any p € N\{1} we have that

1 p—1 p_
x "yl < ~[x|P + [yl 7. (A.2)
p p
For p = 2, it follows from Young’s inequality that for any A > 0 we have
A 1
Tyl < Zx)1?2 + =|lyl* A3
X"yl < SIxI? + 5l (4.3
The dot product v - u of the vectors v € R™ and u € R" is defined as

V'uévlul +U2U2 + +'Unu'n, (A4)

The dot product is a real number and not a vector, and also sometimes called scalar
product. If a set of vectors v € R™ and u € R™ leads to

v-u=0 (A.5)

the vectors are orthogonal or perpendicular to each other. The zero vector 0 is
orthogonal to every vector v € R™ because v - 0 = 0 for all v.
The vector cross product between vectors v and vector u is given as

[[v > ull = [[v[[[[u]|sin®, (A.6)

where 6 is the angle between the vectors u and v. The skew symmetric operator
S(-) is used to evaluate the cross product between two vectors u € R® and v =
[v1, v2, v3]T € R? and is defined as

0 —vVs3 (%)
Sv) & | v 0 -un |, (A.7)
—V2 (% 0

such that v x u = S(v)u. The properties of the skew symmetric matrix are
1. S(av + fu) = aS(v) + 5S(u)
2. S(v)S(u) = uv? — vTulzy.3

3. S[S(v)u] = uv? — vuT



A.1. MATHEMATICAL REVIEW

The product of matrices A € R™*P and B € RP*"™ denoted C = AB € R™*"
is defined as

%gzl alkZm %gzl auclljkz . %gzl Uzlkll;kn

k=1 @2kVk1 k=1 @2k0k2 - k=1 @2k 0K

C= g ' T (A
Dbt Gmkbrl Yp—q @mkbr2 oo Dop_q Gmkbrn

and it may be verified that
e (AB)" =BTAT for all A € R™*? and B € RP*";
e in general, AB # BA;

e for all A € R™*P B € RP*™;
A(B + C) = AB + AC with C € RP*";
ABC = A(BC) = (AB)C with C € R**".

A matrix A € R™™™ is square if it contains equal number of rows and columns,
i.e. m = n. A square matrix is symmetric if A = AT, skew-symmetric if A = —AT
and an important property of skew-symmetric matrices is that

x Ax =0, VYx € R"™. (A.9)

A square matrix A € R"*" is diagonal if a;; = 0 for all i # j, denoted

A= diag{ai1, asa, ..., ann}. A square matrix A € R™*™ is singular if its deter-
minant is zero, that is, one or more of the eigenvalues are zero —¢f. (Edwards and
Penney, 1988) for more on determinants and eigenvalues. A matrix A is said to be
Hurwitz if all eigenvalues of A satisfy Re()\;) < 0. A square matrix A € R"*" is
said to be positive definite if

x'Ax >0, ¥x € R", x # 0. (A.10)
A square matrix A € R™*"™ is said to be positive semi-definite if
x Ax >0, Vx € R"™. (A.11)

A square matrix A € R™*" is said to be negative definite if —A is positive definite
and negative semi-definite if —A is positive semi-definite.
The the induced Lo-norm of a matrix A € R™*™ also sometimes called the

spectral norm is defined as
”A” =V )\maz(ATA) (A.12)

where A, (Q) and Aja.(Q) denotes the minimum and maximum eigenvalue of a
matrix Q, respectively. The spectral norm satisfy the following axioms and prop-
erties

e ||A||=0if and only if A =0 € R™*"™;
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e ||A] > 0 for all A € R"*™ where A # 0 € R"*™;
o |[A+B| <|JA||+|B] for all A,B € R™*™;
o |laA| = |af||A] for all @ € R and A € R™"*"™;

o |ATB| < ||A|||B]| for all A,B € R"*™,
For a matrix A € R™*™ and a vector x € R™, the vector norm satisfies
JAx]| < |AJlx]l, YA € R™*",x € R", (A.13)
and moreover, for a vector y € R™, the absolute value satisfies
ly " Ax| < Ay %] (A.14)

The pseudo inverse At of a matrix A € R™*™ is the unique matrix satisfying
the following criteria

e AATA = A;
e ATAAT = AT,
o (AANHH = AAT;
o (ATA)H = ATA;
where ()7 denotes a Hermitian matrix (Kreyzig, 1993), leading to
AT = (ATA)"'AT and AT =AT(AAT)"L. (A.15)

The inverse matrix does not exist if the product AAT or AT A has a zero determi-
nant, which is not invertible.

Now we introduce some basic functional concepts which is widely used in the
context of stability analysis. The system considered is

x = f(t,x), x(tg) = xo. (A.16)

A function f:R™ — R™ is said to be continuous at a point x if, given any € > 0,
there is § > 0 such that

[x =yl <d=[lf(x) - f)l <e (A.17)

A function is uniformly continuous if, given any € > 0 there is a §(¢) > 0 such that
(A.17) holds. Furthermore, a function f is said to be continuous on the set S if it
is continuous at every point x € S. The function

(a1 f1 +az2f2)(-) = a1 f1() + a2 f2(:) (A.18)
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is continuous for any two scalars a; and as and any two continuous functions f; and
fo. If the functions are defined for sets such that f; : S — Sy and fy : Sy — S3,
then the composition of f; and f5 can be written as

(f20 f1)(-) = fa(f1), where fao f1:S1 — Ss. (A.19)

A function u : I — R is said to be absolutely continuous on the interval I C R if
for every € > 0 there exists § > 0 such that

¢
> Julbe) — u(ax)| < € (A.20)
k=1
for every finite number of nonoverlapping intervals (ay,br), k = 1,...,¢, with

[ak,bk] C I and

‘
> bk —ax) < 6. (A.21)
k=1
A function u : I — Ris locally absolutely continuous if it is absolutely continuous in
[a, b] for every interval [a,b] C I. The system (A.16) is said to satisfy the Lipschitz
condition if

1f(t,x) = f(&,y)]l < Llx =yl (A.22)

for all (¢,x) and (¢,y) in some neighborhood of (ty,xo) with L > 0. The Lipschitz
condition guarantees a unique solution in [tg, o 4 6] for some § > 0. If there exists
a constant L > 0 which hold for all x,y € R™, then we say that (A.16) is globally
Lipschitz. A continuous function V' : R™ — R is said to be radially unbounded
if V(x) — oo as [|x]| = oo. A continuous function V' : [0,00) x R” — R is said
to be decrescent if there exists a positive definite function W : R™ — R such that
V(t,x) < W(x), Vt >0, Vx € R™.
A function f:R — R is said to be differentiable at x if the limit

h—0 h (4.23)

exist. A function f: R™ — R™ is said to be continuously differentiable at a point
x* if the partial derivatives 0f/0x; exist and are continuous at x* for 1 < i > m,
1 <j < n. A function f is continuously differentiable in a set S if it is continuously
differentiable at every point in S.

A continuous function « : [0,a) — [0,00) is said to belong to class K if it is
strictly increasing and «(0) = 0. A continuous function « : [0,00) — [0, 00) is said
to belong to class K it is is strictly increasing and «a(0) = 0 and «a(r) — oo as
r — 00. A continuous function g : [0,a) x [0, 00) — [0, 00) is said to belong to class
KL if, for each fixed s, the mapping B(r, s) belongs to class K with respect to r and,
for each fixed r, the mapping 5(r, s) is decreasing with respect to s and 3(r,s) — 0
as s — 0o. A constant vector x* € R™ is an equilibrium point of the system (A.16)
if f(t,x*)) =0, Vt > tg, and it follows that %x(¢) = 0. An equilibrium is usually
located at the origin, if not, without loss of generality it can be shifted to the origin
via a change of variables.
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A.2 Lyapunov stability

When we speak of stability we mean stability in sense of Lyapunov, in particular the
so-called second method of Lyapunov. Since the topics in this thesis mainly concern
non-autonomous systems, that is, the solution of the differential equation (A.16) is
dependent on both ¢ and tg, we state uniform stability results with respect to time.
We assume that f(¢,x) : R>g x R™ — R™ is locally Lipschitz in x, uniformly in ¢,
continuous in both arguments, and the origin is an equilibrium point of (A.16).

A smooth function V' : R™ — R is said to be proper if, for any ¢ € R, the set
V=1([0,c]) = {x € R" : 0 < V(x) < ¢} is compact. A continuous and differentiable
function V' : R>¢ x R™ — R>( is said to be a Lyapunov function candidate for the
equilibrium x = 0 € R™ of (A.16) if

e V(t,x) is locally positive definite;

% is continuous with respect to t and x;

) % is continuous with respect to ¢ and x.
A Lyapunov function candidate for (A.16) is a Lyapunov function for (A.16) if its
total time derivative along the trajectories of (A.16) satisfies V(¢,x) < 0, ¥Vt > 0
and for small ||x]|.

We now state the basic definitions of uniform stability.

Definition A.1 (Khalil (2002)) The equilibrium point x = 0 of (A.16) is
e stable if, for each € > 0, there is 6 = d(¢,tg) > 0 such that

Ix(to)|| < 6 = [|x(b)]| <€, Vt>ty>0; (A.24)

o uniformly stable if, for each ¢ > 0, there is § = d(€) > 0, independent of to,
such that (A.24) is satisfied;

e unstable if not stable;

o asymptotically stable if it is stable and there is a positive constant ¢ = c(to)
such that x(t) — 0 as t — oo, for all |x(to)|| < ¢;

e uniformly asymptotically stable if it is uniformly stable and there is a positive
constant ¢, independent of to, such that for all ||x(to)| < ¢, x(t) — 0 as
t — oo, uniformly in to, that is, for each n > 0, there is T = t(n) > 0 such
that

@)} <n, Yt >to+T(n), VIx(to)ll <c (A.25)

e uniformly globally asymptotically stable if it is uniformly stable, 6(€¢) can be
chosen to satisfy lim._,, 6(¢) = 0o, and, for each pair of positive numbers n
and ¢, there is T =T (n,c) > 0 such that

%@ <n, Yt =10 +T(n,¢), [[x(to)] < e (A.26)
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Definition (A.1) can also be expressed based on class K and KL functions.
Lemma A.1 (Khalil (2002)) The equilibrium point x = 0 of (A.16) is

o uniformly stable if and only if there exist a class KC function « and a positive
constant ¢, independent of to, such that

%@ < alix(to)l), VE=to 20, Vx(to)l| < ¢ (A.27)

o uniformly asymptotically stable if and only if there exist a class KL function
B and a positive constant c, independent of to, such that

Ix(@) < B(Ix(to)ll, t —to), Vt = to 20, V|x(to)ll < ¢ (A.28)

e uniformly globally asymptotically stable if and only if inequality (A.28) is
satisfied for any initial state x(to).

A special case of uniform asymptotic stability is when the class KL function in
(A.28) is on exponential form. Then we have the following definition.

Definition A.2 (Khalil (2002)) The equilibrium point x = 0 of (A.16) is expo-
nentially stable if there exist positive constant, c, k, and X such that

<(6)] < Kllx(to) e ), W (to) | < ¢ (A.29)
and globally exponentially stable if (A.29) is satisfied for any initial state x(to).

We now proceed with stating Lyapunv’s stability theorems for the stability prop-
erties defined.

Theorem A.1 (Khalil (2002)) Let x = 0 be an equilibrium point for (A.16) and
D C R™ be a domain containing x = 0. Let V : [0,00) X D — R be a continuously
differentiable function such that

Wi(x) < V(t,x) < Wa(x) (A.30)
ov. oV
E + &f(t,x) <0 (A31)

YVt > 0 and Vx € D, where Wi(x) and Wa(x) are continuous positive definite
functions on D. Then, x = 0 is uniformly stable.

Theorem A.2 (Khalil (2002)) Suppose the assumptions of Theorem A.1 are sat-
isfied with inequality (A.31) strengthened to

O %) < ~Wi(x) (A.32)

YVt > 0 and Vx € D, where W5(x) is a continuous positive definite function on D.
Then, x = 0 is uniformly asymptotically stable. Moreover, if r and c are chosen
such that B, = {x € R" : ||x[| < r} C D and ¢ < minjx—, Wi(x), then every
trajectory starting in {x € B, : Wa(x) < ¢} satisfies

%@ < B(Ix(to)ll;t —to), V¢ =19 >0 (A.33)

for some class KL function 8. Finally, if D = R"™ and W1(x) is radially unbounded,
then x = 0 is uniformly globally asymptotically stable.
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A similar theorem is also given for exponential stability.

Theorem A.3 (Khalil (2002)) Let x = 0 be an equilibrium point of (A.16) and
D C R™ be a domain containing x = 0. Let V : [0,00) x D — R be a continuously
differentiable function such that

x| <V(t,2) < ] (4.34)
ov. oV

— < - @ .
o S (%) < —kallx] (4.35)

Vt > 0 and Vx € D, where k1, ko, k3 and a are positive constants. Then, x = 0
is uniformly exponentially stable. If the assumptions hold globally, then x = 0 is
uniformly globally exponentially stable.

Furthermore, we make use of what is called Matrosov’s theorem ¢f. (Matrosov,
1962; Hahn, 1967; Rouch and Mawhin, 1980) which can be seen as an extension of
the so called LaSalle’s invariance principle for non-autonomous systems, stated as

Theorem A.4 (Matrosov, (Rouch and Mawhin, 1980)) Suppose there exist
three functions

V:ZIxB,—=R,(tx)— V(tx); (A.36)
W :IxB,—=R,(t,x)— Wt x); (A.37)
V*iB, = R,x = V*(x), (A.38)

where T = (1,00), where T might equal —oo, which are continuous along with 1%
and W such that V(t,0) = V(¢,0) = 0 and suppose there ezists ¢, 0 < € < p, such
that

110 < A for (%) € T x B;
2. 'V is positive definite on T x Be with V (t,x) — 0 uniformly in t as x — 0;
3. V(t,x) < V*(x) <0 for (t,x) € T x B,;
4. there exists an L > 0 such that |W (t,x)|| < L for (t,x) € T x Be;
5. W(t,x) is non-zero definite on E = {x € B, : V*(x) = 0}.
Then every solution such that x(t,to,xo) € Be for t >ty tend to 0 when t — +oo.

We say that a continuous function W : B, — R, x — W (x) is non-zero definite on
a set E C B, if and only if W (x) # 0 for all x € E\{0}. Note that the hypothesis
of Theorem A.4 suffice to assure uniform asymptotic stability of the origin. The
theorem is restated in (Paden and Panja, 1988) where they show that condition (5)
of the theorem is satisfied if

1. W(t,x) is continuous in both arguments and depends on time in the following
way. W (t,x) = g(B(t),x) where g is continuous in both of its arguments. 5(t)
is also continuous and its image lies in a bounded set K. (For simplicity, we
simply say that W(t,x) depends on time continuously through a bounded
function.)
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2. There exists a class K function, k, such that ||W(t,x)|| > k(|x||), ¥x € E
and t > tg.

Another type of stability property utilized in this thesis is what is called "in the
large" which shouldn’t be mixed up with "local" stability. Local stability means
stability of the origin for initial values starting arbitrarily close to the origin while
in the large means stability of the origin for initial conditions starting from a given
set. A more formal definition is as follows.

Definition A.3 (Asymptotic stability in the large) LetT' C R™ be given. The
trivial solution © =0 of & = f(t,x) is called asymptotically stable in the large
with respect to I if it is stable in the sense of Lyapunov and every other solution
z(t,to,x5) — 0 as t — oo for any initial states xo € T’ and for any initial times
to € R>o. The origin is uniformly asymptotically stable if it is uniformly stable and
convergence is uniform in the initial times and in compact sets of the initial states.

Remark A.1 The previous definition is paraphrased from (Furasov, 1977, p. 29).
Although the property previously defined is not unusual the terminology “in the large”
has sometimes been used wrongly, as synonymous of “global” for instance, by J. L.
Lasalle. Howewver, it must be recognized that the property described in Definition A.3
does not correspond neither to (local) asymptotic stability where the mere existence
of T is invoked' , nor to global asymptotic stability in which case x, € R™ —cf. Hahn
(1963).

A.2.1 Almost global stability

Stability for all initial states in R™ except for a set of measure zero is called almost
global asymptotic stability see (Rantzer, 2001). The concept of Almost Global
Stability (AGS) is defined as follows

Theorem A.5 (Almost Global Stability, (Rantzer, 2001)) Given the equa-
tion & = f(z(t)), where f € CYR",R") and f(0) = 0, suppose there exists a
non-negative p € C1(R™\{0},R) such that p(z)f(z)\|z| is integrable on {x € R" :
|z| > 1} and

[V-(fp)l(x) >0 for almost all . (A.39)
Then, for almost all initial states x:(0) the trajectory x(t) exists for t € [0,00) and

tents to zero as t — oo. Moreover, if the equilibrium = = 0 is stable, then the
conclusion remains valid even if p takes negative values.

The function p(z) is called a density function which can be derived from a Lyapunov
function V according to the following proposition.

IMore precisely, in this case I" corresponds to an arbitrarily small neighborhood of the origin.
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Proposition A.1 (Rantzer (2001)) Let V(z) > 0 for x # 0 and VV - f <
a~Y(V - f)V for almost all x for some o > 0. The p(z) = V(z)~ satisfies the
condition (A.39).

To put the concept of almost global stability into the framework of asymptotic
stability we make use of the following definition

Definition A.4 (Asymptotic stability, almost in the large) Let ' C R™ be
given. The solution x* of © = f(t,x) is called asymptotically stable, almost in the
large if it is stable in the sense of Lyapunov and every other solution x(t,ts, o) —
x* as t — oo for any initial states v, € I' except for a zero-measure subset of I' and
for any initial times to € R>q. The equilibrium point is uniformly asymptotically
stable, almost in the large if both stability and convergence are uniform in the initial
conditions.

A refinement of the main theorem in (Rantzer, 2001) for non-autonomous systems
is given as follows

Theorem A.6 (Monzén (2006)) Consider the system @ = f(t,x) such that f(t,0) =
0 for allt and 0 is a locally stable equilibrium point. Let p : R"\{0} — R>( be once
continuously differentiable and satisfy

0

ap(t,a:) +[V-(fp)t,z) >0 VYt>0, aa. ze€R".

Moreover, assume that p(t,x) is integrable uniformly in t over {||z| > €} for every
€ > 0. Then, for every initial time t, the set of points that are not asymptotically
attracted by the origin has zero Lebesque measure.

Remark A.2 Stability is an assumption of Theorem A.6 hence, an implicit state-
ment which follows directly from its conclusion is that the origin is almost globally
asymptotically stable, in the sense defined in (Rantzer, 2001).

A.2.2 Practical and semi-global stability

The need for more refined stability results based on practical systems was early
identified and practical stability was suggested by LaSalle and Lefschetz (1961).
The basic idea is that a practical system will be considered stable if the deviations
of the motions from an equilibrium remain within certain bounds determined by
the physical situation. A perturbed version of (A.16) can typically be expressed as

x = f(t,x) + g(t,x). (A.40)

and the stability properties of the equilibrium point (A.16) are assumed to be
known. A definition of practical stability was given by Hahn (1967) as follows:

Definition A.5 The equilibrium point of (A.16) is called practically stable if there
exist two constants ki, ko with the following property: if ||xol| < k1 and if the
function g(t,x) in (A.40) satisfies an inequality

lg(t,x)|| < k2, x €R", t > to, (A.41)
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then the general solution of (A.40) admits an estimate
||X(t, xo, to)” < k3 (A.42)
where the constant ks depends on the particular physical situation.

Typically the residual caused by e.g. external perturbations can be diminished by
tuning of some parameters. For more formal definitions we need to establish the
following definition

Definition A.6 (Carathéodory conditions) Let G C R™ be an open set and
Z = [a,b] C R, a <b. One say that f : T x G — R™ satisfies the Carathéodory
conditions on T x G if

1. f(-,x) : Z — R™ is measurable for every x € G;
2. f(t,) : G = R™ is continuous for almost every t € Z;

3. for each compact set K C G the function

hic(t) = sup{|f (1, %) : @ € K} (A.43)

is Lebesgue integrable on .

Semi-global and practical stability properties can now be described by introducing
parameterized nonlinear time-varying systems on the form

X = f(t,x,0), (A.44)

where x € R", t € R>g and 8 € R™ is a constant parameter, and f : R>o X R" x
R™ — R" is locally Lipschitz in x and satisfies Carathéodory conditions for any
parameter 0 under consideration.

Definition A.7 (UGPAS, (Chaillet, 2006)) Let © C R™ be a set of parame-
ters. The system (A.44) is said to be uniformly globally practically asymptotically
stable on © if, given any § > 0, there exists 6*(0) € O such that the ball Bs is
uniformly globally asymptotically stable for the system & = f(t,xz,0%).

Definition A.8 (USPAS, (Chaillet, 2006)) Let © C R™ be a set of parame-
ters. The system (A.44) is said to be uniformly semi-globally practically asymptot-
ically stable on © if, given any A > § > 0, there exists 0* (0, A) € © such that the
ball Bs is uniformly asymptotically stable on Ba for the system & = f(t,x,0*).

Definition A.9 Let © C R™ be a set of parameters. The system & = f(t,z,0)
, where x € R", t > 0, § € R™ is a constant parameter and f(t,z,0) is locally
Lipschitz in x and piecewise continuous in t for all 0 € R™, is said to be uniformly
practically asymptotically stable if given any A > § > 0, there exists 0*(5,A) € ©
such that Bs is uniformly asymptotically stable on Ba for the system® & = f(t,x,0%).

>The set Bs is uniformly asymptotically stable on Ba if there exists a number A and a class
KL function 8 such that ||z(to)||ls < A, to € Rso = [|z(t)|ls < B(||lz(to)|ls,t — to), where
lzlls == infzepsllz — 2.
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Remark A.3 The property above implies but is not implied by ultimate bounded-
ness. The definition is adapted from Chaillet and Loria (2008) —we removed the
qualifier “semiglobal” which pertains to systems evolving in R™. However, note that
the parameter 0 depends on the residual set Bs and the estimate of the domain of
attraction Ba. In the context of this thesis 6 corresponds to design parameters.

For exponential systems similar definitions are given as follows:

Definition A.10 (UGPES, (Grgtli, 2010)) Let © C R™ be a set of parame-
ters. The system (A.44) is said to be uniformly globally practically exponentially
stable on © if, given any 0 > 0, there exists a parameter 6*(0) € O, and positive
constants k(6) and v(3) such that, for any vo € R™ and any ty € R>o the solution
of (A.44) satisfies, for all t > to,

(t, to, w0, 6%)|| < 6 + k(8)|aol|e™ 1), (A.45)

Definition A.11 (UPES, (Grgtli, 2010)) Let © C R™ be a set of parameters.
The system (A.44) is said to be uniformly (locally) practically exponentially stable
on O if there exists A > 0, and given any 6 > 0, there exists a parameter 6* (5, A) €
© and positive constants k(5, A) and (5, A) such that, for any xo € Ba and any
to € R>o the solution of (A.44) satisfies, for all t > to,

1<(t, to, %0, %) < 6+ k(8, A)|xple 7 *A ), (A.46)

In the above definitions # can be seen as the tuning parameters such as gains, while
© can be seen as the set of available parameters which could be limited by physical
constraints such as actuator saturation and quantization. The parameter A can
be seen as an estimate of the region of attraction, while § represents the ball to
where solutions converge. It is therefore favorable to have a large A while keeping
0 as small as possible to decrease steady-state errors. A related popular concept
for instance in control of mechanical systems, is that of ultimate boundedness cf.
(Khalil, 2002). However, practical asymptotic stability is stronger than ultimate
boundedness since the latter is only a notion of convergence and does not imply
stability in the sense of Lyapunov. In other words, the fact that the errors converge
to a bounded region does not imply that they remain always arbitrarily close to it.

We now move further by giving Lyapunov sufficient conditions for Definitions

(A7) (A.11).

Theorem A.7 (Lyapunov sufficient condition for UGPAS, (Chaillet, 2006))
Let © be a subset of R™ and suppose that, given any § > 0, there exist a parameter
0*(0) € O, a continuously differentiable Lyapunov function Vs : R>o x R™ — R>¢
and class Koo functions o, o, as such that, for all x € R"\Bs and all t € R,

(] <Vs(t,%) < (1)) (A7)
P 1,%) + 22 1,007 0,%,0%) <~ (A.18)
(}i_r%ggl oas(0) =0. (A.49)

Then the system x = f(t,x,0) introduced in (A.44) is UGPAS on the parameter
set ©.
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Theorem A.8 (Lyapunov sufficient condition for USPAS, (Chaillet, 2006))
Suppose that, given any A > § > 0, there exist a parameter 6*(6,A) € ©, a con-
tinuously differentiable Lyapunov function Vs A : R>o X R” = R>g, and class Koo
functions as o, asa, asa such that, for all x € H(5,A) and all t € Ry,

oVs.a oVs.a
ot LX)+

Assume further that, for any A, > 0, > 0, there exist A > § > 0 such that

(t,x)f(t,x,0") < —asa(]|x]])- (A.50)

oy A 0T5a(0) <6, (A.51)
@glA oas A(A) > A,. (A.52)

Then, the system x = f(t,x,0) introduced in (A.44) is USPAS on the parameter
set ©.

Theorem A.9 (Sufficient condition for UGPES, (Grgtli, 2010)) Let © be
a subset of R™ and suppose that, given any § > 0, there exist a parameter 0*(0) € O,
a continuously differentiable Lyapunov function Vs : R>o x R™ — R>q and positive
constants k(5), k(8), ®(8) such that, for all x € R"\Bs and all t € Rxo,

Bl < Va(t,2) < ®(@)]al” (4.53)
Vs Vs \ )
Ge )+ Gt (t2,0%) < —x(O)]a|, (A.54)

where p denotes a positive constant. Then, under the condition that

R(0)oP
lim 5(0) =0, (A.55)

the system x = f(t,x,0) introduced in (A.44) is UGPES on the parameter set ©

Theorem A.10 (Sufficient condition for UPES, (Grgtli, 2010)) Let © be a
subset of R™ and suppose that, there exists A > 0, and given any A > § > 0,
there exist a parameter 0*(8) € O, a continuously differentiable Lyapunov function

Vs : Ryo x B>o — R0 and positive constants r(0), £(5), () such that, for all
x € BA\Bs and all t € R>q,

£(8)[|x[IP <V5(t,x) < 7(8)]|x]” (A.56)
%(’5’ x)+ %f(tvxﬁ*) < —r(0)|x], (A.57)

where p denotes a positive constant. Then, under the condition that

R(0)oP
lim 5(0) =0, (A.58)

the system x = f(t,x,0) introduced in (A.44) is UPES on the parameter set ©.
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A.3 Hybrid systems

A hybrid system is usually written on the form

H:{ i€F(x), ze€C (A.50)

rteG(z), z€D

where F': R™ — R™ and G : R — R"” are set-valued mappings for the flow map
and jump map respectively, while C' and D are the flow set and jump set. A subset
E of R>¢ x N is a hybrid time domain if it is the union of infinitely many intervals
of the form [t;,¢;11] x {j}, where 0 =ty < t; <o < ..., or of finitely many such
intervals, with the last one possible of the form [t;,¢;41] x {4}, [tj,t;4+1) x {j}, or
[tj,00) x {j}. A hybrid arc is a function x : dom x — R", where dom z is a hybrid
time domain and, for each fixed j, t — x(t,j) is a locally absolutely continuous
function in on the interval I;{t : (¢,j) € dom x}. The hybrid arc is a solution to
the hybrid system H = (C, F, D, G) if 2(0,0) € C' U D and the following conditions
are satisfied.

e For each j € N such that I; has nonempty interior, @(t,j) € F(x(t,j)) for
almost all ¢ € I;, z(¢,7) € C for all t € [min I;, sup I;).

e For each (¢,7) € dom z such that (¢,7 + 1) € dom x, x(t,j + 1) € G(z(¢, 7)),
x(t,j) € D.

The solution x to a hybrid system is nontrivial if dom = contains at least one point
different from (0,0); maximal if it cannot be extended; and complete if dom =z is
unbounded. Every complete solution is maximal. We assume that the system fulfills
the basic assumptions [A1-A3] in Goebel et al. (2009) thus C' and D are closed sets
in R", and F(z) and G(z) are continuous and locally bounded. A compact set A
is stable for H if for each € > 0 there exists o > 0 such that ||2(0,0)|| 4 < o implies
[lz(t, 7)||a < € for all solutions z to H and all (¢,5) € dom 2. A compact set is pre-
attractive if there exists a neighborhood of A from which each solution is bounded
and the complete solutions converge to A, that is [|z(t,7)[|a — 0 as t + j — oo,
where (¢,7) € dom z. A compact set A is pre-asymptotically stable if it is stable
and pre-attractive. For a pre-asymptotically stable compact set A C R", its basin
of pre-attraction is the set of points in R™ from which each solution is bounded and
the complete solutions converge to A. Each point in R™\(C' U D) belongs to the
basin of pre-attraction since no solution starts at a point in R™\(C' U D). If the
basin of pre-attraction is R™ then the set A is globally pre-asymptotically stable.
If all solutions that are starting in the basin of pre-attraction are complete, the set
A is globally asymptotically stable.

A.4 Optimal control theory

To solve a continuous nonlinear optimal control problem, a set of known equations
are solved based on the system model which can be written as

j":f(xauvt)a t >t ) (AGO)



A.5. CASCADED SYSTEMS THEORY

Figure A.1: Cascade interconnection of two dynamical systems.

and a performance index may be defined as

T
J(to) = p(x(T),T) + L(z,u,t)dt . (A.61)
to
A Hamiltonian is defined as
H(z,u,t) = L(x,u,t) + X fz,u,t), (A.62)

while the costate equation is expressed as

oM ofT, | oc

B i <T A.
A Ox Ox At Ox b= (4.63)
and the stationary condition is defined as
oH oL OfT
=—=—4+—"—X. A.64
0 ou  Ju + Ju ( )

As most nonlinear problems are impossible to solve in an analytical way we usually
have two options: either linearize the system model, or use a numerical algorithm.
Both methods have pros and cons, a linearized problem is fast and easy to solve but
will not perform well for highly nonlinear equations, while a numerical algorithm
for a large set of equations usually requires a lot of computations to solve.

A.5 Cascaded systems theory

Cascaded-systems theory consists in analyzing complex systems by dividing them
into sub-systems which are simpler to control and to analyze —see (Loria and Pante-
ley, 2005) and references within. It must be emphasized that such representation is
purely schematic, for the purpose of analysis only. Generally speaking the stability
analysis problem consists in finding conditions for two systems as in Figure A.1 so
that, considering that both sub-systems separately are stable, they conserve that
property when interconnected. A typical nonlinear cascaded time-varying system
on closed-loop dynamical form is expressed as

Yi:ax1 = fl(t,xl) + g(t,x)xg (A65)
Yo 1 dp = fo(t, w2), (A.66)

where 71 € R", 29 € R™, 2 = [, 29 ] and the functions f,(-,-), f2(,-) and g(-,
are continuous in their arguments, locally Lipschitz in z, uniformly in ¢, and f; (-,

)
)
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is continuously differentiable in both arguments. Note that (A.66) is decoupled
from (A.65) hence, it will be called the driving system, its state enters as an input
to the upper system with state z; through the interconnection term g(t,z)xs, and

& = f1(t,x1). (A.67)

will then be called the driven system.

A.5.1 Uniform global asymptotic stability
An important fact for nonlinear time-varying cascaded systems is that

Lemma A.2 (Loria and Panteley (2005)) The cascade (A.65)-(A.66) is said
to be UGAS if and only if the systems (A.66) and (A.67) are UGAS and the solu-
tions of the cascade is uniformly globally bounded (UGB).

A useful result for cascaded system was presented by (Loria and Panteley, 2005,
Theorem 1) which proves uniform asymptotic stability of the equilibrium point of
a closed-loop system on the form (A.65) (A.66) under a series of assumptions.

The first condition states that the unperturbed dynamics is stable and that
one knows a Lyapunov function for that system satisfying certain mild regularity
properties:

Assumption A.1 There exist constants c1, ca, 6’ > 0 and a Lyapunov function
V(t,z1) for (A.67) such that V : R>g x R" — R>q is positive definite, radially
unbounded, V(t,x1) <0 and

ov
||371||||331|| <aV(ta) V] = (A.68)
ov
||371|| <cz Y[zl < 0" (A.69)

It is to be noted that Lyapunov functions bounded by polynomials satisfy the latter.
The second condition is instrumental to ensure that the interconnection does not
destabilize the system. It is demanded that the dependence of the interconnection
on the state z; is not stronger than linear:

Assumption A.2 There exist two continuous functions &1, & : R>¢g — R such
that g(t,x) satisfies

gt )|l < &allz2ll) + & ([[z2]) |2l (A.70)

Finally, the third condition imposes a minimal convergence rate to the state of the
perturbing system. This is expressed by an integrability assumption. Notice that
systems enjoying local exponential stability satisfy this condition. In contrast, if
xo(t) decays sufficiently slowly say, at the rate 1/t stability cannot be guaranteed:

Assumption A.3 There exists a class K function «(-) such that, for all to > 0,
the trajectories of the system (A.66) satisfy

/wllxz(t;tovwz(to))ﬂdt < a([|lz2(to)l)- (A.71)

to
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Theorem A.11 Under Assumptions A.1-A.3 the origin of the cascaded system
is uniformly asymptotically stable if the respective origins of (A.66), (A.67) are
uniformly asymptotically stable; —see (Panteley and Loria, 1998).

Theorem A.11 may be extended to the case when the subsystems possess the weaker
property of practical asymptotic stability as presented in Section A.2.2.

A.5.2 Uniform semi-global practical asymptotical stability

For cascades of time-varying systems that are uniformly semi-globally practically
asymptotically stability (USPAS) we consider systems on the form

y =fi(t,x1,01) + g(t,x,0) (A.72)
&y =fo(t, x2,02), (A.73)

where § = [0], 6]]T € © are tuning parameters, and © = [0, ©J]T C R™ are
the sets of available tuning parameters.

Assumption A.4 The function g is uniformly bounded both in time and in 0> and
vanishes with xo, i.e., for any 01 € O1, there exists a nondecreasing function G,
and a class IC function WUy, such that, for all 02 € Oq, all x € R™ x R™ and all
te RZO,

lg(t,z, 0)I| < Ge, ([|]))Wo, (l|22])- (A.74)
Assumption A.5 The system (A.73) is USPAS on ©s.

Assumption A.6 Given any Ay > 01 > 0, there exist a parameter 05(61,A) €
01, a continuously differentiable Lyapunov function Vs, a,, class K functions
Q5. Ay» sy, Ay 5 Q5y A, and a continuous positive nondecreasing function cs, A, such
that, for all x1 € H(d1,A1) and all t € R>q

as, o, (l1ll) < Voo, (t21) < @5, a4 (o) (A.75)
8‘/1 1 6‘/1 1 *
T (b + TR () fu(tw, 67) < —asy () (A.76)
Vs, A,
| =52 (D)l < covas (), (AT7)

where H = {x € R" : 0 < ||z]| < A}.

Assumption A.7 There exists a positive constant Ao such that, for any given
positive numbers d1, Ay, d2, Ao, satisfying Ay > max{d1, Ao} and Ay > b2, and
for the parameter 0% (51, A1) as defined in Assumption A.6, there exists a param-
eter 85 € Dy, (02, A2) N O2 and a positive number v(d1,d2, A1, Aa) such that the
trajectories of (A.72)-(A.73) with 0 = 0* satisfy

||33()|| S 7(517 627 Ala AQ) = ||¢(ta th Zo, 0*)“ S Al? vt 2 t(). (A78)

209



A. BACKGROUND MATERIAL

In addition, given any A, > 6, > 0, there exist some positive constants 61, A1 and
Ao, with Ay > 61, such that, for all d2 € (0, Ag),

min{Al,A2,7(51,52,A1,A2)} ZA* (A79)
max{zsg,gé_llAl o as, A, (01)} <bs. (A.80)

The following theorem provides sufficient conditions for the preservation of USPAS
under cascaded interconnection:

Theorem A.12 (USPAS + USPAS + UB = USPAS, (Chaillet, 2006)) Under
Assumptions A.4—A.7, the cascaded system (A.72)—(A.73) is USPAS on ©1 x O,.

The following definition and proposition are also used along the proof of USPAS:

Definition A.12 (D-set, (Chaillet, 2006)) For any A > 6 > 0, the D-set of
the dynamical system @ = f(t,x,0), is defined as

Ds(0,A) ={0 e R™ : Bsis UAS on Ba for f(t,z,0)}.

Proposition A.2 (Sufficient condition for UB, (Chaillet, 2006)) Let b be a
positive constant. Suppose that there exists a continuously differentiable function
V' and two class K functions a and & such that, for all t € R>( and all x € R",

a(llz]) <V(t,2) <a(llz]) (A.81)
x € H(a,b) = %—Y(t,x) + Z—Z(t,x)f(t,x) <0, (A.82)

where a denotes a positive number such that a(a) < a(b). Then, for all ty € Rxg,
the solutions of & = f(t,x) satisfy

llzol| <@t oab) = ||¢(t, to, z0)|| < b, Vt > tg. (A.83)
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Appendix B

Detailed proofs

B.1 Proof of Lemma 3.1

We have that

1 .1 . T 1
e ,T.T e, = ZeTe > 3 ((1 F7)? + eTe) = geqTieqi, (B.1)
where the inequality from (B.1) is found by

1 o =T Lot
g((liFr]) + € e)gze € (B.2)
Qfp)P<ee=1-7 (B.3)
LF20+72 <172 (B.4)
F27 < 0, (B.5)

and we see that the inequality holds for e, VO<f<lande,- V —1<7<0.
B.2 Proof of Lemma 3.2
By multiplication we find that
T (e44)es+ = e (B.6)
and by differentiation of both sides and rearranging the terms, we obtain
. 1; .
TZ(eqﬁ:)eqﬁ: = iie - T;r(eqﬁ:)eqiy (B.7)
and from (3.5) (3.6) we have that
. 1.. B
T/ (eq+)eqs = £, [T+ S(E)ew, — T/ (eq+)Te(eqs )ew. (B.8)

Furthermore, we find by multiplication that T. (e,4+)Te(e,+) = 1/41 which con-
cludes the proof.
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B.3 Proof of Theorem 3.2

Without loss of generality, we show stability of the positive equilibrium point i.e.,
let eg = eq+ and T, = Te(eqy).

By inserting (3.14) into (2.83) and applying the property S(w)Jw = —S(Jw)w
we obtain the closed-loop rotational dynamics

Je, + (koI —S(Jw))e, + k, T e, = 0. (B.9)
A radial unbounded, positive definite Lyapunov function candidate is defined as

V(x):=_ (e Je, +e,kyeq) >0, Ve, #0, e #0, (B.10)

N =

where x = [e;, e]", and by differentiating (B.10) and inserting (3.5) and (B.9)
we obtain

V= e;rqueew +e! (S[Iw) — ke, —e kT e, (B.11)

where the first part of the second term in equation (B.11) is zero because S (Jw) is a
skew-symmetric matrix, thus we have the property XTS(y)x =0 for all x,y € R?,
which leads to

V=—el ke, . (B.12)

Hence, from standard Lyapunov theorems —¢f. (Khalil, 2002), it follows that the

equilibrium point (e4,e,) = (0,0) is uniformly stable (US). We now apply the
theorem of Matrosov (Theorem A.4), and start by introducing an auxiliary function

W(x) = e;rTeJew, (B.13)

which is continuous and uniformly bounded on compacts of the state. The total
time derivative of W (x) along closed-loop trajectories yields

W =é, T.Je, +e, T.Je, +e) T.Jé, (B.14)
—e/ T/ T.Je, + e/ G Je, —e] T.| (~S(Iw) + kuT)e, + qujeq}, (B.15)

where Lemma 3.2 was applied. We now verify that W (x) is non-zero definite on
the set E = {x € 52, xR?: V(x) =0} = {x € Se+® x R® : e,, = 0}; to that end
observe that

e, =0=TW = —e] Tck,T e, (B.16)

By invoking Lemma 3.1 and employing Lyapunov arguments we find that the closed-
loop system in equation (B.9) is uniformly asymptotically stable (UAS) in the
equilibrium point (eq,e,) = (0, 0).

The proof for the negative equilibrium follows mutatis mutandis.
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B.4 Proof of Theorem 3.3
The proof follows along the lines of Proposition 3.2 until (B.12) which leads to
V =—ekye, <0 (B.17)

so the origin of the system is uniformly stable and the trajectories are bounded.
The rest of the proof consists in showing that the position errors and the velocity
tracking errors are square-integrable. Then it suffices to invoke (Panteley et al.,
2001, Lemma 3).

Let V(t) = V(ey(t),eu(t)) and x(t) = [e,(t) ", e,(t)T]T. Then, from (B.17) we
obtain by integrating on both sides

/t V(s)ds = — /t o7 ()kuew(s)ds (B.18)
V() + V(to) = ku t||ew(s)||2ds. (B.19)

Since —V;(t) < 0 we can write

e / lew||2ds < V(to) :% [ (fo)Tew (to) + e (fo)kgeq(to)]
<max{jar, kg }[[x(to) ||, (B.20)

and thus
t
/ lew(s)|2ds < e flx(to)]2, (B.21)
to

where ¢1 = max{jur, kq}/ko. Now let W(t) = W(eq(t), ew(t)) such that
W(t) = e, (t) Te(t)k,Te,(t), (B.22)
and by differentiation we obtain
W(t) = é] () Te(t)kgTeu(t) + e () Te(t)kgTeu(t) + e () Te(t)kgéu(t). (B.23)

By applying Lemma 3.2 and inserting (3.5) and (B.9) into (B.23) we obtain

W(t) =] ()T ()T (t)k,Teu(t) + e G (t)k,Teu(t) (B.24)
—e, ()Te(t)kg [-STw? (1) + kuI] eu(t) — e ()Te(t)k2T, (t)eq(t)

< = calleql® + esllew? + calleg | [lewl,

where 2 = k2/4, ¢ = kojar |GT ()], e4 = ky/2 (STl (D) + k) and |GT (1) <
1/4. The last term of (B.24) can be rewritten as

2
C
callegllenll < rllew®I* + = leq ()%, (B.25)

213



B. DETAILED PROOFS

214

and by choosing x > 1 such that ¢z > 2¢3/k, we obtain
W(t) < —c2/2l|eq()I* + (c5 + 1) lew (1)1 (B.26)

By applying the same line of arguments as in (B.18)-(B.20) and inequality (B.21),
(B.26) may be expressed as

Wilto) + (e3 + K)er||x(to)||? > %2 /t0 lleq(s)]|ds. (B.27)

By inserting the upper bound

IW(to)|| <max{ky, jrr}leq(to)llllew (o)l
<max{ky, jar}|[x(to)[|” (B.28)

into (B.27), the expression may be written as

/t leq(s)2ds < csl|x(to) 1, (B.29)

where ¢5 = 2 (max{kq, jar} + (c3 + k)c1) /ca. We conclude from Lemma 3 of (Pan-
teley et al., 2001) that the origin is uniformly exponentially stable.

B.5 Proof of Theorem 3.4

Without loss of generality, we show stability of the positive equilibrium point i.e.,
let eq = eq+ and T, = Te(egy).
The closed-loop equations are

e éq . TeS — Te’yT;req
o [ s } N { I HS(Iw) — ks — k,Tle,} |- (B.30)

Consider the radially unbounded, positive definite Lyapunov function candidate

1 1
V(x) = 5sTJs + §e;/€qeq >0VYs#0, e, #0, (B.31)

which satisfies
V =5'J5+e, ko, (B.32)

By inserting (B.30) into (B.32) we further obtain

V =s"S(Jw)s —s kys—s"k,T e, + e;rques — eqTTe*yquzeq (B.33)
=s"S(Jw)s — s kys — e;rTe’yqu;req (B.34)

and because of the skew-symmetry of S(-) we obtain

V=—s"kys— eqTTe*yqu;req (B.35)



B.6. PROOF OF THEOREM 3.5

which implies using Lemma 3.1, that

V< —sTkys— eT%eq (B.36)

The proof is completed invoking standard Lyapunov theory arguments. From As-
sumption 3.3 we have that 5; < ||J|| < ;. Let

¢ :=1/2min{k,, 5;} (B.37)
c7 = max{ky, 8} (B.38)
cs = min{vk,/8, ky }, (B.39)

then, from (B.31) we have c7 [[[s||? + [[eg]|?] = V(%) > c6 [||s]|* + |leq]|?] and, to-
gether with (B.36) we obtain V < —cg/c;V(x). The result follows recalling that
e, =7T]) e, —s.

The proof for the negative equilibrium follows mutatis mutandis.

B.6 Proof of Theorem 3.5

Without loss of generality, we show stability of the positive equilibrium point i.e.,
let e = €44 and T = Te(egy ).

The control law (3.17), (3.16b) and (3.16d) in closed-loop with the system (2.82)
and (2.83) can be expressed as

{ i ] - { H{Is( ) S_T]esv—TkeiZ? Teg+ 74} (B.40)

By utilizing the Lyapunov function candidate (B.32), we obtain the derivative along
closed-loop trajectories .
V < —x'Qx + ||x]|84 (B.41)

where Q = diag{vk,/8L k,I} which is positive definite. Thus, V < 0 when
Ix|| > 0 = Ba/qm where g, is the smallest eigenvalue of Q, hence the closed-
loop trajectories converge from any ball of initial conditions in the state space to
a ball in close vicinity of the origin of radius § which can be reduced by increasing
the controller gains. Furthermore,

_ P 2
lim R(6)oP I max{kq, 55 }9

P R0) T A 12 min{ky, B} (B.42)

shows that Theorem A.10 is fulfilled, which leads to uniform practical exponential
stability with 6 = [k,, k,]" as tuning parameter.
The proof for the negative equilibrium follows mutatis mutandis.

B.7 Proof of Theorem 3.6

Firstly, we observe that local stability of either equilibrium follows from the proof of
Theorem 3.4, and that the proof of convergence relies on Theorem A.6. Without loss
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of generality, we show stability of the positive equilibrium point i.e., let e, = e,y
and T, = T.(eyy) and define x = [e;, s']T. We apply Theorem A.6 with z = x
hence, let f denote the expression on the right-hand side of (B.30), and consider
the density function p: S2 x R*\{x =0} — R

—Q

1
px) = |5 (egkge +5TIs) | a>2. (B.43)

That is, we have p(x) = V(x)™ where V : S2 x R® — R is defined as in (B.31).
Since V(x) = O(||x]|?) and p is independent of ¢ the integrability condition on p
holds provided that « > 2. It is left to show that

V- (fp)lt,x) >0 Vt>0, a.a. x €S2 x R, (B.44)
As in the first steps of the proof of (Rantzer, 2001, Proposition 1), we have'

V- (fp)=Vp-f+(V-fp
= (V- V" —av-ethyy. f
=Vt (V. )V —aVV - f]. (B.45)

The right-hand side of the previous equality is positive if and only if so is the sum
in brackets. Let us show this. On one hand we have

VV - f=—sTkys —e, Tevk T/ e, (B.46)
On the other?,
[V - fl(t,x) = V(eq) - €4+ V(s) -8, (B.47)
where
V(eq) - &g =V(eg) - (Tes =T T/ ey) (B.48)
& & & &2+
1 _ no—€ & 7 _ iy
_2V(eq) gz ,f] _é‘z S 4V(eq) ﬁgy
—€y € n i
3
=—— B.4
4 (B.49)
Moreover,
V(s)-$=V(s) (I H[STw(t)) — k,Is — k,T)e,}). (B.50)

Then, using w(t) = s + w,(t) we obtain

V(s) 8=V - (JH[SIs) +STw,(t)) — ku,I|s — k, T, e,}) (B.51)

IWe drop the arguments ¢, x for simplicity in the notation.
2With an abuse of notation we split up the gradient and the vector with respect to which the
of(z,y)

function is differentiated hence, we write V(z) - f(z,y) = =5
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and since
V(s)-S(Js)s =0 (B.52)
V(s) - S(Jw,(t))s =0, (B.53)
we see that
V(s)-$ = —3cky, (B.54)

where ¢ := (1/J, +1/J, +1/J.). Therefore,
V- fl(t,x) = —3(% + cky). (B.55)

Using (B.46), (B.55) and (B.31) we see that

(V-f)V=aVV-f]>0
if and only if

(k)T e

+a [sTkws + eqTTefyqueTeq] > 0.
In view of (3.10) we see that the previous inequality holds for sufficiently large
values of « and provided that x # 0 (which correspond to the two equilibria).
According to Theorem A.6 all points in S? x R3 except for a set of measure zero,
generate via (B.30) with T. = T.(e4y), solutions that converge asymptotically to
(eq+,€w) = (0,0). It is evident that the dual equilibrium (e4—,e,) = (0,0) also
generates trajectories a trajectory which does not converge to (eq+,e€,) = (0,0).

B.8 Proof of Theorem 3.7
Without loss of generality, we show stability of the positive equilibrium point i.e.,

let eg = eqy and T, = Te(eqy).
The closed-loop dynamics that results from substituting (3.18) in (2.83) is

o, —J1 [S(Jw)ew — kpefrea T e, — kgehzes e“ew} . (B.56)
Consider the radially unbounded and positive definite Lyapunov function candidate

1 [k
V(X) = 5 |:]§p (elﬁe;req — 1) + eIJew} >0V €y 7é 0, [S79) 7& 0, (BS?)
1

with lower and upper bounds

k
() = 5 min{ .4, x| (B.58)
R(lxl) = 5 max(2, 67} (e~ 1) (8.59)
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where x = [e], e]]T and 3; < ||J|| < B, from Assumption 3.3. The total time
derivative of V(x) along the closed-loop trajectories generated by (3.5) and (B.56)
yields

T
q

1% :kpekle;e‘le;rTeew +e/S(Jw)e,

- eIkpekleqTeq T e, - elkde’”ezew e, (B.60)
Tkl (B61)
< - eIkdew <0. (B.62)

where we have applied that ks > 0 and S(Jw) is skew-symmetric. We conclude
that the equilibrium point (e4,e,) = (0,0) is uniformly stable and the solutions
are uniformly bounded.

For uniform asymptotic stability we invoke Matrosov’s theorem as reproduced
in Theorem A.4. To that end, we introduce the auxiliary function

W(x) = e, TJe, (B.63)

which is continuous and uniformly bounded on compacts of the state. The total
time derivative of W along closed-loop trajectories yields

W =¢, T.Je, + e, T.Je, +e] T.Jé, (B.64)
:eITZTeJew + eqTTeJew
- e;rTe [ (—S(Jw) + kde’”eze“l) e,
+ k,,ekle?eqTZeq] (B.65)

We now verify that W is non-zero definite on the set E = {x € S3 xR V=
0} ={x € 83 xR®:e, =0}. To that end observe that

e, =0 = W= —e;rTekpekleqTe‘lT;re, (B.66)

and by applying Lemma 3.1 we obtain

W< —e, k8p (B.67)

that is, W is non-zero definite on E. Uniform asymptotic stability follows invoking
Matrosov’s theorem.
The proof for the negative equilibrium follows mutatis mutandis.

B.9 Proof of Theorem 3.8

Without loss of generality, we show stability of the positive equilibrium point i.e.,
let e = eq+ and T = Te(egt).
The closed-loop dynamics are obtained by inserting (3.19) into (2.83) such that

6w = 37 (SUw)es, — kyallle )T e — ka(lleu]?)v(eg|2e.).  (B.68)
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A radially unbounded, positive definite Lyapunov function candidate is defined as
1
V(x) =5 [kpé(lleql®) +e)Je,] >0V e, #0, e, #0, (B.69)

where £(||e,||?) is differentiable and belongs to class Ko (cf. (Khalil, 2002)), and
let the LFC be bounded as k(x) < V(z) < k(x), where

5(x) = 5 min{ly, 53} minfe (), <)) (B.70)
) = 5 mactly, 5 max{€(p), )7}, (B7)

with x = [e/, e/]" and 8; < ||J|| < B, from Assumption 3.3. By differentiation

q7 ~w

and insertion of (3.5) and (B.68) we obtain

V = kpé(|leg]|®)el Teew, + e S(Jw)e., (B.72)

- eIprz(HeqHQ)TeTeq - eIkdﬁ(”ew||2)U(||eq||2)ew~

The second term disappears since S(Jw) is skew-symmetric, and by choosing £(r)
such that £(r) = a(r) we obtain

V = —ejkap(lles]?)v(lleq]*)e. (B.73)
< — el kav(|leg|®)e.. (B.74)

Since e] e, = (1 — )2 + & &=2(1 —7j) < 2 for 77 > 0 we have that
V < —elkqv(4)e,, (B.75)
which renders the equilibrium point (eq,e,) = (0,0) uniformly stable according

to standard Lyapunov theorems (c¢f. (Khalil, 2002)). We then apply Matrosovs
theorem using an auxiliary function

W(x) :=e, T.Je, (B.76)
which has a corresponding derivative
W =e¢) T.Je, +e) T.Je, +e, T.Jé, (B.77)
—e T/ T.Je, +¢] (%[ﬁl +8(e)] - il) Je,
—e]T, [( — S(Iw) + kpa([leq|) T e,
+ kaB(llew]?)v(leq )T e (B.78)

Intheset E = {x €S2 xR¥:V =0} ={xe S xR?:e, =0}, (B.78) is
reduced to

W = —e] Tckya(|leq]|*)T{ e, (B.79)
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By applying Lemma 3.1 and the fact that a(||x/|?) > 1 for all x € R", we obtain

- k
W< —engpeq, (B.80)

that is, W is non-zero definite on E. Uniform asymptotic stability follows invoking
Matrosov’s theorem.
The proof for the negative equilibrium follows mutatis mutandis.

B.10 Proof of Theorem 3.9

Without loss of generality, we show stability of the positive equilibrium point i.e.,
let eg = eq+ and T, = Te(eqy).
By inserting the control law (3.20) into (2.83) we obtain the closed-loop dynam-
ics
é,=J" (S(Jw)ew - kpekle;e‘lT;req — kgekeleve, + TZ) . (B.81)

The total time derivative of V(x) defined in (B.57) along the closed-loop trajectories
generated by (3.5) and (B.81) yields

V < —elkqe,, + Ballew]|. (B.82)

Let 6 := f4/kq. From the expression above, we have V < 0 if |le,|| > 6. Since V(x)
is positive definite and proper we obtain that ||e,(t)|| is bounded that is, for any
r > 0 there exists A(r) > 0 such that sup,, [le.(t)|| < A for all initial conditions
[x(to)ll <7, t0 = 0.

For any A, let A(A) > 0 be a constant to be determined. Consider the Lyapunov
function candidate

YV :=V(x)+ \W(x), (B.83)

which is positive definite and proper for A <1 with W (x) as defined in (B.63). Its
total time derivative along the closed-loop trajectories yields

Y= — elkdemze“ew + Ballews| + /\ewTZTeJew
+de] TeJew + Ae] T, [S(Jw) — kae™ 1] e,
—e] Tokyekie T e, + Aalle] T, (B.84)

and by applying Lemma 3.2, we obtain

. A
Y <— el—kdesze“ew + 48 [711+ S(€)] ey

+e] T, [S(Jw) — kger2eeo-1] e,
— el T kyekie e e, + 284)x| (B.85)
= — x"Px + 284|)x/, (B.86)
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where we defined P := [p;;], 4,5 = 1,2 with

p11 = ATckyehiea e (B.87)
A
P12 = Py = §T8 L S(Jw)}
A -
Doy = kaek2eo o — 1[7]1 +S(e)]J

Notice that for any [le,| < A and [Jwy| < B, from Assumption 3.2 which hold
under the arguments made so far, the angular velocities w = e, + wy satisfy the
bound |w| < A + B., := A, and therefore, |S(Jw)| < BsA. Next, we use
2]ab| < a® + b? for any a,b € R to obtain

x " Px > (p11,m — prz.v)llegl? + (p22,m — pr2,0)l€w|? (B.88)

where p;; ., and p;; ar denote lower and upper bounds on the induced norms of the
sub-blocks p;; of P respectively. Hence, ensuring

Dit,m = 2D12,M , DP22,m 2> 2D12,M, (B.89)

results in

xTPx > o (prismllegl® + pazmlleu]?) (B.90)

DN =

To fulfill (B.89) we need to choose

4ky
A< — .
BIA + kqek2A* + 55
ky > 2 [@,A + kg2 (B.91)
Thus,
V < —plx|I* + 2841, (B.92)

where p,, > 0 is a uniform lower bound on the smallest eigenvalue of P(-). The
derivative V < 0 for all states such that ||x|| > ¢’ := 284/pm. Note that p,,
depends on the controller gains monotonically hence the closed-loop trajectories
system converge from any ball of initial conditions in the state space to a ball
in close vicinity of the origin, of radius §’. Moreover, the latter may be reduced
at will by increasing the control gains. We conclude that the equilibrium point
(eq,€w) — (0,0) is uniformly practically asymptotically stable.

Note that using the triangulation in (B.88) is conservative leading to bounds
on the controller gains. If we instead apply Lemma 3.1 on (B.85), p11 in (B.87) is
expressed as

A
pi1 = Qe (B.93)
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which indeed is positive definite since A, k, > 0. Now, we apply Schurs compliment
(Horn and Johnson, 1985) and require that

P22 =P12P11 P12

A A .
— S+ 8@ >—§[kdek29w eI+ S(Jw)|T) (B.94)
8 A T
S A [N
Nepehieq e 2 [kde S(J“’)}
T A 2
kgeq qu i Al ~
kae - {[n ST+ Py
X {kdekzelewl - S(Jw)] {kdekwlewl - S(Jw)] } (B.95)

B A ~ ~ 2 2 2kse e, 2
_Z {[771 + S(G)]J + m [kde 2 + S (JUJ):| N (B96)
and by taking the norm on each side of (B.96), (B.94) is fulfilled if we choose

4kq

A< —.
B+ & (k3" + 33A2)

(B.97)

and by following the same lines as above, we obtain similar stability results without
restricting the gains since A is a design parameter.
The proof for the negative equilibrium follows mutatis mutandis.

B.11 Proof of Theorem 3.10

We start by considering the positive equilibrium point such that e, = e,y and
T. = Tc(eq+). By inserting the control law (3.21) into (2.83) we obtain the closed-
loop dynamics

6, =31 (S(Jw)ew — kya(lleg]?)T e, (B.98)
— kaB(lealv(lles|2e. +74). (B.99)

The total time derivative of V' (x) defined in (B.69) along the closed-loop trajectories
generated by (3.5) and (B.98) yields

V < —e kqv(d)ew + Ballew]. (B.100)

Accordingly, V < 0 for |ley|| > Ba/(kqv(4)) := d, and as B4 increases, it can be
counteracted by increasing the controller gain kg, or in other words: given any §
and f34, choosing kg > Ba/(6v(4)) secures that V(x) < 0 until |le,|| < & such that
the state is secured within the open ball Bs. Since V is positive definite and proper
we obtain that ||e,(t)|| is bounded that is, for any r > 0 there exists A(r) > 0 such
that sup;>,, [|e.(t)[] < A for all initial conditions [x(to)|| < 7, to > 0. For any A,
let A(A) > 0 be a constant to be determined. Consider the LFC

V(x) =V (x) + AW (x) (B.101)
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where W (x) is defined in (B.76). By differentiation along closed-loop trajectories,
we obtain

i’::_'ezkdﬂ(”ew”)v(”eqn2)ew + Ballew ||
+ )\esz—TeJew + /\e;rTeJew
+ ey Te (S(Jw) — kaB(llew|*)u(lleqgl*)T) ew
- )\e;rTekpa(HeqHQ)T;req + /\BdHeqTTeH. (B.102)
By inserting T.e, = G(q)e,, where G(q) = 1/2[7I + S(€)] — I/4, and notice that
ITIT. | = 1/4 and e, T, | < [legll, we obtain
. A -
V < —egkaB(lles]*)v(lleq]*)ew+ S eulil + S(€)lJe.,
+Xeg Te (S(Jw) — kaB(llewl*)v(lleq]*)T) e
el Tekpallleq 2T e + 28| (B.103)
= — x"Px + 2834|x/, (B.104)

for A <1, and where P = [p;;], ¢,j = 1,2 with

b = KaBlleu )|V~ 5 41 + S(&)]3

A
P12 = Qg = 5 Te [=S(Iw) + kaB([lew*)v([leq]*)T]
paz = AT kya(le,]|?) T, . (B.105)

Since w = e, +wq, and both ||e,|| < A and [|wy|| < B, are bounded, we conclude
that there exists a bound |lw|| < ((A, 5,,) and thus ||S(Jw)|| < ((A, B,,). To find
a quadratic upper-bound on —x'Px we use 2|ab| < a® + b? for any a,b € R to
obtain

x"Px > (prim — P12 lleg? + (p2zim — prz.a)llew|® (B.106)

where p;;, and p;;ar denotes lower and upper bounds on the induced norms of
the submatrices q;;, respectively, to ensure that

DPil,m =>2P12,M
P22,m >2p12,M, (B.107)

resulting in
1
X Px 2 ) (primlleqll® + pozamlleu]?) (B.108)

To fulfill (B.107) we need to choose
2kqv(4)
T (A, Ba) + kaB(A2) + By
kp > 2 |C(A, Ba) + kaB(A?) ] (B.109)
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and hence

V < —puIx[I* + 2841, (B.110)

where p,, is the smallest eigenvalue of P. Accordingly, V < 0 when ||x|| > §' =:
284/ pm, thus increasing the controller gains will ensure that the states of the closed-
loop system will converge from any allowed initial conditions to a ball in close
vicinity of the origin, and this ball can be diminished arbitrarily by increasing the
controller gains, and thus conclude that the equilibrium point (eq4, e.) — (0,0) is
UPAS.

The proof for the negative equilibrium follows mutatis mutandis.

B.12 Proof of Theorem 3.11

Without loss of generality, we show stability of the positive equilibrium point i.e.,
let eg = eq+ and T, = Te(eqy).
We start by calculating the error dynamics. We have

ey :w?’b—w?’d (B.111)
by =W, — Wl g, (B.112)
and by inserting (2.83)and (3.24) we obtain

&, = Jfl[—S(wi,b)szb + 7o+ T4l + S(wf’b)wf’d - Rfcbid. (B.113)
Then, we insert the control law (3.27) and observe that S(w? , )w
—S(wf’d)(ew + wf’d) = —S(wf’d)ew to obtain
b =3 S(Iwl )t + Jag — STl )l — kyeh1e ST e,
- kde_’”e;eqwg’e +74] — Rfcb;d - S(wf’d)ew. (B.114)

b b b b b b b
Next, we use w;, = ey, +wj 4, Wi, =W, —€cy and wy ., = wg, +wp . = €y, — €y
to obtain

€u :J_l[S(szb)(ew + w?,d) - S(J[w?,b - eew])w?,d
- kpekle;e‘lTZeq — kgek2%q e (6w — €cw) — JS(de)ew +74  (B.115)
=J 7 S(Jw! e + S(Tew)wl 4 — kpef1oa T e,

- kde*kze;eq (ew — €ew) — JS(wf7d)ew + T4 (B.116)

For the estimator dynamics we have

e =Wy —wh, (B.117)
e = W)y — W), (B.118)
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and by inserting (2.83) and the derivative of (3.29) we obtain

e =J 1 [-S(w?)Iwly + T+ Td] — 2 (B.119)
=237 g[T ] ecq + T eq]-
Furthermore, we insert (3.27) and (3.28), obtaining
e, =3 [S(Iw! w?y + Jag — S(Jw Jw? 4 — kpekleqT%TeTeq
— kdesze;e‘lnge + 74 —ag — Jfl[lpek"’e;e"‘qT;eeq — kpekle;e‘szeq]
= J—ll—d[ne,bl + S(ecp)]ecw (B.120)

2
:Jil{S(Jw?,b)(ew + "-’Ii),d) - S(J[wi,b - eew])w?,d +Ta

l
— kge M0 (e, — eg) — ettt T ey — id[ne,bl + S(ecp)lecwt
= HS(Jw! ) )ew, — kae 2% Se,, + S(Jew, )w!  + ke 2% ey,
!
- g[ne,bl +S(eep)lecs — lpeteaa T ecy + 74}, (B.121)

Hence, the error dynamics can be written on state space form x = f({,x), x =

[e] . e, ely, el,]T, with
T.e,
_| e
feo=| gl o] (B.122)
I
where
€1 =S(Jw!, ey, + S(Jew)w! ; — kye" %0 T e, (B.123)
— kde*’”e;eq (ew — €ew) — JS(wZ’d)wf’d + T4,
and
& :S(szb)ew — kde_erqTeqew + S(Jeew)wgd (B.124)

—koe!
+ kde 2% eqeew - ld[ne,b + S(ee,b)]eew
T
T
— I, ekaeeq®en T, y€eq + T

The rest of the proof consists in showing that the conditions of Theorem A.8
hold?. Let Assumptions 3.2, 3.3 and 3.4 generate positive real numbers 3;, 8,

Ba, Bup > Bup, such that B; < |IJ]| < By, [75(t)ll < Ba, lw? 4] < e, and
1662 4(B)]] < By, for all £ > to > 0.

3That is, with the obvious modifications. Strictly speaking, we cannot show that the conditions
of A.8 (which is tailored for systems defined on R™) hold for arbitrarily large initial conditions in
view of the topology of S2 and Sg’q.
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Consider the Lyapunov function candidate

V(x) = V(x)+AW(x)
1r/k
Ve = [t - 1) welde.
l
+(x kgeeqeeq_l —|—e;Jeew
(petion =1) oLt
W(x) = elT.Je,+e] Todec,

(B.125a)
(B.125b)

(B.125¢)

which is positive definite and proper, as we show next. We want to find functions
a(x), a(x) € K such that a(x) < V(x) < a(x). For the upper bound function we

write

k1 ks

kp
= max{— = 25J,4)\5J} (emmetiuhat ot 1 4 ?)

ki ks’

We want to find a constant cg such that e®!*I” —1 > ||x||2 that is,

1 241
s sup BOEIP+D)

=1
xerta |||

which in turn, leads us to define

a(x) = ey (eI 1)),

(B.127)

(B.128)

where c¢19 := 2max{ky,/k1,l,/ks,285,425;} and c11 := max{ki, k3,1}. Now we

find a quadratic lower bound on V(x). For this we remark that

ke e T
(e 1€q Q—l) zkleqeq,

which can be seen recalling that
o0
"
=2 !
s n!

kselseca _ 1 hence we define

Similarly for e
a(x) = X px

where p,,, > 0 is the smallest eigenvalue of

kI~ AT.J 0 0

p._1 AT, g 0 0
T2 0 0 LI AT Jd

0 o AT, J
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Next, we evaluate the total time derivative of V(x) along the closed-loop tra-
jectories. To that end, we first compute the derivative of V(x). We have

V=- kde_kw;e‘IeIew + eIS(Jeew)wgd (B.133)
- ewJS(wg,d)w?,d + eeTwS(JwS,b)ew
+ eewS(Jeew)w?)d - (ldne,b - kde_l%e;eq) eeTweew
+ (eI + e;) Td.
Since the matrix S(-) is linear in its arguments, we have (Caccavale and Villani,
1999)
[S(Ja)b|| < Bsllall|b]|. (B.134)

By applying (B.134), Young’s inequality (Young, 1912) and Assumptions 3.2 and
3.3 we have

1
efS(ew)wly <5 BB (lewll” + llecs®) (B.135)
ewJS(wg,d)w?,d §5Jﬁwbd||ew||2 (B.136)
1
e, Swiy)ew <5 Br(llewl” + lecul”) (lewll + Bp ) (B.137)
eewS(Jeew)w?)d gﬁJ,ng,d||eew||2. (B.138)

Inserting the bounds (B.135)—(B.138) into (B.133), and applying the fact that
eqTeq < 2 for 7 > 0 we obtain

V < —o(ka llewlDllew ] = (ka, la lewDllecl® + 2Ba(llewl + llecl),  (B.139)

¢(l€d7 ||ew||)

1
Ykalasllewll) = lady —ka = 5 B1(2Buy , + llewll) (B.140b)

Rae™ = By (68,5, + eull) (B.140a)

That is, V is negative semi-definite for bounded values of e,, and sufficiently large
gains. Hence, the total time derivative of V along the closed-loop trajectories yields?

V<= —xTQ(!,)x + 264x] (B.141)

4Clearly, Q depends on other variables besides wi? , however, only the dependence on the latter

. . . . 2 .
is made explicit for further use and to avoid a cumbersome notation.
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where Q := [q;5], 4,j =1,2,3,4 with

air = ATckyekre T (B.142)
Q2 = dg, = %TE [kde—’%e?eql —S(Jwly) - JS(wgd)} (B.143)
Qi3 =q3, =0 (B.144)
Q4 =qf; = %Te [S(w’i,d)J - kde*’“zegeql} (B.145)
22 = ¢(ka, [lew|]) — % [71+S(e)]J (B.146)
Q23 = Q3 = % [kde*’”e?eq — S(Jw’;b)} T, (B.147)
Qo1 =qp =0 (B.148)
Qa3 = ATeglyetsecaces ] (B.149)

)\ — eTe
q3s = qI3 = §Teq{S(w§”d)J +la [MepI + S(ee )] — kae kaeq qI} (B.150)

é[%,bl + S(€ep)|J. (B.151)

Qa4 = w(kdvlda ||ew||) - 9

We then apply Lemma 3.1 and a similar reasoning is used for e.,. We conclude that
there exist lower and upper bounds g;j,,» and g;;,ar on the norms of the sub-blocks
q;; of Q respectively.

Next, we apply 2|ab| < a? + b? for any a,b € R to obtain

X' Qx >(qi1,m — qiz,m — Qi3 vr — qra,n) el (B.152)
+ (g22,m — G21,M — Q23,M1 — q24,M)||ew||2
+ (q33,m — q31,M — G320 — q34,0)||€cq|?

+ (qua,m — Qa1,m — Qu2,00 — q43,M)||eew||2

so, for sufficiently large g;;m, we have

x'Qx > (@11,mlleql? + gaz,mllewll® + aszmllecq||® + qaam|lecw ). (B.153)

DN | =

Now, for any given A, let e, < A,. Hence wbb =e, +w’ i.q satisfies lwb Wl <A

with A=A, + ,8 v . It follows that (B.153) holds if, deﬁnlng
ky =284, (B.154)
b =2 [B(A+ B )+ (B.155)

we impose ky >k, [, > I3, and

A\ < mi ¢(kdvAw) w(kd,ld,Aw)
< min 1 , I ;1 5.
ka+3Br(1+28+ B ) ka+58:(1+2B  +la)
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Thus, )
V < —qullx||* + 284x], (B.156)

where ¢, (A) > 0 is a lower bound on the smallest eigenvalue of Q(A). The
derivative V(x) < 0 for all x € H == {x € 2, x R® x S% x R%:4 < [x|| < A},
where § := 284/qm.

According to (Chaillet and Loria, 2008, Theorem 10) we verify the growth con-
ditions on "' o@(s) and @ ! oa(s). Given any positive constants 6*, A* such that
0* < A*, there exist control gains generating 0 < § < A such that

ol ow(s) = \/C“’(A) (;C1152 —1 5 (B.157)

This holds because § decreases while ¢19 and p,, increase monotonically with the
gains, and ¢ is independent of §, ¢1p and p,,. On the other hand, A, ¢19 and p,,
may be increased with the control gains to satisfy

(B.158)

We invoke (Chaillet and Loria, 2008, Theorem 10) to conclude that the equilib-
rium point (eq, €y, €cq, €cww) = (0,0,0,0) of the closed loop system is uniformly
practically asymptotically stable.

The proof for the negative equilibrium (eq,_, ey, €eq,€cy) = (0,0,0,0) follows
mutatis mutandis.

B.13 Proof of Theorem 3.12

Without loss of generality let e, = e,1, T. = Te(eqy), andx :=[e,, €, €., €.,
The error dynamics takes the form %x = f(¢,x) from (B.122) (B.124), and the rest
of the proof consists in showing that the conditions of (Chaillet and Loria, 2008,
Theorem 10) hold restricted to the domain of interest.

Let Assumptions 3.2, 3.3 and 3.4 generate positive real numbers 3;, 87, B4, B, I’
b '
Byp, such that B; < [T < By, lTg@)]] < Ba, w? g < Bee, and [l& 4(t)]] <
,sz;d for all t > tg > 0. Given any 6, d,, a and b let them generate a set R as in
the statement and consider the Lyapunov function candidate V: R — R,

V(x) = V(x)+ \W(x) where (B.159a)
1 kp kie!e T
= S|(2eMeae - B.1
V(x) 5 Kkle ¢ 1) +e,Je, (B.159b)
lP kseT €cq T
—|—<kf36 e — 1) —i—eewJeew}
W(x) = e]TJe,+el,TeJec,, (B.159¢)

where we find functions a,a@ € K such that a(x) < V(x) < @(x) according
to (B.131) and (B.131). Now we evaluate the total time derivative of V' along

T T T T ]T.
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the closed-loop trajectories obtaining (B.133). Furthermore, by applying (B.135)—
(B.138) we obtain (B.139)—(B.140), and we see that ¢ and 1 are positive definite
for all |ley|| € [0,a) and 7 > 0,. Further direct computations show that the
total time derivative of V along the closed-loop trajectories yields (B.141) with
Q = [ai;], i, =1,2,3,4 as in (B.142) (B.151). We claim that there exist lower
and upper bounds ¢;5,,» and g;; pr on the norms of each sub-block q;; of Q. This
follows under Assumptions 3.2 and 3.3, for all x € R and in view of Lemma 3.1
stating that

1
e;rTeT;req > ge;eq, (B.160)

which is implied by the quaternion constraint, and |le,|| € [0,a) and Assumption
3.2 imply that w}, = e, +w} ; satisfies [lw || < A with A := A, +4, . Therefore,

the claim follows by applying the triangle inequality on each cross term kaqlv,jxl
for all suitable indexes. Next, define

kp =2jm A, (B.161)
Ly =2 |jm(A+ B ) +la| s (B.162)
let ky > ky, 1, > 15,
A<mind o Otw ) ’ lkalad)
ka+ 5im(L+ 208+ B ) ka+ 5im(1+ 2B+ la)

and let g, (A) > 0 be a lower bound on the smallest eigenvalue of Q(A). It follows
that

V < —gmllx||? + 284]x| (B.163)

hence, provided that g, > 284/ we have V < 0 for all x € RNH where # := {x €
53, xR3x 83 xR*: 6 < ||x| <A}

The growth conditions can be verified to hold as in (B.157) (B.158) and thus,
the statement follows from (Chaillet and Loria, 2008, Theorem 10) by restricting the
domain of attraction. The proof for the negative equilibrium (e,—, €, €eq; €cw) =
(0,0,0,0) follows mutatis mutandis.

B.14 Proof of Lemma 4.1

We have that

hlele = -e'e, (B.164)

I

1
e,TthT;ehq = Z

since h? = (+£1)2 =1 for all h € H. Also, in view of (4.1) we have

1
((1 — hij)? + ETE) = Selen (B.165)

0| =
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and by inserting (B.164) and (B.165) into (4.4) we obtain

1 1
16> g ((1 — i) + ETE) (B.166)
e'e>1—hi (B.167)
1>e'e, (B.168)

which holds for all g € S3 because of the quaternion constraint €& = 1 — 772, and
thus the Lemma is proved.

B.15 Proof of Lemma 4.2

By multiplication we find that

T (eng)eng = %hé (B.169)
and by differentiation of both sides and rearranging the terms, we obtain
T (eng)en = %hé — T (eng)éna, (B.170)
since b = 0 between jumps. From (B.30) we have that
é= LT +S(@)s —7T] eng, (B.171)
thus obtaining
T (eng)eny = i (L[l +S(&)e, — T} [s - ;me] (B.172)

where we find by multiplication that T} (en,)Th(eny) = 1/41 because h? = 1 for
all h € H, which concludes the proof.

B.16 Proof of Theorem 4.1

First we define the Lyapunov function candidate as

V(x) := % (e;qkpehq + eIJew) , (B.173)
and note that e en, = 2(1 — hij), V(x € {S; x R® x H}\{0,0} x H) > 0 and
V({0,0} x H) = 0. Also note that V is a function of x, which includes h. However,
during flows h is constant and may be regarded as a parameter in the expres-
sion (B.173). Hence, V(x) is proper and positive definite on the projected set
Projgs s A = {x € S xR3: (eng,€w) = (0,0)} and qualifies as a Lyapunov func-
tion candidate. Its derivative along the closed-loop trajectories of (2.83), (4.2)-(4.3)
with the hybrid controller (4.9) and (4.11) yields

14 :e;qkahew +e} [S(Jw)e, —k,T) eng — kaew] (B.174)
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V(x) also satisfies the difference equation

V(G(x)) = V(x) :%k;v [+ hap, €l® = (I — R, €]]1?]

= 2Nk}

(B.176)
(B.177)

so by defining the flow and jump sets as in (4.10) we ensure that V(G(x)) —V(x) <

—20 when x € D i.e., V(x(t)) is strictly decreasing over jumps. Hence,

V<0 Vxel
V(Gx))-V(x) <0 Vx €D,

(B.178)
(B.179)

and therefore the set A is uniformly stable in the large on the set S; x R3. The
rest of the proof invokes Matrosov’s theorem for hybrid systems —¢f. (Sanfelice and

Teel, 2008). To that end, define

and consider the auxiliary function

W(x) := e;thJew .

We have
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1
2

DN | =

DN | =

(1 + hif) (—héy) + &) + €yéx — E:8,
(1 + hp)(

—hé, —hé, —hé.

Vx e C
otherwise
Vxe D
otherwise
-
—é, €y 3
N J e
n —€g v
€ 7
- O
héy,  he,
—€, &
i Jey
€ 7

T

y) — €€+ EN+E6 | Tey

(1 + hit)(—heé,) + €x€y — €€y + TE,

(1 = hi)héy + Exi] + EyEs — €28y
(1 — hij)hé, — éxé. + &yij + &6 | ey,
(1= hi))he, + Exéy — 0y + TiE

[héy — h2ije, + Exil
hé, — h2ijE, + iié,
| hé, — B2, + ije.

T

[—hé, — h2ije, +iiea] |
—hé, — h%ie, + &y | Tew
| —hé. — h2ije. + fie

T

Jey,

(B.180a)

(B.180b)

(B.181)

(B.182)

(B.183)

(B.184)
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hence, since h? =1
W(G(x)) —W(x) = —hé'Je,, (B.185)

and
e, =0 = W(GEKx)-W(x)=0. (B.186)

On the other hand, its time derivative along the system’s flows yields

e, =0= W =¢] TyJe, +e] Trle, + e TrJe, (B.187)
—e/ T T)Je, +e! G/ Je, (B.188)

- e;th [ (—S(Jw) + k) e, + qu;ehq}
= — e, Tk, T enq, (B.189)

where Corollary 4.2 was applied, and by also applying Lemma 4.1 we obtain
i T kp
W < ~€ngg €ha: (B.190)

that is, W is sign-definite on the set {x € S} x R?: e, = 0} N C. Thus, the set A
is uniformly asymptotically stable in the large on the set S} x R3.

B.17 Proof of Theorem 4.2

We use the Lyapunov function

1
V(x) = 5 (s Isn + eg kqenq), (B.191)

which is positive definite and proper according to what was discussed in the be-
ginning of Proof of Theorem 4.1. The total time derivative along the closed-loop
flow trajectories that is generated by (2.83), (4.2)-(4.3) and (4.15), yields (under
the quaternion constraint)

V =s] S(Jw)sy — sj| kuSh — sj kg T) €ng + e;qquhsh — e;qquth,Tehq (B.192)

= — s ky,Sp — ezqquh*yT;ehq, (B.193)
and by invoking Lemma 4.1, we obtain
V< —skash - e;q%kqehq. (B.194)
Now, we evaluate V(G(x)) — V(x). We have
[(ew + 1T e_ng) " T(ew + 7T e pg) + el ) kge ng]  (B.195)

[(ew + WT;ehq)TJ(ew + szehq) + e;qkqehq] (B.196)
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Note that T} en, = 1/2h€ and that e,—l—qehq = (1— hi)? + €&, and by inserting the

unit quaternion constraint 72 + € '€ = 1 we have that e;qehq = 2(1 — hn). Hence,

2V (G(x)) =e) Je, +v(—h)E e, + iﬂ—h)%ﬁa + 2ky[1 — (—h)7]  (B.197)

2V (x) =e Je, + yhé e, + ivthETJé + 2k, [1 — hij], (B.198)

and therefore
V(G(x)) = V(x) = 2h|ks7 — %WETJew , (B.199)
which in view of (4.17b), implies V(G (x)) — V(x) < —20 < 0 when x € D. Thus,

V < —cs/crV(x) Vx e C (B.200)
V(Gx)-V(x)<0 Vx € D,

where ¢7 and cg were given in Appendix B.5. Since the projection Projsixks/l =
{x € S} x R?: (enq,sn) = (0,0)}, according to (Sanfelice et al., 2007, Corollary
7.7) we conclude that the set A is asymptotically stable with basin of attraction
Ba = C U D, thus uniform asymptotic stability in the large on the set S} x R3
follows.

B.18 Proof of Theorem 4.3

The error dynamics can be derived similar to what was shown in the proof of
Theorem 3.11 written on state space form x = f(¢,x) with

Thew
J G
f(t,x) = | Teglew |, (B.201)
J e
0
where
& =S(Jwh e, + S(Jew)w! ; — kpT) eng (B.202)
— kale, — €cw) — JS(wf,d)ew + 74,
and
& =S(Jw? e, — kaey, + S(Jecw)w! 4 (B.203)
l
+ kdeew - _d[ne,b + S(ee,b)]eew

2
— lpT;rqeeq +Tq-

The rest of the proof is split into two parts. Firstly we use a Lyapunov function
to analyze the behaviour during flows and we show that the set Ajs attracts all
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trajectories generated by the flow dynamics, starting in Aa. Secondly, we show
that the change in the Lyapunov function is negative over jumps.
Consider the Lyapunov function candidate

V(x) :

S~—
I

V(%) + AW (x), (B.204)

=
x
|

1
=3 [e;qkpehq + eIJew + e;lpeeq + e;Jeew} ,

W(x) := e, TrJe, + e/, Teqlec,

which is positive definite and proper according to what was discussed in the be-
ginning of the proof of Theorem 4.1, and lower and upper bounded such that
a(x) < V(x) < a(x) where the functions a(x), @(x) are of class Koo defined as

a(x) =X pmX (B.205)
a(x) ==xpux. (B.206)

where x = [e;q,eT el .el |T and p,, < ||P| < par are the smallest and largest

w Yeqr Yew
eigenvalues of

kI AT,J 0 0

1| AJT) J 0 0
P.= 0 o LI AT | (B.207)

0 o NT, J

respectively. Indeed, P is positive definite if the Schur complements corresponding
to its two 6 x 6 diagonal sub-blocks are positive that is, if

kI = AT.JT.
LI = NTJT],.

In view of Assumption 3.3 and the fact that T, and T., are bounded (due to the

quaternion constraint) the inequalities above hold for A < 2y/min{l,, k,}/jnm =: k.

Next, we evaluate the total time derivative of V(x) along the closed-loop tra-
jectories. To that end, we first compute the derivative of V(x). We have

V=— kdel—ew + eIS(Jeew)wi’,d - eIJS(wf’d)ew + eZwS(wa’b)ew (B.208)

l
+e.,S(Jec)w! 4 — (;ne,b - kd) €lnlew + (e} +el,) Ta

Since the matrix S(-) is linear in its arguments, we have (Caccavale and Villani,
1999)

[S(Ja)b|| < B;|all|[b]. (B.209)

By applying (B.209), Young’s inequality (Young, 1912)and Assumptions 3.2 3.3 we
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have that
1
eIS(Jeew)wli),d §§5J5wfyd(||ew||2 + ||eew||2) (B.210)
e, IS(w? g)e. SﬁJﬁw;dHesz (B.211)
1
el.S(Jw!, e, §§ﬁJ(”ew”2 + lecwl?) (llewl + Bt ) (B.212)
ec.S(Jecw)wiq <Py e (B.213)

Inserting the bounds (B.210)—(B.213) into (B.208), we obtain

V < —o(ka, lewlDllew ) — v (ka, la, lewlDllec|® + (e +el,) 7o, (B.214)

where

d(ka, lles|) = ka— %5] (45% + ||ew||) , (B.215a)

la

1
Ylhalalleol) = Snes—ha— 558, + lleul).  (B215b)

In view of (4.33), (4.35) we have 7.5 > J, hence, ¥(-) may be made positive for

sufficiently large 4. Tt follows that V' is negative semi-definite for bounded values
of e,.

Next, we find the total time derivative of V(x) along the closed-loop trajectories,
starting with the total time derivative of W (x) along the closed-loop trajectories
yielding

W =é, T.Je, +e, T.Je, +e, T.Jé, (B.216)
+ e, TegJew, + e/ Tegdec, + el TegJée,
=e, h/A[L + S(€)le, + e, TS(Jw! e,
+ eqTTES(Jew)wf’d - e;rTeka;req
- eqTTekd(ew — €cw) — e;rTeJS(wfﬁd)ew + eqTTer
+el, /Anes + S(we,p)|Jecw + e;queqS(wa,b)ew
— e;Teqkdew + e;TeqS(Jem)wfd
+ e;Teqkdeew - e;Teqld/2[n€,bI + S(€ep)|€cw
— eZqTeqlpT;rqeeq + el—qTequ, (B.217)

and by inserting (B.214) and (B.217) into (B.204), we obtain

V<= —x"Qw!y)x + 284l (B.218)
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where Q(w?,) = [qi;], 4,j =1,2,3,4 with

Qi1 =ATyk, T, (B.219a)
a2 =qg; = %Th [kdl - S(Jw?l,) + JS(wf,d)} (B.219b)
Qi3 =q3, =0 (B.219¢)
qu =qj, = %Th [S(w? )T — k] (B.219d)
a2 =0k e )T~ AT (B.219¢)
Q23 =q3p = % [kal — S(Jw? ;)] T/, (B.219f)
Q24 =qy = 0 (B.219g)
ass =ATel, T/, (B.219h)
Q34 =q 3 = %Teq [S(w?,d)J + %d eI + S(ecp)] — kal (B.219i)
Qus =t (ka, L, |ew|)T — )&J. (B.219))

We invoke Lemma 4.1 and 3.1 on (B.219a) and (B.219h), respectively, noting that
the latter is guaranteed by the switching logic since 1. ,(t) > d,, € (0,1) V ¢ > to.
Therefore, for all e, such that ||ey| < A there exist lower and upper bounds
gij,m and g;; v on the norms of the sub-blocks q;; of Q. Next, we want to find a
quadratic upper-bound on —x " Qx, and apply 2|ab| < a® + b2 for any a,b € R on
the eigenvalues of the normed system to obtain

X Qx >(q11,m — @12, — Q13,00 — qra,01) || €] (B.220)
+ (qu,m —q21,M — q23,M — (]24,1\/1)||ew||2
+ (g33,m — a31,0 — @320 — q34,01) ||€eq |

+ (Q44,m — qa1,M — q42,M — q43,M)||eew||2

so, if
Quim > 2(qi2,m + Qi3m0 + qranr) (B.221a)
@2,m > 2(g21,m + G23,m + G2a,01) (B.221b)
@33m > 2(g31,m + g32,m + q34.01) (B.221c)
Qaam > 2(qar, v + a2, + Qaz, ) (B.221d)
then
1
x'Qx > §(qn,m||ehq||2 + q22.mlew
+ @33, l€cql|® + qaa,m l€cw]?)- (B.222)
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Tt follows that (B.222) holds that is, Q is positive definite if, defining

K = 500ty +A)
kp = Jm(A+20 )
lq = [2ka+ 8546, + A)]/oy (B.223)
la
2
lq

Z Jm(B+ B )+ 5 ep,

= (A + Buv )+ (B.224)

we choose the gains such that kq > kj, kp > ky, la > 13, 1, > l;, and
A <min{ — #lks, 2) :
1 + 2ka+ g (28 + By )
Wk, las A) }

$im + 2By Jm Lok,

Thus, .
V(x) < —amlIx|I* + 284l1xII; (B.225)
where ¢, (A) > 0 is a lower bound on the smallest eigenvalue of Q(A). The

derivative V < 0 for all x € H := {x € S} x R® x S3 x R¥ x H : § < ||x| < A},
where

0 :=284/qm. (B.226)

Given any positive constants *, A* such that 6* < A*, we have that there exists
A > 0 > 0 such that

2 2
ot oa(d) = \/pM(5 = \/4prd < 0%, (B.227)
Pm PmAm
and
pmA2
a toa(A) = > A (B.228)
Pm

We see from (B.227) that given any 0* we can increase the controller gains such that
the inequality is fulfilled; similarly for (B.228). Hence, all conditions of (Chaillet and
Loria, 2008, Theorem 10) hold; this implies that the set A attracts all trajectories
generated by the flow dynamics, starting in the set Aa.

Next, we have to ensure that the Lyapunov function decreases over jumps (cf.
(Goebel et al., 2009)), such that

V(G (x)) — V(x) <0 (B.229)
V(Ga(x)) — V(x) <O0. (B.230)
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To that end we first see that

V(G1(x)) — V(x) = 2hk, (n - iAETJeLO , (B.231)

hence, in view of (4.34) the inequality (B.229) holds. We have that

V(Ga(x)) — V(x) :% [ (wh), — z)—r J (b, —2z) - lpe;eeq (B.232)
T

— (wfb — w?)e) J (wfb —w? ) ] — /\elzTqu (wf’b —w? )

=% [ (wh, —2)" T (Wl —2) — lel e (B.233)
— (wljb —z— 2JflldT;eeq)—r J (w?)b —z— 2J*11dT;eeq) }
— e Te,Jd (wf’b —z— 2J*11dT§qeeq) ,

where e, = w?, —w?  and (4.31) was inserted, and the fact that T/ e, = 0 for
xT € Dy which implies that e, = wli”b —z. For (B.230) to hold according to (4.35)

we require that

Ipelyecq + 436 Ted T ey >dlgwy T] ecq — 4laz' T/ 00y — 2w IT e

+2Xz"IT/ ecq + AN ge Ty T ecq. (B.234)

Now, for 7c = 6, we have €/ €cqg = 1 — 02, [| T/ ecqll = 1/2€cqll = 1/2/1 — 62
and e;eeq =(1-6,)°%+ e;eeq =2(1-14,) so

Ll NM)A AL 1682 -1y (;—;—A) (1-52)
= , (B.235)
P 2(1—06,)

where ||z|| < A, for a constant upper bound A, > 0. This can be argued by
looking at (3.31), where T;':Ieeq and T/ e,, according to the previous part of the
proof, converge towards a subset of As for x € C and, if x is entering a jump set
(D7 or Ds) the value of z does not change abruptly during a jump hence, z still
converges towards ag as given in (3.26), which can not be constant and sign-definite
because that would violate Assumption 3.2, thus lim; .., ftto aqdr < 0.

To summarize for any given requirement 6 and (4, the controller gains (including
lp) have to be chosen large enough (for instance [, > ) such that the flow enters the

set A, and [, > l;/ for (B.224) to be fulfilled. Furthermore, for any chosen ¢,, € (0, 1)

we need to choose [, > ll*j” according to (B.235). Thus, we set [, > max{l7, l;,, l;”}.
Now, all conditions are fulfilled according to (Sanfelice et al., 2007, Corollary 7.7)
and it can be concluded that the set A of the closed-loop system is UAS in the
large, and furthermore, from (B.227)-(B.228) we have shown that the residual can
be arbitrarily diminished and the set of initial angular velocities can be arbitrarily

enlarged by increasing the controller gains.
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Remark B.1 Eq. (B.234) makes sure that the decrease in the Lyapunov function
caused by attitude is larger than the increase caused by the observer angular velocity
during jumps. Therefore, we want 6, << 1 to obtain l;” as small as possible, but
on the other hand we want §, ~ 1 in (B.215b) to make lg as small as possible,
which leads to a small l;/. Note that in some cases we can find a lower bound on
I, by choosing Z;N = max{l;,l;/} and solve (B.235) for 6, although one has to be
certain that the result is positive.

B.19 Proof of Theorem 6.1
Without loss of generality, we show stability of the positive equilibria i.e., let egq =

esq+ and Ty = Toe(esqt)-
By insertion of (6.6) into (2.83) we obtain the closed-loop rotational dynamics

éro=J;" {— {’ffdl =S w/ly)| eo — kppTjeerq + kppTierq + kdeszbelw} )

(B.236)
such that the total closed-loop system can be written as
%1 = f(x1) + g(x)x2, (B.237)
where
T e
= ferte B.238
fGa) [ 371 [S(w) — kyal] e — kyy T e, ] : (B.238)

which is similar to the closed-loop system in (B.9), and was proven uniformly ex-

ponentially stable according to Theorem 3.3, and tile interconnection term is
I kg, T 0
_ F NMptie
9(x) = iR/ | (B.239)
[ 0 kpad ;' RY,
where x; = [eij7 e}w]T, x2 = [e,, e,,]" and x = [x], x5]T. The total system is
then on the cascaded form (A.65)—(A.66). In what follows we show that Assump-
tions A.1-A.3 hold hence, that the origin of the closed-loop system is uniformly
asymptotically stable according to Theorem A.11.
Proof of Assumption A.1

We start by considering ¢’ = 1 (where in this case ¢’ is the parameter given in
Assumption A.1). By evaluating (A.68) on Vy(x1) = 1/2(e}waefw + e;qkfpefq)
we obtain

C12
lef, s +efkpplllxi] < c12Vi(x1) = E3 lefdrerw +efkmpery|,  (B.240)
and by applying the triangular inequality on the left side of (B.240) and squaring,

we obtain

o

2 2
(lefud sl + llefakspll)” lIx1]l* < 72 [efudrerw +efkrperq] - (B.241)
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On the left side of (B.241) we apply ||z[|* + [|y[|* + 2[|z lyll < 2(||=[* + [ly[|*) and
Brj < ¢l < By such that

2
(lefud sl + lefeksoll)” < 2¢ (efudsesw +€fkipess) | (B.242)
where ¢ = max{S¢s, ksp}. By insertion of (B.242) in (B.241) we obtain
T T b | T T
2¢ (efwefw + efqefq) < = (efwefw + efqefq) , (B.243)

where p = min{fy;, kfp}, and thus we have to choose

c12 2> 4/ 3¢ (B.244)
p

to fulfill (A.68). For (A.69) we have that
lef s +efokppll < cus, (B.245)
and by using the triangular inequality, squaring and applying (B.242) we obtain
20%||x1]12 < . (B.246)
Since ||x1]] < 1 we have to choose

c13 > V20 (B.247)

to fulfill (A.69), and thus assumption A.1 is fulfilled.

Proof of Assumption A.2
Since || Ti|| < 1/2, (B.239) obviously fulfills the growth rate criteria of (A.70), such
that

1/2
1 1 1 1
||g(X)|| < 5 |\<? + ? + ?> (kftp + 4kf‘d)1 =: 5/’ (B.248)
T y z

where £ > 0 is constant, and thus assumption A.2 is fulfilled.

Proof of Assumption A.3.
This assumption holds because ||x2(¢)|| converges to zero exponentially fast.

We conclude that the equilibrium point (e, €1, €4, €f.) = (0,0,0,0) of the
cascaded system is UAS.

The proof for the other equilibria follows mutatis mutandis.

B.20 Proof of Theorem 6.2

Without loss of generality, we show stability of the positive equilibria i.e., let e;q =
esq+ and Ty = Toe(esq4)-

We start by assuming that we have available controller gains according to 8, =
[qu,kfw]T € 0 = Ra_ and 05 = [qu,klw]—r € 0y = R%’_. By inserting (6.7) and

wfb

;. and sy into (2.83) we obtain the closed-loop dynamics

Sy = J;l {[S(wa{’l;cb) — k‘wa]Sf - quT}reech + quTlTeelq + kfos; + Td}
(B.249)
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such that the total closed-loop system can be written as

x1 = f(x1) + 3(x)xa2; (B.250)
where
. Tyresy — Ty Theerg
fxa) =1 51 ST 1)) — kpollsy — ko TT , (B.251)
7 i) —kpollsy —kpqTepq +Ta

which is similar to the closed-loop system in (B.40), and was proven uniformly
practically exponentially stable according to Theorem 3.5, and the interconnection
term is

Ik, T, 0
Gx)=| “F e B.252
O i (B.252)
where x; = [e;q, S;]T7 Xo = [equ, s/]" and x = [x{, Xx5]". Along with the

closed-loop system for the leader, the total system is on the form (A.72) (A.73).
The rest of the proof consists in verifying the conditions of Theorem A.12.
Proof of Assumption A.4

The function §(x)Xs is uniformly bounded both in time and in €5 and vanishes

with x,, thus for any 8; € ©; we choose

1[/1 1 1 1/2
Ge, (IIxll) =5 KJQ + 5+ ﬂ) (k3, + 4k]%w)]
x Yy z

o, (Ix2ll) =lxzll, (B.253)

thus Go, (||x]|) is constant and Wy, (||x»]|) is of class K, and the Assumption is
fulfilled for all 82 € ©2 and all x € S2 x R? x S2 x R3.

Proof of Assumption A.5
We recall from Theorem 3.5 that uniform practical exponential stability was ob-
tained which holds for the leader and follower system separately. We can not claim
semi-global results for the same reasons as we can not claim global results. Never-
theless, we assume that both A; and As can be chosen arbitrary large to make it
easier to follow the lines of the theorem.

Proof of Assumption A.6
By following the lines of Theorem 3.5 using the Lyapunov function candidate
(B.31) we obtain V; < 0 when |x;| > Bfa/qfm = 01, where qpn > 0 is the
smallest eigenvalue of Q; = diag{Tfequ'yfT;fe,kwa}, which is defined simi-
lar to Q in (B.41). An increase of 874 can as well be counteracted by increas-
ing the controller gains, thus, given any A; > 0; > 0, there exist a param-
eter 07(61,A1) € O1. We choose a5, (Ix,l) = 1/2min{By;, kse}xu 2 and
as, a,(Ixall) = 1/2max{Bys, ksq }x1 | and thus the first part of the assumption is
fulfilled, and the second part is fulfilled for as, A, (|[x1|]) = min{vsksq/8, kw x>
The last inequality also holds similar to (B.245)-(B.247) with ¢s, A, (|Ix11)
= V2¢'||x1|'/? where ¢’ are found in the same way as ¢, and thus Assumption A.6
holds for all x; € H(d1, A1), where A; can be chosen arbitrary large by assumption.
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Proof of Assumption A.7
We define a LFC for the leader and follower spacecraft as

1
Vig (x) = B (Sl—r.]lsl + el—;quelq + S;Jfo + e}qufqefq), (B.254)

which is lower and upper bounded by

1 .
ayp = 5 min{By, Brj kig, kro}lIxI? (B.255)
1
iy = 5 max{fis, By, kg, kratlIxI? (B.256)

respectively, thus (A.81) is fulfilled, and it can be shown that (A.82) is fulfilled by
differentiation of (B.254) fulfilling Proposition A.2. Also, there exists a positive
constant Ag such that for any given positive number 1, Ay, d2, As, satisfying
Ay > max{d1,A¢} and Ay > o, there exist a d; such that a;p(d1) < Qlf(Al).
Because of the practical stability shown, given any ;4 we can achieve any d2 by
increasing the gains @, and thus there exits a parameter 85 € Dy, (d2, As) N Oo,
such that by applying (A.83) using the bounds (B.255)-(B.256), we see that the
first equation of Assumption A.7 is fulfilled for

min{Bij, By, kig, kq } A3
AL — 7 J q q . B.257
(A1) \/ max{ s, Bf1, kig: kgq} | )

Moreover, we have that

IR max{By,, kq}0f
01) = B.258
as a0, A, (01) \/ min{ By, kg ( )
then for any A, > §, > 0, there exists parameters 61, do, A1 and As such that
3 . . 2
mind Ay, Ag, (| B Bris b Kra b AT L (B.259)
ma’X{BlJa Bva quv qu}

since Ay and Aj can be chosen arbitrarily large and the constants (g, B, ksq,
ksw >0, and

2
max d 8y, | 2B kpaboL | (B.260)
min{Sy;, kgq}

is fulfilled since by decreasing d1, k¢4 is increased but only of order one, and thus the
two last inequalities of Assumption A.7 are fulfilled and thus Assumption A.7 holds.
It can then be concluded that the equilibrium point (e;q, €1, €4, €50) = (0,0,0,0)
of the cascaded system is uniformly practically asymptotically stable.

The proof for the other equilibria follows mutatis mutandis.
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B.21 Proof of Theorem 6.3

We start by assuming that we have available controller gains according to 6 :=
[qu,kfw]—r €0 = Rf_ and 0y := [k, k1] T € O2 = Ri. By inserting (6.13a) into
(2.90) and utilizing (6.13c), we obtain the closed-loop rotational dynamics

th = J;l {—[Cr(w) =+ kwa]th — quT}rheth + T4+ Tl} , (B.261)

where Y; = —Jlefble_1 (Tilbl + Tffl)? such that the total closed-loop system can be
written as

x1 = f(x1) 4 g(x2,02), (B.262)
where
Tnssn — TrnvsT frerng ]
=] 1= , B.263
fx) Jfl{_[cr(w)+kfwl]sfh —ktqTsnepng+Ta} ( )

and the interconnection term is

0
9(X2,02) == by— } , (B.264)
’ RGN (T 4T
X7 = [e}hq7 s}h]T, Xo = €y Sin] " and x := [x], x3]". Along with the system

for the leader as presented in Appendix B.17 and Corollary 4.3, the total system is
on the form (A.72)—(A.73). Note that Theorem A.12 can not be utilized because
(A.74) of Assumption A.4 requires that the interconnection term is a function of
the follower gains (01) while clearly (B.264) is a function of 82 because the leader
control law is part of it ¢f. (4.19). Therefore we continue the analysis along the
lines of Lemma A.2 were we already know that the driving system is uniformly
practically exponentially (and therefore also asymptotically) stable. By looking at
the connection term we see that since Vj(x5) is positive definite and proper and
V, is negative definite for ||x,| > 0; we obtain that |x,|| is bounded that is, for
any r > 0 there exists A(r) > 0 such that sup,s, [[sin(t)] < supisy x| < A
for all initial conditions ||x5(to)|| <, to > 0. From Assumption 3.2 we know that
||w§f’ld|| < B, and ||d.7§f’ld|| < Bu,, are continuous and bounded functions for some
positive constants. Thus it follows from the definition of the sliding surface (4.15¢)
that the angular velocity of the leader spacecraft is upper bounded, i.e. [|w!?, () <
Ay = Bu,, + A+ /2 for all t >ty > 0. The derivative of (4.15b) can be denoted
as

wir = &g — (T, emq + Théng) (B.265)

where according to Lemma 4.2 we have

T 1 . _ 1 _

Tlhelhq = Z {hl [’f]lI + S(El)] — I} S| — §7lhlel s (B266)
and by inserting (B.266) and (4.2) into (B.265) we obtain

. ) 1 - -
Wi = wéled — Z’ylhl [mI + S(el)][slh — le—;elhq]. (B.267)
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Then by inserting (4.15b), (B.267) and (4.15¢) into (4.19) we obtain

. 1 . .
T =J; (wﬁl,’zd = g nfulmI +S(&)][sin — ’YlTlThelhq]> (B.268)
— STy wiha — T eing) — kigTieing — kiwSin-

Since all terms in (B.268) are either constant or upper bounded we have that
|72 (#)]] < Bia(62), where Bi4(62) is a positive parameter, for all ¢ > ¢; > 0 and
finite for each §; > 0 where §; denotes the size of the residual Bgl for the leader
spacecraft. The interconnection term (B.264) can thus be written as

l9(x2:02)|| < 1/jim[Bia + Bia(62)], (B.269)

and we conclude that the interconnection term is uniformly bounded for any given
d;.
For the follower we define a Lyapunov function candidate as

1
Vi(x1) i=  (8/ndrssn + €fngkrqerng), (B.270)
2

which is positive definite and proper according to the discussion in the beginning
of proof of Theorem 4.1. Its total time derivative along the trajectories of the
closed-loop system f of (B.262) is

Vi == 8,Cr(w)spn = sfukrusin = iukpoTinepng + e nghraTinsyn
T T T b by—1/_lb 1b
—erpokrdTenvsTppeng + 81 [de —REI (i + Tla):| (B.271)
and by inserting (6.13c) and applying the fact that C,(w) is skew-symmetric, we

obtain .
Vi <= Qpa +sT [Tl - RS (el + )] (B.272)

where Qy := diag{vsks,/8I, kys,I} is obtained by applying Lemma 4.1, and is
therefore positive definite. Eq. (B.272) can now be written as

Vi < —gsmllxall® + Brlxall (B.273)

where 8¢ := Brq + 1/5im(Bia + Bia(62)) and ggp > 0 is the smallest eigenvalue
of Qf. Thus V; < 0 when |x;|| > 6 := B¢/qsm and &; can be diminished by
increasing qf,, which is done by increasing the controller gains. The change in V}
during jumps is expressed as

~ 1
Vi(Gy(x1)) = Vy(x1) = 2hg (yaiiy — 577€7 T rese) (B.274)

and by defining the flow and jump sets as in (6.14) we ensure that Vi (Gy(x1)) —
Vi(x2) < —20 when x; € Dy, thus V; is strictly decreasing over jumps, and then

Vy <0 Vx; € Cy/Bs, | (B.275a)
Vi(Gy(x1)) — Vi(x1) <0 V¥xy € Dy . (B.275h)
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Thus, from Theorem 4.2, Corollary 4.3 and the above analysis we have that both
the sets A; = {Xg S 52 xR3x H : (elhq, Slh) S B[sl} and .Af = {Xl S S}% xR3x H :
(€fng, Sfn) € Bs,} are uniformly asymptotically stable, and it follows that since
both the set of the driving system and the set of the driven system are uniformly
asymptotically stable in the large on the set S} x R® and the interconnection
term is uniformly bounded, the set A = {x € S} x R®* x H x S} x R* x H :
(€fhg, Sfhs €lhg, Sfh) € Bs,} where §, = df + &; of the closed-loop system for the
total cascaded system is uniformly asymptotically stable in the large on the set
S xR® x SP x R3.

B.22 Proof of Theorem 6.4

By inserting (6.19) into (2.62) and applying (6.21), the closed-loop dynamics may
be written as

mgs+ (Co+ Ka)s+ Ky — fra+ L (fig +fia) = 0. (B.276)
l

A suitable Lyapunov function candidate is chosen as

L

2f)TKpf)>0 Vs#0, p#0, (B.277)

1
Vi(x) = §sTmfs +

wherex = [sT, p']", which is lower and upper bounded by x := 1/2 min{m, kpm }

and % := 1/2max{my, ks }, respectively. By differentiation of (B.277) along the
closed-loop trajectories we obtain

. ~ ~ X m
‘/t = —STCtS — STKpp — STKdS + pTK;Dp + ST (ffd — Ff(fld + fla)) y (B278)
l

and by using the fact that Ct(wﬁ’l) is skew-symmetric, we further obtain

Vi=—(s" —p)K,p—s Kys+s' (ffd - %(fld + fla)) (B.279)
1
= —x"Px+s' (ffd — w(fld + fla)) (B.280)
my
< —pmllxe|* + o[ (B.281)

where P := diag{Ky, 7K,}, @ = [afq + ms/mi(aiq + ai,)] and p,, > 0 is the
smallest eigenvalue of P. Thus V;(x) < 0 when ||x|| > § =: o/ /p,,, and

530 K(0) 530 min{my, kpm }

RO _ oy max{my kon}d® o (B.282)

which shows that § can be diminished by increasing p,, which is done by increasing
the controller gains, and we can conclude by applying Theorem A.9 that equilib-
rium point of the closed-loop system is uniformly globally practically exponentially
stable.
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B.23 Proof of Theorem 6.5

By inserting the control law (6.23) into the dynamics (2.62) and performing the
coordinate transformation

1 k;
=&— — — B.283
2= € at (B.283)
we obtain the closed-loop dynamics
myss = —(Cy + Kqg)s — K,p — kqz + b(?). (B.284)

A Lyapunov function candidate is defined as

11k _ _ _
V(x) = 3 [k—p (eklpi + eklpi + eklpi — 3) + sTme + ZTZ] , (B.285)
1
where x = e/, sT, z"]|T, which is positive definite and proper, as we show next.

P ) )
We want to find functions a(x),@(x) € Ko such that a(x) < V(x) < @(x). For

the upper bound function we write

1.k

V() <5 [3k—l’ (ekl Il* 1) +(1+ mf)||x||2} . (B.286)
1

As typically an exponential fun;:tion outgrows a squared function we want to find

a constant c14 such that ecIXI” — 1 > x|, i.e.

1 241
> sup RO D

=1
xero  |[X[?

which in turn, leads us to define
ax) = cis (éml\xl\g - 1), (B.287)

where ¢15 := 2max {k,/k1,1+ mys} and c14 := max{k;, 1}. Next we find a quadratic
lower bound on V. Recalling that

T . "
e —Z—!21+x, (B.288)
n=0
we obtain

(eklzﬁi + Py 4 kbl 3) > ki (p? _Hﬁfj +p2), (B.289)

hence, we define
a(x) == ci6]x]|?, (B.290)
where ci := 1/2min{ky,, ms,1}. Next, we evaluate the total time derivative of

V(t,x) along the closed-loop trajectories, i.e.
V(t,x) =—s' [Ci(w!))+Ka|s—s"K,p—p K,p

. ki
—s'kyz+s'b(t)+z" (kaf) + k—p) . (B.291)
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By inserting (6.26) and defining ~y := k; /k2, we obtain

V(t,x) < —s"kqs —p vk,D + s b(t), (B.292)
< —x"Qx + adl x|

where x == [p", s']" and Q := diag{yk,I, kqI}. By defining 6 := a4/q, where
¢m is the smallest eigenvalue of Q it is ensured that V < 0 for all ||x|| > d, and
thus uniform practical stability of the equilibrium point is obtained, i.e. V(t2) <
V(t1), Vta > t1 > to when ||x|| > ¢, and thus it follows that the state x is uniformly
bounded. To prove convergence we apply Barbalat’s lemma® (Khalil, 2002). By
differentiation of (B.292) we obtain

V(t,x) =2s" (C; + Kg)s + 28 K,p + 25" koz (B.293)
—2s"b(t) —2p k,p —s' (C; 4+ Ka)b(t)
— pK,b(t) — z" k.b(t) + b(t) "b(t) + s b(t),

where all terms are either shown to be bounded (since the equilibrium point of the
closed-loop system was shown to be uniformly stable and the leader is assumed
perfectly tracking a bounded reference), or are bounded by hypothesis, thus 1%
is bounded, which proves that V is uniformly continuous, and since V is lower
bounded and V is negative semi-definite for ||x|| > &, we apply Barbalat’s lemma
indicating that ||x|| — § as t — occ.

B.24 Proof of idempotent property for J,

For J, in (8.28)to be idempotent, the matrix has to fulfill J,, = J2 which means that
A = A?. By use of mathematic induction, the matrix A? = [a;5], i, € {1,...,n}
with a;; = (1 —1)2 4 (k—1)(2)2 fori=jand aj; = —2(1 — 1)+ (k — 2)(1)? for
i # j. For the idempotent property to be true, each element in A have to be the
same as in A2, This can be solved as

(1= P+ (-1 =1-

1
- (B.294)
n n n
2 1 k 1 1
n n?2 nZ n? n
2 1 1 1
_Z1-= E—2)(=)2=_= B.296
20- D)+ (k-9 =1 (B.296)
2 2 k 2 1
—t St 5 - n ( )

where (B.294) and (B.296) are respectively the diagonal and non-diagonal elements
of A and A?. This shows that A2=A VneN.

5Note that we are imposing Barbalat’s lemma in a conservative manner, i.e., we are ensuring
that the "physical" states converge to the set {x € R? : | x|| < 6} which contains the origin.
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