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ABSTRACT

A linearized energy-balance model for global temperature is formulated, featuring a scale-invariant long-

range memory (LRM) response and stochastic forcing representing the influence on the ocean heat reservoir

from atmospheric weather systems. The model is parameterized by an effective response strength, the sto-

chastic forcing strength, and the memory exponent. The instrumental global surface temperature record and

the deterministic component of the forcing are used to estimate these parameters by means of the maximum-

likelihood method. The residual obtained by subtracting the deterministic solution from the observed record

is analyzed as a noise process and shown to be consistent with a long-memory time series model and in-

consistent with a short-memory model. By decomposing the forcing record in contributions from solar,

volcanic, and anthropogenic activity one can estimate the contribution of each to twentieth-century global

warming. The LRMmodel is applied with a reconstruction of the forcing for the last millennium to predict the

large-scale features of Northern Hemisphere temperature reconstructions, and the analysis of the residual

also clearly favors the LRM model on millennium time scale. The decomposition of the forcing shows that

volcanic aerosols give a considerably greater contribution to the cooling during the Little Ice Age than the

reduction in solar irradiance associatedwith theMaunderMinimum in solar activity. The LRMmodel implies

a transient climate response in agreement with IPCC projections, but the stronger response on longer time

scales suggests replacing the notion of equilibrium climate sensitivity by a time scale–dependent sensitivity.

1. Introduction

When the climate system is subject to radiative forcing,

the planet is brought out of radiative balance and the

thermal inertia of the planet makes the surface temper-

ature lag behind the forcing. The time constant t, which is

the time for relaxation to a new equilibrium after a sud-

den change in forcing, has been considered to be an im-

portant parameter to determine. The equilibrium climate

sensitivity Seq, the temperature rise per unit forcing after

relaxation is complete, is another. In the industrialized

epoch a major source for the present energy imbalance

is the steady increase in anthropogenic forcing. If the

climate system can be modeled as a hierarchy of inter-

acting subsystems with increasing heat capacities and

response times, there will also be a hierarchy of climate

sensitivities. One way of modeling this feature is to

replace the standard exponentially decaying impulse-

response function G(t) ; e2t/t with one that is scaling

(or scale invariant), that is, decaying like a power law:

G(t) ; tb/221. A particular feature of a power law is

that it remains a power lawwith the same exponent under

a change of scales. For a climate system that is subject only

to random forcing modeled as a white Gaussian noise, the

exponential response yields a short-range memory sto-

chastic process. For a scaling response, and if 0 , b , 1,

the resulting climate variable T(t) is a long-range memory

(LRM) fractional Gaussian noise (fGn) with a power

spectral density (PSD) of the form P(f) ; f2b There are

several definitions of an LRM process that are mathe-

matically more or less equivalent (Beran 1994; Embrechts

and Maejima 2002). For this paper it is natural to define

such a process as one resulting from the stochastic integral1
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XfGn(t)5

ðt
2‘

(t2 s)b/221 dB(s) . (1)

It can be shown that the integrated autocorrelation

function (ACF) C(t) for this process is infinite [i.e.,Ð ‘
0 C(t) dt5‘]. This divergence is what defines a long-

range memory process. The linear impulse response

model is easily Fourier transformed and the modulus of

the resulting transfer function is naturally interpreted as

a frequency-dependent climate sensitivity S( f). In the

exponential response model the amplitude response to

an oscillation vanishes for high frequencies, but con-

verges to Seq as f/ 0. In the scaling response model S( f)

diverges in the low-frequency limit, indicating high

sensitivity of the climate system to low-frequency com-

ponents of the forcing. We shall demonstrate that long-

memory responses can explain important aspects of

Northern Hemisphere temperature variability over the

last millennium and lead to new predictions of howmuch

more warming there will be ‘‘in the pipeline’’ in any given

forcing scenario (Hansen et al. 2005, 2011).

Dozens of papers have been published over the last

two decades, demonstrating LRM in temperature re-

cords. Many hypothesize that the signal is composed of

an LRM noise superposed on a trend driven by external

forcing, and hence the methods are designed to elimi-

nate such trends [see a short review and a selection of

references in Rypdal et al. (2013)]. The most widely

used method is detrended fluctuation analysis (DFA)

(Kantelhardt et al. 2001). However, the concept of

a slow trend does not always reflect the true nature

of deterministic forced variability. Some components of

the forcing may be faster than important components

of the internal variability, and hence precise separation

of internal from forced variability can only be done by

using information about the deterministic component of

the forcing record. Fortunately, such reconstructions of

the forcing records exist and are used as input for his-

toric runs of climate models.

We contend that correct estimation of the LRM prop-

erties of the internal climate variability can only be done by

analyzing the residual obtained by subtracting the forced

deterministic component of the climate signal. We shall

show that the climate response function is all we need to

predict both the deterministic component of the climate

signal and thememoryproperties of the internal variability.

2. Linear response models

Linear response models of Earth’s surface temper-

ature have been considered by several authors [see,

e.g., Hansen et al. (2011) and Rypdal (2012)]. The

physical backbone is the zero-dimensional, linearized

energy-balance equation derived, for instance, in the

appendix of Rypdal (2012). It has the form

dQ

dt
1

1

Seq
T5F , (2)

whereQ is the total energy content of the climate system;

F and T are perturbations of radiative influx and surface

temperature relative to a reference state in radiative

equilibrium, that is, a state where the radiative influx

absorbed by the Earth surface balances the infrared ra-

diation emitted to space from the top of the troposphere.

It is important to keep in mind that a radiative imbalance

can be maintained for a long time with a nearly constant

surface temperature if there is a heat transport from the

mixed surface layer of the ocean into the slowly

warming deep ocean. This situation is illustrated by the

cartoon in Fig. 1, where both the atmosphere and the

ocean surface layer are close to radiative equilibrium,

but the total climate system is not. It can be modeled by

a simple and well-known generalization of the one-box

energy-balance model to a two-box model:

C1

dT1

dt
5 2

1

Seq
T12 k(T12T2)1F and

C2

dT2

dt
5k(T12T2) , (3)

where T1 could be interpreted as the temperature of the

ocean mixed layer, T2 as the temperature of the deep

ocean, and C1 and C2 as their respective heat capacities.

The parameter k quantifies the heat transport between

the two boxes. For C2 � C1 the response of T1 to a unit

step in the forcing is

FIG. 1. In a quasi-equilibrium state the surface temperature T

(temperature ofmixed layer) can be almost constant while the total

influx into the climate system (the deep ocean) is finite. In such

a state dQ/dt in Eq. (1) is nonzero because of an imbalance between

the outflux term and influx term on the rhs in this equation.
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R(t)’Str(12 e2t/t
tr)1 (Seq2 Str)(12 e2t/t

eq), (4)

where Str, ttr, and teq are given in terms of the param-

eters of Eq. (3) (Rypdal 2012). Two examples of this

solution are shown in Fig. 2 for different values of the

longer time constant. The solution corresponding to

a larger separation between the time constants of the

mixed layer and the deep ocean could easily be in-

terpreted incorrectly if integrated only up to t; ttr, since

the apparent time constant would be ttr and the sensi-

tivity Str, while the true time constant of the climate

system as a whole would be teq and the true sensitivity

would be Seq. This idealized example is of course only

an illustration of the principle that slowly responding

components of the climate system and slow feedbacks

may obscure the notion of equilibrium climate sensi-

tivity. The true equilibrium sensitivity may be much

larger than estimated frommodel runs, and hence future

warming following a limited period of persistent forcing

may be greater and last longer than predicted from

models that do not fully take into account the LRM

properties arising from slow responses.

For a given influx the equilibrium outflux is controlled

by the Stefan–Boltzmann radiation law and complex

feedback processes that determine the equilibrium cli-

mate sensitivity Seq [see, e.g., Eqs. (A5)–(A7) in Rypdal

(2012)]. The true value of Seq is subject to considerable

controversy because of insufficient knowledge of some

of these feedbacks, and because they operate on wildly

different time scales (Otto et al. 2013). The estimates of

Seq are regularly updated in the literature as the global

temperature goes through periods of slower or faster

warming (Otto et al. 2013; Aldrin et al. 2012). If the

climate system responds on a wide range of time scales,

the notion of an equilibrium climate sensitivity may be

of little practical interest, since this equilibrium may

never be attained in a system that is subject to variability

of the forcing. In section 7 we discuss alternatives to this

notion.

The exponential response model is obtained from

Eq. (2) by introducing an effective heat capacityC of the

climate system such that dQ 5 CdT, and introducing

the time constant t 5 CSeq. Equation (2) then takes

the form

LT[C

�
d

dt
1

1

t

�
T5F , (5)

where the linear operator L has the Green’s function

G(t)5C21 exp(2t/t) , (6)

that is, the solution of Eq. (5) is

T(t)5

ðt
2‘

G(t2 s)F(s) ds . (7)

In the two-box model L is a two-dimensional vector

operator acting on the column vector (T1, T2)
T, where

the superscript T denotes the transpose, and with a vec-

tor Green’s function. However, the essential structure of

the response function for the surface layer temperature

is given by the derivative of Eq. (4):

G(t)5
Str
ttr

e2t/t
tr 1

(Seq 2Str)

teq
e2t/t

eq . (8)

The simple, linear two-box model contains the es-

sential conceptual elements of our phenomenological

response model, since it represents a linear model with

more than one relaxation time scale. The state variables

are the energy contents of the ocean surface layer and

the deep ocean, respectively. The nonlinearities that

give rise to the spatiotemporal chaos of the atmosphere

and ocean represent unresolved scales that contribute to

mean turbulent (anomalous) energy fluxes between the

boxes, and to random fluctuations of these fluxes around

the mean. The latter represent the stochastic forcing

terms. A linear system follows from the ansatz that the

mean fluxes are proportional to the temperature dif-

ference between the two boxes. The two-box model can

trivially be generalized to an n-box model, whose re-

sponse function may be designed to mimic a power law

up to the slowest relaxation scale. The various boxes

represent the energy content of different interacting

parts of the climate system with different heat capacities

and response times. Of course, we do not derive this

phenomenological model from first principles, but in

this paper we test it against observation data. The

FIG. 2. The red curve is the response function R(t) for the two-

boxmodel with ttr5 4 yr, teq5 20 yr, Str5 0.3Km2W21, and Seq5
1.0Km2W21. The blue curve for the same parameters but teq 5
100 yr.
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model, and the linear approximation, can also be tested

against state-of-the-art Earth system models. Work in

this direction is in progress. The reality of delayed

responses in coupled atmospheric–oceanic GCMs

(AOGCMs) has recently been demonstrated by Geoffroy

et al. (2013). They fitted the four parameters of the two-

box model to runs of 16 different CMIP5 models with

step-function forcings, with quite good agreement over

150 yr. For the global response the linearity approxima-

tion has been verified in AOGCM simulations (e.g., in

Meehl et al. 2004). We also discuss these points further in

the concluding section.

The scaling response model corresponds to replacing L
by a fractional derivative operator [see Rypdal (2012) for

details], which effectively corresponds to replacing the

two-box Green’s function with the power-law function

G(t)5 (t/m)b/221j , (9)

where m is a scaling factor in the units of time charac-

terizing the strength of the response and j [ 1 km2 J21 is

a factor needed to giveG(t) the right physical dimension.

We shall define our equilibrium reference state

such that T is the temperature relative to the initial

temperature T̂0 in the observed record, that is, T5
T̂2 T̂0, where the hat symbol means that temperature

is measured relative to absolute zero (kelvin). The ob-

served record then has T(0) 5 0. This means that we

define the ‘‘true’’ forcing F(t) as the influx relative to

the influx that balances the outflux at this initial tem-

perature (the equilibrium influx), and since the system

is not necessarily in radiative equilibrium at t 5 0, we

generally have that F(0) 6¼ 0. Forcing data we use in this

paper are given as time series over the time interval 0#

t # tL in volcanic FV(t), solar FS(t), and anthropogenic

FA(t) components with FA(0)5 FS(0)5 FA(0)5 0, and

hence the total ‘‘given’’ forcing FG5 FV1 FS1 FA also

has FG(0) 5 0. Hence the relation between the true

forcing and the given forcing data is F(t)5 F(0)1 FG(t).

Since F(0) is not known a priori it becomes a parameter

to be estimated along with other model parameters.

According to these conventions the temperature evo-

lution according to Eq. (7) becomes

T(t)5

ð0
2‘

G(t2 s)F(s) ds1F(0)

ðt
0
G(t2 s) ds

1

ðt
0
G(t2 s)FG(s) ds . (10)

We note that the initial condition T(0) 5 0 implies that

T(0)5

ð0
2‘

G(2s)F(s) ds5 0, (11)

that is, it puts a restriction on the forcing in the semi-

infinite time interval 2‘ , t , 0 prior to the recorded

period 0 , t , tL. If we could assume that T(t) is a sta-

tionary stochastic process for 2‘ , t , 0, then this re-

striction would require that the zero level for F(t) for t,
0 is chosen such that it has zero mean. If we have more

detailed knowledge about the forcing far back in time

via paleoreconstructions, this may be away to determine

the zero-level F(0) for the forcing function that is con-

sistent with a linearization around a radiative equilib-

rium. If we do not have this information about past

forcing, or we do not want to use it, an alternative is to

estimate this zero level from the temperature and forc-

ing records we have for t . 0 by treating it as a free

model parameter. We will apply both methods in in

section 4, and demonstrate that they give very similar

results. The slightly problematic issue here is the term

Trmn(t)5

ð0
2‘

G(t2 s)F(s) ds (12)

in Eq. (10), which represents the remnant from all past

forcing throughout the time interval 2‘ , t , 0 being

present in the evolution of T(t) for t . 0. If G(t) is

exponential (no LRM), the condition from Eq. (11)

implies that this influence vanishes for t . 0. If G(t) is

scaling with a cutoff at t 5 tc—that is, it has the form

G(t)5 j(t/m)b/221u(t2 tc) , (13)

where u(t) is the unit step function—then the influence

of past forcing vanishes for t . tc. If such a cutoff does

not exist, or tc is greater than the length tL of the ob-

served temperature and forcing record, then this in-

fluence is in principle present over the entire record.

This is the nature of long-range memory, and is exactly

the property we want to use in predicting future warm-

ing for t . tL after a period of increasing anthropogenic

forcing. However, by choosing the time origin t 5 0 to

be prior to the recent period of strong anthropogenic

forcing, there may have been no strong trends in the

evolution of F(t) through the centuries prior to t5 0 and

Trmn(t) may be comparatively small for t. 0.We discuss

this issue in detail in section 4.

3. Dynamic–stochastic models

In Rypdal (2012) it was shown that the scaling response

function gives a somewhat better characterization of the

observed record, but no systematic method was presented

that would allow rejection of the exponential response

hypothesis in favor of the scaling-response hypothesis.

The clue to develop such a method is to address the
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apparently random fluctuations in the observed record

that makes it deviate from the solution to the response

model under the prescribed forcing. The forcing given by

Hansen et al. (2011) is a deterministic function and the

corresponding response should therefore be perceived

as a deterministic solution. Even with a correct model

of the response the deterministic solution will not be

a perfect match to the observed record because the

forcing should also have a stochastic component cor-

responding to the random forcing of the ocean–land

heat content from the atmospheric weather systems

and stochastic energy flux between the surface ocean

layer and the deep ocean resulting from unresolved

turbulence.Amore complete (dynamic stochastic)model

can be constructed by adding a stochastic forcing such

that Eq. (7) is generalized to

T(t)5

ðt
2‘

G(t2 s)F(s) ds1s

ðt
2‘

G(t2 s) dB(s) , (14)

where Eq. (11) for the deterministic temperature com-

ponent imposes the restriction

ð0
2‘

G(2s)F(s) ds5 0.

Here F(t) is the deterministic component of the forcing

and B(t) is the Wiener process, sometimes called

a Brownian motion. The incremental process sdB(t) is

a Gaussian white-noise measure and is to be perceived

as the stochastic forcing. We have introduced an un-

known parameter s representing the strength of this

forcing. There are two major advantages of introducing

the stochastic forcing:

(i) Since the observed record in this formulation should

be perceived as one realization of a stochastic pro-

cess produced by the dynamic–stochastic model, the

residual difference between this record and the

deterministic solution should be perceived as a noise

process ~T(t) given by the stochastic part of the

solution to Eq. (14), that is,

~T(t)5s

ðt
2‘

G(t2 s) dB(s) . (15)

By using the exponential response model, Eq. (15)

produces the Ornstein–Uhlenbeck (OU) stochastic

process. On time scales less than t this process

has the same scaling characteristics as a Brownian

motion, that is, the PSD has the power-law form

P( f); f22 for f. t21. On time scales greater than t

the process has the scaling of a white noise and

the PSD is flat for f , t21. This means that if we

analyze a sample of an OU process whose length

is much shorter than t we cannot distinguish it from

a Brownian motion. On the other hand, if we

coarse-grain an OU process in time by averaging

over successive time windows of length much

greater than t, the resulting discrete-time process

is indistinguishable from a white noise. Actually,

the PSDhas the form of a Lorentzian, P( f); [t221
(2pf)2]21. For a discrete-time process the direct

analog to the Ornstein–Uhlenbeck process is the

first-order autoregressive process AR(1). The scal-

ing response model, on the other hand, produces an

fGn for 21 , b , 1 and a fractional Brownian

motion (fBm) for 1 , b , 3. For these noises and

motions the PSD for low frequencies has the power-

law form P( f) ; f2b. In principle, an estimator for

the PSD (like the periodogram) applied to the ob-

served residual could be compared to the PSD for

the two response models to test the validity of the

models against each other. In practice, other esti-

mators in this paper will be used, but the idea is the

same.

(ii) Formulating the problem as a parametric stochastic

model allows systematic estimation of the parame-

ters fF(0), C, s, tg for the exponential model, and

fF(0), m, s, bg for the scale-invariant model. The

method is based onmaximum-likelihood estimation

(MLE), which establishes the most likely parameter

set that could produce the observed record from

the prescribed forcing. The principles of the MLE

employed here are explained in the appendixes.

The significance of the LRM response can be appre-

ciated by looking at Eq. (7) in the Fourier domain,

~T( f )5 ~G( f ) ~F( f ) , (16)

where ~T, ~G, ~F are Fourier transforms of T, G, F, and
~G( f ) is the transfer function of the linear system. This

relation naturally leads us to define the frequency-

dependent sensitivity as

S( f )5j ~G( f )j5 j ~T( f )j
j ~F( f )j . (17)

For the exponential response model we find

S(f )5
1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t221 (2pf )2

q , (18)

which in the limit 2pft � 1 converges to the equilib-

rium sensitivity Seq 5 t/C. For the scale-invariant

model we have
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S( f )5
jmG(b/2)

j2pmf jb/2
, (19)

where G(x) is the Euler gamma function. In Fig. 3 we

show a plot of S( f) for the values of the model param-

eters estimated for the global temperature and forcing

record in section 4. Note that the frequency-dependent

sensitivities for the twomodels depart substantially from

each other only for frequencies corresponding to time

scales longer than a century. Hence it is on these slow

time scales that LRM really has serious impact on the

climate dynamics. The dramatic consequences will be

apparent when we consider time scales of many centu-

ries in sections 5 through 7.

In principle, the right-hand side of Eq. (17) could be

used to estimate S( f) directly from Fourier transforming

the temperature and forcing records, and then to com-

pare with Eqs. (18) and (19) to assess the validity of the

two response models. The short length of the records,

however, makes the Fourier spectra very noisy, and the

ratio between them even more so. Additional compli-

cations are that the spiky nature of the forcing record to

volcanic eruptions and the unknown amplitude of the

stochastic forcing component. Hence, we have to resort

to themodel parameter estimation described above, and

to other estimators than the Fourier transform, to settle

this issue.

4. Parameter estimation from instrumental records

The temperature datasets analyzed in this section can

be downloaded from the Hadley Center Met Office web

site. We consider the global mean surface temperature

(GMST) as presented by the Hadley Centre Climatic

Research Unit, version 3 (HadCRUT3) monthly mean

or annual mean temperatures (Brohan et al. 2006). The

forcing record is the one developed by Hansen et al.

(2005) and used by Hansen et al. (2011), and is shown in

Fig. 4a. The forcings decomposed into volcanic, solar,

FIG. 3. Frequency-dependent sensitivity S( f ) for the exponential

response model (blue) and the scale-invariant model (red) for

model parameters given in Table 1.

FIG. 4. (a) Total forcing for 1880–2010, (b) volcanic forcing, (c) solar forcing, and (d) anthropogenic forcing.
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and anthropogenic contributions are shown in Figs. 4b–d,

respectively. The forcing records go from 1880 until

2010 with annual resolution, so even if the instrumental

temperature record goes further back in time and has

monthly resolution, the maximum-likelihood estimation

of model parameters only employs the 130-yr records

with annual resolution. The analysis of the residual noise

signal, however, utilizes the monthly resolution to im-

prove the statistics.

The results of the MLE method for the exponential

and scaling models are given in Table 1. The heat ca-

pacity C 5 4.2 3 108 J km22 estimated from the expo-

nential model is very close to that of a 100-m-deep

column of seawater, and the time constant 4.3 yr is in the

middle of the range (3–5 yr) observed by Held et al.

(2010) from instantaneous CO2 experiments with the

Geophysical Fluid Dynamics Laboratory (GFDL) Cli-

mate Model, version 2.1 (CM2.1). What was also ob-

served in those model runs was an additional slower

response that showed that equilibrium was not attained

after 100 yr of integration, indicating that the exponen-

tial model does not contain the whole story. In Fig. 5a we

present the deterministic part of the solutions for both

models along with the observed GMST record. Al-

though the solution of the scaling model seems to yield

a somewhat better representation of both the multi-

decadal variability and the response to volcanic erup-

tions, the difference between the deterministic solutions

of the two models is not striking on these time scales.

The reason for this can be understood from Fig. 3. It is

on time scales longer than a century that the difference

will become apparent. For the stochastic part of the re-

sponse, however, the two models can be tested against

data on all observed time scales. Such a test is performed

in Fig. 5b, where the residual noise (the observedGMST

with the deterministic solution subtracted) has been

analyzed by the DFA technique (Kantelhardt et al.

2001). What is plotted here is the DFA(1) fluctuation

function of the residual noise versus time scale. For an

AR(1) process (stochastic solution of the exponential

model) the slope of this curve in a log–log plot is near

1.5 for time scales much less than t, and near 0.5 for time

scales much greater than t, as shown by the blue dashed

curve in the figure. For an fGn the slope of the curve is

(b1 1)/2, which has been estimated to yield b’ 0.75, as

shown by the red dashed curve. The fluctuation func-

tions of the actual observed residuals with reference to

the twomodels are shown as the blue crosses and the red

circles in the figure, showing that the residuals are in-

consistent with an AR(1) process, but consistent with an

fGn process.

In Fig. 6 we demonstrate that the observed record

falls within the uncertainty range of the two dynamic–

stochastic models. Here we have generated an ensem-

ble of solutions to the two models with the estimated

parameters and plotted the 2s range around the

TABLE 1. The MLE of parameters in the exponential response

model and in the scale-free response model. The parameters are

estimated from the HadCRUT3 annual temperature record. The

parameter s ~T
is defined as the std dev of the stochastic components

~T(t). The numbers in the brackets are the mean standard errors

obtained from a Monte Carlo study.

Exponential response model Scale-free response model

t 5 4.3 (60.7) yr b 5 0.75 (60.12)

C 5 4.2 (60.2) 3 108 Jm22 m 5 8.4 (62.5) 3 1023 yr

F0 5 0.19 (60.12)Wm22 F0 5 0.19 (60.16)Wm22

s ~T
5 0.15 (60.01)K s ~T

5 0.13 (60.02)K

FIG. 5. (a) Deterministic part of the solution where blue indicates the exponential response model, red the scale-

invariant response model, and black the HadCRUT3 annual temperature record. (b) Blue crosses denote DFA(1) of

monthly GMST record with the deterministic solution of the exponential response model subtracted (the residual).

Red circles (obscured because they nearly coincide with the blue crosses) denote the same with the deterministic

solution of the scaling model subtracted. Blue dashed curve represents ensemble mean of DFA(1) fluctuation

function of simulated AR(1) process with estimated parameters from the exponential response model. Shaded blue

area represents 2 times std dev of the distribution of DFA(1) over the ensemble. Red dashed curve and shaded area

represent the same for an fGn process with estimated parameters from the scaling model.
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deterministic solutions. The results are shown as the two

shaded areas in Figs. 6a and 6b, respectively.

In Fig. 7 we plot the deterministic scaling response to

the total forcing along with the separate responses to the

volcanic, solar, and anthropogenic forcing components.

During the first half of the twentieth century, solar and

anthropogenic forcing contribute equally to the global

warming trend. After 1950 there is a significant cooling

trend resulting from volcanic aerosols, a weaker warm-

ing contribution from solar activity, and a dominating

anthropogenic warming.

The maximum likelihood estimation employed so far

in this section fF(0), C, s, tg for the exponential model,

and fF(0), m, s, bg for the scale-free model, using the

model Eq. (10), but neglecting the term Trmn(t). Hence

we have used no information about past forcing. If we

use reconstructions of forcing throughout the past mil-

lennium (Crowley 2000) we can compute F(0) from

Eq. (11) and Trmn(t) from Eq. (12) and use the entire

Eq. (10), including the term Trmn(t), in the computation

of T(t). In Fig. 8a we plot Trmn(t) for the period 1880–

2080 computed from the reconstruction and the scaling

FIG. 6. Black curves are the GMST record and shaded areas are the deterministic part of the solution62 times std

dev of the stochastic part representing the range of solutions to themodel for (a) the exponential responsemodel and

(b) the scaling response model.

FIG. 7. Deterministic part of forced temperature change for 1880–2010 according to the scale-invariant model from

(a) total forcing, (b) volcanic forcing, (c) solar forcing, and (d) anthropogenic forcing. Thin black curves are the

GMST record.

15 JULY 2014 RYPDAL AND RYPDAL 5247



response model with the parameters fm, s, bg given in

Table 1. We observe that this remnant rapidly goes from

0 to approximately 20.1K because of the forcing im-

balance created by the variability over the previous

millennium. The rapid initial change is an effect of the

finite value of the forcing [F 5 F(0)] around 1880. As t

grows, F(t) will fluctuate around the zero equilibrium

value and eventually be influenced by the rising trend.

This terminates the fast change in Trmn(t), which is fol-

lowed by a slow decay. In Fig. 8b the black smooth curve

is T(t) computed from Eq. (10) and includes Trmn(t).

Here, F(0) is computed from Eq. (11) using recon-

structed forcing (Crowley 2000) for the period 1000–

1880. The red curve is the same as shown in Fig. 7a, but

extended to 2080 using a forcing scenario corresponding

to a 1%yr21 increase in atmospheric CO2 concentra-

tion. Here F(0) is estimated along with the other model

parameters from the instrumental data and Trmn(t) is

not part of the statistical model from which the param-

eter F(0) is estimated. It appears that the two methods

yield very similar deterministic solutions for T(t), in-

dicating that the (positive) effect of reestimating F(0)

more than compensates the (negative) effect of including

Trmn(t). The proximity of the two curves in Fig. 8b shows

that the two methods yield very similar results for re-

alistic forcing scenarios for the coming century. For this

reason we shall employ the method that does not make

use of Trmn(t) in the remainder of this paper.

5. Predicting reconstructed records

The DFA fluctuation function plotted in Fig. 5b can

demonstrate with statistical confidence that the residual

is scaling only up to time scales less than 1/4 of the length

of the 130-yr record (i.e., for 3–4 decades). Verifying

LRM on longer time scales requires longer records. This

was done by Rybski et al. (2006) and Rypdal (2012)

using detrending techniques like the DFA applied di-

rectly to reconstructed temperature records over the last

one or two millennia. Here we shall utilize a forcing

record for the last millennium (Crowley 2000), shown in

Fig. 9, with its decomposition in volcanic, solar, and

anthropogenic contributions. Many temperature re-

constructions for the Northern Hemisphere exist for this

time period [see Rybski et al. (2006) for a selection]. We

shall employ our dynamic–stochastic models to the re-

construction by Moberg et al. (2005), which shows

a marked temperature difference between the Medieval

Warm Period (MWP) and the Little Ice Age (LIA). For

the scaling model the parameters estimated from

Crowley forcing andMoberg temperature are very close

to those estimated from the instrumental records, except

for the initial forcing F(0). The initial forcing measures

how far the climate system is from equilibrium at the

beginning of the record, and this will depend on at what

time this beginning is chosen. Considering that the

timing of volcanic events and the corresponding tem-

perature responses probably are subject to substantial

errors in these reconstructions, this might give rise to

errors in the parameter estimates. For this reason we

have also estimated F(0) from Crowley forcing and

Moberg temperature by retaining the values of the other

parameters estimated from the instrumental record and

shown in Table 1. The resulting deterministic solutions

for the two models are plotted in Fig. 10a, along with

the Moberg record. Since only the departures from

equilibrium forcing F(0) are estimated from the re-

construction data, these solutions should be considered

as ‘‘predictions’’ of the deterministic component of

the forced evolution over the last millennium, based

on parameters estimated from the modern instrumen-

tal records. The exponential model predicts too low

FIG. 8. (a) The remnant from past forcing Trmn from 1880 until 2080. (b) Black curve represents the deterministic

solution T(t) including Trmn and with F(0) estimated from forcing data for the period 1000–1880. Red curve repre-

sents the deterministic solution estimated by not including Trmn, and with F(0) estimated using forcing data for the

period 1880–2010 only. The forcing beyond 2010 used here corresponds to a 1%yr21 increase in atmospheric CO2

concentration.
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temperature in the first half of the record and too strong

short-term responses to volcanic eruptions. The scaling

model gives a remarkably good reproduction of the

large-scale structure of the Moberg record and reason-

able short-term volcano responses. TheDFAfluctuation

functions of the residuals for the two models are plotted

in Fig. 10b, and again we observe that the results are con-

sistent with a scaling response over the millennium-long

record and inconsistent with the exponential response

model.

Figure 11 shows the scaling response to the total

Crowley forcing, along with the responses to the volca-

nic, solar, and anthropogenic components. The most

remarkable feature is that most of the cooling from the

MWP to the LIA appears to be caused by volcanic

cooling and not by the negative solar forcing associated

FIG. 9. As in Fig. 4, but for 1000–1978.

FIG. 10. (a) Deterministic part of the solution with Crowley forcing where blue indicates the exponential response

model, red the scaling response model, and black the Moberg annual temperature reconstruction record. (b) Blue

crosses denote DFA(1) of Moberg record with the deterministic solution of exponential response model subtracted.

Red circles denote the samewith the deterministic solution of scalingmodel subtracted (residual). Blue dashed curve

represents ensemble mean of DFA(1) fluctuation function of simulated AR(1) process with estimated parameters

from the exponential responsemodel. Shaded blue area represents 2 times std dev of the distribution of DFA(1) over

the ensemble. Red dashed curve and shaded area represent the same for an fGn process with estimated parameters

from the scaling model.
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with the Maunder Minimum, in agreement with recent

findings by Schurer et al. (2014). On the other hand, the

solar contribution to the warming from the LIA until the

mid-twentieth century is comparable to the anthropo-

genic. After this time the warming is completely domi-

nated by anthropogenic forcing, in agreement with what

was shown in Fig. 7.

6. Truncated long-range memory

Does long-range memory imply that we still feel the

effect of long past volcanic explosions like the Tambora

(1815) eruption? Let us examine this question, which

is frequently asked in discussions about LRM in the

climate response. On centennial time scales this vol-

canic eruption represents a delta function forcing

dF(t)5 dt,t1 , and hence the response decays like dT(t) 5
[(t 2 t1)/m]

b/221j. The parameters presented in Table 1

are computed from time series with annual resolution,

so dT 5 (1/m)b/221j is to be considered as the in-

stantaneous response manifested by the temperature

change recorded the year after the eruption. Thus, after

200 yr this response is reduced by a factor 200b/221 ;
0.04, assuming b ’ 0.75 as estimated in Table 1. Using

the value of m given in Table 1 or looking at Fig. 11a, we

find that the instantaneous response is about 0.5K, so

the remnant after 200 yr is around 0.02K. This is much

less than the stochastic climate noise, which was esti-

mated in Table 1 to be s ~T
5 0.13 (60.02)K, and means

that the effect of Tambora cannot be detected in to-

day’s temperature data. These considerations illustrate

that the effect of LRM is not very important for the

long-term impact of single eruptions or fast oscilla-

tions, but the delayed impact of trends or monotonic

shifts in the forcing, including shifts in the frequency or

strength of episodic events such as volcanic eruptions,

may be considerable. One must not forget, however,

that the scale-invariant response is an idealized toy

model designed to incorporate slowly components of

the climate system into one single response function.

One must also keep in mind that the climate system is

highly nonlinear, and that the linear expansion around

a radiative equilibrium is inadequate if the system

evolves far from the initial quasi-equilibrium state.

With forcing scenarios that shift the level of forcing

semipermanently to a new level, the linear LRM tem-

perature response will continue to grow indefinitely like

tb/221. Such a growth will of course eventually be satu-

rated by nonlinear effects, in the samemanner as theywill

saturate linear instabilities in any realistically modeled

dynamical system. Hence our linear, scaling response

theory exhibits the same strengths and limitations as

linear stability theory, and there is of course a need to

examine these limitations. One simple way to model the

FIG. 11. Deterministic part of forced temperature change for 1000–1978 according to the scaling model with F(0)

estimated from theMoberg record and fb, m, sg from the instrumental record. Gray curve is the Moberg record and

results are shown from (a) total forcing, (b) volcanic forcing, (c) solar forcing, and (d) anthropogenic forcing.
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effect of nonlinear saturation of the LRM response is to

investigate the effect a truncation of the scale-free re-

sponse function as suggested in Eq. (13).

In Fig. 12a we have plotted the deterministic solution

corresponding to the instrumental temperature record

with a truncated scaling response function with cutoff

time tc 5 10 yr (green curve), alongside the solution for

the untruncated response (red curve). The difference

between the two solutions is not remarkable and cannot

be used as model selection criterion. In Fig. 12c, how-

ever, we have plotted a variogram (log–log plot of the

second-order structure function) of the residual ob-

tained by subtracting the deterministic solution from the

observed temperature record (dotted line). The result is

consistent with an fGn process scaling on time scales up

to 102 yr, which was also shown in Fig. 5b [using theDFA

(1) fluctuation function]. The dashed line surrounded by

the green field is the ensemble mean of variograms of

realizations of a simulated stochastic process generated

by Eq. (15) with a truncated power-law kernel. The

green field indicates 95% confidence for the variogram

estimate. It is seen that the scaling properties of the

actual residual noise is not captured by the truncated

model if we choose tc as small as 10 yr. By increasing tc
beyond approximately 30 yr we cannot reject the trun-

cated model based on the instrumental data, but the

same study can be made on the data from the millen-

nium reconstructions, and some results are shown in

Fig. 12c. Here we observe that the truncated model with

tc 5 100 yr gives a deterministic solution that gives

a considerably poorer fit to the observed record than

the full scale-free model, and again the variogram of the

noise generated by the truncated model is inconsistent

with that obtained from the real residue. We conclude

from this that the cutoff time tc in the scale-free response

is not less than a century, and hence that predictions

made for the twenty-first century based on the scale-free

model are supported by the forcing and temperature

data available.

7. Perspectives on climate sensitivity

For predictions of future climate change on century

time scales the equilibrium climate sensitivity may not be

the most interesting concept. The frequency-dependent

climate sensitivity S(f) given byEq. (17) ismore relevant.

FIG. 12. (a) Deterministic solution corresponding to the instrumental temperature record with a truncated scaling

response function with cut-off time tc 5 10 yr (green curve), alongside the solution for the untruncated response (red

curve). (b) As in (a), but for the reconstructed record with tc 5 100 yr. (c) Variogram of the residual obtained by

subtracting the deterministic solution from the observed instrumental temperature record (dots). The green dashed

line is the ensemble mean of variograms of realizations of a simulated stochastic process generated by Eq. (15) with

a power-law kernel truncated at tc 5 10 yr. The green shaded area indicates 95% confidence for the variogram

estimate. (d) As in (c), but for the reconstructed record with tc 5 100 yr.
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The transient climate response (TCR), defined as the

temperature increaseDTtr at the time of doubling of CO2

concentration in a scenario where CO2 concentration

increases by 1%yr21 from preindustrial levels, can also

readily be computed from the response models. In

Fig. 13a this forcing is shown as the dotted curve to the

left (the forcing is logarithmic in the CO2 concentration,

so the curve is linear). The response curves to this forcing

according to the two response models are shown as the

blue and red dotted curves to the left in Fig. 13b. At the

end of these curves (the time of CO2 doubling after 70yr)

the temperatures represent the respective TCRs. They

are both in the lower end of the range presented by

Solomon et al. (2007). A more useful definition is to

consider the response to the same CO2 increase from

the present climate state that is established from the

historical forcing since preindustrial times. This response

is what is shown as the blue and red full curves in Fig. 13b

for the next 70yr. For the scale-free model the temper-

ature in year 2010 lags behind the forcing because of the

memory effects, and the energy flux imbalance dQ/dt

established by the historical evolution at this time gives

rise to a faster growth in the temperature during the

next 70 yr, compared to the CO2 doubling scenario

starting in year 1880. The value of DTtr (according to

the modified definition) is 1.3K in the exponential re-

sponse model, but 2.1K for the scale-invariant model.

The latter is very close to the median for the TCR given

in Solomon et al. (2007). Another illustration of the

memory effect can be seen from the forcing scenario

where the forcing is kept constant after 2010 as shown by

the dashed line in Fig. 13a. The corresponding responses

are given by the blue and red dashed curves in Fig. 13b.

The short time constant in the exponential model makes

the temperature stabilize in equilibrium after a few

years, while in the scale-free model the temperature

keeps rising as [2m12b/2F(2010)/b](t 2 2010)b/2 for t .
2010 yr. As discussed in section 6 this monotonic rise

in the temperature will not continue indefinitely, and

will stabilize for t 2 2010 . tc in a more realistic trun-

cated LRM model. But since our analysis in section 6

indicates that an effective tc is greater than a century,

the scaling model is adequate for the time scale scales

shown in Fig. 13.

In a recent paper Aldrin et al. (2012) supplemented

the information in the time series of total forcing and

temperatures of the Northern and Southern Hemi-

sphere with a series for the evolution of total ocean heat

content (OHC) through the last six decades. Their re-

sponse model is a simple deterministic energy-balance

climate/upwelling diffusion ocean model augmented by

a first-order autoregressive stochastic process for the

residual. The equilibrium climate sensitivity is a param-

eter in the deterministic model, and since the stochastic

term for the residue is AR(1) the full model cannot re-

produce the LRM properties of the observed climate

signal. The purpose of the work is to produce more ac-

curate estimates of Seq, and the introduction of theOHC

data is a new observational constraint on this estimate.

We find it interesting to consider these data in the light

of a slightly rewritten version of the energy-balance

equation Eq. (2):

Q0(t)52
~T(t)

S(t)
1F(0)1 ~F(t) , (20)

where Q0 [ dQ/dt, S(t) can be thought of as a time-

dependent climate sensitivity, ~T(t) is the perturbation of

the temperature relative to the temperature at time t 5
0, ~F(t) is the perturbation of the forcing relative to the

forcing at t 5 0 [i.e., ~T(0)5 ~F(0)5 0], and F(0) is the

radiative forcing imbalance at t 5 0. From this follows

the obvious relation

FIG. 13. (a) Dotted line is the forcing scenario corresponding to 1%yr21 increase in CO2 concentration starting in

1880. Solid curve is the historical forcing for 1880–2010 followed by 1%yr21 increase in CO2 concentration after

2010. Dashed line after 2010 is forcing kept constant at the 2010 level. (b) GMST evolution according to the two

response models with parameters given in Table 1 for the three forcing scenarios described for (a). Blue curves

indicate the exponential response model and red curves the scaling response model.
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Q0(0)5F(0) , (21)

which allows us to rewrite Eq. (20) in the form

S(t)5
~T(t)

~F(t)1Q0(0)2Q0(t)
. (22)

From the observation data used in Aldrin et al. (2012)

we could make crude linear trend approximations of

OHC, total forcing, and global temperature: Q0(t) 5
Q0(0), ~F(t)’ 0.03t Wm22, and ~T(t)’ 0.015t K, where

t is time after 1950 in units of years. Hence we have the

approximate expression for the climate sensitivity,

S(t)5
~T(t)
~F(t)

’ 0:5Km2W21 . (23)

Hence these crude trend estimates over the last six

decades yield results consistent with the existence of

an equilibrium climate sensitivity very close to the best

estimate of Aldrin et al. (2012). If we suppose, on the

other hand, that the linear trend approximation in

temperature is not quite correct, the picture may be

different. Consider a linearly increasing forcing as in

the future 1% CO2 increase scenario shown by the full

curve in Fig. 13a, but assume that the temperature

evolves according to the scaling response to this forc-

ing shown by the red full curve in Figs. 13b and 14a. By

inserting these data into Eq. (23) we obtain the time-

varying climate sensitivity shown in Fig. 14b (here the

time origin is chosen in year 2010). Using the tem-

perature evolution for the exponential response shown

by the blue curves in Figs. 13b and 14a yields the nearly

constant climate sensitivity given by the blue curve

in Fig. 14b. This demonstrates that the temperature

may increase according to the power law;tb/211 under

a linearly increasing forcing and a linearly increasing

OHC, provided stronger positive feedback mechanisms

take effect on longer time scales and raise the climate

sensitivity. In fact, this idea is just a time-domain state-

ment of the concept of a frequency-dependent sensi-

tivity that was formulated in section 3. The scenario of

1%yr21 increase in CO2 concentration continued 250

years into the future is a very extreme one, and corre-

sponds to a raise in concentration of more than one

order of magnitude. However, our results show that

within the framework of the scaling model, a scenario

where the global temperature increases by more than

10K while the OHC maintains a positive linear growth

rate, is consistent with only a moderate increase in S(t)

from 0.5 to 0.8. One important message from these

considerations is that a the introduction of a moderately

variable time-dependent climate sensitivity will make

the scale-invariant LRM response on time scales up

to several centuries consistent with energy balance

considerations.

8. Discussion and conclusions

We have in this paper considered linear models of

global temperature response and maximum-likelihood

estimation of model parameters. The parameter esti-

mation is based on observed climate and forcing records

and an assumption of additional stochastic forcing. This

modeling shows that a scale-invariant response is con-

sistent with the stochastic properties of the noisy com-

ponents of the data, whereas an exponential model is

not. This observation disagrees with Mann (2011), who

contends that the purely stochastic solution to the ex-

ponential response model [an AR(1) process] is con-

sistent with the global instrumental record. The basic

weakness in Mann’s paper is uncritical application of

built-in routines for estimation of the memory exponent

FIG. 14. (a) Global temperature evolution in response to the 1%yr21 CO2 increase forcing scenario, starting in

year 2010. (b) Evolution of the time-dependent climate sensitivity S(t) in response to this forcing scenario assuming

a linear increase in OHC corresponding to a net positive energy flux of 0.25Wm22. The time origin t5 0 is year 2010.

Blue curves indicate the exponential response model and red curves the scaling model.
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on time series that do not exhibit scaling properties

[such as the AR(1) process]. When the scaling proper-

ties are tested, as we do in Fig. 5b, the residuals of the

observed and exponentially modeled record are clearly

distinguishable. Mann argues that no ‘‘exotic physics’’ is

necessary to explain the persistence observed in the

global records. Our analysis, however, shows that the

exponential response model is insufficient to explain

the observed scaling properties. But the physics needed

to explain these delayed responses is not particularly

exotic, as it may be sufficient to take into account the

interactions between the ocean mixed layer and the

deep ocean that are observed in AOGCM simulations

(Held et al. 2010; Geoffroy et al. 2013).

The scaling model with parameters estimated from

the modern instrumental temperature and forcing re-

cord successfully predicts the large-scale evolution of

the Moberg reconstructed temperature record when the

Crowley forcing for the last millennium is used as input.

Solutions for the volcanic, solar, and anthropogenic

components of the Crowley forcing show that the model

ascribes most of the temperature decrease from the

MWP to the LIA to the volcanic component, while the

rise from the LIA to year 1979 is attributed to both solar

and anthropogenic forcing up until about year 1950 and

primarily to anthropogenic forcing after this time.

The temperature of the planetary surface (whose most

important component is the ocean mixed layer) is driven

by radiative forcing and energy exchange with atmo-

sphere and deep ocean, some of which can be modeled as

stochastic. Evenwhen themean energy flux to the surface

layer is constant in time the total energy content of the

system may vary, and if this variability is large on time

scales beyond a century it may have little meaning to

operate with the notion of an equilibrium climate sensi-

tivity. Thus, the long-range dependence in the climate

response implies that the equilibrium climate sensitivity

concept needs to be generalized to encompass a time

scale–dependent sensitivity that incorporates the effect of

increasingly delayed positive feedbacks. This may have

far-reaching implications for our assessment of future

global warming under strong anthropogenic forcing sus-

tained over centuries, as illustrated by the difference

between the projected warming according to the scaling

and exponential response models shown in Fig. 14a.

The great advantage of the response model approach

is that it eliminates the influence of correlation structure

of the forcing in the temperature signal, and reveals the

memory structure of the climate response. It reveals

a clean scaling of the residual temperature signal that is

maintained at least up to the scales that can be analyzed

with reasonable statistics in the millennium-long record,

which is a few hundred years.

The importance of the ‘‘background’’ continuum of

time scales in climate variability has been stressed by

Lovejoy and Schertzer (2013). In a short review of their

own work, Lovejoy (2013) shows results based on ap-

plication of their Haar structure function technique to

reanalysis, instrumental, and multiproxy temperature

records. For twentieth-century reanalysis local records

(758N, 1008W) they find very weak persistence (b ’ 0)

but a transition to b ’ 1.8 on longer time scales. For

instrumental global records they find a spectral plateau

of b ’ 0.8 on time scales up to a decade but the same

transition to b ’ 1.8 on longer time scales. For the

multiproxy NH records they find b ’ 0.8 and here the

transition appears after 5–10 decades. By similar analy-

sis of ice core data they also obtain b’ 1.8 on the longer

time scales, and argue that this transition constitutes

the separation between a ‘‘macroweather’’ regime and

a ‘‘climate’’ regime. The analysis presented here does

not support that such a transition in the scaling proper-

ties of internal variability takes place on decadal time

scales in global or hemispheric records. These scaling

properties are shown by the DFA fluctuation functions

of the residuals in Figs. 5b and 10b, and indicate b ’
0.8 scaling throughout the instrumental century-long

record and at least up to several centuries scale in the

millennium-long multiproxy record, respectively. The

transition on multidecadal time scale also fails to show

up in the detrended scaling analysis of proxy data in

Rybski et al. (2006) and Rypdal et al. (2013).We suggest

that the transition in global (NH) multiproxy data re-

ported by Lovejoy (2013) is a consequence of not dis-

tinguishing between forced and stochastic response

(alternatively, by not properly eliminating ‘‘trends’’

imposed by external forcing). A transition to a more

persistent climate regime may perhaps be identified on

millennium time scales, but it is an open and interesting

question whether the rise of b from a stationary (b, 1)

to a nonstationary regime (b. 1) is an actual change in

the properties of the climate response or an effect of

trends imposed by orbital forcing. However, the transi-

tion in scaling of local records from b ’ 0 to larger b

seems to reflect internal dynamics, since local records

exhibit (at least over land) very low persistence up to the

scales of a few decades that we can reliably estimate

from the reanalysis data. Further analysis by application

of the response model to local data may help to identify

the scale at which this transition in scaling of internal

dynamics takes place. Such a transition will naturally

take place at the scales where global, purely temporal

fluctuations start to dominate over spatiotemporal

fluctuations in the local records. For time scales longer

than the weather regime, such spatiotemporal fluctua-

tions are associated with the interannual, decadal, and
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multidecadal modes of the climate system, and hence we

would expect that this transition scale exceeds all the

characteristic time scales of these modes.

In some recent papers multiple regression models have

been constructed to assess the relative influence of vol-

canic, solar, and anthropogenic forcing components, in

addition to the ENSO signal. These have been used to

demonstrate that the post-2000 hiatus in global warming

disappears after the natural forcing and the ENSO signal

have been eliminated, and leaves an essentially linear

anthropogenic trend over the last few decades (Foster and

Rahmstorf 2011). Such methods have also been used for

prediction (Lean and Rind 2009). The problem with this

kind of statistical modeling is that the models contain

a large number of fitting parameters with a considerable

risk of overfitting, and that they lack any physical principle

that allows reduction of this number of free parameters.

For instance, the weight of different forcing components

and the delay time for the response to each of them are

left as free fitting parameters, while in the real world these

parameters are determined by physics that is to great

extent known. Our approach is also statistical, but it is

constrained by the physical idea of a linear response

function of a particular form. We use weights between

force components that are known, and we assume that the

response function (and hence the response time) to dif-

ferent forcings is the same. The parameters that are left to

be estimated statistically are only those that are not well

known from physical modeling. In the LRM response

model there are only two parameters that characterize the

response (m and b). In the two-box model there are four

parameters (Geoffroy et al. 2013). Thismeans that the risk

of overfitting is substantially reduced in the LRM model.

Yet a comparative evaluation of these twomodels against

AOGCM experiments should be done.

The deterministic response could be tested against

multimodel ensemble means with specified forcings. Such

means and the individual runs can be found for instance in

frequently asked questions (FAQ) section 10.1, Fig. 1 in

Stocker et al. (2013), for the ensembles from phases 3 and

5 of the CoupledModel Intercomparison Project (CMIP3

and CMIP5). The part of this figure that shows the global

temperature evolution for those ensembles for natural

and natural plus human forcing are shown in Figs. 15a and

15c. The corresponding response model results are shown

in Figs. 15b and 15d. There are striking similarities as well

as some interesting differences between the multimodel

ensembles and the response model ensembles. The over-

all shapes of the mean response (which in the response

model is equivalent to the deterministic response) are

very similar, and so are the overall variances in the two

ensembles. The response model gives a more accurate

description of the observed volcanic responses and the

observed hiatus over the last decade, which suggests that

the climate models to some extent underestimate the

strength of the long-range response. Neither model en-

semble means capture quite the observed hiatus, and the

reason for this seems to be the importance of the strongEl

Ni~no event of 1998, whichmakes the temperature curve in

the following decade appear more flat. Such an event is

FIG. 15. (a) Individual runs and ensemble means of the CMIP3 and CMIP5 ensembles with natural forcing only.

The black curves are global instrumental temperature records. (c) As in (a), but with natural and human forcing.

(b),(d) As in (a),(c), but for ensembles of realizations of the LRM response model. The black curves represent the

HadCrut4 instrumental record. Adapted from Stocker et al. (2013), FAQ 10.1, their Fig. 1.
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unpredictable in both model classes, but can appear by

chance both in individual climate model runs and in re-

alizations of the stochastic model. Hence, the hiatus ap-

pears well within the error bars of both model classes

and gives no indication that global warming has come

to a halt.

The large scatter of the individual climate model runs

relative to the ensemble means is described in the sto-

chastic response model as the response to the stochastic

forcing. In Figs. 5 and 10 we have analyzed this scatter

(the residual) in the observed and reconstructed surface

temperature, respectively, and found that they are well

described as a persistent fractional Gaussian noise. In

a recent paper (Østvand et al. 2014) we have in-

vestigated the LRM properties of the global surface

temperature in a number of millennium-long climate

model simulations. We consistently find persistent LRM

scaling in these models, both with historical forcing and

in control runs. Hence, the statistics of the internal

variability of global temperature as appearing as scatter

in model ensembles is well described by the stochastic

response model, even though the stochastic forcing term

has not been derived from first principles.
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APPENDIX A

Response Functions and Fractional Gaussian Noise

Processes defined by stochastic integrals on the formÐ t
2‘ G(t2 s) dB(s) are by construction zero-mean and

Gaussian. However, using the Itô isometry (Øksendal

2003), one observes that the process defined by Eq. (1) is

not well defined since the variancesE[X(t)2] are infinite.

For instance,

E[X(0)2]5

ð0
2‘

G(2s)2 ds

5

ð0
2‘

(2s)b22 ds51‘ . (A1)

For b 2 (1, 3), the divergence of the integral in Eq. (A1)

is due to the heavy tail of the Green’s function G(t) 5
tb/221, and in this case the problem can be resolved

by modifying the construction so that X(0) 5 0. The

modified construction

X(t)5

ð‘
0
(t2 s)b/221 dB(s)

1

ð0
2‘

f(t2 s)b/2212 (2s)b/221g dB(s) (A2)

is identical to representation of fBm of Mandelbrot and

van Ness (1968). For b 2 (21, 1) however, the integral in

Eq. (A1) diverges because of the singularity at t 5 0 of

the Green’s function, a problem that is not resolved by

the modification in Eq. (A2).

As with white noise, fGn cannot be defined as a

traditional-type stochastic process in continuous time,

but rather as a random signed measure. Just as the white

noise measure dB(t) defines a Brownian motion via in-

tegration, the fGn integrates to fractional Brownian

motion. In fact, if one accepts Eq. (A2) as a formal ex-

pression, then performing the integral
Ð t
0 X(t0) dt0 and

interchanging the order of integration yields

ðt
0
X(t0) dt0 5

b

2

ð‘
0
(t2 s)b/2 dB(s)

3
b

2

ð0
2‘

f(t2 s)b/22 (2s)b/2gdB(s) ,
(A3)

which is an fBm with self-similarity exponent h 5 (b 1
1)/2. This process is proportional to the standard h-self-

similar fBm Bh(t), which is defined as the zero-mean

Gaussian process with covariance E[Bh(t)Bh(s)]5 (t2h 1
s2h 2 jt 2 sj2h)/2. A well-defined version of Eq. (14) can

therefore be formulated as the integral equation

ðt
0
T(t0) dt0

5

ðt0
0

ðt
2‘

G(t2 s)F(s) ds dt01sm2(b11)/ 2B
(b11)/2(t) .

(A4)

Discretizations of Eq. (A4) are of the form

T5GF1 x , (A5)

where T 5 (T1, T2, . . . , Tn)
T (superscript T denotes

transpose) is the random vector representing the tem-

perature record and F 5 (F(0) 1 F1, . . . , F(0) 1 Fn)
T is

the deterministic component of the forcing [with F(0) as

a free parameter], that is, Ti 5 T(iDt) and Fi 5 F(iDt),
where Dt is the time resolution of the records. The ma-

trix G is defined from the Green’s function by Gij 5
G[(i2 j)Dt], and the vector x5 (x1, . . . , xn)

T is a discrete-

time fGn, that is, a Gaussian random vector with zero

mean and covariance,
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E[xixj]5
s ~T
2

2
f(ji2 jj1 1)b112 2ji2 jjb11

1 (ji2 jj2 1)b11g ,

with s2
~T
5 (Dt/m)b11s2.

APPENDIX B

Maximum-Likelihood Estimation

In discretized versions the dynamic–stochastic models

defined by Eqs. (14) and (A4) can be written as Eq.

(A5). For the exponential response model x is an AR(1)

process

xk11 5 axk 1f«k ,

where f5 s/C, a5 12 1/t, and «k are independent and

identically distributed (i.i.d.) Gaussian variables of unit

variance. In the scale-free model the process x is an fGn.

To emphasize the parameter dependence we denote

the AR(1) process by xC,s,t and the fGn by xm,s,b. In the

same way we denote the Green’s function byGC,t in the

exponential response model, and by Gm,b in the scale-

free response model.

By a simple change of variables the n-dimensional

probability density function (pdf) of the random vector

T is related to the pdf of x through

pT(T)5 px(T2GF) .

For temperature observations T the likelihood func-

tion for the exponential response model becomes

LfC,s, t,F(0)g5 px
C,s,t

(T2GC,tF) , (B1)

and for the scale-free response model:

Lfm,s,b,F(0)g5 px
m,s,t

(T2Gm,bF) . (B2)

We see that computation of these likelihoods essen-

tially entails computation of corresponding likeli-

hoods for AR(1) models and fGns. Computation of

likelihood functions for autoregressive processes is

straightforward using standard time series techniques.

Effective computation of the likelihood function for

fGns can be achieved using the Durbin–Levinson al-

gorithm for inverting the covariance matrix (McLeod

et al. 2007).

In this paper the parameters of the two models are es-

timated by maximizing Eqs. (B1) and (B2) numerically.
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