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ABSTRACT
Like other fundamental abstractions for high-performance
computing, search trees need to support both high concur-
rency and data locality. However, existing locality-aware
search trees based on the van Emde Boas layout (vEB-based
trees), poorly support concurrent (update) operations.

We present DeltaTree, a practical locality-aware concurrent
search tree that integrates both locality-optimization tech-
niques from vEB-based trees, and concurrency-optimization
techniques from highly-concurrent search trees. As a result,
DeltaTree minimizes data transfer from memory to CPU
and supports high concurrency. Our experimental evalua-
tion shows that DeltaTree is up to 50% faster than highly
concurrent B-trees on a commodity Intel high performance
computing (HPC) platform and up to 65% faster on a com-
modity ARM embedded platform.

Categories and Subject Descriptors
D.1.3 [Concurrent programming]: Parallel programming;
D.4.8 [Performance]: Measurements—performance evalu-
ation, concurrent performance; G.1.0 [General]: Parallel
algorithms—complexity measures, performance measures

Keywords
Performance evaluation; concurrent algorithms; data locality;
multi-core processors; memory systems

1. INTRODUCTION
The conventional van Emde Boas (vEB) layout based trees

are examples of locality-aware search trees found in several
research on cache-oblivious (CO) data structure [1–5].

The main feature of the vEB layout is that the cost of
any search is O(logB N) memory transfers, where N is the
tree size and B is the unknown memory block size in the CO
model [5]. As such, its search is cache-oblivious. The search
cost is optimal and matches that of B-trees. However, B-trees
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Figure 1: (a) New concurrency-aware vEB layout.
(b) Search using concurrency-aware vEB layout.

requires the memory block size B to be known in advance.
To accomplish optimal search cost, at any level of detail each
subtree in the vEB layout is stored in a contiguous block of
memory.

Although the conventional vEB layout benefits from data
locality, it poorly supports concurrent update operations.
Inserting (or deleting) a node at position i in the contiguous
block of memory storing the tree may trigger a restructure of
a large part of the tree. Even worse, we will need to allocate
a new contiguous block of memory for the whole tree if the
previously allocated block of memory for the tree runs out of
space [4]. Note that we cannot use dynamic node allocation
via pointers since at any level of detail, each subtree in the
vEB layout must be stored in a contiguous block of memory.

2. RELAXED CO MODEL AND
CONCURRENCY-AWARE VEB LAYOUT

In order to make the vEB layout suitable for highly con-
current data structures with concurrent update operations,
we introduce a novel concurrency-aware dynamic vEB layout.
Our key idea is that if we know an upper bound UB on the
unknown memory block size B, we can support dynamic
node allocation via pointers while maintaining the optimal
search cost of O(logB N) memory transfers without knowing
B (cf. Lemma 2.1). This idea is based on that in practice it
is not feasible to keep the vEB layout in a contiguous block
of physical memory greater than some upper bound set by
the underlying system physical page size (frame size) and
cache-line size.

Figure 1a illustrates the new concurrency-aware vEB layout
based on the relaxed CO model. The memory transfer cost
for search operations in the new concurrency-aware vEB
layout is the same as that of the conventional vEB layout (cf.
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Figure 2: Performance comparison using 222 initial
values on an Intel HPC platform with dual Intel
Xeon E5-2670 CPUs.

Lemma 2.1). However, the concurrency-aware vEB supports
high concurrency for update operations.

We define relaxed cache-oblivious algorithms as cache-
oblivious (CO) algorithms with the restriction that an upper
bound UB on the unknown memory block size B is known
in advance. As long as an upper bound on all the block
sizes of multilevel memory is known, the new relaxed CO
model maintains the key features of the original CO model [5].
This enables algorithm designs that can utilize fine-grained
data locality in the multilevel memory hierarchy of modern
architectures.

Lemma 2.1. For any upper bound UB on the unknown
memory block size B, a search in a complete binary tree
with the concurrency-aware vEB layout achieves the optimal
memory transfer O(logB N), where N and B are the tree
size and the unknown memory block size in the CO model,
respectively.

Proof. (Sketch) Figure 1b illustrates the proof. Let k be
the coarsest level of detail such that every recursive subtree
contains at most B nodes. Since B ≤ UB , k ≤ L, where L is
the coarsest level of detail at which every recursive subtree
(∆Nodes) contains at most UB nodes. Consequently, there
are at most 2L−k subtrees along the search path in a ∆Node
and no subtree of depth 2k is split due to the boundary of
∆Nodes. Namely, triangles of height 2k fit within a dashed
triangle of height 2L in Figure 1b.

Because at any level of detail i ≤ L in the concurrency-
aware vEB layout, a recursive subtree of depth 2i is stored
in a contiguous block of memory, each subtree of depth 2k

within a ∆Node is stored in at most two memory blocks of
size B (depending on the starting location of the subtree in
memory). Since every subtree of depth 2k fits in a ∆Node
(i.e., no subtree is stored across two ∆Nodes), every subtree
of depth 2k is stored in at most two memory blocks of size
B.

Since the tree has height T , dT/2ke subtrees of depth
2k are traversed in a search and thereby at most 2dT/2ke
memory blocks are transferred.

Since a subtree of height 2k+1 contains more than B nodes,
2k+1 ≥ log2(B + 1), or 2k ≥ 1

2
log2(B + 1).

We have 2T−1 ≤ N ≤ 2T since the tree is a complete
binary tree. This implies log2 N ≤ T ≤ log2 N + 1.

Therefore, the number of memory blocks transferred in a
search is 2dT/2ke ≤ 4d log2 N+1

log2(B+1)
e = 4dlogB+1 N + logB+1 2e

= O(logB N), where N ≥ 2.
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Figure 3: Performance comparison using 221 initial
values on an ARM platform with a Samsung Exynos
5410 octa-core ARM CPU.

3. CONTRIBUTIONS
We devised a new relaxed cache-oblivious model and a

novel concurrency-aware vEB layout that makes the vEB lay-
out suitable for highly-concurrent data structures even with
update operations (cf. Figure 1). The concurrency-aware
vEB layout supports dynamic node allocation via pointers
while maintaining the optimal search cost of O(logB N) mem-
ory transfers without knowing the exact value of block size
B (cf. Lemma 2.1).

Based on the new concurrency-aware vEB layout, we de-
veloped a new locality-aware concurrent search tree called
DeltaTree (∆Tree).

We experimentally evaluated1 ∆Tree on a commodity Intel
HPC platform (cf. Figure 2) and an ARM embedded platform
(cf. Figure 3). ∆Tree is up to 50% and 65% faster than
CBtree [6], a highly-concurrent B-tree, on Intel HPC and
ARM platforms, respectively.
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1Using 5 million operations in two micro-benchmarks: 100%
search and 5% update (95% search) using random numbers.
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