
A

Fireflies: A Secure and Scalable Membership and Gossip Service

HÅVARD D. JOHANSEN, UIT The Arctic University of Norway
ROBBERT VAN RENESSE, Cornell University
YMIR VIGFUSSON, Emory University and Reykjavı́k University
and DAG JOHANSEN, UIT The Arctic University of Norway

An attacker who controls a computer in an overlay network can effectively control the entire overlay network

if the mechanism managing membership information can successfully be targeted. This paper describes
Fireflies, an overlay network protocol that fights such attacks by organizing members in a verifiable pseudo-

random structure so that an intruder cannot incorrectly modify the membership views of correct members.

Fireflies provides each member with a view of the entire membership, and supports networks with moderate
total churn. We evaluate Fireflies using both simulations and PlanetLab to show that Fireflies is a practical

approach for secure membership maintenance in such networks.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications

General Terms: Design, Performance, Security

Additional Key Words and Phrases: Byzantine failures, gossip, membership management, overlay network

1. INTRODUCTION
Overlay networks are essential to several Internet services. For instance, Spotify [Kre-
itz and Niemelä 2010], a popular commercial music streaming application, uses an
unstructured Gnutella-like [Chasin 2001] Peer-to-Peer (P2P) overlay to offload data
distribution from its central music repositories to the client machines; BitTorrent,
a popular file-sharing application, uses a P2P Distributed Hash Table (DHT) struc-
ture [Wolchok and Halderman 2010] to map file identifiers to swarms of peers sharing
those files; and Tor [Dingledine et al. 2004] uses an overlay of relay servers to provide
private and secure Internet communication.

Several papers have discussed the problem of Byzantine failures within overlay net-
works, including those of Douceur [2002], Sit and Morris [2002], Srivatsa and Liu
[2004], Bortnikov et al. [2008], and Urdaneta et al. [2011]. A key observation is that
errors in the mechanism that maintains membership information can cripple any
higher-level effort to provide fault-tolerance, particularly if induced systematically by
a hostile intruder attacking the system [Singh et al. 2004]. Possible faults or attacks
include falsely reporting correct members as crashed, falsely reporting crashed mem-

This paper is based on the work presented in the 1st ACM SIGOPS EuroSys Conference [Johansen et al.
2006] and Johansen’s Ph.D dissertation [2007].
This work was supported in part by the Norwegian Research Council projects 231687/F20 and 174867;
the DARPA/IPTO SRS program; the AFRL/Cornell Information Assurance Institute; NSF grant 0430161;
DARPA grant FA8750-10-2-0238; grant-of-excellence #120032011 from the Icelandic Research Fund, and
funds from Emory University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0734-2071/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Håvard D. Johansen et al.

bers as live, and biasing the overlay topology so that correct clients unknowingly prefer
communicating with the attacker, a so-called eclipse attack [Singh et al. 2004].

These security and reliability problems are a major obstacle to deploying new In-
ternet applications based on overlay networks. For example, the DPoll protocol relies
on an overlay network to provide decentralized polling for social networks [Guerraoui
et al. 2012], but cannot be deployed without a secure overlay substrate. Many appli-
cations would benefit from deploying P2P key-value stores, such as Cassandra [Lak-
shman and Malik 2010] and Dynamo [DeCandia et al. 2007], but such systems cannot
survive even simple attacks.

In this paper, we describe an overlay network called Fireflies,1 which combines full
membership with a pseudo-random structure to provide a novel and practical trade-
off between tolerance to Byzantine faults and scalability. Fireflies provides its correct
members with a membership view that includes all members that have been correct for
sufficiently long and excludes all members that have stopped executing for sufficiently
long. Fireflies also provides a low-diameter communication graph on the members that
guarantees, with high probability, that the subgraph of correct members is connected.
This graph is ideally suited for gossiping among the correct members.

Membership protocols that maintain full views have been shunned in the past as
building blocks for P2P file-sharing networks and DHT services because the rate of
membership events will likely grow linearly with the number of members, possibly
leading to unmanageable volumes of network traffic. However, by maintaining full
membership views, applications built on top of Fireflies can send messages directly
to their destinations. We can thus avoid the complex techniques required for secure
and reliable overlay routing [Urdaneta et al. 2011], and the overlay needs not be re-
structured dynamically to run-time metrics like network proximity [Gummadi et al.
2003]. Many applications have relatively static membership and thus maintaining full
membership views is both possible and desirable [Lakshman and Malik 2010; DeCan-
dia et al. 2007; Rodrigues and Blake 2004; Kreitz and Niemelä 2010; Gupta et al.
2003].

The current paper extends a prior publication by Johansen et al. [2006], providing
significantly more details on the mechanics, analysis, and implementation of the pro-
tocol. The exposition benefits from practical experience with building applications on
Fireflies.

2. BACKGROUND
An overlay network is a virtual packet processing and routing substrate built on top of
some existing network infrastructure like the Internet or, recursively, on top of another
overlay network. An overlay network is constructed from a subset of the members in
the underlying network. Its links are logical in that they can be made up of multiple
links in the underlying network and exist only as part of the overlay state. Overlay net-
works are commonly represented as a graph where the vertices are member processes
and the edges are communication links.

2.1. System Model
Overlays are dynamic and processes may join the overlay becoming members, and
existing members may permanently leave. Each member is either correct, crashed,
or corrupt. Correct members faithfully execute the specified overlay protocol, while
crashed members do not execute any protocol steps. Corrupt members are not bound

1Fireflies, the bioluminescent family of winged beetles, model not only the on/off behavior of members, but
like Byzantine members they are also known for their aggressive mimicry in order to dupe and devour
related species.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:3

by the protocol and might execute arbitrary instructions. For convenience, we refer to
members that are either correct or crashed as honest, and to members that are correct
or corrupt as live. Members that are not correct are often called Byzantine. Note that
crashed members are considered Byzantine, but not corrupt.

Members may switch between being live and crashed, which is commonly referred to
as churn. Correct members may be unreachable and appear crashed to other members
due to transient network outages. Corrupt members can disguise themselves as correct
members by executing the protocol, or as crashed members by not executing at all.
Generally, correct members cannot determine which members are corrupt unless they
reveal themselves as such by sending messages that prove that they are not following
the protocol.

Every correct member m has a unique identifier m.id , a view m.view containing
the identifiers for other members participating in the overlay network, and a set of
members believed to be live m.live ⊆ m.view . Assuming m is correct,

—m′.id ∈ m.live means that m considers that m′ was live, at least until recently. The
converse,

—m′.id /∈ m.live, implies that m considers m′ to be crashed, at least until recently.

Also, m has a set of neighbors, m.neighbors, which is a subset of m.live. In this paper,
we assume that each correct member m can connect to every other correct member in
m.neighbors. This assumption can be relaxed, but calculated tolerance thresholds have
to be adjusted accordingly. The views and set of neighbors of correct members have the
following properties with high probability:

Agreement. If a member m is in the view of some other correct member m′, then,
within bounded time, m will also be in the views of every other correct member.
Validity. The view includes the identifiers of all members that have been correct
sufficiently long, and excludes the identifiers of all members that have been crashed
sufficiently long (sufficiently long will be made more precise below).
Connectivity. The set of correct members form a connected subgraph of neighbors.
Scalability. The number of neighbors is logarithmic in the size of the membership,
and the diameter of the neighbor graph is logarithmic in the size of the membership.

2.2. Attack Model
We make few assumptions on the capabilities of an attacker. Corrupt members can
deviate arbitrarily from the Fireflies protocol. They can collude and share state, and
they can also know the state of honest members. In order to create a protocol that can
work in the presence of corrupt members, we make the following basic assumptions:

— Corrupt members do not have sufficient computational power to break cryptographic
building blocks. In particular, we assume that they cannot forge public key certifi-
cates or public key signatures of honest members.

— Trivial Denial-of-Service (DoS) attacks like flooding can be detected and suppressed
using techniques such as port randomization, careful resource management, and rate
limiting [Badishi et al. 2006].

— Correct members have access to clocks running with a bounded difference to real
time.

— Correct members can exchange and process messages within a known bounded time
interval.

Further, we do not consider attacks on the systems and services co-located with
the overlay network. This includes attacks that exhaust local bandwidth by targeting
other services located on the same subnet as one or more overlay members, attacks on

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Håvard D. Johansen et al.

the software repository, the human operators, and the social structures within which
the overlay network resides.

If an attacker is able to acquire control over a large number of identities, an overlay
is at risk of being compromised. The forging of multiple identities in order to gain
control of a system is often referred to as a Sybil attack [Douceur 2002]. Overlays are
susceptible to such attacks unless we limit the fraction of corrupt members within the
overlay network as a whole, as well as within any subset of the members selected for
particular tasks. For instance, in OceanStore [Kubiatowicz et al. 2000], the number of
Byzantine members (that is, crashed or corrupt) within each primary replication group
must be less than one-third.

Various approaches have been proposed for dealing with Sybil attacks, including
packet latency triangulation [Bazzi and Konjevod 2005], credit payment schemes on
top of social networks [Viswanath et al. 2012], client puzzles [Juels and Brainard
1999], and physical artifacts like smart cards [Druschel and Rowstron 2001]. Although
these systems make it harder for an attacker to accumulate and control a large num-
ber of overlay-network identities, they cannot prevent an attacker from joining the
overlay.

In this paper we assume some oracle Certificate Authority (CA) service that assigns
identities to members so that there is a bounded probability, pcorrupt, that any ran-
domly chosen live member is corrupt. This is a stronger condition than a bound on
the probability that any member is corrupt. The weaker condition is not sufficient as
the situation where most honest members are crashed, while most corrupt members
remain live is similar to a Sybil attack. Nonetheless, the assumption that among all
live members only a fraction is corrupt is reasonable, particularly since we do not limit
the fraction of crashed members among all members.

3. MEMBERSHIP MAINTENANCE
Fireflies organizes members into a pseudo-random mesh structure that dictates neigh-
bor selection. To maintain this structure, members monitor one another using an adap-
tive crash detection protocol and issue accusations whenever a member is suspected to
have crashed. When a member m receives an accusation for some other member m′, m
waits a time period of length 2∆ before removing m′ from m.live, where ∆ is a prob-
abilistic upper bound on end-to-end latency of notices sent on the overlay. Should m′

receive an accusation about itself, then m′ has the opportunity to issue a rebuttal be-
fore the timeout of 2∆ expires, which will invalidate any previous accusations for m′.
Fireflies strives to make the set of accusations empty for correct members and non-
empty for crashed members.

Members broadcast recent accusations and rebuttals using a secure gossip channel.
Correct membership depends on the ability of this channel to deliver messages to cor-
rect members within ∆ time, even in the presence of corrupt members. In turn, Fire-
flies depends on the correct membership views to ensure that gossip reaches all correct
members with high probability. To navigate the narrative complexity of this circular
dependency, the remainder of this section describes the mechanisms and rules govern-
ing membership maintenance, assuming the existence of some appropriate broadcast
channel. Section 4 describes how Fireflies constructs its gossip mesh.

3.1. Data Structures
Each correct member m maintain three local data sets: m.notes, m.accusations, and
m.timeouts. Correct members exchange notes and accusations with their neighbors
through gossip so that every member eventually will have the same set. The set of
timeouts is kept local to each member. The following data structures are used:

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:5

Cm (Certificate) N i
m (Note) A[m]im′ (Accusation) T [m]im′ (Timeout)

public key Cm Cm′ (accuser) Cm′ (observer)
network address i’th epoch N i

m (accused) N i
m (accused)

mask timestamp
CA sign. Cm sign. Cm′ sign.

Fig. 1: Data types

Certificate. Public-key certificates are used to uniquely identify member processes.
A certificate Cm = (public key,address, signature) binds m’s public key to the network
address where it can be reached. In practice, other fields like start and expiry dates
are also included in certificates, but their function are not required for the description
of our protocol and will therefore be omitted here. To be valid, the binding must be
signed by the trusted CA oracle. By assumption, honest members never reveal their
private keys.

Note. A note N i
m = (Cm, epoch,mask, signature) is the i’th signal from member m

that it is alive, where Cm is the certificate for m, epoch is a monotonically increasing
number, and mask is a bitmap used to prevent repeated false accusations, which will
be described later. The epoch numbers impose a total ordering of the notes from each
member such that N i

m > N j
m ⇔ i > j. In this case, we say that N i

m is more recent
than N j

m. When clear from the context, we will use the notation Nm to denote the most
recent note of m observed by some member. The set m.notes of a correct member m
eventually holds the most recent note for each participating honest member in the
overlay.

Accusation. An accusation A[m]im′ = (Cm′ ,N i
m, signature) states that member m′

suspects that some other member m has crashed, andN i
m is the most recent note for m

known tom′. The accusation is signed with the private key ofm′. The setm.accusations
of a correct memberm eventually holds entries for each accused member in the overlay.

Timeout. A timeout T [m]im′ = (Cm′ ,N i
m, timestamp) indicates the time when member

m′ first observed an accusation for note N i
m of member m. The set m.timeouts of a cor-

rect member m contains at most one entry for each member in the overlay. A summary
of these data structures is provided in Figure 1.

3.2. Data Validity Rules
Fireflies defines the following set of rules that a correct member follows to determine
the validity of each data item it has:

RULE 1 (CORRECT SIGNATURES). Note N i
m or accusation A[m′]im is only valid if it

is signed correctly with the private key for Cm, and Cm is correctly signed by a common
trusted CA.

RULE 2. Note N i
m is only valid if it is the most recent observed note from m.

RULE 3. Accusation A[m]im′ is only valid if the contained note N i
m is valid.

RULE 4. Timeout T [m]im′ is only valid if there exists a valid accusation A[m]im′ .

In addition, members adhere to the following decrees:

RULE 5 (REBUTTALS). A correct member m, upon receiving a valid accusation
A[m]im′ for its own note, will immediately create and gossip a new note N i+1

m . This note
will eventually invalidate any previous accusations for m at all other correct members.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Håvard D. Johansen et al.

Fig. 2: A Fireflies membership ring

Due to the probabilistic upper bound ∆ on broadcasting messages in our gossip pro-
tocol, as will be discussed in Section 4, a correct member m will receive any valid ac-
cusation A[m]im′ within ∆ time and, following Rule 5, issue a rebuttal N i+1

m . With high
probability, this rebuttal will be received by all correct member within at most 2∆ time
since A[m]im′ was issued. Hence, no correct member m′ will have a timer T [m]im′ that
is more than 2∆ old. If m had indeed crashed, no rebuttal to A[m]im′ would be issued.
This gives us the following definition for determining crashes:

Definition 3.1 (Crashes). A correct member m considers member m′ crashed if, and
only if, m has a local timeout T [m′]im that is valid according to Rule 4 and older than
2∆. Otherwise, m considers m′ live.

To attack this protocol, a corrupt member might refrain from issuing accusations
for crashed members in an attempt to keep them in views of correct members. Con-
sequently, we must make sure that all members are monitored by at least one correct
peer member, a so-called monitor. However, there is a network overhead associated
with monitoring so we also want to minimize the number of monitors assigned to each
member. We also have to prevent corrupt members from increasing network load by
submitting frequent accusations about correct members. This is a complicated issue
because correct members might also accidentally accuse other correct members due to,
for instance, transient link failures. Thus, not every false accusation is from a corrupt
member. In the following sections we will describe how Fireflies implements monitor-
ing to resolve these issues.

3.3. Membership Rings
To assign monitoring responsibilities, Fireflies organizes all members in a pseudo-
random mesh structure made up of k membership rings. Each such ring is a subgraph
of the mesh in which each member m has exactly two other neighbors (assuming there
are at least three members in the overlay). More formally, a membership ring r is
characterized by the pair (M, id) whereM represents the set of members and id is a
unique ring identifier known to all members. The set of edges connecting the members
in r is derived deterministically from M and id . For this, we impose a total ordering,
≺r, on the members, which is specific to each ring r. The ordering function H is spec-
ified by applying a Secure Hash Algorithm (SHASH) on the concatenation (‖ symbol)
of the members’ identities and ring identity in the following manner:

H(m, r) = SHASH(m.id ‖ r.id) (1)

The SHASH function is required to provide a large address space with a low probability
of collision. Hence, H defines a total ordering on the set of members that is different
than the ordering of their identities. Given the two members m and m′, the ordering is
defined as:

m ≺r m′ ⇔ H(m, r) < H(m′, r) (2)

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:7

Fig. 3: Fireflies mesh with three rings

There is an edge in r between all members that are adjacent by this ordering. Also,
because ≺r is not circular, we include an edge between the highest member and the
lowest member. More formally, there exists an edge from m to m′ if and only if m ≺r m′
and there exists no member m′′ such that m ≺r m′′ ≺r m′. If m �r m′, then there exists
an edge between them if and only if there is no member m′′ such that m′′ �r m and no
member m′′′ such that m′′′ ≺r m′. This results in a 2-connected Harary graph [Harary
1962], or a ringlike structure as seen in Figure 2.

In each ring r we define the following relations:

— successorr(m) = m′ We say thatm′ is the successor ofm in ring r if there exists an
edge between m and m′ and either m ≺r m′ or there exists no m′′ such that m′′ �r m.
Each member has exactly one successor in r.

— predecessorr(m) = m′ We say that m′ is the predecessor of m in ring r if there
exists an edge between m and m′ and either m �r m′ or there exists no m′′ such that
m′′ ≺r m. Each member has exactly one predecessor in r.

— rankr(m,m
′) = x The rank relation adds transitive properties to the successor

relationships so that there are exactly x successor edges connecting m and m′ in ring
r. In this case, we may also say that m′ is m’s x’th successor.

As an example, consider the seven members A through G in Figure 2, each mapped
by the secure hashing function to a pseudo-random position in the circular address
space of the ring r. Then the successor of B is C since C is the next clockwise member
from B. We also have rankr(B,D) = 3 since there are exactly three successor edges
between B and D.

By combining k rings, each with a different ring identifier, each member m will be
assigned up to k pseudo-random predecessors and up to k pseudo-random successors.
By having each member monitor its successors in this set of rings, we can assign up
to k pseudo-random monitors to each member. The number of rings, k, can be adjusted
to trade attack resilience with network overhead. As an example, consider the seven
members A through G in Figure 3, securely hashed into three rings. The successors of
B, one for each ring, are {C,G,E}, and its predecessors are {A,F,D}.

Due to the randomization of the H function and the assignment of random member
identities using a trusted CA, each neighbor of memberm is assumed to have a uniform
and independent probability pcorrupt of being corrupt. Hence, the probability on the
number of corrupt monitors of m has a binomial distribution.

Let X denote the binomial distributed random variable of the number of correct
monitors of m in a mesh of k rings. The probability P [X = t] that m has exactly t out
of k corrupt monitors is given by the binomial probability density function:

P [X = t | k] =

(
k

t

)
pcorrupt

t(1− pcorrupt)
k−t, t = 0, 1, . . . , k (3)

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Håvard D. Johansen et al.

The probability of a member m having no correct monitor can then be found by setting
x = k, which gives

P [X = k | k] =

(
k

k

)
pcorrupt

k(1− pcorrupt)
k−k = pcorrupt

k (4)

For example, if k = 7 rings are used and pcorrupt = 0.10, then the probability of m
having no correct monitor becomes 10−7. Hence, even a few rings can ensure that each
member has at least one correct monitor with high probability. A single correct monitor
is sufficient to ensure that ifm crashes, it will eventually be detected and subsequently
excluded from the views of correct members. However, having a large number of rings
does not preventm from having corrupt monitors assigned to it. Indeed, the probability
of this happening increases with the number of rings:

P [X ≥ 1 | k] = 1− P [X = 0 | k] = 1− (1− pcorrupt)
k (5)

In the above example with k = 7 and pcorrupt = 0.10, the probability of m having a
corrupt monitor becomes 0.523.

3.4. Disabling Corrupt Monitors
Any false accusations of correct members will be rebutted and therefore does not alter
the views of correct members. Nevertheless, a corrupt member can repeatedly accuse
those members that it is assigned to monitor in order to increase system load and
execute a DoS attack. To deal with this, Fireflies allows each memberm to disable rings
with misbehaving predecessors using the mask field in its note. This must, however,
be done in such a manner that m cannot, intentionally or unintentionally, disable all
its correct monitors, or m could end up having only corrupt monitors.

To solve this, we impose an upper limit on the number of disabled rings. Let k = 2t+1
where t is the maximum number of corrupt monitors that some memberm can tolerate.
Next, allow m to disable monitoring in t rings. Then, m can disable all of its corrupt
monitors. At the same time, even if m disables t correct monitors, at least one correct
monitor remains. For instance, given 7 rings, m can tolerate having up to 3 corrupt
monitors. After disabling 3 monitors, m still has 4 active monitors, whereof at least
one is correct. This gives us the following additional rules:

RULE 6. A noteN i
m is only valid if the contained mask bitmap is of length k = 2t+1

and at most t of the bits are disabled.

RULE 7. An accusation A[m]im′ is only valid in ring r = (M, id) if m ∈ M and the
bit corresponding to the identifier id in the mask field of N i

m is enabled.

In general, given k = 2t+1 rings, a natural question is to estimate the likelihood that
m winds up with a majority of corrupt monitors. We assume that all of m’s neighbors
have been assigned independently and that each is corrupt with probability pcorrupt.
Let Xmi ∈ {0, 1} for i = 1, 2, . . . , k be random indicator variables such that Xmi = 1 if
neighbor i of m is corrupt, and Xmi = 0 otherwise. Define Xm =

∑k
i=1Xmi to count the

number of corrupt neighbors of m.

THEOREM 3.2. Let 0 < pcorrupt < 1/2. The probability that m has a majority of
corrupt monitors is P [Xm ≥ t + 1] < exp (−O (k)). If k = Ω(logN) then the expected
number of nodes that have a majority of corrupt neighbors is O(1).

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:9

PROOF. Let µm = E[Xm] = k × pcorrupt. We will use the following version of the
Chernoff-bound on the upper tail of sums of independent random variables:

P [Xm ≥ (1 + δ)µm] ≤ exp

(
−δ

2 × µm
2 + δ

)
for δ > 0 (6)

Note that k
2 < t+ 1, and so that P [Xm ≥ t+ 1] < P

[
Xm ≥ k

2

]
. By setting

δ =
1

2pcorrupt
− 1,

we have k/2 = (1 + δ)µm = (1 + δ)k × pcorrupt.
Note that the assumption 0 < pcorrupt < 1/2 in our theorem implies δ > 0 as required

by the Chernoff-bound. We can therefore substitute for δ and µm in (6) to obtain

P [Xm ≥ t+ 1] < P [Xm > k/2] ≤ exp

−
(

1
2pcorrupt

− 1
)2
k × pcorrupt

2 + 1
2pcorrupt

− 1


= exp

(
−k ×

(2pcorrupt − 1)2

4pcorrupt + 2

)
Let us call a node that has a majority of corrupt neighbors an unfortunate node. The

bound above shows that the probability of a node being unfortunate is exponentially
small in k, the number of rings. We proceed to bound the expected number of unfor-
tunate nodes Z as we vary k. This calculation will indicate how our system should be
configured at large scales. Let Zm ∈ {0, 1} for m = 1, . . . , N be a random variable de-
noting whether node m is unfortunate (Zm = 1) or not. Then Z =

∑N
m=1 Zm. It follows

that

E[Z] =

N∑
m=1

E[Zm] =

N∑
m=1

P [Xm > k/2] < N × exp

(
−k ×

(2pcorrupt − 1)2

4pcorrupt + 2

)
.

Thus if we impose the condition that

E[Z] < c, (7)

for some configuration constant c > 0, we obtain that

exp

(
−k

(2pcorrupt − 1)2

4pcorrupt + 2

)
<

c

N

k
(2pcorrupt − 1)2

4pcorrupt + 2
> ln

(
N

c

)
and thus

k > ln

(
N

c

)
4pcorrupt + 2

(2pcorrupt − 1)2
= Ω(logN). (8)

In other words, the expected number of unfortunate nodes is constant with c when the
number of rings k is logarithmic in N .

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Håvard D. Johansen et al.

(a) Valid accusations with crashed members (b) Recovery may invalidate accusations

Fig. 4: Example of valid and invalid accusations

The case where no node is unfortunate is of particular interest. Based on the calcu-
lations above, we can obtain the following lower bound on k. Since

P [Z = 0] =

N∏
i=1

(1− P [Zm > k/2]) >

(
1− exp

(
−k ×

(2pcorrupt − 1)2

4pcorrupt + 2

))N
we obtain that P [Z = 0] > ε when

1− exp

(
−k ×

(2pcorrupt − 1)2

4pcorrupt + 2

)
> ε1/N

or

k ≥
4pcorrupt + 2

(2pcorrupt − 1)2
ln

(
1

1− ε1/N

)
≥

4pcorrupt + 2

(2pcorrupt − 1)2
ε1/N . (9)

3.5. Skipping Crashed Members
As we have not bounded the probability that a member is crashed, all predecessors
of a member may be crashed with non-negligible probability. In order to allow such
members to be accused in case they crash, a member must be able not only to accuse its
immediate successor in each ring, but must also be able to make accusations skipping
over potentially crashed successors.

We therefore allow members not only to accuse their immediate successors, but also
the lowest ranked live member in each ring. This gives us the following rule:

RULE 8. An accusationA[m′]im is only valid in ring r if there is no other live member
m′′ such that rankr(m

′,m′′) > rankr(m
′,m).

In Figure 4a, we illustrate how one of the members observes a group with 7 members,
A through G, using k = 3 rings. For simplicity we ignore ring deactivation. Given that
the four members A, B, C, and G have crashed so that they cannot issue rebuttals,
then the accusations A[A]F , A[B]A, A[C]F , and A[G]D, shown as solid arrows in the
figure, will all eventually become valid for the following reasons:

—A[A]F is valid because F is the immediate predecessor of A in rings 1 and 2.
—A[B]A is valid because A is the immediate predecessor of B in ring 1. Note that

accused members are not excluded from issuing accusations, so A[B]A is valid even
though A is considered crashed.

—A[G]D is valid when the timer T [B]m for B expires at member m, making D the
highest ranked live monitor for G in ring 2.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:11

—A[C]F is valid since F is the immediate predecessor of C in ring 3. Also, when TA
expires then F is the highest ranked live successor of C in ring 2, and when both TA
and TB expires it is similarly the highest ranked successor in ring 1.

One complication from Rule 8 is that the reception of a note N j
m′ might not only

invalidate any previous accusations A[m′]im where i < j. Since the rebuttal implies
that m′ is no longer considered crashed, then any previous accusations A[m′′]m valid
in ring r is invalidated in that ring if rankr(m

′′,m) < rankr(m
′′,m′). If A[m′′]m is no

longer valid in any rings then it must be discarded.
To illustrate this, consider the situation in Figure 4b where member B recovers and

issues a rebuttal. Then the following invalidation occurs, shown as dashed arrows in
the figure:

—A[B]A becomes invalid because of the new note from B.
—A[G]D becomes invalid since B is now considered live and is higher ranked than D

in ring 2 (i.e., rank2(G,D) < rank2(G,B)) and the accusation is not valid in any other
ring. Consequently there are no valid accusations for G, and it is considered live until
it is correctly accused by either B or E.

—A[C]F is valid as it is still valid in ring 3. However, the accusation becomes invalid in
ring 1 and 2 due to B recovering.

This process of rechecking accusations must be conducted whenever a member m′
transitions from a crashed to a live state or is added to the overlay. The invariant
of Rule 8 limits the set of potential invalid accusations A[m′′]m to any successors m′′
of m′ up to and including the first live one in each ring r. Furthermore, only those
accusations where rankr(m

′,m′′) > rankr(m,m
′′) need to be considered. This effect

cascades if the invalidation of A[m′′]m results in m′′ transitions from a crashed to a
live state. In this case, the process of rechecking accusations must be conducted in the
context of m′′ as well.

Allowing members only to skip over crashed members rather than accused members
limits the rate at which corrupt members can make false accusations to k/2∆. How-
ever, it will also make data propagation between correct members more complicated
and less efficient as agreement on which accusations are valid will depend upon the
2∆ timeout. In practice, gossip-based dissemination schemes as used in Fireflies will
take care of this complication, but can result in accusations being sent multiple times
between members.

3.6. Protocol Summary
We can summarize the Fireflies overlay maintenance protocol in the following steps:

— Memberm suspects memberm′ of having crashed. On each ring,mmonitors the
lowest ranked live successor m′ for which m can issue a valid accusation according to
Rule 8 and Rule 7. Should m suspect that m′ has crashed, then it creates and signs
an accusation A[m′]

i

m, where N i
m′ is the most recent note for m′ known to m, and

subsequently gossips this to the other members.
— Member m receives a note N i

m′ for member m′. Member m first checks that the
received note is correctly signed according to Rule 1 and has a correct mask according
to Rule 6. If not, the note is discarded. If m does not already have a note for m′, then
m adds N i

m′ to its notes set and considers m′ a new live member. If m has a note
N j
m′ where j > i, then the received note is discarded since it is obsolete according to

Rule 2. If j = i, then m already knows about this note and needs to do nothing. If
j < i, then the received note is more recent. Member m then updates its state with
the new noteN i

m′ and discards the old note. Any previous accusations for m′ will then

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Håvard D. Johansen et al.

become invalid, due to Rule 3, and any previous timeouts T [m′]jm become invalid due
to Rule 4. If m′ was previously considered crashed, then m may have accusations
for other members that now are invalid according to Rule 8. These accusations are
removed as well.

— Member m receives an accusation A[m′]im′′ for m′. Member m first checks that
the received accusation is correctly signed according to Rule 1 and has a valid and
recent note according to Rule 3. If not, the accusation is discarded. If m′ = m, then m
replaces its note with a new one to act as a rebuttal according to Rule 5, which is sub-
sequently gossiped to the other members. If m 6= m′ and m already has an accusation
for m′ on the same rings as the new accusation, then m replaces its accusation only
if the new one is from a higher ranked accuser. Otherwise m accepts the accusation
and sets the removal timer T [m′]im if not set earlier.

— The removal timer for T [m′]im expires. Member m considers m′ to have crashed.

4. DATA DIFFUSION
Membership maintenance in Fireflies requires a broadcast primitive where all correct
members can be reached within ∆ time. Corrupt members might therefore attempt
to attack the protocol by slowing down dissemination or neglect forwarding data al-
together. To fight such attacks, Fireflies use a gossip-based broadcast service. Gossip
protocols are known to be highly robust as they are essentially flooding protocols. But
unlike flooding protocols, they are efficient with probabilistic bounds on delivery la-
tency [Kermarrec et al. 2003]. In our particular situation, we have to concern ourselves
with corrupt members.

One key concern with gossip is that corrupt members could gang up on a small
set of correct members, overwhelming them with gossip load [Badishi et al. 2006].
Fortunately, Kermarrec et al. [2003] have shown that it is possible to build effective
gossip protocols if each member only has a small set of uniformly chosen members
with which it gossips. We therefore restrict who can gossip with whom using the same
technique used in Section 3.3 to assign monitors, except that we here use a possibly
different number of rings. Gossip neighbors are thus chosen from a pseudo-random
low-diameter mesh that connects all correct members. To maintain this mesh, each
member connects to its first live successor in each ring, and allows a connection from
its first live predecessor. More precisely, Fireflies dictates the following rules:

RULE 9. Let m.live ⊆ m.view be the set of all members m considers live. For each
ring r, member m maintains a secure mutually authenticated gossip connection with

m′ = arg min
x∈m.live

rankr(m,x).

Correct members will relentlessly reconnect gossip connections that terminate from
errors or timeouts. Changes in the gossip mesh occur only as a consequence of the
following events in membership:

— Member m receives a note N i
m′′ for some member m′′ where rankr(m,m

′′) <
rankr(m,m

′) and either Cm′′ was previously unknown to m or there exist a timeout
T [m′′]jm > 2∆ with i > j. In this case Rule 4 dictates that T [m′′]jm is invalid and m′′
transitions from failed to live in m.view, and thus m′′ = arg minx∈m.live rankr(m,x).

— A valid timeout T [m′]m becomes older than 2∆. In this case, m′ transitions from live
to failed in m.view.

If at any point in time member m should determine a better gossip partner m′′ for
ring r according to Rule 9, m terminates the existing connection with m′ and con-
tacts m′′ instead.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:13

When receiving a request for gossip from some member m′, member m will use its
local view to check if m′ should be allowed to connect using the following rule:

RULE 10. For each ring r, member m accepts gossip only from m′ if

m = arg min
x∈m.live

rankr(m
′, x).

Note that Rule 5 dictates that a correct member m always consider itself live and so
have m ∈ m.live. Also, note that Rule 10 does not require the connecting member m′
to be in m.live, which enables recovering members to reintegrate themselves into the
gossip mesh. Given that m′′ = arg minx∈m.live rankr(m

′, x) for some member m′′ 6= m,
then any connection attempt from m′ will be rejected by m. To help m′ integrate itself
into the gossip mesh in such cases, m will as part of the gossip handshake protocol
redirect m′ to m′′ by transmitting the note Nm′′ before terminating the connection. In
the case that m′′ had indeed failed, but just had not timed out in m.live, then m′ will
wait for a period > 2∆ before retrying connecting to m. Newly joining and recovering
members should gossip with at least t + 1 different randomly chosen members before
they can be reasonably certain that they are integrated into the true membership, as
opposed to a fake one membership created by corrupt members [Singh et al. 2004].

4.1. Ensuring Connectivity
Allowing members to gossip with only a limited number of other members enables
Fireflies to reduce the opportunity for corrupt members to attack. For such a scheme
to work, however, the number of gossip partners for each member must still be large
enough to form a connected graph of correct nodes.

The classic result of Erdös and Rényi [1960] shows that in a random graph of N
nodes, if the independent probability of each pair of nodes being connected is at least
pN = (logN + o(1))/N , then the graph will almost surely be connected.

The number of correct members, n, is expected to be at least (1− pcorrupt)×N , where
pcorrupt is the configured upper bound on the probability that a live member is corrupt,
and N is the total of all members (correct, crashed, and corrupt). If each member has
k neighbors, then the probability that one member is connected to another is 1 − (1 −
1/N)k ≈ 1 − exp(−k/N) ≈ k/N . Thus pn ≈ 2k/N . In order for the correct members to
be connected with probability ε, we obtain

k ≥ N

2n
×
(

log
−n
log ε

+ o(1)

)
. (10)

4.2. Time-out value ∆

Next we determine the resulting ∆: the time needed to disseminate a message in a
random graph. To better preserve resources, instead of each updating all of its k out-
bound neighbors in every round, we instead select one neighbor for each round in a
round-robin fashion. Conservatively, we will assume that it takes k rounds to update
all gossip neighbors, and thus the dissemination runs a factor k slower than if every
neighbor were updated in each round. If dn is the diameter of the graph of correct
members, then the expected length of time to disseminate an update reliably among
the correct members is ∆ = k × dn.

An asymptotic value for the diameter of the resulting graph dn can be determined.
The result of Chung and Lu [2001] shows that if npn → ∞, which holds true in our
case, then the expected diameter of our graph is given by

dn = (1 +O(1))
log n

log npn
.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Håvard D. Johansen et al.

0

20

40

60

80

100

10 100 1000 10000

ro

un
ds

members

pcorrupt = .25
pcorrupt = .20
pcorrupt = .15
pcorrupt = .10
pcorrupt = .00

Fig. 5: Number of rounds required to dis-
seminate an update

100

101

102

103

104

105

106

 0 0.2 0.4 0.6 0.8 1

th
re

sh
ol

d

packet loss Ploss

Pmistake = 10-1

Pmistake = 10-2

Pmistake = 10-3

Pmistake = 10-4

Pmistake = 10-5

Fig. 6: Crash detection threshold τ as a
function of packet loss rate

Unfortunately, this expression does not provide the constants needed to tune the
mesh. In order to find suitable constants, we ran simulation experiments with N rang-
ing from 24 to 214 for varying values of pcorrupt and with k chosen as above (ignoring
the O(1) constant term), to determine if the resulting graphs of correct members are
indeed connected and to obtain values for ∆. We ran each experiment 100 times. We
encountered no disconnected graphs in any of our 3000 experiments. In Figure 5 we
report the maximum number of required gossip rounds that we observed for each N
and pcorrupt with ϕ = 0.99999. Rings are added as the number of members increase. This
boosts the connectivity of the mesh, which can be seen as intervals of constant slopes
in the figure.

5. ADAPTIVE CRASH DETECTION
To detect crashes, members monitor one another by sending probe messages. Each
probe involves a member m sending a ping message to its neighbor m′ at regular in-
tervals. If m′ is correct, it returns a pong message.

A probe is only successful if both the ping and the pong messages are received. In the
time period between the ping and the pong message, we say that a probe is pending.
After some period of time, a pending probe will time-out and the member being probed
will be considered to have crashed. Because the Internet implements best-effort pro-
tocols, messages can be lost. Therefore, if a probe fails, m should attempt to resend a
ping probe. Member m concludes that m′ has crashed after τ consecutive probes have
failed.

Using a static global value for τ , however, is not a good choice as members might
experience different packet-loss rates and end-to-end latencies. A poorly chosen value
will cause correct members to either accuse live members too often, resulting in un-
necessary network traffic, or cause correct members to accuse crashed members too
rarely, allowing them to remain in the views of other members. As such, τ should be
adapted to the characteristics of each individual monitoring link.

5.1. Setting the Threshold τ
Bolot [1993] shows that the loss of probe packets is essentially random when the probe
traffic consumes less than 10% of the available network bandwidth. Also, Barford and
Sommers [2004] show that the overall loss-rate is stable. As such, we model probing
as a negative binomial experiment with parameters r = 1 and the probability of a
probe succeeding, S, reflected in the measured packet-loss rate. A successful probe
requires that both the ping and the pong messages are delivered. Hence, the packet-

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:15

loss probability rate λ, and the probability of a successful probe S are related by S =
(1− λ)2.

Let X denote the random variable of the number of probes required to succeed. For
instance, if a link has no packet loss, then X = 1. As a negative binomial experiment,
the probability that the probe succeeds at x attempts is given by:

P [X = x] = (1− S)x−1S, x = 1, 2, . . .

If m repeats a probe τ times and m′ is live, the probability that at least one probe
succeeds is given by

P [X ≤ τ] =

τ∑
x=1

(1− S)x−1S = 1− (1− S)τ

Hence, if after τ failed probes m decides that m′ has crashed, the probability that m is
wrong because all probes failed due to packet loss is given by

Pmistake = 1− P [X ≤ τ] = (1− S)τ = (2λ− λ2)τ (11)

Thus if m wants to establish with certainty Pmistake that m′ has crashed, then the
number of consecutive probes it must submit is given by

τ =
log (Pmistake)

log (2λ− λ2)
(12)

The threshold τ increases exponentially with λ. As such, we cannot effectively deter-
mine a crash with high accuracy when packet loss is high as illustrated in Figure 6.

5.2. Rounding Error
Equation 12 may produce fractional output values. For instance, if Pmistake = 10−4 and
λ = 0.10, then τ = 5.546. Clearly, m cannot probe m′ 5.546 times and must choose
either 5 or 6. In either case, a rounding error is introduced. Because λ is determined
by the packet-loss rate of the underlying network, it cannot absorb this error. Hence,
the error must be absorbed by Pmistake. Say that m chooses τ to be 5. For this to occur,
Equation 11 gives us Pmistake = 2.47× 10−4. In other words, even though m configured
Pmistake to be 10−4, the observed Pmistake will be 2.47× 10−4, which is 2.47 times higher.
If m had chosen τ to be 6, the observed Pmistake would be 4.70× 10−5, which is 2.1 times
lower.

5.3. Estimating Packet-Loss Rate
The calculations above rely on us knowing the packet-loss rate. For this, we estimate S,
the probability of a probe succeeding, by measuring the number of probes that m sends
before it receives a response from m′. For negative binomial experiments that produce
a geometric distribution, the average number of trials required before a success is
given by E[X] = 1

S . By substituting the expectation into Equation 12, we obtain

τ =
log(Pmistake)

log
(

1− 1
E(X)

) . (13)

The value for E[X] can be estimated by m by recording the difference between ping
messages sent and pong replies received. For instance, if m sends 6 pings to m′, but
receives a pong reply from m′ only for the last ping, then m concludes that 5/6 of those
ping messages were lost in the network.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Håvard D. Johansen et al.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 4 8 12 16 20

M
is

ta
k
e
 r
a
te

Days

P loss=

5% 20% 40% 20% 5%

Observed
Expected

Fig. 7: Adapting the timeout threshold τ to packet loss rate

To estimate future loss rate, we use the simple exponential smoothing model. That
is, if Ei[X] is the current expected value for round i, x is the number of pings sent
before a pong is received and 0 ≤ α ≤ 1 is the smoothing factor, then

Ei+1[X] = αEi[X] + (1− α)x. (14)

To measure the effectiveness of our adaptive pinging protocol, we constructed a sim-
ulation where a member m monitors some other member, m′. We currently do not
have an automated mechanism determining a good value for the smoothing factor α.
Instead, we found through trial and error that setting α = 0.99995 gave us a good bal-
ance between smoothing and responsiveness. The pinging interval was set to 1 second.
Packets were lost at random and both members were correct during the course of the
experiment. Figure 7 shows the observed rate at which m made estimation mistakes
when the packet-loss rate, λ, varies stepwise between 5% and 40%. As expected, the
protocol will adapt over time to quick changes in packet loss rate by adjusting the time-
out threshold τ . The figure also shows the expected rate of mistakes after adjusting for
the τ rounding error. Although in this particular experiment adaption is slow, quicker
response time can be achieved by choosing a lower α value.

The extreme values for the threshold need to be considered. If packet loss is very
low, the τ threshold may be set unrealistically low. With no packet loss (Pmistake = 0),
τ would even be undefined. We address these issues by imposing a minimum thresh-
old τmin. Similarly, if packet loss is very high, then τ will be set unrealistically high.
We therefore also impose a maximum threshold τmax on the timeout threshold. Algo-
rithm 1 shows the complete probing protocol.

5.4. Pinging Attacks
Corrupt members could potentially prevent detection of crashed members by forging
pong messages. This is prevented by having each ping message contain a random nonce
that has to be signed by the monitored member and returned in the corresponding
pong reply message. This strategy prevents both forging of pong messages and replay
attacks.

Corrupt members can, however, generate a modest amount of overhead on the sys-
tem by not responding to ping messages from correct members, and then rebutting the

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:17

Algorithm 1: Adaptive Pinging Protocol to assess packet-loss rate
on time to ping m in ring r

// calculate threshold
τ = log(Pmistake)/ log(1 − 1/m.avgLoss);
if m.nPing > max(τ, τmin) then

m.accusations.add(new Accusation(m.note, r, self.id))
else

send (m,new Ping(self.id));
m.nPing++

end

on receive pong from m
m.avgLoss = α×m.avgLoss + (1 − α) ×m.nPing;
m.nPing = 0

ensuing accusations. At low-frequency, such nuisance attacks are indistinguishable
from transient network outages and packet loss, which are handled by our pinging
protocol and accusation-rebuttal scheme. With higher frequency, such behavior is eas-
ily identifiable since the high frequency of rebuttals will be visible to all members.
Correct members are not expected to send more than t rebuttals in a short time span.
The CA can remove such members simply by revoking their public key certificates.

6. IMPLEMENTATION
Fireflies is implemented using a combination of Python and C++ extension modules on
top of the Twisted event-based networking framework.2 The latest version of Fireflies
is publicly available on SourceForge.3 We will describe several important issues specific
to the current implementation of Fireflies, including several protocol optimizations.

6.1. Certificates and Bootstrapping
Fireflies uses the OpenSSL library and tools [Cox et al. 2011] for all cryptographic
operations and can be configured to use all its key and hashing variants. By default,
Fireflies uses the 224 bits NIST-recommended P-224 [Locke and Gallagher 2009] ellip-
tic curves for signatures and authentication. The use of elliptic curve cryptography is
beneficial to Fireflies due to its smaller signature length compared to RSA and DSA.

To initialize a new Fireflies group, the CA must first create an X.509 compli-
ant [Housley et al. 2002] self-signed group certificate. We impose few restrictions on
such certificates, and established best-practices for generating and managing them
can be used. However, we do require that group certificates include the number of
membership rings and the number of gossip rings that are to be used. Ideally, these
values would be stored in an X.509v3 extension field, but due to a bug in a third-party
library this was not possible and so we currently encode these values in the X.509
subject organization field.

The group certificate is self-signed with the private key of the CA and is made avail-
able so that all potential members may download it. It is the responsibility of each
group member to check the validity of downloaded group certificates. We assume that
the CA, correct members, and crashed members never reveal their private keys. Any
member compromised by an attacker, either hacked or manipulated by a malicious
insider, is considered corrupt.

2http://twistedmatrix.com/
3http://fireflies.sf.net/

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Håvard D. Johansen et al.

To join a Fireflies group, a new member m first generates an X.509 certificate re-
quest containing its public key, its network address, and subject information. The re-
quest file is then sent to the CA for signing. Similar to group certificates, we impose
few restrictions on the content of member certificates. Established best-practices for
certificate generation, verification, and management should be followed. We do, how-
ever, impose that m’s network address and port number is stored in the X.509 subject
localityName field of Cm. For each certificate, the CA also generates a random member
identity string, which it embeds in the subjectKeyIdentifier extension field. This devi-
ates somewhat from the default usage of the X.509 subjectKeyIdentifier field, which
is typically set to the hash of the contained public key. However, the default scheme
cannot be trusted since it gives members some freedom in choosing their identity and
subsequently their position in the overlay network. The length of the identity is set to
match the strength of the underlying hashing function used in the X.509 certificates.
Currently, we use SHA-256 for hashing and so the generated identities are 32 bytes
long.

When member m has obtained a valid member certificate Cm, it can start gossiping
with other group members. The use of X.509 certificates and Secure Socket Layer (SSL)
for gossip prevents man-in-the-middle attacks. It is therefore sufficient that m gossips
with a single correct member to become integrated in the correct membership, rather
than a false one controlled by corrupt members. To ensure this, m receives a list of
initial contacts from the CA as part of acquiring Cm. This list must either include the
member certificate of a trusted boot node, or at least t+1 member certificates, randomly
selected from the set of all live members. Only after gossiping with all initial contacts
will m consider itself fully integrated in the membership.

6.2. Data Structure Optimization
Public keys and member certificates are large objects when compared to hashes and
signatures. All certificates created by the CA contain a 32 Byte (B) member identity
that uniquely identifies the certificate and its embedded public key. We have ignored
this identity earlier in this paper, but in practice we can improve communication effi-
ciency by replacing the larger certificates in notes and accusations with this smaller
member identity.

A further reduction on the size of accusations can also be accomplished by removing
the notes from the accusations altogether. To identify the note of the member who is ac-
cused, it is sufficient for an accusation to contain only the subjectKeyIdentifier from the
accused certificate and the epoch number of the accused’s note. Using the default con-
figuration of 224-bits ECC certificates, SHA-256 for hashing, and 32 B member identi-
ties, we obtain public-key certificates of about 364 B, notes of 108 B, and accusations of
136 B.

One possible complication of this optimization is that accusations and notes are not
self-contained. Consequently, the validity of an accusation cannot be established with-
out having previously received the accused note or the accuser’s certificate. Similarly,
a member cannot ascertain the validity of a note without having previously received
the corresponding member certificate. Buffering of unverifiable data structures until
the needed data is received is problematic since an attacker can easily target such a
mechanism by gossiping notes and accusations containing false identities to trigger
overflows. Instead, correct members should simply discard any unverifiable or invalid
data they receive. The underlying gossip scheme used in Fireflies will ensure that the
required data to verify received notes and accusations is available, as described below.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:19

6.3. Communication
Since ICMP is disabled in many networks, we currently use UDP for the pinging mech-
anism. Members gossip using SSL connections over TCP. Each member m connects to
the first live successor m′ in each gossip ring according to Rule 9. Using their X.509
certificates, members establish mutually authenticated connections using the SSL pro-
tocol. Although Fireflies does not require network-level encryption to ensure correct
behavior, the SSL handshake includes a secure exchange of X.509 certificates between
connecting endpoints. This enables members to identify the other member in their
views and decide whether to accept or reject an inbound connection based on the re-
strictions imposed by the gossip rings as dictated by Rule 10. If the connection at some
point terminated or times out, then m, after an exponential back-off delay, will try to
re-establish that connection until m′ is considered crashed by the Fireflies protocol.

One complication is that even when m and m′ are both correct, they may have dif-
ferent views. In particular, m′ may know a better gossip neighbor m′′ for m that is not
in m’s current view. If such is the case, m′ sends note Nm′′ to m. Should m have valid
accusations for m′′, then it returns those to m′ and terminates the attempt to gossip.
If no such accusation exists, then m was unaware of m′′. In that case m adds m′′ to its
view and tries to gossip with m′′ instead.

Having members m and m′ communicate all certificates, notes, and accusations back
and forth is inefficient as most of the membership data held by m and m′ are likely to
be the same. Fortunately, there exist protocols that reconcile sets of information by
only exchanging volume of information that is on the order of the size of the differ-
ence between the sets. In particular, our current implementation of Fireflies uses the
partitioned set reconciliation protocol suggested by Minsky and Trachtenberg [2002].
To reduce network and CPU overhead, we have modified the protocol so that it will
reconcile the set of object hashes instead of the data itself. The data is transferred in
a separate stage after the reconciliation is completed. Also, to ensure received data
structures are verifiable, as described in the previous section, we reconcile certificates
before notes, and notes before accusations.

6.4. Calculating the Required Number of Rings
Using the bounds on k from Equation (9), we can calculate the required number of
membership rings given pcorrupt, N , and ε. Due to the use of the Chernoff-bound, how-
ever, these formulas give significantly higher estimates for k than is strictly necessary
in practice. Although an overestimate improves resilience to corrupt members, it also
increases network overhead.

Instead, we wish to compute the exact probability ε that no members will be unfor-
tunate. Recall that we then need to find the minimal k such that

P [Z = 0] > ε. (15)

Although (15) is difficult to solve symbolically for k, it can easily be computed,
as shown in Algorithm 2, using the binomial cumulative distribution cdf(x;n, p) =∑x
i=0

(
n
i

)
pi(1− p)n−i of any statistical software package. This follows from

ε < P [Z = 0] = (1− P [Xm ≥ t+ 1])N = P [Xm ≤ t]N = cdf(t; 2t+ 1, pcorrupt)
N .

Figure 8 shows the value of k for various N and pcorrupt using ε = 0.99, computed
using Algorithm 2. It is evident that k grows logarithmically with N , as predicted by
Theorem 3.2.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Håvard D. Johansen et al.

Algorithm 2: Computing the required number of rings based on ε and pcorrupt

t = 1;
while ε > cdf(t; 2t+ 1, pcorrupt)

N do
t = t+ 1 ;

end
return k = 2t+ 1;

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 10 100 1000 10000 100000 1e+06

rin
gs

 (k
)

members (N)

Pcorrupt =.20
Pcorrupt =.15
Pcorrupt =.10
Pcorrupt =.05

Fig. 8: Required number of rings for different parameter values

7. EVALUATION
To evaluate Fireflies, we ran experiments in both simulated environments and on Pla-
netLab. We refer to each participant in the protocol as a Fireflies agent. To emulate
corrupt behavior in our system, we implemented two types of attacks:

— An aggressive attack, where the goal of the attacker is to remove live members from
the views of correct members and to induce extra network load. For this, the attacker
accuses other members of being crashed at any opportunity. The attacker will only
create accusations that are valid in accordance to its view of the membership, since
invalid accusations are simply ignored and might be forwarded to the CA as proof
that the attacker is not following the protocol. The attacker will also refrain from
forwarding notes in an attempt to prevent correct members from rebutting false ac-
cusations made by either the attacker or by other members.

— A passive attack, where the goal of the attacker is to keep crashed members in the
views of correct members. For this, the attacker never accuses members, and does
not forward accusations of crashed members.

7.1. Overhead of Membership Maintenance
To produce repeatable experiments in a controlled environment, we constructed a sim-
ulated network environment in which Fireflies agents could run. The simulated Fire-
flies agents share most of the code-base with their networked variants, but bypasses
the TCP stack, the UDP stack, the marshalling routines, and cryptographic operations
for efficiency reasons. We also avoid copying accusation, note, and certificate structures
by passing memory location pointers.

By using essentially the same code as in the networked variant of Fireflies, we get
a detailed picture of the protocol’s behavior. Using similar versions for simulation and

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:21

experimental evaluation also simplifies debugging as errors can be reproduced in a
controlled simulated environment. Unfortunately, the level of detail which we simulate
limits our ability to scale up the experiments. For instance, on a single core of a 2.6 GHz
Intel E5-2670 processor, a simulation of 200 members runs close to real-time. The
scalability limits of our simulator does not indicate scalability limits of the Fireflies
protocol since we expect the protocol to be network bound in practice.

In all experiments presented in this section, we configured Fireflies to tolerate up
to pcorrupt = 0.20 corrupt members with a probability ε = .99. The ping and gossiping
intervals were set to 30 seconds and the probabilistic upper bound on the time for
gossip to spread, ∆, was set to 2.5 minutes. We set the probability of making a mistaken
crash detection in the pinging protocol, Pmistake, to 0.01 in order to trigger frequent
accidental false accusations by correct members. The total number of members, N ,
ranged from 20 to 160. Each experiment was run for six simulation hours. In addition,
there was a one-hour warm-up period before measurements started to remove bias and
effects from the extra load incurred while bootstrapping the system.

Initially, all members are live. After the warm-up period, we simulate churn by
periodically crashing and restarting members. Studies of operational P2P systems
indicate that churn characteristics vary between individual networks and applica-
tions [Stutzbach and Rejaie 2006; Steiner et al. 2009]. Application-specific observa-
tions, like those made by Steiner et al. [2009] indicating that the KAD DHT has a
Mean Time To Failure (MTTF) of 155 minutes, might not apply to systems built using
Fireflies. Since our simulation experiments are primarily used to show linear scalabil-
ity with membership size rather than specific overhead, we opted for a simple churn
model and set both MTTF and Mean Time To Recovery (MTTR) to 6 hours, exponen-
tially distributed. Each member is then expected to recover or crash at least once dur-
ing a simulation run. Each experiment was repeated six to eight times with different
initial random seeds. For each set of experiments, we calculated 95% confidence inter-
vals. For clarity, the graphs presented in this section contain confidence intervals only
where significant.

We varied the fraction of attackers from 0% to 10% with both aggressive and passive
attacks, chosen randomly from the set of all members. At the end of each experiment,
we ran the simulator for one additional hour with no churn, then checked the views
of all correct members. Note that sufficient redundancy must be encoded in pcorrupt
to accommodate failures of correct members in addition to the explicit attacks. With
the simulated configuration and churn, increasing the rate of attacks to 20%, we ob-
served that some simulation runs produced members with divergent views, indicating,
as expected, that attackers were at least temporarily successful. We observed no such
inconsistencies in the experiments with 0% or 10% fraction of attackers.

Figure 9a shows the resulting average rate of notes created for various pcorrupt and
styles of attack, and Figure 9b shows the corresponding rate of created accusations.
Aggressive attacks gave a noticeable increase in the rate of notes. This is expected
because Rule 6 dictates exactly how many monitors each member can disable. With
churn and pinging mistakes, correct members might not be able to permanently dis-
able all their corrupt monitors. For instance, upon receiving a false accusation A[m]im′

from member m′, the correct member m will disable m′ in N i+1
m , enabling monitoring

by some other predecessor m′′. This gives m′′ an opportunity to execute an aggressive
attack on m, even if it was previously disabled for executing such an attack. Similarly,
when some member m is correctly detected as crashed, this also gives any corrupt
predecessors of m new opportunities for accusing the successors of m. The value for
Pmistake, MTTF, and MTTR were intentionally chosen to frequently trigger such oppor-
tunities in the simulations.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Håvard D. Johansen et al.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 20 40 60 80 100 120 140 160

no
te

s
/ s

ec
on

d

members

aggressive 10%
0%

passive 10%

(a) Note rate

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 20 40 60 80 100 120 140 160

ac
cu

sa
tio

ns
 /

se
co

nd

members

aggressive 10%
0%

passive 10%

(b) Accusation rate

Fig. 9: Simulated network overhead when under attack

As can be seen in Figure 9b, the effect of the aggressive attacks is less noticeable
in the rate of accusations than in the rate of notes. This is expected as each failed
member can correctly be accused by up to 2t of its monitors, while an aggressive attack
will only produce a single accusations. With continuous churn, correct accusations for
failed members are expected to outnumber the ones from the attackers.

The passive attacks decreased the rate of both notes and accusations. This observa-
tion is also explained by the simulated churn and pinging mistakes. Because passive
attackers refrain from making any accusations, they will not make pinging mistakes
and will not accuse failed members, subsequently reducing the aggregate rate of both
accusations and notes.

7.2. PlanetLab
Our simulations indicate that the network load induced by Fireflies increases linearly
with the number of members. To gain a clearer understanding on how Fireflies behaves
when running in the wide-area Internet, we deployed our code on PlanetLab [Peter-
son and Roscoe 2006]. We first ran Fireflies on PlanetLab in early February 2005, and
found the experience useful to find pragmatic problems and test our solutions. How-
ever, the overheads we measured, some of which are presented below, are specific to
PlanetLab only.

Each Fireflies agent is instrumented to write a checkpoint to a log on local disk ev-
ery 10 seconds, containing the current time and approximately 100 B of measurement
data. The local clocks on PlanetLab machines are synchronized using the Network
Time Protocol (NTP). As we are measuring trends over time-periods of minutes, the
millisecond precision provided by NTP is sufficient for our purpose. We periodically
checked all clocks for drift using a local reference clock. Occasionally we observed ma-
chines with clock drift and incorrectly configured time zones, which was compensated
for during post-processing of the logs.

7.2.1. Deployment Description. We will now describe the results of one of our PlanetLab
experiments. The experiment started on March 12, 2012, and ended March 14, 2012.4
The purpose of this experiment was to measure the behavior of Fireflies under both
low and high churn load and when, at the same time, under attack by corrupt mem-

4All dates are in GMT using 24-hour clock notation.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:23

 200

 250

 300

 350

 400

 450

00:00
13 Mar

00:00
14 Mar

16:00 20:00 04:00 08:00 12:00 16:00 20:00 04:00

m

em
be

rs

time (GMT)

Fig. 10: Number of live members over time during experiment on PlanetLab

bers. Configuration options were set the same as in the simulations above, except that
Pmistake was set to a more sensible 10−5.

Our experiment started with Fireflies agents running on 376 PlanetLab machines.
At approximately 06:39 on March 13, we terminated 25% of the agents, chosen ran-
domly. At about 14:30 on March 13, these agents were restarted. If an agent has not
written a checkpoint to its log during a 1 minute period, it is considered crashed in
that period. The number of live agents per time period is shown in Figure 10. As ex-
pected, we observe a large drop in the number of members followed by an equally large
increase corresponding to when we terminated and when we restarted the agents.

Agents were terminated by a script that would log into each individual PlanetLab
machine and issue a UNIX kill signal. Hence, agents would crash abruptly and with-
out warning. Starting agents involved a similar script. The scripts ran from our ma-
chine located at the Arctic University of Norway, each taking several minutes to com-
plete.

To measure the impact of corrupt members, 10% of the Fireflies agents were con-
figured to mount aggressive attacks, creating accusations at any opportunity. Another
10% were configured to mount a passive attack, neither accusing nor forwarding accu-
sations to crashed members. Corrupt members were chosen randomly from the set of
all members, except 7 that were used as trusted boot nodes.

Figure 11 plots the observed aggregate rate of accusations created per second, di-
vided into total accusations and accusations from corrupt members. One peak can
be clearly distinguished: when the agents are terminated. This is as expected as the
crashed agents are correctly accused by the remaining correct ones. Changes in the
membership also gives corrupt members new opportunities to execute an aggressive
attack as any new neighbors might not have disabled their new corrupt monitors yet.
We see that as an increase in accusations from corrupt members in Figure 11 both
when the members are killed and when they are restarted. Otherwise, corrupt mem-
bers make few accusations, indicating that Fireflies can efficiently thwarts such at-
tacks. The peek in accusations at around 18:00 on March 13 was due to a transient
outage of several PlanetLab machines.

7.2.2. Membership Churn. All our measurements indicate that there is a fair bit of
membership churn not under our control. In Figure 11, we observe this as a relatively
regular rate of new accusations being created. Because the liveness of a member in
these experiments is determined by its ability to write a checkpoint to file, the churn,
seen as a wiggle in Figure 10, is not necessarily due to outages or delays in the net-
work. In practice, we have observed that the majority of PlanetLab nodes tend to be
fairly well-connected. However, some of the nodes are heavily loaded, to the point of

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Håvard D. Johansen et al.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

00:00
13 Mar

00:00
14 Mar

16:00 20:00 04:00 08:00 12:00 16:00 20:00 04:00

ac
cu

sa
tio

ns
 /

s

time (GMT)

total
corrupt

Fig. 11: Rate of accusations on PlanetLab

making them effectively unreachable. We have also observed nodes that are only par-
tially reachable, either due to configuration problems or due to heavy packet loss. For
example, some nodes could not send or receive UDP messages, while they could com-
municate through TCP. This has two consequences for Fireflies. First, a node that can-
not receive UDP packets will accuse its successors, even if they are correct. This is not
a problem, as these successors will use their mask bitmaps to disable the correspond-
ing rings. Second, such a node will be accused by its predecessors. The accusations are
effectively rebutted, and this accused member is not removed from the views as long
as it is able to gossip new notes (using TCP). Unfortunately, the member cannot dis-
able all rings, which would have its own problems, leading to the observed continuous
background gossip of accusations and notes. We also observed nodes that had problems
communicating through TCP.

A limitation of the Fireflies protocol is that the correct nodes must form a connected
gossip graph. In particular, Fireflies does not handle network partitions. Some net-
work partitions have been observed in our PlanetLab deployments when an individual
member became disconnected from the rest of the network. Such a member is gener-
ally not able to accuse every other member, and the partition prevents the member
from receiving accusations. It is then stuck with a view that includes members that
it cannot reach until the partition is resolved. Occasionally, however, there are clean
partitions. For example, in one run we observed two members in China forming a par-
titioned Fireflies structure.

7.2.3. Network Overhead. Next we examine the load that our system incurs on the net-
work. We instrumented our code to log the number of bytes sent and received through
TCP. The instrumentation was done as far down in the protocol stack as possible so
that all signaling and protocol overhead were captured, but we do not include overhead
from TCP and IP headers. Figure 12 shows the mean outbound network consumption
per member due to gossiping of certificates, notes, and accusations. The bandwidth
follows the rate of accusations, but mostly remains below 250 bytes per second (Bps)
per correct member. The various peaks are caused by the issues described above. The
largest observed peaks are when the agents are terminated and restarted, in which
case members consumed around 500 Bps.

8. DISCUSSION
8.1. Full vs. Partial Membership
An alternative to maintaining full membership views at each member is for a member-
ship protocol to provide views containing only a small subset of all members. We refer
to such protocols as partial membership protocols. Although the number of members

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:25

 0
 100
 200
 300
 400
 500
 600
 700
 800

00:00
13 Mar

00:00
14 Mar

16:00 20:00 04:00 08:00 12:00 16:00 20:00 04:00

ba
nd

w
id

th
 (b

yt
es

/s
)

time (GMT)

mean
std dev

Fig. 12: Outbound TCP usage on PlanetLab

contained in each view might vary from protocol to protocol, the view sizes are usually
small compared to the total number of members. As a minimum, a member m’s view
will contain those members that are to be m’s neighbors.

One reason for providing partial membership, rather than full membership, is in-
creased scalability. In a full membership protocol, memory requirements per member
will grow linearly in the number of members. Given the availability of cheap memory,
this is not necessarily a problem. For instance, in its default configuration with 364 B
certificates and 108 B notes, Fireflies will be able to fit approximately 10, 000 members
within 4.5 Megabyte (MB) of memory.

Full membership protocols also require that every group member receive notification
of all membership changes. By requiring members to only receive notifications about a
subset of the members, partial membership protocols offer a potential increase in scal-
ability due to reduction in network load. This difference might be significant because
the churn rate, and hence the subsequent aggregate rate of membership events, tends
to grow linearly in the size of the membership.

Despite its scalability advantages in the number of member processes, providing
only partial membership views has several drawbacks compared to providing full
membership information.

(1) Services built on top of a full membership protocol can be made more efficient than
if built on a partial membership protocol. For example, a full membership protocol
provides Application-Level Multicast (ALM) protocols with a large candidate set of
router nodes for building routing trees, which can significantly increase efficiency
and robustness [Pietzuch et al. 2005].

(2) Maintaining overlay structures, like DHTs, requires complex and expensive coor-
dination when having only partial membership information [Stoica et al. 2003].
Complexity can be a real barrier that keeps a protocol from being used in prac-
tice [Kreitz and Niemelä 2010].

(3) Partial membership requires messages to be routed through the overlay structure,
which make them more likely to get lost along the way and will result in higher
end-to-end latency. For instance, DeCandia et al. [2007] argue that avoiding multi-
hop DHT routing was necessary to keep latencies sufficiently small in Amazon’s
Dynamo key-value store. A similar argument was also used by Kreitz and Niemelä
[2010] for the Spotify music application.

In our case, we are also concerned with intrusions and Byzantine faults. Each ad-
ditional routing hop needed to deliver a message m to its destination increases the
probability that m will be routed through a corrupt member who cannot be trusted
to forward or process messages correctly. An additional complication in many DHTs

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Håvard D. Johansen et al.

is that lookups tend to converge to the same routing path. Several methods have
been proposed to counter this by establish diverse and distinct routing paths [Ur-
daneta et al. 2011]. These include probabilistic routing schemes for existing vulnerable
overlay structures [Kapadia and Triandopoulos 2008], signing routing tables using a
trusted online component [McLachlan et al. 2009], or attesting lookup paths using
verifiably assigned shadow members [Mittal and Borisov 2009]. Some DHTs have also
been structured specifically with secure routing in mind [Nambiar and Wright 2006].

Structural defenses against intrusions prevent members from using latency and
bandwidth optimizing techniques like exploiting network proximity [Gummadi et al.
2003]. Embedding in each message a route that has previously shown itself capable
of delivering messages correctly can mitigate some of the overhead incurred by secure
DHT routing [Obelheiro and da Silva Fraga 2006], though establishing such routes
still incurs significant network overhead in a dynamic environment.

Having a full view of the membership, applications can send messages directly to
their destination. This reduces network latency, bandwidth overhead, and avoids hav-
ing to route message through potentially corrupt third parties. Whether or not the cost
and benefits of maintaining full membership outweighs the costs and complexities as-
sociated with secure DHT routing, depends on the application.

8.2. Building Intrusion-Tolerant Services with Fireflies
Although Fireflies maintains its overlay structure in an intrusion-tolerant manner,
services built on top of it do not automatically inherit this property. For instance, to
ensure safe storage of files, a service built on top of Fireflies must still ensure that
each file is replicated to a sufficiently large number of members. In this section we will
discuss some specific ways that Fireflies can be used to construct higher-level services
and applications.

8.2.1. Software Dissemination. Disseminating software updates quickly and reliably is
important, particularly when they fix security holes. By intruding into the software
distribution mechanism, an attacker may try to delay or prevent computers from re-
ceiving critical security updates, allowing the attacker more time to construct and de-
ploy malware that targets the vulnerable code [Flake 2004; Brumley et al. 2008]. Open-
source communities, like the Linux Kernel Archive and the Ubuntu Linux project, are
particularly vulnerable to such attacks because they depend on donated third-party
servers, or mirrors, to distribute their software.

FirePatch [Johansen et al. 2007] is a software distribution network that makes use
of Fireflies to fight attacks from hostile mirrors that have intruded into the system. By
layering a push-pull data dissemination scheme [Pai et al. 2005] on top of the Fireflies
gossip mesh, FirePatch will have sufficient link redundancy and diversity so that the
set of correct software mirrors will form a connected mesh. Consequently, there exists,
with high probability, at least one path of only correct mirrors from the software vendor
to each correct mirror and to each correct client, which ensures correct and timely
delivery of all data.

8.2.2. Multimedia Streaming. SecureStream [Haridasan and van Renesse 2006] is an
intrusion-tolerant multimedia diffusion protocol that layers a push-pull messaging
scheme on top of Fireflies in a similar manner as FirePatch. Like security patch distri-
bution, multimedia dissemination is sensitive to delay. However, within a multimedia
stream, late packets are considered to be permanently lost and will not be recovered.
For instance, SecureStream members only request data that are within a moving win-
dow of interest. To reduce overhead of packed authentication, SecureStream groups
hashes of multiple packets into a special linear digest message. The system ensures

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:27

that digest messages are delivered to members before they receive the corresponding
data messages.

By not forwarding data messages and digests, and by over-requesting, an attacker
might try to delay the reception of a multimedia segment such that it is no longer us-
able for the receivers. With a sustained rate of 300 Kilobits per second (kbps), Secure-
Stream is shown to deliver a significantly higher ratio of packets within acceptable
time than SplitStream [Castro et al. 2003] when under attack.

8.2.3. Distributed Hash Table (DHT). Intrusion-tolerant DHT functionality can be triv-
ially implemented on Fireflies. Assuming object and member identifiers are chosen
from the same identifier space, a member can simply consult its view to find the mem-
ber whose identifier is closest to the object identifier. That member is then the des-
tination, and messages can be sent directly to it. Such an implementation is called
a One-Hop Distributed Hash Table (OHDHT)5 [Gupta et al. 2003], as messages are
not routed through intermediate members. If replication is required, for instance to
securely store a file, one or more Fireflies membership rings can be used to assign to
each message multiple destinations.

9. RELATED WORK
Membership protocols that provide agreement on membership views in benign envi-
ronments have been extensively researched within the context of multicast-oriented
Group Communication Systems (GCSs). Variants of such systems that tolerate Byzan-
tine failures, such as SecureRing [Kihlstrom et al. 2001] and Rampart [Reiter 1994],
have been constructed. However, the overhead of Byzantine consensus makes these
protocols unscalable in practice [Gupta et al. 2002].

Byzantine fault tolerance has also been extensively researched in the context of state
machine replication. Recent work has come a long way in improving throughput and
latency when replicas are correct and the system is stable [Kotla et al. 2007; Guerraoui
et al. 2010; Kapitza et al. 2012]. Still, such systems are intended for a small and fixed
set of participants connected by high-speed networks.

The Scamp [Ganesh et al. 2003] peer-sampling service uses an epidemic-style mem-
bership protocol that, like Fireflies, uses a small number of gossip partners in order to
obtain good scalability. Unlike Fireflies, Scamp members maintain only partial mem-
bership views and the protocol have no mechanism to verify or enforce that gossip
partner selection is random. The Scamp gossip mesh can converge to a non-random
structure that is not guaranteed to connect all correct members, in particular if Byzan-
tine failures cannot be prevented.

Brahms [Bortnikov et al. 2008] is a peer sampling protocol that tolerates Byzantine
faults by combining push and pull style gossiping with careful orchestration of which
members identities to exchange and keep in local views. The Brahms view update pro-
tocol is organized in synchronized rounds that require gossip to complete with several
partners before the local view can be updated. This might lead to prohibitive high la-
tency and slow convergence of membership views and update propagation. To the best
of our knowledge, Brahms has not been implemented.

Tarzan [Freedman and Morris 2002] provides anonymous messaging using a P2P
overlay. Participating nodes select relay partners verifiable at random using a ring
structure on the full membership, similarly to Fireflies. Unlike Fireflies, Tarzan’s
gossip-based membership discovery protocol does not impose restrictions on partner
selection, which makes it susceptible to DoS attacks. Also, Tarzan does not have a
mechanism for collaborative fault detection. Replacing Tarzan’s membership protocol

5Not to be confused with an O(1) hop DHT, although OHDHTs are members of that class.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Håvard D. Johansen et al.

with Fireflies would increase its resilience to intrusions and provide lower latency
when establishing routes.

The SWIM membership protocol [Das et al. 2002] is similar to Fireflies in that it
combines an accusation-rebuttal scheme with a pinging protocol and epidemic dissem-
ination. SWIM is not designed to tolerate Byzantine failures. Although the SWIM ping-
ing scheme will prevent a corrupt member from keeping crashed members within the
views of correct members, SWIM cannot prevent an attacker from repeatedly making
false accusations. Also, the delegation of pinging adds to the time it takes for a crashed
member to be removed from the views of the correct members. More alarmingly, the
SWIM protocol allows members to issue crash notification messages. Upon m receiv-
ing a crash notification message for m′, m will immediately remove m′ from its view.
There are no restrictions on who can generate crash notification messages for whom.
An attacker can therefore use crash notification messages to falsely claim that any
correct member has crashed. Unlike Fireflies, SWIM piggybacks membership events
on ping messages, which prevents SWIM from taking advantage of set-reconciliation
mechanisms to reduce the number of duplicate events sent and received. SWIM does
not impose restrictions on member neighbor selection like Fireflies. This makes the
SWIM protocol more susceptible to DoS attacks.

Secure gossip has been rigorously studied [Malkhi et al. 1999; Malkhi et al. 2001;
Minsky and Schneider 2003; Burmester et al. 2007]. Unlike in the BAR gossip pro-
tocol [Li et al. 2006], Fireflies does not distinguish between rational and Byzantine
behavior. Pace [2011] argues that rational members in Fireflies might omit forward-
ing notes and accusations to reduce their bandwidth consumption. In the case that
most members are not altruistic, such rational behavior might compromise the sys-
tem. Pace therefore proposes extending Fireflies with a local blacklist similar to the
BAR-B mechanism [Aiyer et al. 2005].

In the S-Fireflies system, Dolev et al. [2007] propose several modifications to the ini-
tial Fireflies protocol [Johansen et al. 2006] for increased stability under high churn.
Most importantly, S-Fireflies uses a different method for assigning monitors where
each member can only accuse its immediate successor in each ring. To accommodate
for crashed members, the number of rings is increased so that each member will have
the required k unique successors. Although these improvements eliminate the need for
skipping crashed members, as in Fireflies, S-Fireflies might potentially require a large
number of ring structures to be computed and stored in memory. To see this, let N be
the number of members in a S-Fireflies group whereof m′ are live (ignoring the mem-
bers’ ability to disable misbehaving monitors). Then to find k unique predecessors, the
total expected number of rings needed is given by

∑k−1
i=0

N
n−i . For groups with mostly

live members, only a few extra rings are needed. For instance, in a group of 1000 mem-
bers where 10% have crashed and using k = 21, then 24 rings would be required on
average. However, if 90% of those members have crashed, then 234 rings are needed on
average. When all but 21 members have crashed, S-Fireflies would on average require
3645 rings with a variance of 1.59× 106 rings. This structure would require 1.59× 109

hashes to be computed and approximately 95 Gigabyte (GB) of memory.
Another modification proposed by S-Fireflies is to include a list of banned member

identifiers in the notes instead of a mask bitmap. This seemed a good idea since it can
prevent false accusations when a member has the same misbehaving monitor on mul-
tiple rings, and we adapted it into our implementation of Fireflies. However, a list of t
member identities is a large data structure compared to a bitmap of k = 2t + 1 rings,
resulting in a significant increase in bandwidth consumption. Without also adapting
the S-Fireflies ring scheme, the benefits of the banned lists did not outweigh the in-

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:29

creased bandwidth requirements. We therefore reverted back to our original scheme of
disabling rings using bitmaps.

10. CONCLUSION
This paper describes and evaluates Fireflies, an overlay network structure that toler-
ates faults introduced intentionally by an intruder. The key idea behind Fireflies is to
organize members in a pseudo-random mesh structure that prevents hostile members
from modifying the overlay link topology to their advantage. By providing each mem-
ber with a full view of all participating members, instead of only a partial view, data-
intensive and latency-sensitive services built with Fireflies can avoid costly multi-hop
message routing. To support efficient gossip-based broadcast-style dissemination be-
tween members, each member is provided with a small set of neighbors. Fireflies guar-
antees that the neighbor graph of correct members is connected with high probability.

There are limitations to what Fireflies can offer. For example, as with any Byzantine
fault tolerant system, Fireflies cannot determine which members are corrupt unless
they reveal themselves as such by sending messages that prove they are not follow-
ing the protocol. Also, views trail membership changes, and might be stale at any
time. Given constant churn, members might never reach agreement on the state of the
membership. Instead, Fireflies provides eventual and probabilistic consistency among
the views of the correct members. With high probability, correct members will agree
on the set of long-time correct members and on the set of long-time crashed members.
This novel trade-off between scalability, consistency, and security, enables construction
of resilient overlay-networks services for a wide range of real-world data and latency-
sensitive Internet applications.

REFERENCES
Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Martin, and

Carl Porth. 2005. BAR fault tolerance for cooperative services. In Proc. of the 20th Sym-
posium on Operating Systems Principles (SOSP ’05). ACM, New York, NY, USA, 45–58.
DOI:http://dx.doi.org/10.1145/1095810.1095816

Gal Badishi, Idit Keidar, and Amir Sasson. 2006. Exposing and eliminating vulnerabilities to denial of ser-
vice attacks in secure gossip-based multicast. IEEE Transactions on Dependable and Secure Computing
3, 1 (March 2006), 45–61. DOI:http://dx.doi.org/10.1109/TDSC.2006.12

Paul Barford and Joel Sommers. 2004. Comparing probe- and router-based packet-loss measurement. IEEE
Internet Computing 8, 5 (Oct. 2004), 50–56. DOI:http://dx.doi.org/10.1109/MIC.2004.34

Rida A. Bazzi and Goran Konjevod. 2005. On the establishment of distinct identities in overlay networks. In
Proc. of the 24th ACM Symposium on Principles of Distributed Computing (PODC ’05). ACM, New York,
NY, USA, 312–320. DOI:http://dx.doi.org/10.1145/1073814.1073873

Jean-Chrysostome Bolot. 1993. Characterizing end-to-end packet delay and loss in the Internet. Journal of
High Speed Networks 2, 3 (Dec. 1993), 305–323. DOI:http://dx.doi.org/10.3233/JHS-1993-2307

Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot, and Alexander Shraer. 2008.
Brahms: Byzantine resilient random membership sampling. In Proc. of the 27th ACM Sympo-
sium on Principles of Distributed Computing (PODC ’08). ACM, New York, NY, USA, 145–154.
DOI:http://dx.doi.org/10.1145/1400751.1400772

David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. 2008. Automatic patch-based exploit
generation is possible: techniques and implications. In Proc. of the IEEE Symposium on Security and
Privacy. IEEE, Los Alamitos, CA, USA, 143–157. DOI:http://dx.doi.org/10.1109/SP.2008.17

Mike Burmester, Tri van Le, and Alec Yasinsac. 2007. Adaptive gossip protocols: managing secu-
rity and redundancy in dense ad hoc networks. Ad Hoc Networks 5, 3 (April 2007), 313–323.
DOI:http://dx.doi.org/10.1016/j.adhoc.2005.11.007

Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony Rowstron, and Atul
Singh. 2003. SplitStream: high-bandwidth multicast in cooperative environments. In Proc. of the
19th Symposium on Operating Systems Principles (SOSP ’03). ACM, New York, NY, USA, 298–313.
DOI:http://dx.doi.org/10.1145/945445.945474

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Håvard D. Johansen et al.

Andrew Chasin. 2001. The Gnutella protocol specification. Specification Version 0.41. Clip2 Distributed
Search Solutions. Document revision 1.2.

Fan Chung and Linyuan Lu. 2001. The diameter of random sparse graphs. Advances in Applied Math 26, 4
(May 2001), 257–279. DOI:http://dx.doi.org/10.1006/aama.2001.0720

Mark J. Cox, Ralf S. Engelschall, Stephen Henson, and Ben Laurie. 2011. The OpenSSL cryptography and
SSL/TLS toolkit. Software Version 0.9.8r. The OpenSSL Software Foundation, http://www.openssl.org.

Abhinandan Das, Indranil Gupta, and Ashish Motivala. 2002. SWIM: scalable weakly-consistent
infection-style process group membership protocol. In Proc. of the 2002 International Conference
on Dependable Systems and Networks (DSN 2002). IEEE, Los Alamitos, CA, USA, 303–312.
DOI:http://dx.doi.org/10.1109/DSN.2002.1028914

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
highly available key-value store. In Proc. of the 21 Symposium on Operating Systems Principles (SOSP
’07), Vol. 41. ACM, New York, NY, USA, 205–220. DOI:http://dx.doi.org/10.1145/1323293.1294281

Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The second-generation onion router. In
Proc. of the 13th Conference on USENIX Security Symposium (SSYM’04). USENIX Association, Berkley,
CA, USA, 21–21. http://dl.acm.org/citation.cfm?id=1251375.1251396

Danny Dolev, Ezra N. Hoch, and Robbert Van Renesse. 2007. Self-stabilizing and Byzantine-tolerant overlay
network. In Principles of Distributed Systems, Eduardo Tovar, Philippas Tsigas, and Hacène Fouchal
(Eds.). Lecture Notes on Computer Science, Vol. 4878. Springer, Berlin Heidelberg, Germany, 343–357.
DOI:http://dx.doi.org/10.1007/978-3-540-77096-1 25

John R. Douceur. 2002. The Sybil attack. In Peer-to-Peer Systems, Peter Druschel, Frans Kaashoek, and
Antony Rowstron (Eds.). Lecture Notes on Computer Science, Vol. 2429. Springer, Berlin Heidelberg,
Germany, 251–260. DOI:http://dx.doi.org/10.1007/3-540-45748-8 24

Peter Druschel and Antony Rowstron. 2001. PAST: a large-scale, persistent peer-to-peer storage utility. In
Proc. of the 8th Workshop on Hot Topics in Operating Systems. IEEE, Los Alamitos, CA, USA, 75–80.
DOI:http://dx.doi.org/10.1109/HOTOS.2001.990064

Pál Erdös and Alfréd Rényi. 1960. On the evolution of random graphs. Publications of the Mathematical
Institute of the Hungarian Academy of Sciences 5 (1960), 17–61.

Halvar Flake. 2004. Structural comparison of executable objects. In Proc. of the 2004 Conference on Detec-
tion of Intrusions and Malware and Vulnerability Assessment. German Informatics Society, Dortmund,
Germany, 161–173.

Michael J. Freedman and Robert Morris. 2002. Tarzan: a peer-to-peer anonymizing network layer. In Proc.
of the 9th ACM Conference on Computer and Communications Security (CCS ’02). ACM, New York, NY,
USA, 193–206. DOI:http://dx.doi.org/10.1145/586110.586137

Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. 2003. Peer-to-peer member-
ship management for gossip-based protocols. IEEE Trans. Comput. 52, 2 (Feb. 2003), 139–149.
DOI:http://dx.doi.org/10.1109/TC.2003.1176982

Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime Monod, and Ýmir Vigfússon. 2012.
Decentralized polling with respectable participants. J. Parallel and Distrib. Comput. 72, 1 (Jan. 2012),
13–26. DOI:http://dx.doi.org/10.1016/j.jpdc.2011.09.003

Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. 2010. The next 700 BFT protocols.
In Proc. of the 5th European Conference on Computer systems (EuroSys ’10). ACM, New York, NY, USA,
363–376. DOI:http://dx.doi.org/10.1145/1755913.1755950

Krishna P. Gummadi, Ramakrishna Gummadi, Steven D. Gribble, Sylvia Ratnasamy, Scott Shenker, and
Ion Stoica. 2003. The impact of DHT routing geometry on resilience and proximity. In Proc. of the 2003
Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication.
ACM, New York, NY, USA, 381–394. DOI:http://dx.doi.org/10.1145/863955.863998

Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. 2003. One hop lookups for peer-to-peer overlays. In
Proc. of the of the 9th conference on Hot Topics in Operating Systems (HOTOS ’03). USENIX Association,
Berkley, CA, USA, 7–12.

Indranil Gupta, Kenneth P. Birman, and Robbert van Renesse. 2002. Fighting fire with fire: using random-
ized gossip to combat stochastic scalability limits. Quality and Reliability Engineering International 18,
3 (June 2002), 165–184. DOI:http://dx.doi.org/10.1002/qre.473

Frank Harary. 1962. The maximum connectivity of a graph. Proc. of the National Academy of Sciences of the
United States of America 48, 7 (July 1962), 1142–1146. http://www.pnas.org/content/48/7/1142.short

Maya Haridasan and Robbert van Renesse. 2006. Defense against intrusion in a live streaming multicast
system. In Proc. of the 6th International Conference on Peer-to-Peer Computing. IEEE, Los Alamitos, CA,
USA, 185–192. DOI:http://dx.doi.org/10.1109/P2P.2006.15

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Fireflies: A Secure and Scalable Membership and Gossip Service A:31

Russell Housley, Warwick Ford, Tim Polk, and David Solo. 2002. Internet X.509 public key infrastructure cer-
tificate and Certificate Revocation List (CRL) profile. Request for Comments 3280. The Internet Society.

Håvard Johansen, André Allavena, and Robbert van Renesse. 2006. Fireflies: scalable support for intrusion-
tolerant network overlays. In Proc. of the 1st ACM European Conference on Computer Systems (Eurosys
’06). ACM, New York, NY, USA, 3–13. DOI:http://dx.doi.org/10.1145/1217935.1217937

Håvard Johansen, Dag Johansen, and Robbert van Renesse. 2007. FirePatch: secure and time-
critical dissemination of software patches. In New Approaches for Security, Privacy and
Trust in Complex Environments, Hein Venter, Mariki Eloff, Les Labuschagne, Jan Eloff, and
Rossouw von Solms (Eds.). IFIP AICT, Vol. 232. Springer, New York, NY, USA, 373–384.
DOI:http://dx.doi.org/10.1007/978-0-387-72367-9 32

Håvard D. Johansen. 2007. Intrusion-tolerant membership management for peer-to-peer overlay networks.
PhD Dissertation. University of Tromsø.

Ari Juels and John Brainard. 1999. Client puzzles: a cryptographic countermeasure against connection de-
pletion attacks. In Proc. of the 1999 Network and Distributed System Security Symposium. The Internet
Society, San Diego, CA, USA, 151–165.

Apu Kapadia and Nikos Triandopoulos. 2008. Halo: high-assurance locate for distributed hash tables. In
Proc. of the 16th Annual Network & Distributed System Security Symposium. Internet Society, 1775
Wiehle Avenue, Suite 201, Reston, VA, USA, Article 4, 19 pages. http://www.internetsociety.org/events/
ndss-symposium-2008

Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle, Seyed Vahid Moham-
madi, Wolfgang Schröder-Preikschat, and Klaus Stengel. 2012. CheapBFT: resource-efficient Byzantine
fault tolerance. In Proc. of the 7th ACM European Conference on Computer Systems (EuroSys ’12). ACM,
New York, NY, USA, 295–308. DOI:http://dx.doi.org/10.1145/2168836.2168866

Anne-Marie Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh. 2003. Probabilistic reliable dissemina-
tion in large-scale systems. IEEE Transactions on Parallel and Distributed Systems 14, 3 (March 2003),
248–258. DOI:http://dx.doi.org/10.1109/TPDS.2003.1189583

Kim Potter Kihlstrom, Louise E. Moser, and Peter M. Melliar-Smith. 2001. The SecureRing group com-
munication system. ACM Transactions on Information and System Security 4, 4 (Nov. 2001), 371–406.
DOI:http://dx.doi.org/10.1145/503339.503341

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. 2007. Zyzzyva: Specu-
lative Byzantine fault tolerance. In Proc. of the 21st Symposium on Operating Systems Principles (SOSP
’07). ACM, New York, NY, USA, 45–58. DOI:http://dx.doi.org/10.1145/1294261.1294267

Gunnar Kreitz and Fredrik Niemelä. 2010. Spotify—large scale, low latency, P2P music-on-demand stream-
ing. In Proc. of the 10th IEEE International Conference on Peer-to-Peer Computing (P2P ’10). IEEE, Los
Alamitos, CA, USA, 1–10. DOI:http://dx.doi.org/10.1109/P2P.2010.5569963

John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon, Chris Wells, and Ben Zhao. 2000. OceanStore: an archi-
tecture for global-scale persistent storage. In Proc. of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS IX). ACM, New York, NY, USA,
190–201. DOI:http://dx.doi.org/10.1145/378993.379239

Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured stor-
age system. ACM SIGOPS Operating Systems Review 44, 2 (April 2010), 35–40.
DOI:http://dx.doi.org/10.1145/1773912.1773922

Harry C. Li, Allen Clement, Edmund L. Wong, Jeff Napper, Indrajit Roy, Lorenzo Alvisi, and Michael Dahlin.
2006. BAR gossip. In Proc. of the 7th Symposium on Operating System Design and Implementation
(OSDI ’06). USENIX Association, Berkley, CA, USA, 191–204.

Gary Locke and Patrick Gallagher. 2009. Digital Signature Standard (DSS). FIPS PUB 186-3. National
Institute of Standards and Technology.

Dahlia Malkhi, Yishay Mansour, and Michael K. Reiter. 1999. On diffusing updates in a Byzantine environ-
ment. In Proc. of the 18th Symposium on Reliable Distributed Systems. IEEE, Los Alamitos, CA, USA,
134–143. DOI:http://dx.doi.org/10.1109/RELDIS.1999.805090

D. Malkhi, M.K. Reiter, O. Rodeh, and Y. Sella. 2001. Efficient update diffusion in Byzantine environments.
In Proc. of the 20th Symposium on Reliable Distributed Systems. IEEE, Los Alamitos, CA, USA, 90–98.
DOI:http://dx.doi.org/10.1109/RELDIS.2001.969758

Jon McLachlan, Andrew Tran, Nicholas Hopper, and Yongdae Kim. 2009. Scalable onion routing with Torsk.
In Proc. of the 16th ACM Conference on Computer and Communications Security (CCS ’09). ACM, New
York, NY, USA, 590–599. DOI:http://dx.doi.org/10.1145/1653662.1653733

Yaron Minsky and Fred B. Schneider. 2003. Tolerating malicious gossip. Distributed Computing 16, 1 (Feb.
2003), 49–68. DOI:http://dx.doi.org/10.1007/s00446-002-0082-4

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Håvard D. Johansen et al.

Yaron Minsky and Ari Trachtenberg. 2002. Practical set reconciliation. Technical report 2002-01. Boston
University.

Prateek Mittal and Nikita Borisov. 2009. ShadowWalker: peer-to-peer anonymous communication using re-
dundant structured topologies. In Proc. of the 16th ACM Conference on Computer and Communications
Security (CCS ’09). ACM, New York, NY, USA, 161–172. DOI:http://dx.doi.org/10.1145/1653662.1653683

Arjun Nambiar and Matthew Wright. 2006. Salsa: a structured approach to large-scale anonymity. In Proc.
of the 13th ACM Conference on Computer and Communications Security (CCS ’06). ACM, New York,
NY, USA, 17–26. DOI:http://dx.doi.org/10.1145/1180405.1180409

Rafael R. Obelheiro and Joni da Silva Fraga. 2006. A lightweight intrusion-tolerant overlay network. In
Proc. of the 9th International Symposium on Object and Component-Oriented Real-Time Distributed
Computing. IEEE, Los Alamitos, CA, USA, 496–503. DOI:http://dx.doi.org/10.1109/ISORC.2006.7

Alessio Pace. 2011. Gossiping in the wild—tackling practical problems faced by gossip protocols when de-
ployed in the Internet. Ph.D. Dissertation. University of Grenoble.

Vinay S. Pai, Kapil Kumar, Karthik Tamilmani, Vinay Sambamurthy, and Alexander E. Mohr. 2005. Chain-
saw: eliminating trees from overlay multicast. In Peer-to-Peer Systems IV, Miguel Castro and Robbert
van Renesse (Eds.). Lecture Notes on Computer Science, Vol. 3640. Springer, Berlin Heidelberg, Ger-
many, 127–140. DOI:http://dx.doi.org/10.1007/11558989 12

Larry Peterson and Timothy Roscoe. 2006. The design principles of PlanetLab. ACM SIGOPS Operating
Systems Review 40, 1 (Jan. 2006), 11–16. DOI:http://dx.doi.org/10.1145/1113361.1113367

Peter Pietzuch, Jeffrey Shneidman, Jonathan Ledlie, Matt Welsh, Margo Seltzer, and Mema Roussopoulos.
2005. Evaluating DHT-based service placement for stream-based overlays. In Peer-to-Peer Systems IV,
Miguel Castro and Robbert van Renesse (Eds.). Lecture Notes on Computer Science, Vol. 3640. Springer,
Berlin Heidelberg, Germany, 275–286. DOI:http://dx.doi.org/10.1007/11558989 25

Michael K. Reiter. 1994. Secure agreement protocols: reliable and atomic group multicast in Rampart. In
Proc. of the 2nd Conference on Computer and Communications Security (CCS ’94). ACM, New York, NY,
USA, 68–80. DOI:http://dx.doi.org/10.1145/191177.191194

Rodrigo Rodrigues and Charles Blake. 2004. When multi-hop peer-to-peer lookup matters. In Peer-to-Peer
Systems III, GeoffreyM Voelker and Scott Shenker (Eds.). Lecture Notes on Computer Science, Vol. 3279.
Springer, Berlin Heidelberg, Germany, 112–122. DOI:http://dx.doi.org/10.1007/978-3-540-30183-7 11

Atul Singh, Miguel Castro, Peter Druschel, and Antony Rowstron. 2004. Defending against Eclipse attacks
on overlay networks. In Proc. of the 11th ACM SIGOPS European Workshop. ACM, New York, NY, USA,
Article 21, 6 pages. DOI:http://dx.doi.org/10.1145/1133572.1133613

Emil Sit and Robert Morris. 2002. Security considerations for peer-to-peer distributed hash tables.
In Peer-to-Peer Systems, Peter Druschel, Frans Kaashoek, and Antony Rowstron (Eds.). Lec-
ture Notes on Computer Science, Vol. 2429. Springer, Berlin Heidelberg, Germany, 261–269.
DOI:http://dx.doi.org/10.1007/3-540-45748-8 25

Mudhakar Srivatsa and Ling Liu. 2004. Vulnerabilities and security threats in structured overlay networks:
a quantitative analysis. In Proc. of the 20th Annual Computer Security Applications Conference. IEEE,
Los Alamitos, CA, USA, 252–261. DOI:http://dx.doi.org/10.1109/CSAC.2004.50

Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. 2009. Long term study of peer behav-
ior in the KAD DHT. IEEE/ACM Transactions on Networking 17, 5 (Oct. 2009), 1371–1384.
DOI:http://dx.doi.org/10.1109/TNET.2008.2009053

Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank
Dabek, and Hari Balakrishnan. 2003. Chord: a scalable peer-to-peer lookup protocol for
Internet applications. IEEE/ACM Transactions on Networking 11, 1 (Feb. 2003), 17–32.
DOI:http://dx.doi.org/10.1109/TNET.2002.808407

Daniel Stutzbach and Reza Rejaie. 2006. Understanding churn in peer-to-peer networks. In Proc. of the 6th
ACM SIGCOMM Conference on Internet Measurement (IMC ’06). ACM, New York, NY, USA, 189–202.
DOI:http://dx.doi.org/10.1145/1177080.1177105

Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. 2011. A survey of DHT security techniques.
Comput. Surveys 43, 2, Article 8 (Feb. 2011), 49 pages. DOI:http://dx.doi.org/10.1145/1883612.1883615

Bimal Viswanath, Mainack Mondal, Krishna P. Gummadi, Alan Mislove, and Ansley Post. 2012.
Canal: scaling social network-based Sybil tolerance schemes. In Proc. of the 7th ACM Eu-
ropean Conference on Computer Systems (EuroSys ’12). ACM, New York, NY, USA, 309–322.
DOI:http://dx.doi.org/10.1145/2168836.2168867

Scott Wolchok and J. Alex Halderman. 2010. Crawling BitTorrent DHTs for fun and profit. In Proc. of the
4th USENIX Conference on Offensive Technologies (WOOT’10). USENIX Association, Berkley, CA, USA,
1–8.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

