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ABSTRACT 12 

Central America and the western Caribbean form a center of freshwater and marine biodiversity 13 

that is now receiving attention in ecological and evolutionary studies. We conducted one integrated 14 

ecological study of Amatique Bay, Guatemala, a major estuary lagoon connected to the 15 

Mesoamerican Reef System, and provide novel information for management and conservation of 16 

similar systems across the Caribbean. Important environmental drivers are the precipitation and 17 

wind regimes, which partially compensate for the weak tidal-forcing characteristic of the Caribbean 18 

Sea. Seasonal peaks in temperature and precipitation were strongly correlated to the reproduction 19 

of marine, catadromous and estuarine fish species, suggesting that the ensuing increase in primary 20 

production provides larval fish with an abundant food source. Increased abundance of marine 21 

transient species was observed during the dry season, when prey might be more abundant inshore, 22 

and environmental conditions are dominated by higher salinity and stronger onshore winds 23 

suggesting passive transport, feeding migration or both. Despite being a stopover site for many 24 

species of long-range migrating shorebirds, the Bay serves primarily as a resting place as it lacks 25 

extensive tides and tidal flats, limiting the access to invertebrate prey. Abundant freshwater, the 26 

sheltered environment, seasonally high water clarity, and low tidal amplitude likely provide good 27 

habitat for abundant seagrasses and manatees. The Lake Izabal-Amatique Bay complex 28 

demonstrates a wide range of teleconnections and connectivity among terrestrial, freshwater, and 29 

marine oceanic and reef ecosystems. This ecological and evolutionary understanding is required 30 

for the management of the multi-trophic small-scale fisheries sustained by the system. 31 

Keywords: Fisheries, migratory shorebirds, manatee, life history, environmental drivers, tropical 32 

conservation, evolution, Central America.   33 
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INTRODUCTION 38 

 39 

The western Caribbean is highly diverse across terrestrial, marine and freshwater realms, but a 40 

unified understanding of its coastal assemblages of fish, birds, and mammals is wanting. The 41 

paleontological and phylogenetic records suggest that the nuclear Central America was at the core 42 

of an explosive radiation of freshwater fish (Briggs 1984, Chakrabarty & Albert 2011). Part of the 43 

taxa were secondary freshwater fish originally from South America, but the invasion of freshwater 44 

ecosystems by marine species (i.e., killifishes, cichlids) came to play a major role after a sequence 45 

of saltwater intrusions and regressions (Hulsey & López-Fernández 2011). In the marine realm, the 46 

Caribbean Province has historically been the center of ecological speciation and radiation of fish 47 

and many invertebrate groups in the Atlantic producing and exporting species, but also 48 

accumulating biodiversity produced in peripheral habitats (Briggs & Bowen 2012, Bowen et al. 49 

2013). The Caribbean province was also once an area of sirenian (manatee/sea cow) radiation. 50 

However, the closure of the Central American Seaway in the Pliocene (ca. 3 Ma) resulted in mass 51 

extinctions of sea grasses and sirenian species, and only a single species, the manatee Trichechus 52 

manatus, remains (Hunter et al. 2012, Velez-Juarbe et al. 2012, Benoit et al. 2013). The rise of the 53 

Isthmus of Panama prompted the migration of forest birds predominantly in the direction south to 54 

north, which presumably led to the high levels of bird diversity also observed in this region. For 55 

shorebirds (Charadriiformes), however, understanding of their original migratory behavior and 56 

home range is problematic (Weir et al. 2009, Livezey 2010, Zink 2011). Many extant Arctic 57 

Charadriiformes are long-range migrants with northern breeding grounds, and overwinter in the 58 

southern hemisphere. However, several lineages of shorebirds from the southern hemisphere are 59 

predominantly residents or short-range migrants. Thus, the present assemblages of aquatic and 60 

wetland fauna are a complex of freshwater and marine radiations and transgressions, as well as 61 

colonization by continental species. The lack of studies examining coastal species assemblages and 62 

their functions, particularly in Neotropical estuaries, hampers the understanding of ecological 63 

processes that may have driven evolution of many taxa (Sheaves & Johnston 2009, Barletta et al. 64 

2010, Atwood et al. 2012).  65 

Whether as a stop-over for long distance migrants like birds, a seasonal habitat for short-range 66 

migrants, or home for resident taxa, the estuarine areas of Central America and the Caribbean are 67 

important for both conservation and human utilization (Faaborg et al. 2010, Latta 2012, Somveille 68 

et al. 2013). For example, Amatique Bay in Guatemala is connected by freshwater runoff to the 69 

Mesoamerican reef, the largest barrier reef in the Western Hemisphere (Soto et al. 2009), and is a 70 

prime example of a Caribbean estuarine ecosystem. Upstream (40 km) from the bay, the low-lying 71 

Lake Izabal forms the southern boundary of the Usumacinta fish faunal province. It may have been 72 

a major route of incursion of marine species into the freshwater assemblages of Central America 73 

(Hulsey & López-Fernández 2011). To conserve this complex, natural protected areas have been 74 

implemented across the watershed, including two Ramsar wetlands sites of international 75 

importance, the Río Sarstún Multiple Reserve Zone and Punta de Manabique Wildlife Refuge (Fig. 76 
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1). Punta de Manabique alone shelters more than 450 plant species, and 810 faunal taxa (Jolón-77 

Morales 2006). Several threatened or vulnerable migratory species, including the manatee, 78 

contribute to this biodiversity. Agriculture, herding and forestry, activities that are often preceded 79 

by slash and burning of existing vegetation, have been identified as major sources of impact on the 80 

wetland habitat in this area (Yañez-Arancibia et al. 1999). However, the presence of two harbors 81 

receiving an excess of 1200 ships annually and extensive fishing in the bay may also have a 82 

negative influence on the aquatic communities (Anon 2003). Fishing pressure is also high here and 83 

landings account for nearly 60% of the economic value generated by fishing in the Guatemalan 84 

Caribbean, supporting the livelihood of more than 1000 harvesters (Ixquiac-Cabrera et al. 2008, 85 

Andrade & Midré 2011, Heyman & Granados-Dieseldorff 2012). Thus, the range of conservation, 86 

ecological and social interests to accommodate is broad, and often conflicting.  87 

We attempted to describe this Caribbean estuarine-marine complex with the goal of identifying 88 

ecological drivers for ecosystem functioning and evolution in Neotropical estuaries. Integrated 89 

ecological studies of Caribbean estuaries have rarely been performed. The current understanding 90 

is dispersed in data reports, fisheries statistics, and very specialized publications. Thus, we 91 

compiled environmental and ecological information from different sources, and collected new field 92 

data on vertebrates and their environment. In this work we focus on the environmental drivers, 93 

seasonal rhythms, and life cycles of fish, shorebirds and manatees in the Bay complex, and suggest 94 

how these processes may link the estuary to the riverine and marine ecosystems. Larger emphasis 95 

is placed on the growth and reproduction cycles of fish, because this group has been more 96 

intensively and regularly sampled.  This case study provides an integrated view of an estuarine 97 

complex in the Caribbean and the Neotropics, which have been little studied to date.  98 

 99 

MATERIAL AND METHODS  100 

 101 

Study site 102 

With an aquatic surface of 542 km2 and additional 200 km2 of associated wetlands, Amatique Bay 103 

(Fig. 1) is a diverse and complex shallow (average depth < 10 m) ecosystem consisting of coastal 104 

lagoons, sea-grass meadows, reefs, mangroves, and marshes that are influenced by riverine systems 105 

(Yañez-Arancibia et al. 1999, Fonseca & Arrivillaga 2003). More than half of the 12 km2 mangrove 106 

forest in the Guatemalan Caribbean grows along the coast of the Bay as well as in the rivers 107 

draining into it (Hernández et al. 2012). The dominant species is the red mangrove Rhizophora 108 

mangle, but Avicennia germinans, Laguncularia racemosa and Conocarpus erectus are also 109 

common (Yañez-Arancibia et al. 1994). Seagrass beds, which are particularly abundant in La 110 

Graciosa Bay, cover approximately 38 km2 and so far six species have been identified, with 111 

Thalassia testudinum as the dominant (Yañez-Arancibia et al. 1994, Arrivillaga & Baltz 1999, 112 

MacDonald-Barrios 2011). Some reef structures exist, mainly around Punta de Manabique in the 113 

form of continental carbonate banks. These reefs are dominated by sedimentation-resistant coral 114 
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species, such as Siderastrea siderea.  Live coral cover, however, is low, and non-coralline 115 

macroalgae abound (Fonseca & Arrivillaga 2003). The mud-dominated areas at the mouth of the 116 

Sarstún River give rise to the most valuable shrimp fishery in the Gulf of Honduras (Heyman & 117 

Kjerfve 2001).  118 

 119 

Collection and analysis of meteorological and oceanographic data 120 

Time-series of environmental data were retrieved from the Guatemalan meteorological institute 121 

(INSIVUHMEH), or extracted from NOAA or NASA open internet sources available for 1985-122 

2010. Retrieval and treatment of these enviromental data are described in detail in Text S1 in the 123 

Supplement. These included time-series of wind speed (Wind) and direction, precipitation (Pre), 124 

air temperature (Tair), day length (Dayl), sea surface temperature (SST), tidal heights, and 125 

chlorophyll a (Chl a) concentration. Turbidity and nutrient concentration at the outlet of Lake 126 

Izabal were measured in 2006-2007 by Quintana-Rizzo & Machuca (2008). We separated this 127 

measurements into two periods to represent the water quality: August, October and December 2006 128 

comprised the wet season, and February, April and June 2007 the dry season. Estimates of monthly 129 

run-off were recovered from a model using land cover scenarios for the years 2003-2004 (Burke 130 

& Sugg 2006).  131 

Seasonal abundance of fish species in Amatique Bay  132 

Indices and maps of fish density were derived from two sets of fishery-dependent data and one set 133 

of observations made during research surveys. The first set consists of the average monthly catch 134 

per unit effort (CPUE) of shrimp trawlers [kg (number of fishing boats x month)-1] in the period 135 

2006-2010, available from the national fisheries directorate (DIPESCA, Guatemala). These records 136 

of catch and by-catch are usually pooled into coarse categories that sometimes comprise several 137 

species: "Shrimp" (three Penaeid species), "Catfish" (two Ariidae species), "Corvina" (a mix of 138 

Sciaenidae and Haemulidae). The lane snapper Lutjanus synagris and Atlantic brief squid 139 

Lolliguncula brevis (hereby referred as squid) are registered as individual species (Table S1 in 140 

Supplement). Shrimp trawlers operate on soft mud bottom and are typically 10 m long vessels 141 

equipped with 120-130 hp inboard engines. The trawl gear lacks otter boards and is retrieved by 142 

hand by a small crew (González & López 2000). The legal mesh size in the codend is 64 mm 143 

(stretched), but a 51 mm cover is usually employed to improve retention of smaller sized shrimp 144 

(Ixquiac-Cabrera et al. 2008).   145 

The second type of fishery-dependent data consisted of the estimated monthly landings from non-146 

trawler vessels derived by Heyman & Graham (2000) and Heyman & Granados-Dieseldorff 147 

(2012). These estimates were based on information gathered by interviewing 42 experienced 148 

skippers (70% had more than 10 years of experience) of small boats (dories, skiffs) performed in 149 

1998. The most common fishing gears were gillnets (81%), beach seines (7%), small shrimp trawl 150 

nets (locally known as "changos", 5%) and hand lines (3%). The location of their fishing villages 151 



5 
 

and the species-distribution maps drawn by Heyman & Granados-Dieseldorff (2012) indicate that 152 

the catches were made mostly inside the Bay. These authors report monthly landings of many 153 

species but we limited our analyses to those that regularly comprised 90% of the total catch (Table 154 

S1 in Supplement). 155 

The oceanographic and biological observations made by Ixquiac-Cabrera et al. (2008) during two 156 

research cruises were used to map salinity profiles and fish density across Amatique Bay. The 157 

surveys were carried out in February and August 2008 from a fishing vessel equipped with a 158 

commercial shrimp trawl (Text S2 in Supplement) and a CTD profiler. Mapping was performed 159 

after smoothing the observations from 11 fixed stations and their categorization into dry (February) 160 

and wet (August) seasons. The densities per square nautical mile (kgNM-2) of some of the most 161 

numerous species were plotted to analyze distribution patterns. Five out of the 11 dominant species 162 

(of 79 spp. in total), accounting for 28% of the organisms sampled, were chosen to illustrate spatial 163 

occupancy during the dry and wet seasons. These species included the caitipa mojarra Diapterus 164 

rhombeus, lane snapper, squid, striped mojarra Eugerres plumieri and anchovies, a group 165 

comprised by the species Anchoa spinifer, A. cayorum, A. colonensis and Anchoviella elongata 166 

(Table S1 in Supplement).   167 

Physiological traits of selected fish species 168 

To investigate some of the eco-physiological traits of fish species, we performed observations of 169 

the reproduction and growth of lane snapper, grey snapper L. griseus, gafftopsail catfish Bagre 170 

marinus and snook Centropomus undecimalis along a year cycle. We selected these species 171 

because they were frequent in the catches and could be regularly sampled between March 2006 172 

and April 2007 from the fresh landings in Livingston and in Puerto Barrios (Fig. 1). Snappers were 173 

usually caught with hand lines, but snook and the gafftopsail catfish were caught mainly with 174 

gillnets. The total (Wt, g) and gonad (Wg, g) weights (± 0.1g) of the fish were recorded along with 175 

their total lengths (L, cm). Monthly averages of the gonadosomatic index (GSI = 100 Wg / Wt) 176 

were used as an indicator of the gonadal development and spawning seasonality (Lowerre-Barbieri 177 

et al. 2011). The condition factor (CF = 100 Wt L
–b) is a body-mass index where b is the coefficient 178 

of the length-weight relationship (King 1995). Excluding the gafftopsail catfish, which is clearly 179 

sexually dimorphic, fish of both sexes were combined prior to analysis. This included an analysis 180 

of the sex-aggregated data for common snook, a commercial fish species that we have previously 181 

investigated in detail (Andrade et al. 2013).  182 

Shorebird and manatee distribution  183 

Observations of shorebirds in Punta de Manabique were available from August 2000 to June 2001 184 

(Eisermann 2009).  In this study, 2124 sightings were recorded along beaches, coastal lagoons and 185 

river mouths, providing an index of relative abundance.  Only the most common species (n > 30 186 

observations) as defined by the original authors were used in the analyses, and this accounted for 187 

97% of the birds sighted and 11 out of a total of 25 species (Table S1 in Supplement). An airborne 188 
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survey of manatees Trichechus manatus in the Izabal-Dulce-Amatique complex was performed on 189 

five occasions between July 2006 and February 2008 by Quintana-Rizzo & Machuca (2008). 190 

However, only the sightings made in October 2006 and March 2007 were utilized here to map their 191 

seasonal distribution because these two surveys had similar coverage and methodology (Text S3 192 

in Supplement).  193 

Statistical analysis 194 

Relationships between monthly average abundance of selected species (fish, shorebirds) and 195 

putative explanatory variables, such as meteorological and oceanographic time-series, were 196 

analyzed by means of multivariate ordination with the software package CANOCO (ter Braak 197 

1986, ter Braak & Šmilauer 2002, Garcia et al. 2012). Direct gradient analyses were carried out by 198 

means of Redundancy Analysis (RDA, the constrained form of Principal Component Analysis) to 199 

test whether species composition could be explained by the main environmental factors SST, 200 

precipitation and wind. This was performed on log-transformed data after examination of the 201 

gradient lengths with Detrended Correspondence Analyses (DCA) (Ejrnæs, 2000). Monte Carlo 202 

permutation tests (499 permutations) were employed to assess the statistical significance (α= 0.05 203 

for all statistical tests). Exploratory analyses of the shorebird species and seasonal data were also 204 

performed by means of RDA, with seasons expressed as categorical (dummy) environmental 205 

variables (Šmilauer et al. 2014). To illustrate the cyclical occurrence of selected shorebird species, 206 

their sightings were modeled using a generalized additive model (GAM) with season as predictor 207 

variable. A Poisson error structure of the sightings was assumed and a log-link was utilized, as 208 

usual for count data (McCullagh & Nelder 1989). Circular statistics (Zar 1998, Lund & Agostinelli 209 

2014) were used to calculate means and variance of monthly wind direction. To identify linkages 210 

between pairs of time-series while accounting for auto-correlation, we used cross-correlation 211 

analyses on ln-transformed data (El-Gohary & McNames 2007, Wilkinson et al. 2009).  212 

 213 

RESULTS  214 

 215 

Environmental variables 216 

The time-series of the environmental variables and Chl a are illustrated in Fig. 2. The air 217 

temperature varied little along the coast (yearly average 26.5 ºC, ± sd 1.9 ºC). The SST is lowest 218 

in November to May, at about 27 ºC, and reaches a maximum in September with a mean of 30 ºC 219 

(± sd 0.6 ºC). Amplitude of day duration is also small, and day length varied from 670 min of light 220 

in December to 780 min in June. Cross-correlation analyses showed that the cycles of SST, Tair, 221 

and day length were significantly correlated (in all cases r > 0.5 and P<0.05) and in phase (lag 222 

zero), with the SST and Tair series presenting the highest correlation. The average annual 223 

precipitation in the inner part of the bay exceeded 3300 mm (± sd 615 mm) in the period 1985-224 

2010. The rainy season usually starts in June, reaching peak precipitation in July with about 430 225 

mm, and remaining above 300 mm until November. Wind speed was highest, with an average of 226 
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10.3 km h-1 (± sd 2 km h-1) during March and April, and lowest from September to December at 227 

8.5 km h-1 (± sd 2.7 km h-1). From January to September the winds are predominantly from NE, 228 

and from variable directions the rest of the year. Overall, the yearly mean wind direction was 35o 229 

(circular variance 6o), i.e. straight from the mouth of the bay (NNE). The salinities across the Bay 230 

vary widely depending on the season. Thus, during the dry season the increasing temperatures re-231 

enforced by strong onshore winds give rise to a distinct marine influence. Relatively high surface 232 

(18-29 ppt, Fig. 3) and bottom (29-31 ppt) salinities are observed in February, indicating relatively 233 

good mixing (Ixquiac-Cabrera et al. 2008).  During the wet season, increased precipitation, higher 234 

run-off, and lower wind stress lead to increased stratification. In August, bottom salinities range 235 

from 23 to 31 ppt and surface salinities from 8 to 20 ppt (Ixquiac-Cabrera et al. 2008), and are 236 

characteristically low close to the mouth of the Dulce River (Fig. 3). The tides follow a regime of 237 

damped mixed-cycles with average monthly tide amplitude of only 0.52 m with some yearly 238 

variation but no clear seasonal trend. Secchi-disk measurements performed by Quintana-Rizzo & 239 

Machuca (2008) in the main channel at the outlet of Lake Izabal indicate that turbidity was highest 240 

during the rainy season at 3.0 m, and lowest in dry season in February at 4.0 m. None of these 241 

values suggests outflow of water rich in suspended particulate matter. Nutrient concentrations were 242 

highly variable temporally and spatially within the lake. At the outlet of the lake, nitrate (NO–3) 243 

concentrations tended to increase from baseline levels to 0.5-3.1 mg/l in August to October). This 244 

pattern was also found for ortho-phosphates (0.13 mg/l), which were normally low and variable, 245 

or un-detectable towards the end of the raining season (August-November). Inside the Amatique 246 

the Secchi depth was lower at the mouth of the rivers, particularly the Sarstún where it was about 247 

0.8 m in July (Carrillo-Ovalle et al. 2000). The Secchi-depth increased rapidly towards the outer 248 

bay where it reached 10 m also in the rainy season, closely mirroring the horizontal salinity gradient 249 

(Fig. 3). The chlorophyll a and runoff cycles resembled that of precipitation: usually peaking in 250 

June-July and remaining high until October. Cross-correlation analysis showed that the 251 

precipitation cycle was significantly correlated (P < 0.05) and in phase (lag zero) with the 252 

chlorophyll a cycle (r = 0.35).   253 

 254 

Fish species abundance and distribution 255 

The bottom trawler data suggested that shrimp and by-catch were associated with the seasonal 256 

meteorological regime and the inflow of marine waters brought about by the NE winds, low 257 

precipitation, and rising SST (Fig. 4). Redundancy analysis revealed that 23% of the variation in 258 

CPUE in 2006-2010 was explained largely (96%) by the three variables selected in the analysis: 259 

SST, Pre and Wind. The forward selection analysis retained SST and precipitation as significant 260 

variables (P < 0.05). The RDA triplot emphasizes that SST and precipitation were not correlated, 261 

and were the main variables determining the first and second axes, respectively. As they were 262 

relatively independent they are nearly orthogonally displayed. The first (horizontal) axis contrasts 263 

warm months with higher precipitation on the left side, to colder and dry months on the right side. 264 

The second axis separates the months with species associated to high SST at the top from the 265 
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species associated to increased precipitation at the bottom of the triplot. In contrast, precipitation 266 

and wind speed, which was a non-significant explanatory variable, were negatively correlated. The 267 

density of shrimp and concentration of Chl a presented the strongest significant associations with 268 

the environmental variables SST and precipitation. The increased SST in June-July was positively 269 

related to shrimp and squid abundances. Abundance of fish such as sciaenids, catfish and lane 270 

snapper in the bottom trawls was negatively related to the precipitation, and was higher in the dry 271 

months of March-May when onshore winds tended to be stronger.  272 

The temperature and wind regimes drive the occurrence of the different species available to dories 273 

and skiff fishers (Fig. 5). The variables included in the RDA explained 56% of the variance in the 274 

biological data, with the first and second axis accounting for 92% of this variation. The forward 275 

selection analysis retained SST and wind as significant variables (p < 0.05). The first axis clearly 276 

contrasts warm months, on the right side, to colder and windy months, on the left side. The second 277 

axis separates the months and species according to the precipitation regime, with species 278 

predominant during the rainy season located at the top, and those indicative of dry season at the 279 

bottom of the triplot. The Gerridae group, lane snapper, and grouper were positively related to 280 

precipitation in November. Our own observations suggest that lane snapper caught in this net and 281 

line fishery consists mostly of late juveniles and adults (average length 23.4 cm, size range 13.3-282 

40.4 cm). The shrimp species, the tarpon Melagops atlanticus and the blackbelt cichlid 283 

Paraneetroplus maculicauda, were positively related to SST in August-September. Snook was 284 

partially related to both wind and precipitation in October. Crevalle jack Caranx hippos the Spanish 285 

mackerel Scomberomorus maculatus and the catfish were negatively related to SST and were more 286 

common in December-March coinciding with increased onshore winds. Anchovy Anchoa spp, 287 

barracuda Sphyraena picudilla, mutton L. analis and "cubera" snappers were inversely related to 288 

precipitation and were, thus, more common in the period March-May. Maps of a selection of 289 

species caught in the research surveys are shown in Fig. 3. Species like the lane snapper, the squid 290 

and the anchovies are abundant during the dry season (February) but almost absent in the wet 291 

season (August). The lane snapper captured with the commercial trawl gear consisted mostly of 292 

juveniles (average length 13.4 cm, size range 3.0-28.6 cm). Species like the stripped mojarra were 293 

more abundant during the wet season. The density of species like the caitipa mojarra was apparently 294 

unaffected by the seasons.  295 

Physiological traits of selected fish species 296 

The species sampled for analysis of reproduction and growth included lane snapper (n=364, total 297 

length ±sd, 23.1 ± 4.2 cm), grey snapper (n=286, 28.3 ± 5.8 cm), and gafftopsail catfish (n=169 298 

females, 46.4 ± 6.3 cm). The lane and the grey snappers displayed similar spawning and body 299 

condition cycles (Fig. 6). Their GSI showed an increasing trend from January, reaching peaks in 300 

March-June. Gonad investment was relatively low in both species compared to the snook and 301 

specially the gaftopsail catfish, with an average maximum monthly GSI of about 1.3%. In July-302 

August, coincident with the onset of the rainy season, the GSI decreased abruptly suggesting that 303 

the main spawning event was over. From August to December, gonad investment was relatively 304 
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low. This pattern matched the body condition of the fish, as both species tended to show highest 305 

CF in March-June, the dry season. Contrasting growth patterns were observed in other fish species 306 

like the common snook and, to some extent, the gafftopsail catfish. Both species recovered their 307 

body condition during the rainy season, from October to January. This seemed to trigger spawning 308 

activity earlier in the dry season, by March-April, as revealed by their GSI. The two species differ 309 

strongly, however, in their gonad investment, from 1.6% at its maximum in snook (2.5% in 310 

females; Andrade et al. 2013), to average values exceeding 10% in April for the female catfish.  311 

Shorebirds and manatees 312 

The shorebirds of Amatique displayed clear seasonal patterns of occurrence (See Table S1, in 313 

Supplement). Exploratory analysis of the original sighting data by means of RDA detected four 314 

characteristic trends of seasonality in the dominant species. The most abundant group by far, with 315 

about 64% of the sightings, included some of the sandpipers (Actitis macularius, Calidris 316 

minutilla), plovers (Pluvialis squatarola, Charadrius semipalmatus and the whimbrel Numenius 317 

phaeopus that had relatively short stop-overs in March-May and August-November. These are the 318 

birds in group I in the RDA biplot (Fig. 7). The sighting cycle of the black-bellied plover P. 319 

squatarola (Pb) is shown as an example by means of a GAM (inset, Fig. 7). This cycle has the first 320 

clear top in the March-May period and the second in August-November. In the second major group 321 

(group II in Fig. 7) the black-necked stilt Himantopus mexicanus, the semipalmated sandpiper 322 

Calidris pusilla (Sse) and the sanderling Calidris alba, accounted for 18% of the total sightings. 323 

This group had a more pronounced presence in the late rainy season (August-November), as 324 

exemplified by the sanderling (S) in the GAM (inset). A third group composed of the collared 325 

plover Charadrius collaris (Pc) and the western sandpiper C. mauri was associated with the long 326 

rainy season from May to November. This group comprised about 13% of the overall counts, and 327 

some sporadic sightings were made in the dry season. The collared plover was the only species 328 

observed to breed in the area. The white-rumped sandpiper C. fuscicollis (Swr, group IV) was the 329 

only species that was observed nearly exclusively in the late dry season (March-May), and this 330 

species accounted for 2% of the sightings. The combined seasonal patterns of the most abundant 331 

groups of birds (I and II) explain why the majority of the sightings were made in the late rainy 332 

season (52%) and late dry season (25%).  333 

According to the observations performed in aerial surveys by Quintana-Rizzo & Machuca (2008) 334 

in 2006-2007, manatees in the Lake Izabal-Amatique Bay may have a local distribution related to 335 

the seasonal precipitation regime. In these surveys, the largest densities of manatees, both adults 336 

and calves, are found in the lake Izabal and were highest during the dry season and lowest during 337 

the surveys conducted in July and October. In contrast, downstream the highest densities were 338 

found in October at the mouth of the Sarstún River, in the western Amatique Bay, where manatees 339 

were virtually absent during the dry season (Fig. 8). Manatees forming relatively large aggregations 340 

were detected in both seasons in Graciosa Bay, where abundant seagrass is available. However, the 341 

surveys covered this particular area more sporadically and it is more difficult to extract clear 342 

seasonal patterns of abundance. 343 
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 344 

DISCUSSION 345 

 346 

Primary production in the estuary; seasonality  347 

The main environmental drivers of the Amatique Bay ecosystem, which are most probably also 348 

important for other western Caribbean estuaries, are the precipitation, runoff and wind regimes, 349 

combined with a weak tidal forcing. Low tidal amplitudes are a characteristic of the Caribbean Sea 350 

(Kjerfve 1981), and this reduces tidal mixing. The hydrographic data presented show that the 351 

climate in Amatique Bay is dominated by a marked two-season regime. From February to May 352 

precipitation is low and river discharge is at its yearly minimum. The increase in temperature and 353 

evaporation give rise to higher salinities as marine water dominates in the bay, with reported 354 

intrusions into as far up as Lake Izabal (Brinson et al. 1974). Despite weak tidal currents resulting 355 

from low tidal amplitudes, a steady onshore (NE) breeze provides good vertical mixing inside the 356 

bay. From July to December, the rainy season dominates and the run-off into the bay combined 357 

with weaker and variable sea breezes results in a distinct halocline in the water column. The 358 

precipitation cycle in Amatique preceded or was in phase with the chlorophyll a cycle suggesting 359 

that primary production responds quickly to fresh water input and/or enhanced stratification (Fig. 360 

9). The rapid linkage between runoff and nutrient loadings has been shown for other tropical and 361 

subtropical semi-enclosed bays, including Kaneohe Bay, Hawaii and the microtidal Patos Lagoon 362 

estuary, Brazil (Hoover et al. 2006, Abreu et al. 2010, Drupp et al. 2011). The validity of the remote 363 

chlorophyll a data could be challenged (Dierssen 2010), but additional measurements indicate that 364 

the water flowing from the lake has peak concentrations of nutrients and low volumes of suspended 365 

particles at the onset of the rainy season (Carrillo-Ovalle et al. 2000, Quintana-Rizzo & Machuca 366 

2008). This confirms that peak primary production remotely measured can be probably associated 367 

with the seasonal flooding. Further studies should, however, attempt to describe this cycle in more 368 

detail and investigate the trophic linkage to zooplankton and zooplanktivorous larvae of fish and 369 

shrimp. The primary and secondary production cycles are thought to be more tightly coupled in the 370 

tropics than in temperate areas, responding quickly (days to weeks) to the hydrological regime 371 

(Hoover et al. 2006, Chew & Chong 2011, Atwood et al. 2012).   372 

 373 

Fish spawning and aggregations 374 

 375 

In Amatique Bay, spawning of fish like the grey snapper, lane snapper, the snook and probably the 376 
gafftopsail catfish occur just prior to or during the rainy (and warmer) season, in the months of 377 
March-November (Fig. 9). From July to November primary production is high and may favor larval 378 
survival and growth. These observations are similar to those reported for east Africa where fish 379 

spawning is associated with the monsoon and rainfall events (Blaber 2000). Increased abundance 380 
of larvae of lane and grey snappers has been shown to overlap with periods of high chlorophyll 381 
concentrations in other localities in the Caribbean (Yáñez-Arancibia et al. 1993, Falfan Vazquez et 382 
al. 2008). Similarly, growth rates and survival of snook recruits (age < 100 days) are known to be 383 
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higher for juveniles spawned during the rainy season (Aliaume et al. 2000). While we observed 384 

three potential spawning events for snook, low GSI values during the dry season suggest the 385 
importance of the rainy season for spawning in this species. Overall, the two snappers and snook 386 

invest relatively little in gonadal mass, or have a protracted spawning period given their average 387 
low GSI, as it has been suggested for other species spawning in the tropics (Longhurst & Pauly 388 
1987, Houde 1989). Part of the variation in gonadal investment can also be explained by a 389 
geographic gradient, as suggested earlier for snook (Andrade et al. 2013). Thus, this species 390 
achieves greater gonado-somatic indices during a shorter spawning season in cooler winter waters 391 

(e.g. Florida). Analogous reproductive strategies have been reported in important Lutjanids and 392 
Centropomids in the tropical belt of the Indo-Pacific. For example, in northern Australia, the red 393 
snappers L. erythropterus and L. malabaricus had more defined spawning peaks in the spring-394 
summer months than their conspecifics from eastern Indonesia (Fry et al. 2009). Contrastingly, in 395 
the more tropical environment of Indonesia, spawning cycles were longer, less synchronized across 396 

sampling sites and apparently more influenced by the precipitation cycle than the temperature 397 
cycle. In an important centropomid of Asia and Australia, the barramundi Lates calcarifer, 398 

reproduction is also under strong influence of the monsoon regime (Blaber et al. 2008). Towards 399 

the end of the dry season the barramundi migrate to spawning sites where reproductive activity is 400 
secondarily modulated by the monthly tidal-cycle. During the wet season, post-larvae of 401 
barramundi enter coastal swamps under the influence of spring tides (Blaber et al. 2008). High 402 

rainfall and warmer temperatures have been related to the increased survival and growth of young 403 
barramundi and other coastal species in Queensland, Australia, giving rise to increased fishing 404 

yields (Balston 2009, Meynecke & Lee 2011). 405 
 406 
The timing of spawning of the gafftopsail catfish has been associated with the increased 407 

temperatures and the onset of the rainy season in other tropical localities (Mendoza-Carranza & 408 

Hernández-Franyutti 2005, Pinheiro et al. 2006). Our observations suggest, however, that 409 
spawning may start prior to the rainy season as reflected by the increased GSI in March 2007 and 410 
further decrease in April. Extensive investment in gonadal products, large egg size (up to 19 mm 411 

in our observations), and parental mouth breeding in the gafftopsail catfish may ensure the survival 412 
of the larvae, even if spawning occurs markedly earlier than the onset of the rains and the planktonic 413 

production cycle (Rimmer & Merrick 1982). Biogeographic studies may help resolving 414 
discrepancies in the timing of spawning and physiological adaptations across latitudinal gradients. 415 

 416 

The fishery landings combined with reproductive observations of lane and grey snappers, 417 

gafftopsail catfish and snook suggest that pre-spawning migrations or spawning migrations in 418 

March-November either increase the catchability of these species or that fishers simply target them 419 

during this time period (Fig. 9). Similarly, the formation of spawning aggregations has been used 420 

to explain the increased catchability of tarpon, goliath grouper and Gerridae in other estuaries and 421 

coastal waters of the Caribbean (Sadovy & Eklund 1999, Rueda & Defeo 2001, Hammerschlag et 422 

al. 2012). Although fishing spawning aggregations is not always detrimental, trade-offs between 423 

fish size and fishing effort must analyzed to derive a simple and adequate fishing regime in the 424 

different seasons (van Overzee & Rijnsdorp 2015).  425 

 426 

 427 

Seasonal abundance of fish 428 
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Climate variables affected differently the landings of trawlers and those of dories and skiffs. 429 

Trawlers operate mostly where shrimp are abundant, especially on soft bottoms near river mouths. 430 

The multivariate analyses showed that these fish assemblages were clearly affected by precipitation 431 

and river runoff. Increases in rainfall and temperature are thought to trigger offshore migration of 432 

juvenile penaeids (Nagelkerken et al. 2008, Nemeth 2009). In Amatique Bay, landings of shrimp 433 

were related to increasing seawater temperatures in the months of June and September, at the height 434 

of the rainy season (Fig. 9). Hidalgo et al. (2004) describe penaeid catches in Amatique as 435 

consisting mainly of subadults spawned in the previous November-December period. Thus, the 436 

increased landings of shrimp appear to occur during dispersal from the nursery grounds. This has 437 

also been noted in the nearby Celestun lagoon, Mexico (Pérez-Castañeda & Defeo 2001, Pérez-438 

Castañeda & Defeo 2004). 439 

In contrast to the trawlers, skiffs and dories employing hooks and lines operate in rocky bottoms 440 

or along the Punta de Manabique coast (Heyman & Granados-Dieseldorff 2012) and their major 441 

catches occurred during the cooler dry season. Occurrence and landings of engraulids, sciaenids, 442 

catfishes, barracuda, jacks, mackerels and, to a lesser extent, of mutton snapper, were greatest, from 443 

December to April, and were associated with the onshore wind regime and intrusion of marine 444 

waters (Fig. 9). These species are often categorized as marine stragglers (sensu Potter et al. 2013). 445 

The engraulid fishery, locally known as "manjua,", which may comprise up to 15 species, accounts 446 

for 20% of the total landing volume in the whole Gulf of Honduras, and has peak catches in April 447 

(Boix-Morán 2008, Heyman & Granados-Dieseldorff 2011). This happens simultaneously with 448 

increased abundances of juveniles of other fish species in Amatique and other estuaries of the 449 

Caribbean (Ixquiac-Cabrera et al. 2008, Burgos-Leon et al. 2009, Poot-Salazar et al. 2009). Thus, 450 

it is likely that catches of barracudas, jacks and mackerels are more directly related to active feeding 451 

migrations than to passive advection. Active feeding migrations have also been suggested 452 

elsewhere in the Caribbean (Manjarrés-Martínez et al. 2010), an indication that these oceanic 453 

species are not merely 'stragglers' into the estuaries. On the other hand, these predators and the 454 

cubera and grey snappers form spawning concentrations from March to September in marine 455 

waters nearby, including the atoll of Gladden Spit (Boomhower et al. 2010, Manjarrés-Martínez et 456 

al. 2010, Granados-Dieseldorff et al. 2013). Trophodynamic studies supplemented by 457 

investigations of reproduction are needed to resolve the proximate causes of their migration, but 458 

attention must also be paid to ontogenetic factors. For instance, we observed that the peak trawler 459 

by-catch of small lane snapper occurs during the dry season when juveniles are abundant. 460 

Contrastingly, the peak catches of larger lane snappers were performed   in reef areas during the 461 

rainy season, coinciding with the main spawning event. This is in agreement with the observations 462 

of Whaley et al. (2007) who in Charlotte Harbor, Florida, found juveniles normally associated with 463 

seagrass and soft bottoms, and adults predominantly associated with coral reefs or rock offshore. 464 

Hence, the lane snapper uses the Bay both as a nursery and spawning area (Fig. 9) and should be 465 

classified as a marine estuarine-opportunist, following the scheme of Potter et al. (2013). 466 
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Species at the extreme of physiological adaptation to estuarine life are the brief squid which 467 

probably represents the only hypo-saline adaptation of cephalopods (Bartol et al. 2002), and the 468 

blackbelt cichlid Paraneetroplus maculicauda. These are examples of the type of transgression 469 

processes that may have occurred many times in the evolutionary history of the region as also 470 

suggested for zooplankton species (Pérez et al. 2013). Abundance of the brief squid in Amatique 471 

Bay, just as in the Chesapeake Bay (Bartol et al. 2002), was related to increased seawater 472 

temperature and salinity. However, the close relationship between landings of squid and shrimp 473 

found in Amatique also suggests a targeted feeding migration by this squid, as crustaceans are the 474 

most important prey item in their diet (Coelho et al. 2010, Jereb & Roper 2010). The abundance of 475 

the blackbelt cichlid was related to rising SST in August, after a period of intense runoff (Fig. 2). 476 

This species is very common in Lake Izabal and Dulce River under freshwater conditions 477 

(Dickinson 1974, Salaverría and Jolón-Morales 2002). As other Central American cichlids this 478 

species is known to be tolerant of brackish waters and capable of crossing narrow sea barriers 479 

(Miller 1966, Hulsey & López-Fernández 2011).  480 

 481 

Zoogeographic patterns of fish 482 

The present observations of the occurrence of the fish fauna in the commercial catches are 483 

consistent with some of the general zoogeographic patterns of tropical estuaries. Thus, the fish 484 

communities are dominated by marine species and both their diversity and abundance are higher 485 

during the dry season (Ixquiac et al. 2008). This pattern is also observed in permanently open 486 

microtidal estuaries in temperate Australia (Valesini et al. 2014) and upper estuaries in tropical 487 

West Africa and Australia (Castellanos-Galindo & Krumme 2013a). Nevertheless, there are 488 

distinct patterns in Amatique, as well as in other Neotropical estuaries. In common with the 489 

microtidal Términos Lagoon in the Caribbean and estuaries of the western central Atlantic the 490 

families Ariidae, Engraulidae, Gerreidae and Tetraodontidae are prevalent, and Clupeidae and 491 

Claroteidae are less important or absent (Table 1) (Blaber 2000, Barletta & Blaber 2007, Ixquiac 492 

et al. 2008,  Castellano-Galindo & Krumme 2013b, Castellanos-Galindo et al. 2013). In this 493 

respect, Amatique Bay has stronger affinity with the western tropical Atlantic and the tropical 494 

eastern Pacific, than with the tropical eastern Atlantic. This is also evident from the dominance of 495 

Ariidae and Tetraodontidae in terms of biomass and of Gerridae in terms of numbers (especially in 496 

mesotidal systems). In addition, the families Lutjanidae and Centropomidae that support important 497 

fisheries in Amatique are less common in the Tropical Eastern Atlantic (Castellano-Galindo & 498 

Krumme 2013b). In contrast, the Sciaenidae are less abundant than in West Africa, despite similar 499 

species richness. The similarity between Amatique and the eastern Pacific region must reflect 500 

somewhat similar ecological conditions and, in particular, the short isolation history (3 Ma). This 501 

similarity with the Pacific contrasts with the observations performed in the other vertebrates. 502 

Shorebirds and manatees 503 
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The great majority of the shorebirds sighted in Punta de Manabique are visitors (Eisermann 2009). 504 

The largest group of shorebirds, comprising many sandpipers and plovers (group I), consisted of 505 

long-distance migrants that have summer breeding areas in the tundra of North America (Poole 506 

2005). Their clear bi-modal pattern of occurrence suggests that these are transient birds with 507 

wintering areas in South America. These shorebirds probably use Amatique Bay for short stop-508 

overs only. Less important, but still common, visitors (groups II and III) with breeding areas in 509 

temperate to high Arctic areas of America, seem to utilize the area for somewhat longer wintering 510 

periods, normally late in the rainy season. Among the more common species, only the collared 511 

plover Charadrius collaris has a regional distribution limited to the Caribbean. It breeds in 512 

Amatique and stays for a longer period, from June to November, and probably makes some limited 513 

seasonal migration thereafter. This may represent, therefore, a less common, and probably more 514 

recent, adaptation to match the fledging and early growth period to the productive rainy season in 515 

the Bay (Fig. 9.). Eisermann (2009) characterized the Punta de Manabique Wildlife Refuge as a 516 

shorebird migration site of secondary importance. This  is in agreement with the observed decline 517 

in the abundance of overwintering or migrating shorebirds in the Gulf Coast south of the Tropic of 518 

Cancer (23o 27’ N) (Withers 2002). Further, Barrantes & Chaves-Campos (2009) demonstrated a 519 

lower abundance of migrating shorebirds on the east coast of Costa Rica as compared to its Pacific 520 

coast. A likely reason for this longitudinal contrast may be the lack of extensive tides and tidal flats 521 

in the western Caribbean in contrast to the Pacific coast. This may limit the access of many 522 

shorebirds to aquatic invertebrates, which are their main prey. Thus, the Amatique region most 523 

likely has greatest value as a transient resting area, rather than an important feeding or breeding 524 

ground for most shorebird species.  525 

Interestingly, the physical processes that may be responsible for the low abundance of shorebirds 526 

may also have played a role in the adaptation and persistence of sirenian populations in the 527 

Caribbean. The abundance of freshwater, the sheltered environment, water clarity, and very low 528 

tidal amplitude lead to abundant seagrass and suitable habitat for manatees in the Caribbean. This 529 

may help explain why these taxa are either absent (sirenians) or scarce (sea grasses; Green & Short, 530 

2003; Samper-Villarreal et al. 2014) along the Pacific coast of Central America. The aerial surveys 531 

performed by Quintana-Rizzo & Machuca (2008) suggest that seasonal movements related to the 532 

hydrological cycle and to the life-cycle of manatees occur within the Lake Izabal-Amatique Bay 533 

complex (Fig.9). A larger number of sightings in the Bay proper were achieved during the wet 534 

season. Three possible reasons for the larger coastal affinity during the wet season are a wider 535 

access to areas with drinkable freshwater, strong river currents, and increased turbidity and 536 

subsequent loss of submerged vegetation upstream (Auil 2004). Although the density of manatees 537 

in some of the Caribbean populations may be relatively stable, there is still much needed research 538 

with regard to the environmental, behavioral and physiological basis of manatee migration as 539 

essential information for the implementation of a regional management plan (Harborne et al. 2006, 540 

UNEP 2010, Castelblanco-Martínez et al. 2013). 541 

Conclusion 542 
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 543 

Ecological connectivity can be defined as the strength of the interactions among ecosystem 544 

components by movement of organisms, often at different stages of their life-cycles, as well as by 545 

the exchange of nutrients and organic matter (Nagelkerken 2009, Sheaves 2009). Migration to and 546 

from estuaries can range from large scale seasonal movements related to reproduction, feeding and 547 

ontogeny, to short incursions during the twilight (Krumme 2009). The most conspicuous linkage 548 

between the freshwater system and the estuary in Amatique are the movements of snook, the 549 

blackbelt cichlid and, in part, the manatees. These movements are related to both spawning cycles 550 

and the precipitation cycle. For example, the common snook moves in and out from freshwater 551 

environments to forage and spawn at sea thus interconnecting freshwater and marine environments 552 

(Taylor et al. 1998, Barbour & Adams 2012). The migrations of these fish species towards the sea 553 

may reflect the general trend for catadromy observed in relict marine taxa in the tropics. The more 554 

recent affinity for freshwater may reflect an adaptation to the relatively higher food availability in 555 

freshwater than in the sea (Gross 1988, Lucas et al. 2001). Manatees also play an important role in 556 

the re-cycling of nutrients in the western Caribbean, and they are probably responsible for a net 557 

export of nutrients to adjacent ecosystems downriver (Castelblanco-Martínez et al. 2012). The 558 

reverse (oceanic) input to the estuary is triggered by the massive migration of several species of 559 

penaeid shrimp, which are thought to use the mangroves, and by engraulids, which probably use 560 

the Bay for spawning. These aggregations attract a great number of transient coastal and oceanic 561 

predators comprising, among others, the families Carangidae, Loliginidae, Lutjanidae, Scombridae 562 

and Sphyraenidae, especially during the dry season. At this time of the year Bullshark, Carcharinus 563 

lecuas, and large-tooth sawfish Pristis perotteli have also been reported to enter Lake Izabal 564 

(Dickinson 1974).  Predators like the Lutjanidae have, however, a marked reef-ecosystem, rather 565 

than oceanic, affinity. Thus, our observations strongly suggest an ontogenetic change in the 566 

utilization of different habitats in the Bay from soft bottom to reefs, by different life-stages of the 567 

lane snapper.  568 

 569 

A contrasting use of Amatique is made by most shorebirds, which mostly depend on the bay and 570 

estuaries as a perennial refuge and contribute less to nutrient cycling. They represent, however, a 571 

teleconnection with the high-latitude systems of North and South America of conservation interest. 572 

At different levels of the food chain there is a multitude of exploitation strategies by fishers from 573 

different fleets, social and ethnic groups, indirectly involved in competing small-scale fisheries. 574 

Previous observations suggest that in an apparently complex system, these fishers achieve 575 

reasonable levels of agreement and co-existence (Andrade & Midré 2011). It may be that the large 576 

focus on the shrimp and engraulids at the lower trophic levels corresponds to an example of a 577 

balanced fishery with output reasonably proportional to productivity (Garcia et al. 2012). Future 578 

studies should investigate the match of size distributions in the harvest and in the sea, as well as 579 

the consequences of fishing at the lower trophic levels. Another issue of interest for population 580 

management is the timing of the rotational fishery closures and their suitability for protection of 581 

spawning aggregations. These closures were agreed by the fisher groups in a participatory manner 582 

with the primary purpose of avoiding conflicts related to gear saturation (Andrade & Midré 2011). 583 
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The range of ecological linkages observed has had major roles in the evolutionary processes in the 584 

western Caribbean, and it is motivating to integrate them in fishery and conservation plans.  585 
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Table 1. Comparison of different metrics from mangrove and estuarine fish assemblages from Amatique Bay (Caribbean), the tropical 900 
Eastern Pacific, Western Central Atlantic and tropical Eastern Atlantic. Contribution in number of species, abundance (no. of individuals) 901 

and biomass (B) at the family level. Adapted and expanded from Castellanos-Galindo & Krumme (2013b). 902 
 903 

Family  Amatique Bay (Caribbean)a   Tropical Eastern Pacific b   Western Central Atlantic b   Tropical Eastern Atlantic b 

  No. of  No.  B  No. of  No.  B  No. of  No.  B  No. of  No.  B 

  Species (%) 

ind. 

(%) %   Species (%) 

ind. 

(%) %   Species (%) 

ind. 

(%) %   Species (%) 

ind. 

(%) % 

Ariidae 3.3 14.3 31.7  6.7 4.0 19.1  7.4 31.5 32.4  4.3 1.3 3.4 

Cichlidae 0.0 0.0 0.0  1.0 0.0 0.0  0.0 0.0 0.0  4.3 0.0 0.1 

Claroteidae 0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  4.3 0.5 1.5 

Clupeidae 4.9 2.0 1.2  2.5 15.4 6.9  2.4 2.4 0.4  5.7 46.5 27.2 

Eleotridae 0.0 0.0 0.0  2.5 0.8 0.6  0.8 0.1 0.1  1.4 0.0 0.0 

Elopidae 0.0 0.0 0.0  0.3 0.1 0.0  0.9 0.0 0.0  1.4 0.3 0.4 

Engraulidaee 8.2 5.9 3.4  5.4 9.5 0.0  10.0 18.2 7.4  0.0 0.0 0.0 

Gerreidaee 4.9 37.4 12.5  4.1 20.4 1.6  2.9 1.6 0.8  2.9 0.1 0.1 

Mugilidae 0.0 0.0 0.0  1.3 8.7 1.3  4.6 8.5 8.7  7.1 2.2 2.7 

Polynemidae 3.3 0.2 0.2  0.6 0.7 0.0  0.7 0.0 0.0  4.3 1.7 3.4 

Pristigasteridae 1.6 0.5 0.1  1.0 0.2 0.0  0.8 0.0 0.0  0.0 0.0 0.0 

Sciaenidae 16.4 9.8 8.8  12.4 3.1 0.3  16.6 10.4 9.1  8.6 39.7 50.4 

Tetraodontidaee 6.6 1.2 1.0   2.9 3.0 19.5   3.9 9.2 21.9   1.4 0.1 0.1 

 904 
 905 
aData from research surveys performed with shrimp bottom trawler  (Ixquiac et al. 2008) (see Supplementary material Text S2);  906 
bData from Castellanos-Galindo (2013a) citing different sources. 907 
 908 
 909 
 910 

 911 

 912 

 913 
 914 
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FIGURES 915 

 916 

 917 

Fig. 1. Map of Amatique Bay and current protected areas (gray). Punta de Manabique includes a 918 

protected marine zone (shaded).  919 
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  933 

 934 

Fig. 2.  (A) Sea surface temperature (SST, ºC; 1985-2009), air temperature (Tair, ºC; 1990-2010) 935 

and day length (Dayl, min; 1985-2010); (B) Annual cycles of precipitation (Prec, mm; 1985-936 

2010) and chlorophyll a (Chl, mg m-3; 2002-2010); (C) wind (m s-1; 1990-2010) and tide 937 

amplitude (predicted for 2001, 2006 and 2008); and (D) modelled river runoff (m3 X 1000; 2003-938 

2004 in Burke & Sugg (2006)) in Amatique Bay, Guatemala. Bars denote the standard error of 939 

the mean of the observations made in the years indicated. Sources: INSIVUMEH and NASA. 940 

4

5

6

7

8

9

10

11

0,45

0,5

0,55

0,6

0,65

0,7

0,75

J F M A M J J A S O N D

Dry Wet

W
in

d
 (

m
 s

-1
)

A
vg

 d
ai

ly
 a

m
p

lit
u

d
e

 (
m

)

2001 2006 2008 Wind

0

400

800

1200

1600

2000

J F M A M J J A S O N D

Dry Wet

M
o

d
e

lle
d

 r
iv

e
r 

ru
n

o
ff

 (
m

3
X

 1
0

0
0

)

Runoff 2003-2004
D 

C 



27 
 

 941 

Fig. 3. Surface salinity (ppt) and distribution of selected species in research trawls (calculated 942 
density per square nautical mile (kg NM-2): Lane snapper Lutjanus synagris, Atlantic brief squid 943 
Lolliguncula brevis, Caitipa  mojarra  Diapterus rhombeus, Striped mojarra Eugerres plumieri 944 

and Anchovies group (Anchoa spinifer, A. cayorum,  A. colonensis and Anchoviella elongata) in 945 
the dry (February) and wet (August) seasons in Amatique Bay, 2008. No anchovies were 946 
registered in the wet season. Isolines denote salinity gradients (ppt). Source: Ixquiac-Cabrera et 947 

al. (2008). 948 
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 949 

Fig. 4. Redundancy analysis (RDA) of monthly catch rates –CPUE- [kg (boat X fishing days)-1] 950 

of shrimp trawlers (circles), in the period 2006-2010 in Amatique Bay. The vectors indicate the 951 
influence of the two significant environmental variables precipitation (Pre) and sea surface 952 

temperature (SST), as well as of wind speed (stippled line), during the same period. Names in 953 
italics indicate the individual or group of species analyzed and are represented by triangles: lane 954 

snapper Lutjanus synagirs (Lsnap); Penaeid species (Shrimp) including Litopenaeus schmitti, 955 
Farfantepenaeus notialis and Xiphopenaeus kroyer; the Atlantic brief squid Lolliguncula brevis 956 
(Squid); Catfish group (Bagre), composed by Bagre marinus and Ariopsis assimilis; a mix of 957 
Sciaenidae and Haemulidae, (Corvina), probably Protosciaena bathytatos and Pomadasys 958 

corvinaeformis; and Lane snapper Lutjanus synagris. Chlorophyll a (Chl) was also treated as a 959 
biological group. Source: official shrimp trawler landings; DIPESCA. 960 
 961 
 962 

 963 
 964 
 965 

 966 
 967 
 968 
 969 
 970 
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 971 

Fig. 5. Redundancy analysis (RDA) of commercial species landed by dories and skiffs, using nets 972 

and hook gear, in Amatique Bay during 1998. The vectors indicate the influence of the two 973 

significant environmental variables wind speed (Wind) and sea surface temperature (SST), as 974 
well as of precipitation (Pre) (stippled line) in the same period.  Names in italics indicate the 975 
individual or group of species analyzed: Crevalle jack Caranx hippos (Jack); Spanish mackerel 976 

Scomberomorus maculatus (Mack); Gafftopsail catfish Bagre marinus (Bagre); "Mojarras" 977 
mixed group of Gerridae including Diapterus rhombeus and Eugerres plumieri (Gerr), Barracuda  978 

Sphyraena picudilla (Barra); Mutton snapper Lutjanus analis (Msnap); "Cubera" snapper group 979 
(Csnap) including the Cubera snapper Lutjanus cyanopterus and grey snapper Lutjanus griseus; 980 
Anchovies Anchoa spp (Anch); Blackbelt cichlid Paraneetroplus maculicauda (Cich); Penaeid 981 

species (Shrimp) including Litopenaeus schmitti, Farfantepenaeus notialis and Xiphopenaeus 982 
kroyer; Common snook Centropomus undecimalis (Snook); Tarpon Melagops atlanticus 983 
(Tarpon); lane snapper Lutjanus synagris (Lsnap); and the Goliath grouper Epinephelus itajara 984 

(Group), which are represented by triangles. The initials of the months are given, as well as their 985 

exact positions (circles). Source: estimates derived by Heyman & Graham (2000) and Heyman 986 
and Granados-Dieseldorff (2012) upon interviews to 42 experienced fishers. 987 
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   990 

 991 

Fig. 6. Annual cycles of the gonadosomatic index (GSI, dark lines) and condition factor (CF, 992 

grey lines) of (A) lane snapper Lutjanus synagris, (B) grey snapper L. griseus, (C) common 993 

snook Centropomus undecimalis and (D) females of gafftopsail catfish Bagre marinus, sampled 994 

from March 2006 to April 2007 in Livingston and Puerto Barrios, Guatemala. Vertical bars 995 

denote standard errors of the means of sex-pooled observations and the stippled line a second 996 

degree polynomial fit to the mean CF.  997 
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 999 

 1000 

Fig. 7. Bi-plot of a redundancy analysis illustrating the seasonal occurrence of the 11 most 1001 

common species of shorebirds reported by Eisermann (2009): Black-bellied  Plover Pluvialis 1002 

squatarola (Pb), Semipalmated Plover Charadrius semipalmatus (Ps), Spotted Sandpiper Actitis 1003 

macularius (Ss), Whimbrel Numenius phaeopus (Wh), Least Sandpiper Calidris minutilla (Sl), 1004 

Black-necked Stilt Himantopus mexicanus (Stb), Sanderling Calidris alba (S), Semipalmated 1005 

Sandpiper Calidris pusilla (Sse), Collared Plover Charadrius collaris (Pc), Western Sandpiper 1006 

Calidris mauri (Sw), White-rumped Sandpiper Calidris fuscicollis (Swr). These species were 1007 

divided into four main groups (I-IV) based on the seasonal patterns of sightings, and are indicated 1008 

by the stippled lines. GAM regressions were fitted to the seasonal sightings of four species 1009 

representative of each group (inset).  1010 

 1011 

 1012 

 1013 
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 1014 

 1015 

Fig. 8. Distribution of manatee Trichechus manatus from aerial counts performed in (A) October 1016 

2006 (wet season) and (B) March 2007 (dry season) in Amatique Bay, 2007. Adapted from 1017 

Quintana Rizo & Machuca (2008).The black line denotes the survey tracks. 1018 
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 1026 

 1027 

Fig. 9. A conceptual model of the precipitation-driven seasonal cycle in Amatique Bay, with 1028 

focus on fish, seabirds and manatees. Color depth denotes precipitation intensity, from low (light 1029 

blue) to strong (dark blue). Composition of bird groups is given in Table S1 (Supplementary 1030 

material). 1031 
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Supplement. Ecological linkages in a Caribbean estuary bay  1041 

  1042 

 The supplement contains the following items:  1043 

 Text S1. Retrieval and treatment of enviromental data 1044 

 Text S2. Biological observations during research cruises 1045 

 Text S3. Collection of manatee data 1046 

 Table S1. Composition of landed species in Amatique Bay analyzed in this study 1047 

 Literature cited in the supplement  1048 

 1049 

Supplement 1050 

Text S1. Collection and analysis of meteorological data  1051 

To study environmental variability we extracted time-series of precipitation, air temperature, sea 1052 

surface temperature, chlorophyll a concentration and run-off from open internet sources as either 1053 

historical records measured in the area or as satellite-derived data. Monthly precipitation (Pre, mm) 1054 

from 1985 to 2010, monthly average air temperature (Tair, °C) from 1990 to 2010, wind direction 1055 

from 2006-2010 and wind speed (Wind, km/h) from 1990-2010 and forecast tide data for the 1056 

random years 2001, 2006 and 2008 were obtained from the national meteorological institute 1057 

(INSIVUMEH 2012), using data from the Puerto Barrios, Izabal meteorological station, located 1058 

near the Bay. Months of low wind stress, classified as "calm" or "variable" at the source, were not 1059 

considered in calculation because the mean direction was not available. Average and dispersion of 1060 

wind direction was calculated using Lund & Agostinelli (2014). Forecasted tide data were available 1061 

as day maxima and minima (m). The tidal amplitude was calculated as the difference between daily 1062 

maximum and minimum, and averaged on a monthly basis. Average monthly sea-surface 1063 

temperature (SST, °C) from July 1985 to December 2009 and from 2003-2010 was derived from 1064 

satellite imagery processed by NOAA/NASA's AVHRR Oceans Pathfinder global and 1065 

MODIS/Aqua mission (Halpern et al. 2001). The former series was employed to study 1066 

meteorological correlations as historical records span over a longer time period but limited to 2009. 1067 

The later series was related to fish landing data in the period 2006-2010. Day length (sunlight 1068 

duration, min) was calculated using NOAA's solar calculation algorithm for the Puerto Barrios 1069 

geographical coordinates at 15º 44' N and 89º 33' (NOAA 2012). 1070 

Estimates of monthly run-off were derived by Burke & Sugg (2006) using a model for the Sarstún 1071 

and Dulce rivers that accounts for the physical environment (elevation, slope, soils, precipitation, 1072 

and land cover) in the drainage basin for the years 2003-2004.  1073 

Chlorophyll a concentration (Chl, mg m-3) from July 2002 to 2010 was obtained through NASA's 1074 

Giovanni Ocean Color Radiometry data product visualization using SeaWIFS and MODIS 1075 

databases. The temporal and spatial resolutions were 8 days and 4 Km respectively calculating 1076 
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averages for the polygon at latitudes (15.618, 15.984) and longitudes (-88.936, -88.437) inside the 1077 

Bay. There is a lack of field data to ground truth satellite measurements in Amatique and this is of 1078 

concern as remote chlorophyll a measurements can be biased (Dierssen 2010). Therefore, we 1079 

attempted to compare and relate remote measurements of chlorophyll a in the bay with the turbidity 1080 

measurements performed with a Secchi-disk and the concentrations of nutrients measured at the 1081 

outlet of Lake Izabal by Quintana-Rizzo & Machuca (2008). 1082 

 1083 

Text S2. Biological observations during research cruises 1084 

In 2008, four research cruises were performed by Ixquiac-Cabrera et al. (2008) in Amatique Bay 1085 

to record prevailing oceanographic conditions and fish abundance. A 12 m fiberglass boat with a 1086 

150 Hp engine and a commercial trawl was employed. The trawl was 18 m long with a 14 m 1087 

headline and mesh size of 1¾”. The trawl was recovered by hand. Eleven stations were covered 1088 

across the bay, with depths ranging between 5-25 m. The gear was towed for 30 min at a speed of 1089 

3 knots. All organisms were frozen for posterior identification in the lab. The swept area method 1090 

was employed to estimate species abundances (Sparre & Venema 1998, Ixquiac-Cabrera et al. 1091 

2008). We employed data gathered in February and August to represent environmental conditions 1092 

and species distributions during the dry and wet seasons respectively. 1093 

 1094 

Text S3. Collection of manatee data  1095 

To estimate manatee abundance, aerial surveys were performed by Quintana-Rizzo & Machuca 1096 

(2008) using the aerial survey replicate count methodology developed by Lefebvre & Kochman 1097 

(1991). This method requires that after manatees have been spotted, the plane must be 1098 

maneuvered back to the site of sighting, at a lower altitude and speed to confirm observations and 1099 

perform recounts. An experienced primary observer (>100 hours) sat beside the pilot and a 1100 

secondary observer (26 hours) sat behind allowing for continuous search on both sides of the 1101 

plane. The aerial surveys were performed between 9 AM and 10 AM to maximize visibility and 1102 

on a Beaufort wind force scale of 0-2. Average altitude ranged between 152-213 m and average 1103 

speed was 160 km/h. The survey track was set about 500 m from the shoreline from Lake Izabal, 1104 

to Punta de Manabique (Fig. 8).  1105 
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Table S1. List of fished species and birds analyzed in this study (and abbreviations). Sources: A. Estimates from dories and skiffs 1106 

landings based on fishers anecdotal information in 1998 (Heyman & Graham 2000, Heyman & Granados-Dieseldorff  2012); B. 1107 

Official shrimp trawler landings (DIPESCA, Guatemala); C. bottom-trawl research cruises (Ixquiac-Cabrera et al. 2008); D. Own data, 1108 

E. Shorebird sightings (Eisermann 2009); F. manatee counts (Quintana-Rizzo & Machuca 2008).The last column suggest a preliminary 1109 

classification of these species into functional groups based on results from Amatique. 1110 

Class 
Common name or group 

of species analysed 
Scientific name Sources 

Presumed functional group in 

Amatique 

Malacostraca 
"Shrimp" group (Shrp, main 

species) 

Litopenaeus schmitti, 

A, B, C 

Estuarine dependent 

Farfantepenaeus notialis  

Xiphopenaeus kroyeri 

     

Cephalopoda Atlantic brief squid (Squid) Lolliguncula brevis B,C Marine transient 

     

Actinopterygii Crevalle jack (Jack) Caranx hippos A Marine transient 

Spanish mackerel (Mack) Scomberomorus maculatus A Marine transient 

Common snook (Snook) Centropomus undecimalis A, D Diadromous 

Tarpon (Tarpon) Melagops atlanticus A Marine & fresh water 

Barracuda (Barra) Sphyraena picudilla A Marine transient 

Goliath grouper (Group) Epinephelus itajara A Marine transient 

Mutton snapper (Msnap) Lutjanus analis A Marine transient 

Lane snapper  (Lsnap) Lutjanus synagris 
A, B,C, 

D 

Marine & estuarine 

Anchovies (Anch) Anchoa spp A  

 

A.spinifer, A. cayorum,  A. 

colonensis and Anchoviella 

elongata 

C 

Marine 

"Catfishes" (Bagre)    

Gafftopsail catfish Bagre marinus A, B, D Marine & estuarine 

Mayan catfish Ariopsis assimilis B, C Marine 
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"Mojarras" mixed group of 

Gerridae (Gerr) 

Mainly Diapterus rhombeus 

and Eugerres plumieri 
A 

Estuarine & freshwater 

Caitipa mojarra Diapterus rhombeus C Estuarine 

Striped mojarra Eugerres  plumieri C Freshwater-estuarine 

Blackbelt cichlid (Cich) Paraneetroplus maculicauda A Freshwater transient 

"Cubera" snappers (Csnap) Common misidentification   

Cubera snapper Lutjanus cyanopterus  A Marine transient 

Grey snapper Lutjanus griseus A, D Marine & estuarine 

"Corvina": Mixed group of 

Scianidae and Haemulidae 

probably Protosciaena 

bathytatos and Pomadasys 

corvinaeformis 

B,C Probably marine 

     

Aves Black-bellied  Plover (Pb) Pluvialis squatarola E Group 1: Long migratory - short 

stopovers in Amatique during dry 

season 
Semipalmated Plover (Ps) Charadrius semipalmatus E 

Spotted Sandpiper (Ss) Actitis macularius E 

Whimbrel (Wh) Numenius phaeopus E 

Least Sandpiper (Sl) Calidris minutilla E 

Black-necked Stilt (Stb) Himantopus mexicanus E Group 2: Long migratory with longer 

stopovers at late rainy season.  Sanderling (S) Calidris alba E 

Semipalmated Sandpiper 

(Sse) 
Calidris pusilla E 

Collared Plover (Pc) Charadrius collaris E Group 3: Migratory with longer 

stopovers at late rainy season. Pc 

breeds in Amatique 
Western Sandpiper (Sw) Calidris mauri E 

White-rumped Sandpiper 

(Swr) 
Calidris fuscicollis E 

Migartory. Only observed in dry 

season 

     

Mammalia Manatee  Trichechus manatus F Freshwater migrations 

1111 
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