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Abstract 

The genome of the psychrophilic fish-pathogen Aliivibrio salmonicida encodes a putative ATP-

dependent DNA ligase in addition to a housekeeping NAD-dependent enzyme.  In order to study the 

structure and activity of the ATP dependent ligase in vitro we have undertaken its recombinant 

production and purification from an E. coli based expression system. 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate


Expression and purification of this protein presented two significant challenges. First, the gene 

product was moderately toxic to E. coli cells, second it was necessary to remove the large amounts 

of E. coli DNA present in bacterial lysates without contamination of the protein preparation by 

nucleases which might interfere with future assaying. The toxicity problem was overcome by fusion 

of the putative ligase to large solubility tags such as maltose-binding protein (MBP) or Glutathione-s-

transferase (GST), and DNA was removed by treatment with a nuclease which could be inhibited by 

reducing agents.  

As the A. salmonicida ATP-dependent DNA ligase gene encodes a predicted leader peptide, both the 

full-length and mature forms of the protein were produced. Both possessed ATP-dependent DNA 

ligase activity, but the truncated form was significantly more active. Here we detail the first reported 

production, purification and preliminary characterization of active Aliivibrio salmonicida ATP-

dependent DNA ligase. 

Highlights 

 A putative periplasmic DNA ligase from Aliivibrio salmonicida was recombinantly produced 

in E. coli 

 Both the full-length and N-terminally truncated variants were expressed and purified 

 Toxicity of gene products to the host cells was overcame by fusion to large solubility tags 

 The truncated protein is more active in DNA ligation than the full-length version 

Introduction 

DNA ligases are enzymes which catalyze the formation of a phosphodiester bond between adjacent 

5’ PO4 and 3’ OH ends in double-stranded DNA, and are essential for sealing breaks during DNA 

replication and repair [1]. DNA ligases can be divided into two types based on the nucleotide 

cofactor they use as an AMP donor: ATP-dependent DNA ligases (EC 6.5.1.1) which are found in 

eukaryotes and archaea, and NAD-dependent DNA ligases (EC 6.5.1.2) which are found exclusively in 

bacteria [2]. In addition to their house-keeping NAD-dependent enzymes, many bacteria have one or 

more ATP-dependent DNA ligases, the evolutionary origin and cellular function of which have not 

been entirely determined [3]. A number of these accessory enzymes have been biochemically 

characterized and some are postulated to play a role in DNA repair [4-7] while others are suggested 

to be involved in competence and DNA uptake [8, 9]. The genome of the pathogenic psychrophile  

Aliivibrio salmonicida encodes  one such putative ATP-dependent DNA ligase [10].  



In order to study its structure and activity in vitro we have undertaken the recombinant production 

and purification of this DNA ligase from an E. coli based expression system. Expression and 

purification of this protein presented two significant challenges. First, the gene product was 

moderately toxic to E. coli cells, second, crude lysates contained a large amount of bacterial DNA 

which needed to be removed prior to purification without contaminating the ligase protein 

preparation. Numerous publications have focused on the utility of large fusion partners in increasing 

protein solubility and expression levels (for example see [11, 12]), and comprehensive protocols for 

the production of MBP fusion constructs are available [13].  However the application of large fusion 

partners to overcome toxic effects of intracellularly-expressed proteins on the host cells has not 

been systematically reported to the same extent. In the case of the two Vib-Lig variants described 

here, the decreased host-cell growth rate with smaller tags presented a significant loss of efficiency 

during protein production, even before solubility issues were taken into consideration. 

As the A. salmonicida gene encodes a predicted leader peptide, both the full-length and mature 

forms of the protein were produced, and ATP-dependent DNA ligation activity was verified for both 

constructs. This work represents the first instance of successful production, purification and 

preliminary characterization of active Aliivibrio salmonicida ATP-dependent DNA ligase. 

Methods 

Bioinformatics 

The CDS YP_002262821.1 of the A. salmonicida genome encodes a 284 amino acid product 

VSAL_I1366 which is annotated as an ATP-dependent DNA ligase. BLAST homology searches show it 

has low identity with previously characterized DNA ligases from Haemophilus influenza (37%)  

Neisseria meningitides (36%) Pseudomonas aeruginosa (30%) and Mycobacterium tuberculosis 

homologues B, C and D (23% 24% 27%)[8, 9, 14, 15]. In spite of this low identity, VSAL_I1366 has a 

number of conserved residues which are involved in DNA ligase activity in homologues, including 

lysine 52 which is found in the motif I KxDG and is the site of AMP binding. Consistent with the gene 

annotation, a search of the pfam database [16] identifies two conserved domains: an N-terminal  

DNA-ligase adenylation domain (pfam01068) from residues 29 – 202 and a C-terminal 

oligonucleotide binding domain (cd08040) from residues 216 – 281.  

Analysis with the program SignalP [17] using the ‘gram negatives’ network  produced a strong 

prediction for a 21 amino acid leader peptide (mean S=0.726, meanD=0.692) with a cleavage 

position between residues Ala 21 and Phe 22 which would direct the enzyme to the periplasm of the 



bacterial cell [18]. Analysis of the  N-terminal sequence hydropathicity [19], along with helix-forming 

[20] and trans membrane tendencies [21] indicated that this predication falls within a hydrophobic  

helical sequence (Figure 1). For this reason, during cloning we truncated the polypeptide by a further 

four amino acids to what we believe is the beginning of the soluble functional domain. The 284 

amino-acid full-length protein, denoted FL-Vib-Lig, has a computed molecular mass of 31.7 kDa and 

estimated pI of 5.68, while the N-terminally truncated protein, denoted TR-Vib-Lig, is 29.1 kDa and 

has a predicted pI of 5.51  

Image file: Fig_1_Leader_seq single column 

Figure 1. Sequence analysis of the N-terminal region of the putative ATP-dependent DNA ligase from A. salmonicida. The 

arrow indicates the cleavage position suggested by the ‘SignalP’ program. The bold underlined residues indicate the N-

terminal sequence used below for cloning the truncated form. 

Cloning 

The genes for FL-Vib-Lig and TR-Vib-Lig  were both amplified in two stages using Phusion polymerase 

(New England BioLabs). In the first step, the coding sequence was amplified from a plasmid 

harboring the full-length  A. salmonicida ATP DNA ligase gene using reverse primer BK 5'-

GGGGACCACTTTGTACAAGAAAGCTGGGTCTTAATATTTTTCACGAACC-3' and either the forward primer 

FD 5’-GAAAATCTTTATTTTCAAGGTAAAGTATCAACATTATCG-3’to produce the full-length sequence 

omitting the codon for the first methionine, or primer FD 5’-

GAAAATCTTTATTTTCAAGGTAATACAGTCCCTGTTTCTGTATTG-3’ to produce an N-terminal truncation 

lacking the first 25 amino acids corresponding the signal peptide. In the second step the PCR 

products were extended using the primers FD 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTC 

CATCACCATCACCATCACGAAAATCTTTATTTTCAAGGT-3’ and the same reverse primer as in the first 

PCR reaction to add non-coding  attB1 and attB2 sequences for recombination using the Gateway® 

system (Life Technologies), and coding sequences for an N-terminal 6-His tag followed by a TEV 

protease cleavage site [22].  These genes were used as substrates in the Gateway® BP reaction with 

pDONR221 to produce entry vectors containing the FL- or TR- genes. These entry constructs were 

transformed into One Shot® TOP10 Chemically Competent E. coli cells (Life Technologies), verified by 

sequencing with M13 universal primers (Sigma-Aldrich), and used as substrates for the Gateway®LR 

reaction with the destination vectors pDEST 17, pDEST 16, pDEST 15 (Invitrogen) and pHMGWA 

(GenBank #Eu680841) to produce four expression constructs for each gene (Table 1). As the PCR 

product included a coding sequence for an N-terminal 6-His tag and TEV cleavage site, all expression 

products were, in principle, able to be purified using nickel-immobilized affinity chromatography (Ni-

IMAC) and the fusion tags removed by treatment with TEV protease. Because of this design, proteins 



expressed from vectors pDEST 17 and PHMGWA had two His- tags. The products of the LR reaction 

were transformed into TOP10 cells for plasmid propagation, and subsequently into BL21 Star™ (DE3) 

pLysS  E. coli (Life Technologies) for protein expression. 

Table 1. Overview of construct design. His (6-Histine), TRX (thioredoxin) GST (Glutathione-s-transferase), MBP (maltose-

binding protein). Polypeptide length and molecular weight were calculated from the coding regions of each fusion protein.  

Ligase 

variant 

Protein name Destination 

vector 

Fusion tags Length  

(amino acids) 

Molecular 

weight 

(kDa) 

FL FL-Vib-Lig- His pDEST17 His-His 318 35.9 

 FL-Vib-Lig- TRX pDEST16 TRX-His 417 46.4 

 FL-Vib-Lig- GST pDEST15 GST-His 535 61.1 

 FL-Vib-Lig- MBP PHMGWA His-MBP-His 690 76.4 

TR TR-Vib-Lig- His pDEST17 His-His 293 33.3 

 TR-Vib-Lig- TRX pDEST16 TRX-His 392 43.8 

 TR-Vib-Lig- GST pDEST15 GST-His 510 58.5 

 TR-Vib-Lig- MBP PHMGWA His-MBP-His 665 73.8 

 

Expression testing 

Expression of recombinant tagged protein was investigated at either 37 ⁰C or 22 ⁰C in small-scale 

cultures. Freshly transformed BL21 star pLysS pRARE cells were grown overnight at 37 ⁰C with mixing 

on an oribital shaker, and 25 l of this dense pre-culture was used to inoculate 5 mLs of LB medium 

containing 50 μg mL-1 ampicillin and 34 μg mL-1 chloramphenicol (LB/amp/cam). Cultures were 

grown at 37 ⁰C for 3 hours after which time protein expression was induced by addition of 1mM 

IPTG, and the temperature was either maintained at 37 ⁰C for a further 9 hours, or decreased to 22 

⁰C and incubated overnight before harvesting. Cell density was monitored by recording the OD600 

every hour, and after the incubation time had elapsed, cells were harvested by centrifugation at 

4000 RCF and cell pellets frozen at -20 ⁰C.  Cell lysis for verification of protein expression was done 

by resuspending the cell pellet in 200 l of ‘Fastbreak’ buffer (Promega) per 5 mLs culture with 

0.2mg mL-1 lysozyme and 0.02 mg mL-1 DNAseI (Sigma-Aldrich D2821). Samples for solubility 

screening were harvested after 4 hours (37 ⁰C) or overnight (22 ⁰C) and resuspended in 1 mL per 5 

mLs of culture in 50 mM Tris pH 8.0, 200 mM NaCl, 1mM DTT, 10% glycerol, 2mg mL-1 lysozyme and 

0.02mg mL-1 DNAse, followed by mechanical lysis using a Q125 sonicator (Qsonia) with the microtip 



set at 20% intensity, in 1s pulses on/off for a total of 1 minute on ice. Insoluble material was pelleted 

by centrifugation at 17,000 RCF for 10 minutes at 4 ⁰C.  

Samples were electrophoresed on 4–20% Mini-PROTEAN® TGX™ precast polyacrylamide gels (Bio-

Rad) and protein bands visualized by staining with SimplyBlue™ SafeStain (Life technologies) 

according to the manufacturers’ instructions.   

Large scale purification 

Based on the results of the expression and solubility testing, the His-MBP-His-tagged constructs 

were chosen for large scale recombinant production of both Vib-Lig variants. Expression cultures 

were inoculated with 30 mLs of pre-culture per L of LB/amp/cam, and grown at 37 ⁰C with vigorous 

shaking to an OD600 of 0.3 – 0.4, which typically took 2 – 3 hours. After this time the temperature 

was decreased to 22 ⁰C and cultures were allowed to equilibrate for 30 minutes before induction of 

protein expression by addition of 1mM IPTG. Expression was continued overnight before harvesting 

and storage as above. 

Lysis and all subsequent purification steps were carried out at 4 ⁰C.   Thawed cells were resuspended 

in lysis buffer (50mM Tris pH 8.0, 750 mM NaCl, 1 mM MgCl2, 1mM DTT 0.1 mM ATP, 5% glycerol) at 

5 mLs per g of cell pellet and lysed by two passages through a French press (Constant Systems) at 18 

PIS. Insoluble material was removed by centrifugation at 17,000 RCF for 35 minutes and the crude 

soluble fraction was incubated with the non-specific nuclease ‘HL-SAN’ at 1 unit per mg cell pellet 

overnight at 4 ⁰C. HL-SAN is a heat-labile mutant of the commercially available ‘Salt Active Nuclease’ 

(SAN) which our group is beta-testing and was not on the market at the time of writing; for enquiries 

contact the company (Arcticzymes Norway, www.arcticzymes.com). The treated lysates were loaded 

onto 5 mL His Traps columns (GE Healthcare) equilibrated with Buffer A (50mM Tris pH 8.0, 750 mM 

NaCl, 5% glycerol, 10 mM imidazole) and washed with 25-50 mLs of Buffer A before elution on a  15 

mL gradient from 0 – 100 % Buffer B (50mM Tris pH 8.0, 750 mM NaCl, 5% glycerol, 500 mM 

imidazole). The eluted fractions were exchanged into Buffer C (50mM Tris pH 8.0, 200 mM NaCl, 

1mM DTT, 5% glycerol) using a HiPrep 26/10 column and incubated overnight with TEV protease 

(produced in house according to [23]) at 0.1 mg TEV per 1ml of eluted fusion protein. Protease-

treated protein was subjected to a reverse Ni-IMAC step using a 5ml His Trap equilibrated with 

Buffer C.  The flow-through was collected, up concentrated to approximately A280 2.0 and loaded 

onto a Superdex200 16/600 column at 1 mL/min. Peaks eluting from the column were analyzed by 

SDS-PAGE as described above and verified by quadrupole-time of flight liquid chromatography–mass 

spectrometry (Q-ToF LC-MS/MS). Pure Vib-Lig protein was mixed 50:50 v/v with glycerol and stored 

at -80 ⁰C.  

http://www.arcticzymes.com/


Assay for ligase  

DNA ligase activity was verified using an assay similar to that described in [24]. An 18 nt nicked 

double-stranded DNA substrate where one of the 9-mer oligonucleotides on the nicked strand was 

fluorescently labeled with the FAM moiety (Sigma-Aldrich). FL-Vib-Lig or TR-Vib-Lig were incubated 

at concentrations indicated in the figure legends with  80 nM substrate, 0.1 mM ATP, 10 mM MgCl2, 

1mM DTT for 10 minutes at 15 ⁰C. The reaction was quenched by addition of 25% formamide, 2 mM 

EDTA and heating to 95 ⁰C for 5 min. Denaturing electrophoresis was carried out subsequent to the 

reaction on a 20% acrylamide 7M urea 1x TBE gel, and the FAM-labeled oligonucleotides were 

visualized on a Pharos FX Plus imager (Biorad).  The intensity of bands corresponding to the ligated 

(18 nt) product and un-ligated (9 nt) substrate were integrated using the software Image J [25], and 

the extent of ligation was taken as the ratio of the two bands, expressed as a percentage. 

Results and discussion 

Cloning and expression 

Both the full-length and N-terminally truncated forms of the vib-lig gene were successfully cloned 

into the entry vector pDONR 221 and confirmed by Sanger sequencing.  

A comparison of small-scale cultures expressing either of the Vib-Lig variants at 37 ⁰C from the four 

pDEST vectors used in this study shows a strong correlation between the tag size and growth rate 

(Figure 2). Smaller tags, His-His (4.2 kDa) and TRX-His (14.7 kDa), had significantly slower rates of 

growth relative to fusion constructs with larger proteins, GST-His (29.4 kDa) and His-MBP-His (44.7 

kDa). Similar results were obtained for cultures grown at 22 ⁰C overnight after induction.  

Examination of total crude lysate from expression cultures confirmed the presence of highly 

expressed protein at the expected molecular weights for each construct of each Vib-Lig variant 

(Figure 3). Non-induced controls all had similar growth rates regardless of the construct they 

harbored, and little or no leaky protein production was detected by SDS-PAGE (data not shown). 

There was little difference between growth rates for the FL- and TR- variants of Vib-Lig with 

exception of Vib-Lig-TR-MBP which grew poorly for four hours after induction, but reached ODs 

comparable to that of other large-tagged constructs by the end of the time course.  

Taken together these results suggest that the Vib-Lig protein is moderately toxic to the E. coli cells 

when overexpressed at either 37 or 22 ⁰C; however this toxicity can be overcome by fusion to 

proteins of similar or larger size. Although a decrease in growth rate following induction of protein 

expression can be expected due to the metabolic burden on cells, this is not likely to be the case 



here as GST- and MBP- tagged constructs approached the growth rates of non-induced cultures, 

while the level of protein overexpression was similar for all constructs. We suggest two mechanisms 

that could produce these toxic effects on the expression host: binding of intracellular ATP which 

perturbs the energy balance inside the cell, or binding of DNA which interferes with replication and/ 

or protein expression. In both cases, steric hindrance by a bulky protein fusion partner could prevent 

this behavior- either by blocking the DNA binding site of the ligase protein directly, or by hindering 

the domain re-arrangement which accompanies adenylation and DNA binding in all homologous 

studied to date [26]. These hypotheses could be confirmed by examining the DNA- and ATP- binding 

affinities of purified Vib-Lig variants with the different tags; however our primary objective of 

producing large amounts of recombinant Vib-Lig protein has been met and thus these phenomena 

were not investigated further.  

Solubility screening of crude lysates showed that His-His- or TRX-His constructs were predominantly 

insoluble, while GST-His- tagged fusions had soluble product at both temperatures (Table 2). MBP-

tagged constructs of both variants were somewhat soluble at 37 ⁰C, and highly soluble at 22 ⁰C. This 

is consistent with the work by Niiranen et. al which surveyed a range of fusion partners for the 

expression of A. salmonicida proteins, and showed that fusion to MBP, coupled with a decreased 

cultivation temperature  to be one of the most useful in increasing protein solubility [27]. It is 

interesting to note that GST-Vib-Lig fusions were markedly more soluble compared to the smaller 

tagged constructs, despite GST being a poor solubility enhancer in previous studies [28] [27].  

Due to the superior growth rates of expression cultures and increased solubility of protein products, 

large scale production of both Vib-Lig variants was carried out using the MBP-tagged constructs at 

22 ⁰C. 

Image file: Fig_2_Growth double column 

Figure 2. Growth at 37 ⁰C of E. coli BL32(DE3)pLysS star pRARE expressing Vib-Lig variants as fusion proteins with tags as 

described in the text: Growth profiles over 12 hour time course, A) Full-length (FL) Vib-Lig and B) Truncated (TR)  Vib-Lig. C) 

Growth rates of cultures during the 4 hours following induction. Rates were derived from a linear fit of points between 3 

and 7 hours. Graph values indicate the mean of three replicates; error bars indicate standard deviation of each triplicate. 

Image file: Fig_3_expression single column 

Figure 3. SDS-PAGE gel of total crude lysate from E. coli BL32(DE3) pLysS star pRARE expression cultures of Full-length Vib-

Lig (FL) and truncated Vib-Lig (TR) with His, TRX, GST and MBP fusion tags as described in the text. Markers indicate the 

approximate band position expected for each fusion protein; see text for details. 



Table 2. Solubility screening of recombinantly expressed Full-length (FL)- and truncated (TR) Vib-Lig variants with His, TRX, 

GST and MBP fusion tags as described in text. Scores are based on the presence of a band of the correct molecular weight 

in soluble crude fractions analyzed by coomassie-stained SDS-PAGE: ++ strong band, + clearly visible, (+) weak, - absent. 

Variant Construct 37 ⁰C 22 ⁰C 

FL Vib-Lig-FL-His - - 

 Vib-Lig-FL-TRX - - 

 Vib-Lig-FL-GST + + 

 Vib-Lig-FL-MBP + ++ 

TR Vib-Lig-TR-His - (+) 

 Vib-Lig-TR-TRX - - 

 Vib-Lig-TR-GST + + 

 Vib-Lig-TR-MBP + ++ 

 

Large scale expression and purification 

Large-scale cultivation of both MBP-tagged FL- and TR- constructs using the conditions described 

above produced 4- 5 g L -1 of cell pellet. After breakage by French press, the crude cell lysate was 

extremely viscous and difficult to load onto the chromatography columns; hence removal of 

contaminating DNA was necessary. We found that extended sonication produced variable results 

and often increased protein precipitation, while treatment of the lysate with bovine DNAseI lead to 

detectable DNAse activity in some batches of ‘pure’ protein (data not shown). However, treatment 

with HL-SAN successfully removed high molecular weight DNA form the sample (Figure 4) without 

causing any residual DNAse contamination (data not shown).   

Image file: Fig_4_DNase single column 

Figure 4. The effect of HL-SAN treatment on high-molecular weight DNA content of crude cell lysates: lane 1. 1 Kb DNA 

ladder, 2. Untreated 3. HL-SAN treated  

The first IMAC step in the purification of both Vib-Lig variants yielded a single peak at around 80 % 

Buffer B (data not shown).  SDS-PAGE  of both variants showed major protein bands between 55 and 

66 kDa which correspond to the molecular weights of Vib-Lig- MBP- fusion proteins and the E. coli 

chaperonin protein GroEL 60; in the case of FL-Vib-Lig this assignment was confirmed by MS/MS 

analysis (Table 3). Cleavage with TEV protease produced bands of the size expected for the tag-free 

Vib-Lig variants, and the MBP-His tag; the former was confirmed by MS/MS. A second reverse Ni-

IMAC step removed virtually all MBP-His cleavage product, leaving a semi-crude preparation 

containing tag-free Vib-Lig, along with a small amount of fusion protein and E. coli chaperonin. In the 



case of TR-Vib-Lig these contaminants were successfully removed in a single step of gel filtration 

where a peak eluting with a retention time of approximately 40 mLs contained chaperonin and 

fusion protein, while a later fraction was highly pure TR-Vib-Lig. Separation of FL-Vib-lig was more 

complicated as protein eluted from the gel filtration column in three major peaks corresponding to 

the column void volume and containing primarily un-cleaved FL-Vib-Lig- MBP (Figure 5 A, lane 5), a 

complex of approximately 800 kDa comprising primarily chaperonin (Figure 5 A, lane 6), and a 

species of 30 – 40 kDa (Figure 5 A, lane 7). All three fractions contained FL-Vib-Lig, with the most 

pure being the third peak. Our inability to remove the chaperonin contaminant during gel filtration 

was the primary  reason that the yield of pure FL-Vib-lig was so low, less than  0.1 mg per L of culture 

(0.015 mg per g cells), compared to that of TR-Vib-Lig which was 1.8 – 2.0 mg L-1 (0.3 – 0.4 mg per g) 

of cells. 

 Image file: Fig_5_purification single column 

Figure 5. Purification of FL-Vib-Lig (A) and Tr-Vib-Lig (B). Lane 1. Crude soluble lysate; 2. Fusion protein eluted from initial 

His-trap; 3. Cleavage of fusion protein with TEV-protease; 4. Flow-through from reverse IMAC containing tag-free Vib-Lig; 5, 

6 and 7 fractions from gel filtration. The expected positions of bands corresponding to Vib-Lig-MBP fusion proteins, E. coli 

chaperonins, MBP-tag and tag-free Vib-Lig are indicated by arrows. Bands marked with an asterisk (*)  were analyzed by 

mass spectrometry, and numbers correspond to results in Table 3. 

Table 3. Results of MS/MS mass spectrometry from bands indicated (*) in Figure 5 searched against the NCBI database. 

Mass: mass of the matched peptide sequence.   

Band Protein hit Acession number Mass Matches Sequences 

1. maltose binding protein-lacZ  gi|2623823  53069 58 13 

 DNA ligase [Aliivibrio salmonicida LFI1238] gi|209694893 31696 33 13 

2.  E. coli Chaperonin Complex GroelGROES  gi|2624772 57162 91 18 

3.  DNA ligase [Aliivibrio salmonicida LFI1238]  gi|209694893 31696 26 13 

4.  DNA ligase [Aliivibrio salmonicida LFI1238]  gi|209694893 31696  27 11 

 

The difference in these elution profiles suggests that the E. coli chaperonin protein is more tightly 

bound to the FL-Vib-Lig variant; most likely as the chaperonin recognizes the hydrophobic N-terminal 

segment as a mis-folded or incorrectly-translocated protein. We also observed that FL-Vib-Lig was 

more challenging to manipulate than the truncated variant: it precipitated more readily and could 

not be up concentrated above 0.5 mg mL-1.  

DNA ligase assay 
 



Both Vib-Lig variants were able to ligate a phosphorylated nick in a double-stranded DNA substrate 

in the presence of ATP and MgCl2 as shown by the appearance of the 18 nt band corresponding to 

the expected size of the ligation product (Figure 6 A). No ligated product was detected in the control 

reaction, confirming that the appearance of the upper band is strictly dependent on the presence of 

the enzyme. Dosage response experiments (Figure 6 B), and progress curves (Figure 6 C) reveal that 

TR-Vib-Lig is significantly more active than the full-length variant.  This indicates that the presence of 

the N-terminal sequence interferes with enzymatic activity, in addition to protein stability, and 

strongly supports the assignment of these residues as part of a localizing sequence rather than a 

feature of the native mature enzyme. The dosage response also reveals that even at saturating 

concentrations of TR-Vib-Lig only 80% of the substrate is ligated, which probably reflects incomplete 

annealing of the labeled oligonucleotide with its complementary strand. Experiments investigating 

cofactor preference show that omission of ATP from the reaction greatly reduces the activity of both 

forms of the protein, and addition of NAD cannot be substituted (Figure 6 D). This confirms the 

bioinformatic assignment of this protein as an ATP-dependent enzyme. The residual ATP-

independent activity is probably due to a significant fraction of the enzyme being pre-adenylated 

from addition of ATP to the lysis buffer during purification. Many previously described ATP-

dependent DNA ligases were purified as the enzyme-adenylate  [6, 15, 29] with this intermediate 

comprising up to 90% of the pure protein when measured by mass spectrometry [9]. Addition of 

EDTA abolishes ligase activity in both forms of the protein, while addition of MnCl2 in place of Mg Cl2 

can support some activity, indicating that a divalent metal ion is essential as is the case for all 

previously characterized homologues. 

Image file: Fig_6_Assay double column 

Figure 6. DNA ligase activity of FL-Vib-Lig and TR-Vib-Lig measured by nick-sealing of a double-stranded DNA substrate. 
Standard reaction conditions were as described in the text unless otherwise stated.  Graph points indicate the mean of 
three replicates; error bars indicate standard deviation of each triplicate. A representative gel corresponding to the plotted 
data is shown for each experiment. (A) Conversion of the 9 nt substrate to 18 nt product in the presence of either FL-Vib-
Lig (75  nm ) or Tr-Vib-Lig (78 nM), but not in the absence of enzyme. The marker is a mixture of FAM-labeled 
oligonucleotides with size indicated in the figure. (B) Extent of ligation as a function of the concentration of FL-Vib-Lig 
(triangles) and TR-Vib-Lig (circles). (C) Time course of FL-Vib-Lig (triangles) and TR-Vib-Lig (circles) ligase activity. 
Concentrations were 15.5  nm and 15.0 nM respectively. (D) The effect of different cofactors on ligase activity of FL-Vib-Lig 
(left) and TR-Vib-Lig (right). Values are expressed as a percentage of the TR-Vib-Lig control reaction. The following 

modifications to the standard reaction conditions were used: ATP excluded (No ATP); ATP replaced by 26 M NAD (NAD +); 
MgCl2 excluded, 5mM EDTA added (EDTA); MgCl2 excluded, 5 mM MnCl2 added. Enzyme concentrations were 78 nM and 
75 nM respectively.

 

The results presented here strongly suggest that TR-Vib-Lig represents the mature, biologically 

relevant form of the VSAL_I1366 protein, thus it is this variant that should be used in future 

biochemical and structural studies. Two previously characterized ATP-dependent DNA ligases from 



Haemophilus influenza and Neisseria meningitides also possess putative periplasmic leader 

sequences. In both cases these proteins were produced only as full-length constructs [8, 9], hence 

our comparison of FL-Vib-Lig and TR-Vib_lig constitutes the first, albeit preliminary, biochemical 

investigation of the significance of the leader peptide. Magnet et. al propose a biological function for 

this enzyme in natural competence of the host bacteria, and we hope that further in vivo and in vitro 

research on the Vib-Lig protein will allow detailed testing of such hypotheses. 

Conclusion 

In conclusion, we have recombinantly expressed and purified the product of the YP_002262821.1 

gene from A. salmonicida and confirmed that it possesses ATP-dependent DNA ligase activity. 

Comparison of the  full-length and truncated versions of the protein indicate that the N-terminal 25 

amino acids encode a polypeptide which does not form a functional domain of the enzyme, and 

based on bioinformatic analysis is most likely a periplasmic localization sequence in the native 

bacterium. This protein preparation will serve as a basis for more detailed characterization of the 

enzymatic and structural features of this protein in the future, which will help us to understand its 

biological function.  
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