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Abstract

We study one-, two-, three-, four- and five-photon absorption of three centrosym-

metric molecules using density functional theory. These calculations are the first

ab initio calculations of five-photon absorption. Even- and odd-order absorption pro-

cesses show different trends in the absorption cross sections. The behaviour of all even-
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and odd-photon absorption properties shows a semi-quantitative similarity which can

be explained using few-state models. This analysis shows that odd-photon absorption

processes are largely determined by the one-photon absorption strength whereas all

even-photon absorption strengths are largely dominated by the two-photon absorption

strength, in both cases modulated by powers of the polarizability of the final excited

state. We demonstrate how to selectively enhance a specific multiphoton absorption

process.

The concept of multiphoton absorption (MPA) dates back to 1931 when it was predicted

theoretically by Maria Göppert-Mayer.1 After the introduction of high-intensity laser light

sources, multiphoton absorption has gained a lot of attention during the past five decades,

with the first experimental proof for two-photon absorption as the starting point in 1961.2

Two-photon absorption has by now found a wide range of applications.3–6 Simulta-

neously, electronic excitations involving absorption of up to five photons has been ob-

served experimentally.7 The theoretical treatment of multiphoton absorption has also been

pushed forward during the last decades, and computational methods for the calculation

of two-photon transition strengths are available for SCF-based8,9 as well as for correlated

wave-function based methods.10–13 Implementations of three-photon absorption have been

realized only for SCF-based methods14–16 but SCF-based density-functional theory studies

give good agreement with experiment for TPA and 3PA processes for small and medium-

sized molecules.17,18 In our group, a recursive open-ended response theory19 has been ex-

panded to the treatment of single residues of response functions, enabling the calculation

of multiphoton absorption cross sections to infinite order using SCF-based methods, with

results having been reported for four-photon absorption.20

In order to design molecules with high multiphoton absorption cross sections, general

and qualitative structure-property relations are important. However, very few general

structure-property relations exist for higher-order multiphoton absorption properties, al-
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though some interesting observations have been made in the case of three-photon absorp-

tion.21,22 The major scope of this work is both to present the first computational treatment

of five-photon absorption and to study the relations between different multiphoton absorp-

tion processes. As experimental data for four- and five-photon absorption are very limited,

in particular when it comes to complete spectra, we have to rely on a computational treat-

ment of these properties to compare their behaviour. In order to amplify the general

observations presented here, we will focus on centrosymmetric molecules.

The multiphoton absorption cross sections calculated for the molecules in Fig. 1 are

shown in Table 1 for the p-dinitrobenzene (PDNB) molecule, which has D2h symmetry, and

in Fig. 2 for the diaminoazobenzene (Ci symmetry) and indigo molecules (C2h symmetry).

Note that the units for the absorption cross sections differ and that the cross sections differ

by orders of magnitude. The results reported have been calculated using the CAM-B3LYP

functional23 and the augmented correlation-consistent polarized valence double-zeta basis

sets (aug-cc-pVDZ) of Dunning and Woon.24,25 A recent study has shown that this level of

theory is a good compromise between accuracy and computational cost.20 The calculations

have been performed using a recursive response theory code19,20 interfaced to a development

version of the Dalton program.26

There are remarkable parallelities in the absorption behaviour of the different states

depending on whether an even or an odd number of photons is absorbed, see Table 1. The

PDNB molecule deviates from this observation with its Au states which cannot be reached

by one-photon processes for symmetry reasons.
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Table 1: Calculated MPA cross sections for PDNB and their ratios.

No. Energy irrep jPA cross sections Cross section ratios
[eV] [cm2jsj−1/photonj−1]

OPA (10−19) TPA (10−54) 3PA (10−86) 4PA (10−118) 5PA (10−150) OPA/3PA (1062) TPA/4PA (1061) 3PA/5PA (1062) OPA/5PA (10128)

1 3.90 1 b3g 3.44 0.08 43860
2 3.95 1 au 0.04 0.02 269
3 4.39 1 b2g 9.26 0.96 9689
4 4.42 1 b1u 2.46 1.78 0.13 138013 1338 18466
5 4.62 1 b2u 89.4 803 65.5 11132 1226 1365
6 5.03 1 b3u 1240 52557 13226 2359 397 94
7 6.06 2 b2u 278 1695 1911 16390 89 145
8 6.06 1 b1g 29100 263357 110
9 6.15 1 ag 801169 3041400 263

10 6.20 2 b1g 21602 4893130 4
11 6.68 2 b2u 607 7395 42997 8220 17 14
12 6.79 2 b3u 1626 60375 412524 2693 15 4
13 6.82 2 au 2.93 1.27 231
14 6.85 2 b3g 1.90 2.57 740
15 6.92 3 au 25.1 1.48 16944



Investigating the results, we note that the qualitative agreement between the absorption

cross sections is not as obvious for the even-order processes as for odd-photon absorption

processes. The best correlation between the different even-photon absorption processes has

been found in the diaminoazobenzene molecule.
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Figure 1: The three centrosymmetric molecules that have been studied in this work: para-
dinitrobenzene (1), diaminoazobenzene (2) and indigo (3).

The similarity in the multiphoton absorption cross sections observed in Fig. 2 can be

explained by considering the sum-over-states expression for the multiphoton absorption

cross sections. For a complete discussion of the basic theory of multiphoton absorption

we refer to the literature20,27–30 and we restrict ourselves here only to provide the general

expression for the multiphoton absorption cross sections that we will use in the analysis

and to show an appropriation we do in order to explain our observations.
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(a) Diaminoazobenzene
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Figure 2: Multiphoton absorption behaviour of the three molecules under investigation.
TPA cross sections have been scaled with 1032. 3PA cross sections are scaled with 1065,
4PA cross sections are scaled with 1094 and 5PA cross sections are scaled with 10126.

The general j-photon absorption cross section σjPA is proportional to the square of the

j-photon transition matrix element MjPA for j ≥ 220,27

σjPA ∼ |MjPA|2, (1)

with MjPA being defined as (atomic units)29

MjPA = PX1,X2,...,Xj

∑
l1,l2,...,lj−1

〈0|µX1|l1〉〈l1|µX2 |l2〉...〈lj−1|µXj
|f〉

(ω1 − ωl1)(ω1 + ω2 − ωl2)...(ω1 + ω2 + ...+ ωj−1 − ωlj−1
)
,

(2)

where ωi is the frequency of perturbation Xi and where we have already used the fact

that the ground-state dipole moment vanishes for centrosymmetric molecules.30 µXi
is the

dipole operator with respect to perturbation Xi and ωli is the excitation energy between

the ground state 0 and the excited state li. f is the final state of the excitation and the

operator PX1,X2,...,Xj generates all permutations of the perturbations. j is the number of

photons absorbed in the described process. The calculations we present in this article have
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been performed using this equation. To interprete them we now simplify this expression

using symmetry considerations.

For centrosymmetric molecules we can easily identify the symmetry of the accessible

final states f as well as the intermediate states li in Eq. (2). Because all electric dipole

perturbations are ungerade and the ground state always gerade, the excited state l1 that

appears in the numerator of Eq. (2) must be ungerade. All final states for odd-photon

absorption processes must be ungerade. In contrast, TPA and all higher-order even-photon

absorption processes are only allowed for excitations with gerade final states.

However, from Fig. 2 and Table 1, we note that there is even a semi-quantitative

agreement between the absorption cross sections of different excited states. The orders

of magnitude that are covered by the different cross section values are very similiar in all

cases, and the order of the states with respect to their MPA behaviour is similar within

the even- and odd-photon absorption groups. This is illustrated in particular by the ratios

between the cross sections that have been calculated for the PDNB molecule. Apart from

the one for the 1B1u state, which shows a rather small cross section, we find that all ratios

between OPA and 3PA are within the range of about an order of magnitude. The behaviour

of the TPA/4PA-ratios is rather similar with the exception of the one for the 1B1g-state.

We will return this anomaly.

In order to explain these observations, we first give the explicit expressions for the one-

and two-photon absorption matrix elements

MOPA
a =〈0|µa|Uf〉, (3)

MTPA
ab =Pab

nU∑
k=1

〈0|µa|Uk〉〈Uk|µb|Gf〉
ωa − ωUk

, (4)

where the individual perturbations are marked by lowercase letters. U and G represent

ungerade and gerade states, respectively, and the index f marks the final state. nU is the

7



number of ungerade excited states that are symmetry allowed. The operator P generates

all permutations of the perturbations and their individual frequencies.

Let us now consider the 3PA transition matrix element

M3PA
abc =Pabc

nU∑
k=1

nG∑
l=1

〈0|µa|Uk〉〈Uk|µb|Gl〉〈Gl|µc|Uf〉
(ωa − ωUk)(ωa + ωb − ωGl)

. (5)

For a molecule with a strong, isolated OPA state, the dominating excited state of ungerade

symmetry is the final state of interest, in the spirit of few-state models for multiphoton

absorption cross sections, the 3PA matrix element reduces to

M3PA
abc ≈ Pabc

nG∑
l=1

〈0|µa|Uf〉〈Uf |µb|Gl〉〈Gl|µc|Uf〉
(ωa − ωUf )(ωa + ωb − ωG)

. (6)

Note that in this expression the summation over the ungerade states has been dropped

but the summation over gerade states is not affected. The validity of this approach has

been shown e.g. in work by Vivas and coworkers where a three-level model for TPA yielded

impressing results compared to experiment.31 Using this expression, we can write the 3PA

matrix element as

M3PA
abc ≈ Pabc MOPA

a

(ωa − ωUf )
·

nG∑
l=1

〈Uf |µb|Gl〉〈Gl|µc|Uf〉
(ωa + ωb − ωG)

. (7)

This quasi-few-state model now explains the similarity of the OPA and 3PA absorption

cross sections, the 3PA cross section being proportional to the OPA cross section, the pro-

portionality factor being the excited-state polarizability divided by an energy denominator.

The permutation operator which is still present in the approximated equation takes into

account that several spatial components of MOPA
a can contribute to the transition dipole

moment.

This is also an explanation for the low 3PA and 5PA cross sections of the Au states in
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PDNB since these states cannot be dominated by an OPA excitation according to Eq. (6).

We can therefore separate 3PA excitations into OPA-dominated and pure-3PA absorptions.

We can extend this analysis to 4PA. The matrix element for four-photon absorption is

M4PA
abcd =Pabcd

nU∑
k=1

nG∑
l=1

nU∑
m=1

〈0|µa|Uk〉〈Uk|µb|Gl〉〈Gl|µc|Um〉〈Um|µd|Gf〉
(ωa − ωUk)(ωa + ωb − ωGl)(ωa + ωb + ωc − ωUm)

, (8)

where both the summations over k and m cover the same manifold of ungerade states. In

the same manner, we can now assume a dominant contribution from Gf as the intermediate

gerade state, and write Eq. (8) as

M4PA
abcd ≈Pabcd

nU∑
k=1

nU∑
m=1

〈0|µa|Uk〉〈Uk|µb|Gf〉〈Gf |µc|Um〉〈Um|µd|Gf〉
(ωa − ωUk)(ωa + ωb − ωGf )(ωa + ωb + ωc − ωUm)

(9)

≈Pabcd

(
MTPA

ab

(ωa + ωb − ωGf )
·

nU∑
m=1

〈Gf |µc|Um〉〈Um|µd|Gf〉
(ωa + ωb + ωc − ωUm)

)
. (10)

Analogous to the results for 3PA, we find that the 4PA cross sections are proportional

to the TPA cross section, the proportionality factor being the excited-state polarizability

divided by an energy term.

For 5-photon absorption, we can in a similar manner write

M5PA
abcde =Pabcde

nU∑
k,m=1

nG∑
l,n=1

〈0|µa|Uk〉〈Uk|µb|Gl〉〈Gl|µc|Um〉〈Um|µd|Gn〉〈Gn|µe|Uf〉
(ωa − ωUk)(ωa + ωb − ωGl)(ωa + ωb + ωc − ωUm)(ωa + ωb + ωc + ωd − ωGn)

,

(11)

noting that we now have two ungerade intermediate states that can be substituted by the

Uf state. If we only introduce the final state for the second ungerade state (Um in the

equation) we obtain

M5PA
abcde ≈Pabcde

(
M3PA

abc

(ωa + ωb + ωc − ωUf )
·

nG∑
n=1

〈Uf |µd|Gn〉〈Gn|µe|Uf〉
(ωa + ωb + ωc + ωd − ωGn)

)
, (12)
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which is an expression for 3PA-dominated 5PA which is representative for the Au states

of the PDNB molecule.1 In most cases, we can simplify Eq. 12 further by substituting all

ungerade intermediate states by the final state, giving

M5PA
abcde ≈Pabcde

nG∑
l,n=1

〈0|µa|Uf 〉〈Uf |µb|Gl〉〈Gl|µc|Uf 〉〈Uf |µd|Gn〉〈Gn|µe|Uf 〉
(ωa − ωUf )(ωa + ωb − ωGl)(ωa + ωb + ωc − ωUf )(ωa + ωb + ωc + ωd − ωGn)

(13)

=Pabcde

(
MOPA

a

(ωa − ωUf )(ωa + ωb + ωc − ωUf )
·

nG∑
l=1

〈Uf |µb|Gl〉〈Gl|µc|Uf 〉
(ωa + ωb − ωGl)

·
nG∑
n=1

〈Uf |µd|Gn〉〈Gn|µe|Uf 〉
(ωa + ωb + ωc + ωd − ωGn)

)
,

which shows that the 5PA absorption cross section can be expected to be proportional to

the OPA transition moment scaled by the excited-state polarizability squared.

These expressions explain why we observe the orthogonality of the odd- and even-

order multiphoton absorption cross sections. Furthermore, they also explain the strong

parallelity of the odd- and even-order multiphoton absorption cross sections, as they are

in all cases related to the lowest-order one- or two-photon absorption cross section, scaled

by the energy difference between the excitation energy to the final state and the incoming

laser frequencies, and scaled by (products of) excited-state polarizabilities. It is important

to point out that this model does not allow quantitative predictions of higher-order MPA

from OPA or TPA data but it gives a qualitative to semi-quantitative description of the

behaviour of the different properties.

Multiphoton absorption cross sections can be enhanced through resonances, occuring

when the frequency (or sums of frequencies) of the incoming laser light matches that of

intermediate excited states (e.g. when ωa = ωGf/2 ≈ ωUk in the case of TPA). We note

from the equations above that the frequency prefactor in the few-state models has the same

poles as that of the TPA or 3PA processes, respectively. Thus, boosting TPA and 3PA
1In principle there should also be a term arising from introducing the final state for the first ungerade

intermediate state. However, this would lead to a term which would correspond to the OPA transition
moment scaled by the excited-state second hyperpolarizability, and thus can be expected to be smaller.
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processes through near-resonance conditions will also boost the higher-order multiphoton

absorption cross section.

Boosting a higher-order multiphoton absorption cross section selectively without a si-

multaneous increase in the lower-order multiphoton absorption cross section will thus only

be possible if we can make the excited-state polarizability approach a pole for one of the fre-

quency combinations of the incoming laser light. Consider for example the 4PA transition

moment in Eq. 10. Whereas the TPA cross section, and thus also the 4PA cross section,

will have a pole if there are intermediate states at half the energy of the excited state,

the 4PA will be selectively enhanced if there is an excited state of ungerade symmetry at

3ωGf/4. Similar considerations can be made for the 5PA process, and we can selectively

enhance the 5PA process if there are intermediate states of gerade symmetry with energy

2ωUf/5 and 4ωUf/5.

If we now return to the unexpected enhancement of the 4PA cross section of the 2B1g

(and the close-lying 1B1g and 1Ag states) in PDNB, we note that there exists an interme-

diate B2u state of ungerade symmetry at approximately 3/4 of the energy of these final

states, thus creating a resonance in the excited-state polarizability in enhancement of the

4PA process relative to the TPA process.

To summarize our findings, we have presented the first 5PA cross section calcula-

tions at the density-functional level of theory using the CAM-B3LYP exchange–correlation

functional for three centrosymmetric molecules. These calculations have shown that for

molecules with an inversion centre, the selection rules for dipole-allowed transitions make

the relative magnitude of all the even (odd) multiphoton absorption cross sections simi-

lar for different excited states. Assuming the validity of a few-state model for the states

with the same symmetry as the final state of the multiphoton absorption process, we have

shown that higher-order multiphoton absorption cross sections are proportional to the TPA

(even-order absorption processes) or OPA (odd-order absorption processes) cross sections,
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scaled by an energy denominator and powers of the polarizability of the final excited state.

Our analysis shows that for centrosymmetric molecules, excited states that display

strong one- or two-photon absorption cross sections will also display strong multiphoton

absorption cross sections. We have also shown how to selectively enhance the higher-

order multiphoton absorption cross section by designing molecules with intermediate states

that match selected frequency combinations for the frequency of the incoming light. We

predict, for instance, a strong enhancement of 5PA processes by designing molecules with

intermediate states of energy 2ωUf/5 and 4ωUf/5, as well as for 4PA as illustrated by our

results calculated for the PDNB molecule. These results will be valuable guidelines for

designing molecules with strong higher-order multiphoton absorption cross section.

Computational details

All multiphoton absorption calculations have been performed using a recursive open-ended

response theory code19 which has recently been expanded to the treatment of single residues

of response functions.20 This program is a submodule of the Dalton program.26 All cal-

culations have been performed using the aug-cc-pVDZ basis set from the Dunning family

of basis sets24 and the CAM-B3LYP density functional.23 In all calculations of n-photon

absorption the energy of the involved photons was the excitation energy divided by n.

The geometry of the para-dinitrobenzene molecule has been optimized using the cc-

pVQZ basis set and the B3LYP-functional32,33 in Gaussian.34 The geometries of the di-

aminoazobenzene and indigo molecules have been optimized using TURBOMOLE35 with

the B3LYP functional and the TZVP basis set.36

The rotational averaging of the calculated results has been performed following available

literature37–39 and the calculation of the cross sections was done using an approach which

has recently been generalized by two of us20 based on work by Peticolas.27 The detailed
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equations for this are given in the supplementary information.
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