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Abstract. A salient image region is defined as an image part that
is clearly different from its surround. This difference is measured
in terms of a number of attributes, namely, contrast, brightness
and orientation. By measuring these attributes, visual saliency
algorithms aim to predict the regions in an image that would attract
our attention under free viewing conditions. As the number of
saliency models has increased significantly in the past two decades,
one is faced with the challenge of finding a metric that can be
used to objectively quantify the performance of different saliency
algorithms. To address this issue in this article, first, the state of the
art of saliency models is revisited. Second, the major challenges
associated with the evaluation of saliency models are discussed.
Third, ten frequently used evaluation metrics are examined and their
results are discussed for ten latest state-of-the-art saliency models.
For the analysis, a comprehensive open source fixations database
has been quantitatively examined. (© 2015 Society for Imaging
Science and Technology.
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INTRODUCTION

Our visual system is selective, i.e., we concentrate on certain
aspects of a scene while neglecting other things. This is
evident from studies on change blindness,!~® which show
that large changes can be made in a visual scene that can
remain unnoticed. The reason why our visual system is
selective is because our brains do not process all the visual
information in a scene. In fact, while the optic nerve receives
information at the rate of approximately 3 x 10° bits/s, the
brain processes less than 10% bits/s of this information.* In
other words, the brain uses a tiny fraction (<1%) of the
collected information to build a representation of the scene,
a representation that is good enough to perform a number
of complex activities in the environment such as walking,
aiming at objects and detecting objects. Based on this, we
can ask what mechanisms are responsible for building this
representation of the scene.

In the literature, two main attention mechanisms
are discussed: top-down and bottom-up.>~!! Top-down is
voluntary, goal-driven and slow, i.e., typically in the range
between 100 ms and several seconds.” It is assumed that the
top-down attention is closely linked with cognitive aspects
such as memory, thought and reasoning. For example,
by employing top-down mechanisms, we can attend to a
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person sitting next to us in a busy restaurant and neglect
other people and visual information in the background. In
contrast, bottom-up attention (also known as visual saliency)
is associated with attributes of a scene that draw our attention
to a particular location. These attributes include motion,
contrast, orientation, brightness and color.!?> Bottom-up
mechanisms are involuntary, and faster than top-down.’
For instance, flickering lights, a yellow target among green
objects, and a horizontal target among vertical objects are
some stimuli that would automatically capture our attention
in the environment. Studies!®!* show that in search tasks,
such as looking for a target object among distractors, both
bottom-up and top-down mechanisms work together to
guide our attention. While bottom-up attention is based on
elementary attributes of a scene, top-down is quite complex
and strongly influenced by task demands.!> For example, the
studies (Refs. 16, 17) suggest that for tasks such as picking up
and placing objects by hand in the environment, attention is
mainly driven by top-down mechanisms.

In the past two decades, modeling of visual saliency
has generated a lot of interest in the research community.
In addition to contributing towards the understanding of
human vision, it has also paved the way for a number of
computer vision applications. These applications include
target detection,'® image and video compression,!®~22
image segmentation,?? context aware image resizing,2* robot
localization,?>2¢ image retrieval,?” image and video quality
assessment,”®2 dynamic lighting,’® advertisement,?! artis-
tic image rendering®? and human-robot interaction.>*-3*

To evaluate the performance of visual saliency algo-
rithms, the two-dimensional saliency maps are compared
with the image regions that attract observers’ attention.>>~37
This is done by displaying to the observers a set of images
and using an eye tracker to record their eye fixations. Further,
it is thought that a higher number of fixations correspond
to salient image regions. The recorded fixations are thus
compared with the associated visual saliency maps in a
pairwise manner.8-40 Unfortunately, studies®>*!:4? have
shown that while viewing images, observers tend to fixate
on the center of the image more than the peripheral regions.
This effect is known as center bias and is well documented in
vision studies.*'*> The presence of center bias in fixations
makes it difficult to evaluate the correspondence between
the fixated regions and the salient image regions. This
can be explained by the fact that in a comprehensive eye
tracking study by Judd et al.,>? it was shown that a dummy
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classifier defined by a Gaussian blob at the center of the
image was better at predicting the eye fixations than any of
the visual saliency models.3>444> In light of these results,
one can ask what factors influence the performance of
saliency algorithms, and which metric is a good candidate
for comparing the different saliency models. This article is
an attempt to address these issues.

The rest of the article is organized as follows. In the
second section, the literature on visual saliency algorithms
is reviewed. Next, in the third section, the different metrics
used for judging the performance of saliency models are
discussed. Finally, in the fourth section, the results obtained
for the evaluation metrics are examined.

STATE OF THE ART IN MODELING VISUAL
ATTENTION

In this section, the computer models for predicting eye
fixations in still images are discussed.

In the study by Borji et al.,* the authors state that the
visual attention models in the literature can be divided into
eight classes: Bayesian, cognitive, decision theoretic, graph-
ical, information theoretic, pattern classification, spectral
analysis, and others. The classification made by Borji et al.*6
has been updated with the latest saliency models. The
different classes and the attention models associated with
these classes are shown in Table I.

In Bayesian models, prior knowledge about the scene,
and sensory information such as target features are employed
to calculate salient image regions. The objective is to learn
from past search experiences in similar scenes, and use those
strategies that lead to a successful search (of the target). For
instance, models such as those of Torralba,*” Olivia et al.>®
and Zhang et al.*® fall in this category.

Cognitive models are the ones that are strongly based
on psychological and neuro-physiological findings from
experiments. For instance, experiments have shown that
difference of Gaussians (DOG) is a good approximation of
how the receptive fields (i.e., basic units of our visual system)
extract information from a scene before sending it to the
brain.*’ This finding is the basis for many cognitive saliency
models such as those of Itti et al.,** Walther,>® Walther et al.,>!
Frintrop>? and Borji and Itti.>> Other models in this category
include those of Meur et al.,>* Rajashekar et al.,”> Cerf et al.,*
Erdem and Erdem?* and Alsam et al.>®:>” We can see that a
majority of saliency models belong to this category.

Decision theoretic models are based on the concept of
identifying the optimal factors based on how people make
decisions. Saliency is defined in terms of discrimination
analysis, where salient features are those that best distinguish
the target objects from all other visual classes of interest. For
instance, models such as those of Gao and Vasconcelos,*®
Gao et al,” Li et al.®” and Wang et al.%! are classified under
this category.

A graphical model is a probabilistic model which
represents a set of calculated image features as pairs
connected by links, where the interconnected features are
vertexes, and the links connecting some pairs of vertexes
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Table 1. The various visual attention models and their categories according to the study
by Borji et al. 46 The classification made by Bori ef al.*6 has been updated with the latest
saliency models.

Torralba,*7 Olivia ef al.3? and Zhang et ol.*8

Iti et ol *4 Walther,* Walther et al. ! Frintrop, 2
Meur et al.,>* Rajashekar et al. 5 Cerf et al, 36
Murray et al.”8 Erdem and Erdem,24

Asam et al.58:7 and Borji and I1i%3

Gao and Vasconcelos, 8 Navalpakkam and Itii,!!
Gao et al,, Li et al.0 and Wang et al.8!

Harel et al. 3% Achanta ef al, 23 Avraham and
Lindenbaum, 2 Chikkerur et al.63 and Liv et al.64

Bruce & Tsotsos,® Mancas, % Seo and Milanfar 87
Erdem and Erdem?* and Borii and 1153

Judd et al.32 and Kienzle et al.68
Hou and Zhang,%? Guo et al. 70 Achanta et al. 23
Bian and Zhang”" and Schaverte and Stiefelhagen’2

Rao et al.,”3 Goferman et al.,”* Koofstra et al 86
and Garcio-Diaz et ol.”®

Bayesian models
Cognitive models

Decision theoretic models
Graphical models
Information theoretic models

Pattern classification models
Spectral analysis models

Other models

are called edges. For example, models such as those of
Harel et al.,>> Achanta et al.,> Avraham and Lindenbaum,®
Chikkerur et al.®* and Liu et al.** belong to this class.

Information theoretic models are based on the concept
that localized saliency computation serves to maximize
information sampled from one’s environment. In other
words, these models select the most informative parts of the
image and discard the rest. This class consists of models such
as those of Bruce & Tsotsos,®> Mancas,®® Seo and Milanfar,®’
Erdem and Erdem?* and Borji and Itti.>?

In pattern classification models, a machine learning
procedure is employed to model visual attention. For
learning salient regions in images, typically the regions
pertaining to eye fixation data or labeled salient regions are
used as ground truth. For instance, models such as those
of Judd et al.32 and Kienzle et al.%® are classified under this
category.

Spectral analysis models calculate saliency in the
frequency domain. This category consists of models such as
those of Hou and Zhang,®® Guo et al.,”® Achanta et al.,>> Bian
and Zhang’! and Schauerte and Stiefelhagen.”?

The models that do not conform to the above categories
are classified as other models. This class includes models
such as those of Rao et al,”®> Goferman et al’* and
Garcia-Diaz et al.”®

In this section, the saliency models are reviewed in terms
of the above mentioned categories.

Cognitive Models
We start with cognitive models, as they were the earliest
saliency models and they form the basis for many of the
models in other categories.

The classic model of visual saliency proposed by
Itti et al.** calculates salient regions by decomposing the
input image into three different channels, namely, color,
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Figure 1. The general architecture of the saliency model by it et al 44

intensity and orientation, as shown in Figure 1. The color
channel consists of two maps, red/green and blue/yellow
color opponencies, the intensity channel consists of a
gray-scale representation of the input image, and the
orientation channel contains four local orientation maps
associated with angles of 0, 45, 90, and 135 degrees. For each
channel map, nine spatial scales are created by repeatedly
low-pass filtering and subsampling the input channel. After
that, feature maps are computed by using center-surround
operations, which are inspired by vision studies such as
Refs. 12, 76. The center-surround operations are defined as
the difference between fine and coarse scales. For example, if
the center is a pixel at scale ¢ € {2, 3, 4}, the surround is the
corresponding pixel at scale s = ¢ + d, withd € {3, 4},and ©
denotes the across-scale difference, then the center-surround
feature maps for a channel I are represented as

I(c,s) =|I(c) ©I(s)|.

These operations generate 42 feature maps: six for intensity,
12 for color opponencies and 24 for orientation. Next, the
maps associated with each channel are normalized and
combined to generate three conspicuity maps (i.e., intensity,
color and orientation). Finally, the resulting conspicuity
maps are normalized and combined linearly to obtain the
so-called saliency map. The VOCUS model proposed by
Frintrop®? and the saliency toolbox implemented by Walter
et al.>%->! are based on this saliency model.

Rajashekar et al.>® proposed a bottom-up model that cal-
culates salient image regions based on four foveated low-level
image features, namely, luminance, contrast, luminance-
bandpass and contrast-bandpass. The input image is divided
into uniform regions, and the feature maps associated with
the four low-level features are calculated. Finally, the four
maps are linearly combined using a weighted average to
obtain the saliency map. For evaluation, they used 101
static gray-scale images that contained no high-level features
such as animals, faces or other items of high-level semantic
interest.

Meur et al.>* presented a saliency model inspired by
various properties of the human visual system such as
contrast sensitivity function, visual masking and perceptual

1‘54
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grouping. This model is based on the saliency framework
proposed in Ref. 12, and the saliency map is built by linearly
combining the different feature maps. The authors showed
that their model outperforms the saliency model proposed
by Itti et al. 44

Cerf et al.’® proposed a model that combined the
bottom-up feature channels of color, intensity and orienta-
tion, from Ref. 44, with a face-detection channel, based on the
algorithm in Ref. 77. Their results showed that the combined
model improves the correspondence between the fixated and
salient image regions.

Murray et al.”® calculated salient image regions in
three steps. First, the input image is processed according
to operations consistent with early visual pathway (color-
opponent and luminance channels, followed by a multi-scale
decomposition). Second, a simulation of the inhibition
mechanisms present in cells of the visual cortex is performed;
this step effectively normalizes their response to stimulus
contrast. Third, the model integrates information at multiple
scales by performing an inverse wavelet transform directly on
weights computed from the non-linearization of the cortical
outputs. Their saliency model showed better correspondence
with the fixations than the saliency models in Refs. 65, 67.

Borji and Itti*® presented a model based on combining
local and global saliency. Local saliency is described as the
rarity of an image region with respect to its neighboring
regions. It is calculated as the average weighted dissim-
ilarity between the center and L neighboring regions as
S = %ZJ-LZO Wi lij, where Wj; is the Euclidean distance
between the center region (i) and the neighboring region (j),
and D;; is obtained by the basis vectors associated with the
sparse coding of image regions. Global saliency is defined
as the rareness of a region to be selected over the entire
image and is calculated based on the information theoretic
approach proposed by Bruce & Tsotsos.%> In addition, the
authors use both RGB and Lab color spaces to calculate
the saliency maps. The results suggest that their model
outperforms ten state-of-the-art saliency models.

Erdem and Erdem?* introduced a model that calculates
saliency based on covariance image descriptors proposed by
Tuzel et al.” In their model, the image is decomposed into
square regions and each region is represented in terms of a
covariance descriptor as Cgr = ﬁ Y — (i —mT,
where Cp is a d by d covariance matrix of a region R inside
the image, f; denotes the d-dimensional points associated
with features such as intensity, color, orientation and spatial
attributes, and p is their mean. Saliency is measured as the
rarity of an image region with respect to its neighboring
regions, by using a dissimilarity measure similar to that in
Ref. 53. Furthermore, mean feature information is added to
make salient regions pop out, and center bias is added to
improve its correspondence with eye fixations. The maps are
calculated at different scales and combined to form the final
saliency map.

Alsameta presented a model that uses asymmetry
as a measure of saliency. For this, the authors use the
dihedral group D4, which is the symmetry group of the

156,57

Sept.-Oct. 2015



Sharma: Evaluating visual saliency algorithms: past, present and future

Feature maps

Saliency map

Saliency
| computation

Vv a

b 4

l . Location
. priming Contextual modulation
' (x|o,V¢) of attention

— P(X|0 —>

’:‘ 32 Global R
¥ T encoding

2
EEEE V= { a } Object-class
N priming
HEE Task: 1

ag| o=person |} o1y

rolvo [— 1 T
| 1
e (=Y T
‘AHER Appearance & ? 2
g1 1] priming
I

P
— p(t | O,Vc) — ":;

Figure 2. The general architecture of the saliency model by Torralba.4”

square image grid and includes two types of symmetries,
i.e., rotation and reflection. To calculate saliency, the input
image is decomposed into square blocks, and for each block
the absolute difference between the block itself and the result
of the D4 group element acting on the block is calculated.
The mean of the absolute difference for each block is used
as a measure of asymmetry for the block. The asymmetry
values for all the blocks are then collected in an image matrix
and scaled up to the size of the original image using bilinear
interpolation. In order to capture both the local and the
global salient details in an image, three scales are used. All
maps are combined linearly to obtain a single saliency map.

Bayesian Models

Torralba?” and Olivia et al.>* defined a model that combines

three factors: bottom-up saliency, object likelihood and

contextual prior. The local saliency is calculated as S(x) =
L__ where v encodes local features in the neighborhood

pvi/ve)’
of a location that is represented by the outputs of multi-scale

oriented bandpass filters, and v¢ represents the contextual
properties of the scene or background, which include global
image statistics, color histograms and wavelet histograms.
In the object likelihood factor (represented as priming in
Figure 2), the locations corresponding to features different
from the target object are suppressed, and the locations with
similar features are maintained. The contextual priors stage
modifies the two-dimensional saliency map based on past
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search experience from similar images and uses the strategies
that were successful in finding the target.

The SUN model by Zhang et al.*® defined saliency
as a combination of three components. The first contains
self-information, which depends only on the visual features
at a location. Here, rarer features are considered more
informative. In the second, top-down information such as
the knowledge about the attributes of the target is used to
obtain a log likelihood. The third component consists of the
probability associated with the knowledge of the location of
the target. In their algorithm, the saliency map was calculated
using difference of Gaussians and independent component
analysis derived features.

Decision Theoretic Models

Navalpakkam and Itti'! introduced a model that combines
top-down and bottom-up aspects of attention. The bottom-
up component is calculated by using the saliency model
by Itti et al,** and the top-down component uses the
information about the target and the background objects to
maximize the ratio between the saliency values of the targets
and that of the background objects. This model was evaluated
using a search task, i.e., the observers were instructed to
search for a specific object in the scene. Their results showed
that a combined top-down and bottom-up model yields a
faster search than a bottom-up model.

Gao et al.”? defined saliency as equivalent to discrimi-
nation, i.e., they state that the most salient features are the
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ones that best separate the target class from all others. In their
model, saliency is represented by two components: feature
selection and saliency detection. The best feature subset is
selected by computing the marginal mutual information as

I(X; Y) =) Py()Dxe(Pxjy (x]i) || Px(x)),

1

where X is a set of features and Y is a class label with prior
probabilities Py (i), such that the probability density of X
given class i is PXkIY(x|i), and Dgg is the Kullback-Leibler
divergence.®” In the saliency detection, the features that are
considered highly non-salient are eliminated by employing
the Barlow principle of inference.®!

Li et al.% introduced a model that measures saliency as
minimum conditional entropy. In their model, the minimum
conditional entropy represents the uncertainty of the center-
surround local region, when the surrounding area is given
and the perceptional distortion is considered. The authors
state that the larger the uncertainty the more salient the
center is, and vice verse. The minimum conditional entropy
is approximated by the lossy coding length of Gaussian data.
Finally, the saliency map is segmented by thresholding to
detect the salient objects. In their results it was shown that
their model outperforms the saliency model in Ref. 44.

Graphical Models

Harel et al.>> proposed a bottom-up model that uses graph
algorithms for saliency computations. In their model, the first
step consists of calculating feature maps using a procedure
similar to that of Itti et al.** After that, a fully connected
graph for the locations of the feature maps is built. A graph
comprises nodes or vertexes connected by links or edges.
The weights between two nodes are calculated based on their
dissimilarity and their closeness. Given two locations (i, j)
and (p, q) in the feature map M, the dissimilarity between
their respective nodes M (i, j), M (p, q) is defined as

M, j) ‘

Al ) | (. ) 2 M@, 9|

log

Next, the graphs obtained are treated as Markov chains, and
the equilibrium distributions of these chains are adopted
as the activation maps. Finally, these activation maps are

J. Imaging Sci. Technol.

050501-5

normalized using another Markovian algorithm to highlight
the conspicuity, and admitting their combination to form the
saliency map.

Achanta et al.?®> presented a model that represents
saliency as the local contrast of an image pixel with respect
to its neighborhood at different scales. For a given scale, the
saliency value at a pixel (4, j) is calculated as the distance D
between the mean vectors of pixel features of the inner region
R; and the outer region R; as

where N and N, are the numbers of pixels associated with
the regions Rj and R; as depicted in Figure 3. In their model,
CIELAB color space is used to generate feature vectors for
color and luminance. The final saliency map is obtained by
summing the saliency values across the different scales.
Chikkerur et al.%® presented a Bayesian model of
attention based on the concept that the task of the visual
system is to recognize what is where, and this is archived
by localizing sequentially, i.e., one object at a time. Their
model extends the template-based approach used in the
model in Ref. 73, in the following ways. First, both feature
and object priors are included, which allows top-down
feature-based attention and spatial attention to be combined.
Second, this model allows a combination of N feature
vectors that share common spatial modulation. Third, in the
spatial attention, scale/size information is used in addition
to the location information. The authors state that their
model combines bottom-up, feature-based and context-
based attention mechanisms, and in so doing it is able to
explain part of the basic functional anatomy of attention.
Liu et al% introduced a supervised approach to
calculating salient image regions. The salient object detection
is formulated as an image segmentation problem, where
the objective is to separate the salient object from the
image background. To do this in their model, ground truth
salient objects are obtained from the regions labeled by the
observers as salient. After that, a set of features including
multi-scale contrast, center-surround histogram and color
spatial distribution are used to describe a salient object
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Figure 4. For the given image (used from Judd ef al.32), the information
carried by the image patch af the center (represented by the red square] is
quite different from all the other patches (represented by yellow squares),
and hence has the greatest self-information (as per Shannon's criterion).62

locally, regionally and globally. Finally, these features are
optimally combined through conditional random field (CRF)
learning. The CRF was trained and evaluated for a large
dataset containing 20,840 labeled images by multiple users.

Avraham and Lindenbaum® presented a stochastic
model of visual saliency. In their model, first, the input image
is segmented into regions that are considered as candidates
for attention. An initial probability for each candidate is
set using preferences such as small number of expected
targets. After that, each candidate is represented by a feature
vector, and visual similarity between every two candidates
is evaluated using a Pearson correlation coefficient. Next, a
tree-based Bayesian network is employed for clustering the
candidates. Finally, the saliency map is obtained by selecting
the most likely candidates.

Information Theoretic Models

Lee & Yu®? proposed a theoretical model based on the
assumption that our visual system operates on the principle
of information maximization, i.e., we fixate at a location
in the image that provides the maximum amount of
information. They proposed that mutual information among
cortical representations of the retinal image, the priors
constructed from our long-term visual experience and
a dynamic short-term internal representation constructed
from recent saccades provides the map for the guidance of
eye movements. Based on this approach, a similar model was
defined in Ref. 83.

Bruce & Tsotsos®® introduced a saliency model based on
the principle of maximizing information that uses Shannon’s
self-information measure. The saliency is defined by the
self-information associated with each local image region.

For instance, as shown in Figure 4, the information
carried by the image patch at the center (represented
by the red square) is quite different from all the other
patches (represented by yellow squares), and hence has the
greatest self-information. The self-information is given by
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I(X) = —log(p(X)), where X is an n-dimensional feature
vector extracted from an image region, and p(X) is the
probability of observing X based on its surround. The
authors state that there are insufficient data in a single
image to provide a reasonable estimate of the probability
distribution. To address this issue, they employ independent
component analysis (ICA) in order to learn the bases from a
large database of natural images. After that, the probability
of observing an image region is calculated for each basis
coefficient. Finally, for a given image region the likelihood of
observing it is represented by the product of corresponding
ICA basis probabilities for that region.

Seo and Milanfar®’ introduced a bottom-up model
based on a self-resemblance measure. In their model, image
features are obtained by using local regression kernels,
which are quite robust to noise and efficient at capturing
the underlying structure of the image. After that, matrix
cosine similarity is used to compute the resemblance of each
location to its surroundings. The saliency for a given location
i is represented as

1
N —14+pFF)\’
D _jt1exp (Tj)

where o is a weight parameter and p(F;, Fj) is the matrix
cosine similarity between two feature maps F; and F;. Here,
the matrix cosine similarity is defined as the Frobenius inner
product between two normalized matrices F; and F;. The
authors showed that their model predicts fixations better
than the models in Refs. 48, 65.

Mancas®® defined saliency as a measure of two com-
ponents, contrast and rarity, i.e., rare features in an image
are interesting. To account for contrast two methods are
proposed: global and local. Global contrast is measured
using a histogram, and local contrast is calculated using
center-surround operations similar to that of Ref. 44. The
rarity is quantified by employing Shannon’s self-information
measure. First, a low-level saliency map is calculated by
describing each location by the mean and the variance of its
neighborhood. After that, rarity is measured based on the
features such as size and orientation, where smaller areas and
lines corresponding to the orientations get higher saliency
values on the saliency map. Finally, high-level methods such
as Gestalt laws of grouping are employed to find the salient
regions.

Wang et al.%! proposed a computational model based
on the principle of information maximization. Their model
considers three key factors, namely, reference sensory
responses, fovea-periphery resolution discrepancy and visual
working memory. In their model, first, three multi-band filter
response maps are calculated as a coherent representation
for the three factors. After that, the three filter response
maps are combined into multi-band residual filter response
maps. Finally, the saliency map is obtained by calculating
the residual perceptual information at each location. The
results from the authors showed that their model performs
significantly better than the saliency model in Ref. 44.

S;i=
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Pattern Classification Models

Judd et al.*? used a machine learning approach to train
a combined bottom-up, top-down model based on low-,
mid- and high-level image features. As shown in Figure 5, the
low-level features such as intensity, orientation and contrast
are described by models such as Refs. 44, 45, 84, the mid-level
features are represented by a horizon line detector, and
the high-level features consist of people and face detectors.
The authors collected eye fixations of 15 observers from a
comprehensive dataset (with 1003 images) which was also
used for evaluation. The model proposed by the authors
showed better correspondence with the fixations than several
other models such as Refs. 36, 44, 45, 84.

Kienzle et al.® proposed a non-linear machine learning
approach for calculating saliency. In their model, the
intensities pertaining to local image regions are used as
feature vectors. The authors employ a support vector
machine to train the feature vectors of fixated regions to yield
positive values and the feature vectors of randomly selected
regions to yield negative values. The resultant saliency is
modeled with four perceptive fields, two most likely image
structures and two least likely patterns for driving fixations.
For the training and evaluation, a dataset of 200 gray-scale
images was used.
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Spectral Analysis Models

Hou and Zhang® proposed a saliency model based on
analyzing the log spectrum of the input image. First, the
log spectrum is defined as L(f) = log(A(f)), where A(f)
is the amplitude of the Fourier spectrum of the image.
After computing the log spectrum, the spectral residue is
calculated as R(f) = L(f) — A(f). Finally, the spectral residue
is transformed to the spatial domain to obtain the saliency
map. The results from the authors suggested that their model
predicts the fixations better than the saliency model in
Ref. 44.

Guo etal.”’ calculated saliency in a manner similar to the
spectral residue approach in Ref. 69, with the exception that
this model excludes the computation of the spectral residue
in the amplitude spectrum. They state that by excluding the
amplitude computation the saliency map is obtained faster.
For a given image I (x, y), the saliency map is defined as

1'70

SM(x,y) =g(x, y)* |F~ ' [ePEN])2,

such that f(x,y) = F(I(x,y)) and p(x,y) = P(f(x,y)),
where F and F~! represent the Fourier transform and inverse
Fourier transform, respectively. P(f) denotes the phase
spectrum of the image and g(x, y) is a two-dimensional
Gaussian filter.

Bian and Zhang’! adopted a spectral approach similar
to Ref. 70 for calculating salient image regions. In their
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model, the input image is resized to a fixed scale, and a
windowed Fourier transform of the image is calculated to
obtain a spectral response. The spectral response, denoted
by f (u, v), is then normalized as n(u, v) =f (u, v)/||f (u, v)|.
After that, n(u, v) is transformed to the spatial domain by
using an inverse Fourier transform followed by squaring
to promote the salient regions. The resultant saliency map
is convolved with a Gaussian filter ¢ to model the spatial
pooling operations of complex cells as S(x, y) = g(u, v) *
IE~'[n(u, v)]|, where F~! denotes the inverse Fourier
transform.

Schauerte and Stiefelhagen’? proposed a saliency model
that extends the spectral residue approach of Ref. 69. Saliency
is calculated using the inverse discrete cosine transform
(DCT), quaternions are employed to represent color images,
and quaternion DCT is used to calculate the saliency map. To
model the influence of attention due to faces in an image, the
resulting saliency map is combined with a face saliency map,
calculated by using a modified census transform (MCT).
The authors evaluated their model on a face images dataset
from Ref. 85 and an image dataset from Ref. 65. The
results show that for both datasets, their saliency model
predicts eye fixations significantly better than the models in
Refs. 35, 44, 48, 65.

Other Models

Rao et al.”? introduced a model that uses a top-down search

template matching approach to locate the salient regions. In
their model, first, a saliency map is obtained from the input
image by employing oriented spatiochromatic filters. After
that, a template of the desired target object is moved across
different regions of the saliency map, and the similarity
between a selected region and the target is measured by
calculating their Euclidean distance. Finally, the N most
similar regions are represented as salient.

Kootstra et al.3¢ proposed a model that calculates
saliency on the basis of symmetry. In their model, three
local symmetry operators, namely, isotropic symmetry,’
radial symmetry®” and color symmetry,® are defined. These
three symmetry features are calculated at five image scales.
The resulting saliency map is obtained by normalizing and
combining the feature maps. For the evaluation of this
model, the authors used a dataset containing 99 images
belonging to different categories such as natural symmetries,
animals, street scenes, buildings and natural environments.
The authors showed that their symmetry model outperforms
the saliency model in Ref. 44 in predicting the eye fixations.

Garcia-Diaz et al.”> introduced a saliency model based
on adaptive whitening of color image and feature maps. First,
the input image is transformed from (r, g, b) to (z1, 22, 23),
a whitened representation. The whitening is done through
decorrelation by employing principal component analysis.
The feature maps are calculated for (z1, z2, z3) using a bank
of log-Gabor filters for orientations (0°, 45°, 90°, 135°), and
seven scales are calculated for z; and only five for z; and z3.
Next, for each chromatic component the feature maps are
whitened and contrast normalization is performed in several
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steps in a hierarchical manner. Saliency is computed as the
square of the vector norm in the resulting representation.
The authors showed that their model outperforms the
state-of-the-art models in predicting fixations. These results
were confirmed in an independent study by Borji et al.,%’
which concluded that the saliency model by Garcia-Diaz
et al.” is the top performing model for natural images.

In this section, we briefly reviewed 34 different saliency
algorithms in eight different categories. From the classifi-
cation of saliency models we can see the following. First,
a vast majority of the algorithms fall under the category
of cognitive models. Second, some saliency models (such
as Refs. 24, 32, 53) belong to several different categories.
This can be explained by the fact that for calculating the
initial saliency map, the saliency algorithms (e.g., Refs. 11,
35, 39, 47, 53) use similar features to that of the classic
saliency model by Itti et al.** This initial saliency map is
then modified by the various saliency models based on
different criteria. For instance, in the saliency model by
Torralba?’ (as shown in Fig. 2), the image locations of
a saliency map (obtained by using traditional methods)
are attenuated or amplified based on contextual priors to
generate a new saliency map. This means that different
saliency models share similar underlying concepts, which
makes it difficult to classify a saliency model in one strict
category. Third, while the first saliency models (e.g., Ref. 44)
were bottom-up, the later models (e.g., Refs. 32, 36) propose
adding top-down features such as faces, text and cars to
the bottom-up model. Adding top-down features improves
the performance of the bottom-up saliency models. As the
performance is evaluated by how well the saliency algorithms
predict where we look in real-world images, and real-world
images typically comprise objects such as people, text, cars
and mobile phones, adding these top-down features is seen
as a natural step towards better prediction. However, this
approach makes it challenging to analyze the performance of
saliency algorithms from a purely bottom-up perspective.

EVALUATION OF SALIENCY MODELS

Image Database

For the analysis, we used the eye tracking database from
the study by Judd et al.>* As shown in Figure 6, the dataset
consists of 1003 images selected randomly from different
categories and different geographical locations. In the eye
tracking experiment,®? these images were shown to fifteen
different users under free viewing conditions for a period of
3 s each. In the dataset, a majority of the images are 1024
pixels in width and 768 pixels in height. These landscape
images were specifically used in the analysis.

Evaluation Metrics
In the literature, various metrics have been employed
to measure the performance of saliency models. The
performance is measured in terms of how well a bottom-up
saliency model can predict where people look in images
under free viewing conditions.

In this section, these metrics are briefly discussed.
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Figure 6. Landscape images from the database by Judd et al. 32

Pearson Correlation Coefficient
The Pearson correlation coefficient®”>? is a measure of linear
dependence between two variables. It is calculated as

- YL Xi—X)(Yi—Y) ’
\/ > (X —502\/ YR (Y —1)?

where X and Y are the two variables, X and Y are the sample
means, and r is the correlation coefficient. r returns a value in
therange [—1, 1]. If r is 1 then it suggests a perfect prediction
of the fixated regions by the saliency model, while a value of
—1 implies that the predicted regions are the exact opposite
of the fixations. A value of 0 suggests that there is no linear
relation between the salient image regions and the fixated
regions.

Eightieth Percentile Measure

To calculate the 80th percentile measure the saliency maps
are thresholded to the top 20% of the salient image
locations.8%-°! After that, the percentage of fixations falling
inside these locations is calculated. In this way, this measure
calculates the true positive rate of a classifier that uses the
80th percentile as the threshold for the saliency values.3’ This
evaluation metric gives a scalar value in the range [0, 100].

Kullback-Leibler Divergence (Dkr)

Dg183%%? is a measure of the logarithmic distance between
two probability distributions. For evaluating saliency models,
it is calculated as

_ 1o (PO
Di(P || Q) = ZjP(z) In (Q(i)> ,

where P is the fixations probability distribution, i.e., the

fixations map normalized in the interval [0, 1], and Q refers
to the normalized saliency map. As Dgy, is not a symmetric
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measure, ie., Dxr # Dgr, a symmetric version of Dk is
calculated as

KL=Dg1(P || Q +Dgr(Q |l P).

A KL value of zero indicates that the saliency model is perfect
in predicting fixations. The KL metric does not have a well
defined upper bound, thus its interval is [0, 00).

Earth Mover’s Distance (EMD)

The earth mover’s distance is a measure of similarity
between two probability distributions or histograms.®* In the
literature, it is often described as comparing two piles of
earth mass, and the minimum cost associated with turning
one pile into the other pile, where cost is defined as the
product of the amount of earth mass moved and the distance
by which it is moved. According to Rubner et al.,** the
earth mover’s distance for two normalized histograms, P
and Q, is calculated as EMD(P, Q) = min Zz’if}j’], under
the following constraints: ), fij < Pi, 3, fij < Qj» X_; i fij =
min(}_; Pi, >, Q)), fij = 0, where fjj denotes the amount
of flow from bin i to j of the histograms, and dj; is the
ground distance between the two bins. An EMD value of
zero indicates that the two distributions are the same, while
a larger EMD value suggests that the two are quite dissimilar.

Normalized Scan-Path Saliency (NSS)

The NSS8%-% is calculated by normalizing the saliency maps
such that the maps have zero mean and unit standard
deviation. From the resulting saliency maps, the mean of the
saliency values for the fixated regions is used as a measure
to judge the performance of the model. An NSS value >1
suggests that the correspondence between the saliency map
and the fixations map is significantly better for the fixated
locations than the non-fixated locations. If the NSS is less
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than or equal to zero then it implies that the prediction by
the saliency model is not better than chance prediction. For
detailed insight into the NSS metric, see the study by Peters
etal.?®

Chance Adjusted Salience

The chance adjusted salience is calculated by the
difference between the mean saliency values of two sets of
image regions. The first set consists of parts that are fixated
by an observer and the second consists of non-fixated parts.
The non-fixated parts are selected from the fixations of
the observer for an unrelated image. If the difference value
obtained is greater than zero then it suggests that the saliency
model is better than a random classifier. The range of this
metric is governed by the interval of saliency values which
can be arbitrary.

68,80

Ratio of Medians

To calculate the ratio of medians,3%-%® two sets of saliency
values are selected. The first set consists of the saliency values
of the fixated regions and second pertains to the saliency
values of regions chosen from random points on the image.
The saliency value for a fixation point is calculated as the
maximum of the saliency values within a circular area of
diameter 5.6° with the fixation point as the center. The
saliency values for the random points are computed in
the same manner as that of the fixation points. Next, for
a given image the median of the saliency values for the
tixated regions and the median of the saliency values for the
randomly selected regions are calculated. The ratio of the two
medians is used for the evaluation of the saliency model. A
higher ratio implies that the prediction of fixations by the
saliency model is better than the prediction by chance.

String Editing Distance

To calculate the string editing distance®®7:%% for a given
image, the fixations and the saliency values are clustered
using methods such as k-means. After that, regions of interest
(ROISs) are defined around these clusters which are labeled
by alphabetic characters. Next, the ROIs are ordered based
on the values assigned by the saliency model or the time
sequence in which the ROIs were fixated on by the observer.
The character strings obtained after ordering the ROIs for the
saliency model and the fixations are then compared by using
a string editing similarity index S;, which is defined by the
cost associated with performing operations such as deletion,
insertion and substitution on the strings. An S; value of
zero implies that the saliency model perfectly predicts the
fixated regions and their temporal sequence. For a detailed
description of the string editing distance, see the study by
Privitera & Stark.”®

Area Under the Receiver-Operating-Characteristic Curve
(AUC)

The AUC***° is commonly employed in vision studies to
evaluate the correspondence between fixated regions and
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salient image regions predicted by visual saliency models.
For this, the fixations pertaining to a given image are
averaged into a single two-dimensional map which is then
convolved with a two-dimensional Gaussian filter. The
resultant fixations map is then thresholded to yield a binary
map with two classes—the positive class consisting of fixated
regions and the negative class consisting of non-fixated
regions. Next, from the two-dimensional saliency map,
we obtain the saliency values associated with the positive
and negative classes. Using the saliency values, a receiver-
operating-characteristic (ROC) curve is drawn which plots
the true positive rate against the false positive rate. The area
under the ROC curve gives us a measure of the performance
of the classifier. The AUC gives a scalar value in the interval
[0, 1]. If the AUC s 1 then it indicates that the saliency model
is perfect in predicting fixations. An AUC of 0.5 implies that
the performance of the saliency model is not better than
a random classifier or by chance prediction. For a detailed
description of the AUC, see the study by Fawcett.”

Shuffled AUC

The shuffled AUC metric was proposed by Tatler et al.4> and
later used by Zhang et al.*® to mitigate the effect of center bias
in fixations. To calculate the shuffled AUC metric for a given
image and one observer, the locations fixated by the observer
are associated with the positive class in a manner similar to
the regular AUC; however, the locations for the negative class
are selected randomly from the fixated locations of other
unrelated images, such that they do not coincide with the
locations from the positive class.

Robust AUC

The robust AUC metric was proposed in a recent study by
Alsam & Sharma.'® This metric is derived from statistical
analysis of eye fixation data with the aim of separating
content driven fixations from content independent fixations
(mainly defined as center bias). In order to calculate the
robust metric, the negative class locations (non-fixated
locations) are selected from the first eigenvector of the
correlation matrix obtained from the fixations data of
all images and observers. The authors state that the
first principal component provides a reasonable basis for
representing the content independent regions likely to be
fixated upon; thus, choosing a non-fixated region from
within it would indeed counteract the influence of center
bias.

Criteria for Selecting an Evaluation Metric

The factors influencing the performance of saliency models
include range, sample size, size of Gaussian, center bias and
edge effect.

Range

As outlined in the study by Wilming et al,% the range of a
metric should be interpretable to make an objective judgment
on its performance. It is evident from Table II that metrics
such as the Pearson correlation coefficient, 80th percentile
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Table II. Evaluation metrics and their attributes.

Metric Robustness to center ~ Sample size  Range
bias and edge effect
Pearson correlation coefficient ~ No Large [-1,1]
Eightieth percentile measure No Large [0, 100]
Kullback—Leibler divergence No Large Arbitrary
Earth mover’s distance No Large Arbitrary
Normalized scan-path saliency ~ No Large Arbitrary
Chance adjusted salience Yes Small Arbitrary
Ratio of medians No Large Arbitrary
String editing distance No Large Arbitrary
Area under the ROC curve (AUC)  No Small [0, 1]
Shuffled AUC Yes Small [0, 11
Robust AUC Yes Small [0,1]

measure, area under the ROC curve (AUC), shuffled AUC
and robust AUC have a fixed range, which makes them
more intuitive than the metrics that have an arbitrary scale
such as Kullback-Leibler divergence, earth mover’s distance,
normalized scan-path saliency, chance adjusted salience,
ratio of medians and string editing distance.

Sample Size

Sample size refers to the number oflocations used to compare
the correspondence between the fixated locations on a given
image and the salient image locations for the associated
image. While evaluation metrics such as Kullback-Leibler
divergence, earth mover’s distance, normalized scan-path
saliency, Pearson correlation coefficient and 80th percentile
measure use a large number of locations to calculate
probability distributions, metrics such as chance adjusted
salience, AUC, shuffled AUC and robust AUC need few
locations.

Size of Gaussian

Studies*>*8 have shown that the performance of saliency
algorithms is influenced by the size of the Gaussian used
for smoothing the saliency maps. We know that different
saliency models use different image scales to calculate salient
image regions, resulting in noticeable disparities among
saliency maps associated with a given image; this can be
observed in Figure 7. To this end, researchers have suggested
optimizing parameters such as o (i.e., the standard deviation
of the Gaussian distribution) and the size of the Gaussian
for each saliency algorithm. For the analysis discussed in
the fourth section, the size of the Gaussian for each saliency
model was selected by optimizing for 50 test images (from the
dataset by Judd et al.32) and using the ordinary AUC metric.

Center Bias

While viewing images, observers tend to look at the center
regions more than peripheral regions. As a result of this,
a majority of fixations fall at the image center. This effect
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is known as center bias and is well documented in vision
studies.*!*> The two main reasons for this are as follows.
First, the tendency of photographers to place the objects
at the center of the image. Second, the viewing strategy
employed by observers, i.e., to look at center locations more
in order to acquire the most information about a scene.!%!
The presence of center bias in fixations makes it difficult to
analyze the correspondence between the fixated regions and
the salient image regions. This can be explained by the fact in
a study by Judd et al.,*? it was observed that a dummy clas-
sifier consisting of a two-dimensional Gaussian shape drawn
at the center of the image outperformed all saliency models.

Edge effect

The center bias is implicitly linked with the so-called edge
effect discussed by Zhang et al.*® The edge effect® is defined
as adding a varied image border of zeros to a saliency map, as
a result of which it can yield different values from evaluation
metrics. For example, in the study by Zhang et al.,*® it was
observed that a dummy saliency map consisting of all ones
with a four-pixel image border consisting of zeros gave an
AUC value of 0.62. Meanwhile, an AUC of 0.73 was obtained
with a dummy saliency map using an eight-pixel border.

In the presence of center bias and the edge effect, a fair
comparison of the performance of the saliency algorithms
becomes a challenging task. To a certain extent this can be
addressed by the following methods. First, weighting the
salient regions at the center more than the peripheral regions,
as done in the saliency models by Harel et al.>> and Erdem
and Erdem.?* Second, explicitly adding a center Gaussian
blob to the saliency map, as in the model by Judd et al.*
Third, carefully selecting images with least center bias for
the purpose of evaluation, as in the study by Borji et al.%’
However, these methods do not provide an optimal solution
to this problem. As a result, the development of evaluation
metrics that can compensate for the influences of center
bias and the edge effect is seen as the next step towards
addressing this issue. Recently, it has been observed that
the influence of the center bias and the edge effect can be
alleviated by using metrics such as chance adjusted salience,
shuffled AUC by Tatler et al.** and robust AUC by Alsam &
Sharma.!® However, the range of chance adjusted salience is
arbitrary, while the shuffled and robust AUC metrics have a
more intuitive scale in the range [0, 1], which makes them
quite suitable for evaluating the performance of saliency
algorithms.

ANALYSIS

For analysis, ten latest state-of-the-art saliency models,
namely, AIM by Bruce & Tsotsos,®> AWS by Garcia-Diaz
etal.,”® Erdem by Erdem & Erdem,%* Hou by Hou & Zhang,69
Spec by Schauerte & Stiefelhagen,”> GBA by Alsam et al.,>>->’
GBVS by Harel et al.,> Itti by Itti et al.,** Judd by Judd et al.>?
and LG by Borji & Itti*® were used. In line with the study by
Borji et al.,%? two models were selected to provide a baseline
for the evaluation. Gauss is defined as a two-dimensional
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M

Figure 7. A test image, the associated fixations map (obtained from the fixations of 15 different observers) and the saliency maps from the different

saliency algorithms used in the article: (a] image from database, 32 (b) fixations map, ()] AWS, (d) AIM, [e) Hou, (f] GBVS, (g] Iti, (h) Judd, (i) GBA,

(il LG, (k] Spec, [l Erdem.

Gaussian blob at the center of the image. Different radii of
the Gaussian blob are tested, and the radius that corresponds
best with human eye fixations is selected.

This model corresponds well with the fixations falling
at the image center. The IO model is based on the fact
that an observer’s fixations can be predicted best by the
fixations of other observers viewing the same image. In this
model, the map for an observer is calculated as follows. First,
the fixations corresponding to a given image from all the
observers except the one under consideration are averaged
into a single two-dimensional map. Having done that, the
fixations are spread by smoothing the map using a Gaussian
filter. The IO model gives us an upper bound on the level
of correspondence that is expected between the saliency
models and the fixations. For comparing the performance
of the different saliency algorithms, 10 evaluation metrics,
namely, the Pearson correlation coefficient, normalized scan-
path saliency, Kullback-Leibler divergence, earth mover’s
distance, 80th percentile measure, chance adjusted salience,

J. Imaging Sci. Technol.

050501-12

ratio of medians, area under the ROC curve (AUC), shuffled
AUC and robust AUC, were selected.

Metrics such as the Pearson correlation coefficient, earth
mover’s distance, 80th percentile measure and Kullback-
Leibler divergence typically use the average of the probability
distributions of fixations across different observers, while
metrics such as the area under the ROC curve (AUC),
shuffled AUC, robust AUC, ratio of medians and chance
adjusted salience use the fixated and non-fixated locations
for each observer—this means that the IO model can only be
used for the latter metrics.

As the string editing distance metric is used to compare
the order of fixations in time, it was not used for this
examination. In the analysis, 463 landscape images of size
1024 by 768 pixels were used from the study by Judd et al.*?
Fig. 7 shows a test image, the associated fixations map
(obtained from the fixations of 15 different observers) and
the saliency maps from the different saliency algorithms.
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Figure 8. Ranking of visual saliency models using the Pearson correlation coefficient (correlation), normalized scan-path saliency (NSS), ordinary AUC,
Kullback-Leibler divergence (Kldistance), earth mover's distance, and 80th percentile measure. The results are obtained from the fixations data of 463

landscape images and 15 observers.

The main objective of this analysis is to highlight how the
ranking of saliency models is influenced by using different
evaluation metrics.

Results & Discussion

Comparison of Saliency Models With Human Eye Fixations
Figure 8(a) shows the ranking of saliency models obtained by
using the Pearson correlation coefficient.

The vertical axis shows the average correlation coeffi-
cient for 463 test images along with the error bars which
depict one standard deviation from the mean. We observe
that Hou, AIM, LG, Spec, Erdem, AWS and GBA perform
worse than the Gauss model, with GBVS and Judd being the
two best models. This finding can be explained by the fact
that the center regions are weighted more in the GBVS and
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Judd models. As a dummy classifier such as the Gauss model
outperforms a majority of the saliency models used in this
article, this indicates that the Pearson correlation coefficient
metric is not able to counter the effects of fixations associated
with center bias.

Next, the saliency algorithms are compared by using the
normalized scan-path saliency metric. In line with the other
metrics, the error bars represent one standard deviation from
the mean. From the results in Fig. 8(b), it can be observed
that the ranking obtained is similar to that of the correlation
metric, with Gauss outperforming a majority of the saliency
algorithms (including GBVS) and Judd being the best. A
similar trend is observed when the evaluation is done by
using the ordinary AUC metric (see Fig. 8(c)); in addition, it
can be noted that all saliency models perform above chance.
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Figure 9. Ranking of visual saliency models using the ratio of medians, chance adjusted salience, shuffled AUC and robust AUC metrics. The results are
obtained from the fixations data of 463 landscape images and 15 observers.

In Fig. 8(d), we can see the ranking obtained by using the
Kullback-Leibler divergence metric. In this metric, a higher
value indicates greater differences between the saliency maps
and the fixations maps. We note that the correspondence
between the saliency and fixations maps is best for the GBVS
algorithm, and is closely followed by the Judd model. In
addition, we observe that the Hou model performs the worst
and again the Gauss model performs better than a majority
of the saliency models.

Next, the different algorithms are compared by using
the earth mover’s distance metric. In this case (as shown in
Fig. 8(e)), we observe that the Gauss model corresponds best
with the fixations maps, followed by the GBVS model. On the
other hand, the AIM model performs the worst. These results
suggest that the earth mover’s distance metric is not able to
reduce the effects associated with center bias.

Next, the saliency algorithms are compared by using the
80th percentile measure (shown in Fig. 8(f)). We can see that
using this metric significantly improves the ranking of the
AIM model. In this case, we observe that the Hou model is
ranked the lowest. We can also note that the Gauss model
performs poorly, but the Judd model ranks as the second best
model. From the saliency maps in Fig. 7, we observe that
the maps from algorithms such as AIM and Judd that are
blurred more rank higher. This indicates that in its current
form the 80th percentile measure metric cannot be used for
the evaluation of saliency algorithms.
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Figure 9(a) depicts the performance of the saliency
models using the ratio of medians metric. This metric
changes the ranking of some models significantly. For
instance, it changes the ranking of the AIM model to the
lowest and the AWS model to second best. However, again
the Gauss model is the best (outranking all other saliency
models), indicating the influence of center bias.

Fig. 9(b) shows the ranking of the saliency models
obtained by using the chance adjusted salience. It is evident
that using chance adjusted salience changes the ranking of
the saliency models significantly. The Gauss model changes
from being one of the best to the worst. In addition, the
models with center bias (such as Judd and GBVS) are ranked
low. In this case, models such as Itti, GBA and AWS perform
the best. The results suggest that this metric can be used to
alleviate the influences of the center bias and the edge effect.
Fig. 9(b) also shows that the (one) standard deviations of the
mean values exceed the mean values themselves—this along
with the fact that the range of the chance adjusted salience
metric is arbitrary makes it unsuitable for the evaluation of
saliency models.

Finally, we compare the ranking of the saliency models
using the shuffled AUC metric as depicted in Fig. 9(c) and
the robust AUC as shown in Fig. 9(d). We note that in both
of these metrics the Gauss model is ranked the worst and the
AWS model is ranked the best. In the case of the robust AUC
metric, the AUC value for the Gauss model is lower than that
obtained by using the shuffled AUC metric. This suggests

Sept.-Oct. 2015



Sharma: Evaluating visual saliency algorithms: past, present and future

Table I1l. The AUC metric matrix.

AIM  Erdem GBA Hou GBVS Itti Judd LG Spec AWS

AM 10 10 09 09 08 09 08 09 09 09
frdem 09 10 09 09 08 09 08 09 09 09
GBA 09 09 10 09 08 09 08 09 09 09
How 08 09 09 10 08 09 08 09 10 09
GBvs 08 08 08 08 10 09 09 08 08 08
Iti 09 09 09 09 08 10 08 09 09 09
Jul 08 08 08 08 09 09 10 08 08 08
L6 09 09 09 09 08 09 08 10 09 09
Spec 09 09 09 10 08 09 08 09 1.0 09
Aws 09 09 09 09 08 09 08 09 09 10

that the robust AUC metric is better at countering the effects
associated with the center bias. Furthermore, we also note
that the correspondence of the IO model is lower in the case
of the shuffled AUC and robust AUC metrics as compared
with the ratio of medians and the chance adjusted salience
metrics. This indicates that the saliency algorithms are not far
from human performance represented by the IO model. The
results show that a majority of the state-of-the-art saliency
models such as Spec, GBA, LG, Erdem, AIM and AWS are
quite close to each other in terms of their performance
(in both the shuffled AUC and robust AUC metrics).
This raises the question of whether the different saliency
algorithms are similar to one another.

Inter-Comparison of Different Saliency Models

In order to measure the similarity of the different saliency
models to each other, the models were compared using the
ordinary AUC metric for 463 landscape images (the same as
before). In Table III, the first row and first column represent
the different saliency models and the rest of the rows and
columns show their associated AUC values. For instance,
the diagonal elements of the table show correspondence of
a saliency model with itself. Based on the results, we can see
that the maps generated by different saliency algorithms are
quite similar to one another.

CONCLUSION

In this article, the state of the art of saliency algorithms for
still images is discussed. As the number of saliency models
has increased significantly in the past two decades, we are
faced with the challenge of finding a metric that can be used
to objectively compare the performance of different saliency
algorithms. To understand this, first, we study the important
factors that influence the comparison of saliency algorithms
with human eye fixation data. From the discussion in the
section on criteria for selecting an evaluation metric, we
note that the center bias and the edge effect are the two
main factors. Next, the performance of ten different saliency
algorithms is analyzed by using ten different metrics. The
results suggest that the evaluation metrics such as the
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shuffled AUC proposed by Tatler et al.** and the robust AUC
by Alsam & Sharma!® are better suited to mitigating the
influences of the center bias and the edge effect. The shuffled
and robust AUC metrics can be calculated for human eye
fixations associated with static images—the aim is to extend
this analysis to videos in the future.

Based on the results obtained from the shuffled and
robust AUC metrics, we note the following. First, the saliency
model by Garcia-Diaz et al.”> outperforms all the other
saliency algorithms discussed in this article. Second, we
observe that the state-of-the-art saliency models (such as
those in Refs. 24, 53, 57, 65, 72) are statistically close to
each other in their correspondence with human eye fixations.
This is further supported by the results in the section
on inter-comparison of different saliency models, which
indicate that the saliency maps from different models are
quite similar to each other. Third, the results suggest that the
saliency models are not far from achieving the upper limit
of performance—represented by the inter-observer model.
This indicates that the saliency algorithms can account well
for the bottom-up factors associated with visual attention;
however, further studies are needed to study and develop
models that can account for individual differences between
different observers.

Typically, visual saliency algorithms are evaluated by
comparing the saliency maps with fixations maps—which
are obtained by showing an image to an observer for a fixed
duration (usually 3 s2). The saliency map for a real-world
scene comprises a number of salient locations; this number
exceeds the number of fixations in nearly all cases. In
other words, the saliency maps have more basis vectors
than human fixations data from a typical eye tracking
experiment.!?%:192 This can be addressed by showing the
images to the observers for longer durations of time and
increasing the number of observers.

Although it is well known that visual attention is a
combination of different mechanisms including top-down,
bottom-up and spatial bias (towards human faces and body
parts), recent attempts in Refs. 42, 100 at separating the
fixations data into content driven and content independent
fixations is seen as the next step towards improving the
robustness of evaluation metrics.
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