Enforcing Privacy Policies with Meta-Code

Havard D. Johansen

UIT The Arctic Univ. of Norway
haavardj@cs.uit.no

Fred B. Schneider

Cornell University
fbs@cs.cornell.edu

Abstract

This paper proposes a mechanism for expressing and enforc-
ing security policies for shared data. Security policies are ex-
pressed as stateful meta-code operations; meta-code can ex-
press a broad class of policies, including access-based poli-
cies, use-based policies, obligations, and sticky policies with
declassification. The meta-code is interposed in the filesys-
tem access path to ensure policy compliance. The general-
ity and feasibility of our approach is demonstrated using a
sports analytics prototype system.

1. Introduction

Existing mechanisms lack effective means to express and
enforce security and privacy policies on information after it
has been shared. To provide that means, a mechanism must
(1) support policies that can change depending on how data
are manipulated, (2) apply policies to all copies of data and
to any derived data, and (3) enforce policies wherever and
whenever the original or derived data are used.

This paper explores how meta-code operations can ex-
press and enforce certain types of privacy policies even after
data have been shared. Each data file is associated with some
meta-code. The meta-code determines whether an access is
permitted (as a function of, among other, the local meta-code
state). Meta-code can also implement logging, provenance
tracking, or other obligations. Meta-code logically resides in
the filesystem access path; it is executed by the operating
system to enforce the privacy policy.
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By default, the same meta-code is automatically propa-
gated to any derived data. Meta-code can override this de-
fault by explicitly specifying new meta-code that should be
associated with derived data. For example, data recording an
athlete’s heart rate might be readable only by the data sub-
ject, but a coach might be allowed to view a fitness evalua-
tion derived from that heart rate data.

Obviously enforcing privacy policies cannot be solved
by technical means alone. Our work focuses on preventing
accidental policy violations by well-intentioned users and on
creating an audit trail that can establish accountability for
policy violations.

2. Use Case: Elite Soccer Development

Elite soccer is a competitive domain in which technology has
the potential to deliver a competitive edge [7]. Modern soc-
cer clubs have systems that monitor players and collect data
during training, during games, and even outside the sports
arena. Sports scientists analyze data to personalize training,
to prevent injuries, and to provide a foundation for evidence-
based decisions about team performance improvements.

Collected data are stored in credential-protected data
stores. Data can be collected either explicitly or implicitly.
Explicit data are provided directly by individual athletes
(e.g., entered into an app on a mobile device) and might in-
clude information on perceived fatigue, sleep quality, sleep
duration, mood, or muscle soreness. Implicit data are col-
lected automatically from sensors (e.g., Fitbits, wearable
sensor arrays, or video cameras) and might include posi-
tional data, body direction, or heart rate while exercising. In
prior work, we developed and deployed prototype systems
for elite Norwegian soccer clubs [17]. This work includes
Muithu, a notational analytics system that allows coaches to
make notations and provide video feedback in real-time, and
Bagadus, a system that integrates radio sensor positioning,
soccer analytics annotations, and a video camera array with
real-time processing



There are security and privacy constraints related to ath-
lete and team data. In order to comply with athletes’ privacy
preferences and with relevant legal frameworks, data must be
handled with care by the principals that access and manipu-
late it. These principals include athletes, academy players,
sports scientists, physical trainers, medical staff, psychol-
ogists, nutritional scientists, main coaches, administrative
staff, journalists, and supporters. Mechanisms must there-
fore enforce security and privacy policies in a heterogeneous
and diverse setting.

To simplify this example use case, we associate users
with roles; each role has privileges defined by the data
owner.

Athlete. Athletes are owners of any data collected about
them (whether explicit and implicit).

Medic. Medics are team employees who have access to cer-
tain raw and derived data about athletes. Medics provide
health care and recommendations to athletes based on
that data.

Coach. Coaches have access to recommendations from
medics and to certain information inferred from raw data.
Coaches make decisions about training schedules and
game rosters on the basis of this derived data.

Public. The public includes team fans and media who ap-
preciate statistics and trivia about their favorite team.

By default, anyone other than the data owner should be
denied access to collected data; the owner must explicitly
grant permissions to a role before users in that role can view
the data.

The following is a simple example privacy policy govern-
ing how data-store credentials and the information derived
from them may be used. Credentials retain strict access per-
missions.

PoLiCcY RULE 1. Only the data owner is authorized to view
credentials for a private store containing raw sensor data
(e.g., an OAuth2 token for a Fitbit account).

Although a strict policy is appropriate for credentials,
data retrieved with these credentials might have more re-
laxed permissions. For example, a medic might need to ac-
cess recent sensor data to diagnose an illness or injury.

PoLICcY RULE 2. Medics are authorized to view raw fitness
data collected within the last 24 hours.

Coaches also need information about athlete fitness in
order to decide about individual training regimes and about
the team roster for upcoming games. Coaches do not need
access to detailed raw data, although they do need to make
decisions on the basis of the most up-to-date data available.

PoLiCcY RULE 3. Coaches are authorized to view smoothed
athlete data. For example, a coach may see a readiness-to-

train score calculated from medical recommendations, Fitbit
sleep data, and perceived training load.

Principals outside the team staff (e.g., fans and sports
reporters) are interested in information and trivia about
athletes—for example, how far each athlete ran during a
particular game. However, raw data (e.g., precise GPS loca-
tions) and information derived from certain sensitive values
(e.g., heart rate or sleep patterns) should not be available to
the public.

PoLICY RULE 4. De-sensitized, smoothed statistics derived
from athlete data may be released to the public.

3. The LoNet Architecture

LoNet is a runtime system that augments data with manda-
tory and discretionary security policies. LoNet runs in-
side a machine virtualization container (e.g., VirtualBox!
or Docker?) and implements a reference monitor that exe-
cutes small code snippets called meta-code on data accesses.
LoNet is compatible with programs written in any program-
ming language.

Our current LoNet prototype adopts the file system as its
primary interface.> LoNet stores all data in files, and files
are organized in hierarchical directories. Each file can be
associated with meta-code that implements a data policy.
For example, meta-code might check that a principal is a
medic before permitting access to raw heart-rate data, or
it might create a log entry each time a coach accesses a
smoothed data file. Meta-code can also contain state, so
LoNet supports policies like “medics can access fitness data
only within 24 hours of data capture.” Policies are defined
at the granularity of full files in order to limit the burden
imposed when expressing a policy.

Meta-code for a file can be defined by the file’s owner
at the time the file is created. Meta-code can also be added
subsequently, by a data processor. In addition, any newly
created file inherits meta-code from files on which the con-
tent of the new file depends. Such inherited meta-code need
not be the same as the meta-code associated with the orig-
inal files; instead inherited meta-code might be a new code
snippet specified by the original meta-code of the files read.
Inherited meta-code is specified as a function of the type of
program used to create the derived data file. For example,
meta-code associated with a raw data file might only allow
the data owner to read that file; meta-code for a file con-
taining readiness-to-train scores (derived from the raw data)
could additionally allow reads by coaches.*

'https://wuw.virtualbox.org/

2http://www.docker.com/

3 Although we do not directly support databases or structured files, fine-
grained policies could be implemented by employing an appropriate file-
based data model for databases or by otherwise subdividing data into many
small files.

4By default, derived files inherit the meta-code associated with the original
files; in this case, meta-code inheritance reduces to standard taint tracking.



Using LoNet, a user can share a file (and the associated
meta-code) with other users. LoNet will permit the receiver
to view the file only if the receiver acts in an authorized role.
A receiver can also execute programs that read a received
file. A program is authorized to read a file if either (1) it is
invoked by a user who is authorized to read that file or (2)
the program is of a type that is authorized to read that file.
If meta-code specifies inherited meta-code to be associated
with the output of some program type, then programs of that
type are authorized to read the file. For example, an athlete
can share Fitbit credentials (associated with meta-code that
implements the policy described in Section 2) with a coach.
LoNet will not permit the coach to view the credentials, but
the coach may run a program of type project that uses the
credentials to download data from the athlete’s Fitbit data
store. The inherited meta-code means LoNet will not permit
the coach to view the downloaded data file, but if the coach
runs a smoothing function over the downloaded data, the
resulting (smoothed) data file may be viewed.

We have implemented a prototype of LoNet using the
FUSE user-level file system library, available in Linux 2.6
and Linux 3 kernels, in combination with VirtualBox con-
tainers. The LoNet daemon process runs as a privileged sys-
tem user inside the container; it has full access to a hid-
den source file-system directory. The source directory is
exported to a known mount point accessible to system pro-
cesses. The authorizations of those system processes are
controlled by LoNet. The LoNet daemon intercepts all file
system calls to the visible mount point and invokes meta-
code execution and propagation routines to enforce and
propagate the security policies attached to files. Users act-
ing in roles interact with protected objects within the LoNet
sandbox through traditional file system abstraction and tools.

3.1 Meta-code

Each data file is associated with a policy file—an auxiliary
file that is normally hidden from users. A policy file contains
(1) alist of roles permitted to access the associated data file,
(2) a mapping from hooks to code snippets that implement
the meta-code that should be run when various events occur,
like file access, and (3) a mapping from transition types—
classes of programs—to policy files specifying which policy
file to associate with a derived file. If a derived file is cre-
ated by a program that does not match any of the specified
transition types, then the derived file inherits the policy file
associated with the input file. Figure 1 shows example policy
files implementing the policy specified in Section 2. Figure 2
presents the meta-code referenced in Figure 1b.

The descendants of the policy file associated with a raw
data file induce a policy automaton [2, 13] that specifies the
meta-code that should be associated with any derived data
file. Figure 3 shows the policy automaton for the policy from
Section 2. Each box corresponds to a policy file from Fig-
ure 1 and lists the roles authorized to view a file associated
with that policy; the box labeled “start” corresponds to the

file /pol/priv. Arrows indicate which policy files is asso-
ciated with derived files generated by programs of that tran-
sition type.

Data owners and data processors both may associate
meta-code with files using the extended file attributes feature
available in modern Linux kernels and filesystems. To asso-
ciate meta-code with a file, a principal uses the setfattr
command. For example, if credentials is the file contain-
ing the Fitbit OAuth2 token and /pol/priv is the policy
file given in Figure 1a, then an athlete can express the policy
from Section 2 with the command

#> setfattr -n policy -v /pol/priv credentials

The credential file will be associated with the policy file
/pol/priv which specifies that only a LoNet container run
by the credential owner may view that file. Files derived
from the credential file inherit meta-code determined by the
type of program that created them. For example, if a medic
(who cannot view the credential file) runs a program of
type project that uses the credentials file to download raw
data from the Fitbit data store, the downloaded data file
will be associated with the policy file /pol/raw defined in
Figure 1b. The policy on the downloaded data enables the
medic to initially read the output data. However, this policy
specifies that the /code/24hr meta-code should run on each
file access. The meta-code, shown in Figure 2, compares
the file creation time with the current time and returns the
EACCESS error if the difference is more than 24 hours.

3.2 Users

Meta-code can depend on which user triggered the event or
on which role(s) are associated with that user. FUSE there-
fore needs to inform the meta-code about which principal is
accessing the file system, and in which role. Unfortunately,
the FUSE interface only provides Linux process-id, user-id,
and group-id of the calling process. To circumvent this prob-
lem, LoNet requires that user certificates are passed as part
of the file name itself, as the first component of a Linux path
name.

3.3 Program Transition Types

Policy file transitions are specified in terms of classes of pro-
grams called transition types, or ttypes. A trusted authority
defines ttypes and specifies a mapping between programs
and ttypes.

In LoNet, a ttype is defined by a pair comprising the
hash of a program binary and an expression that restricts
arguments of that program. For instance, a ttype might re-
quire that the first positional argument in a file must match
some specified hash value. Restrictions on arguments enable
LoNet to map programs expressed in scripting languages,
like Python or R, based on both the binary and the script
file being loaded. These ttype definitions are specified in a
configuration file, as illustrated in Figure 4.



[permissions] [permissions] [permissions] [permissions] [permissions]
roles = {} roles = {medic} roles = {coach} roles = {medic} roles = *
[transitions] [metacode] [transitions] [transitions]
project=/pol/raw onAccess=/code/24hr desensitize=/pol/pub smoothing=/pol/pub
[transitions]
smoothing=/pol/smoothed
desensitize=/pol/desens
(a) /pol/priv (b) /pol/raw (c) /pol/smoothed (d) /pol/desens (e) /pol/pub

Figure 1: Example policy files that express the policy defined in Section 2.

import errno, time, os
from fuse import FuseOSError

# setup by LoNET: path

if (time() - 1lstat(path).st_ctime) > 86400:
raise FuseOSError (EACCES)

Figure 2: The meta-code /code/24hr that allows file access
only within 24 hours.

start —

project

roles={medic}

smoothing

roles={coach}

desensitize

desensitize

roles={medic

smoothing

roles=*

Figure 3: A graphic depiction of the policy automaton
described by the policy files in Figure 1.

Our ttype specification currently uses SHA-256 for hash-
ing executables. Attested program binaries are identified by
their SHA-256 hash, and specified by the exe value in the
program’s configuration. Alternatively, a program can be
specified by a exe_path value to a trusted binary location. In
this case, LoNet computes and sets the program’s exe value
on startup.

To find the appropriate ttype of a file access, LoNet maps
the process-id to the appropriate ttype. This is done by (1)
reading and hashing the executable for process-id as pro-
vided through /proc/{pid}/exe; (2) reading and parsing
the program arguments as provided through /proc/{pid}/
cmdline; and (3) matching the hash of the executable and its
arguments to a ttype as specified in the ttype configuration
file.

[cat]
exe_path = /bin/cat
ttype = publish

[Analyze]

exe=e671...

options_match = -B -d -E -h -i -0 -00 ...
options_havearg = -m -Q -W -c

argO_type = hash

arg0 = Ox[...]17011

ttype=desensitize

[Download]

exe=e671. ..

options_match = -B -d -E -h -i -0 -00 ...
options_havearg = -m -Q -W -c

argO_type = path

arg0 = /code/download

ttype=project

Figure 4: Example ttype specification file.

LoNet maintains a cache of recently seen pids and their
ttype, which avoids some of the cost related to the mapping
of process-ids to ttype. A program can still switch between
ttypes by spawning new processes.

3.4 Sessions

In order to associate the appropriate inherited meta-code
with derived files, FUSE needs to know the set of files on
which a derived file depends. To support such policy in-
heritance while supporting automation tools and interactive
programs—like GNU Make or bash-shells—that might in-
voke multiple other sub-programs, LoNet implements ses-
sions. Each program is run in the context of a session, and
each session is associated with a principal. Sessions are used
to implement meta-code propagation; each time a program
accesses a data file, the session is tainted with the policy file
associated with that data file. The policy for an output file
is the conjunction of the policy files in the session taint. By
propagating taint exclusively within a session, LoNet limits
over-tainting.



A program initiates a new session by reading from dedi-
cated file /newsession—which returns an unique 32 B ses-
sion identifie—and setting the SESSION_ID environment
variable to the returned session identifier prior to the pro-
gram’s first file operation. Programs that do not explicitly
specify a session identifier are mapped to a default NULL
session; programs run in the context of the default NULL
session might be associated with unnecessary meta-code.

4. Evaluation

To quantify the overhead of the policy-enforcing mechanism
in LoNet, we evaluated a set of micro-benchmarks. We ran
all experiments on a Lenovo Thinkpad T430s, sporting an
Intel Core i7-3520M CPU with four cores, each running
at 2.90 GHz; 12 GB of main memory; and a 500 GB Sam-
sung 840 EVO SSD drive. This hardware is representative
of what our expected end-user would have available to them.
The machine runs 64-bit Ubuntu 13.04 and we use Ana-
conda Python 3.4 to run LoNet.

First, we measure how IO performance is affected by our
meta-code propagation and policy transition mechanisms by
measuring the time it takes a Python script to copy data be-
tween two files within the LoNet container. The script reads
and writes using 32 kB blocks; the initial files contain ran-
dom bytes. Figure 5 shows the observed overhead of LoNet
on files with and without meta-code policies for file sizes
ranging from 1kB to 64 MB. For comparison, we also run
the experiment directly on the underlying Ext4 filesystem,
and on a minimal Python-based FUSE filesystem (Python
+ FUSE), which only passes invoked operations to the un-
derlying filesystem. Each experiment is repeated 10 times;
the figure reports the mean. As shown in Figure 5, there is
significant overhead associated with LoNet. This overhead
is mostly due to overhead imposed by having a userspace
filesystem and employing an interpreted language. We hy-
pothesize that a kernel implementation of LoNet would elim-
inate much of that overhead. Also, our current implemen-
tation of LoNet executes the full policy transition mecha-
nism and policy propagation on every read. Significant per-
formance improvement would result from optimizing cases
where session taint has not changed between consecutive file
operations.

Figure 6 reports how block size affects our copy experi-
ment. We set the file size to 64 MB and vary the block size
between 64 B and 64 kB. As expected, the increase in 1O op-
erations due to a small block size adversely impacts LoNet’s
performance.

Finally, we evaluate how LoNet performs when aggregat-
ing a large number of files. For this, we implement a Python
script that consecutively reads and computes the SHA-256
hash for a given set of files. Figure 7 shows the time it take
to aggregate between 1 and 1000 files. Each test file con-
tains 10 MB of random data. The block size is set to 16 kB.
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Figure 6: Copy performance with blocksize.

As shown in Figure 7, computational intensive workloads
are less affected by the IO overhead of LoNet.

5. Related Work

Information Flow Control. First introduced by Denning [5],
Information Flow Control (IFC) concerns how information
may and may not flow through a system. These restrictions
are often specified through labeling [15], whereby data is
(logically or physically) marked with a security level that
is propagated as the data is being manipulated. IFC can be
enforced using static language-based methods, as demon-
strated by the security-typed Java derived programming lan-
guage JiF [18]. Here, programmers attach labels on variables
at the source-code level to express restriction on information
flow within the program. TaintDroid [9] takes a different ap-
proach to IFC by extending Google’s Android kernel to track
third-party binary applications dynamically at run-time by
labeling data from possible sensitive sources as tainted dur-
ing execution. Later work [1, 3] has adapted the concept of
information flow to express policies about derived values.
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Privacy Policy Enforcement. There are many existing ap-
proaches to enforcing privacy policies. Garg et al. [10] de-
scribe a method for detecting policy violations (expressed in
a first-order logic) given a set of partial audit logs. Secure
Data Capsules [14] are data objects associated with a policy
tag that defines the provenance and a usage policy. These
policy tags are cryptographically bound to the associated
data, and derived data are tagged with a derived policy tag.
Untrusted applications can operate on tagged objects only
while inside a secure execution environment that enforces
and propagates policy tags. Sen et al. [19] statically enforce
privacy policies in large codebases by analyzing data flow
graphs constructed automatically from minimally-annotated
code. Guardat [20] enforces policies about reading and writ-
ing files at the storage layer by comparing credentials against
its own meta-data for policy-protected files.

Sandboxing. Although existing sandboxing techniques are
effective in preventing leakage of sensitive data, execution
isolation alone can be too restrictive because permitted data
flow into and out of the sandbox is difficult to express. Van-
hoef et al. [22] argue that data processed in a web-browser’s
JavaScript sandbox can safely be declassified using a com-
bination of idempotent projection functions in combination
with stateful release functions, both attached to events in the
runtime. The proposed machinery has been implemented in
FlowFox as a Firefox extension that executes declassifica-
tion policies on invocation of the available JavaScript event
handlers. The declassification policies are enforced using
Secure Multi-Execution (SME) techniques [6], which can
become computationally expensive when the number of taint
labels increases.

Meta-code. Meta-code [11] extends a two decade long
foray into mobile code as a structuring mechanism in dis-
tributed systems. Our early TACOMA mobile agent sys-
tem was used for management purposes by inter-positioning
mobile agents in the access path of data [12]. Our recent

Codecaps protocol adds executable code fragments in cryp-
tographically protected capabilities to enable flexible discre-
tionary access control in cloud-like computing infrastruc-
tures [21]. And, we have already used meta-code for build-
ing a distributed storage system [16] that spans multiple,
heterogeneous clouds and involve data with confidentiality
constraints. Our meta-code programming model is concep-
tually similar to the active document properties in the Place-
less system [8] and the monitoring-oriented programming
proposed by Chen and Rosu [4]. However, LoNet takes ad-
vantage of more recent development in IFC methods and
container technologies.

6. Conclusion and Future Work

LoNet is an architecture that enables expressive data pri-
vacy policies attached to files in the form of programmable
meta-code; enforcement is achieved by intercepting file sys-
tem operations. The meta-code data policies can implement
finite-state automata that transition between states on file ac-
cess. LoNet enables data sharing and analysis while impos-
ing access control restrictions for both raw and derived data.
We demonstrate the feasibility of the approach by imple-
menting a policy motivated by data analytics used in elite
soccer development.

In order to increase the level of security, we are porting
our FUSE-based framework to a secure container system; we
are currently experimenting with Intel Software Guard Ex-
tensions (SGX) for this purpose. In addition, we would like
to enable data sharing between mutually trusting containers
by leveraging remote attestation. We are also working on a
kernel implementation for improved performance.
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