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Summary 

Important compositional elements, including residues of herbicides, were investigated 

in commercial soy varieties grown within the same geographical area. These included 

genetically modified, conventional and organic soybeans. Feed made from these 

soybeans was subsequently fed to the model organism Daphnia magna, while 

measuring the fitness performance (survival, growth and reproduction) during the full 

life cycle of the animals. The conventional and organic samples contained no residues 

of glyphosate or its degradation product AMPA, but the GM-soy contained such 

residues, averaging 9.0 mg/kg. The fitness of D. magna fed organic soybeans was 

superior to that of animals fed GM soybeans, while animals fed conventional 

soybeans was intermediate. There were large fitness differences for D. magna fed raw 

soybeans, but smaller with heat-treated soy.  In conclusion: herbicides associated with 

GM soybeans (and/or other factors associated with these crops) may compromise 

food and feed quality.  
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Introduction  

Quality of feed and food produced from agriculture is critically important for human 

and animal health, as it daily and continuously fuels and supports all processes 

essential to life in farmed animals and human consumers. Assessing the nutritional 

quality and safety of food and feedstuffs and the potential quality and safety 

differences among different food and feedstuffs is undoubtedly of very high priority, 

since every individual consumer organism, irrespective of health condition, age or 

gender,  will be exposed persistently throughout life to basic components and 

potential contaminants of food and feed. The necessity of continuous safety-

assessment is enhanced by the employment of numerous agrochemicals. As of today, 

about 85 % of the genetically modified (GM) crop plants are herbicide tolerant 

(Beckie 2014) and are designed to be sprayed with herbicides during the growth 

season of the plant. Consequently, crops such as Roundup-ready soybean are 

accumulating herbicide residues in the final product (Bøhn et al. 2014). However, the 

maximum residue levels (MRLs), at present 40 mg/kg in the US and 20 mg/kg in the 

EU, make such accumulation legally accepted. 

Long-term studies of food and feed products and agrochemicals are missing 

The persistent food/feed exposure to food/feed stuff is not followed up with sufficient 

long-term feeding studies to assess potential effects. Thus, the sparse rodent feeding 

studies of new GM crop plants typically last for 90 days or less, covering only 10-15 

% of the life span of the test-animals. Furthermore, monitoring programmes generally 

detect more than 7-8 different pesticides in surface waters and other environmental 

contexts, and multiple pesticides are routinely detected in foods and feedstuffs as well 

(EFSA 2014). In spite of that, current testing regimes for relevant agrochemicals are 

predominately based on acute exposure (short term) and specific testing of isolated 

single chemicals (Martin et al. 2003; Nørgaard and Cedergreen 2010) .   

The lack of long-term feeding studies may be explained, at least in part, by high costs.   

The costs can be dramatically cut by using model organisms with shorter life-cycles 

than rodents. Daphnia magna (waterflea) is a good alternative. It performs a full life-

cycle in 42 days. Daphnia is a sensitive sentinel species in freshwater ecosystems and 

is widely used as a model for ecotoxicological studies. Increasingly, Daphnia is used 

as a surrogate species to understand genomic responses to environmental stressors 
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that are important factors in human health and well-being (NIH 2015).  

 

Soy production is dominated by herbicide-tolerant (HT) Roundup Ready (RR) GM soy 

Globally, RR varieties of soy, maize, rapeseed and cotton are the predominant GM 

crops, and glyphosate is the most widely used herbicide globally with a production of 

620 000 tons in 2008 (Pollak 2011). Forecasts from Global Industry Analysts indicate 

that this figure will rise to 1.35 million metric tons worldwide by 2017, mainly driven 

by expansion of glyphosate-tolerant GM crop acreage. According to industry sources, 

the world soybean production in 2013 was 284 million metric tons, with the United 

States (32%), Brazil (31%), Argentina (19%), China (4%) and India (4%) as the main 

producing countries (American Soy Association 2015). In 2014, soybeans were 

planted on about 34 million hectares in the USA, with Roundup Ready GM soy 

representing 94 % of the production volume (USDA-NASS 2015). Also in the other 

leading producing countries, the RR GM soy dominates the market, accounting for 83 

and 100 % of the production in 2012, in Brazil and Argentina, respectively (American 

Soy Association 2013; USDA 2013). Globally, RR GM soybeans contributed to 79 % 

of production in 2013 (James 2013). 

 

The Daphnia magna model 

The ecology and physiology of D. magna is understood in great detail. D. magna 

shares a large number of genes and core metabolic and regulatory pathways with the 

majority of organisms in the biosphere, including humans (Colbourne et al. 2011). 

Recent advances using D. magna include detailed molecular studies of the 

responsiveness to changing environmental conditions and to the toxic effects of 

chemicals at both the genomic and transcriptomic levels (Asselman et al. 2012; Orsini 

et al. 2011).  

 

Previous studies in D. magna 

D. magna has been used as an ecotoxicological model for testing GM crop plants in 

short-term studies (Mendelson et al. 2003; Raybould and Vlachos 2011) and over the 

full life-cycle (Bøhn et al. 2008), and for testing combinatorial effects of Bt toxins 
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and predation risk (Bøhn et al. 2010). Cuhra and co-workers tested chronic effects of 

glyphosate and Roundup and showed that environmental concentrations of 0.05-0.45 

mg/l (active ingredient) cause negative effects on D. magna offspring size and 

reproduction (Cuhra et al. 2013). Chemical residues of glyphosate and its primary 

metabolite, AMPA, are documented to be present in herbicide tolerant GM soy (Duke 

et al. 2003; Bøhn et al. 2014). 

Given that (i) glyphosate and Roundup have been shown to cause negative effects in 

D. magna from environmental exposure at relatively low concentrations, i.e. below 

accepted US thresholds for surface waters (0.7 mg/l), and that (ii) glyphosate may 

accumulate in food and feed products, it is both interesting and important to test if, 

how, and at what concentration, residues of the same herbicides in plant material may 

cause negative health effects. 

To investigate this further, we analyzed soybeans from a defined geographical region 

in the state of Iowa (representing real-life samples similar to what a consumer could 

expect to find in the market), produced under different agricultural practices (i.e. GM, 

conventional and organic), to assess nutritional content, elemental characteristics, and 

pesticide residues. Subsequently we compared fitness performance (survival, growth 

and reproduction) of D. magna that were fed meals made from GM, conventional or 

organic soybeans.  

 

Materials and Methods  

Soy samples and characterization 

Three kg samples of whole soybeans were obtained from 31 sites in Iowa, USA. Seed 

type and farming history including pesticide use were noted for all samples. Samples 

were from 3 categories of agricultural practices: n=11 samples were from organic 

agriculture, n=10 samples were from “conventional agriculture”, and n=10 samples 

were from GM agriculture (all herbicide tolerant, “Roundup-Ready”, event 40-3-2). 

Organic farmers did not use herbicides or pesticides. Conventional and GM farmers 

used a range of agrochemicals in their soybean production.  

For details on use of agrochemicals by the farmers, soybean varieties grown, analyses 

of nutritional contents in the soybean and methods for analyzing chemical residues, 
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see (Bøhn et al. 2014). 

 

Feeding studies in D. magna 

The feeding experiment included 300 animals in total: 18 treatments with soy feed (15 

animals per treatment) and a control group of 30 animals. The feeding experiment 

covered different doses of feed, raw and heat-treated soy, groups fed balanced (green 

algae + soy) or unbalanced (soy only) diets. Feeding and measurements of fitness 

parameters survival and number of offspring (fecundity) was done on a daily basis for 

the 42-day experiments. At regular intervals all animals were photographed for 

subsequent measuring of carapace length. For further details on experimental 

conditions and statistical analyses, see (Cuhra et al. 2014).   

 

Table 1. Experimental treatments, number of experimental animals and feed dosage (OC = 

biomass measured as organic carbon, soy = soybean meal, algae = algae feed, Org. , Conv. and 

GM = organic, conventional, and GM soy, respectively). 

 

Treatment Diet type (mg d-1 OC)  Number of experimental animals and soybean-meal type 

Org. Conv. GM Control 

A 0.1 raw soy + 0.2 algae 15 15 15  

B 0.1 heated soy + 0.2 algae 15 15 15  

C 0.1 raw soy 15 15 15  

D 0.2 raw soy 15 15 15  

E 0.1 heated soy 15 15 15  

F 0.2 heated soy 15 15 15  

G 0.2 algae    30 
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Results 

Glyphosate and AMPA residues in the soybeans 

All individual samples of GM-soy contained residues of both glyphosate and AMPA. 

In contrast, no sample from the conventional or the organic soybeans showed any 

residues of these compounds (Figure 1). In the GM-soy samples, the concentration of 

AMPA (mean concentration = 5.74 mg/kg) was on average nearly twice as high as 

glyphosate (3.26 mg/kg). The mean concentration of glyphosate + AMPA in the GM 

soybeans was 9.0 mg/kg.  

 

 

Figure 1. Residues of glyphosate and AMPA in individual soybean samples (n=31). For 

conventional and organic soybeans all measurements were below the detection limit of 0.1 

mg/kg. (Reproduced from Bøhn et al. 2014, with permission.) 
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The soy samples were also tested for other pesticides, but only trace-levels, not 

considered relevant were found, see (Bøhn, Cuhra, Traavik, Sanden, Fagan, and 

Primicerio 2014) for further details.  

 

Main constituents of the soy – individual samples 

The organic soybeans differed in nutrient composition compared to the conventional 

and GM soybeans in several variables (Table 2). The organic samples contained 

significantly more total protein as compared to both GM-soy and conventional soy 

(p<0.01, ANOVA, Tukey correction), which was also reflected in a higher content of 

the essential amino acids (IAAs). The content of 18:2n-6, and the sum of saturated 

fats were significantly lower in the organic soybean material. There were no 

significant differences in the 18:1n-9 (monounsaturated) or the 18:3n-3 (Omega 3) 

fatty acids between the three groups.  

The contents of zinc and barium were significantly higher in the organic samples 

compared to conventional and GM samples, while the content of selenium was lower. 

Other differences were relatively small (Table 2). There was a significant positive 

correlation between AMPA residue levels and iron (p=0.028, linear regression) and 

AMPA residue levels and 18:2n-6 content in the GM soybeans (p=0.016, linear 

regression).  
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Table 2. Composition of nutrients and elements in the different soybean types. Results are given as 

mean ± SD, based on measurement on individual samples. Significant differences (p<0.05) between 

means are indicated by different letters. (Reproduced from Bøhn et al. 2014, with permission.) 

 GM SD Conv. SD Organic SD Anova 

Proximate composition         

Dry matter (%) 89.4 1.4 88.1 2.0 88.2 2.6 ns 

Protein (%) 34.6 b 1.3 34.3 b 1.5 36.3 a 1.1 p=0.003 

Fat (%) 19.0 0.8 19.1 1.3 18.3 0.9 ns 

Ash (%) 4.6 ab 0.2 4.5 b 0.2 4.7 a 0.2 p=0.005 

Amino acids (mg/g)        

Methionine  4.2 0.3 4.0 0.3 4.0 0.4 ns 

Lysine  22.1 b 1.5 22.2 b 1.3 24.2 a 0.9 p=0.002 

Histidine 8.9 0.3 8.9 0.4 9.0 0.6 ns 

Isoleucine 15.2 0.7 15.0 0.7 15.6 0.5 ns 

Leucine  26.3 ab 0.9 26.2 b 1.1 27.4 a 1.0 p=0.02 

Phenylalanine 18.0 0.6 17.7 0.7 18.0 1.2 ns 

Threonine 13.8 0.4 13.8 0.5 14.3 0.6 ns 

Valine  15.9 0.7 15.7 0.7 16.3 0.6 ns 

Arginine 24.0 ab 0.9 23.4 b 1.1 24.9 a 1.8 p=0.04 

Sum of EAAs 1 142.3 5.4 140.8 5.2 147.1 5.8 p=0.037 

Vitamins (mg/kg)        

Vitamin B6  15.7 1.5 14.9 1.2 14.9 1.4 ns 

Fatty acids (mg/g)        

16:0 (palmitic acid) 22.6 a 1.2 21.1 ab 1.1 21.0 b 1.9 p=0.046 

Sum Saturated  33.0 a 1.4 31.0 ab 1.6 29.7 b 2.3 p=0.001 

18:1n-9 (oleic acid) 41.1 3.0 38.5 2.9 38.5 4.3 ns 

Sum Monounsaturated 44.4 3.2 41.5 3.1 41.5 4.5 ns 

18:2n-6 (linoleic acid) 115.7 ab 5.2 117.8 a 5.8 
108.4 
b 

9.3 
p=0.01 

18:3n-3 (linolenic acid) 19.1 4.4 19.6  0.8 18.0  1.6 ns 

Elements mg/kg        

Barium (Ba) 6.4 b 2.2 6.2 b 1.7 11.0 a 3.3 p=0.0005 

Copper (Cu) 10.4 1.1 10.8 1.1 11.3 1.7 ns 

Iron (Fe) 86.8 7.2 84.4 8.7 84.7 11.3 ns 

Manganese (Mn) 24.1 2.8 22.8 1.7 24.5 2.3 ns 

Molybdenum (Mo) 1.9 1.0 4.5 4.0 2.1 1.1 ns 

Selenium (Se) 0.7 a 0.1 0.8 a 0.2 0.2 b 0.2 p=0.0003 

Zinc (Zn) 30.4 b 2.4 31.7 b 2.8 37.0 a 3.4 p=0.0002 
1 EAAs essential amino acids (except tryptophan). 
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Discriminant analysis 

Soy from the three different categories, GM, conventional and organic, could be well 

separated (Figure 2). The first axis of variation mainly separated organic samples 

from both the GM and conventional, while the second axis differentiated the GM 

from conventional.  

 

 

Figure 2. Discriminant analysis for GM, conventional and organic soy samples based 

on 35 variables. Data were standardised (mean = 0 and SD = 1). Glyphosate/AMPA 

residues were not included (would have separated the GM soy from non-GM soy). 

(Reproduced from Bøhn et al. 2014, with permission.) 
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Life-time feeding studies in D. magna with the different soy types 

Survival 

Animals fed green algae and soy in combination showed minor differences in survival 

between the different soy types (data not shown). 

 

Animals fed raw GM soy only (without green algae) showed reduced survival, both 

with low and with high doses, compared to animals fed conventional and organic soy. 

The life expectancy of GM-fed D. magna was 15-18 days, much lower than for 

animals fed conventional soy (24-32 days) and organic soy (24-36 days) (Figure 3). 

When the soy feed was heat-treated the results were mixed, with smaller and less 

systematic differences between the groups (Figure 3).  

 

 

Figure 3. Life expectancy of animals fed different soy treatments, calculated as 

median expected survival based on Cox regression models with survival over time 

(survreg model in R software). 
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Reproductive output - nutritionally balanced diets (green algae and soy) 

Animals fed green algae and low dose soy in combination performed excellently 

when the soy was heat treated, but less well when the soy was raw (Figure 4). The 

reproductive output of animals fed organic raw soy was roughly three times the 

reproductive output of animals fed GM and conventional soybeans (Figure 4). In 

contrast, significant differences were not observed for groups fed heat-treated soy.  

 

 

Figure 4. Life-time reproductive output (fecundity) with 95 % confidence intervals in 

D. magna fed a low dose of GM, conventional or organic soybeans raw or heat-

treated, in addition to green algae.  
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Reproductive output - nutritionally incomplete diets (soy only) 

D. magna fed low doses of raw soy produced a limited number of offspring. 

However, the lifetime fecundity of animals fed organic soybeans was more than 

double compared to animals fed conventional and GM soybeans, with confidence 

limit not overlapping the mean of those groups (Figure 5). Although high doses of 

organic soy led to higher fecundity, the variability was also very high. The results 

were less systematic when animals were fed heat-treated soy. The GM soy performed 

in general inferior to conventional and organic soybeans (Figure 5).  

 

 

Figure 5. Lifetime reproductive output (fecundity) with 95 % confidence intervals in 

D. magna fed raw or heat-treated GM, conventional or organic soybeans at low or 

high doses (no algal supplement).  
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Discussion  

The presented studies demonstrate that the products of the three agricultural systems 

investigated differ significantly in composition. Furthermore, since the feed produced 

in these three systems lead to significant differences in life expectancy and fecundity 

of D. magna, these differences are biologically relevant. Organic soy was 

differentiated from GM and conventional soy based on the levels of several individual 

analytes, while, discriminant analysis, examining 35 different analytes (excluding 

glyphosate and AMPA) successfully differentiated GM and conventional soy 

analytically (Figure 2). The biological relevance of these distinctions is supported by 

the result that the life expectancy of D. magna fed GM soy differs significantly from 

that of D. magna fed conventional or organic soy (Figure 3) and the result that the 

reproductive output was superior in D. magna fed organic soy, intermediate in 

animals fed conventional soy  and inferior i animals fed GM soy (Figure 4 and Figure 

5). 

 

The tested ‘ready-to-market’ soybeans, grown in three different commercial 

production systems, present new insights into the chemical and biological properties 

of the products of commercial agriculture. The test samples included a range of soy 

varieties, produced on different farms, but with similar soils and grown in a relatively 

well-defined geographical region, in the same climactic zone and season. This is quite 

a different approach than assessment of products from test-plots grown under tightly 

controlled, idealized conditions. In contrast, the materials analyzed in this study 

resembles those encountered by a consumer shopping in a retail store  (Chhabra et al. 

2013), or by a food or feed manufacturer purchasing soy from the commodity market. 

Although less controlled, the study provides a wider perspective on the marketplace 

by analyzing, both chemically and biologically, products representative of the 

products of the three most common systems of agricultural in operation today.  

 

Residues of pesticides in the soy  

The most striking compositional difference between the Roundup Ready GM 

soybeans and conventional and organic soybeans was the presence only in Roundup 

Ready GM-soybeans of glyphosate and AMPA at concentrations of 0.4 - 8.8 and 0.7 - 

10 mg/kg, respectively. This is empirical evidence supporting what has been 
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considered as a working hypothesis for herbicide tolerant crops, namely that “there is 

a theoretical possibility that also the level of residues of the herbicide and its 

metabolites may have increased”, (Kleter et al. 2011) is actually happening. Using the 

FAO definition of pesticide residues, total glyphosate residues should be calculated as 

the sum of gly + 1.5x AMPA (FAO 2005). Using this formula, the mean level of 

‘glyphosate equivalents’ is even higher: 11.9 mg/kg for the GM soybeans (max. 20.1 

mg/kg). 

 

Monsanto has claimed that residues of glyphosate in GM soy are lower than in 

conventional soy, where glyphosate residues have been measured up to 17 mg/kg 

(FAO 2005; Monsanto 1999). These very high levels could only have been the result 

of the practice of desiccation in which Roundup is used to kill and desiccate 

conventional soy plants to bring the crop to a uniform degree of “maturity”, to 

facilitate harvesting. Desiccation is used at times in the US, Canada and Europe, and 

can add substantially to the residue levels of glyphosate and AMPA, as shown in field 

pea, barley and flax seed (Cessna et al. 2002). However, this is clearly not a common 

practice in Iowa, based on the findings presented in this chapter. Therefore desiccated 

soybeans should not be considered a benchmark for glyphosate levels in conventional 

soy. 

 

Previous information have indicated a maximum glyphosate level up to 5.6 mg/kg in 

GM-soy and this was claimed to represent "...extreme levels, and far higher than 

those typically found" (Monsanto 1999). Seven out of the 10 GM-soy samples we 

tested surpassed this "extreme level" of glyphosate + AMPA residues, reflecting the 

increased use of glyphosate on Roundup Ready soybeans in the US (Benbrook 2012). 

This has taken place in response to emergence of glyphosate resistant weeds and is 

contributing to selection of glyphosate-tolerant weeds (Shaner et al. 2012).  

 

The concept of ‘substantial equivalence’ (i.e. close nutritional and chemical similarity 

between a genetically modified (GM) crop and a non-GM counterpart) has been used 

to claim that GM crops are substantially equivalent to, and therefore as safe and 

nutritious as, currently consumed plant-derived foods (Aumaitre 2002; Konig et al. 

2004). However, we argue that compositional studies that have overlooked (not 
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measured) pesticide residues contain serious shortcomings. Chemical residues, if 

present, are important because i) they are clearly part of a plant’s composition, and ii) 

they may add toxic properties to the final plant product either by itself or by affecting 

the plant metabolism. This is particularly relevant for herbicide-tolerant varieties. 

 

Increases in Maximum Residue Levels (MRL) of glyphosate in food and feed  

To accommodate these increases in use of glyphosate, authorities in several countries 

have raised the maximum residue level (MRL) allowed for glyphosate on soybeans by 

50 to 200 percent. Europe and the US have increased the MRL to 20 mg/kg, while 

Brazil has increased the MRL to 10 mg/kg (Agencia Nacional de Vigilancia Sanitaria 

2003). MRLs appear to have been adjusted, not based on new evidence indicating 

glyphosate toxicity was less than previously understood, but to avoid conflicts in the 

marketplace increases in glyphosate residues resulting from increased use in GM soy 

production. 

 

Toxicity and health relevance of pesticide/glyphosate residues 

The importance of pesticide residues is recognized in feeding studies assessing risk of 

GMOs. For glyphosate-tolerant GM soybeans, the European Food Safety Authority 

has argued that (i) the levels of glyphosate should be analyzed as part of the testing, 

and (ii) both glyphosate-treated and untreated soybeans should be used in order to 

separate effects of the plant and the herbicide (van Haver et al. 2008).  

 

However, in early studies of the composition of Roundup-Ready GM soy (Padgette et 

al. 1996), the researchers did not spray the tested plants with Roundup or glyphosate 

(Millstone et al. 1999). This shortcoming was corrected in some studies, which 

claimed Roundup Ready soybeans to be substantially equivalent to non-GM soybeans 

(Harrigan et al. 2007; McCann et al. 2005). A similar shortcoming is found in feeding 

studies. Viljoen showed that out of 16 feeding studies testing the quality of herbicide 

tolerant GM crop products, 13 did not spray the GM plants (Viljoen 2013). 

It is full, formulated Roundup herbicide, not glyphosate in isolation, which is used in 

the field, and, thus, it is relevant to consider, not only the active ingredient glyphosate 

and its breakdown product AMPA, but also the other compounds present in the 
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herbicide formulation. Roundup herbicide formulations typically contain surfactants 

(termed adjuvants) to facilitate penetration of glyphosate into the plant tissue. 

Polyoxyethylene amine (POEA) and polyethoxylated tallowamine (POE-15) are 

commonly used surfactants in Roundup formulations, and have been shown to 

contribute significantly to the toxicity of Roundup formulations (Benachour and 

Seralini 2009; Mesnage et al. 2012; Moore et al. 2012). However, glyphosate alone 

has also been shown to interfere with molecular mechanisms that regulate early 

development in frogs and chicken, with deformities of embryos as a consequence and 

the retinoic acid signaling pathway as the affected mediator (Paganelli et al. 2010).  

 

In human cells, Roundup may induce endocrine disturbances at concentrations far 

below the MRLs cited by authorities in the EU and the US (Benachour and Seralini 

2009; Clair et al. 2012; Gasnier et al. 2009). A life-cycle feeding study in rats 

reported health damaging effects and found significantly altered blood parameters in 

animals that were fed Roundup Ready GM maize or were given extremely small 

amounts of Roundup in the drinking water (Seralini et al. 2012). The authors 

emphasized the role of pesticide residues in edible herbicide tolerant GM plants and 

argued that these must be evaluated very carefully to accurately assess potential toxic 

effects. This study has been criticized for its methods, analysis and reporting by  

(EFSA 2012), which initially rejected the central conclusion of this study, that long 

term (life-time) toxicity and carcinogenicity studies are needed. However, as well as 

regulatory authorities from multiple EU states are now acknowledging that this study 

flagged up the need for long term studies (EU 2012).  

Our recent study in D. magna demonstrated that chronic exposure to glyphosate or 

fully formulation Roundup herbicide resulted in negative effects on reproductive 

aberrations like reduced fecundity and increased abortion rate at environmental 

concentrations of 0.45-1.35 mg/liter (active ingredient), well below accepted 

environmental tolerance limits set in the US (Cuhra, Traavik, and Bøhn 2013). 

Reduced body size of juveniles was even observed at a Roundup level of 0.05 

mg/liter. These results are strikingly different from data reported by a study funded by 

the European Commission which indicated a NOEC (No Observed Effect 

Concentration) in D. magna of 455 mg/l and 30 mg/l for glyphosate-IPA and 

glyphosate acid, respectively (EC 2002). 
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The toxicity and health relevance of glyphosate and Roundup have been debated 

widely. Other studies claim that glyphosate is not linked to developmental or 

reproductive effects in animals and humans, but that surfactants may cause some toxic 

effects (Williams et al. 2012; Williams et al. 2000). This controversy has been 

reviewed in depth by (Antoniou et al. 2012), reaching the conclusion that the weight 

of evidence indicates that glyphosate itself is a teratogen and that adjuvants 

commonly used in conjunction with glyphosate amplify this effect.  

 

Nutritional components 

Several factors determine soybean nutritional quality; protein content, mineral 

content, fatty acid (FA) composition and trace nutrient content are all of central 

importance. Our results clearly show that the different agricultural practices studied 

affect soybean nutritional quality. The organic production system produced soybeans 

that contained statistically higher levels of protein, ash, lysine, leucine, arginine, 

barium and zinc than those found in conventional and GM soybeans. All of these 

improve the nutritional content of soybeans. Interestingly, the organic soybeans had 

significantly lower levels of linoleic acid LA (18:2n-6) and palmitic acid PA (16:0). 

Although LA is an essential fatty acid, a high and unbalanced intake (high omega 6 

and low omega 3) is emerging as a risk factor for developing obesity (Muhlhausler 

and Ailhaud 2013). Thus the reduced levels of PA should enhance the healthfulness 

of organic soybeans even further. Likewise reduction of LA in organic soybeans 

enhances healthfulness, since it is a saturated fatty acid. In a recent scientific opinion 

(EFSA 2010) it was concluded that saturated fatty acid intake should be as low as 

possible within the context of nutritionally adequate diets.  

 

Comparisons between organic and conventional agriculture have not reached 

consistent conclusions on nutritional quality, but a review based on 223 compositional 

studies of nutrients and contaminants found that organic foods have significantly 

lower levels of pesticide residues (Smith-Spangler et al. 2012), which is consistent 

with our findings. We found that glyphosate which was present at high levels in GM 

soybeans, was undetectable in organic and conventional soybeans.  
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A recent feeding study that compared organic and conventional food products 

concluded that organic foods may be more nutritionally balanced than conventional 

foods, or that they contain higher levels of nutrients, since the fruit fly Drosophila 

melanogaster lived longer and produced more offspring when fed organic soybeans 

(or potatoes, raisins, bananas) as compared to conventional produce (Chhabra, Kolli, 

and Bauer 2013). Organic crops may be more variable in phenotype than industrially 

produced plant products, but are in general richer in some nutritionally important 

elements, in antioxidant phytochemicals and lower in pesticide residues (Crinnion 

2010). Another recently published meta-analysis reported that organic crops, on 

average, have higher concentrations of antioxidants and certain other vitamins and 

micronutrients, lower concentrations of Cd and a lower incidence of pesticide 

residues than the non-organic comparators across regions and production seasons 

(Baranski et al. 2014). Our data support the conclusions of these two reviews. Organic 

crops have also been reported to contain, on average, four-fold higher content of 

selenium (Smith 1993). However our data indicates that this is not the case for 

soybeans, where the selenium content was significantly lower in organic soybeans 

compared to GM and conventional soybeans.  

 

The effects of genetic modification on nutritional value have not been studied 

extensively. Some researchers have found differences. For instance, conventional 

soybeans were reported to have superior nutrient and dry matter composition 

compared to glyphosate-treated GM-soybeans (Zobiole et al. 2012). However, one 

review has been published on this topic, reporting conflicting results, with most 

studies indicating that mineral nutrition is not affected by the glyphosate tolerance 

trait or application of glyphosate (Duke et al. 2012).  

 

Conclusion 

Data on herbicide accumulation in herbicide-tolerant GM-crops are generally sparse. 

We found that Roundup Ready GM-soy has high levels of glyphosate and AMPA, 

and also that different agricultural practices may result in markedly different 

nutritional composition of soybeans, with organic soybeans having an improved 
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nutritional profile than conventional and GM soybeans. This was supported by the 

feeding studies, in particular for raw soybeans. We demonstrate that pesticide residues 

have biological significance by inducing negative effects on lifespan and fecundity of 

test-animals. Thus such residues should be routinely monitored in herbicide-tolerant 

GM-crops. Roundup Ready soy has been commercially produced for nearly two 

decades and we find it worrying that the questions concerning glyphosate residues 

have yet to be addressed systematically by regulatory authorities. We argue that such 

monitoring should have been a part of the compositional analyses of herbicide 

tolerant GM plants from the beginning of commercial cultivation. Lack of data on 

pesticide residues in major crop plants is a serious gap of knowledge with potential 

consequences for human and animal health. We therefore recommend (i) systematic 

monitoring and testing of crop material from the market; (ii) testing for possible 

biological effects of chemical residues in long-term feeding studies; (iii) inclusion of 

pesticide residue measurements and safety testing as part of the standard risk 

assessment research required by regulators and (iv) further research on the indirect 

ecological effects of herbicides and pesticides, i.e. on nutrient uptake and plant 

composition as well as on ecological interactions in terrestrial, soil and aquatic 

communities. 
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