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SUMMARY 

Persistent Organic Pollutants (POPs) and toxic elements are released into the environment and 

are carried to the Arctic area via the atmosphere, oceanic currents and rivers. They have the 

ability to accumulate in nature and bioconcentrate in the human food chain. The primary 

exposure route for these contaminants is through diet, and thus circulating levels in pregnant 

women can give an indication of the potential risk to the developing fetus. Within countries 

and internationally, guidelines for safe daily intakes and for concentrations in serum or whole 

blood have been established to avoid health effects of POPs and toxic inorganic elements. In 

this context, the rationale for the MISA study was to assess exposure to a suite of 

environmental pollutants by women during pregnancy and to six weeks postpartum, as well of 

the unborn/ newborn children. Through a detailed questionnaire information was obtained on 

food intake (past and present), lifetime residency, education, income and other 

sociodemographic data, obstetrical history and pregnancy outcome.  

The specific aim of the thesis was to explore the links between maternal diet and selected 

personal and obstetrical characteristics with concentrations of PCBs (and hydroxylated 

metabolites) and organochlorine (OC) pesticides in maternal serum and in newborn first stool, 

as well as with a selection of essential and toxic metals in maternal whole blood.  

Of the 515 enrolled women, 391 completed the study protocol that included a self-

administrated food frequency questionnaire (FFQ) and donation of biological samples for 

analyses. The FFQ information was converted into daily intake of energy, micro- and macro-

nutrients. Findings were compared to a drop-out group (n = 113) and, when possible, to all 

delivering women from Northern Norway registered in the Medical Birth Registry of Norway 

(MBRN) for 2004-2006. Women who completed the study protocol were on average two 

years older and smoked less compared to all delivering women from Northern Norway and 

the drop-out group, while other characteristics were comparable between all groups including 

parity, gestational age, birth weight and selected obstetrical parameters and complications. 

Dietary intake was less than recommended by the Nordic Nutritional Recommendations 

(NNR), but nutrient density in terms of intake of micronutrients per mega joule (MJ) 

complied well. Only minor differences in dietary intake occurred between the study cohort 

and the drop-out group. 
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The entire MISA cohort (n = 498) was characterized for sources and predictors of POPs using 

principal component analysis (PCA), while for the elements alone it involved 279 

participants, and for all the POPs and elements data combined n = 498. The PCA for the 

combined group revealed three prominent axes (i.e., new variables) with robust loadings of: 

(i) all POPs; (ii) arsenic (As), mercury (Hg) and selenium (Se); and (iii) cadmium (Cd) and 

lead (Pb). In the multivariable linear regression models, the major predictors identified were 

as follows: age, parity and consumption of fish and local traditional foods for new variable (i); 

marine fish for (ii); and cigarette smoking, consumption of grains & cereals, and local foods 

based on hunting for variable (iii). The PCA analysis of the POPs alone separated the 

contaminants in two new distinct groups, namely PCBs plus p,p′-DDE  and the other OC 

pesticides measured. This grouping was interpreted to reflect different longitudinal trends and 

the relative contributions (respectively major/minor) to the sum of all POPs.  

Meconium proved to be useful for measuring fetal exposure to pesticides, PCBs and 

hydroxylated PCBs. Multivariable linear regression analyses confirmed that maternal serum 

was the most consistent predictor of meconium concentrations, with gestational age and time 

of meconium sampling improving the models. Although lipid determinations in meconium is 

analytically challenging, when comparing lipid-adjusted OC concentrations in meconium and 

in maternal serum the correlation between them was enhanced, as well as the fractional 

change in concentrations in meconium per unit change in maternal serum. Our measurement 

of hydroxylated PCBs in meconium constitutes novel information, and lipid-adjusted OC 

concentrations in meconium are viewed as a sensitive and informative fetal exposure index.  

It is evident that maternal serum concentrations of pesticides, PCBs and hydroxylated PCBs 

were generally low compared to results from other countries, but comparable to findings from 

Norway. It is concluded that they are not of clinical importance, and thus were of no special 

concern to the study participants. Similarly, the observed concentrations of essential elements 

in maternal whole blood may be considered normal in the clinical chemistry context and those 

for the toxic elements are judged to be relatively low and of no clinical concern.  

Nevertheless, the MISA study provides an opportunity to follow-up the development of the 

children, and it is recommended to include measurement of the body burdens of the most 

prominent POPs, toxic and essential elements examined in the current study, as well as any 

new environmental toxins. 
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SAMMENDRAG 

Tungt løselige organiske miljøgifter og giftige metaller slippes ut i miljøet hvorpå de fraktes 

til Arktiske strøk via luft, havstrømmer og elver. De har evne til å akkumulere i naturen og 

oppkonsentreres derfor i næringskjeden. Av denne grunn ansees kosten som den viktigste 

eksponeringsveien. Miljøgiftsnivåer målt i blodprøver hos gravide kvinner kan således gi en 

indikasjon på den mulige risikoen for fosterets utvikling. Både lokalt og internasjonalt finnes 

retningslinjer for tolerabelt daglig inntak av både giftige organiske og uorganiske 

forbindelser, samt nivåer av disse i blodet som kan gi negative helseeffekter. Dette er 

bakgrunnen og begrunnelsen for forskningsprosjektet Miljøgifter i svangerskap og i 

ammeperioden (MISA-studien), der vi har vurdert eksponering for en rekke miljøgifter hos 

kvinner under graviditeten og etter fødselen, samt hos deres nyfødte barn. Gjennom et 

detaljert spørreskjema ble kvinnene bedt om å oppgi matinntak (tidligere og nåværende), 

bosted siden fødsel, utdanning, inntekt og andre sosiodemografiske data, obstetrisk historie og 

svangerskapsutfall. I tillegg donerte både mor og det nyfødte barnet biologiske prøver til 

analyser. 

Hovedformålet med avhandlingen var å undersøke sammenhengen mellom mors kosthold og 

utvalgte svangerskapsutfall, med vekt på konsentrasjoner av forskjellige persistente organiske 

miljøgifter (POPer) som PCB (polyklorerte bifenyler), hydroksylerte PCB-metabolitter og 

pesticider i mors serum og i den første avføring fra nyfødte (mekonium), samt et utvalg av 

essensielle og giftige elementer i mors fullblod. 

Av de 515 kvinnene som deltok i prosjektet fullførte 391 studieprotokollen som innebar at de 

alle hadde besvart spørreskjema, inkludert kostholdskartlegging, samt avlevert biologisk 

materiale for kjemiske analyser. Kostholdet ble vurdert ut fra daglig inntak av næringsstoffer, 

hvor både mikro- og makro-næringsstoffer ble beregnet. Resultatene for de 391 kvinnene som 

fullførte, ble sammenlignet med gruppen som ikke fullførte studie protokollen (drop-out; n 

=113). En sammenligning ble også gjort med alle fødende kvinner fra Nord-Norge registrert i 

Medisinsk fødselsregister (MFR) i perioden 2004-06. MISA-kvinner som fullførte studien var 

i gjennomsnitt to år eldre og røkte mindre i forhold til både drop-out gruppen og fødende 

kvinner fra Nord-Norge. Mens obstetriske utfall, som for eksempel paritet, 

svangerskapslengde, fødselsvekt og ulike fødselskomplikasjoner, var sammenlignbare for alle 

tre grupper. Kostinntaket var mindre enn anbefalt av Nordiske kostanbefalinger (NNR), men 

næringsstoffinntak per mega joule (MJ) (nutrient density) passet godt til gjeldende 
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anbefalinger. Kun små forskjeller i kostholdet mellom kvinnene som fullførte studien og 

drop-out gruppen ble observert. 

Hele MISA kohorten, i alt 498 kvinner, ble analysert for kilder og prediktorer til ved hjelp av 

Principal Component Analysis (PCA). Analysen for essensielle og giftige elementer 

involverte 279 deltakere, og for alle POPer og elementer kombinert n = 266 deltakere. PCA 

analysen for den kombinerte gruppen avdekket tre prominente akser (dvs. nye variabler) med 

robuste utfall for: (i) alle POPer; (ii) arsen (As), kvikksølv (Hg) og selen (Se); og (iii) 

kadmium (Cd) og bly (Pb). De multivariable lineære regresjonsmodellene viste følgende 

tydelige prediktorer: alder, paritet og inntak av fisk og lokale tradisjonelle matvarer for (i); 

marin fisk for (ii); røyking, inntak av kornprodukter og lokal tradisjonell mat basert på jakt for 

(iii). PCA analysen som kun inkluderte POPer delte forurensningsstoffene i to nye separate 

grupper, nemlig PCB og p, p'-DDE i én og de andre pesticidene i den andre gruppen. Denne 

grupperingen ble tolket til å gjenspeile ulike langsgående trender og det relative bidraget 

(henholdsvis større/mindre) til summen av alle miljøgifter.  

Mekonium viste seg å være anvendelig for å måle fosterets eksponering for pesticider, PCB 

og hydroksylerte PCBer. Multivariabel lineær regresjonsanalyse bekreftet at mors serum var 

den klareste prediktoren for konsentrasjoner i mekonium, men når svangerskapslengde og 

tidspunkt for prøvetaking av mekonium ble inkludert i modellen, ble den klarere. Lipid-

bestemmelse av mekonium er analytisk utfordrende. Ved å sammenligne lipid-justerte 

konsentrasjoner i mekonium og i mors serum, ble korrelasjonen mellom dem klarere, likeså 

endringen av mekoniumskonsentrasjonen per enhet relatert til endring i mors serum. Målinger 

av hydroksylerte PCBer i mekonium er ikke utført tidligere, og lipidjusterte konsentrasjoner i 

mekonium blir sett på som en god og informativ eksponeringsindikator for fosteret.  

Studien konkluderer med at mors serumkonsentrasjon av pesticider (sprøytemidler), PCB og 

hydroksylerte PCBer generelt var lave sammenlignet med resultater fra andre land, men 

tilsvarende funn fra andre norske studier. Det konkluderes med at lave konsentrasjoner er uten 

klinisk betydning og gir dermed ikke særskilt bekymring for deltagerne i studien. Likeledes 

kan de observerte konsentrasjonene av essensielle elementer (sporstoffer) i mors fullblod 

ansees normale i klinisk sammenheng. De giftige metallene vurderes å være forholdsvis lave 

og har ingen klinisk betydning for den enkelte deltaker i studien. Derimot er det nødvendig å 

følge opp nivåer av giftige metaller og eventuelle nye giftstoffer i forhold til barnas utvikling. 

MISA-studien gir muligheter for slik oppfølging. 
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KEY ISSUES AND OVERVIEW OF THE THESIS 

Thesis context 

 There are man-made chemicals in the environment that stay around for a long time and 

some accumulate along the human food chain and ultimately end up in our bodies. They 

are released into nature from industrial and agricultural processes and installations, and 

undergo long-range transport by way of oceanic currents, rivers and air. The Artic 

regions of the world have been and remain a primary recipient. International bans and 

regulations have helped to reduce their use and the amounts released into the 

environment. 

 Two groups of persistent organic pollutants (short form is POPs) that are part of the 

focus of the current study are made up of carbon, hydrogen and chlorine. They are 

referred to as organochlorines (OCs) and include pesticides (e.g., DDT) and the 

industrial chemicals called polychlorinated hydrocarbons (or PCBs in shorthand). 

Because they stay around in our bodies for a long time (measured in years), they are 

said to be persistent and are also toxic. In the current study, the levels of these 

compounds are measured in maternal serum and in the first stools (meconium) of 

newborn babies. 

 A third group of toxic chemicals that is somewhat less persistent in our bodies (but still 

measured in months or years), gets into the human food chain or accumulates in specific 

foods; it includes the toxic metals cadmium, mercury, and lead. We analysed maternal 

blood samples for these inorganic elements. Arsenic, a toxic non-metal, is also included 

in this group even though its turnover in the body is considerably quicker (expressed in 

days). 

 A fourth group of inorganic elements was also quantified in whole blood, namely 

copper, manganese, molybdenum, selenium and zinc. They are naturally present in our 

food, are required for good health (they are essential!), are less persistent and thus need 

to be replenished. Therefore it is important to know their levels in our bodies.  

 The POPs are stored in our fat tissues and the elements are distributed to all tissues, or 

accumulate in specific organs such as the kidney (e.g., cadmium) or in our bones (e.g., 

lead).  

Thesis introduction   

 The introduction begins by providing the rationale of the The Northern Norway 

Mother-and-Child Contaminant Cohort Study [in Norwegian: Miljøgifter i 

svangerskapet og i ammeperioden (the MISA study)], of which the work described in 

this thesis is part. A map of northern Norway identifies the locations of the 

delivery/antenatal centres that participated in the study. 
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 The following topics are systematically introduced/reviewed: the usefulness of a food 

frequency questionnaire in obtaining pertinent dietary and personal information; basics 

of fetal development and placental transfer; background information on POPs, namely 

of PCBs and prominent OC pesticides, as well as their transport routes to the Arctic; 

POPs in the Norwegian environment; human exposure and potential health effects of 

POPs; dietary sources and roles of the essential elements measured; sources of the toxic 

elements and their potential effects on health; and dominant pathways to the Arctic of 

mercury are illustrated. 

Aims of the research 

 Summarize the dietary intake in pregnant women in Northern Norway. 

 Identify associations between dietary intake and maternal serum concentrations of 

PCBs and organochlorine (OC) pesticides, as well as for essential and toxic metals in 

maternal whole blood. 

 Quantify selected OC pesticides, PCBs and phenolic metabolites of the latter in 

meconium, and identify factors that influence their concentrations in this medium. 

 Enhance understanding of the mother-to-fetus transfer of OCs.  

Experimental details in brief  

 We investigated the relationship between the measured pollutants in the blood of 

pregnant women in Northern Norway and their food intake during the previous 12 

months. For 130 different food items, we asked the mothers to record how often they 

ate them during the last year/month/week or day. For some food groups they were also 

requested to record the size of the meal. When all the data was electronically available, 

we converted the frequency to “grams per day” intake for all the food items identified. 

In addition, the women recorded personal information such as places of living, 

education and work, smoking and drinking habits, ethnical background and dietary 

supplement intake. We also asked how often they had eaten various seafood products 

during childhood, as teenagers and as adults. In addition, we gathered information 

about previous and present pregnancies. This included obtaining pregnancy health 

record and information from the Medical Birth Registry of Norway. 

 Apart from providing dietary and pregnancy information, the women also donated 

blood and urine samples in the middle of the pregnancy and at 3 days and 6 weeks 

postpartum (their blood pressure and body weight were also measured). At delivery a 

hair sample was taken from the mother, as well as umbilical cord blood and a 

meconium sample from the newborn. Only the maternal blood taken at the first 

collection and the meconium samples were analysed for the work described in this 

thesis. 
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 Complicated instruments, namely a gas chromatograph and a mass spectrometer, were 

employed respectively to separate and determine the concentrations of the OCs in 

maternal serum and meconium. The analysis of the elements in whole blood involved 

a high resolution mass spectrometer. Maternal serum and meconium analyses of POPs 

were carried out at the Norwegian Institute for Air Research (NILU), Fram Centre, 

Tromsø, while those of the elements were conducted by the National Institute of 

Occupational Health (NIOH), Oslo. The statistical analyses of the data were carried 

out by the candidate.  

 Routine statistical analysis techniques were supplemented by an approach labelled  

“Principal Component Analysis”, which allowed the generation of new combined 

variables (referred to as axes) of the observed contaminant, inorganic elements (toxic 

and essential) concentrations and dietary consumption data to enhance interpretations 

of our findings. 

Main results  

 Brief and concise summaries are provided for the 3 publications, which summarize the 

findings of the research and related conclusions. Shortened versions are given below. 

 Paper I. The estimated daily caloric intake of 8.1 MJ per day was less than 

recommended by the Nordic Nutritional Recommendations (NNR), but nutrient intake 

per MJ (nutrient density) was in good compliance with the NNR. Furthermore, the 

MISA database was judged suitable for investigating relationships between 

contaminant exposures and diet.  

 Paper II. Although its analysis provided a technical challenge, meconium was shown 

to be a sensitive and informative index of fetal exposure, although gestational age and 

sampling time needs to be taken into consideration. Lipid adjustment of the 

concentrations seems essential. The evidence suggests that the biochemical 

modification of OCs (referred to as hydrolysis or adding water, which yields hydroxyl 

PCBs among other products) occurs primarily in the mother.  

 Paper III. The statistical technique referred to as “Principal Component Analyses” not 

only enhanced our understanding of the inter-relationships of contaminants, but also 

among the food items consumed by the MISA study group. The linear combinations of 

variables generated by PCA identified prominent dietary sources of OC groups and of 

well-known toxic elements, and highlighted the importance of maternal 

characteristics. 

 

 



16 
 

Discussion 

 The observed concentrations of OCs and inorganic elements are compared with values 

published by researchers worldwide and those provided in preliminary MISA-related 

publications. 

 Maternal age, parity, maternal body mass index (BMI), consumption of fish and other 

marine products, local traditional foods, vegetables and grain & dairy products and 

lifestyle issues are shown to contribute to the total variation explained in the observed 

OC concentrations in maternal serum. It is concluded that fish and seafood products 

are the major contributors.  

 The observed grouping of As, Hg and Se in whole blood are indicated to correspond 

well with other findings from Norway and elsewhere and reflects seafood intake.  

 It is stated that there is no doubt that the primary source of cadmium was cigarette 

smoking. Women living inland were highly represented in the 4th quartile of the whole 

blood lead concentrations, and higher intake of local terrestrial foods is suggested as a 

potential source since game hunted with lead shot is a proven source of this toxic 

metal.  

 The levels of the essential metals are judged to be in the normal range. 

 The findings for OCs and the inorganic elements are discussed in the context of 

related data reported by other investigators, and food intake advisories and known 

health issues. 

 The new ‘fruits and vegetables’ variable is considered to have a positive dependence 

on age, while that representing ‘junk food’ did not.  

 Meconium is judged to be a sensitive and informative fetal exposure index for OCs 

when taking into account gestational age and its postpartum sampling time. Lipid 

adjustment of OC concentrations in meconium appears to be important.  

 The study limitations and strengths are discussed in some detail. 

Concluding Remarks 

 Maternal serum concentrations of pesticides, PCBs and hydroxylated PCBs are 

discerned to be generally low compared to results from other countries, but 

comparable to findings from Norway (including data on pregnant women). It is 

concluded that they are not of clinical importance, and thus are of no heightened 

concern to pregnant women, the unborn, females of reproductive age and children in 

the study group.  
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 The current investigation of meconium as a biological medium for determining fetal 

exposure to POPs is identified to be the first to report the presence of hydroxylated 

PCBs in newborn stool. Although analytically challenging, a small subset of 15 

meconium samples was adjusted for lipids and the latter is viewed as a crucial 

component for using meconium as an informative fetal exposure medium. 

 The observed concentrations of cadmium, lead and mercury in whole blood are 

considered relatively low, but some concern remains about maternal and neonatal 

exposures to Cd among cigarette-smoking mothers and for the participants with Hg 

blood values near the maximum values observed. Since the total arsenic measured in 

blood primarily represents its non-toxic organic forms and was present in relatively 

low concentrations, toxicity concerns are not warranted. No deficiency nor excess was 

observed for the essential elements, which reflects adequate dietary intake.  

 Generation of new variables for contaminant, inorganic elements and dietary variables 

by “Principle Component Analysis” facilitates the ability to identify prominent dietary 

sources and maternal predictors of PCBs and OC pesticides in maternal serum, and of 

the prominent toxic elements As, Cd, Pb and Hg and the essential element Se in 

maternal whole blood.  
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ABBREVIATIONS 

4-OH-HpCs 4-Hydroxyheptachlorostyrene;  

AGA Appropriate for gestational age 

AM Arithmetic mean 

AMAP Arctic Monitoring and Assessment Programme 

ANOVA Analysis of variance 

AR Average requirement 

As Arsenic 

BMI Body mass index 

BP Blood pressure 

BW Body weight 

Cd Cadmium 

CI Confidence interval 

cis-NC 

Co 

cis-Nonachlor 

Cobalt 

Cu Copper 

DDE Dichlorodiphenyldichloroethylene 

DDT Dichlorodiphenyltrichloroethane 

DHA Docosahexaenoic acid 

EOM Extractable organic material 

ESI Electronic supplementary information 

FC Free cholesterol 

FFQ Food frequency questionnaire 

Gest. Gestational 

GM Geometric mean 

HCB Hexachlorobenzene   

HCH Hexachlorocyclohexane 

Hg Mercury 

IARC International Agency of Research on Cancer 

LGA Large for gestational age 

LI Lower level of intake 

LOD Limit of Detection 

Max Maximum 

MBRN Medical Birth Registry of Norway 

MeHg Methyl mercury  

MFR [Medisinsk fødselsregister] 

Min Minimum 

MISA [Miljøgifter i svangerskapet og i ammeperioden] 

mg Milligram  

MJ Mega joule 

Mn Manganese 

Mo 

MW 

Molybdenum 

Mann-Whitney  
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µg Microgram 

NC 

NILU 

Nonachlor 

Norwegian Institute for Air Research 

NIOH National Institute of Occupational Health 

NIPH National Institute of Public Health 

NNR Nordic Nutritional Recommendations 

NOWAC The Norwegian Women and Cancer study  

NS Non-significant 

n-3 PUFA n-3 polyunsaturated fatty acid 

OC(s) Organochlorine(s) 

OH-PCB(s) Hydroxylated polychlorinated biphenyl(s) 

Pb Lead 

PCA Principal component analysis 

PCB(s) Polychlorinated biphenyl(s) 

PCP Pentachlorophenol  

PKU Phenylketonuria 

PL Phospholipids 

POP(s) Persistent organic pollutant(s) 

PUFA Polyunsaturated fatty acid 

p p'-DDE 

p p'-DDT 

PP Postpartum 

QA/QC Quality assurance and quality control 

r Pearson’s correlation coefficient 

RI Recommended intake 

SD Standard deviation 

Se Selenium 

TC Total cholesterol 

TG Triglycerides 

trans-NC 

TL 

trans-Nonachlor 

Total lipids 

T2DM Type 2 diabetes mellitus 

UL Tolerable upper intake level 

Zn Zinc 

α-HCH Alpha-hexachlorocyclohexane 

β-HCH Beta-hexachlorocyclohexane 

γ-HCH Gamma-hexachlorocyclohexane 

κ Kappa score 

ρ Spearman’s rho coefficient 
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1.  INTRODUCTION 

1.1.  Rationale for and history of MISA 

Persistent organic pollutants (POPs) and toxic inorganic elements are recognised to be 

responsible for adverse developmental and other health effects in children (Grandjean et al., 

1997; Odland et al., 1999; Saint-Amour et al., 2006; Plusquellec et al., 2007). Most of these 

contaminants are transferred from the mother to the foetus via the umbilical cord, and to the 

child by way of the mother’s breast milk (Rudge et al., 2009; Needham et al., 2011; Vizcaino 

et al., 2014). Contaminant concentrations in maternal blood during pregnancy can give an 

indication of the potential risk to the developing foetus (Odland et al., 1999; Fängström et al., 

2005; Heilmann et al., 2010). Of particular concern are subtle long-term effects that might 

influence reproductive health, pregnancy outcomes, reduce defences against diseases, affect 

children’s mental development, or increase the life-time risk of cancer (Grandjean et al., 

1997; ATSDR, 2000; Debes et al., 2006; Heilmann et al., 2010; Halling et al., 2013). 

Several multidisciplinary international projects have been conducted to determine the 

concentrations of POPs and toxic inorganic elements in people of different geographical 

regions, and to investigate if there is a possible relationship between specific body burdens of 

these chemicals and health. One of the most prominent is the Arctic Monitoring and 

Assessment Programme (AMAP), which started in 1991 and has eight arctic countries as 

active members (Canada, Denmark, Finland, Iceland, Norway, Russia and Sweden and the 

USA) (AMAP, 2003; AMAP, 2009). The early Norwegian study locations have focused on 

Finnmark and, by the mid-2000s, no systematic information was available about mothers and 

their newborn babies residing in the coastal counties of Nordland and Troms. Information 

from other parts of Norway had demonstrated the possibility of high levels of mercury and 

POPs in individuals with a high dietary intake of fish (Jenssen et al., 2012; Rylander et al., 

2012; Birgisdottir et al., 2013). 

Late in 2006, Professor Jon Øyvind Odland at UiT The Arctic University of Norway made 

plans, and subsequently obtained funding, for establishing a new study cohort. The goal was 

to measure concentrations of environmental contaminants in expecting mothers (and in their 

new babies) who lived in the three most northern counties of Norway, namely Nordland, 

Troms and Finnmark (see Figure 1). A primary objective was to explore exposure through 

food intake, as well as examining the influence of maternal anthropometric and 
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socioeconomic factors. During the period May 2007 to June 2009, women in early pregnancy 

were invited to participate in The Northern Norway Mother-and-Child Contaminant Cohort 

Study [in Norwegian: Miljøgifter i svangerskapet og i ammeperioden (the MISA study)]. 

Solrunn Hansen and I (both practising midwives) carried out and administered the project. We 

established contact and interacted with personnel at the various delivery units, and ensured 

that the project materials and equipment were available at all sampling units. Appropriate 

instructions about the project’s procedures and protocols were provided, and ongoing project 

developments were shared. We were also responsible for the processing of all clerical forms 

and biological samples, constructing the databases, and employing and training 3 qualified 

individuals to conduct the data-entry. During the entire sampling period, we were we 

available around the clock by phone and e-mail. Research technician Bente A. Augdal was 

responsible for the Biobank and assisted with the project’s logistics. The laboratories that 

conducted the analytical work were the Norwegian Institute for Air Research (NILU), 

Tromsø, Norway (quantification of a suite of organochlorine contaminants in maternal sera 

and meconium) and the National Institute of Occupational Health (NIOH), Oslo, Norway 

(determination of a selection of toxic and essential elements in maternal whole blood).  

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Location of study area, including delivering units and antenatal centres. 

(Reprinted with permission from Paper III) 
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1.2.  Dietary assessment 

1.2.1.  Food frequency questionnaires 

Diet is the most important predictor of human exposure to POPs and toxic inorganic elements 

(AMAP, 2009), and for this reason assessing dietary intake is essential as well as determining 

what dietary assessment method to employ. Methods frequently used are the 24-hour or 48-

hour recall, or dietary diaries that record intake on certain days (Willett, 2013). Another 

research method often used is the food frequency questionnaire (FFQ). Its underlying 

principle is the possibility to capture information about a long-term diet that permits the 

calculation of average dietary intakes over a period of weeks, months or years (the duration 

must be determined beforehand). The food items included should be consumed reasonably 

often by the study group, but at the same time vary from person-to-person. In this context, 

frequency of use appears to be more important than portion size (Willett, 2013). Willett also 

recommends that the appropriate number of food items should not exceed 130. The FFQ 

approach allows the estimation of the respondent’s usual food intake, as well as the possibility 

of ranking individuals according to their usual consumption of food items or groups of foods 

and, if portion size estimates are included, nutrient intake. Other important advantages for the 

participants are self-administration and reduced time requirement compared to other dietary 

assessment methods. In addition, this approach also keeps the research costs down compared 

to 24-hour recall and food diaries for example (Thompson and Byers, 1994).  

However, the FFQ also has weaknesses. It only captures average intake and therefore some   

details of the diet may be lost for the specified study period. In addition, quantifying the 

intake has its challenges and this may reduce accuracy. Long FFQs tend to encourage 

overestimation of intake, while underestimation is more likely for short FFQs (Thompson and 

Byers, 1994). 

1.2.2.  Dietary advice for pregnant women in Norway  

Pregnant women in Norway are advised to eat healthy foods and to have a varied diet, which 

includes details about the intake of certain vitamins and which foods to avoid. Women 

planning a new pregnancy are advised to take 400µg per day of folic acid until gestational 

week 12, and 10µg per day of vitamin D during the entire pregnancy. Minerals and 

micronutrients such as calcium, iron, vitamin B12 and iodine are considered to be taken in 

through a normal diet, and the use of supplements are only recommended after consultation 
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with health-care personnel. Pregnant women are urged to avoid eating more than two meals of 

fatty fish per week including salmon, trout, mackerel and herring (VKM, 2014), and to 

abstain from foods rich in toxic elements (especially mercury) and OCs. This includes fresh 

water fish like pike, perch > 25 cm, and trout and char > 1 kg; as well as marine products such 

as seal, crab meat, shark, halibut > 3 kg, fresh tuna (tinned tuna is considered safe), and fish 

liver (Matportalen, 2015). In January 2013, the Norwegian Food Safety Authority withdrew 

the recommendation that pregnant women should refrain from eating whale meat 

(Matportalen, 2013) in the context of the low mercury concentrations detected in Minke 

Whale (Balaenoptera scutorostrata).    

In Norway, consumption of fish and fish products is high compared to other European 

countries (except Spain and Italy). This pertains especially to lean fish as main meals and use 

of fish-bread spread, as bread is a staple of the Norwegian diet (VKM, 2014). Fish intake is 

encouraged except for the species specifically stated earlier (Matportalen, 2015). Although 

still prevalent, fish consumption has declined over the last few decades. This pertains 

especially to young women who consume less fish compared to the general public 

(Brantsæter et al., 2012). Nevertheless, the Norwegian Scientific Committee for Food Safety 

report on fish and other seafood intake in Norway in 2006 indicates that these were higher in 

Northern Norway compared to the rest of the country. In the 2014 update, there was no 

indication that changes in individual fish consumption patterns had occurred in the interim 

(VKM, 2006; VMK, 2014). 

The dietary advice discussed so far focuses on minimizing intake of certain food items to 

avoid consuming undesired components. However, declining seafood consumption can lead 

to insufficient intake of essential n-3 polyunsaturated fatty acids (n-3 PUFAs), as well as of 

nutrients essential for fetal development of the retina and brain (Cheatham et al., 2011; Harris 

and Baack, 2015). Furthermore, maternal plasma levels of docosahexaenoic acid (DHA) have 

been associated with brain maturation and cognitive development in newborn infants in the 

context of memory, speed of processing (which is related to sleep patterns), language and 

visual acuity (Cheatham et al., 2011). There are also indications of reduced risk of allergy in 

neonates when the mother takes omega 3 PUFA supplements (Miles and Calder, 2015). Other 

findings related to maternal deficiency of omega 3 fatty acids are low birth weight, risk of 

preterm birth and preeclampsia (Stotland et al., 2014). 
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1.3.  Fetal development and placental transfer 

1.3.1.  Fetal development 

A full-term pregnancy normally lasts for 280 days or 40 weeks, when calculated from the first 

day of the last menstrual cycle, and thus includes the pre-conceptional period until 

fertilization, and from fertilization to birth (Cunningham et al., 2010). Organogenesis during 

the prenatal period is generally divided into embryonic (gestational weeks 1-10), fetal 

(gestational weeks 11-28) and perinatal (gestational weeks 29-40) stages (Cunningham et al., 

2010; Ross, 2011).  

The neural tube and primitive vessels are the first fetal organs developed in organogenesis. 

Vasculogenesis begins 16 days after conception, and a functional circulatory system is present 

by day 21 (Rhodes et al., 2011). At this time, fetal blood vessels in the chorionic villi appear 

which subsequently develop into placenta. In the fourth week, the cardiovascular system has 

formed and circulation is established in the embryo and between the embryo and the chorionic 

villi (Cunningham et al., 2010).  

During the fourth week, the primitive gut is formed and the development of the 

gastrointestinal tract is complete at approximately eight weeks of gestation (Ross, 2011). 

Swallowing begins at 10 to 12 weeks, coincident with the ability of the small intestine to 

undergo peristalsis and the development of transport capability. Much of the water in 

swallowed fluid is absorbed, and unabsorbed matter moves to the lower colon. About 800 mg 

of soluble protein is ingested daily late in pregnancy by the fetus (Cunningham et al., 2010). 

The first meconium appears in the fetal intestine at approximately week 12, and accumulates 

throughout gestation. It is composed primarily of water (72 % - 80 %), and it contains lipids, 

blood group substances, enzymes, salts, vernix caseosa and bile acids. Under normal 

circumstances, meconium is not excreted until postpartum. Large concentrations of bile 

pigments excreted by the biliary tract from the fourth month onward give meconium its green 

colour (Glantz and Woods, 2004).   

Organogenesis of the liver develops from the third to fourth week of gestation on, and basic   

functional units are recognized during the 2nd and 3rd month. Hepatocytes perform various 

metabolic functions, including detoxification of drugs and toxins. However, their scope in 

early development is not fully understood. Assessments of plasma half-lives of drugs in 

newborns and adults indicate that the cytochrome P-450 activity in the fetus and newborn 
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remains considerably lower than that in adult liver. Based on biotransformation and 

elimination studies, caffeine has been shown to have a plasma half-life of 100 hours in 

newborns, compared to 6 hours in adults (Frank, 2011; Lobritto, 2011; Chemtob, 2011). For 

the toxicant dioxin, metabolic elimination does not appear to occur in infants and children 

while it does in adults – with respective half-lives of 0.4 y (infant) and 9.5 y in a 40-y old 

adult (Kreuzer et al., 1997).  

1.3.2.  Placental transfer 

Placental development starts at the time of implantation in the uterine cavity. This occurs 

around 6 to 7 days after conception, and continues throughout the pregnancy with a 

concomitant increase in uteroplacental blood flow (up to 40-fold during the course of a 

normal singleton pregnancy) (Frank, 2011; Rhodes et al., 2011; Rosenfeld, 2011). In the first 

trimester, placental growth is more rapid than that of the fetus. Around 17 weeks of the 

postmenstrual cycle, the placental weight is nearly equal to that of the fetus and 

approximately one sixth of it at term (Cunningham et al., 2010). Concomitantly maternal 

placental blood flow continues to increase throughout pregnancy, which is believed to reflect 

vasodilation (Rosenfeld, 2011). For some compounds, the placenta functions as a barrier and 

thereby protects against the transfer of xenobiotics from the mother to the fetus; for others, it 

can facilitate their passage (Figure 2) (Syme et al., 2004).  

A major function of the placenta is to transfer nutrients and oxygen from the mother to the 

fetus and it also assists in the removal of fetal waste products to the mother (Plonait and Nau, 

2011). Fetal nutrient demands increase during pregnancy and eventually exceeds that of the 

placenta. Increased expression or activity of transporters likely accounts for the more efficient 

uptake of nutrients (Jones et al., 2011). Nearly all drugs cross the placenta, although the 

extent does depend on their molecular and physicochemical properties. Drug transfer is 

facilitated by lipid solubility and a low degree of ionization (i.e., absence of charged forms) 

(Chemtob, 2011). Furthermore, lipid-soluble drugs are more easily absorbed in newborns than 

in older children (Chemtob, 2011). Apart from lipid solubility, polarity, molecular weight, 

and to some degree binding to plasma proteins, the rate of placental transfer may be limiting 

(Syme et al., 2004; Plonait and Nau, 2011). Drugs with a molecular weight below 500 are 

readily transferred across the placenta (Plonait and Nau, 2011), mostly by passive diffusion 

(Myllynen et al., 2005); as do lipid-soluble pesticides and PCBs of comparable molecular 



29 
 

weights (ATSDR, 2000; ATSDR, 2002; ATSDR, 2013).  Vizcaino et al. (2014) suggests that 

active transfer can occur as well.  

Since the human placenta contains multiple enzyme systems, the transfer of foreign chemicals       

can be modified by metabolism in the placenta. However, such enzymatic activities are 

usually relatively low compared with those of the maternal or fetal liver (see Figure 2) (Syme 

et al., 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Drug disposition in mother and foetus after maternal drug administration. A variety of 

pharmacokinetic variables, including transplacental transport and metabolism, determine the 

degree of maternal-to-fetal drug transfer and fetal drug exposure. Black arrows represent parent 

the drug and white arrows represent its metabolites. The size of the arrows approximates relative 

importance, although this is drug-dependent and will vary during pregnancy with fetal and 

placental maturation. (Reprinted with permission from Syme et al., 2004) 
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1.4.  Persistent organic chemicals 

POPs are man-made chemicals including pesticides have been released into the environment 

during the 20th century. Generally speaking (e.g., ATSDR, 2000/addendum 2011; ATSDR, 

2008), these compounds are inert (i.e., resistant to degradation, including thermal stability), 

have low volatility, and are relatively insoluble in water but freely soluble in nonpolar organic 

solvents (i.e., are lipophilic). Because of their toxicity and environmental bioaccumulation 

properties, the production and use of POPs were regulated under the Stockholm Convention 

in 2004 (European Union, 2004). 

1.4.1.  Polychlorinated biphenyls 

Polychlorinated biphenyls (PCBs) belong to a broad family of man-made organic chemicals 

known as chlorinated hydrocarbons, and consists of two benzene rings with the chemical 

formula C12H(10-n)Cln (n is the  number of chlorine atoms, usually 1-10). Around 200 PCB 

congeners are possible, but only about 130 of these were likely to have been present in 

commercial products (UNEP, 1999; EFSA, 2010; EPA, 2013). Due to their non-flammability, 

chemical stability and high boiling points, PCBs were used in industrial and commercial 

applications including: electrical and heat transfer and hydraulic equipment, plasticizers, 

paints, plastics, and rubber products (ATSDR, 2000). Although the manufacture of PCB was 

banned in 1979 (EPA, 2013), due to their environmental persistence these compounds 

biomagnify and bioaccumulate in the animal (and of course human) food chain as illustrated 

in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Animals in higher levels of 

the food chain consume large 

quantities from the lower levels.  

If lower levels have accumulated 

contaminants, the contaminants will 

become more concentrated in higher 

levels. 

(Reprinted with permission from Inuit 

Tapiriit Kanatami; https://www.itk.ca/) 
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The Stockholm convention has listed the PCBs in Annex A (which aims to eliminate 

production and use of chemicals) and Annex C (“parties must take measures to reduce 

the unintentional releases of chemicals”; Stockholm Convention, 2004). The consequence of 

banning PCB production has been a decline in human tissues levels (AMAP, 2009). In 

Norway ongoing monitoring of sediments, fish and zooplankton have demonstrated 

decreasing levels prior to 2000, although during the last ten years this decline has levelled off 

(Miljøstatus, 2014b). As demonstrated in cross-sectional studies, PCB concentrations increase 

with age in humans due to bioaccumulation. However, a Norwegian birth cohort study of   

males has demonstrated that serum concentrations across the 1979-2007 sampling period 

declined (Nøst et al., 2013). This reflects the impact of the Stockholm Convention ban. 

In humans, PCBs are biotransformed to hydroxylated forms (OH-PCB) via cytochrome P450-

mediated oxidation processes (Fängström et al., 2002; Dirtu et al., 2010). Even the most 

persistent PCBs in the environment, such as PCB 153, are biotransformed in vitro and in vivo 

into such metabolites (Dirtu et al., 2010). The OH-PCB metabolites are generally more 

hydrophilic than the parent compounds, and therefore are more easily eliminated from the 

body by way of the faeces and/or urine (AMAP, 2009). 

1.4.2.  Organochlorine pesticides 

These chemicals include insecticides, herbicides, fungicides and disinfectants and have the 

features of being environmentally persistent and accumulation in human tissues.  

p,p'-Dichlorodiphenyldichloroethylene (p,p'-DDE)  

p,p'-DDE is the primary metabolite of dichlorodiphenyltrichloroethane (DDT). Compared to 

its parent compound this metabolite is more stable, and it too is considered toxic. DDT was 

widely used during World War II to protect soldiers and civilians from malaria, typhus and 

other diseases spread by insects (Stockholm Convention, 2009). Its use continued after the 

war in controlling agricultural insects that cause diseases such as malaria (ATSDR, 2002).       

DDT was banned in the United States in 1972 because of its potential harm to wildlife and    

humans (ATSDR, 2002). In 2007, 147 countries worldwide committed to follow the 

recommendations of the Stockholm Convention regarding the use of DDT, which according 

to Annex B now allows restricted production and use in disease vector control (Stockholm 

Convention, 2004; WHO, 2011). DDT protects against malaria and, not surprisingly, 11 
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countries in the WHO African and South-East Asian regions in 2013 reported the use of DDT 

as an indoor residential spray (WHO, 2014). 

Hexachlorobenzene (HCB) 

HCB is a fungicide used in seed treatment and is a by-product of the manufacture of industrial   

chemicals. In the Stockholm Convention (2004), this compound is listed under both Annex A 

and Annex C. Although commercial production ended in the late 1970s, some HCB continues 

to be produced as a by-product in the manufacture of or impurity in chlorinated solvents and 

other chlorinated compounds (ATSDR, 2013). HCB is one of the most persistent 

environmental pollutants. It is practically insoluble in water, but is soluble in fat, oils, and 

organic solvents (ATSDR, 2013). 

Chlordane  

Chlordane is a broad-spectrum insecticide. Technical chlordane is a mixture of compounds of 

which the cis and trans chlordane forms (i.e., stereoisomers that have different spatial 

orientation of its chlorine atoms) predominate. It is very resistant to degradation and has high 

bioaccumulation potential (ATSDR, 1994). These pesticides have been listed under Annex A  

of the Stockholm Convention (Stockholm Convention, 2004). 

1.5.  Global transport 

Analyses of sediments, animal and human tissues have detected levels of OCs far from their 

manufacturing and primary use sites. This implies transport of these compounds to distant 

locations, as documented in the vast monitoring programme carried out in the Arctic area 

(AMAP, 2004). Figure 4 depicts how oceanic currents, river flows and winds move towards 

the Arctic area and illustrates that these contaminants can be delivered to remote places by air, 

river and ocean currents. 
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Figure 4. Transport routes for pollutants from distant places towards the Arctic region. (Reprinted 

with permission from AMAP, 2004) 
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Once in the Arctic, contaminants can either remain unchanged, or can undergo chemical or 

physical state changes. Their transport, uptake and metabolic degradation are all influenced 

by the physical, chemical and biotransformation processes mentioned above (AMAP, 2009). 

How climate change influences these processes and impacts the environment (including 

humans) is not fully understood.     

1.6.  POPs detected in the Norwegian environment 

Organochlorines, like PCB, DDT and dioxins have been and continue to be detected in     

Norwegian lakes, although their concentrations are generally low. Long-distant transport 

appears to be their primary source. Due to their long half-lives in detritus, the highest 

concentrations detected do reflect local past emissions (Miljøstatus, 2014a). PCBs were 

banned for use in Norway in 1980, and subsequently levels remaining in soils, structures and 

equipment have declined by 90 % between 1980 and 2010 (see Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analyses of fish and zooplankton in freshwater lakes reflect a similar decline in PCB 

concentrations during the 1990s, although after 2000 it has levelled off (KLIF, 2013). A 

directive from the European Union (EU) in 2012 states that PCB concentrations in fish-oil 
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Figure 5. Declining levels of PCB in Norway. (Reprinted with permission from KLIF, 2012) 
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products for domestic use must not exceed 200 µg/kg. Recent analyses of such products have 

shown that none exceeded this concentration (NIFES, 2012).  

A national ban on the use of HCB was implemented in 1995, and since then emissions have      

been reduced by 90 %, as illustrated in Figure 6; in 2010, it was estimated to be a total of 9 kg 

(KLIF, 2012). The same declining trend was observed for DDT during the 1998-2012 period    

in herring and trout samples from Lake Mjøsa, the largest fresh water lake in Norway (KLIF, 

2013).  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7.  POPs in humans and related health effects 

1.7.1.  Human exposure 

The main exposure by humans to contaminants is through food and breast milk, and to a 

lesser extent by way of inhalation or dermal contact (AMAP, 2003). In Norway, there are no 

large-scale industrial areas with local emissions, and it has been estimated that food accounts    

for more than 90 % of the exposure to PCBs and dioxins (Kvalem et al., 2009). Generally 

speaking, the most important sources are animal fats, especially marine fats from fish and 

shell fish, as well as seabird meat and eggs (Kvalem et al., 2009). Although the primary 

exposure route of POPs for Norwegians is through food consumption, inhalation and dermal 
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Figure 6. National emissions of HCB. (Reprinted with permission from KLIF, 2012) 
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contact remain relevant in places where people live in industrial areas with current emissions 

such as in Slovakia (Chovancová et al., 2014).  

Fetal exposure via the placenta during pregnancy seems less of a source than breast milk post-

birth. It is well documented that POPs are transferred by breast milk from mother to child 

because of its high lipid content (AMAP, 2009). Nevertheless, good correlations are observed 

between maternal and umbilical cord sera concentrations or with those in meconium, and 

thereby indicate significant transfer during pregnancy (Zhao et al., 2007; Park et al., 2008; 

Needham et al., 2011). Aylward et al. (2014) examined the concentration ratios for paired 

cord blood/maternal blood samples of PCBs, pesticides and selected elements. The lipid-

adjusted ratios reported for PCBs, hydroxylated PCBs, HCB, nonachlor and DDE were 

mostly 1.0 or lower. Consequently, and speaking generally, one may conclude that PCBs and 

OC pesticides are subject to transplacental transfer and thus maternal concentrations 

constitute reasonable predictors of fetal exposure.   

The downward trends depicted in Figures 5 and 6 are also reflected in breast milk from 

Norwegian mothers (see Figure 7) (VKM, 2013), as well as in Sweden and Canada (Norén et 

al., 2000; Ryan et al., 2014). For selective OCs in breast milk, the plots in Figure 7 suggest 

that the implementation of regulations by countries in conjunction with the Stockholm 

Convention has resulted in a reduction in emissions and exposure to POPs during the new 

millennium (KLIF, 2012) in Norway and other countries (e.g., Nøst et al., 2013; Parera et al., 

2013; Bonita et al., 2013). This downward trend is consistent with a lowering of the 

concentrations in food, but likely has also been enhanced by a reduction in fish consumption 

especially among younger women (VKM, 2014). On the other hand, Leckmann (2006) has 

shown that extending breastfeeding from six weeks to six months increases the transfer of 

POPs to the neonate nearly 2-fold for PCB 138, 153 and 180 and p,p'-DDE and 3-fold for 

HCB. This potential increase in neonatal exposure indicates that the duration of breastfeeding 

should be considered in the context of its benefits. 
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Figure 7. PCB, DDT and HCB concentrations in breast 

milk from Norwegian primiparous women. 

(Reprinted with permission from VKM, 2013) 



38 
 

1.7.2.  Health effects 

In terms of potential health impacts and generally speaking, the International Agency of 

Research on Cancer (IARC) designates chlorinated POPs, such as HCB, DDT and chlordane 

(its technical grade contains nonachlor), as Group 2B carcinogens (the agent is possibly 

carcinogenic to humans; IARC, 2015). The cancer risk of PCBs have recently been re-

evaluated (Lauby-Secretan et al., 2013) and are now designated as Group 1 carcinogens (the 

agent is carcinogenic to humans) because a number of epidemiological studies in 

occupational settings indicate excess risks of melanoma, non-Hodgkin lymphoma and breast 

cancer. Furthermore, Taylor et al. (2013b) critically reviewed and summarized studies that 

examined the association between plasma concentrations of chlorinated POPs and Type 2 

diabetes mellitus (T2DM). Although an overall positive relationship does appear to exist, its 

exact nature seems to be complex. Hansen et al. (2010) suspected that it may simply reflect 

lipidemia, which is a hallmark of T2DM. Similarly, Magliano et al. (2013) indicate that this 

observed association may constitute confounding, since OCs are stored in body fats. In an 

innovative approach, Rylander et al. (2015) illustrate that the robust positive associations 

observed between the rank sum of a range of OCs in plasma and T2DM were not supported 

by predicted concentrations of early-life exposures to PCB-153, or its accumulated 

concentrations until the time of diagnosis. 

The evidence for other adverse health effects of POPs for the general adult population, as 

opposed to exposed workers, is mostly inconclusive in terms of impact on reproductive health 

and hypertension. The association with the latter can perhaps again reflect lipidemia and 

metabolic issues related to fat turnover (Singh et al., 2014; Peters et al., 2014; Donat-Vargas 

et al., 2015). The 67 % increased risk of stroke among middle-aged women assigned to 

individual dietary PCB intake in a prospective study by Bergkvist et al. (2014) may need to be 

re-visited in the context of the Rylander et al. (2015) analyses.  

Prenatal exposure to OCs has been linked to a decline in birth weight (Halldorsson et al., 

2008; Govarts et al., 2012; Papadopoulou et al., 2013; Guo et al., 2014; Casas et al., 2015), 

while an attenuation of fetal growth linked to the dietary intake of dioxins and PCBs 

decreased with seafood intake (Papadopoulou et al., 2013). There is also considerable concern 

that PCBs and other OCs can have an impact on neurodevelopment, with disruption of thyroid 

hormone homeostasis as the underlying mechanism (see Park et al., 2009). In an occupational 

setting, an excess of neurodegenerative mortality in females has also been reported (Steenland 
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et al., 2006). Grandjean and colleagues (2012) investigated possible neurotoxic effects from 

prenatal PCB exposure in seven-year-old children. The statistical analyses showed only a 

weak negative association of total PCBs in cord blood with the Boston Naming test; by 

contrast, neither HCB nor p,p'-DDE showed any clear link to the neurobehavioral deficit tests 

conducted. Adjustments for cord mercury mostly attenuated the influence of the PCBs. By 

contrast, a comparison of the effects on the brain of prenatal exposure to methyl mercury 

(MeHg) at ages 7 and 14 appear to be multifocal and more permanent in the same cohort 

(Debes et al., 2006).  

1.8.  Essential and toxic elements 

Maternal whole blood was analysed for 10 different elements that comprise the most common 

essential and toxic elements. The essential elements included copper (Cu), manganese (Mn), 

molybdenum (Mo), selenium (Se) and zinc (Zn), while those recognized as non-essential and 

toxic were arsenic (As), cadmium (Cd), cobalt (Co), lead (Pb) and mercury (Hg).  

This suite of elements is comparable to that used internationally in multiple publications, and 

represent common essential and toxic elements (Osman et al., 2000; Odland et al., 2004; 

Röllin et al., 2009; Rudge et al., 2011; Needham et al., 2011).  

1.8.1.  Sources of essential elements and their roles 

Opposite to what is generally believed, there is not a general consensus about which 

micronutrients should be classified as essential (NNR, 2004). According to the International 

Food Standards Codex Alimentarius essential elements are defined as: “Essential nutrient 

means any substance normally consumed as a constituent of food which is needed for growth 

and development and the maintenance of healthy life and which cannot be synthesized in 

adequate amounts by the body” (CODEX, 2014). In terms of the elements in the present 

study, the evidence for the essentiality of those identified as such above is beyond doubt 

(Shenkin and Roberts, 2012).  

Reference values of nutrients include: (i) lower level of intake (LI), which refers to the level   

below which an intake can lead to deficiency symptoms in some individuals; (ii) average 

requirement (AR) defines the intake of a nutrient that represents the average requirement for a 

defined group of individuals; (iii) recommended intake (RI) refers to the amount of a nutrient 

that according to present knowledge can meet the known requirement and maintain good 
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nutritional status among practically all healthy individuals; and (iv) tolerable upper intake 

level (UL), which is defined as the maximum level of total chronic intake of a nutrient, is   

judged to unlikely pose a risk of adverse health effects in humans (NNR, 2004). In the new   

edition of the NNR document, these definitions of reference values remain unchanged (NNR 

2012). The Nordic Countries share common advisories for adequate daily intake adjusted for 

gender and age with specific recommendations for pregnant and lactating women (NNR, 

2012).  

Copper  

Cu is an important trace element and absorption occurs mainly in the small intestine 

(Barceloux, 1999b). Absorbed Cu is transported to the liver via portal blood bound to   

albumin. Two thirds of the total body Cu content is located in the skeleton and muscle, and 

the liver is the key in Cu homeostasis (Turnlund, 1998). Its absorption is reduced by 

competition with other dietary components, such as Zn, Mn and iron (Fe), and increased by 

amino acids and by dietary sodium. Nevertheless, uptake an excretion of Cu is tightly 

controlled (Nieboer et al., 2007). 

Cu is an essential metal that constitutes an important cofactor in oxidative proteins or 

enzymes (IOM, 2001; Shenkin and Roberts, 2012). For example, cytochrome-c oxidase is 

critical to respiration and tyrosinase is a Cu-based enzyme involved in the oxidative 

catabolism of the amino acid tyrosine. Ceruloplasmin is the most important serum Cu-

transport protein. 

Sources are organ meats and shellfish, especially oysters. Nuts, whole grain cereals, and 

cocoa-containing products, legumes and dried fruits are selected plant food rich in Cu, and it 

is present in lesser amounts in dairy products, especially cow’s milk (Shenkin and Roberts, 

2012). Cu deficiency is rare in healthy adults. When it occurs symptoms include hypochromic 

anaemia, de-pigmentations of skin and hair, impaired immune function, bone abnormalities, 

especially demineralization. Symptoms are reversible by Cu supplementation (Groff and 

Gropper, 2000). Toxicity is fairly rare but includes symptoms of nausea, vomiting and 

diarrhoea; in severe poisoning, haematuria, jaundice, oliguria or anuria can occur. Wilson’s 

disease is a genetic disorder of Cu metabolism that causes an increase in Cu to toxic 

concentrations throughout the body, while genetically-based impaired absorption is the basis 

for Menkes disease (Bandmann et al., 2015).   
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Manganese  

Mn like Zn is incorporated in certain proteins and acts as an enzyme activator; it competes 

with Fe absorption. Mn is associated with the formation of connective and bony tissue, with 

growth and reproductive functions, and with carbohydrate and lipid metabolism (Shenkin and 

Roberts, 2012). Dietary sources rich in Mn include whole grain food, nuts, leafy vegetables 

and soy products. Tea is also rich in Mn, but is not well absorbed from it (Groff and Gropper, 

2000). Mn deficiency has not been documented in humans with a balanced diet, and toxicity 

is documented from prolonged exposure to Mn-containing dust or fumes (ATSDR, 2012). Its 

symptoms resemble Parkinson’s disease and include prolonged reaction time, tremor and 

diminished memory capacity (Groff and Gropper, 2000; Michalke et al., 2007; Shenkin and 

Roberts, 2012).  

Molybdenum  

Mo is necessary as a cofactor for three metalloenzymes, all of which catalyse important 

oxidation-reduction reactions; it is eliminated from the body by way of the kidney (Barceloux, 

1999c; Groff and Gropper, 2000). Dietary sources include legumes, such as peas, lentils, 

beans, grains and nuts. Meat, fruit and many vegetables are poor in Mo. Neither deficiency 

nor toxicity has been observed in healthy humans consuming a varied diet. Nevertheless, 

excess Mo can induce Cu deficiency by blocking Cu absorption (Shenkin and Roberts, 2012).  

Selenium  

Se-containing proteins (selenoenzymes) constitute an antioxidant defence system such as in 

thyroid hormone metabolism, and resemble/complement the role played by vitamin E (El-

Shenawy et al., 2015). Se is present in all proteins non-specifically to some extent, as it can 

substitute for sulphur in the amino acids methionine and cysteine (Fairweather-Tait et al., 

2011). Se occurs naturally in foods almost exclusively in the form of organic compounds. 

Inorganic forms of Se may be found in some vegetables. Both organic and inorganic forms 

are absorbed from the gastrointestinal tract, are incorporated into proteins, can interconvert, 

and subsequently are transported to the liver, kidney, heart, pancreas and muscle, with all 

organs containing significant concentrations of Se (Groff and Gropper, 2000; Fairweather-

Tait et al., 2011; NNR, 2012; Shenkin and Roberts, 2012).  
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Perhaps more than any other trace element, Se varies greatly in soil concentrations throughout 

different regions worldwide and thereby related concentrations in food plants. This makes 

intake from food difficult to assess. Apart from plants, fish and other seafood, eggs and offal 

are relatively rich in Se (Shenkin and Roberts, 2012; NNR, 2012).  

Marginal deficiencies are thought to impact thyroid and immune function, reproductive 

disorders, inflammatory conditions, and cardiovascular disease. Severe deficiencies in 

humans have been identified in areas where the soil is particularly low in Se. Indeed, in China 

people have been diagnosed with Keshan disease causing cardiomyopathy and Kashin-Beck 

disease causing severe arthritis. Selenium toxicity (selenosis) from inorganic forms (i.e., 

selenite or selenate) includes symptoms of significant hair loss, muscle cramps, nausea, 

vomiting, diarrhoea, joint pain, fatigue, fingernail changes and blistering skin. Outbreaks of 

selenosis related to the consumption of crops grown in contaminated soils are known 

(ATSDR, 2003; Fairweather–Tait et al., 2011; Shenkin and Roberts, 2012).  

Zinc  

Zn is found in all organs and tissues and in body fluids. Most of the Zn in humans is found in 

bone, liver, kidney, muscle and skin (Groff and Gropper, 2000). Zn is distributed in food 

mainly bound to proteins, and its most available dietary sources are red meat and fish. Whole 

grains and vegetables are good plant sources but their Zn content is reduced my milling and 

food processing (Groff and Gropper, 2000; Shenkin and Roberts, 2012). Because of its 

multiple biochemical functions, clinical presentations of Zn deficiency vary; they are 

nonspecific and relate to the degree and duration of the depletion. Symptoms include growth 

restriction with stunting, increased risk of infection and diarrhoea, defects in carbohydrate 

use, reproductive teratogenesis and skin lesions to mention some (Cummings and Kovacic, 

2009). Excessive intake of Zn-contaminated diets can induce symptoms like abdominal pain, 

diarrhoea, nausea, and vomiting. In the occupational setting, exposure to Zn oxide fumes 

induces a reversible effect referred to as fume fever (Barceloux, 1999d).   

1.8.2.  Fetal exposure 

Se, Zn and Cu pass through the placenta bound to proteins (Sakamoto et al., 2013) and, in a 

recent study based on in vitro studies, it is hypothesized that Mn is actively transported across 

the placenta (Nandakumaran et al., 2016). For the essential elements, Aylward et al., (2014) 

report that the concentration ratios for paired cord blood and maternal blood samples were: 2-
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3 (Mn), 1-2 (Zn), ≤ 1 (Se), and well below 1 for Cu; that for Mo appears to be 1 (Krachler, 

1999).  

1.8.3.  Sources of toxic elements and their health effects 

Some metals and non-metals have been recognized as toxins for centuries and, in more recent 

times, two examples with devastating effects on human health are of As in drinking water in 

Bangladesh (Edmunds et al., 2015) and MeHg-contaminated fish in Minimata, Japan (Tsuda 

et al., 2009). Of the five toxic elements included in the present study, four are listed in the top 

20 of the 2007 CERCLA (Comprehensive Environmental Response, Compensation, and 

Liability ACT) Priority List of Hazardous Substances, namely: As, (No.1), Pb (No. 2), Hg 

(No. 3), and Cd (No. 7) (Moyer, 2012). 

Arsenic  

As is the 20th most common element in the earth’s crust. As-containing pesticides were used 

in the past. The primary route of exposure is the normal diet, or by consumption of 

contaminated food or drinking water as implied above. Inadvertent hand-to-mouth activity of 

contaminated soil is another established route (especially by children) (ATSDR, 2007a). The 

highest concentrations have been found in seafood, followed by meats, cereals, vegetables, 

fruit and dairy products (Molin et al., 2015). The non-toxic organic forms of As are mostly 

found in seafood, fruit and vegetables, whereas toxic inorganic As forms are  present in meat, 

poultry, dairy products, cereals and some seafoods. It is estimated that on average 

approximately 25 % of daily dietary As intake is in the form of inorganic species (Schoof et 

al., 1999; IARC, 2012).  

As is widely distributed within the body (ATSDR, 2007a; CDC, 2009). Placenta transfer 

through passive diffusion appears to occur (Rudge et al., 2009; Sakamoto et al., 2012; Chen et 

al., 2014), with paired cord blood/maternal blood ratios of ≤ 1 (total As) (Guan et al., 2010; 

Aylward et al., 2014). Its detoxification occurs in the liver and excretion is by way of the 

kidney (Moyer, 2012; IARC, 2012; Molin et al., 2015). The half-life of inorganic As in blood 

is 4 to 6 hours (h) and 20 to 30 h for its methylated metabolites (Moyer, 2012). Consequently 

the excretion into urine of inorganic As and its metabolites, as well as of organic As (mostly 

in the arsenobetaine form), is relatively short (hours to 1 day; Lauwerys and Hoet, 2001).  
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The toxicity of inorganic As is primarily due to its interference with energy transfer in cells. 

High exposures to inorganic As occur in the workplace by inhalation or in regions of the 

world through drinking water that is naturally contaminated with this element. Adverse 

outcomes include dermal effects (e.g., hyperkeratosis, hyperpigmentation and skin cancer), 

internal cancers (IARC, 2012), neurological impairment (e.g., sensorimotor and peripheral 

neuropathy), vascular diseases, gastrointestinal/hepatic disorders, and detrimental 

reproductive/developmental issues (Mohammed Abdul et al., 2015). In terms of the latter, 

Laine et al. (2015) observed significant negative associations between urinary inorganic 

metabolites of As and birth weight, birth length and gestational age. Its ability to target the 

brain can affect learning skills in childhood (Mohammed Abdul et al., 2015).  

Cadmium  

Cd occurs naturally in the earth’s crust. Industrialized release includes mining and smelting of 

Zn, battery manufacturing, pigment production for paints, and occurs in tobacco products 

(CDC, 2009; Moyer, 2012; IARC, 2012). Cd is absorbed via inhalation and ingestion. The 

primary non-occupational source is cigarette smoking, and for non-smokers with no 

occupational exposure the main source is ingestion of foods that include cereals, rice, potatoes 

and various seeds grown in Cd-contaminated soils (CDC, 2009; Charania et al., 2014). The 

gastrointestinal absorption of dietary Cd is about 10 % higher in women than in men, and Cd 

uptake is inversely related to Fe status (CDC, 2009; Meltzer et al., 2010). Cd in blood is 

bound to the protein metallothionein and represents mostly recent exposure with a half-life of 

40-90 d by contrast, Cd accumulated in the kidney and liver has a half-live of 10 y or more, 

and this is reflected in its excretion rate into urine primarily as metallothionein (Nieboer et al., 

1999; Lauwerys and Hoet, 2001). Sakamoto et al. (2012) report the fetal Cd concentration to 

be about 20 % of that in maternal whole blood, and indicate that the protein metallothionein 

in the placenta plays a role in restricting the transfer of this metal (also see Aylward et al., 

2014).  

Renal damage is the primary target of Cd, although breathing of Cd-containing fumes/dust 

such as in occupational settings can lead to nasal and pulmonary damage, as well to lung and 

other cancers (IARC, 2012; Moyer, 2012). Cd in non-smoking women has been observed to 

be inversely related to birth weight of their neonates (Lin et al., 2011; Johnston et al., 2014), 

although Zhang et al. (2004) could not observe this association. Few studies have investigated 

the effects of Cd in non-smokers and related neonatal outcomes.  
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Cobalt 

Co is a magnetic element that occurs naturally in nature. It is emitted into the environment 

from burning coal and oil, and automobile exhaust, although diet is the main source of Co in 

the general population (Barceloux, 1999a; ATSDR, 2004; CDC, 2009). Co is an essential 

cofactor in vitamin B12 (nutritional Co deficiency occurs with a total abstinence of B12 

containing foods; Reinhold, 1975), is not highly toxic generally speaking, and can be 

absorbed via the oral and pulmonary routes (CDC, 2009; Moyer, 2012). Individuals suffering 

with nickel dermatitis on occasion are also sensitive to Co and, by analogy to nickel 

(Dolovich et al., 1984), cases of Co-induced asthma are rare. Occupational exposure to Co-

containing dust has been associated with an interstitial lung disorder known as “hard metal 

disease” (CDC, 2009). Fish and vegetables, such as green leafy vegetables and fresh cereals 

are rich sources of Co, while animal products are the best sources of vitamin B12. Animal 

livers also contain high Co concentrations and tobacco does as well (Barceloux, 1999a), but 

not cigarette smoke (Pappas et al., 2014). Gastrointestinal absorption of Co varies between 5 

to > 20 % (Barceloux, 1999a). It accumulates mostly in the liver followed by the kidney, 

although most is excreted through urine and to lesser extent in the faeces (with a half-life of 

about 24 h, along with a minor fraction exhibiting longer times (Lauwerys and Hoet, 2001). 

Paired cord blood/maternal blood ratios of ≤ 1 (Co) have been observed (Aylward et al., 

2014). 

Lead  

Pb is present naturally in soils and rocks. In some mineral deposits, it occurs with other 

elements such as As, bismuth (Bi), Cd, Cu and Zn.  Pb is recovered by recycling scrap metal, 

including batteries, Pb pipes and ammunition. Pb compounds were extensively used as 

gasoline additives, but this practice was phased out in the 1980s ─ it was banned in the USA 

on January 1, 1996 and in 1997 in Norway (ATSDR, 2007b; Miljøstatus, 2015). 

Concurrently, a continuous decline has been observed in its concentration in humans (Nieboer 

et al., 2013). Leaded gasoline emission constituted a major environmental problem (CDC, 

2009). Today, contact with contaminated soils and consumption of vegetables grown on them 

remain sources for the general population, as well as drinking water in older homes with Pb-

plumbing (Nieboer et al., 2013). Cigarette smoking makes a minor contribution to Pb 

exposure (Chelchowska et al., 2013; Taylor et al., 2013a). Exposures can also occur during 

gun use (fumes given off during gun firing contain Pb that originates from the gunpowder) as 
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can the consumption of hunted game such as waterfowl (tissue-embedded Pb pellets and/or 

fragments are sources; Meltzer et al., 2013; Nieboer et al., 2013).  

Pb, like most inorganic substances, is poorly absorbed through the skin (ATSDR, 2007b). 

When inhaled, 10-60 % of Pb-containing micro-sized particles (0.01-5.0 µm diameter) are 

deposited in the respiratory tract, and most of the PB is absorbed within 24-h of inhalation 

unless the substance has low solubility (Skerfving, 1995). About 10 % of ingested Pb is 

absorbed in the gastrointestinal tract (Moyer, 2012), and its uptake increases when Fe-

deficiency and/or low calcium intake occur (Mahaffey, 1990). Once in the blood, Pb is bound 

primarily to erythrocytes and is distributed by way of plasma to other organs such as liver, 

kidney, lung, brain, muscle and heart; it accumulates in bones (including teeth) because Pb 

can substitute for calcium. About 94 % of the total amount of Pb in the body is stored in the 

skeleton (ATSDR, 2007b). The half-life of Pb in the peripheral blood and soft tissue 

compartments is around one month, while in the skeleton it is 9-12 y (Skerfving, 1995). 

Consequently, bone constitutes an ongoing source of Pb for the blood compartment. 

Approximately 70 % of Pb is excreted into urine, with a lesser amount eliminated via the 

faeces.  

Pb readily passes the placenta (Odland et al. 1999; Needham et al., 2011; Chen et al., 2014) 

with paired cord blood/maternal blood ratios of < 1 (Aylward et al., 2014). Pb is a systematic 

poison with no apparent toxicological threshold (Rogan and Ware, 2003; Flora et al., 2015). It 

exhibits universal adverse effects, including impairment of the nervous system and 

development, an increase in blood pressure, renal perturbations (ATSDR, 2007b), and 

reproductive effects. Maternal blood concentrations of Pb have been associated negatively 

with birth weight, birth length and head circumference, as well as gestational length (Ettinger 

et al., 2010; Moyer, 2012; Nieboer et al., 2013). High levels have also been associated with 

miscarriages (ATSDR, 2007b). Blood Pb levels > 5 µg/dL (50 µg/L or 0.24 µmol/L, the 

concentration currently recommended in the USA to identify children with elevated levels; 

CDC, 2012) have been negatively correlated to adaptive behaviour (social withdrawal, sleep 

problems, atypical body movements, previous medical diagnoses, aggression and 

destruction), gross and fine motor, language and individual social behaviour (Hou et al., 

2013). Interestingly, the negative effects of Pb on mental and psychomotor development as 

measured by the Bayley Scales of Infant Development-II Assessment appear to be enhanced 

by co-exposure to Mn (Claus Henn et al., 2012).  
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Mercury  

Hg is widely found in the environment and occurs both naturally and as results of industrial 

processes. At room temperature it is a liquid that is volatile, it is toxic in both its elemental 

(Hgo) and ionized forms. Elemental Hg is bio-converted to MeHg (CH3Hg+) by 

microorganisms that exist in the sediments of lakes and rivers. CH3Hg+ has both hydrophobic 

and hydrophilic properties, strongly binds to proteins especially via sulphur atoms, and the 

central nervous system is a primary target (Costa et al., 2004). Elemental Hg is released to the 

air from the combustion of fossil fuels, mining and smelting operations, and direct release of 

elemental and inorganic Hg in industrial discharges are also important. MeHg has the ability 

to bio-accumulate in aquatic and terrestrial food chains, and this constitutes the main route of 

human exposure. Intake of fish and some other marine foods (CDC, 2009) correlate with 

blood Hg (Brantsæter et al., 2010; Rice et al, 2014). Elemental Hg is poorly absorbed from 

the gastrointestinal tract (less than 0.1 %), whereas 7 % and 95 % of inorganic and CH3Hg+is 

absorbed respectively (Nieboer et al. 1999; ATSDR, 1999). After entering the blood, Hg is 

distributed to all tissues including secretion into hair. MeHg is excreted via the faeces, while 

inorganic Hg forms are eliminated primarily by the urinary pathway (ATSDR, 1999) with a 

half-life of 45-70 d. MeHg appears to pass easily through the placenta via active transport by 

amino acid carriers, with cord blood concentrations approximately 1.5 to 2 times those in 

maternal whole blood; this ratio was comparable for total Hg, namely 1-2 (Aylward et al., 

2014). 

The toxicological impacts of Hg include cardiovascular, haematological, pulmonary, renal, 

immunological, neurological, endocrine, reproductive, and embryonic effects (Rice et al., 

2014). As a known neurotoxicant, MeHg is particularly harmful to fetal brain development 

(Mahaffey 2011). As mentioned earlier, Grandjean et al. (2012) observed weak associations 

between OCs and neurobehavioral deficits in children at age 7, which became weak or 

disappeared after adjusting for Hg concentrations (observed mean of 42  nmol/L or 8.4 µg/L). 

Chen et al. (2014) found significantly higher Hg concentrations in maternal and cord plasma 

and red blood cells [mean of 11.7 nmol/L (2.3 µg/L) for mothers and 17.8 nmol/L (3.6 µg/L) 

in cord blood] in preterm (gestational age < 37 weeks) or babies with birthweights below 

2500 g. These associations were weaker for Pb. Similarly Ramón et al. (2009) observed a 

reduction in birth weight of 144 g in the highest Hg quartile measured in cord blood (range of 

30-64 nmol/L or 6.0-12.8 µg/L). Vejrup et al. (2013) investigated possible association 

between birth weight and estimated Hg intake based on dietary information from a FFQ in the 
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Norwegian Mother and Child Cohort study (MoBa). Newborns of mothers in the highest 

quintile compared to the lowest quintile of Hg exposure had an increased risk (adjusted) of a 

reduction in birth weight of 34 g and a 9 % increased risk of being born small for gestational 

age. By contrast, a similar investigation in Greenland found only a weak or no association 

between MeHg exposure and birth weight (AMAP, 2011), as have others (EFSA, 2012; 

Taylor et al., 2014).  

1.9.  Global transport and time-dependent patterns of toxic elements  

The transport of contaminants (including toxic metals) to the Arctic has been studied 

extensively (Macdonald et al., 2005). Cd- and Pb-containing aerosols appear to be poorly 

captured within the Arctic regions (the proportion is estimated to be < 15 %), but changes in 

precipitation patterns are believed to be able to alter this (Macdonald et al., 2005). Hg is 

transported to the Arctic by air currents (within a matter of days), ocean currents (that may 

take decades) and rivers (AMAP, 2011). This is illustrated in Figure 8, which depicts the 

dominant air transport pathways for Hg into the Arctic. The global emissions shown in Figure 

9 indicate that Asia and central Europe, and to lesser extent the US, Central America and 

South America, have been major sources.  
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Figure 8. Dominant air transport pathways for Hg into the Arctic from major source regions, 

with an indication of the contribution by them at specific monitoring locations. (Reprinted with 

permission from AMAP, 2011) 
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As, Co, Cd, Ni, Pb and Zn are also transported through air and ocean currents and rivers. 

Interestingly, As and Co were detected in rainwater samples from eight Arctic catchments in 

Russia, Norway and Finland and were linked to emissions from the nickel mining and 

refining industries located in the Kola Peninsula (North West Russia) (Macdonald et al., 

2005; ATSDR, 2004 and 2007a). Such emission patterns have been documented for other 

areas with nickel mining/refining activities (Nriagu and Rao, 1982; Rose and Parker, 1982). 

Continued monitoring of Hg and Pb in maternal blood samples indicate decreasing trends 

during the period 1990-2007, as illustrated in Figures 10 (a) and 10 (b) (AMAP, 2009), 

although rather high Hg levels are still evident in Northern Canada and Greenland. Since 

these areas have minor local sources and traditional foods remain a staple (see Figure 9), the 

potential detrimental influence of global Hg transport on local Arctic inhabitants remains. 

 
 

Figure 9. Global distribution of anthropogenic atmospheric emission of mercury in 2005 at 
a 0.5° x 0.5° latitude/longitude grid. Source: AMAP/UNEP (2008). (Reprinted with 
permission from AMAP, 2011) 
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However, a recent study of the temporal trend from 1970s to 2012 of Hg concentration in 

fresh water fish from Ontario, Canada observed a reversal of the decreasing tendency from 

1995 onwards. Although Hg emissions have declined in North America, other factors such as 

global emission and climate change are considered likely causes (Gandhi et al., 2014). By 

comparison, a study in Sweden measuring Hg levels in freshwater fish consumed from 1965-

2012 indicated an overall long-term decline of 20 % or more, but consistent regional patterns 

were absent (Åkerblom et al., 2014).     

Subsequent to the phasing out of leaded gasoline, Pb concentrations in humans have been 

steadily declining. However, continued use of Pb-containing gun powder/ammunition by 

indigenous people and other hunters remains a source, as does living in older homes with Pb 

plumbing and residing on/near contaminated soils (Nieboer et al. 2013). Reduced emissions 

of As, Co and Ni have accompanied the general lowering of emissions from metal refineries 

such as in Norway, Russia and Canada (Keller et al., 1999; Schindler et al., 2013). Reduction 

in cigarette smoking has also mitigated exposure to Cd (Tellez-Plaza et al., 2012). 
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Figure 10. Total Hg (a) and Pb (b) concentrations in blood of mothers, pregnant women 

and women of childbearing age in the circumpolar countries. (Reprinted with permission 

from AMAP, 2009) 
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1.10.  Toxic elements detected in the environment in Norway 

The emission of none-essential elements reported in the Norwegian national priority list has 

decreased consistently during the period 1995-2010. Release of Hg, Cd and Pb were reduced 

between 67 to 80 % (KLIF, 2012), although there are indications that Hg detected in 

freshwater fish increased during the 2010- 2012 observation period (Braaten et al., 2014), 

which reflects the trend mentioned above for Ontario, Canada. Those for As were only 

reduced by 15 % during 1995-2010, likely because it is/was released from pressure-treated 

(impregnated) wood by leaching (KLIF, 2012). Other sources for local emissions of these 

toxic elements involve industries including oil and gas production, and sewage treatment and 

sediments (KLIF, 2012).  
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2.  AIMS OF THE THESIS 

This thesis is based on the Northern Norway Mother-and-Child Contaminant Cohort Study 

(The MISA study). 

The study objectives were: 

 Summarize the dietary intake in pregnant women in Northern Norway; 

 Identify associations between dietary intake and maternal serum concentrations of 

PCBs and organochlorine (OC) pesticides, as well as for essential and toxic metals in 

maternal whole blood; 

 Quantify selected OC pesticides, PCBs and phenolic metabolites of the latter in 

meconium, and identify factors that influence their concentrations in this medium; and  

 Enhance understanding of the mother-to-fetus transfer of OCs.  
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3.  MATERIAL AND METHODS  

3.1.  Study population 

Pregnant women were recruited in early pregnancy (preferably before gestational week 20) 

when making their pregnancy ultrasound appointment or at antenatal centres. As summarized 

in Figure 11, a total of 2600 women were invited to participate in the project with a response 

rate of 23.4 % and an enrolment of 515 (19.8 % of invited subjects). Paper I included 391 

women who completed all study aspects, although selected personal and obstetrical data 

available in the Medical Birth Registry of Norway (MBRN) were compared for the study 

subjects and the dropouts (n = 113), as well as the questionnaire dietary information provided 

at enrolment by both groups. Paper II included 39 women and their matched 40 newborns 

(including one pair of twins) randomly selected from the cohort, and the Paper III dataset was 

based on the entire group of eligible study subjects (n = 515). However, the exact number of 

participants depended on the available number of maternal serum and/or whole blood 

specimens, the specific substances analysed for, the completeness of the FFQs, and the model 

adopted in the statistical analyses.  

3.2.  Information, measurements and sample collection 

Collection of personal information and biological samples and the administration of selective 

anthropometric and clinical measurements were carried out at enrolment, delivery, and three 

days and six weeks postpartum (PP) (see flow chart in Figure 12). At the first meeting the 

women donated blood and urine samples, their blood pressure (BP) and body weight (BW) 

were measured and the women completed a self-administrated questionnaire pertaining their 

education, lifetime residency, self-perceived health, smoking habits and alcohol intake, and a 

semi-quantitative FFQ. At delivery the women’s BP and BW was measured again. In addition 

a maternal scalp-hair sample was taken, and umbilical cord blood and meconium samples 

were collected. Three days PP and six weeks PP maternal blood and urine specimens were 

taken and both the BP and BW were measured. When handing in the written consent, the 

women agreed for the researchers to access their current and former birth registry data from 

the MBRN.  
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Figure 11. Study population and Papers I, II and III participants. 

 

 

Paper I was based on the personal, social and dietary information obtained through the FFQ. 

Obstetrical data were obtained from the MBRN. In Paper II, the measured concentrations in 

sera samples (collected in early pregnancy) and in matched newborn meconium samples of 

POPs (specifically OC pesticides, PCBs and hydroxylated PCBs) were compared. Paper III 

examined the complete early pregnancy serum POPs dataset (n = 515) and the concentrations 

of essential & toxic elements in a subset of 282 whole blood samples, with personal, lifestyle 

and dietary factors as predictors of the observed concentrations the primary focus.  
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Figure 12.  Protocol flow chart of the MISA study. (Reprinted with permission from Paper I, 
with adjustment to the start-up period to include the entire study group) 
 

 

3.3.  Dietary assessment 

The MISA dietary questionnaire was based on that used in the Norwegian Women and Cancer 

study (NOWAC) (Engeset et al., 2005; Parr et al., 2006; Hjartåker et al., 2007). It included an 

expanded section for maternal intake of fish, whale/seal, sea gull eggs, reindeer, moose, 

grouse and local berries. Recorded consumption was converted to daily intake in grams 

(Blaker and Aarsland, 1995) based on the Norwegian Weight and Measurement Table 

(Matvaretabellen, 2014). The MISA FFQ was designed to assess primarily the habitual diets 

over the past year, and included questions about 137 food items. All questions had 4 to 7 

fixed options, ranging from never/seldom to either 5-7 times per week, or 2+ times per day. 

Details were also sought about the amount consumed, as well as seasonal variation of fish 

intake. The women were also asked about past seafood intake during childhood, youth and 

adult life stages. Consumption of fatty fish, fresh water fish, fish liver, whale and seal, crab 

meat, sea birds and sea bird eggs were emphasized. 
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3.4.  Blood and meconium sampling and chemical analyses 

The maternal serum and whole blood samples considered in this thesis were drawn during the 

2nd trimester (mean of 18.2 weeks and range 9.0 – 36.0), and the meconium samples at the 

earliest possible time postpartum (mean of 13.8 and range 1– 61 hours postpartum). All 

biological samples were stored at -20°C in a biobank at the UiT The Arctic University of 

Norway until analysed further.  

Maternal serum and meconium analyses were carried out at the Norwegian Institute for Air 

Research (NILU), Fram Centre, Tromsø, Norway. PCBs, OC pesticides (including, p,p'-DDT 

p,p'-DDE, nonachlors and hexachlorobenzene) and PCB phenolic metabolites in both serum 

and meconium extracts were analysed according to Rylander et al. (2012). All were quantified 

employing an Agilent 7890A gas chromatograph, equipped with a series 5975C mass 

spectrometer (Agilent Technologies, Böblingen, Germany).  

Maternal whole blood analyses were carried out at the National Institute of Occupational 

Health (NIOH), Oslo. In brief, maternal whole blood was analysed for As, Cd, Co, Cu, Hg, 

Mn, Mo, Pb, Se, and Zn by inductively plasma-mass spectrometry (ICPMS), employing a 

high resolution magnetic sector field Element 2 mass spectrometer (Thermo Electron, 

Bremen, Germany) calibrated with whole-blood matched standard solutions. Further details 

are provided by Hansen et al. (2011).  

Lipid determination in meconium was determined as % extractable organic material (EOM) 

according to Folch et al. (1957), and serum lipids were determined enzymatically using the 

following summation formula to calculate the amounts of lipids in each plasma sample: TL = 

1.677 (TC – FC) + FC + TG + PL, where TL = total lipids, TC = Total cholesterol, FC = free 

cholesterol, TG = Triglycerides and PL = phospholipids (Akins et al., 1989; Hansen et al., 

2010). 

3.5.  QA/QC 

The NILU Laboratory has participated in the AMAP Human Health ring test (Eik Anda et al., 

2007). Uncertainties associated with the calculated serum concentrations were within ± 15 %, 

which is considered “best” performance; for meconium, the uncertainties were somewhat 

larger (within ± 25 % for the majority of the compounds).  
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The NIOH laboratory participates in the Wadsworth Center, New York State (USA) 

Department of Health Proficiency Testing Schedules for trace elements in whole blood and 

urine, with acceptable results (typically within ± 2–10 % deviation from the target values) and 

no indication of systematic bias. 

Additional details are provided in Papers II and III. 

3.6.  Statistical analysis 

All concentrations below the limit of detection (LOD) were replaced with LOD/√2 as 

recommended by Eik Anda et al. (2007). All data were entered in a constructed Microsoft 

Office Access database and eventually converted to IBM SPSS Statistics for Windows 

(version 19.0 and 21.0; SPSS Inc., Chicago, IL, USA) when statistical analysis were carried 

out. Data was assessed for normal distribution by the Kolmogorov-Smirnov test and found to 

be positively skewed. These variables were either log-transformed [base 10 logarithm (log10 

x)] before entering them in the statistical analyses where this was required or, when not, the 

appropriate non-parametric analysis was applied. T-tests, Pearson correlation and Spearman’s 

rho rank statistics were employed, as well as the chi-squared test for categorical variables, 

kappa (κ) to determine the strength of agreement, and principal component analysis (PCA) to 

group variables to enhance interpretations. ANOVA and/or the Post Hoc Bonferroni Test 

were employed for comparisons involving PCA-generated variables. 

3.7.  Ethical considerations 

The MISA project was approved be the Regional Committee for Medical and Health 

Research Ethics (REC North) and the Norwegian Data Inspectorate. The women were 

informed in the written consent form that their participation was on a voluntary basis, and that 

they could withdraw at any time. All results are presented anonymously.  
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4.  MAIN RESULTS 

4.1.  Paper I 

Presentation of population characteristics and summary of dietary findings in The MISA 

study 

Among the 515 women who donated blood in early pregnancy and provided written consent 

(criteria for participation), 391 completed the study protocol that included a comprehensive 

self-administrated FFQ, donating blood and other biological materials post-partum, as well as 

acquiescing to anthropometric measures at the three time points. The participants were 

compared to the drop-out group based on data obtained through the study questionnaire and 

the MBRN; and using the latter, to all Norwegian mothers for the 2004-2006 period. 

Compared to the MBRN women, those in the study cohort on average were about 2 years 

older and smoked less. Parity, gestational age and birth weight of the newborn were 

comparable. Compared to the drop-out group, the study group was approximately 2 years 

older, attended school one more year (15.9 compared to 14.7, respectively), smoked less and 

had fewer instrumental deliveries. Estimated daily intake of 8.1 MJ per day was less than 

recommended by the Nordic Nutritional Recommendations (NNR), but nutrient intake per MJ 

(nutrient density) was in good compliance with NNR. It was concluded that the occurrence of 

bias was minimal and that an acceptable external validity prevailed. The MISA database was 

considered suitable for exploring associations between contaminant exposures and diet, 

enhancing our knowledge of the interplay of physiological changes that occur in mothers with 

contaminant pharmacokinetics (including transfer to the infant before and after birth), and 

conducting prospective health studies of the neonates. 

4.2.  Paper II 

Is meconium useful to predict fetal exposure of organochlorines (OCs) and hydroxylated 

PCBs? 

The objective was to investigate if it was possible to detect OCs and their metabolites in 

meconium, and if the quantified contaminants would reflect the corresponding maternal 

serum levels. A subset of 40 meconium samples and complementary maternal sera were 

selected from the MISA Cohort Study and analysed for the AMAP suite of PCBs and OCs.  

Meconium was collected at the earliest opportunity (median 9.0 hours postpartum, range 0-



64 
 

61hours) and maternal serum in the 2nd trimester (median 19.0 gestational weeks, range 13-34 

weeks).  Eight compounds had detection frequencies greater or equal to 70 % in both media 

and were included in the statistical analyses. The pesticide concentrations favoured 

meconium, whereas the PCBs did so in maternal serum. All inter-media correlations 

(Spearman’s rho) were significant for wet-weight concentrations and improved for the subset 

of 15 samples for which lipid lipids were quantified in both media. Multivariable linear 

regression models confirmed that maternal serum was the most consistent predictor of 

meconium OC concentrations. When collection time and gestational age were included in the 

model as predictors, the overall variation explained improved. This was supported by the 

observed magnitude of the standardized β-coefficient for the multivariable regression models.  

Respectively for p,p'-DDE and HCB, maternal serum concentration accounted for 54 % and 

36 % of the variation, hour of sampling for 26 and 33 %, and gestational age for 20 % and 

19 %. Similarly for PCBs 138 and 153, these relative contributions were: 54 and 50 % 

(maternal serum), 26 and 26 % (sampling time), and 23 and 27 % (gestational age) 

respectively. Although its analysis is challenging, meconium has proved to be a sensitive and 

informative fetal exposure index when gestational age and sampling time are taken into 

account. Lipid adjustment also appears to be important.  

4.3.  Paper III 

Principal Component Analysis (PCA) of environmental contaminants in maternal sera and 

dietary intake in early pregnancy in the MISA population. 

This study had two primary objectives: (i) using PCA to generate new variables for suites of 

organochlorines [8 PCBs and 4 organochlorine (OC) pesticides], of 10 inorganic elements in 

whole blood (5 essential and 5 toxic), of  all the OCs and elements mentioned, and of 20 food 

groups in sera of pregnant women collected in the 2nd trimester (mean of 18.2 weeks, range 9.0 

– 36.0); and (ii), to determine the influence of personal and social characteristics on 

contaminant, elemental and dietary PCA factors.  

When all POPs and elements were included the PCA analysis, 3 axes stood out in the 

multivariate analysis with robust loadings of: all POP compounds; the elements As, Se and 

Hg; and the toxic metals Pb and Cd. For these 3 axes, the respective predictors were: maternal 

age, parity and consumption of freshwater fish and land-based wild animals; marine fish; 

cigarette smoking, dietary PCA axes reflecting consumption of grains & cereals, and food 
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items involving hunting. PCA of only the POPs separated them into two axes that, in terms of 

the recently published results, could be understood to reflect longitudinal trends and their 

relative contributions to summed POPs. 

The dietary PCA axes reflected patterns of healthy foods, junk food, fish consumption, cereal 

& grains, and local traditional foods. Predictors in the multivariate analysis involving the 

dietary PCA axes denoting fruit/vegetable intake, junk food consumption and marine diet 

were age, education, BMI and physical activity.  

The PCA has not only enhanced our understanding of the inter-relationships between 

contaminants, but also among food items consumed by the MISA study group. The linear 

combinations of variables generated by PCA identified prominent dietary sources of OC 

groups and of well-known toxic elements, and highlighted the importance of maternal 

characteristics. 
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5.  DISCUSSION 

5.1.  Overall main findings 

5.1.1.  Paper I.  

The MISA database is considered suitable for exploring associations between contaminant 

exposure and diet, enhancing our knowledge of the interplay of the  physiological changes 

that occur in mothers with contaminant pharmacokinetics (with emphasis on the transfer to 

the infant before and after birth), and conducting prospective health studies of the children.  

5.1.2.  Paper II.  

Although more challenging to collect and analyse than maternal serum and cord blood, 

meconium may be viewed as a helpful complementary biomonitoring medium. The current 

study suggests it to be a sensitive and informative fetal exposure index for OCs when taking 

into account gestational age and its postpartum sampling time. Lipid adjustment of OC 

concentrations in meconium is recommended. An important role is anticipated for its use in 

investigating the placental transfer of contaminants, and of their subsequent metabolism and 

toxicity.   

5.1.3.  Paper III.  

Combinations of variables generated by PCA facilitated our ability to identify prominent 

dietary sources of OC groups and of the prominent toxic metals Cd, Pb and Hg, as well as 

highlighting the importance of maternal characteristics (including pregnancy histories and 

smoking habits). Although the maternal concentrations of the toxic contaminants observed 

were relatively low, more substantial exposures would be a concern. This is especially 

worrisome in case of Cd for mothers who smoke cigarettes during pregnancy. 

5.2.  The context of the observed concentrations of OCs and elements  

5.2.1.  OCs 

When considering sampling year and total fish consumption, the observed concentrations of 

PCBs and pesticides in maternal sera were comparable in magnitude to those reported for 

other pregnant women in the Nordic countries (Glynn et al., 2007, 2011; Halldorsson et al., 
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2008). They were substantially higher elsewhere in Europe. Soechitram et al. (2004) report 3 

to 8 times higher concentrations of POPs in Dutch mothers, while for Slovakian women the 

factor was 5- to 13-fold (Park et al., 2008). Even higher values (e.g., 10-20 fold for p,p'-DDE 

and the sum of PCBs) have been observed for women of reproductive age in indigenous 

communities in Northern Canada (Butler Walker et al., 2003; Liberda et al., 2014). In a recent 

paper from Spain, concentrations in adult women (28 years older than the MISA women) 

were somewhat higher compared to our subjects ─ specifically, 2.5, 3.9, 6.5 and 3.3 times for 

p,p'-DDE, HCB, PCB 138 and 153, respectively (Fernández-Rodríguez et al., 2015). In 

2004/06, pregnant women living on the Mediterranean coast of Spain had comparable PCB 

concentrations to the MISA participants but were 3-4 times higher for HCB and p,p'-DDE. By 

comparison, those living in the Atlantic coastal areas of the Basque region were about 2-fold 

higher for the PCBs and fourfold for p,p'-DDE than found for the women in our study 

(Fernández-Rodríguez et al., 2015). A Swedish study conducted in 2010/2011 of women 17 

years older than the MISA women reports concentrations for PCBs, HBC, p,p'-DDE and 

trans-Nonachlor twice those reported in Paper III (Bjermo et al., 2013). The prominence of 4-

OH-PCB 146 and 187 in maternal sera among the PCBs metabolites in the current study has 

also been noted by others. Results from the Faroe Islands and Slovakia disclosed higher 

concentrations [~35-fold (Fängström et al., 2002) and ~ 5.5-fold (Park et al., 2008), 

respectively] than those presented in Table 3 of Paper II; while those for Dutch mothers 

(Soechitram et al., 2004) were 2-fold higher (4-OH-PCB 146) and 2-fold lower (4-OH-PCB 

187). In this Dutch study, the concentration of 4-OH-PCB 146 was about 3 times that of 4-

OH-PCB 187, as opposed to being comparable in our data set.  

The first report of OCs for the MISA project was based on a subset of 50 maternal serum 

samples (Hansen et al., 2010). Despite its limited sample size, the observed concentrations 

presented as geometric means (GMs) with their range for the 2nd trimester collection deviated 

only slightly from those summarized in Paper III for the full set (both wet-weight and lipid-

adjusted values). Note that the preliminary study did not include mothers from coastal 

communities. The highest average concentrations were observed for p,p'-DDE and, relative to 

it, the decreasing concentration sequence was comparable to that reported in Hansen et al. 

(2010) (for both wet-weight and lipid-adjusted values) was seen for the most prominent 

POPs: p,p'-DDE >> PCB 153 > 180 > 138 > HCB > PCB 170. The remaining OCs occurred 

at lower concentrations with the sequence: PCB 187 > 118 > 163 > trans-Nonachlor > PCB 

156 > 99 > 183 > cis-Nonachlor. The 40 meconium samples had a similar relative 



69 
 

concentration pattern (wet-weight): p,p'-DDE>> PCB 153 ≥ HCB > PCB 138 > PCB 118 ~ 

trans-Nonachlor ~ PCB 52 > cis-Nonachlor ~ γ-HCH > α-HCH.  

 As for maternal serum, meconium concentrations appeared to be low, although only few 

studies employing the more recent analytical methods were available for comparison (Whyatt 

et al., 2001; Hong et al., 2002; Zhao et al., 2007). Interestingly, the highly chlorinated hepta 

PCBs (PCB 170, 180, 183 and 187) were all below their limit of detection (LOD) in 

meconium, which were relatively high. Even though lipid adjustment of meconium 

concentrations had been suggested by Tuomisto, (2006), it does not appear to have been 

investigated previously. Our study also appears to be the first to identify hydroxylated PCBs 

in this medium. Meconium seems poorly investigated for its content of environmental 

contaminants, although historically it has been employed to assess fetal exposure to nicotine, 

drugs and alcohol (Gareri et al 2006; Bakdash et al., 2010; Gray et al., 2010).  

5.2.2.  Elements 

The elements were measured in two rounds, with the first set consisting of 211 samples as 

reported in Hansen et al. (2011). A second batch of 71 was analysed subsequently. The LODs 

from the first round were somewhat more conservative (slightly higher values) for all ten 

elements and therefore were used in the current (complete) study. Although some differences 

in mean concentrations were evident for Cu, Mo and Zn, the relative concentration patterns 

remained as presented earlier (Hansen et al., 2011). For the toxic elements, the sequence was 

Pb >> As > Hg > Cd (smokers) > Cd (non-smoker) > Co, with the relative concentrations of 

the essential elements exhibiting the pattern Zn >> Cu >>> Se >> Mn >> Mo.  

The observed concentrations of the toxic elements (As, Cd, Hg and Pb) seem relatively low, 

but of comparable magnitude to those reported for other pregnant women in Norway 

(Brantsæter et al., 2010) and Sweden (Gerhardsson and Lundh, 2010). In the Curren et al. 

(2014) study, which included first time mothers from southern and northern Canada, the 

lowest concentrations were seen among Canadian-born women from southern Canada and 

non-Aboriginals from Inuvik; the highest occurred among the Inuit and reflected their 

lifestyle and local dietary habits. Participants from the Norwegian Fish and Game study, 

which included males and females and were approximately 20 years older than the MISA 

women, exhibited somewhat higher levels for As, Cd, Hg and Pb (Birgisdottir et al., 2013). Se 

whole blood concentrations were also somewhat lower when compared to participants in the 
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MoBa study (Brantsæter et al., 2010), as well as in the Canadian study referred to (Curren et 

al., 2014). Although few publications provide concentrations of the essential elements (Cu, 

Mn, Mo and Zn) in pregnant women, the results from Brazil and South Africa indicate 

comparable values to the our data set (Rudge et al., 2009, 2011; Röllin et al., 2014).  

Additional details about established sources are provided in the next section.  

On the whole, the observed concentrations of essential elements in blood may be considered 

normal in the clinical chemistry context, while those for the toxic elements may be deemed 

relatively low and of no clinical importance (Hansen et al., 2011; Shenkin et al., 2012; Moyer, 

2012; Paper III). Nevertheless, some concern remains about maternal and neonatal exposure 

to Cd among cigarette-smoking mothers, and for the participants with Hg blood 

concentrations near the maximum values observed. Since the total arsenic measured in blood 

primarily represents its non-toxic organic forms and was also present in relatively low 

concentrations, a comment on its risk is not necessary. 

5.3.  Predictors of sources  

5.3.1.  OCs in maternal serum 

In the multivariable linear-regression models described in Paper III, maternal age, parity, 

maternal BMI, consumption of fish and other marine products, local traditional foods, 

vegetables and grain & dairy products and lifestyle issues were shown to contribute to the 

total variation explained. Fish and seafood products were the major contributors to OCs 

intake. 

It is well documented that the main source of OCs derives from specific dietary items 

(AMAP, 2003; Long et al., 2015). Due to the persistency, biomagnification and 

bioaccumulation of OCs, the aquatic food chain constitutes an important source. Previous 

studies have demonstrated relatively high seafood intake in Northern Norway (VKM, 2006). 

Relative to the May 2007–June 2009 recruitment period of our MISA study, there are no 

indications in more recent reports of substantial changes in this consumption pattern 

(Rylander et al., 2009; VKM, 2014). Our study endorses these observations as fewer than 3 % 

of the participants reported eating seafood never or seldom, whereas 64 % of this group report 

an intake of at least one time per week. It also supports the interpretation that marine and 

freshwater fish constitute important sources of OCs and that the latter accumulate with 

maternal age, while parity reduces the body burden due to breastfeeding. Avoidance of 
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seafood constitutes a dilemma, especially during pregnancy, as it is not only rich in essential 

elements (e.g., Se and Zn) and n-3 PUFA fatty acids but also is a source of toxic substances.  

Based on our data, parity seems to be a more consistent predictor than breastfeeding, even 

though the OC transfer is believed to occur primarily by way of breast milk compared to 

placental transfer (Needham et al., 2011). The parity data collected was likely more reliable 

than for breastfeeding. The negative dependence of OC concentrations on BMI observed has 

been reported previously, as have positive relationships (Wolff et al., 2005, 2007). A negative 

association between OCs and BMI likely suggests a ‘dilution’ effect as OCs reside primarily 

in the lipid tissues. The clear separation of the loadings of POPs on the PC-1 and PC-2 axes in 

the ‘POPs-only’ PCA analysis of Paper III is interesting. Hansen et al. (2010) showed that 

serum concentrations of OCs in our study subjects increased in parallel with circulation lipid 

concentrations, which are known to be mobilized during pregnancy from fat tissues. Robust 

loadings of PCBs 180, 153 and 138/163, and p,p'-DDE define PC-1, while PC-2 featured  

HBC, trans-NC, cis-NC and PCB 118. This grouping is consistent with the findings of Nøst et 

al. (2013) who demonstrated that, relatively speaking, the latter group contributed 

considerably less to the total OCs body burden. In addition, the contributions of the PC-2 

group decreased during the 1979–2007 period in the Nøst et al. (2013) investigation, while 

those for the PC-1 group increased. Our multivariate modelling (Paper III) also suggests a 

greater dependence on marine and local traditional foods of the PC-2 members.  

Other than consumption of marine and fresh water foods, wild animals (mainly reindeer, 

moose and grouse) and local traditional items, other provisions were not as important in 

understanding the variation in serum POP concentrations. This is born out in other studies. 

Fish and seafood products as sources for PCBs were estimated to contribute 64 % in a 

Swedish study (Törnkvist et al., 2011) and 46 % in Belgium and Russia (Voorspoels et al., 

2008; Polder et al., 2010). Other food groups supplementing the total PCB intake appear to 

include: meat (Sweden, 17 %; Belgium, 20 %; and Russia, 10 %), dairy products (Sweden, 

14 %; Belgium, 15 %; and Russia, 18 %), and eggs (Sweden, 1 %; Belgium, 9 %; and Russia 

13 %). Similarly, and based on calculated serum PCB 153 concentrations observed in the 

MoBa study, the primary exposure was assigned to the consumption of seagull eggs, fish liver 

and roe (Caspersen et al., 2013), while Kvalem et al. (2009) determined that semi-oily and 

oily fish contributed 43 % to the PCB 153 intake for representative consumers and 46 % for 

high consumers. For the sum of DDTs, fish was found to be a major contributor, namely 51 % 



72 
 

in Sweden and 45 % in Denmark. Dairy products added 26 % (Törnkvist et al., 2011; 

Fromberg et al., 2005), whereas meat contributed the most in Russia (48 %, with 23 % from 

fish; Polder et al., 2010). HCB seems to derive from dairy products rather than fish (Törnkvist 

et al., 2011; Polder et al., 2010). Although current food intake food is relevant, accumulation 

(and thus age) constitutes an important predictor for body burdens of POPs (Furberg et al., 

2002; Hansen et al., 2009; Caspersen et al., 2013; Nøst et al., 2013). This reflects their 

relatively long half-lives in the body (1–10 years or more, depending on the specific POP; 

Wolff et al., 2000; AMAP, 2003; Wimmerová et al., 2011). A Norwegian study investigating 

OC pesticides and toxic elements in farmed salmon for the period 1999–2011 demonstrated 

decreasing concentrations, and estimated for 2011 that 1.3 kg farmed salmon could be 

consumed safely before reaching the tolerable weekly intake (TWI) for dioxin and dioxin-like 

PCBs; by comparison, the amount per week was only 370 g in 1999 (Nøstbakken et al., 

2015). Although current exposure is important, a subject’s birth year and year of peak 

exposure ought to be taken into consideration in understanding the body burden in cross-

sectional studies (Nøst et al., 2013).  

5.3.2.  Elements in whole blood 

The element axis PC-2 (‘All contaminants’) in Table 3 of Paper III included high loadings for 

As, Hg and Se, and demonstrates clearly to be related to seafood intake and in a somewhat 

weaker fashion to vegetables. The shift from age and parity dependence for OCs to food 

intake for elements indicated the greater turn-over in the blood compartment for elements 

(days to months; Nieboer et al 1999) compared to the long half-lives in years of OCs (see 

Section 5.3.1). Although Hg concentrations were positively associated with age, this predictor 

did not endure the multivariable linear regression model when food items were included. The 

grouping of As, Hg and Se corresponds well with other findings from Norway and elsewhere 

and reflect seafood intake (Birgisdottir et al., 2013; Brantsæter et al., 2010). 

The positive association of PC-2 (‘All contaminants’) with the PC-1(‘fruits and vegetables’) 

axis in one of the models could be a proxy for the influence of maternal age, since PC-2 Diet 

(‘Marine fish’) also shows a positive age dependence, while PC-3 Diet (‘Junk food’) does not 

(see Table 5 in Paper III).  

Cd and Pb too appear to have unique predictors. It is well established that cigarette smoking is 

the primary source of Cd in the general population (Charania et al., 2014), and this concurs 
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with our findings as non-smokers had significantly lower Cd concentrations than smokers 

(0.15 versus 0.42 µg/L; PMV < 0.001). These concentrations are approximately in the same 

range as earlier findings for pregnant women in Norway (Odland et al., 1999), but are lower 

than reports for the general population (Birgisdottir et al., 2013) and international levels of 

concern of 1.4 -1.7 µg/L (Charania et al., 2014). Grains and cereals can also be sources of Cd 

as discussed by Adams et al. (2011) and confirmed in our study (see Paper III). Smoking 

constitutes a minor source of Pb and this is suggested by our data for current smokers (PMV  = 

0.004). Contaminated soil and vegetables grown in them, as well as drinking water due to Pb-

plumbing in older homes, are also recognized as exposures of concern (Nieboer et al., 2013). 

Gun use (fumes given off during gun firing contain Pb) and consumption of hunted game 

(because of embedded Pb pellets and /or fragments) are established sources (Nieboer et al., 

2013; Meltzer et al., 2013). In the current study, women living inland were highly represented 

in the 4th quartile of the whole blood Pb concentrations and higher intake of local terrestrial 

foods is suggestive (Spearman’s correlation coefficient of ρ = 0.14, p = 0.02). Interestingly, 

Jain (2013) concluded for women of age 17-39 that pregnancy itself might accelerate the 

clearance of Cd and Pb (as well as Hg) from blood.  

The discussion in Paper III was limited to those PCA axes that correlated with dietary and/or 

personal characteristics, namely PC-1, PCA -2 and PCA-6 of Model 1 (‘All contaminants’) 

and PC-1 and PC-2 of Model 2 (‘POPs only’). It seems appropriate to focus briefly on the 

grouping of the elements in Model 3 (‘Elements only’). The following pairing of axes for 

Models 1 and 3 occurred and the elements that had prominent loadings in each are indicated: 

respectively, PCA-2/PCA-1 (As, Hg, Se); PCA-3/PCA-2 (Co, Mn); PCA-4/PCA-5 (Cu and 

Mo); PCA-5/PCA-4 (Zn); and PCA-6/PCA-3(Cd, Pb). Of these, Zn and the Co & Mn, Cu & 

Mo pairs have not yet been discussed. Zn stands out because its concentration in whole blood 

was 8 000- to near one million-fold higher than the other elements, except Cu for which the 

factor was around 50. As mentioned in Sections 1.8.1 and 1.8.2, Mn and Co share leafy 

vegetables and cereals as sources, and legumes stand out for Cu and Mo. As pointed out 

earlier (Section 1.8.1), the latter two elements participate in critical biochemical oxidation-

reduction reactions, and excess Mo can block Cu uptake. These examples demonstrate the 

discriminating versatility of PCA. 
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5.3.3.  POPs in meconium 

The most distinct predictor of POPs in meconium was maternal serum concentrations (Paper 

II). On a wet-weight basis, median maternal serum/meconium ratios of pesticides and PCB 

118 favoured meconium, while the other PCBs and their metabolites favoured maternal 

serum. Lipid adjustment in the small subset of 15 meconium samples showed that all 

contaminants showed a preference for meconium except 4-OH-PCB 146 (a ratio of 1.04). 

Needham et al. (2011) and Vizcaino et al. (2014) both analysed transport of POPs across the 

human placenta and found the dominant concentrations occurred in maternal serum rather 

than cord blood, both for wet-weight levels and lipid adjusted concentrations. Cord blood 

depicts a snapshot of the present exposure because of the steady exchange with maternal 

blood, whereas there is a continuous accumulation of meconium throughout pregnancy with 

practically no leaching. This likely explains the higher concentrations observed in meconium 

compared to maternal serum. The precursor (PCB 138 or 153)/hydroxylated form (4-OH-PCB 

146) ratios were almost 3 times higher in meconium compared to maternal serum, while the 

precursors showed little preference. This supports the suggestion that metabolism in the 

mother is more efficient than in the fetus (Vizcaino et al., 2014), and that the hydroxylated 

form prefers maternal serum.  

5.3.4.  Pertinent dietary issues 

A consideration of whether to exceed or limit seafood intake during pregnancy is often seen 

in light of a balance between the intake of essential nutrients and contaminants. As mentioned 

earlier, younger women tend to have a lower fish intake. In this context, our findings in 

Papers I and III indicate that the consumption of junk food was negatively associated with 

maternal age and education, but positively for BMI. Similarly, intake of unhealthy food intake 

(including soda pop, fast food, snacks, sweets and sugar added to coffee or tea) was most 

profound among young men and women selected from the general population, while 

consumption of local traditional food increased with age (Bjerregaard and Jeppesen, 2010). In 

Spain, the term Mediterranean diet is considered local traditional food, and includes fruit, 

vegetables, high levels of monounsaturated fatty acids (MUFA; primarily from olive oil), 

moderate intake of fresh fish, poultry and eggs (Olmedo-Requenaet al., 2014). These authors 

also report low adherence to this diet by pregnant women: younger age, lower social class, 

primary educational level, and aspects of an unhealthy lifestyle (e.g., smoking and lack of 

exercise) were associated with low adherence to a Mediterranean diet.  
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The consideration to limit or increase fish intake during pregnancy can be guided by available 

sources and personal choices. Mahaffey et al. (2011) provide a framework for dietary advice 

on how to maximize the dietary intake of n-3 PUFAs, while minimizing MeHg exposure. This 

is in accordance with the Norwegian recommendations on seafood intake (Matportalen, 

2015). Since women in the USA tended to avoid fish and fish products, the U.S Food and 

Drug Administration (FDA, 2014) has issued updated recommendations. Pregnant women are 

not only advised about a maximum intake of fish but also a minimum (although some specific 

species are still to be avoided, such as tilefish from the Gulf of Mexico, shark, swordfish and 

king mackerel). The motivating rationale was to avoid omitting nutrients with known positive 

impact on fetal growth and development.  

5.4.  Study limitations 

5.4.1.  Study design 

The MISA study is a cross-sectional study with longitudinal aspects with the objective of 

establishing a new mother-and-child contaminant cohort study. The characteristic features of 

the cross-sectional method are to provide a point in time estimate of an outcome and to define 

its prevalence (Kirkwood, 2003). This is in contrast to cohort studies, in which individuals are 

followed over time (retrospectively or prospectively), thereby allowing the incidence of an 

outcome to be evaluated in relation to exposure or other determining factors (Kirkwood, 

2003).  

The MISA database was designed to explore associations between contaminant exposure and 

diet, with an objective to enhance our knowledge of the interplay of  physiological changes 

that occur in mothers during pregnancy in the context of  exposure to environmental 

contaminants (including their transfer to the infant before and after birth), and conducting 

prospective health studies of the children.  

Paper I addressed the issue of representativeness, whether the selected study subjects who 

completed the entire study protocol differed from a drop-out group, as well from all mothers 

who delivered in Northern Norway during the study period (2004-06). Paper II was designed 

to assess the usefulness of meconium in assessing contaminant transfer from the mother to the 

fetus. Subsequently, Paper III was devised to investigate how the generation of new multi-

contaminant and dietary variables generated by PCA might help to identify prominent sources 

of OCs and toxic elements. 
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5.4.2.  Sample size 

An essential component of planning an investigation is to decide how many people need to be 

included in a study (Kirkwood, 2003). This is referred to as sample size. Studies that are 

larger than needed are inefficient and wasteful in terms of both money and scarce 

epidemiological expertise, and when too small may provide misleading answers or at least 

imprecise findings (Bhopal, 2002). Sample size calculations help to determine whether the 

research question and the stated study hypothesis can be quantified. If a difference between 

groups is assessed, its minimum should be stated at the appropriate statistical significance and 

power. The sample size should be large enough to avoid Type I errors (usually a significance 

level of α ≤ 0.05 is acceptable) and Type II errors (usually a value of β ≤ 0.20 is the target); α 

is the probability of making an error in rejecting the null hypothesis (Type I error), β the 

probability of conducting a Type II error, and 1-β the power of the test (i.e., probability that 

we do not make a Type II error) (Bhopal, 2002; Kirkwood, 2003).  

Paper I deals with the group that completed the study protocol. The response was lower than 

expected and there were drop-outs. However, the agreement of selected characteristics of the 

study cohort (n = 391) and the drop-out group (n = 113), as well as with all delivering 

mothers in Northern Norway during 2004-06, implies acceptable randomization (i.e., equal 

distribution of confounders; Bonita et al., 2006) and thus good statistical power. Paper II 

includes a small subset of 40 samples, was exploratory, and its intention was to highlight the 

sampling and analytical processes. Furthermore, only a fraction of the 15 meconium samples 

were large enough for lipid analysis. Clearly, studies with larger sample sizes are needed to 

enhance power (i.e., the likelihood of detecting differences). Paper III included the entire 

study group with sample sizes between 250 and 498. Compared to our first report on OCs 

(Hansen et al., 2010), the current sample size increased from 50 to 266 for the ‘All 

contaminants’ group, and to 498 for the ‘POPs only’ category. Similarly for the inorganic 

elements, n increased from 219 (Hansen et al., 2011) to 266 and 279, respectively for the ‘All 

contaminants’ and ‘Elements only’ group PCA analyses. Consequently, the Paper III findings 

embody appropriate statistical power and discernment.  

5.4.3.  Bias 

A systematic difference between the true and observed value constitutes bias. However, even 

the most rigorously designed investigation will be susceptible to one or more types of bias. 
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Reasons for this includes the manner in which subjects are selected and information is 

obtained, reported or interpreted (Hennekens, 1987; Laake, 2007; Bonita et al., 2006).  

Selection bias 

This form of bias occurs when there is a systematic difference between those individuals who 

are willing to enter a study and those who are not (i.e., in terms of age, socio-economic status, 

dietary intake, and exposure status). The challenge of representativeness is an important 

matter, although difficult to avoid. This can be dealt with by study design and adopting valid 

and reliable procedures for defining/selecting the study subjects (random sampling methods 

are preferred). If eligible study subjects are self-selected (i.e., self-determined selection), bias 

may be unavoidable. When planning a project, unforeseen errors of bias can obscure the result 

of a study. (Hennekens, 1987; Bhopal, 2002; Laake, 2007). Although we made several 

attempts to increase the participation rate throughout the recruitment period, the enrolment 

remained sluggish. Study tiredness among those eligible and competition with other studies 

are suspected. The final participation rate was 20 %.  

In Paper I we compared the study-subjects to the drop-outs and to all delivering women in 

Northern Norway during the same period. The two latter groups showed similarities and, but 

on average were two years younger than the study group and tended to smoke more. Other 

parameters were of comparable magnitude between the 3 groups, such as annual household 

income, parity, gestational age and birth weight. The contaminant concentrations studied are 

known to be associated with food intake (AMAP, 2009). Neither fish intake nor of local 

traditional foods differed between the study-cohort and the dropout group, as these dietary 

sources were predictors of concentrations of POPs and the most toxic elements (respectively 

in maternal serum or whole blood as described in Paper III). For these reasons, we believe 

that the bias introduced in the project was minimal. In Paper II, we randomly selected a small 

number of samples to investigate the analytical methodologies for analysing meconium, 

thereby making selection bias less probable. 

Measurement bias  

The gestational inclusion period was longer than anticipated, ranging from 9-36 weeks (95th 

percentile of 13-24) and thereby included some pregnancies from each trimester. However, 

the vast majority of the participants were sampled in the 2nd trimester (95.4 %). We cannot 

rule out the possibility that this wide inclusion period may have influenced the contaminant 
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concentrations of OCs in maternal serum and the elements in whole blood. However, we have 

evidence that the influence was minor for both the OCs and the toxic elements. As outlined in 

Hansen et al. (2010), OC concentrations changed across the 3 sampling periods (i.e., 

pregnancy, and 3 days and 6 weeks postpartum) and followed the measured lipid 

concentration profiles. Furthermore, lipid adjustment removed most of the variation, 

especially between samples taken during pregnancy and the early postpartum days. From the 

predicted geometric concentrations of the elements during the entire experimental period, it is 

evident that for nearly all the elements concentration changes were minimal during the 

pregnancy, with Mn and Cu changing the most [respectively increasing around 40 % and 

30 %, with the rather low (but increasing) levels of Co stabilizing at week 24; Hansen et al., 

2011)]. As outlined by the latter authors, the concentration patterns across the pregnancy, 

delivery and postpartum period could be interpreted in terms of underlying metabolic, 

haematological and physiological changes that occur in mothers, as well as the element-

specific biochemistry and distribution patterns within the blood compartment and breast milk.  

Information bias 

When imperfect definitions of study variables or flawed data collection procedures are used 

(Hennekens, 1987; Bhopal, 2002; Szklo, 2007), information bias occurs. In our study, this 

was forestalled through joint meetings with project personnel at the sampling sites prior to 

recruitment (as described in Paper I). Potential errors were minimized by training and 

providing them with clearly written protocols and instructions. When potential errors in 

information/data were identified, they were investigated before entering them into the 

database or corrected when identified during the statistical analyses.  

Recall bias  

Another type of information bias of concern in dietary studies is related to recall by the 

participants of food intake. A selective memory can lead to either and over- or 

underestimation of, for example, the association between exposure and/or disease 

(Hennekens, 1987; Bhopal, 2002; Szklo, 2007). The FFQ helps to minimize recall errors as it 

focuses on foods consumed on a regular basis, and can thus assist in identifying consumer 

trends in the population investigated. For example, seasonal variation can be detected in the 

consumption of certain foods as being low, medium or high (Willett, 2013; Cameron, 1988). 
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5.4.4.  Validity and reliability 

High validity together with high reliability is the objective in all studies, which allows true 

values to be measured with high confidence. Internal validity pertains to whether a study 

applies to the population for which it was designed in terms of selection and information bias. 

By contrast, external validity refers to the generalizability of the research findings and its 

applicability to a wider population. Thus one might ask if our study participants were/or were 

not representative of pregnant women elsewhere such as in other parts of Norway (Bowling, 

2002; Kirkwood, 2003; Bonita et al., 2006). The favourable comparisons of our findings with 

studies of comparable Norwegian populations and elsewhere in terms of the contaminant 

concentrations and their predictors/sources attest to good validity. 

The validated FFQ (Parr et al., 2006; Hjartåker et al., 2007) used in the MISA study was first 

employed in the NOWAC study, which  targeted women 14 years older than those in the 

MISA group (Hjartåker et al., 2007). It included eight major dietary topics, each divided into 

specific foods with four to seven fixed options, and with consumption ranging from 

never/seldom to either five to seven times per week, or 2+ times per day; when feasible, 

portion size was also asked for. The NOWAC FFQ was validated using a test-retest approach 

by mailing the same questionnaire to a random sample twice and the reproducibility of the 

dietary information was within the range reported for similar instruments (Parr et al., 2006). 

Additionally, it was compared to repeated 24-hour recalls and about 3 % of the observations 

on nutrient intake fell in the opposite (same versus extreme) quintile (Hjartåker et al., 2007). 

We adopted the NOWAC FFQ for the MISA study with only minor changes. This involved 

extending the questions about seafood and local traditional foods to include whale/seal, sea 

gull eggs, reindeer, moose, grouse and local berries. The latter is not expected to have 

impacted the validity of the FFQ.  

Recorded intake in our study was converted to standard portions (Blaker and Aarsland, 1995) 

and to daily energy intake through macro- and micro-nutrients (Matvaretabellen, 2014). 

Standardization of portions and intake can lead to under and/or over estimation of the actual 

consumption (Willett, 1998) because portion sizes may be difficult to estimate despite being 

specified in the FFQ. Furthermore, precautions should be taken when a questionnaire is used 

in situations different from the original purpose, as well as when the length of the 

questionnaire is altered (Willett, 2013). In light of this, it seems reasonable to assume that the 

higher average intake in the MISA group compared to the NOWAC population (Hjartåker et 
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al., 2007) is explained by the inverse relationship between age and food intake. Compared to 

the MoBa study (Meltzer et al., 2008), the observed lower energy intake by similarly aged 

pregnant women in the present study may have been influenced by MoBa’s more detailed 

dietary section as discussed in Paper I. Nevertheless, nutrient density (nutrient intake per MJ) 

was in good compliance with the NNR (2012) estimate. 

In terms of applying the NOWAC FFQ to pregnant women, dietary habits may be influenced 

by nausea, vomiting, and constipation (Meltzer et al., 2008). The MISA dietary information 

covered the intake for the preceding 12 months, of which 6 to 7 months were in the pre-

pregnancy period and the remainder within the first 18 weeks of pregnancy for nearly all the 

participants, even though the 95-percentile span was 13 to 24 gestational weeks. Despite 

possible dietary changes, especially in early pregnancy, it is concluded that this had a minor 

influence on the POP concentrations in maternal serum across the pregnancy and postpartum 

periods because of the long half-lives of POPs in humans (see Section 5.3.1). As discussed in 

Section 5.4.3, other than for Mn and Cu, the changes in concentrations of the toxic and other 

essential elements during pregnancy were relatively minor. 

5.4.5.  Confounding  

Confounding is a function of the complex interrelationships between various exposures and 

diseases and translates into errors in estimating the magnitude of an association between a 

specific risk factor and disease outcome (Hennekens, 1987; Bhopal, 2002). Generally 

speaking, confounding occurs when a variable is associated with the exposure and also 

influences the outcome. Note that a variable that is part of the causal chain leading from the 

exposure to the outcome is not a confounder (Kirkwood, 2003). This is likely to happen in 

observational studies, but adjustments for this can be made in the statistical analyses. As a 

rule-of-thumb, confounding likely occurs when the effect estimate changes 20-25 % after 

adjustment. When this happens then the relationship assessed by the unadjusted effect 

estimate would not be valid (Hennekens, 1987; Laake, 2007; Szklo, 2007). 

In Paper I, we observed that the women in our study were somewhat older and smoked less 

compared to all 2004-2006 mothers in the MBRN. Maternal age and contaminant 

concentrations (specifically POPs and the toxic metals Cd, Hg and Pb) are known to be 

positively associated with age (AMAP, 2009), as are choices of certain foods as indicated by 

the findings summarized in Supplementary Table S1 of Paper I (fish & fish products and 
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miscellaneous items). Since age and parity are known confounder variables in the source 

modelling of POPs and dietary choices, they were included in the pertinent multivariable 

regression models of the OC and dietary axes (see Table 5 in Paper III). The predictor 

variables included in the multivariable model were those that were statistically significant in 

the univariable regression models. Those not reported in Table 5 of Paper III did not alter the 

models presented. Paper II was necessarily limited to a small subset of mothers and their  

newborns, and only a limited number of explanatory variables could be included in the 

regression models; for the 15 lipid–adjusted samples multivariable models were not 

constructed.      
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6.  CONCLUDING REMARKS 

Although the project was comprehensive, a smaller sample size than targeted resulted, and 

therefore our findings are less representative than envisaged. A comparison of personal and 

clinical characteristics registered in the MNBR for the study cohort and the drop-out group 

indicated only small differences, namely that the latter were somewhat younger, had less 

education and smoked more. Comparisons of maternal and newborn information for the study 

cohort with all births in Northern Norway during the study period also indicted good 

agreement (e.g., for average birth weight, gestational age, parity and a proportion of 

obstetrical complications). Dietary findings, such as the relatively high intake of fish and fish 

products, were also in accordance with those reported for Northern Norway. Based on these 

comparisons, we conclude that a minimal of bias has been introduced into the MISA cohort 

study. 

Our investigation of meconium as a biological medium for determining fetal exposure to 

POPs was the first to report the presence of hydroxylated PCBs in newborn stool. The overall 

multivariate linear regression model improved when gestational age and time of sample 

collection was included as explanatory variables. Although analytically challenging, a small 

subset of 15 meconium samples was adjusted for lipids and this is viewed as a crucial 

component for using meconium as an informative fetal exposure medium. The multivariable 

linear regression models confirmed that maternal serum concentration and gestational age 

were the most consistent predictors of POPs in meconium. Time of meconium sampling 

improved the models for the OC pesticides. 

Maternal serum concentrations of pesticides, PCBs and hydroxylated PCBs were generally 

low compared to results from other countries, but comparable to findings from Norway 

(including data on pregnant women). It is concluded that they are not of clinical importance, 

and thus are of no special concern to pregnant women, the unborn, females of reproductive 

age and children. It was difficult to make such comparisons for meconium because of 

differences in the analytical methods and absence of reports on hydroxylated PCBs in this 

medium. Nevertheless, p,p'-DDE was the most prominent OC contaminant as in published 

studies on meconium. 

The MISA cohort constitutes a homogenous group being one gender, of limited age span and 

with a fairly similar dietary intake. Nevertheless, the PCA analyses of OCs, elements and 
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dietary items revealed distinct patterns for each. This was enhanced by the novel approach 

that considered all contaminants and all elements measured in maternal serum or whole blood 

at once in the PCA analyses, or all of the POPs (in serum), or all of the elements (in whole 

blood) separately. The 3 PCA axes that had loadings by all OCs (Model 1), by all but one of 

the PCBs and p,p'-DDE (Model 2), or by OC pesticides and PCB-118 (Model 2) all identified 

maternal age (+), parity (–) and fish consumption (+) as important predictors. The OC 

pesticides/PCB-118 group showed a stronger dependence on the consumption of seafood than 

the PCBs/p,p'-DDE group, which is interpreted to reflect higher body stores of the latter. We 

also detected a clear connection between seafood intake and whole blood concentrations of 

Hg, As and Se, while smoking and consumption of local traditional foods was linked to Cd 

and Pb concentrations. The PCA was also helpful in generating new dietary variables that 

were labelled as ‘fruit & vegetables’, ‘marine fish’, and ‘junk food’ axes. All three showed a 

dependence on maternal age and were helpful in the multivariate models described above. 

Clearly, using PCA to generate new variables by linear combination facilitated our ability to 

identify prominent dietary sources and maternal predictors of PCBs and OC pesticides in 

maternal serum, and of the prominent toxic elements As, Cd, Pb and Hg and the essential 

element Se in maternal whole blood.  

The observed concentrations of Cd, Pb and Hg in whole blood were relatively low, but some 

worry remains about maternal and neonatal exposures to Cd among cigarette-smoking 

mothers and for the participants with Hg blood values near the maximum values observed. 

Since the total arsenic measured in blood primarily represents its non-toxic organic forms and 

was present in relatively low concentrations, a comment on its risk is not warranted. 
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7.  FUTURE PERSPECTIVES 

7.1.  Suggestions for follow-up experiments or investigations  

 Further investigate the usefulness of meconium as a biomonitoring medium by 

conducting a study with a larger sample size; lipid-adjust all measured concentrations 

of OCs and other lipid-soluble toxicants: 

o POPs 

o Essential and toxic elements 

o Other toxic substances (see below) 

 In the same study, collect and analyse umbilical cord blood, newborn blood, and 

maternal serum and blood to permit investigation of the inter-relationships between 

the measured concentrations of the indicated substances in these body fluids and 

meconium: 

o POPs 

o Essential and toxic elements 

o Newly emerging toxic substances 

 Include samples of breast milk to enhance the infant findings. 

 Plan to follow-up the children at suitable intervals as they grow-up (a prospective 

longitudinal study that includes collecting developmental and lifestyle information, as 

well conducting suitable clinical chemistry measurements). 

 Molecular phenotyping might be considered.   
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Universitetet i Tromsø · Romssa universitehta
Senter for samisk helseforskning, Institutt for samfunnsmedisin, Universitetet i Tromsø

Til deg  
som er gravid



Du må kontakt ditt nærmeste innsamlingssted for å avtale tid for oppstart. Du kan starte opp umiddelbart eller 
helst innen uke 20. Du kan også avtale å starte opp i forbindelse med ultralydundersøkelsen (ca. uke 18).

Innsamlingssted Telefonnummer

Kirkenes fødeavdeling 78 97 32 35

Hammerfest fødeavdeling 78 42 15 12

Alta Fødestue 78 45 54 00

Karasjok legesenter 78 46 85 00

Kautokeino legesenter 78 48 72 50

UNN barselavdeling 77 62 64 60

Sonjatun fødestue 77 77 08 25

Fødestua i Midt-Troms, Lenvik 77 87 14 90

Lofoten fødestue 76 06 01 22

Gynekologisk senter, Bodø 75 52 39 00

Ved oppstart:
Du skal måle blodtrykk og vekt, ta blodprøve og levere urinprøve. Vi ber deg derfor om å: 

Møte fastende. Om du ikke klarer å faste, kan du spise en lett, fettfattig frokost (brød, salat, grøt)  •	
uten kaffe. 
Ta med en morgenurinprøve tatt på følgende måte: Den første porsjon av urinstrålen kastes, den neste •	
porsjon urin samles i egnet beholder og den siste porsjon urin kastes.
Ta med ”Helsekort for gravide” da vi vil merke helsekortet med prosjektets ID•	

Før oppstart ber vi deg om å sende inn underskrevet samtykke (Miljøgifter i svangerskapet og i ammeperioden 
+ Morsmelksundersøkelsen) i vedlagte svarkonvolutt til Universitetet i Tromsø.

Dersom du har spørsmål, kan du ta kontakt med:
solrunn.hansen@ism.uit.no
Telefon 920 69 700

På forhånd takk og vel møtt!

Vennlig hilsen
Solrunn Hansen

Prosjektleder / Jordmor

http://uit.no/med-nord/misa

Til deg som vil delta



Det er for tiden økende fokus på miljøgifter og hvilke 
effekter disse har på omgivelsene og helsen til oss 
mennesker. Befolkningen i arktiske områder er spesielt 
utsatt siden miljøgifter fra den øvrige verden fraktes 
nordover til våre områder med globale hav- og luft-
strømmer. Nivået av miljøgifter i Norge er sammen-
lignet med andre land, generelt lave.

Kosten er den viktigste kilden for spredning av  
miljøgifter i tillegg til det vi finner i miljøet forøvrig.  
Vi er særlig sårbare for miljøgifter på fosterstadiet 
og i de første årene av livet. Fettløselige, organiske 
miljøgifter passerer lett fra mor til foster gjennom 
morkaka og navlesnora, og de utskilles også i mors-
melk. Nivåene av disse stoffene i mors blod gjennom 
svangerskapet og senere i brystmelk, gir indikasjoner 
på den risiko vi utsetter våre barn for. Målinger viser 
at de fleste miljøgifter heldigvis er på vei ned, men vi 
har mangelfull kunnskap om hvordan mennesker 
påvirkes over tid.

Vi har ennå liten informasjon om situasjonen i 
Nord-Norge. Vi ønsker derfor å gjennomføre en  
undersøkelse som skal måle nivåer av disse langsomt 
nedbrytbare stoffene hos om lag 1000 gravide og 
ammende mødre i vår landsdel. 

Hensikten er å: 
Kartlegge miljøgifter i mors blod, navlestrengs-•	
blod og morsmelk. 
Undersøke hvilken risiko gravide og nyfødte  •	
utsettes for gjennom påvirkning av miljøgifter og 
spesielt hva som tilføres gjennom kostholdet  
og morsmelk.
Se om det er noen sammenheng mellom miljøgifter •	
og helsen til mor og barn. 
Å lage grunnlag for retningslinjer i forebyggende •	
helsearbeid for å beskytte mennesker mot miljø-
gifter og spesielt kostholdsråd for gravide,  
ammende og kvinner i fertil alder. 
Lage grunnlag for oppfølgingsstudier til barna når •	
12-årsalder. 

Lagre prøvemateriale i biobank for å ha mulighet •	
til å analysere på ”nye” miljøgifter eller faktorer 
som kan virke beskyttende mot skadelige effekter 
av miljøgifter.
Prosjektet vil spesielt sammenligne den samiske  •	
og den norsk etniske befolkningen.
Tilleggsundersøkelse: Undersøke om det er  •	
forskjell mellom den samiske og den norske  
befolkning vedrørende fostermål utført ved  
ultralyd ved 18. svangerskapsuke. 

Forespørsel om å delta sendes til alle  
gravide som:

Har time hos jordmor eller time til rutineultralyd •	
Er i første halvdel av svangerskapet•	
Skal føde ved følgende fødesteder: Kirkenes, •	
Hammerfest, Alta, UNN, Sonjatun, Lenvik,  
Lofoten eller Bodø. 

Frivillig deltagelse
Deltakelse i undersøkelsen er frivillig og bygger på 
skriftlig informert samtykke. Alle data behandles 
strengt fortrolig, og resultater blir formidlet slik at 
ingen opplysninger kan føres tilbake til enkeltpersoner. 
Dersom du blir med, kan du trekke deg uansett tids-
punkt, og du kan be om at dine opplysninger og 
prøveresultater slettes inntil data er publisert.  
Du trenger ikke å begrunne hvorfor du trekker deg, 
og det medfører ingen konsekvenser for deg. Om du 
trekker deg i løpet av svangerskapet eller etter  
fødselen, ber vi deg om å gi tilbakemelding for å 
unngå utsendelse av nye spørreskjema/innsamlings-
utstyr og purring.

Forespørsel om deltakelse i forskningsprosjekt

Miljøgifter i svangerskapet  
og i ammeperioden



Hvis du blir med, spør vi deg om:
Spørreskjema:1.	
Å svare på et spørreskjema i første halvdel av •	
svangerskapet 

Prøver av deg til analyse av miljøgifter, fettstoffer 2.	
og hormoner:

Tungmetaller: Kvikksølv, bly, kadmium  

Organiske miljøgifter: DDT, HCH, Toxaphenes, 
HCB, PCB, dioksiner, bromerte flamme- 
hemmere, ftalater og PFOS

Jernlagre, kolesterol, triglyserider

Hormoner: FSH, LH, prolaktin, TSH, FT4, FT3, 
østradiol og progesteron

Blodprøve i første halvdel av svangerskapet, etter •	
fødsel og 6 uker etter fødsel
Navlestrengsblod ved fødsel•	
Hårprøve ved fødsel for biobank•	
Urinprøve ved hver blodprøvetaking til biobank•	
Blodtrykk, høyde og vekt i forbindelse med  •	
prøvetaking

At vi av ditt nyfødte barn kan få:3.	
Måle omkretsen rundt magen og genitale  •	
lengdemål
Avføringsprøve (mekonium) til biobank•	
Blodprøve av barnets hæl til eventuelt hormona-•	
nalyse og biobank. Blodprøven tas samtidig med 
rutineprøven ”Nyfødtscreening” 3. dag etter  
fødselen. Vi ber dersom det er nødvendig, å få 
stikke barnets hæl en ekstra gang for å få nok blod.

Morsmelkundersøkelsen:4.	
Å levere en morsmelksprøve samlet i løpet av  •	
barnets første levemåned, til analyse av miljøgifter 
I forbindelse med morsmelksundersøkelsen spør vi •	
deg også om å svare på spørreskjema når barnet 
er 1, 6 og 12 måneder og 2, 7 og 12 år gammel.  

Folkehelseinstituttet (FHI) er ansvarlig for denne  
delen av prosjektet. Personopplysninger utlevers  
til FHI, slik at de kan kontakte deg direkte for  
utlevering av utstyr og spørreskjema. Vi ber deg  
om å lese eget vedlagt informasjonsskriv med egen 
samtykkeerklæring.

Ditt samtykke: 5.	
Til å oppbevare prøvematerialet av deg selv og •	
barnet i biobank. Blod- og urinprøver, navlestrengs-
blod, mekonium og hårprøve vil lagres i en biobank 
til utgange av år 2022 ved Universitetet i Tromsø 
med prosjektansvarlig som ansvarlig. 
Til at prøvematerialet kan sendes avidentifisert  •	
til utlandet når det er nødvendig av hensyn til  
å få utført analyser av prøvene og for kvalitets-
kontrollanalyser (Canada).

Innhenting av opplysninger:6.	
Tillatelse til innhenting av nødvendige journal-•	
opplysninger om deg og ditt barn i forbindelse 
med svangerskapet og fødselen. Kopi av svanger-
skapsjournal, ultralydskjema, barnets epikrise som 
sendes til helsestasjonen og skjema til Medisinsk 
Fødselsregister. Alle opplysninger behandles etter 
at personopplysninger er fjernet og erstattet med 
et ID-nummer før utlevering til Universitetet. 

Tillatelse til å koble innsamlede opplysninger  7.	
om deg:
Fra denne delen av prosjektet mot data fra Mors-•	
melksundersøkelsen og Mor-/barnundersøkelsen.
Mot Medisinsk Fødselsregister vedrørende data fra •	
pågående og eventuelt tidligere svangerskap og fødsler.
Mot Norsk pasientregister som registrerer diagnoser •	
barnet ditt har fått ved innleggelse på sykehus. 
Mot Nyfødtscreeningregisteret som gir prøvesvar •	
på barnets stoffskifte (TSH).
Datatilsynet har godkjent disse koblingene.•	

Kontakte deg senere for å:8.	
Invitere dere til ekstra undersøkelse når barnet er •	
blitt eldre. Du forplikter deg ikke til å delta i dette, 
men kan ta stilling til dette når du får invitasjonen 
som vil inneholde detaljert informasjon om hva vi 
ønsker å undersøke.



Utstyr, ID-nummer
Ditt og barnets navn og fødselsdato er byttet ut  
(avidentifisert) med et nummer når det brukes i  
forskning. Ved oppstart får du utlevert alt utstyr 
merket med et ID-nummer. Både prøver og innsamlet 
informasjon blir derfor avidentifisert på innsamlings-
stedet dersom du har med ID-merket utstyr. Om du 
ikke har med forhåndsmerket utstyr, skjer avidentifi-
seringen etter ankomst Universitetet i Tromsø. Data 
vil anonymiseres etter prosjektslutt år 2022. 

Din sikkerhet og tilbakemelding
Opplysninger du gir og svar på prøver du tar, blir 
kun brukt til forskning. Vi forplikter oss til å gi til-
bakemelding til deg dersom du ønsker svar på dine 
egne blodprøver. Du får svar på for eksempel nivåer 
av miljøgifter, hormoner og fettstoffer. Vi gir deg  
automatisk svar på avvikende fettstoffer og hormon-
prøver vedrørende stoffskifte. Din fastlege får også 
prøvesvar dersom du tillater det, og fastlege kan gi 
deg videre oppfølging. Det tar noen måneder før  
resultatene foreligger pga. tidkrevende analyser.  
Vi lager rapporter fra prosjektet, og hvis du ønsker det, 
kan gir vi deg prosjektets resultater og konklusjoner. 
Datainnsamlingen pågår fra juni 2007 til høsten 
2008, og de første rapporter beregnes ferdig i 2009.

Godkjenninger
Undersøkelsen er godkjent av Regional komité  
for medisinsk og helsefaglig forskningsetikk (REK 
Nord) og Datatilsynet. Hvis det senere blir aktuelt å 
bruke prøvene til andre problemstillinger enn de som 
er skissert her, skjer det kun etter ny godkjenning fra 
datatilsynet og ny vurdering av REK. 

Ansvarlig
Ansvarlig for dette prosjektet er dr. med. Jon  
Øyvind Odland ved Institutt for samfunnsmedisin, 
Universitetet i Tromsø. Oppdragsgiver er Institutt 
for samfunnsmedisin og Senter for samisk helse-
forskning ved Universitetet i Tromsø. Norges  
Forskningsråd, Norske Kvinners Sanitetsforening, 
Helse Nord og Senter for samisk helseforskning  
ved UiT finansierer prosjektet.

Påmelding, samtykke
Dersom du sier ja til å delta i studien, ber vi deg  
om å avtale tid for oppstart med ditt innsamlings-
sted (se oversikt side 2). Før oppstart ber vi deg  
om å underskrive samtykke og returnere de i  
vedlagte returkonvolutt. Du beholder selv ett  
eksemplar.

Dersom du har behov for mer informasjon  
før oppstart eller har spørsmål underveis,  
ta kontakt med:

Prosjektets kontakttelefon:  •	
920 69 700
Prosjektansvarlig Jon Øyvind Odland:  •	
E-post jon.oyvind.odland@ism.uit.no  
telefon 909 53 887
Prosjektleder Solrunn Hansen:  •	
E-post solrunn.hansen@ism.uit.no  
telefon 77 64 48 36 / 992 71 762

Du kan også finne informasjon om prosjektet på vår 
nettside: http://uit.no/med-nord/misa

Vennlig hilsen

Jon Øyvind Odland (sign.), 
Prosjektansvarlig / Dr. med., 

Institutt for samfunnsmedisin, UiT

Merete Eggesbø (sign.),
Prosjektleder Morsmelksundersøkelsen/  Dr. med, 

Divisjon for epidemiologi, Folkehelseinstituttet

Solrunn Hansen (sign.), 
Prosjektleder / Jordmor,

Institutt for samfunnsmedisin, UiT



Samtykke [din kopi]
Miljøgifter i svangerskapet og i ammeperioden

ID- nummer:

Fornavn:.............................................

Etternavn:.........................................

Adresse:..............................................

Postnummer:..................................

Poststed:.............................................

Fødselsnummer 11 siffer:.....

E-post:.................................................

Telefon privat:...............................

Telefon mobil:...............................

Termin (dd|mm|åååå):..............

Sett kryss:

Jeg har lest informasjon om prosjektet og samtykker til å delta. FF

Dato: ____________________ 	 Signatur: _________________________________________________________

Dato: ____________________ 	 Signatur foresatte: _________________________________________________

Dersom du er under 16 år, må du også ha underskrift fra din foresatte.

Tilbakemeldinger
Jeg ønsker tilbakemelding om mine egne prøveresultater. FF

Jeg ønsker tilbakemelding om prosjektets resultater og konklusjoner. FF

Jeg tillater at min fastlege får resultater på avvikende prøvesvar med hensyn til hormoner og fettstoffer. FF

Navn på fastlege: ______________________________________________________________________________

Adresse:______________________________________________________________________________________

http://uit.no/med-nord/misa



Miljøgifter i svangerskapet
og i ammeperioden

ID-nr:

2007 
Konfidensielt

Universitetet i Tromsø Romssa universitehta
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Miljøgifter i svangerskapet og i ammeperioden
Vi ber deg fylle ut spørreskjemaet så nøye som mulig.

Skjemaet skal leses optisk. Vennligst bruk blå eller sort penn. Du kan ikke bruke komma, forhøy 0,5 til 1. 
Bruk blokkbokstaver.

Dersom du får for liten plass på enkelte spørsmål, vennligst noter på siste side, eller ta i bruk et ekstra ark.

Venligst besvar skjema innen en uke etter oppstart i prosjektet. Sendes sammen med blodtrykkssjema 
til UiT i vedlagte returkonvolutt.

SOSIALE FORHOLD

Dato for utfylling av spørreskjema: dag mnd år

Dato..........................................................................................

Hva er ditt postnummer?...........................................................

Hva er ditt fødselsår:......................................................................

Hvor mange års skolegang/utdanning har du i alt, 
ta også med grunnskole og videregående? Antall år

Hvor mange personer er det i ditt hushold? Voksne Barn

Hvor høy er den samlede bruttoinntekten i ditt hushold?
c Under 150 000 kr c 601 000-750 000 kr
c 150 000-300 000 kr c 751 000-900 000 kr 
c 301 000-450 000 kr c Over 900 000 kr
c 451 000-600 000 kr

Hva er ditt yrke?

.........................................................................................................................................................................................

(Ikke skriv her ‡) 

Beskriv kort din arbeidsplass og arbeidsoppgaver så 
nøyaktig som mulig:
(Eksempel: skole/undervisning, sykehus/ pasientarbeid/cellegift, 
butikk/ klær, renseri/renser klær, kontor/dataarbeid, frisør/kunder)

.........................................................................................................................................................................................

(Ikke skriv her ‡) 

Hva er din arbeidssituasjon? (Sett om nødvendig flere kryss)
c Arbeider heltid c Arbeidssøkende
c Arbeider deltid c Under attføring
c Hjemmeværende c Uføretrygdet
c Under utdanning

OPPVEKST
Hva var din bostedskommune da du ble født, og i hvilke 
kommuner i Norge har du bodd lengre enn ett år?

Kommune Fra årstall Til årstall (Ikke skriv her ‚)

1 Ved fødsel:..............................................................

2.............................................................................................

3.............................................................................................

4.............................................................................................

5.............................................................................................

6.............................................................................................

7.............................................................................................

FAMILIE- OG SPRÅKBAKGRUNN
I Nord-Norge bor det folk med ulik etnisk bakgrunn. Det vil si at de 
snakker ulike språk og har ulike kulturer. Eksempler på etnisk bakgrunn 
eller etnisk gruppe er norsk, samisk og kvensk.

Hvilket hjemmespråk har/hadde du, dine foreldre og 
besteforeldre? (sett ett eller flere kryss)

Norsk Samisk Kvensk Annet Vet ikke
Dersom annet 

beskriv

Morfar........ c c c c c .....................................................

Mormor.... c c c c c .....................................................

Farfar.......... c c c c c .....................................................

Farmor....... c c c c c .....................................................

Far................. c c c c c .....................................................

Mor............... c c c c c .....................................................

Jeg selv.... c c c c c .....................................................

Hva er din, din fars og din mors etniske bakgrunn? 
(sett ett eller flere kryss)

Norsk Samisk Kvensk Annet Vet ikke
Dersom annet 

beskriv

Min bakgrunn..... c c c c c ..............................................

Mors bakgrunn.. c c c c c ..............................................

Fars bakgrunn.... c c c c c ..............................................

Er du sykemeldt? (Sett ett kryss i hver kolonne)
c Nei Hvordan er du sykemeldt?
c Delvis sykemeldt c Sykemeldt korttids
c Fullt sykemeldt c Sykemeldt langtids

Universitetet i Tromsø Romssa universitehta
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Hva regner du deg selv som? (sett ett eller flere kryss)
Norsk Samisk Kvensk Annet Dersom annet beskriv

c c c c ....................................................................................................

VEKT 

Hvor mye veide du før svangerskapet? (I hele kg).....

Hva var din egen fødselsvekt som nyfødt baby?

 (Gram)    Vet ikke c  

Har du noen gang hatt vekttap på 5 kg eller mer, i så fall hvor 
mange ganger?
c Ja c Nei Antall ganger

Røyk og alkohol

Dersom du røyker daglig eller tidligere har røykt 
daglig, hvor mange år har du da røykt til sammen? Antall år

Er du til daglig utsatt for passiv røyking?
c Ja c Nei Antall timer daglig 

Er du totalavholdskvinne?
c Ja c Nei

Hvis NEI, hvor ofte og hvor mye har du drukket før dette svangerskapet?
(sett ett kryss for hver linje)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2-4 .
pr. uke

5-6 .
pr. uke

1+ pr. 
dag

Lettøl/cider (0,5 l).............................. c c c c c c c

Øl/rusbrus (0,5 l)............................... c c c c c c c

Vin (glass)................................................. c c c c c c c

Brennevin (drink/shot)..................... c c c c c c c

Likør/Hetvin (glass)......................... c c c c c c c

Dersom NEI, hvor ofte og hvor mye har du drukket i dette svangerskapet?
(sett ett kryss for hver linje)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2-4 .
pr. uke

5-6 .
pr. uke

1+ pr. 
dag

Lettøl/cider (0,5 l).............................. c c c c c c c

Øl/rusbrus (0,5 l)............................... c c c c c c c

Vin (glass)................................................. c c c c c c c

Brennevin (drink/shot)..................... c c c c c c c

Likør/Hetvin (glass)......................... c c c c c c c

Svært lite Svært mye

Alder 1 2 3 4 5 6 7 8 9 10

14 år.......................... c c c c c c c c c c

Før svangerskapet...... c c c c c c c c c c

I dag........................... c c c c c c c c c c

FYSISK AKTIVITET 

Selvopplevd helse

SVANGERSKAPet

Morsmelk som baby
Ammet din mor deg da du var baby?
c Ja c Nei

Dersom JA, hvor mange måneder til sammen fikk du morsmelk?

Totalt antall mnd. med morsmelk    Vet ikke c  

Oppfatter du din helse som:
c Meget god c God c Dårlig c Meget dårlig

Vi ber deg angi din fysiske aktivitet etter en skala fra svært liten til svært 
mye ved 14 års alder, før svangerskapet og i dag. Skalaen nedenfor går 
fra 1-10. Med fysisk aktivitet mener vi både arbeid i hjemmet og i 
yrkeslivet samt trening og annen fysisk aktivitet som turgåing ol.

Tran, omega-3 og fiskeolje
Bruker du flytende tran/omega-3/fiskeolje?
c Ja c Nei

Hvis JA, hvor ofte tar du flytende tran/omega-3/fiskeolje? 
(Sett ett kryss pr. linje)

aldri/
sjelden

1-3 pr. 
mnd.

1 pr. 
uke

2-6 pr. 
uke daglig

Om vinteren.......................................................................... c c c c c

Resten av året..................................................................... c c c c c

Var dette svangerskapet planlagt?
c Ja c Nei

Dersom JA, hvor mange måneder tok det før du ble gravid?

Antall mnd. 

Trengte du hjelp til å bli gravid i dette svangerskapet? 
(Behandlet for barnløshet; hormonstimulering, IVF, mikroinjeksjon ol.)
c Ja c Nei

Beskriv dine røykevaner før og i dette svangerskapet? 
(Sett ett kryss)

Ikke røyker Av og til Daglig

6 mnd før svangerskapet......................... c c c

Ved svangerskapets start......................... c c c

I dag............................................................................. c c c

Dersom du røyker eller har røykt, angi antall pr. dag eller pr uke?
Antall pr dag Antallpr uke

6 mnd før svangerskapet.............................................................

Ved svangerskapets start.............................................................

I dag.................................................................................................................

Dersom JA, hva var årsaken?

.........................................................................................................................................................................................

Hvilken behandling fikk du da?

.........................................................................................................................................................................................

�



Kosthold
Påvirker noen av følgende forhold kostholdet ditt? 
(Sett om nødvendig flere kryss)
c Er vegetarianer/veganer c Har anoreksi
c Spiser ikke norsk kost til daglig c Har bulimi
c Har allergi/intoleranse c Prøver å gå ned i vekt
c Kronisk sykdom c Lav glykemisk mat

Vi er interessert i å få kjennskap til hvordan kostholdet ditt er vanligvis. 
Kryss av for hvert spørsmål om hvor ofte du i gjennomsnitt siste året har 
brukt den aktuelle matvaren, og hvor mye du pleier å spise/drikke hver gang. 

Drikke
Hvor mange glass melk drikker du vanligvis av hver type? 
(Sett ett kryss pr. linje)

aldri/
sjelden

1-4 pr. 
uke

5-6 pr. 
uke

1 pr. 
dag

2-3 pr. 
dag

4+ pr. 
dag

Helmelk (søt, sur)................................................ c c c c c c

Lettmelk (søt, sur)............................................... c c c c c c

Ekstra lettmelk.................................................... c c c c c c

Skummet (søt, sur)............................................ c c c c c c

Hvor mange kopper kaffe/te drikker du vanligvis av hver sort? 
(Sett ett kryss for hver linje)

aldri/
sjelden

1-6 pr. 
uke

1 pr. 
dag

2-3 pr. 
dag

4-5 pr. 
dag

6-7 pr. 
dag

8+ pr. 
dag

Kokekaffe................................................ c c c c c c c

Traktekaffe.............................................. c c c c c c c

Pulverkaffe............................................. c c c c c c c

Presskanne kaffe....................... c c c c c c c

Anne kaffe (latte, espresso ol.)..... c c c c c c c

Svart te...................................................... c c c c c c c

Grønn te................................................... c c c c c c c

Bruker du følgende i kaffe eller te:
Kaffe Te

Sukker (ikke kunstig søtstoff)................ c Ja c Nei c Ja c Nei
Melk eller fløte.......................................... c Ja c Nei c Ja c Nei

Hvor mange glass vann drikker du vanligvis?
aldri/

sjelden
1-6 pr. 

uke
1 pr. 
dag

2-3 pr. 
dag

4-5 pr. 
dag

6-7 pr. 
dag

8+ pr. 
dag

Springvann/flaskevann.............. c c c c c c c

Hvor mange glass juice, saft og brus drikker du vanligvis? 
(Sett ett kryss pr. linje)

aldri/
sjelden

1-3 pr. 
uke

4-6 pr. 
uke

1 pr. 
dag

2-3 pr. 
dag

4+ pr. 
dag

Appelsinjuice...................................................... c c c c c c

Annen juice........................................................... c c c c c c

Saft/brus med sukker.................................. c c c c c c

Saft/brus sukkerfri.......................................... c c c c c c

Yoghurt/kornblanning
Hvor ofte spiser du yoghurt (1 beger)? (Sett ett kryss)
c Aldri/sjelden c 2-3 pr. uke
c 1 pr. uke c 4+ pr. uke

Hvor ofte spiser du kornblanding, havregryn eller müsli? 
(Sett ett kryss)
c Aldri/sjelden c 4-6 pr. uke
c 1-3 pr. uke c 1+ pr. dag

Kosttilskudd
Bruker du kosttilskudd?
c Ja c Nei

Hvis JA, hvor ofte bruker du kosttilskudd? (Sett ett kryss pr. linje)

Navn på kosttilskudd
aldri/

sjelden
1-3 pr. 
mnd.

1 pr. 
uke

2-6 pr. 
uke daglig

......................................................................................................... c c c c c

......................................................................................................... c c c c c

......................................................................................................... c c c c c

......................................................................................................... c c c c c

Bruker du kapsler/piller med tran/omega-3/fiskeolje?
c Ja c Nei

Hvis JA, hvor ofte tar du kapsler/piller med tran/omega-3/fiskeolje 
(Sett ett kryss pr. linje)

aldri/
sjelden

1-3 pr. 
mnd.

1 pr. 
uke

2-6 pr. 
uke daglig

Om vinteren.......................................................................... c c c c c

Resten av året..................................................................... c c c c c

Hvilken type kapsler/piller med tran/omega-3/fiskeolje bruker du 
vanligvis, og hvor mange pleier du å ta hver gang? 

Navn......................................................................................................................... Antall

Navn......................................................................................................................... Antall

Navn......................................................................................................................... Antall

Hvor mange skiver brød/rundstykker og knekkebrød/
skonrokker spiser du vanligvis? 
(1/2 rundstykke = 1 brødskive)  (Sett ett kryss for hver linje)

aldri/
sjelden

1-4 pr. 
uke

5-7 pr. 
uke

2-3 pr. 
dag

4-5 pr. 
dag

6+ pr. 
dag

Grovbrød................................................................. c c c c c c

Kneip/halvfint..................................................... c c c c c c

Fint brød/baguett............................................ c c c c c c

Knekkebrød o.l. ............................................... c c c c c c

Brødmat

Hvilken type flytende tran/omega-3/fiskeolje bruker du vanligvis, og 
hvor mye pleier du å ta hver gang? 

1 ts ½ ss 1+ ss

Navn:.......................................................................................................................... c c c

Navn:.......................................................................................................................... c c c

Navn:.......................................................................................................................... c c c
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Nedenfor er det spørsmål om bruk av ulike påleggstyper. Vi spør om 
hvor mange brødskiver med det aktuelle pålegget du pleier å spise. 
Dersom du også bruker matvarene i andre sammenhenger enn til brød 
(f. eks. til vafler, frokostblandinger, grøt), ber vi om at du tar med dette 
når du besvarer spørsmålene.

Hva slags fett bruker du vanligvis på brødet?
c Bruker ikke fett på brødet
c Smør
c Hard margarin (f. eks. Per, Melange)
c Myk margarin (f. eks. Soft, Vita, Solsikke)
c Smørblandet margarin (f.eks. Bremyk)
c Brelett
c Lettmargarin (f. eks. Soft light, Letta, Vita Lett)
c Middels lett margarin (f. eks. Olivero, Omega)

Dersom du bruker fett på brødet, hvor tykt lag pleier du 
å smøre på? (En kuvertpakke med margarin veier 12 gram). 
(Sett ett kryss)
c Skrapet (3 g) c Godt dekket (8 g)
c Tynt lag (5 g) c Tykt lag (12 g)

Frukt og grønnsaker
Hvor ofte spiser du frukt? (Sett ett kryss pr. linje)

aldri/
sjelden

1-3 pr. 
mnd.

1 pr. 
uke

2-4 pr. 
uke

5-6 pr 
uke

1 pr 
dag

2+ pr 
dag

Epler/pærer........................................... c c c c c c c

Appelsiner o.l. .................................. c c c c c c c

Bananer.................................................... c c c c c c c

Annen frukt........................................... c c c c c c c

Hvor ofte spiser du ulike typer grønnsaker? (Sett ett kryss pr. linje)
aldri/

sjelden
1-3 pr. 
mnd.

1 pr. 
uke

2 pr. 
uke

3 pr 
uke

4-5 pr 
uke

6-7 pr 
uke

Gulrøtter................................................... c c c c c c c

Kål................................................................. c c c c c c c

Kålrot.......................................................... c c c c c c c

Brokkoli/blomkål............................. c c c c c c c

Blandet salat........................................ c c c c c c c

Tomat.......................................................... c c c c c c c

Grønnsakblanding (frossen)..... c c c c c c c

Løk................................................................ c c c c c c c

Andre grønnsaker........................... c c c c c c c

For de grønnsakene du spiser, kryss av for hvor mye du 
spiser hver gang: (Sett ett kryss for hver sort):
Gulrøtter (stk)...................................................... c ½ c 1 c 1 ½ c 2+
Kål (dl)...................................................................... c ½ c 1 c 1 ½ c 2+
Kålrot (dl)............................................................... c ½ c 1 c 1 ½ c 2+
Brokkoli/blomkål (buketter)..................... c 1-2 c 3-4 c 5+
Blandet salat (dl)............................................. c 1 c 2 c 3 c 4+
Tomat (stk)............................................................. c ¼ c ½ c 1 c 2+
Grønnsakblanding (frossen) (dl)........... c ½ c 1 c 2 c 3+

Ris, spaghetti, grøt, suppe
Hvor ofte bruker du ris og spaghetti/makaroni? 
(Sett ett kryss pr. linje) aldri/

sjelden
1-3 pr. 
mnd.

1 pr. 
uke

2 pr. 
uke

3+ pr 
uke

Ris................................................................................................. c c c c c

Spaghetti, makaroni, nudler................................. c c c c c

Hvor ofte spiser du grøt? 
(Sett ett kryss pr. linje)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2-6 pr. 
uke

1+ pr. 
dag

Risengrynsgrøt.................................................. c c c c c c

Annen grøt (havre o.l.).................................... c c c c c c

Hvor ofte spiser du suppe? 
(Sett ett kryss pr. linje)

aldri/
sjelden

1-3 pr. 
mnd.

1 pr. 
uke

2 pr. 
uke

3+ pr 
uke

Som hovedrett.................................................................... c c c c c

Som forrett, lunsj eller kveldsmat................... c c c c c

FISK

På hvor mange brødskiver bruker du? (Sett ett kryss pr. linje)
aldri/

sjelden
1-3 pr. 

uke
4-6 pr. 

uke
1 pr. 
dag

2-3 pr. 
dag

4+ pr. 
dag

Syltetøy..................................................................... c c c c c c

Brunost helfet..................................................... c c c c c c

Brunost halvfet/mager................................ c c c c c c

Hvitost helfet....................................................... c c c c c c

Hvitost halvfet/mager.................................. c c c c c c

Kjøttpålegg, leverpostei............................ c c c c c c

Rekesalat, italiensk o.l. ............................ c c c c c c

På hvor mange brødskiver pr. uke har du i gjennomsnitt 
siste året spist? (Sett ett kryss pr. linje)

aldri/
sjelden

1 pr. 
uke

2-3 pr. 
uke

4-6 pr. 
uke

7-9 pr. 
uke

10+ pr. 
uke

Makrell i tomat, røkt makrell................ c c c c c c

Kaviar......................................................................... c c c c c c

Sild/ansjos/sardiner..................................... c c c c c c

Laks/ørret (gravet/røkt).................................... c c c c c c

Svolværpostei/Lofotpostei..................... c c c c c c

Krabbepålegg...................................................... c c c c c c

Annet fiskepålegg........................................... c c c c c c

Hvor mange poteter spiser du vanligvis (kokte, stekte, mos)?
(Sett ett kryss)
c Aldri/sjelden c 1 pr dag c 4+ pr dag
c 1-4 pr uke c 2 pr dag
c 5-6 pr. uke c 3 pr dag

Vi vil gjerne vite hvor ofte du pleier å spise fisk, og ber deg fylle ut 
spørsmålene om fiskeforbruk så godt du kan. Tilgangen på fisk kan 
variere gjennom året. Vær vennlig å markere i hvilke årstider du spiser 
de ulike fiskeslagene.

aldri/
sjelden

like mye 
hele året vinter vår sommer høst

Torsk, sei, hyse, lyr.................... c c c c c c

Steinbit, flyndre, uer.................. c c c c c c

Laks, ørret........................................... c c c c c c

Kveite....................................................... c c c c c c

Makrell................................................... c c c c c c

Sild............................................................ c c c c c c

Tunfisk (ikke på boks)..................... c c c c c c

Ferskvannsfisk (Abbor, 
gjedde, røye, sik, harr)....................... c c c c c c

Annen fisk........................................... c c c c c c
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Dersom du spiser  fisk, hvor mye spiser du vanligvis pr. 
gang? (1 skive/stykke = 150 gram)
Kokt fisk (skive)................................................. c 1 c 1,5 c 2 c 3+
Stekt fisk (stykke).............................................. c 1 c 1,5 c 2 c 3+

Hvor mange ganger pr. år spiser du fiskeinnmat? 
(Sett ett kryss for hver linje)

aldri 1-3 4-6 7-9 10-15 16+

Rogn............................................................................ c c c c c c

Fiskelever............................................................... c c c c c c

Dersom du spiser fiskelever, hvor mange spiseskjeer pleier 
du å spise hver gang? (Sett ett kryss)
c 1 c 2 c 3-4 c 5-6 c 7+

Hvor ofte bruker du følgende typer fiskemat? 
(Sett ett kryss pr. linje)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2+ pr 
uke

Fiskekaker/pudding/boller............................................................ c c c c c

Plukkfisk/fiskegrateng............................................................ c c c c c

Frityrfisk/fiskepinner................................................................ c c c c c

Andre fiskeretter........................................................................... c c c c c

Hvor stor mengde pleier du vanligvis å spise av de ulike 
rettene? (Sett ett kryss for hver linje)
Fiskekaker/pudding/boller (stk.)  
(2 fiskeboller=1 fiskekake)..................................... c 1 c 2 c 3 c 4+
Plukkfisk, fiskegrateng (dl).................... c 1-2 c 3-4 c 5+
Frityrfisk, fiskepinner (stk.).................... c 1-2 c 3-4 c 5-6 c 7+

I tillegg til informasjon om fiskeforbruk er det viktig å få 
kartlagt hvilket tilbehør som blir servert til fisk. 
Hvor ofte bruker du følgende til fisk? (Sett ett kryss pr. linje)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2+ pr 
uke

Smeltet/fast smør............................................................ c c c c c

Smeltet/fast margarin/fett........................................ c c c c c

Seterrømme (35%)........................................................... c c c c c

Lettrømme (20%)............................................................... c c c c c

Saus med fett (hvit/brun).............................................. c c c c c

Saus uten fett (hvit/brun).............................................. c c c c c

For de ulike typene tilbehør du bruker til fisk, vær vennlig å 
kryss av for hvor mye du vanligvis pleier å spise. 
Smeltet/fast smør (ss)............... c ½ c 1 c 2 c 3 c 4+
Smeltet/fast margarin (ss)..... c ½ c 1 c 2 c 3 c 4+
Seterrømme (ss)............................. c ½ c 1 c 2 c 3 c 4+
Lettrømme (ss) c ½ c 1 c 2 c 3 c 4+
Saus med fett (dl) c ¼ c ½ c ¾ c 1 c 2+
Saus uten fett (dl) c ¼ c ½ c ¾ c 1 c 2+

Kjøtt
Hvor ofte spiser du følgende viltprodukter? 
(Sett ett kryss pr. linje)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2-3 pr. 
uke

4+ pr. 
uke

Reinkjøtt................................................................... c c c c c c

Andre matvarer fra rein (lever, nyre, 
margebein, hjerte, tunge, blod og annet)...... c c c c c c

Elgkjøtt, andre matvarer fra elg.......... c c c c c c

Rype, annen viltfugl...................................... c c c c c c

Hvor ofte spiser du følgende kjøtt- og fjærkreretter? 
(Sett ett kryss for hver rett)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2+ pr 
uke

Steik (okse, svin, får)........................................................... c c c c c

Koteletter................................................................................. c c c c c

Biff................................................................................................. c c c c c

Kjøttkaker, karbonader................................................ c c c c c

Pølser......................................................................................... c c c c c

Gryterett, lapskaus......................................................... c c c c c

Pizza med kjøtt.................................................................. c c c c c

Kylling....................................................................................... c c c c c

Bacon, flesk.......................................................................... c c c c c

Innmat får/storfe............................................................... c c c c c

Andre kjøttretter................................................................ c c c c c

Hvor mange ganger i året spiser du hval-/selkjøtt? (Sett ett kryss)
aldri 1-3 4-6 7-9 10-15 16+

c c c c c c

Hvor mange ganger i året spiser du det brune kjøttet i 
krabbe (utenom krabbepålegg)? (Sett ett kryss)

aldri 1-3 4-6 7-9 10-15 16+

c c c c c c

Hvor mange ganger i året spiser du andre skalldyr (reker og 
skjell)? (Sett ett kryss)

aldri 1-3 4-6 7-9 10-15 16+

c c c c c c

Hvor mange måseegg eller egg fra annen sjøfugl spiser du i 
året? (Sett ett kryss)

aldri 1-3 4-6 7-9 10-15 16+

c c c c c c

Med tanke på de periodene av året der du spiser fisk, hvor 
ofte pleier du å spise følgende til middag?(Sett ett kryss pr. linje)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2+ pr 
uke

Kokt torsk, sei, hyse, lyr........................................... c c c c c

Stekt torsk, sei, hyse, lyr.......................................... c c c c c

Steinbit, flyndre, uer..................................................... c c c c c

Laks, ørret.............................................................................. c c c c c

Kveite.......................................................................................... c c c c c

Makrell...................................................................................... c c c c c

Sild............................................................................................... c c c c c

Tunfisk (ikke på boks)........................................................ c c c c c

Ferskvannsfisk (Abbor, gjedde, røye, sik, harr)........ c c c c c

Annen fisk.............................................................................. c c c c c
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Hvor mye bruker du vanligvis av disse sausene?
(Sett ett kryss for hver linje)
Brun saus (dl)..................................... c ¼ c ½ c ¾ c 1 c 2+
Sjysaus (dl)........................................... c ¼ c ½ c ¾ c 1 c 2+
Tomatsaus (dl).................................... c ¼ c ½ c ¾ c 1 c 2+
Saus med fløte/rømme (dl).... c ¼ c ½ c ¾ c 1 c 2+

Dersom du spiser følgende retter, oppgi mengden du 
vanligvis spiser:  (Sett ett kryss for hver linje)
Steik (skiver).......................................... c 1 c 2 c 3 c 4 c 5+
Koteletter(stk.)..................................... c ½ c 1 c 1 ½ c 2+
Kjøttkaker, karbonader (stk).... c 1 c 2 c 3 c 4+
Pølser (stk à 150g)............................. c ½ c 1 c 1 ½ c 2+
Gryterett, lapskaus (dl)............... c 1-2 c 3 c 4 c 5+
Pizza m/kjøtt (stykke à 100 g).... c 1 c 2 c 3 c 4+

Hvilke sauser bruker du til kjøttretter og pastaretter?
(Sett ett kryss pr. linje) aldri/

sjelden
1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2+ pr 
uke

Brun saus............................................................................... c c c c c

Sjysaus..................................................................................... c c c c c

Tomatsaus.............................................................................. c c c c c

Saus med fløte/rømme.............................................. c c c c c

Andre matvarer
Hvor mange egg spiser du vanligvis i løpet av en uke
(stekte, kokte, eggerøre, omelett)? (Sett ett kryss)
c 0 c 1 c 2 c 3-4 c 5-6 c 7+

Hvor ofte spiser du iskrem (til dessert, Krone-is osv.)? 
Sett ett kryss for hvor ofte du spiser iskrem om sommeren, og ett kryss 
for resten av året

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2+ pr 
uke

Om sommeren................................................................... c c c c c

Resten av året..................................................................... c c c c c

Hvor mye is spiser du vanligvis pr. gang? (Sett ett kryss)
c 1 dl c 2 dl c 3 dl c 4+ dl

Hvor ofte spiser du bakevarer som boller, kaker,  
wienerbrød eller småkaker? (Sett ett kryss pr. linje)

aldri/
sjelden

1-3 pr. 
mnd.

1 pr. 
uke

2-3 pr. 
uke

4-6 pr. 
uke

1+ pr. 
dag

Gjærbakst (boller ol.)........................................ c c c c c c

Wienerbrød, kringle...................................... c c c c c c

Kaker........................................................................... c c c c c c

Pannekaker........................................................... c c c c c c

Vafler........................................................................... c c c c c c

Småkaker, kjeks................................................ c c c c c c

Lefser, lomper..................................................... c c c c c c

Hvor ofte spiser du dessert? (Sett ett kryss pr. linje)
aldri/

sjelden
1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2-3 pr. 
uke

4+ pr. 
uke

Pudding sjokolade/karamell................. c c c c c c

Riskrem, fromasj............................................. c c c c c c

Kompott, fruktgrøt, hermetisk frukt.... c c c c c c

Jordbær (friske, frosne).................................... c c c c c c

Andre bær (friske, frosne).............................. c c c c c c

Hvor ofte spiser/drikker du ville bær, inkludert syltetøy og 
saft? (Ikke industrifremstilt)? (Sett ett kryss pr. linje)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2-3 pr. 
uke

4+ pr. 
uke

Multebær................................................................ c c c c c c

Tyttebær................................................................... c c c c c c

Blåbær....................................................................... c c c c c c

Krøkebær................................................................ c c c c c c

Andre bær.............................................................. c c c c c c

Hvor ofte spiser du selvplukket sopp? (Sett ett kryss pr. linje)
aldri/

sjelden
1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2-3 pr. 
uke

4+ pr. 
uke

c c c c c c

Hvor ofte spiser du sjokolade? (Sett ett kryss pr. linje)
aldri/

sjelden
1-3 pr. 
mnd.

1 pr. 
uke

2-3 pr. 
uke

4-6 pr. 
uke

1+ pr. 
dag

Mørk sjokolade................................................. c c c c c c

Lys sjokolade...................................................... c c c c c c

Dersom du spiser sjokolade, hvor mye pleier du vanligvis å 
spise hver gang? Tenk deg størrelsen på en Kvikk-Lunsj sjokolade, 
og oppgi hvor mye du spiser i forhold til den.
c ¼ c ½ c ¾ c 1 c 1 ½ c 2+

Hvor ofte spiser du snacks? (Sett ett kryss pr. linje)
aldri/

sjelden
1-3 pr. 
mnd.

1 pr. 
uke

2-3 pr. 
uke

4-6 pr. 
uke

1+ pr. 
dag

Potetchips.............................................................. c c c c c c

Peanøtter................................................................. c c c c c c

Andre nøtter......................................................... c c c c c c

Annen snacks..................................................... c c c c c c

Kosthold gjennom ulike livsfaser  

Varm mat
Hvor mange ganger i løpet av en måned spiser du varm mat?

Til frokost Til middag

Til lunch Til kvelds

Det kan være vanskelig å huske eksakt hva du har spist gjennom tiden, 
men fyll ut sånn omtrent. 

Hvor ofte har du spist fisk? (Sett ett kryss pr. linje)
aldri/

sjelden
1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2-3 pr. 
uke

4+ pr. 
uke

Barndom.................................................................. c c c c c c

Ungdom 13-19................................................. c c c c c c

Voksen (før siste året)........................................ c c c c c c

Når du har spist fisk, hvor ofte har du da spist fet fisk (laks, 
ørret, kveite, makrell, sild, ål)? (Sett ett kryss pr. linje)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2-3 pr. 
uke

4+ pr. 
uke

Barndom.................................................................. c c c c c c

Ungdom 13-19................................................. c c c c c c

Voksen (før siste året)........................................ c c c c c c
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Hvor ofte i nevnte livsfaser har du tatt tilskudd av tran/
omega-3/fiskeolje (flytende/kapsler/piller)?
(Sett ett kryss pr. linje)

Aldri
1-3 pr. 
mnd.

1 pr. 
uke

2-6 pr. 
uke Daglig

Barndom vinter................................................................. c c c c c

Barndom resten av året............................................. c c c c c

Ungdom 13-19 vinter................................................. c c c c c

Ungdom 13-19 resten av året............................. c c c c c

Voksen vinter (før siste året)....................................... c c c c c

Voksen resten av året (før siste året)................... c c c c c

BARNEFAR
I forbindelse med sammenligning av ultralydmål, er det viktig å ha 
noen opplysninger om far til barnet i dette svangerskapet:

Hva var barnefars fødselsvekt som nyfødt baby?

 (Gram)    Vet ikke c  

Hva er barnefars høyde i dag? (cm).........    Vet ikke c

Hvilket hjemmespråk har/hadde barnefar, hans foreldre og 
hans besteforeldre? (sett ett eller flere kryss)

Norsk Samisk Kvensk Annet Vet ikke
Dersom annet 

beskriv

Morfar..... c c c c c .....................................................

Mormor... c c c c c .....................................................

Farfar...... c c c c c .....................................................

Farmor.... c c c c c .....................................................

Far.......... c c c c c .....................................................

Mor......... c c c c c .....................................................

Barnefar... c c c c c .....................................................

Hva regner barnefar seg selv som? (sett ett eller flere kryss)
Norsk Samisk Kvensk Annet Vet ikke Dersom annet beskriv

c c c c c ..............................................................................

Hva er barnefars, hans fars og hans mors etniske bakgrunn? 
(sett ett eller flere kryss)

Norsk Samisk Kvensk Annet Vet ikke
Dersom annet 

beskriv

Barnefars bakgrunn.. c c c c c ......................................

Mors bakgrunn........... c c c c c ......................................

Fars bakgrunn............. c c c c c ......................................

Angående spørsmålene
Var noen av spørsmålene vanskelige eller nærgående? Hvis ja oppgi hvilke spørsmål og evt. kommentarer.
c Ja c Nei

.............................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................

Andre kommentarer:.........................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................

Takk for hjelpen!

Lu
n

d
b

la
d

M
ed

ia
A

s
 -

 o
rd

re
 0

7
0
8
9
9

Hvor mange ganger i året har du spist hval-/selkjøtt? 
(Sett ett kryss pr. linje)

aldri 1-3 4-6 7-9 10-15 16+

Barndom.................................................................. c c c c c c

Ungdom 13-19................................................. c c c c c c

Voksen (før siste året)........................................ c c c c c c

Hvor mange måseegg eller egg fra annen sjøfugl har du 
spist i året? (Sett ett kryss pr. linje)

aldri 1-3 4-6 7-9 10-15 16+

Barndom.................................................................. c c c c c c

Ungdom 13-19................................................. c c c c c c

Voksen (før siste året)........................................ c c c c c c

Hvor mange ganger i året har du spist det brune kjøttet i 
krabbe (utenom krabbepålegg)? (Sett ett kryss pr. linje)

aldri 1-3 4-6 7-9 10-15 16+

Barndom.................................................................. c c c c c c

Ungdom 13-19................................................. c c c c c c

Voksen (før siste året)........................................ c c c c c c

Hvor mange ganger i året har du spist fiskelever? 
(Sett ett kryss pr. linje)

aldri 1-3 4-6 7-9 10-15 16+

Barndom.................................................................. c c c c c c

Ungdom 13-19................................................. c c c c c c

Voksen (før siste året)........................................ c c c c c c

Når du har spist fisk, hvor ofte har du da spist ferskvannsfisk 
(abbor, gjedde, røye, sik, harr)? (Sett ett kryss pr. linje)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2-3 pr. 
uke

4+ pr. 
uke

Barndom.................................................................. c c c c c c

Ungdom 13-19................................................. c c c c c c

Voksen (før siste året)........................................ c c c c c c

Hvor ofte har du spist fiskepålegg (Makrell, sild, ansjos, 
sardiner, røkt eller gravet laks/ørret, kaviar, fiskeleverpostei 
(Lofotpostei, Svolværpostei) krabbepålegg)?  
(Sett ett kryss pr. linje)

aldri/
sjelden

1 pr. 
mnd.

2-3 pr. 
mnd.

1 pr. 
uke

2-3 pr. 
uke

4-6 pr. 
uke Daglig

Barndom.................................................. c c c c c c c

Ungdom 13-19................................. c c c c c c c

Voksen (før siste året)........................ c c c c c c c

�



Miljøgifter i svangerskapet
og i ammeperioden
Følgende opplysninger fylles ut i forbindelse 
med blodprøvetaking.

Dette skjema må følge blodprøven!

Skjemaet skal leses optisk. Vennligst bruk blå 
eller sort penn. Du kan ikke bruke komma,  
bruk blokkbokstaver.

ID-nr:

LAB-kobling.

2007 
Konfidensielt

Urinprøve levert i dag:	 Ja: c	 Nei: c

Fyll inn tidspunkt når blodprøven er tatt: dag mnd

Dato.....................................................................................................................

Klokkeslett.....................................................................................................

Prøvetakingssted.............................................................................................................................................

Prøvetakingsdagen

Stilling når blodprøven ble tatt

Måltid før blodprøven
Når spiste du siste måltid før blodprøven 
ble tatt: dag mnd

Dato.....................................................................................................................

Klokkeslett.....................................................................................................

Når drakk du siste kaffe før blodprøven 
ble tatt: dag mnd

Dato.....................................................................................................................

Klokkeslett.....................................................................................................

Røykevaner siste uken
Har du røykt i løpet av siste uke?
c Ja c Nei

Hvis ja: Hvor mange sigaretter røykte du? Antall

I dag.................................................................................................................................................

I går..................................................................................................................................................

Hvor mye veier du i dag? (I hele kg)...............................

Høyde og vekt

Er vekten tatt i dag?
c Ja c Nei

Hvor ble den i så fall tatt:
c Lab c Legekontor c Fødeenhet/fødestue

Antall Siste uke Antall i går

Øl (0,4 l), rusbrus............................................................................

Vin (glass)...............................................................................................

Brennevin (drinker/shots).............................................................

Likør/Hetvin.......................................................................................

Alkohol siste uken

c Sittende c Liggende

Medisiner siste uken
Har du tatt medisiner i løpet av siste uke?
c Ja c Nei

Hvis ja: Angi medikament og dato for siste tablett
dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

Er høyden målt i svangerskapet?
c Ja c Nei

Hvor høy er du (cm)..........................................................

Prøvesett:	 P1: c	 P5: c	 P6: c



Takk for hjelpen!

Lu
n

d
b

la
d

M
ed

ia
A

s
 -

 o
rd

re
 0

70
91

0

Tran og fiskeolje siste uken
Har du brukt flytende tran/omega-3/fiskeolje i løpet av  
siste uke?
c Ja c Nei

Angi mengde
c 1 ts c 1/2 ss c 1+ ss

Har du brukt kapsler/piller med tran/omega-3/fiskeolje i 
løpet av siste uke?
c Ja c Nei

Angi mengde
c 1 stk c 2 stk c 3 stk

Hvis ja: Angi dato du sist tok flytende tran/Omega-3/fiskeolje
dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

Har du brukt andre kosttilskudd (vitaminer/mineraler) i løpet 
av siste uke?
c Ja c Nei

Hvis ja: Angi dato for siste tablett
dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

Kosttilskudd siste uken

Hvis ja: Angi dato du sist tok kapsler/piller med tran/Omega-3/fiskeolje
dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

dag mnd

Dato.....................................................................................................................

Preparatnavn:......................................................................................................................................................

(Ikke skriv her ‡) 

Angi mengde
c 1 stk c 2 stk c 3 stk
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Forskningsprosjektet 
Miljøgifter i svangerskapet og i 
ammeperioden 
 

 

 

 

 

        Tromsø, den 21. oktober 2009 
 
Kjære NN 
 
Først vil vi takke deg for at du har deltatt i prosjektet "Miljøgifter i svangerskapet og i 
ammeperioden”. Vi er ferdig med å samle inn data og har begynt å analysere resultatene. Men 
dessverre viser det seg, at vi ikke har innhentet tilstrekkelig med spørsmål vedrørende 
ammingen.  
 
Fordi kvinner skiller ut en del av forurensende stoffer gjennom morsmelken, må vi vite din 
ammestatus for å kunne analysere nivåene av miljøgifte i blodet. Når vi skal beskrive nivået 
på miljøgifter vi undersøker for, må vi derfor ta hensyn til om du har ammet, delvis ammet 
eller ikke ammet i det hele tatt. 
 
Vi spør deg derfor om å svare på vedlagte skjema og returnere det til oss snarest mulig i den 
vedlagte konvolutten. Alle opplysningene vil bli behandlet uten navn. Skjema er forelagt Den 
regionale komité for medisinsk og helsefaglig forskningsetikk (REK Nord).  
 
Har du noen spørsmål angående dette, så ikke nøl med å ta kontakt på telefon: 920 69 700  
eller send e-post til en av oss:  
 
solrunn.hansen@uit.no eller anna.sofia.veyhe@uit.no 
 
 
Igjen mange takk for hjelpen, og vi beklager bryderiet.  
 
Med vennlig hilsen  
 
Solrunn Hansen  
prosjektkoordinator  
 

 

 

 

 

        



xx 



Navn

ID

Fødseldato for barnet

Måneder Måneder Måneder
Barn Født (årstall) Kun amming Total ammelengde

1
2
3
4

Telefon slik at vi kan nå deg om noe er uklart

Dato for utfylling av skjema

Dersom du er i tvil om noen spørsmål, ber vi deg om å ta kontakt med oss: Telefon 920 69 700

Eventuelle kommentarer skrives her:

Tusen takk for hjelpen!

Spørsmålene omhandler kun barna du fødte før du var med i miljøgiftsprosjektet (kalles her for prosjektbarnet).

Amming + 
tillegg/grøt

Hvor mange måneder har du til sammen ammet tidligere barn (før prosjektbarnet ble født)?

Miljøgifter i svangerskapet og i ammeperioden



xx 



Navn
ID

Fødseldato for barnet

Kontroll miljøgiftsprosjektet 6 uker etter fødselen

Dato
Uker etter fødselen

Måneder Måneder Måneder
Barn Født (årstall) Kun amming Total ammelengde

1
2
3
4

Ammestatus for prosjekt-barnet  ved miljøgiftskontrollen 6 uker etter fødselen 

Kun amming

Amming + morsmelkserstatning

Ammet ikke barnet, fikk morsmelkserstatning

DERSOM prosjekt-barnet har fått morsmelkserstatning:
Hvor mye erstatning har barnet fått inntil miljøgiftskontrollen 6 uker etter fødselen 

Kun fått morsmelkserstatning 1-2 ganger

Fått erstatning flere enn 2 ganger, men ikke daglig

Fått erstatning daglig, men mindre enn en flaske daglig

Fått erstatning, 1-2 flasker daglig

Fått erstatning, 3-4 flasker daglig

Fått kun erstatning, aldri fått morsmelk

Barnet var uker
Hvis du aldri har ammet, skriv null (0) på uker

Telefon slik at vi kan nå deg om noe er uklart
Dato for utfylling av skjema
Eventuelle kommentarer skrives på baksiden av arket

Dersom du er i tvil om noen spørsmål, ber vi deg om å ta kontakt med oss: Telefon 920 69 700
Tusen takk for hjelpen!

Amming + 
tillegg/grøt

Dersom du for prosjekt-barnet, har avsluttet amming før 6 ukers miljøgiftskontrollen, hvor 
mange uker var barnet da?

Spørsmålene omhandler kun barnet du fødte da du var med i miljøgiftsprosjektet (kalles her for prosjektbarnet).

Hvor mange måneder har du til sammen ammet tidligere barn (før prosjektbarnet ble født)?

Miljøgifter i svangerskapet og i ammeperioden




