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Abstract

This thesis discusses the subject of maritime target detection based on single- and multi-
polarization synthetic aperture radar (SAR) data. The primary objective is to develop an
automatic and effective target detection algorithm, which is able to provide robust per-
formance for an operational maritime surveillance system under various circumstances.

The conventional constant false alarm rate (CFAR) detector setup is adopted in the
algorithm, which relies on accurate statistical characterization of the background sea
clutter measurements. The local reference clutter is confined using a modified sliding
window technique. Note that there are two major detection issues that are frequently
encountered and have been identified in many previous studies. Firstly, in multiple-
target situations, the local reference sea clutter is often contaminated by interfering
targets. The outcome is known as the capture effect. Secondly, in non-homogeneous
environments, sea surface transitions between regions with different radar backscat-
tering properties are usually observed in conjunction with various meteorological and
oceanographic phenomena. The result is recognized as the clutter edge effect. Both effects
inevitably lead to inaccurate parameter estimation and deceptive statistical modeling,
thus causing severe degradation of the CFAR detection performance.

To understand the statistics of sea clutter in multi-polarization SAR data, it is nat-
ural to study the covariance matrix derived from the scattering vector, since it holds
all polarimetric information and its estimate is an important factor for many statistical
models. Despite the attempts of modeling the real sea clutter with more comprehen-
sive models, mixed and/or contaminated clutter is always difficult to handle, which is
demonstrated in this thesis using a test with log-cumulants. Therefore, truncated statis-
tics (TS) is first reviewed as a useful tool for analyzing the region of interest (ROI) con-
taminated by multiple non-clutter pixels. Unlike a similar data censoring approach, the
rigorous statistical analysis using TS provides improved background clutter modeling
results, and does not require prior knowledge of the interfering pixels. A correspond-
ing TS-based CFAR (TS-CFAR) detector is then designed to suppress the capture effect
and ameliorate detection performance. Furthermore, building upon the idea of pre-
determining the class information within the ROI, an automatic image segmentation
stage with suitable statistics is adopted in the detection scheme to address the clutter
edge issue. After the data truncation, which excludes potential interfering pixels, a fi-
nite mixture modeling using TS is performed with a modified expectation maximization
(EM) algorithm. The obtained statistical information of the local reference clutter is then
passed to the final pixel-wise CFAR detection stage.

The end product is a segmentation based CFAR detection algorithm using TS. Single-
look intensity (SLI) and multi-look intensity (MLI) SAR imagery are mainly targeted in
this study for directly supporting operational applications, where intensity measure-
ments based on single- or dual-polarization data are mostly applied. Instead of the con-
ventional product models, the sea clutter samples are modeled based upon a mixture
of the truncated two-parameter gamma models. It has been demonstrated on several
real SAR images, that the proposed algorithm is able to adapt to various contaminated
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non-homogeneous environments, provide improved local background clutter model-
ing, and deliver robust detection performance.
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Chapter 1

Introduction

This chapter presents an overview of the thesis. It begins with the motivation and re-
search background. Then, the objectives and scope of the study are introduced, fol-
lowed by summaries of the four research articles included. A list of other associated
published works is included at the end.

The remaining parts of the thesis are organized as follows. Chapter 2 introduces
the fundamentals of maritime target detection using synthetic aperture radar (SAR),
which include the basic concepts of polarimetric SAR, essential statistical analysis of sea
clutter, short introduction of the constant false alarm rate (CFAR) detection algorithm,
and brief reviews of the primary target detection issues and different CFAR detection
schemes. The four research articles that contain the research contributions of this the-
sis are included in Chapters 3–6. Finally, Chapter 7 gives the concluding remarks and
future perspectives.

1.1 Motivation

Detection of targets, e.g., vessels, icebergs and oil spills, is the key component for many
operational maritime surveillance services, where high quality images of the Earth pro-
duced by air- and space-borne SAR systems have been used extensively. The obtained
output data are essential for corporations and governments to effectively manage the
sea in a sustainable way. The aim of this thesis is to contribute in the field of maritime
target detection, focusing on vessel detection.

SAR, as an active remote sensing (RS) technique (see chapter 2.1), is capable of pro-
viding useful sea surface information in all weather conditions independent of daylight.
For the wide maritime human activities, the recent target detection service based on
SAR systems has become an invaluable complement to the existing Global Positioning
System (GPS) and Automatic Identification System (AIS). Such a service has already
been applied in many practical applications, covering maritime navigation, safety mon-
itoring, security concern, and environment observation for both civil and military pur-
poses. There are also a growing number of new advanced SAR systems in the plan, and
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will soon be put into use.
In real cases, a robust and effective target detection algorithm based on the emerg-

ing SAR products are largely demanded by operations that are responsible for the safety
at sea, fisheries protection, national security, etc. For instance, often as the economical
drive for many port cities, heavy traffic in the harbor area needs to be carefully guided
and monitored at all times. For security concerns, especially along the sea borders, the
increasing risks of smuggling, human and drug trafficking, and illegal immigrants are
on the rise in recent years. To control the vast sea regions, the field inspectors require a
robust automatic system, which can cover large areas all year long. Nowadays, humans
are exploring further into the sea for food, energy and other natural resources, particu-
larly into the warming Arctic region. For example, Norway, as one of the many coastal
counties, has an ocean area seven times larger than the land area. The requirements
for a national capability to manage and monitor its coastal waters and the Barents Sea
increase with the booming shipping, fishing, and other offshore industries. Thus the
modern space-borne SAR technique presents a promising option for services support-
ing the operations of the Coast Guard and other authorities. Moreover, hundreds of
thousands of fleets connecting the whole world daily definitely bring urgent demands
for better navigation services, and with the growing threats of the global environmental
changes, the degree of risk due to wild storms, tsunamis or other natural disasters have
increased dramatically for the fishing, shipping, and oil and gas industries. Meanwhile,
the corresponding environmental instances like oil spills are more and more common,
which puts higher requirements on maritime monitoring and forecasts as well.

1.2 Research background

This section provides a brief summary of maritime human activities and discusses the
current state of operational satellite-based maritime surveillance services.

1.2.1 Maritime human activities

For centuries, the sea has been a major hub of human activities, ranging from tradi-
tional activities like fishing and shipping to more modern instances such as offshore
facilities for natural resources. Never before have so many people lived so close to the
coasts, and have so many vessels explored further into the vast sea. In fact, over half
the world’s population lives within 200 kilometers of a seacoast, as for eight of the top
ten largest cities, according to the United Nations (UN) Atlas of the Oceans [1]. Without
exaggeration, mankind has been deeply relying on the sea for a long time.

Despite the development of cars, trains and airplanes, shipping remains the ma-
jor means for transporting raw materials, consumer goods, and energy internationally.
Nowadays, over 90% of global commerce is carried by approximate 90, 000 marine ves-
sels [2, 3], and the market has been expanding steadily with international trade increas-
ing. Although, most major countries agree that the open seas should remain free to

2



all shipping in peacetimes, the capability of possessing the command of the sea (or sea
control) is still the very symbol of global power from military aspects [4]. This dom-
inance not only applies to one nation’s surrounding waters, but also extends far into
the vast sea. Since the development of radar technology during World War II (WWII),
advanced navies and organizations have begun to use it to provide target information
and early warnings. In recent years, safety and security concerns along shipping lanes
and sea borders are on the continuous rise all over the global. Different all-weather
navigation and assistance systems have been developed to minimize the probability of
unwanted incidents at sea. While current examples of piracy [5] off the coast of Soma-
lia and in the Indian Ocean, illegal immigrants from Africa to European countries via
the Mediterranean Sea, and human and drug trafficking and other smuggling activities
elsewhere, still show huge potentials of new radar surveillance systems with improved
target detection ability.

Additionally, the exploration and production of the natural resources in the sea have
also become the major drivers of economic growth for many nations. Firstly, as an an-
cient hunting activity, fishing has always been very important and influential to the hu-
man society and economy. In recent years, the fishing industry is driven mostly by the
endless customer demands and intense competitions between fleets, which means that
most fishing vessels often have to go further into the oceans to find new fishing grounds.
Secondly, the offshore oil and gas industry has become an important part to the global
energy supply, thanks to the technological developments within the past years. De-
spite the high risk and safety concerns of the offshore projects, the energy resources
production has been accounting for almost one third of the world’s production and 55%
of non-OPEC (Organization of the Petroleum Exporting Countries) reserves since 2012,
according to the International Energy Agency (IEA) [6]. However, it is worth noting that
the world’s seas prosperity has been threatened by the increasing risk of unsustainable
developments and illegal practices around the world.

Meanwhile, human activities can have major impacts on the sea environment and
sometimes cause severe environmental disasters. Seriously negative events with long-
term consequences have become increasingly common, which can result from technical
accidents, human or mechanical failures or carelessness. For instance, the recent Deep-
water Horizon oil spill in the Gulf of Mexico 2010 (also known as the BP oil spill or
Macondo accident) is considered the largest accidental marine oil spill in history, which
caused devastating effects to the offshore and coastal environments and the oceanic
lives. Also, a large number of small-scale operational discharges from the shipping ves-
sels are responsible for a huge volume of oil released into the sea [7]. Such practices
are illegal, but occur frequently all over the world. In Norway, together with the Nor-
wegian Coastal Administration (NCA), the Norwegian Clean Seas Association for Op-
erating Companies (NOFO) was established to prevent and respond to those potential
incidents.

In summary, effective countermeasures for those issues have been demanded by
global corporations, government administrations, and environmental organizations for
years. New diverse surveillance services based on advanced SAR system, satellite-
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based AIS, and existing GPS have shown great potential. As the important part of such
operations, maritime target detection has been a necessary role in various incidents.
A brief review of current operational maritime surveillance services is provided in the
next section.

1.2.2 Operational maritime surveillance services

An important maritime surveillance system is the automatic identification system, which
was conventionally designed as a VHF (Very High Frequency) communication system
providing information of vessels and offshore platforms [8]. Valuable data, such as ves-
sel location, identification, course and speed, can be exchanged via the system, which
allows vessels, coastal guards, customs and other authorities to monitor the traffic at sea
and response to abnormal incidents within certain jurisdiction [9–13]. The main goals of
an AIS system include providing navigation aids, anticipating and avoiding collisions,
and helping search and rescue organizations.

Figure 1.1: The first AIS data from AISSat-1 presented in [9, 10]. The colored symbols
mark the AIS data received within the region. Image credit: Google, KSAT, FFI.

Since normal terrestrial AIS system has limited range from coastlines, a satellite-
based AIS system has been proposed for its potential coverage of any area on Earth.
For instance, AISSat-1 (launched on 12th July 2010) and AISSat-2 (launched on 8th July
2014) are the Norwegian AIS satellites funded by the Norwegian Space Center (NSC)
with program management by the Norwegian Defense Research Establishment (FFI)
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[9, 10]. They are experimental nano-satellites to receive and forward signals from the
vessel’s AIS onboard, mainly covering the coastal waters of all oceans Norway manage.
The received data have shown large number of vessels outside range of terrestrial AIS
networks. Figure 1.1 shows an example of the AISSat-1 reports from the High North
on 15th July 2010 [9, 10]. There are a number of currently ongoing trial projects funded
by the European Space Agency (ESA) and the European Commission as well [12], such
as the RUBIN 7 and 8 AIS missions from LuxSpace/OHB, the COMDEV NTS nano-
satellite mission and the US military satellite TacSat-2.

Note that the International Maritime Organization (IMO) requires for most vessels
to be equipped with an AIS transceiver, capable of transmitting real-time information to
other vessels and to coastal authorities automatically [11, 14, 15]. However, the biggest
problem of the system is that people (vessels) can deliberately switch off their transmit-
ter to become invisible to other vessels and the administered surveillance. Therefore,
there may be an unusually low number of vessels reported via the system in some re-
gions. For instance, illegal fishing activities have often been difficult to detect and prove
in the open sea or near the border of fishing grounds. For busy shipping lanes, pirates
can use the AIS reports to spot and attack certain vessels, while the captain of a vessel
also has the right to switch off the AIS, either for the safety of the ship or to take other
possible routes [9].

Therefore, an active RS system can act as a valuable complement to the existing AIS,
and the obtained data can provide additional information for selected areas of interest.
Nowadays, many advanced RS systems have been or are about to be put into operation,
while space-borne maritime monitoring systems using SAR in particular have shown
great application prospects. The advantages of a space-borne SAR include all-weather,
24-hour, large area, frequent and repetitive coverage of an area of interest, and rela-
tively low cost. Operationally, a space-borne SAR target detection system and AIS can
be combined for monitoring remote regions, which provides the opportunity to expose
vessels that do not send mandatory AIS reports. Although spatial resolution may be a
concern of such space-borne system, many latest SAR sensors are capable of producing
imagery with high sub-meter resolution. Currently, there are several SAR missions pro-
viding images for research and operational applications, which are also commercially
available to most civilian users. For examples, operational missions, such as the Ger-
man TerraSAR-X mission (2007), the Canadian RADARSAT-2 mission (2007), the Italian
Cosmo-SkyMed mission (2007–2010), and the latest ESA’s Sentinel-1 mission (2014), are
all capable of providing services pertaining to maritime and coastal surveillance. Figure
1.2 shows ship detection results based on a high resolution RADARSAT-2 SAR image,
combined with the AIS reports from the coastal network as well as data from AISSat-
1. The results are collected from a trial exercise in the Malangen area, near Tromsø, in
northern Norway [9, 10].
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Figure 1.2: RADARSAT-2 Standard Quad-Pol SAR image in HH polarization acquired
on 19th September 2010. The image shows seven ships that are detected in the SAR
image and confirmed by aisonline.com (from [10]).

1.3 Objectives and scope

This thesis focuses on maritime target detection using advanced SAR technology. Four
research articles are included in this thesis, which provide rigorous statistical analysis
of sea clutter and address challenging detection issues due to multiple targets situations
and various non-homogeneous sea environments.

In order to develop robust and effective target detection algorithm for various op-
erational maritime monitoring conditions, the specific objectives of the thesis can be
summarized as:

• to explore the statistical modeling of the sea clutter in SAR images (article 1 – 4);
• to inspect the conventional target detection algorithms (article 3 – 4);
• to address the common target detection issues, i.e., capture effect and clutter edge

effect (article 2 – 4);
• to develop an effective and robust target detection algorithm (article 3 – 4).

6



The scope of the research is aimed at vessel detection within sea clutter based on
single- and multi-polarization SAR data and, therefore, certain presumptions and limi-
tations are relevant.

Firstly, the CFAR target detection concept is adopted in the study. It usually refers
to the general form of an adaptive algorithm designed to detect target signals against a
varying background of noise, clutter and interference. Advanced CFAR algorithms are
able to decide a detection threshold adaptively via rigorous statistical analysis of the
background clutter. Meanwhile, the reference clutter is confined by a sliding window
in the local background.

Both simulated and real single- and multi-polarization SAR scenes are applied in the
study. The statistical characterization of the sea clutter measurements is investigated
primarily on account of covariance matrix estimation for statistical modeling. Despite
the popularity of choosing polarimetric methods (in the multi-polarization case), this
thesis is focused on working with the intensity measurements for simplicity and prac-
ticality in real applications. Datasets are also selected to represent various real case
scenarios. Note that all real SAR images are acquired in recent years covering dis-
tinct regions near or within the Norwegian Sea, the North Sea, the Portsmouth port
in U.K., and offshore Netherlands. RADARSAT-2 SAR products are only considered
in the study, which are provided by Norwegian Space Centre/Kongsberg Satellite Ser-
vices under the Norwegian–Canadian RADARSAT agreement 2009–2013 and through
Dr. A. Marino at the Institute of Environmental Engineering, ETH Zürich. Details of the
individual datasets can be found in the research articles (chapter 3 to 6).

It is also worth noting that the proposed detection algorithms are equally valid for
all radar sensors running at any frequency. The generality can also be extended to com-
bining multiple data sources and handling different types of environment.

1.4 Publication summary

The main body of this thesis is presented as three journal publications and one proceed-
ings publication, which are included as Chapters 3–6. The following summaries of the
individual articles included in the thesis delineate the key concepts and highlight the
main contributions of this work. Note, the papers are not presented in chronological
publication order, but in an order that better indicates the research progress.

Research article I

Ding Tao, Stian N. Anfinsen, and Camilla Brekke, “A Comparative Study of Sea Clut-
ter Covariance Matrix Estimators,” IEEE Geoscience and Remote Sensing Letters, vol.
11, no. 5, pp. 1010–1014, May 2014.

To understand the statistics of sea clutter in multi-polarization SAR data, it is natu-
ral to study the covariance matrix derived from the scattering vector. In this letter, we
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focus on the estimation of the polarimetric covariance matrix in the context of sea clut-
ter statistical modeling. A comprehensive study of four covariance matrix estimators
is provided: the maximum likelihood (ML) estimators under the Gaussian distribution
(G-ML) and the K distribution (K-ML), an approximation of the latter, and a robust M-
estimator. It adds to previous theoretical studies of these algorithms by evaluating their
performance with respect to both estimating accuracy and computational efficiency. Ex-
periments are performed on simulated datasets, and various texture conditions of the
sea clutter are considered. In summary, the G-ML estimator is fast due to its simplicity,
and it is expected to perform well under low to moderate texture conditions. The K-ML
estimator models the sea clutter more accurately than the G-ML estimator under high
texture but at increased computational cost. The newly proposed approximation of the
K-ML estimator is comparable to the K-ML, especially with small sample sizes, while
its computational cost is significantly lower than that for the K-ML estimator under all
conditions. The M-estimator does not provide any distinct advantages in any of the
studied cases. However, because it requires no assumption of the texture distribution,
it makes an alternative to the G-ML in a highly textured clutter.

Research article II

Ding Tao, Anthony P. Doulgeris, and Camilla Brekke, “Sea Clutter Contamination Test
with Log-Cumulants,” Proc. SPIE Remote Sensing 2012, vol. 8536, no. 18, Edinburgh,
United Kingdom, 24–27 Sep. 2012.

Despite the attempts of modeling the real sea clutter with more comprehensive mod-
els, non-sea-clutter targets and transitions between statistically different oceanographic
conditions are always difficult to handle and likely cause inaccurate estimation of clut-
ter properties. Referring to mixtures in the estimation window as contamination, this
work introduces a novel sea clutter contamination test based on log-cumulants from
Mellin kind statistics. It measures the significant deviation in log-cumulant space due
to the contamination, and appears to be an effective tool for improving the sea clutter
estimation or to be a direct first-stage target detector. The proposed contamination test
is examined with real fine resolution quad-polarimetric RADARSAT-2 SAR measure-
ments, from the Norwegian Sea, under various oceanographic conditions.

Research article III

Ding Tao, Stian N. Anfinsen, and Camilla Brekke, “Robust CFAR Detector Based on
Truncated Statistics in Multiple-Target Situations,” in press: IEEE Transactions on
Geoscience and Remote Sensing, 2015.

In this work, a new and robust truncated statistics (TS) based CFAR (TS-CFAR) de-
tector is proposed for vessel detection in single-look intensity and multi-look intensity
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SAR images. This approach is aimed at high-target-density situations such as busy ship-
ping lanes and crowded harbors, where the background statistics are estimated from
potentially contaminated sea clutter samples. Therefore, data truncation is applied to
exclude possible statistically interfering outliers and TS is exploited to model the re-
maining background samples. Unlike other data censoring schemes, the rigorous sta-
tistical analysis provided by TS offers improved background clutter modeling results,
and does not require prior knowledge of the interfering samples. In addition, the pro-
posed detector can be implemented with a block sliding estimation window centered
at the cell under test, thus a more confined window without guard cells can be used
to collect the reference samples. The comparative study has clearly demonstrated the
superiority of TS-CFAR processing over conventional CFAR processors. Note that TS-
CFAR detector also performs on par with iterative censoring schemes while avoiding
the iterations. Overall, the TS-CFAR detection algorithm provides accurate background
clutter modeling, a stable false alarm regulation property, and improved detection per-
formance in multiple-target situations.

Research article IV

Ding Tao, Anthony P. Doulgeris, and Camilla Brekke, “A Segmentation based CFAR
Detection Algorithm using Truncated Statistics,” in review: IEEE Transactions on Geo-
science and Remote Sensing, 2015.

This study looks into target detection in real non-homogeneous sea clutter environ-
ments. It is a complex and challenging task not only due to the possible capture ef-
fect from interfering outliers, but also the clutter edge effect from background intensity
transitions. Based on our previous work, TS has proved to be a useful tool when the ref-
erence area is contaminated by multiple non-clutter pixels. In order to simultaneously
address both issues, a robust segmentation based CFAR detection algorithm using TS
is developed for multi-looked intensity SAR imagery. Within each region confined by
the reference window, the proposed scheme implements an automatic image segmen-
tation algorithm, which performs a finite mixture model estimation with a modified
expectation maximization (EM) algorithm. Data truncation is applied here to exclude
all possible statistically interfering classes, and the sample modeling is based upon the
truncated two-parameter gamma model. Next, the CFAR detection is conducted pixel
by pixel, utilizing the statistical information obtained from the segmentation process
within the local reference window. The practical performance of the proposed detection
algorithm is demonstrated in the experiments using real RADARSAT-2 SAR images.
Compared to the conventional algorithms, the improved automatic TS based segmen-
tation processor provides a comprehensive statistical analysis of the non-homogeneous
background clutter independent from the interfering outliers. While the subsequent
CFAR processor takes advantage of the available local contextual information, yields a
controlled false alarm rate, and achieves excellent detection capability. Thus, our algo-
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rithm is able to adapt to the complicated target situations and variations of the back-
ground clutter, and is qualified for a robust context-based fully automatic system for
sea monitoring under different circumstances by SAR.
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Chapter 2

Maritime Target Detection using
Synthetic Aperture Radar

This chapter first introduces the fundamentals of SAR imaging, where the basic con-
cepts and imaging process of a polarimetric SAR (PolSAR) system are presented. Next,
the statistical analysis of the SAR image is discussed with emphasis on space-borne mar-
itime applications, including different data formats and common sea clutter modeling
hypotheses. Finally, the essentials of a CFAR target detection process are summarized,
followed by discussions of the primary detection issues and a short review of the known
detectors.

2.1 Fundamentals of SAR imaging

Nowadays, SAR has become a well-developed radar remote sensing system, which is
capable of producing high-resolution images of the Earth’s surface. The SAR system is
an active system, which illuminates a target’s surface with microwave pulses and mea-
sures the backscattered signals to determine the characteristics of the target. Because
such a system has its own illumination source, it is able to work at any time of day or
night, regardless of solar illumination [16]. Additionally, SAR imaging are significantly
less affected by clouds, fog, rain, snow, etc. than the visible and infrared sensors, which
allows it to be an all-weather system [17].

A detailed description of SAR operations and signal processing is complex and be-
yond the scope of this thesis. Instead, the rest of this section is intended to provide an
overview of the SAR imaging process, but more detailed information can be found in
many dedicated literatures [16–27].

2.1.1 Basic concepts of polarimetric SAR

A typical radar system uses the microwave portion of the electromagnetic spectrum
ranging from 3 MHz to 300 GHz in frequency, while space-borne SAR systems usu-
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ally operates at wavelengths between 0.5 cm and 75 cm [26]. A list of wavelengths
and frequencies of radar remote sensing bands based on IEEE standard 521-2002 [28]
are included in table 2.1. In general, the choice of the system wavelength needs to be
matched to the surface feature of the targeted object. Smaller features can be better
distinguished by shorter wavelength (higher frequency) bands, while long wavelength
bands are more suitable for large features. Therefore, different applications can be as-
signed to each frequency band with variable effectiveness. The bands most used by
functioning space-borne SAR systems are C band (RADARSAT-2 and Sentinel-1) and
X band (COSMO-SkyMed and TerraSAR-X). The applications of a C-band SAR cover
a wide range of subjects, e.g., vessel, sea ice, iceberg, and ocean wave. As for X-band
SARs, because of their shorter wavelengths, they are best suited for detecting and dis-
criminating smaller objects, and have been widely used for military reconnaissance,
mapping and surveillance [26].

Table 2.1: Wavelength and frequency of radar remote sensing bands based on IEEE
standard 521-2002 [28].

Band Wavelength Frequency

HF Band 10− 100 m 30− 3 MHz

VHF Band 1− 10 m 300− 30 MHz

UHF Band 0.3− 1 m 1000− 300 MHz

L Band 15− 30 cm 2− 1 GHz

S Band 7.5− 15 cm 4− 2 GHz

C Band 3.75− 7.5 cm 8− 4 GHz

X Band 2.5− 3.75 cm 12− 8 GHz

Ku Band 1.67− 2.5 cm 18− 12 GHz

K Band 1.11− 1.67 cm 24− 18 GHz

Ka Band 0.75− 1.11 cm 40− 24 GHz

Moreover, since radar signal is essentially an electromagnetic wave, where the elec-
tric field is perpendicular to the direction of propagation, the polarization of the wave
is defined as the direction of the electric field, which can be, e.g., linear horizontal (H),
linear vertical (V) and circular polarized [16, 17]. The different combination of polariza-
tions can provide different characteristics of the target being illuminated [26]. Note that,
in traditional radar systems, linear H and V polarizations are commonly chosen [25], as
illustrated in figure 2.1. A co-polarization (co-pol) radar system operates with the same
polarization for transmitting and receiving the signal; for cross polarization (cross-pol),
different polarization is used to transmit and receive the signal. A dual polarization
(dual-pol) radar system operates with one polarization to transmit the signal and both
polarizations simultaneously to receive the signal; and for quad polarization (quad-pol),
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Figure 2.1: Electromagnetic waves with horizontal (H) polarization (black) and ver-
tical (V) polarization (red). Image courtesy of Canada Centre for Remote Sensing
c©CCRS/CCT [29].

H and V polarizations are used for alternate pulses to transmit the signal and with both
simultaneously to receive the signal [25, 26]. As a result, multi-polarized images can be
provided in the form of multiple channels (layers). Each polarization channel is identi-
fied by two letters. Thus, as many as four different channels are available, i.e., HH, HV,
VH, and VV channels, where the first letter denotes the transmit polarization and the
second refers to the receive polarization.

Note that, in this thesis, RADARSAT-2 single- and multi-polarization SAR products
in all four possible channels are considered and applied for target detection proposes in
the research articles.

2.1.2 SAR image formation

Space-borne SAR systems are capable of producing two-dimensional (2D) images. In
the process, as shown in figure 2.2, a satellite-based SAR sensor moves along a flight
path, the illuminated area (so called footprint) is moved along the Earth’s surface in a
swath (gray area), and the backscattered signals are measured and processed to con-
struct a 2D image of the surface [16]. Compared to the naturally colored imagery de-
rived from optical systems, each pixel in the radar image represents the radar backscat-
ter of an area on the ground. In general, darker image areas (low backscatter) indicate
that little energy of the signal is received by the radar receiver, while brighter areas (high
backscatter) represent that more energy is scattered back to the radar. Also note that
most current SAR systems are monostatic radar systems representing a radar having
transmitter and receiver collocated in the same location, while a radar system involving
separated transmitter and receiver is named bistatic radar [16].
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Figure 2.2: Space-borne SAR imaging. The gray area imaged on the Earth’s surface,
is referred to as the swath. Image courtesy of Canada Centre for Remote Sensing
c©CCRS/CCT [29].

Geometric configuration

A SAR sensor needs to be mounted on a moving platform, e.g., airplane, UAV, or satel-
lite, which operates in a side-looking geometry with an illumination perpendicular to
the flight direction [29]. The typical imaging geometry is illustrated in figure 2.3. Note,
an air-borne system is chosen for demonstration purpose, where the Earth’s surface is
assumed to be relatively flat, but the basic geometry can also be applied to space-borne
systems.

As shown in the figure 2.3(a), (A) is the flight direction of the platform with the
nadir (B) directly beneath the platform. The obliquely illuminated area on the ground
is in the swath (S), which is usually offset from nadir. Azimuth (C) refers to the along-
track dimension parallel to the flight direction, while range (D) refers to the across-track
dimension perpendicular to the flight direction [29]. Figure 2.3(b) shows the illustration
of the incidence angle (I), which is the angle between the radar beam and the normal to
the ground surface. This angle increases from near to far range across the swath, and the
return signals are normally strong at low incidence angles and decrease with increasing
incidence angle. At different ranges, a slant range distance (L) is measured along the
radial line of sight between the radar and each target on the ground. While the ground
range distance (G) is the true distance along the ground corresponding to each point
measured in slant range [29].
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(a) (b)

Figure 2.3: Air-borne SAR imaging geometry. Image courtesy of Canada Centre for
Remote Sensing c©CCRS/CCT [29].

Spatial resolution

The detail discernible in a SAR image is dependent on the spatial resolution and refers
to the smallest distance between two objects that can be distinguished [25, 30]. A SAR
resolution has two dimensions: the range resolution is defined by the band-width of
the radar signal, and in order to achieve a higher resolution, the pulse compression
technique is applied [16]; the azimuth resolution depends on the effective beam-width
of the radar antenna, which is determined by built-in radar and processor constraints
[16, 26]. Note that the main difference between a real aperture radar and a SAR lies in
the azimuth resolution, while an aperture means the antenna opening used to collect
the reflected signal. In general, the beam-width is inversely proportional to the physical
size of a real antenna, for example the longer the antenna, the narrower the beam, but it
is not practical for a spacecraft to carry a long antenna to achieve the desired resolution.
To overcome this limitation, the SAR technique allows the system to synthesize a very
long aperture by combining signals received by the radar as it moves along its flight
track [16]. This principle of synthetic aperture is illustrated and explained by figure
2.4. Modern space-based commercial SAR systems, such as RADARSAT-2, COSMO-
SkyMed and TerraSAR-X, orbiting at approximately seven kilometers per second, have
a synthetic aperture of 17.5 kilometers. A physical antenna of that size is inconceivable.

In addition, a smaller wavelength and a shorter pulse duration can often result in
a higher resolution, and the image resolution is also influenced by the incidence angle.
For instance, a shallow incidence angle (at far range) can result in higher resolution,
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Figure 2.4: The principle of synthetic aperture. A target (A) is illuminated by a series
of pulses of the radar beam. The backscattered signals from each pulse are recorded.
The synthesized aperture (B) length is the distance measuring from the target en-
ters till leaves the radar beam. Image courtesy of Canada Centre for Remote Sensing
c©CCRS/CCT [29].

but the typical radar layover and shadow effects have to be considered particularly in
areas with steep terrain [26]. Moreover, a SAR system operating at different acquisition
modes will result in different spatial resolutions, which is discussed further in section
2.1.4.

2.1.3 Scattering mechanism

The pixel brightness in a SAR image depends on the portion of the transmitted energy
that is returned back (backscattered) to the sensor from targets on the ground. The mag-
nitude or intensity of the backscattered energy represents the interaction between the
radar energy and the target surface. From the changes between the received and trans-
mitted radar signals, various information about the scattering target can be extracted.
After considering other factors like target range distance and atmospheric absorption
and scattering effects, a radar scattering equation can be defined as

[
Er
h

Er
v

]
=
e−2πr/λ

r

[
shh shv
svh svv

] [
Et
h

Et
v

]
, (2.1)

where r is the range distance of the target from the radar, λ is the radar signal wave-
length and  =

√
−1 is the imaginary unit. The subscript of the electromagnetic field

component Ej
i , where i ∈ {h, v}, represents the associated polarization, and the sub-

script ofEj
i , where j ∈ {r, t}, indicates if it is transmitted or received by the radar. While

sab, where a, b ∈ {h, v}, is the complex reflectivity (also known as the complex scatter-
ing coefficient) with the associated receive and transmit polarization, in that order. The
matrix formed by the scattering coefficients is referred to as the scattering matrix S. A
radar image is essentially a 2D map of S, which can be determined by inverting the
scattering equation in (2.1).
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The scattering process is primarily affected by the characteristics of the target, e.g.,
material properties, surface roughness, size, shape, and orientation. While the radar
measurements are also influenced by target surroundings, environmental conditions,
radar signal properties like wavelength and polarization, as well as the radar viewing
geometry. For instance with the incidence angle, when it is small, the radar is illuminat-
ing perpendicular to the surface causing high backscatter, and when it gets larger, bigger
portion of the signal is bounced away from the radar, that results in low backscatter.

Target scattering

Since the energy of the radar signal is scattered in all directions at the target’s surface,
the roughness of the surface largely determines the amplitude of the return signal. It
is worth noting that roughness is a relative term, which needs to be considered relative
to the radar signal wavelength. Illustrations of surface scatterings with moderate inci-
dence angle under different roughness conditions are shown in figure 2.5, which gener-
ally indicate that the rougher the surface being illuminated, the brighter the backscatter
(pixel) in the image. A surface is considered smooth, when its surface variations are
smaller than the radar wavelength, while if the surface variations are close to the wave-
length, the surface will appear rough. A smooth surface behaves like a mirror for the
incident radar signal, thus most of the signal energy is reflected away according to the
law of specular reflection, i.e. the reflection angle is equal to the incidence angle. For
example, a flat surface of calm water normally appears as dark areas in a radar image.
On the other hand, high sea states can result in moderately or very rough surface on the
scale of many radar wavelengths and appear much brighter in a radar image.

(a) Smooth surface. (b) Slightly rough surface. (c) Extremely rough surface.

Figure 2.5: Surface scatterings under different roughness conditions, i.e., smooth,
slightly rough and extremely rough surfaces. Plots adapted from [31]. Image credit:
Arunachalum P. Kabilan from Bannari Amman Institute of Technology and M. Paul-
vanna Nayaki from PSNA College of Engineering and Technology, India.

Moreover, interaction of the radar signal with a target is often more complex, due to
the surroundings and the shape and size of the target. For instance, in maritime appli-
cations, different scattering situations of a vessel on the sea surface are shown in figure
2.6. A man-made vessel, as the main target in this case, is usually constructed with flat
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metal surfaces, which act like a mirror reflector for most radar signals. Thus, when the
surfaces are inclined towards the radar, a strong direct reflection will occur (shown in
figure 2.6(a)), also known as single-bounce [16]. For most other angled surfaces, radar
signals are likely to bounce between the vessel and sea surface, and then return to the
radar sensor, which leads to more complicated scattering situations, as shown in figure
2.6(b) to 2.6(d).

(a) Direct vessel scattering. (b) Sea-vessel scattering.

(c) Vessel-sea scattering. (d) Sea-vessel-sea scattering.

Figure 2.6: Different surface scattering situations for vessel over sea surface. Plots
adapted from [32]. Image credit: Xu et al. from Beihang University, Beijing, China.

Note that there is a special type of reflection commonly referred to as double-bounce,
which occurs when two smooth surfaces form a 90 degrees angle facing the radar sig-
nal [16]. In such case, the radar signal bounces twice off the surfaces and most of its
energy is reflected back to the radar sensor. This process can be simplified and illus-
trated as figure 2.7. This type of reflection is very common for man-made objects, and
they usually contribute to bright pixels in a radar image. For instance, vessels often
have many square corners, thus the radar signal bounces directly back to the sensor.
Similarly, the radar signal can bounce between the horizontal surface of the sea and
the vertical surface of the vessel as shown in figure 2.6(b) and 2.6(c). Other examples
with such target situations include offshore platforms, regular metallic objects like cargo
containers, etc.
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Figure 2.7: Illustration of double-bounced radar signal. Image courtesy of Canada Cen-
tre for Remote Sensing c©CCRS/CCT [29].

Speckle

Unlike optical images, SAR images are formed by the coherent interactions of the trans-
mitted radar signal with the targets. The electromagnetic response is a measure of the
integrated coherent responses from a discrete number of independent surface scatterers
within the whole illuminated area. Since the number of such scatterers is unknown,
the interaction process is considered random. Sea surfaces, for example, consist of a
random arrangement of scattering elements, which vary from one resolution cell to an-
other [33]. Hence, there is a noise-like phenomenon of all radar images (and of other
products by similar coherent imaging systems using lasers, sonar, or ultrasound), which
is known as speckle. It must be noticed that speckle has noise-like “salt and pepper” ap-
pearance, but it is not noise; it represents the real measurements of the electromagnetic
returns [34]. Moreover, for a homogeneous surface with a large number of scatterers, the
sum of the reflected electromagnetic waves can be assumed to have a phase uniformly
distributed between −π and π. This is often referred to as fully developed speckle [17].
A more detailed description of coherent speckle is given in [35], and the statistical model
of speckle is presented in [17, 23].

Speckle is traditionally suppressed by multi-look processing [36] or applying a spa-
tial filtering on the image. In the frequency domain, the term “look” is defined as a
portion of the SAR signal recorded by a part of the synthetic aperture, also known as a
sub-aperture. Each sub-aperture can be processed yielding a single look image of the
same scene. Thus, by averaging multiple looks incoherently, a speckle reduced multi-
looked image is produced, which is known as the multi-looking processing [23, 24, 34].
The output image has an improved radiometric resolution, but suffers losses in geomet-
ric resolution. Frequently, multi-looking can also be achieved in the spatial domain. The
simplest approach is to compute the mean power of several adjacent pixels confined by
a filtering window, and this is an incoherent process as well [17]. In addition, many
different filter designs have been available, such as the Frost and Lee filters [37, 38] and
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wavelet-based filters [39,40]. A brief review of post-processing techniques can be found
in [17, 41]. Note that, in the research articles included in this thesis, both single- and
multi-looked SAR images are considered for experimental and operational purposes.

2.1.4 Operational properties

Recently, many commercial SAR satellites have been or about to be put into use. Table
2.2 provides a short overview of some operating commercial SAR remote sensing mis-
sions in chronological order. More detailed information about the individual product
specifications of different sensors can be found in [42–46].

Table 2.2: Commercial SAR Remote Sensing Missions.

Mission TerraSAR-X RADARSAT-2 COSMO-SkyMed Sentinel-1

Launch Date 2007 2007 2007–2010 2014

Frequency Band X C X C

Acquisition Mode StripMap Single Beam StripMap StripMap

(Standard) (HIMAGE/PingPong)

Polarization single/dual single/dual single/dual single/dual

Az. Resolution 3.3 m 7.7 m 3 m 5 m

(6.6 m dual-pol.) (15 m dual-pol.)

Incidence Angle 15◦ – 60◦ 20◦ – 52◦ 20◦ – 60◦ 18.3◦ – 46.8◦

Repeat Cycle 11 days 24 days 16 days 12 days

As an important operational option, the acquisition modes (highlighted in table 2.2)
of a SAR sensor are directly linked with the resolution of the resulting image and the size
of the scene area covered [26]. Therefore, different modes are related to the requirements
of various applications. The most commonly used mode is the StripMap mode1, in
which the beam profile is kept constant throughout the imaging and data collection
period. It provides a good balance between the coverage of illuminated area and the
resolution. The highest resolution is offered by the SpotLight mode, when the radar
beam continuously illuminates one surface area while the satellite is moving along its
flight path. Meanwhile, the ScanSAR mode usually results in low resolution, but it is
able to achieve a very large coverage. Thus, it is designed to be used in operations
requiring large area coverage such as monitoring applications. The standard TerraSAR-
X and available RADARSAT-2 acquisition modes (or beam modes) are shown in figures
2.8 and 2.9, respectively.

1Single Beam modes in RADARSAT-2 system are StripMap SAR modes.
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Figure 2.8: Standard TerraSAR-X acquisition modes [43]. Image courtesy of German
Aerospace Center (DLR) and Airbus Defence and Space.

2.2 Statistical analysis of sea clutter

The single- and multi-polarization SAR image provides valuable information of the
scattering properties of a targeted area. For numbers of maritime applications, accu-
rate statistical analysis of sea clutter is a necessary procedure in the advanced image
processing such as target detection. This section first introduces some basic concepts
of the polarimetric SAR data, and provides a brief overview of the common statistical
modeling approaches with emphasis on sea clutter.

2.2.1 Polarimetric SAR data

As described in previous sections, PolSAR sensors commonly use vertical-horizontal
linear polarimetric basis, while other polarimetric basis can be synthesized from the
two orthogonal polarizations [16, 34]. Thus a fully polarimetric SAR sensor simulta-
neously measures at two orthogonal polarizations and resolves all four combinations
of the scattering coefficients. These four channels, HH, HV, VH and VV, are together
known as the quad-pol data, which contain necessary knowledge for SAR image inter-
pretation and analysis. Note that understanding the polarimetric basis, detailed target
polarimetric characterizations and the polarimetric decomposition schemes for physical
meanings are outside the focus of this thesis, and more useful information can be found
in many articles such as [16, 25, 47–50].

For quad-pol data, the four complex scattering coefficients in the scattering matrix
S from equation (2.1) are usually vectorized as the scattering vector, which is known as
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Figure 2.9: All available RADARSAT-2 acquisition modes. Image courtesy of MacDon-
ald, Dettwiler and Associates Ltd. (MDA) c©MDA 2015.

single-look complex (SLC) data. It is defined as

s =




shh
shv
svh
svv


 , (2.2)

where sab = Aabe
θab are complex variables including both magnitude and phase infor-

mation. From the complex data, many other data products can be obtained, e.g., the
amplitude A, the phase θ, and the intensity Iab = |sab|2 = A2

ab, where | · | refers to ab-
solute magnitude [17]. Note that Iab, where a, b ∈ {h, v}, is defined as the single-look
intensity (SLI) for different polarimetric channels.

As an effective speckle reducing process, multi-looking has been introduced in sec-
tion 2.1.3. The multi-looking operation can be formulated as
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where L is the number of looks, the superscript H represents the Hemitian or com-
plex transpose operator, the superscript ∗ denotes complex conjugation, and 〈·〉 refers
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to ensemble averaging [17]. The output matrix C is the polarimetric covariance matrix
also known as multi-look complex (MLC) data, which is positive definite and Hermi-
tian symmetric. The diagonal elements of the covariance matrix are real-valued multi-
looked intensities (MLI) of different polarimetric channels, while the complex covari-
ances are found off the diagonal. Note that C is actually the sample mean estimate of
the covariance matrix. This conventional estimation has been applied as a good default
option in many studies, and it is the maximum likelihood estimator only when the scat-
tering vector {si} is assumed as complex, circular and zero mean multivariate Gaussian
distributed. Since the covariance matrix estimation is considered an important factor in
the statistical analysis of sea clutter in the PolSAR images, detailed studies have been
conducted in the research article I (see chapter 3).

In addition, the number of looks L often needs to be replaced by the equivalent num-
ber of looks (ENL), which is a lowered version of L used pragmatically in the statistical
modeling to account for correlation between the samples [51]. The ENL can be consid-
ered as an image constant and is commonly estimated from a recognized homogeneous
region in a SAR image, where the speckle is fully developed and the radar cross section
(RCS) is assumed to be constant [17]. The most common definition of the ENL for SAR
intensity measurements is defined as [17, Ch. 4]

ENL =
(mean)2

variance
. (2.4)

Although, many other ENL estimators have been studied previously, e.g. [17,23,51–53],
this choice is out of the scope of this thesis.

2.2.2 Sea clutter statistical modeling

In this thesis, SLI and MLI SAR images are considered in order to directly support the
operational applications, where single- or dual-polarization intensity data are usually
applied. A number of statistical models have been proposed and investigated previ-
ously.

In general, the product model has been widely accepted to be an appropriate statis-
tical model for the sea clutter due to its flexibility. Based on the spherically invariant
random process theory, there are two unrelated processes combined to explain the SAR
image characteristics, i.e., a fully developed speckle and an underlying RCS referred
to as texture [17, 54]. In the simplest form, the SAR intensity measurements I can be
expressed as

I = τX , (2.5)

where the real and positive random variable, τ ∈ R+, represents the underlying texture
component, and X is the uncorrelated speckle contribution. TheK distribution [33], de-
fined as the product of a gamma distributed texture and a Gaussian distributed speckle,
has been primarily studied in this thesis for high resolution SAR sea clutter data. While
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the recent G0 distribution [55] and U distribution [56] can be derived from the product
model as well.

Note that when a gamma distributed texture variable is assumed, it introduces an
additional shape parameter, α, indicating the texture condition; the larger (smaller) the
shape parameter, the lower (higher) the texture variation level. In practice, a limited
number of clutter samples are used for parameter estimation, which often leads to large
variances and inaccurate results [57]. The popular moment-based methods for the shape
parameter estimation have been studied extensively in previous papers [17,58–60], and
are mainly applied in the studies for their simplicities. The mth-order moment of the
K-distributed L-looked intensities is derived as

E{Im} = E{I}mΓ(L+m)

LmΓ(L)

Γ(α +m)

αmΓ(α)
, (2.6)

where E{·} is the expectation operator and Γ(·) is the gamma function. It is worth
noting that, parameter estimations can also be achieved by the method of log-cumulants
[34, 57], and the corresponding estimators prove superior bias and variance properties
to linear moments [60–63]. This method is derived from the Mellin kind statistics [34],
which relies on a logarithmic transformation of the data, thus it can be naturally applied
in the statistical analysis of the product model.

For many maritime applications, non-homogenous sea clutter is commonly encoun-
tered and must be addressed. Often associated with complex target and oceanographic
conditions, mixtures in the estimation window (acting as contaminations) could cause
significant changes in the clutter modeling. As demonstrated in the research article II
(see chapter 4), a log-cumulants based test has been developed to identify such contam-
inated areas, and the log-cumulants diagrams were utilized as a visualization tool to
show the effects intuitively. Moreover, even though the statistical models have become
increasingly comprehensive over time, there is probably still no single model to suit all
situations. Therefore, a finite mixture modeling approach based on a modified EM al-
gorithm [64, 65] was discussed and applied in this thesis. It allows a relatively simple
two-parameter gamma distribution to be used in the process, and appears to be suit-
able for the majority of the images that were available at the time. It is also believed that
many of the techniques and experience gained in the simple case will remain appropri-
ate for the extended case. More detailed descriptions and discussions are presented in
the research article IV (see chapter 6).

2.3 Maritime constant false alarm rate target detection

Based on the statistical characteristics of the sea clutter, CFAR target detection can be
implemented to SAR images. This section introduces the basic concepts of the CFAR
detection algorithm, followed by brief reviews of the most challenging maritime detec-
tion issues and various commonly used CFAR detection schemes.
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2.3.1 Basic concepts of CFAR detection algorithm

The CFAR detection algorithm utilizes a model-based thresholding technique, in which
detection thresholds are adaptively calculated based on the estimated statistical infor-
mation of a local background [66–68]. A CFAR detector is often implemented with the
sliding window technique on a pixel-wise basis. For each pixel or cell under test (CUT),
the parameters of a hypothesized model are estimated within a confined local reference
window.

In practice, a desired false alarm rate PFA is first specified as the acceptable prob-
ability limit to incorrectly label a background pixel as target. It is usually set accord-
ing to, e.g., the image resolution and the needs of different end applications. For in-
stance, when running a monitoring operation covering vast sea area, the spatial resolu-
tion of SAR image is often sacrificed and users generally intend to detect all potential
targets. Thus, the PFA can be set to a relatively larger value. On the other hand, for
high-resolution surveillance in areas with densely populated targets, e.g., harbor and
channel, lower PFA is often required for distinct target information extraction.

Clutter histogram

FalseMiss

Target histogram

Threshold

Figure 2.10: CFAR detection illustration. Blue and red areas represent detection misses
and false alarms, respectively.

Figure 2.10 shows the illustration of the basic concepts of CFAR detection. As an ex-
ample, an region of interest (ROI) within a SAR image is assumed and its histogram is
illustrated in the figure. Note that the relative sizes of the clutter and target histograms
are exaggerated for demonstration purposes, which may not indicate any real case sce-
nario. Based on the statistical modeling of the background clutter and PFA, the detec-
tion threshold is obtained, which determines the missed targets and the falsely detected
clutter (false alarms). Because of the randomness of the sea clutter, the uncertainty of
hypothesized model and deviation of parameter estimation, the observed number of
false alarms often differs from the expected (specified) value. The observed false alarm
rate is defined as

Pfa =
nfa
n

, (2.7)
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where nfa and n are the number of observed false alarms and the total number of sam-
ples within the ROI, respectively. In general, the compliance of the specified and ob-
served false alarm rates is an indicator of the sea clutter modeling accuracy. While, a
constant Pfa can be approached, when the statistical modeling is able to closely reflect
the real measurements. This is a fundamental property, known as the false alarm reg-
ulation property, which justifies the CFAR label. In practice, the PFA can commonly be
set to less than 0.001% (10−5) for modern fine resolution SAR images.

The performance of a CFAR detector is traditionally characterized by a plot of the
detection rate versus the false alarm rate. This curve is referred to as a receiver operating
characteristic (ROC), and the detection rate is measured as

Pd =
nd
nt

, (2.8)

where nd and nt are the number of correctly detected targets and the total number of
target samples, respectively. Note that the value of Pd increases monotonically with
PFA, which implies the trade-off between Pd and PFA for a given CFAR detector. In the
research article III (see chapter 5), Pd has also been examined against Pfa instead of PFA.
This makes sense when the false alarm regulation property is not satisfied, since Pfa
represents actual performance while PFA is merely a design parameter.

More relevant references of CFAR processing in radar systems can be found in [69–
72].

2.3.2 Detection issues and schemes review

Detection issues

An advanced robust target detector must be able to operate under various real complex
sea conditions. In general, there are two most challenging issues for non-homogeneous
environments that are frequently encountered in many operational maritime applica-
tions [68, 73, 74].

The first one is known as the capture effect [75–78], which is caused by the appearance
of unidentified interfering targets or other contamination sources within the local refer-
ence sea clutter [79]. The consequences usually include deceptive statistical modeling,
dropping false alarm rate below the specified value, raising the detection threshold, and
increasing risk of missing targets. This effect often occurs in multiple-target situations,
such as busy shipping lanes, offshore oil/gas production sites and crowded harbors.
The second one is recognized as the clutter edge effect [68,73,80], which is directly related
to the background intensity transitions due to meteorological and oceanographic phe-
nomena. There are various sea surface features resulting in such effect, e.g., transitions
between regions with different wind conditions, low wind spiral marks, backscattering
variations due to bathymetry, ship wake presences, etc. Since the location of the edge
is unknown a priori, this issue causes great difficulties for the statistical modeling at-
tempts based on single hypothesized model. It can also lead to an excessive number
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of false alarms or a lower probability of detection around the edge area, depending on
whether the CUT lies in the high or low intensity region [68]. As an example, a common
maritime target detection situation is demonstrated in figure 2.11. Note that multiple
bright pixels appear in the region, which indicate man-made vessels in this particular
case, and there is a clear boundary (clutter edge) separating the left and right side of the
image due to an incoming weather front.

Figure 2.11: Sub-scene of a multi-looked HH polarization RADARSAT-2 SAR intensity
image, acquired on 8th August 2013, from the North Sea. RADARSAT-2 Data and Prod-
ucts c©MDA 2013 – All Rights Reserved.

Detection schemes

In history, the simplest approach to the detection of targets in SAR images is by us-
ing the traditional cell-averaging CFAR (CA-CFAR) detector [81], which represents the
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background clutter by an average over the reference window. Because of its simplified
assumption of a homogeneous clutter environment, a number of variations and neces-
sary modifications have been proposed. In summary, there have been three improved
schemes: the spatial sub-setting scheme, the radiometric sub-setting scheme, and the
iterative censoring (IC) scheme.

The spatial sub-setting scheme divides the reference window in spatial subsets or
dynamically selects a particular group of reference pixels before averaging, which in-
cludes the greatest-of CFAR (GO-CFAR) detector [82], the smallest-of CFAR (SO-CFAR)
detector [83], the variability index CFAR (VI-CFAR) detector [68], etc. Such relatively
simple detectors could suffer performance losses in homogeneous clutter, and are not
good at handling heterogeneous clutter with complex distributions. While the ordered
statistic CFAR (OS-CFAR) detector [84], as a representative of the radiometric sub-setting
scheme, rank-orders the reference measurements and estimates the parameters of the
hypothesized model based on the single value selected from the ordered sequence.
This order statistic is more robust to outliers in multiple target situations, but losses
information for estimation purposes [85]. Also as a generalization of the OS-CFAR de-
tector, the trimmed mean CFAR (TM-CFAR) detector [86] uses the mean of a set of
rank-ordered values instead. Unfortunately, its optimal performance relies on a judi-
cious choice of the trimming parameters after prior assessment of the interfering en-
vironment [66, 74, 87]. Note that the IC scheme proposed by Barboy et al. [88] takes a
different approach, in which samples that exceed an adaptive threshold are excluded
from the reference clutter. The threshold is iteratively updated based on the censored
reference until there are no change in the threshold and the reference clutter, thus the
detection result has converged. Although the multistep adaptive procedure requires
many cycles and longer calculation time, the IC scheme has shown some robust per-
formances in recent studies [89, 90], particularly for multiple target situations. In this
thesis, it has also been integrated with other CFAR detectors, such as the ICCA-CFAR
and ICOS-CFAR detectors presented in the research article III (see chapter 5). In ad-
dition, there are many more hybrid CFAR detectors have been developed, such as the
censored mean-level detector (CMLD) [91, 92], the generalized CMLD (GCMLD) [77],
the generalized two-level CMLD (GTL-CMLD) [78], the adaptive censored greatest-of
CFAR (ACGO-CFAR) detector [87], the hybrid clutter-map/L-filtering technique [93],
and the automatic censored cell-averaging (ACCA) CFAR detector based on ordered
data variability (ODV) [94]. It’s worth noting that most hybrid schemes include its own
modified data censoring procedure. However, like the IC scheme, the censoring pro-
cess inevitably excludes the naturally occurring bright pixels in the sea clutter, and the
remaining reference sea clutter is not always modeled in a statistically rigorous manner.
As a result, there may be severe degradations of the CFAR detection performance, and
this leads to the indispensable study of the truncated statistics (TS) in this thesis. More
in-depth discussions can be found in the research article III and IV (see chapter 5 and
6).

Apart from the above-mentioned attempts, the region-growing technique [95] has
shown some practical prospects, which is able to adaptively optimize the reference re-
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gion and maintain the CFAR properties, but with an increasing computational cost.
Meanwhile, in order to better manage the complex clutter conditions, an adaptive sam-
ple/region selection stage has also been inserted into the recent algorithms [96, 97]. In
fact, both resulting two-stage detection schemes are naturally leading towards a general
segmentation stage, which obtains the contextual information for the subsequent CFAR
detection. This claim actually agrees with the main founding from other preliminary
studies [80, 98]. Therefore, the final target detection algorithm in this thesis is not only
supported by a rigorous statistical analysis using TS, but also makes use of an advanced
EM segmentation stage.
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Chapter 7

Conclusions and Future Perspectives

This chapter gives concluding remarks and outlines the perspectives of future research.

7.1 Concluding remarks

A new CFAR target detection algorithm has been developed for operational maritime
applications based on widely-employed SAR modes, in which a modified segmentation
stage using truncated statistics is adopted in order to simultaneously solve the most
challenging detection issues; the capture effect and the clutter edge effect. In the study,
the robust and effective performance of the algorithm has been demonstrated on various
real SAR images, in difficult target situations and under complex sea surface conditions.

For the purpose of supporting operational surveillance and monitoring systems,
single- and multi-polarization SAR images have been chosen due to the high-quality
24-hour all-weather coverage of space-borne radar systems. The first step of the study
was to better understand the dataset, through investigations of the polarimetric covari-
ance matrix and its estimation. In the research article I (chapter 3), a comprehensive
comparative study of four covariance matrix estimators was conducted with emphasis
on the sea clutter. The proposed approximation of the K distribution based maximum
likelihood estimator has shown comparable performance to the conventional one, and
the balance between the estimation accuracy and the computational efficiency was dis-
cussed as well. It is worth noting that a possible confusion was cleared regarding the
usefulness of the recently promoted M-estimator, or the so-called fixed-point estimator
in many previous studies. The experimental results revealed that it does not provide
any distinct advantages in any of the examined cases, and may only be an alternative
to the simple Gaussian distribution based maximum likelihood estimator under highly
textured sea clutter conditions.

Next, in most advanced maritime detection algorithms, the statistical analysis of the
sea clutter is one of the essential procedures, especially for various non-homogeneous
environments. Developed for the popular product models, a novel log-cumulants based
test was performed in research article II (chapter 4). It has been used to demonstrate the
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influences of inaccurate statistical modeling caused by outliers and/or mixtures (de-
fined as contaminations) within the reference clutter. Such a test has the potential to
be an effective tool for improving the sea clutter estimation or a direct first-stage target
detector. In addition, an associated survey on the statistical variations of sea clutter has
also been done during the study, which is based on a number of sub-scenes from differ-
ent real SAR images. Although the reference area size certainly plays a significant role
in the analysis, the results indicate that a highly textured clutter may be mainly caused
by contaminations and there is probably no single model to be flexible enough for all
situations. Therefore, for target detection process, identifying and analyzing the hetero-
geneous areas is more efficient than applying an increasingly sophisticated model.

Of particular emphasis are this thesis’s contributions to the ongoing development
of the CFAR target detection algorithms. As a traditional detection practice, the CFAR
concept has been applied for decades. Numerous target detectors have been proposed
with particular focuses, and all claimed to provide improved detection results. In gen-
eral, the ROC curve is the well-accepted indicator of a detector’s performance, but the
other principal CFAR property – false alarm regulation – has been frequently neglected.
It is important to note that accurate statistical modeling of the reference clutter is the
most fundamental requirement that actually ensures that the observed false alarm rate
meets the user-specified value. Thus a modified ROC analysis between the detection
rate and the observed false alarm rate was presented in the theoretical study of research
article III (chapter 5), in order to characterize the actual performance trade-off.

Finally, the most challenging detection issues have been addressed when develop-
ing an optimal CFAR target detection algorithm. Unlike the previous target detection
schemes, a robust and effective operational CFAR detector should be able to work in un-
known target situations and under various non-homogeneous sea conditions. In simple
words, the frequently encountered capture effect and clutter edge effect must be min-
imized. From the research articles III and IV (chapter 5 and 6), the truncated statistics
and a modified segmentation stage were introduced to the detection algorithm, which
have proved to be favorable and beneficial when working with real complicated SAR
images. Considering the key concepts found in other schemes, the proposed algorithm
is capable of:
• handling isolated contaminations without losing too much meaningful back-

ground information, which is not the case for the GO-CFAR, SO-CFAR and other or-
dered statistics based CFAR detectors;
• providing rigorous statistical analysis of truncated reference clutter compared to

the algorithms involving data censoring processes;
• adapting to complex environments by using the contextual information obtained

from the improved automatic TS based EM segmentation processor;
• simultaneously solving both of the common detection issues;
• delivering better detection performance but not sacrificing the CFAR properties.

The promising end product is generic and can be applied to both single- and multi-
polarization SAR images and other frequencies than C-band that was studied here.
However, during the study, the outstanding performance of the advanced segmenta-
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tion algorithm allows us to reconsider the basic concepts of CFAR. It could be that the
CFAR approach for target detection has become outdated for modern high resolution
SAR data, or the coming superior segmentation processor actually provides a better
solution for target detection, which only future research can answer.

7.2 Future perspectives

As part of the research works in the Norwegian Research Council Arctic Earth Observa-
tion and Surveillance Technologies (ArcticEO) project, the algorithms and technologies
presented in this thesis have also been developed towards the increased applications
and services in Northern and Arctic regions. For such dangerous and hazardous envi-
ronments, this study has the potential to provide assistance for the rapid expansions of
industrial and commercial activities in a safe and sustainable way.

Figure 7.1: Arctic open for commerce. Image courtesy of Business Insider, from public
domain www.businessinsider.com.

In the high north, the vast ice-infested waters have been experiencing dramatic
changes in recent years with both positive and negative effects to human activities. As
we known, due to global warming, the Arctic sea ice is shrinking in an alarmingly fast
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pace. Reduced sea ice is likely to promote the maritime traffics in higher latitudes, open
new shipping lanes, extend the transportation season, and provide better access to nat-
ural resources. Figure 7.1 shows the so-called polar express routes. Traditionally, there
are two seasonal Arctic shipping routes connecting the Atlantic and Pacific oceans, i.e.,
the Northwest Passage and the Northeast Passage (also named the Northern Sea Route),
which can reduce shipping times and distances significantly. Note that the possible cen-
tral Arctic route could also be opened up soon. Meanwhile, a big portion of the oil and
gas resources in the Arctic regions is also becoming accessible to large corporations and
neighboring countries. However, the behavior and conditions of such icy waters are
usually difficult to assess and predict by scientists and experts. Hazards, such as low
temperatures, harsh weather, polar lows, and drifting ice objects, are obvious challenges
to any functioning vessels and offshore platforms in the regions.1

Figure 7.2: Marine environments in the Arctic. Sub-scene of a RADARSAT-2 SAR image
acquired on 19th August 2012, offshore Greenland. RADARSAT-2 Data and Products
c©MDA 2012 – All Rights Reserved.

As an example, figure 7.2 shows a RADARSAT-2 SAR image acquired on 19th Au-
gust 2012, offshore Greenland, in which the multi-year sea ice breaks down to numer-

1According to a press release on 28th September 2015 [99], the oil giant Shell announced that all drilling
for oil and gas has been called off in the Chukchi and Beaufort Seas, north of Alaska, and it “will now
cease further exploration activity in offshore Alaska for the foreseeable future.” This announcement
means that no major corporations, including Total and Statoil, is likely to drill off the Arctic coast of
Alaska anytime soon, partially due to the remote and harsh environments with dangerous ice floes and
frequent storms.
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ous pieces floating freely during the summer. This results in a complicated marine
environment and makes navigation in such region very difficult and dangerous. In ad-
dition, according to the Intergovernmental Panel on Climate Change (IPCC), the moun-
tain glaciers worldwide are retreating at an extensive rate as well, which not only add
fresh water to the sea, but also produce icebergs1. With only a fraction of the total vol-
ume extending above the sea surface, ice objects (ice floes, growlers and icebergs) have
always been threatening and destructive to man-made objects, and are generally hard
to detect by radar due to the various sizes and shapes.

Therefore, for an effective and successful ice management2, an improved maritime
monitoring and surveillance system is essential and highly requested in future Arctic
developments. The proposed robust target detection algorithm is expected to have the
capability of analyzing the complicated ice-infested sea clutter (as shown in figure 7.2)
with the segmentation based scheme, and can be adjusted to detect densely populated
floating ice objects when desired. Note that the next stage of investigations in sea ice
target situations and tests in the marginal ice zones have already been on the agenda
within the ArcticEO project. Moreover, many new advanced air- and space-borne SAR
sensors are about to be put into use. Expected higher resolutions and extra polarimetric
information exploited in the operational systems will undoubtedly lead to better detec-
tion performance and useful target discrimination ability in the next-generation target
detection algorithms.

1Icebergs are large pieces of freshwater ice that has broken off a glacier or an ice shelf.
2Ice management is defined as the sum of all activities in which the objective is to reduce or avoid

actions from any kind of ice features [100].
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