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Abstract 

The Trondsvangen-Baugsberget Cu-bearing ore deposits are located in the Tynset-Alvdal 

region, Hedmark county, central Norway. The earliest documented work in these mines are 

from the late 17th century, with extensive mining between 1880 and 1911. The ore deposits are 

located within volcanic and metasedimentary sequences of the Lower Seve Nappes of the 

Middle Allochthon, Scandinavian Caledonides. The ore-bearing rocks are 

tectonostratigraphically located above the Tännäs Augen Gneiss, lowermost Middle 

Allochthon, and beneath the ultramafic pods that form an extension of the Vågåmo Ophiolite, 

in the lowest parts of the Köli Nappes. 

Based on the petrographical and field observations the host rocks are greenschist and mica 

schist, with the greenschist located on top. However, the stratigraphic polarity was never 

determined and the entire sequence may be inverted. The geochemical investigation revealed 

that the greenschist originated as ocean-floor basalts with a tholeiitic signature associated with 

a mid-ocean ridge, and the mica schist as a greywacke deposited in a continent-margin 

environment sea. The altered equivalents show both a depletion and enrichment in the mobile 

elements, indicating hydrothermal alteration.  

The greenschist-hosted ores represent a chalcopyrite-sphalerite-bearing pyrite-rich massive ore 

type, while the mica schist-hosted ores represent a chalcopyrite-sphalerite-galena pyrrhotite-

rich irregular and semi-massive ore type. The stratigraphy is proposed to be inverted, with the 

mica schist formed on top of the greenschist, which yields similarities with the Cyprus VMS 

type for the greenschist-hosted ores and with the Escanaba and/or subsea-floor replacement 

VMS types for the mica schist-hosted ores, where the latter may be the most similar. The entire 

environment show similarities with the present Red Sea in terms of tectonic setting, magmatism 

and sedimentation.  

The host rocks are believed to have formed during the early rifting and opening up of the Iapetus 

Ocean during the Ediacaran in the late Precambrian. The ore-bearing sequences at 

Tronsvangen-Baugsberget may thus be the oldest and lowermost Cu-bearing VMS ore deposits 

within the Scandinavian Caledonides.  
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1. Introduction 

1.1 Context of the study 

In Norway, the first copper production was established in the 1630’s, first at Kvikne Verk in 

Hedmark, followed by Røros Kobberverk in 1636 and Løkken Verk in 1652, both in Sør-

Trøndelag. The Tynset-Alvdal sulphide-ore deposits, Hedmark county, which this thesis will 

discuss, were small but played a significant role in the copper production during the 18th and 

19th centuries. They are not as well known as the adjacent and more classical ore districts of 

Røros and Folldal, and have therefore not experienced the same interest in historical and 

geological literature.  

The Tynset-Alvdal ore deposits have previously not been appropriately investigated in a 

geological perspective, but this thesis will summarize all available knowledge of the ores (and 

their mining history) and document their geological, petrological and geochemical 

characteristics, their relations to the host rocks, as well as their general geological setting in a 

tectonostratigraphic perspective. They are believed to be volcanogenic-massive sulphide 

(VMS) deposits. 

1.2 Purpose of the study 

The purpose of this study is to document the geological features and the tectonostratigraphic 

position of the Cu-VMS ore deposits in the Tynset-Alvdal region. 

In addition, the goal of this thesis is to document the mineralogy, petrology and geochemical 

characteristics of ore mineralization and the surrounding host rocks to determine the origin and 

the ore-forming process. No previous literature has determined the origin nor the ore-forming 

process. In addition, these ore deposits will be put in a regional context and compared to other 

similar ore deposits and geological environments.  

Field work, literature study, petrographic description of rocks and minerals and geochemical 

analysis will be used to solve the problems.  
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1.3 Geography 

The study area is located in Alvdal and Tynset municipalities, Hedmark county, in the central-

eastern part of Norway. The investigated mines are located in two areas: the most extensive 

area (Tronsvangen, Grøtådalen and Vesletronden) is situated along the southern foot hills of 

the mountain Tron, while the other area is situated at Baugsberget (Figure 1).  

  

Figure 1: Location of Baugsberget, Tronsvangen, Grøtådalen and Vesletronden in relation to the municipality 

Alvdal. Modified from www.ut.no/kart. 

1.4  Previous work 

Several scientists and explorers have worked in this area with different purposes and time 

aspects. The first written reports date back to the period when the mines were in operation 

(1880’s-1907), and when the geologists Holmsen, Thesen, Rasmussen and Mortenson 

(Holmsen et al., 1907) were hired by the mining companies to secure a HMS-safe and 

sustainable operation. Each of them wrote about the working conditions, description of each 

mine, the future aspects and geology of the area and the ore deposits.  

The most impressive work was done by Aalen in 1908, who made a detailed map of the 

Tronsvangen mining area. Other reports by Thorkildsen (1913), Riiber (1923) and Geis (1958) 
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describes the geology, mineralization, history and ore zones of the copper mines and deposits. 

Airborne magnetic and electromagnetic measurements were done in 1967 and other 

geophysical measurements (IP) in 1968 by NGU. The results are described in the reports of 

Aalstad (1967) and Eidsvig (1968). In 1974, Dreyer published his Ph.D. thesis of the Tronfjell-

massiv and its surroundings. He established the geological setting for the various 

mineralizations in a regional perspective, including the lithologies of this thesis. The most 

recent report was done by Bjerkgård (1998), who summarized the mining history and previous 

work and briefly documented the ores and their host rocks.  

1.5 Geological background and mining history  

1.5.1 The Scandinavian Caledonides  

The Scandinavian Caledonides are located in Norway and Sweden, extending from 

southernmost Norway, through the central parts on both sides of the Norwegian-Swedish border 

and into Finnmark county, with a total length of around 1800 km and a width varying from 375 

km to 750 km (Figure 2). This mountain belt is a typical example of a major continent-continent 

collision orogenic belt, formed by the collision of Baltica/Fennoscandia (North-Europe and 

Scandinavia) and Laurentia (North-America and Greenland) in the Silurian, following a long-

time break up in Neoproterozoic and closure of the Iapetus Ocean (Gee & Sturt, 1985; Roberts, 

2003; Corfu et al., 2014a).  

The formation of the Caledonides occurred during several events and is best illustrated with a 

Wilson cycle: starting with rifting of the supercontinent Rodinia and opening up of the Iapetus 

Ocean (late Precambrian-early Cambrian), subduction and formation of volcanic arc 

complexes, closing of the ocean when Laurentia drifted towards Baltica/Fennoscandia and 

finally collided during the Silurian-Early Devonian time (Roberts, 2003; Ramberg et al., 2007). 

The Scandinavian Caledonides are composed of Autochthounos/Paraautochthounos units at the 

base, overlaid by several allochthonous thrust units, including the Lower, Middle, Upper and 

Uppermost Allochthons (Figure 2) (Gee & Sturt, 1985). In the present nappe pile, these 

elements are all stacked upon each other, making up a series of allochthonous thrust sheets, on 

top of the autochthonous units in the east. The more or less endemic basement, with undeformed 

sedimentary cover rocks, is situated at the base, referred to as the Autochthon and Para-

autochthonous units (Bergström & Gee, 1985). The Lower and Middle Allochthons are 

composed entirely of successions derived from the continental shelf and rise related to the 

passive margin of Baltica (Roberts & Gee, 1985). Most of the material have been torn apart 
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from the Precambrian basement as slices composed entirely of low-grade Neoproterozoic to 

Cambrian sedimentary cover sequences (Gee et al., 1985a; Corfu et al., 2014a; Corfu et al., 

2014b). The Upper Allochthon has a dominant oceanic signature with various ophiolite 

sequences and island-arc complexes, arc-related sedimentary and volcanic sequences derived 

from the Iapetus Ocean. The Uppermost Allochthon is composed of a more continental crust 

character with granitoids and gneissic basement rocks, and may descend from Laurentia (Gee 

& Zachrisson, 1979; Gee et al., 2008). Generally, the lowest allochthons were shortly 

transported, while the structurally higher units were transported over a longer distance.  
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Figure 2: Geological map of the Scandinavian Caledonides where the red square shows the study area (Gee et 

al., 2008).  
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1.5.2 The geology of the Alvdal-Røros region 

The Alvdal-Røros region is located in the eastern part of central Norway, 300 km north of Oslo 

and 70 km west of the Swedish border (see Figure 1). In a tectonostratigraphic perspective, this 

area is located within the Middle and Upper Allochthon (Gee et al., 1985b) (Figure 4). In earlier 

literature on the central part of the Caledonides (Gee & Sturt, 1985), the Upper Allochthon was 

subdivided into the Köli and Seve Nappes. Later literature, Gee, et al. (2008) have redefined 

the Seve Nappe to be part of the Middle Allochthon due to the similarities in lithology 

(compared to other units in this allochthon) and a decrease in the metamorphic grade 

downwards into and through the Middle Allochthon. This paper will use the latest definition 

that the Seve Nappe is part of the Middle Allochthon.  

The lowest part of the Upper Allochthon or the Köli Nappe Complex, has a great variation in 

lithologies, composition, deformation characters and metamorphic grades/alteration, making it 

the most heterogeneous and complex unit in the Scandinavian Caledonides (Stephens et al., 

1985). Volcanosedimentary and igneous rocks derived from the Iapetus Ocean, including 

ophiolites and island arc complexes, dominate this unit, with an estimated age of the sediments 

to the Early Paleozoic (Gee et al., 2010). The metamorphic grade ranges from greenschist to 

granulite and eclogite facies.   

The Middle Allochthon is composed of a basal basement-derived thrust sheet (the Tännäs 

Augen Gness Nappe; (Röshoff, 1978)). The Särv Nappe is situated above the Augen gneiss 

nappe, consisting mainly of unfossiliferous high-strain, planar foliated Neoproterozoic 

metasandstone, tillite, greywacke and a dolerite dyke-swarm (Gee & Zachrisson, 1979). The 

metamorphic grade ranges from greenschist to epidote-amphibolite facies. The dolerite dyke-

swarm that intruded the Särv Nappe, shows a tholeiitic composition, related to the early stages 

of opening-up of the Iapetus Ocean and has an early Ediacaran age (580-610 Ma) (Gee et al., 

1985a; Kumpulainen et al., 2016; Gee et al., in prep.). On top of these units, having a higher 

metamorphic grade (mostly amphibolite and locally eclogite or greenschist facies; (Gee et al., 

2010), the Seve Nappe Complex makes up the uppermost unit of the Middle Allochthon. The 

Seve Nappe Complex is composed of psammitic and pelitic schists, gneisses, metasedimentary 

rocks and meta-volcaincs/amphibolites with interbedded limestone, quartzite and ultramafic 

rocks (Du Rietz, 1935; Dyrekius et al., 1980; Corfu et al., 2014a). The sediments of this part of 

the Middle Allochthon were deposited on the western part of the Baltic basement and were later 

transported tectonically eastwards during the Scandian orogeny (Gee, 1975), probably 

representing the transition between the passive continental margin and the oceanic crust of the 
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Iapetus Ocean. The Seve Nappe complex has probably undergone a lingering history of 

sedimentation, magmatism and deformation during the whole Neoproterozoic (Corfu et al., 

2014a).  

A post-metamorphic thrust separates the Seve Nappes from the overlying Köli Nappes (Gee et 

al., 1985a). This thrust boundary can also be distinguished by a gradual increase in the 

metamorphic grade when moving down section in the units. A dismembered ophiolite can 

locally be recognized along the border between the Seve and Köli Nappes (e.g. Vågåmo in 

Gudbrandsdalen (Nilsson et al., 1997) and Handöl in Jämtland (Bergman, 1993). Incomplete 

ophiolite fragments have also been recognized elsewhere along the Seve-Köli border, e.g. at 

Harsjøn east of Røros (Sundblad et al., 2010) and at Raudfjellet further to the north in Trøndelag 

(Nilsson & Roberts, 2014). Furthermore, numerous solitary ultramafite pods, consisting of 

serpentine- and talc-altered dunites, harzburgite and lherzolite, can be followed for 150 km 

along the Seve-Köli border from Gudbrandsdalen to Røros (Nilsson et al., 1997) (Figure 3). 

Table 1 summarizes the lithology and stratigraphy within the Upper and Middle Allochthons 

of the Alvdal-Røros district.  

 

Figure 3: Geological map of the Røros-Gudbrandsdalen area, showing the location of ultramafic fragments 

(Nilsson et al., 1997). The Tynset-Alvdal region is located (east) under the ultramafic fragments, within the 

Heidal/Gula/Hummelfjell group, in the central part of the picture.  
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Table 1: Overview of the units in the Upper and Middle Allochthons.  
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Figure 4: Geological setting of the major tectonic units in the central part of the Scandinavian Caledonides. The 

red square shows the study area (detail of a map published by (Gee et al., 1985b)). 

1.5.3 The sulphide ores in the Tynset-Alvdal region  

The study area is located within the Hummelfjell Group of the Seve Nappe (Ramsay & 

Siedlecka, 2001). The red square on the map in Figure 4 shows the study area and Figure 5 is a 

zoomed view, showing the locations of the mines. The Hummelfjell group is mainly composed 

of altered volcanic and sedimentary rocks, that have been affected by two tectonometamorphic 

events; the second related to the Scandian orogeny (Wellings & Sturt, 1998). 
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In the map in Figure 5, the Tännäs Augen gneiss is located to the southeast of the mountain 

Tron. The solitary ultramafites, that mark the boundary between the Seve and Köli Nappe 

Complex, trend NE-SW in the north-western part of the map. The sulphide ores investigated in 

this thesis, are located within lithologies that are situated between the ultramafites and the augen 

gneiss, stating a tectonostratigraphic position in the Middle Allochthon, most probably the Seve 

Nappe Complex.  

The mountain Tron (or the Tronden Complex) is a layered mafic intrusion consisting of dunites 

and olivine-bearing to noritic gabbros and forms part of the Upper Allochthon (Wellings & 

Sturt, 1998). This mountain forms a synform, surrounded at the rims by a tectonic border to 

metamorphosed supracrustal rocks of the underlying Hummelfjell Group and is divided into 

three units: a central zone of olivingabbro, troctolite and pyroxenite; a transition zone of fine-

grained olivingabbro, gabbronorite; and a rand-zone of metagabbro and norite (Dreyer, 1974). 

Age determinations of the complex has not been done, but Wellings and Sturt (1998) assumed 

a pre-Scandian Orogenic age.  

The ores are located within two different lithological units in the Hummelfjell group: 

greenschist/greenstone and chloritic to sericitic mica schist (Holmsen et al., 1907; Bjerkgård, 

1998). The greenschist, that locally is silicified, has an east-west trending foliation (with some 

variations SE-NW) with a dip to the north (and NE) (Bjerkgård, 1998). Ore minerals are mostly 

pyrite, pyrrhotite and chalcopyrite with some sphalerite and magnetite. The ore zone occurs as 

bands with semi-massive, fine-grained minerals (pyrite grains can be up to 2-3 mm wide) and 

is seen as a continuous zone in the mines (Geis, 1958). The ore minerals are often associated 

with quartz and chlorite, where the quartz appears as rounded clasts and chlorite as sheets. The 

altered rock is mainly expressed as a fine-grained chlorite-amphibolite schist and the parent 

rock is basalt (Bjerkgård, 1998).  

The mica schist ranges from sericite to a chlorite-muscovite rich quartzo-feldspatic meta-

sediment with an east-west trending foliation and a dip to the north (Holmsen et al., 1907; 

Riiber, 1923). The sediment-hosted ores are dominated by chalcopyrite and pyrrhotite. Pyrite 

is common in the ore zone, and sphalerite is only seen in the southernmost part of the 

Tronsvangen area and in the Baugsberget mines. H-P Geis stated in 1958 that the ore zone has 

a great width, but the mineralization is mostly composed of irregular lenses of chalcopyrite and 

is therefore estimated as a non-profit mining area. The ore minerals are often associated with 

quartz, which is irregular and lens-shaped but follows the foliation of the mica schist. The 
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altered rock is a semipelitic to psammitic chlorite-muscovite schist and the parent rock is 

greywacke (Bjerkgård, 1998).  

 

Figure 5: Bedrock map of the Tynset-Alvdal region with location of ancient mines. All the mines are located south 

of Trondfjellet and at Baugsberget. Modified from Nilsen and Wolff (1989)(right-hand part) and Ramsay and 

Siedlecka (2001)(left-hand and central parts).  
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1.5.4 Mining history 

During the early 17th century, King Christian IV initiated a national search throughout Norway 

to find metals, minerals and ores (Braseth, 1995). The first copper ores were discovered at 

Kvikne, Hedmark, around 1630 and at Røros, Sør-Trøndelag, in 1644 (Steimoeggen, 1966). 

The subsequent results of mining these resources were important for social and economic 

development and improvement of peoples living condition in the valleys of central-Norway. 

The demand of workers increased rapidly, followed by an increase in the population with 

associated building of new farms – a progress that was unthinkable without the mines. Local 

farmers and hunters were the ones to prospect and mine the metals, as well as establishing 

several local companies.  

The first copper ore discovered in the Tynset-Alvdal region was at Baugsberget in 1658, and 

was mined by Lille-Elvedals Verk (Braseth, 1995). The mine was shut down in 1685 due to too 

low copper grades and limited amounts of ore, but was re-opened in 1739. A smelter (Lovise 

hytte) was established a kilometre from the Baugsberget mine in 1748, and in 1752 another 

mine (Nye Baugsberget) was opened. In 1762, 17 people and a supervisor worked in the mines 

(Braseth, 1995). 

The golden years for mining in Alvdal was around 1760, when the copper price was high, with 

several mines and smelters in operation, all owned by Fredriks Gave Verk. After 1770, when 

less ore was excavated due to less ore available, the mining company had to find new targets. 

Gamle Tronsli mine was discovered in 1770 and was operated, together with the Tjæremyr 

mines, until the 1780s. There is little documentation about the amount of copper that was 

excavated, but in an overview from 1787 (Braseth, 1995) a total number of 1058 barrels of 

copper were reported taken from Gamle and Nye Baugsberget and Gamle Tronsli. The mining 

stopped when the smelter Lovise Hytte burnt down in 1818.  

In the 1840s, the Nye Tron mine (located in Grøtådalen) was operated by the company 

Trondfjeld Interessentskab (Streitlien, 1978). In spite of sparse documentation, the remnants of 

the operations (dumps and holes) indicate quite a work done in the steep hillside. 

The largest mine area is called Tronsli-feltet, located east of Tronsvangen, consisting of seven 

different mines and several exploration targets over a distance of 1 km. Gamle Tronsli and 

Tjæremyrgruvene were first mined in the 1770s, before a new company (Tronsli Grubesamlag) 

restarted mining in the 1880s (Steimoeggen, 1966). St. Knuts gruve is the only mine that has 

been documented in detail throughout the production years. In the 1880s and -90s over 700 tons 
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of copper-ore,  with grades ranging from 6-14 %, was sold and around 1 500 tons of ore with 

uncertain quality was stocked (Holmsen et al., 1907; Riiber, 1923). In 1887 the mine was 

operated by Christiania Minekompagni until it was shut down in the early 1890s due to low 

copper prices, primitive conditions for mineral separation and lack of exploration results. In 

1907 a new company (A/S St. Knuts Gruber) claimed the area and started exploration work, 

both with negative and positive results. An adit at Såttå was initiated from the west, to 

investigate the mineralization zone from Såttå in the west to St. Knut in the east – a length of 1 

km. Only 80 meters were finished when the money was consumed and the mines were shut 

down in 1911 (Steimoeggen, 1966). An overview of the location of the mines are shown in 

Figure 8 and 9.  

1.6 VMS-type deposits 

1.6.1 Introduction 

Volcanogenic massive sulphide (VMS) is a descriptive term used for several types of ore 

deposits, which are syngenetic accumulations of massive sulphides in submarine volcanic-

hosted, volcanic-associated and volcano-sedimentary-hosted successions (Solomon, 1976; 

Franklin et al., 1981; Large, 1992; Galley et al., 2007). These types represent a major source 

for Cu and Zn, but some sub-types have also Pb, Ag and Au as economic important metals 

(Robb, 2005). They are also significant sources for Co, Sn, Se, Mn, Cd, In, Bi, Te, Ga and Ge, 

whereas some deposits also contain As, Sb and Hg (Galley et al., 2007). The term “exhalation” 

is used here as fluid emanations from the sea floor (Franklin et al., 1981; Doyle & Allen, 2003).  

1.6.2 The formation of volcanogenic massive sulphide deposits 

VMS deposits are formed by a hydrothermal ore-forming process, the same process that we can 

observe in “black smokers”. The precipitation of sulphides happens when exhaling hot 

hydrothermal fluids mix with seawater, resulting in accumulation of metal-rich sulphides at or 

near the sea floor in volcanically active marine environments (Large, 1992; Ohmoto, 1996; 

Franklin et al., 2005). VMS deposits are found in a variety of tectonic settings (Robb, 2005) 

and are often referred to as volcanogenic, volcano-associated and/or volcano-clastic hosted 

massive sulphides.  

In most VMS deposits, two components are essential related to the location of the ore zones 

(Figure 6): 1) a typical mound-shape to tabular, stratabound and stratiform massive sulphide 

ore body, and 2) in form of stockwork ore zone, consisting of veins and disseminated sulphides, 

often referred to as the stringer zone (Ohmoto, 1996; Doyle & Allen, 2003). Generally, the 
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massive ore body contains 90% or more of the heavy metals, the remaining <10% is found in 

the stockwork. The stockwork respresents the hydrothermal fluids channel way and the massive 

ore is the accumulation area, either on the seafloor and/or within unconsolidated sediments. 

 

Figure 6: Schematic cross section through a typical VMS deposit and black smoker, with a semi-massive to massive 

sulphide ore body underlain by a stockwork vein system and an associated alteration zone. From Galley et al. 

(2007).  

1.6.3 Classification of VMS deposits  

A classification of VMS deposits can be based on the tectonic regime and/or lithology. The 

following is a generalized explanation of classical examples of different VMS deposit types, 

and some more recently discovered types.  

The Kuroko type is a Cu-Zn-Pb variant related to island arc volcanism, consisting mainly of 

chalcopyrite, sphalerite and galena (Figure 7B) (Ohmoto, 1996). A broader term in Japan is 

used for all VMS deposits of Miocene age, but this type is found in older island arc systems in 

other part of the world. This type is formed by subduction of the oceanic crust, creating magma 

of intermediate to acidic composition. Zonation is typical in the Kuroko ores, where the typical 

Kuroko-ore (meaning black ore in Japanese) is massive banded sphalerite-galena-chalcopyrite-

baryte ore located at the rims of the hydrothermal vent. The Cu-rich Oko and Keiko ore zones 

occur beneath the Kuroko ore.  



15 

 

The Cyprus type is a Cu-Zn variant formed along mid-ocean ridges as “black smokers” 

associated with ophiolites (Figure 7A) (Franklin et al., 1981; Robb, 2005; Galley et al., 2007). 

This type is represented by a lens of massive sulphide ore, consisting mainly of pyrite, 

chalcopyrite and sphalerite, located at the ocean floor and overlying the stockwork zone of 

disseminated sulphides. This type was first discovered in the Troodos ophiolite complex at 

Cyprus.  

The Escanaba type is a VMS deposit hosted by turbiditic and hemipelagic sedimentary rocks 

and have been discovered by research in the Galapagos Rise, offshore South-America (1977), 

in the Escanaba trough, offshore Northern California (1979) and in the Guaymas basin, offshore 

north-western Mexico (Morton et al., 1994). These studies showed that hydrothermal venting 

occurred at oceanic spreading centres, overlain by several kilometres thick turbidite layers, and 

that the deposition of sulphides took place on top of the sediment pile. Evidence of 

synsedimentary igneous activity was proven by the occurrence of gabbroic dykes within the 

turbidites, which is part of the oceanic rift. VMS deposition and related stringer zones occur in 

the uppermost part of the sediments. A sediment-starved mid-ocean ridge reflect the interaction 

between salt water and basalt, resulting in similar deposition and composition of the VMS 

deposits. The above-mentioned examples are all sediment-dominated mid-ocean ridges, where 

the composition of the hydrothermal fluids and the process are controlled by the sediments, 

resulting in different hydrothermal deposits and content of ore minerals.  

The Besshi Cu-rich VMS ore has its name from one of the most classical ore districts in Japan 

and is located in sediment-dominated terranes with some mafic igneous rocks. It shows 

similarities to the Cyprus type regarding the ore-forming environment, but the entire system is 

deformed, metamorphosed and disrupted from its original position. The Besshi ore type has, 

therefore, been questioned whether it is a suitable example for a type deposit or not (Ohmoto, 

1996; Sundblad et al., 2006).  

The subsea-floor replacement VMS deposit type is not as familiar as the other types of VMS 

deposits, but recent research indicates that this process is an important component and 

mechanism that contributes to the formation of large tonnage and/or high-grade VMS deposits 

(Doyle & Allen, 2003; Piercey, 2015). Subsea-floor replacement VMS deposits is characterized 

by the formation of sulphides and the replacement (infiltration and precipitation) in 

unconsolidated volcanic, volcano-sedimentary and sedimentary material in open spaces 

(fractures, voids) within the layers. Doyle & Rodney (2003) have formulated five criteria for 

distinguishing subsea-floor replacement in massive sulphide deposits:  
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1. Intervals of mineralization within rapidly emplaced volcanic or sedimentary facies. 

2. Pieces of the host rock within the mineral deposit. 

3. Occurrences of replacement fronts between the mineral deposit and the host rock. 

4. Discordance between the mineral deposit and bedding. 

5. A strong hydrothermal alteration that is evident also in the hanging wall without any 

decrease in the intensity.  

Criteria 1-3 are diagnostic of replacement, while 4-5 may suggest so but are not alone 

diagnostic. A typical texture in the ores are the growth of framboidal pyrite as well as reduced 

sulphur in the host rock (Piercey, 2015). Three different types of massive sulphide deposits that 

are dominated by subsea-floor replacement have been identified by Doyle & Allen (2003): 

Subsea-floor replacement deposits in volcaniclastic rocks, within lavas and intrusions, and 

within limestone (Figure 7F-L). 
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Figure 7: Schematic overview of the different types of VMS deposits presented by Doyle & Allen (2003) showing 

the relationship between lithology, alteration and massive sulphides. A-C show seafloor deposits (A is the Cyprus 

type, B is the Kuroko type, C is a variation of the Escanaba type), D-E show sea-floor deposits modified after 

burial by lava or volcaniclastic deposits, F-L represent subsea-floor replacement (F-J represent subsea-floor 

replacement deposits in volcaniclastic rocks, K represents within lavas and intrusions, and L represents deposition 

within limestone).  
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1.6.4 Sulphide ore deposits within the Scandinavian Caledonides  

Sulphide ore deposits within the Scandinavian Caledonides are found in the Autochton, the 

Middle, Upper and Uppermost Allochthon. The VMS ores in the Köli Nappes were formed at 

the same time as the surrounding rocks, thus constituting several examples of syngenetic ore 

deposition. The ores related to ophiolite sequences (e.g. Løkken and Visnes) are typical 

examples of the ”Cyprus type” (Grenne, 1989) while the ores related to the island arcs (e.g. 

Stekenjokk) are typical examples of the ”Kuroko type” (Zachrisson, 1984). The turbidite-hosted 

VMS ores in the Røros district (Norway) as well as at Ankarvattnet and Ruonasvagge (Sweden) 

have been proposed to be related to an ”Escanaba model” (Sundblad, 1981; Sundblad, 1991; 

Sundblad et al., 2006; Sundblad et al., 2010). Although few studies of the genesis of the 

sulphide ores (e.g. Bleikvassli) and oxide ores (e.g. Dunderlandsdalen) in the Rödingsfjället 

Nappe Complex have been done, these ores are also considered as syngenetic (Cook et al., 

1998; Lindberg, 2015). In contrast, the Pb-Zn mineralization in sandstone along the Caledonian 

Front (e.g. Laisvall and Vassbo) are typical examples of epigenetic processes, where fluids 

created the mineralizations during the late Silurian to early Devonian in conjunction with the 

final phase of the Caledonian orogeny. The fluids migrated eastwards from the inner parts of 

the Caledonides (and the Precambrian basement) and precipitated galena, sphalerite, calcite and 

fluorite in high-porosity rocks (as sandstones) (Grip, 1954; Rickard et al., 1979; Kendrick et 

al., 2005). 
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2. Methods  

2.1 Archive and literature studies 

Prior to the field work, research about the mines was necessary for getting appropriate 

knowledge on their history and location. Information about the mining history was received 

from historical books available at the local libraries at Tynset and Alvdal, and documents in the 

archives of NGU. The documents span from old mining reports and maps (e.g. Aalen, 1907) to 

recent reports by Terje Bjerkegård (1998) and geological map made by Ramsay and Siedlecka 

(2001). Several local residents, among them Berit Kjølhaug (Haugan) and Roar Hokstad 

(Tylldalen), were also interviewed to obtain valuable unwritten knowledge.  

2.2 Field work and sample collection 

The fieldwork was done during 5 weeks in June, August, September and October 2015 with 

GPS, compass, hammer and measure tape as the most important tools. The first and most critical 

task was to locate all the mines and dumps, which was followed by mapping and characterizing 

geological elements as rock/ore types, alteration zonation and structures, as well as measuring 

and mapping mine pits, dumps, prospecting wells and ditches. Another important task was to 

collect samples of ore, altered rock and host rock for petrographical and geochemical 

investigations (all in all 74 samples). Ore samples were collected based on the amount and 

quality of ore, altered rocks were taken close to the ore mineralization, and samples of the host 

rock were taken a distance of at least 100 m from the mines to avoid contamination from the 

ore forming processes. An overview of the samples are presented in the appendices.  

2.3 Preparation for microscope samples 

Thirty-seven of the 74 samples were selected for making thin sections, where the selected ones 

have to be a representative amount of the ore sample or host/altered rock. The samples were cut 

into cubes (~1.5x2x3 cm), prepared and polished in the laboratory at the Department of 

Geology, UiT (an overview of all the thin sections are listed in the appendices).  

2.4 Microscopy work 

Microscopy of the thin sections were done using the petrographical microscope Leica 

DM4500P. Both transmitted and reflected light was used together with plane- and cross-

polarized light to determine the minerals. All thin sections contain silicates and several also 

contain opaque minerals (sulphides and oxides). A camera mounted on the microscope was 

used to take pictures of the thin sections. The software CorelDraw was used to process the 

pictures.  
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SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were 

used to obtain the chemical composition of the mineral grains to assist the determination of 

unidentified minerals seen in the Leica microscope. 

A list of abbreviated mineral names used from (Kretz, 1983) is enclosed in the appendices.  

2.5 Preparation for geochemical analysis 

A representative amount of 34 selected rock samples were cut in cubes of ~5cm3 and sent to 

Activation laboratories Ltd. in Ontario (Canada) for whole rock geochemistry. All the samples 

were prepared by ActLabs (crushing and milling). Then the samples were analysed using Major 

Elements Fusion package and the mineralized samples were analysed using assay packages. 

The methods used where Code RX-1, 4LITHO Major Elements Fusion ICP(WRA)/Trace 

Elements Fusion, ICP/MS(WRA4B2), code UT-3 INAA (INAAGEO)/Total digestion ICP 

(Total) Total Digestion ICP/MS.  

All of the analytical work, methods, detection limits and standardized values are described in 

the certificated analytical report A15-10688 produced by Actlabs Ltd. A complete overview of 

the analytical data is presented in the appendices.  

The analytical data were processed in Excel and GCDkit in order to construct various element 

diagrams and petrology plots.  
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3. Observations and results 

3.1 Revised geological maps 

The field area has few outcrops besides the nearest surroundings to the mines, and the mapping 

was challenging. However, some lithological and structural measurements were done in 

restricted areas, revealing two distinct lithologies (mica schist and greenschist) with a 

metamorphic fabric in an overall east-west trending foliation with a moderately inclined dip to 

the north. The maps in figure 8 show the three studied areas, while the map in figure 9 is a 

zoomed overview of the Tronsvangen area, all marked by red squares in figure 1. The sample 

locations are indicated by yellow (ore) and red (bedrock) circles.   

 

 

Figure 8: Geological maps of the three studied areas: 

Tronsvangen, Baugsberget and Vesletronden-

Grøtådalen, showing from where the samples were 

taken. Maps modified from Ramsay & Siedlecka 

(2001) and www.ut.no.  
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3.2 Field observations of rocks and ore deposits 

3.2.1 Volcanic rocks 

The upper lithology, extending in an east-west trending direction from Tronsvangen to the foot 

of the mountain Tron, is a greenschist/greenstone rock (Figure 8). The rock is massive, 

homogenous, has a greenish color, looks like a metamorphosed igneous rock with uniform grain 

size ranging from fine to very-fine grained. The only structural element observed is a foliation 

with approximately 10-20 cm wide beds. The rock is generally hard with poor cleavage. Calcite 

veins occur as infill in cracks. The minerals that were determined in hand specimen are chlorite 

(green), amphibole (black), quartz/feldspar (light) and calcite, (with a ratio of 1:1:1 between 

the chlorite, quartz/feldspar and amphibole).  

3.2.2 Metasedimentary rocks  

A different lithology, a mica schist, occurs south of the greenschist, from the Tronsvangen area 

towards the south to Alvdal and west to Baugsberget. The rock is heterogeneous and sandy-

arkosic in some outcrops and more mica-rich in others, medium to fine grained and green to 

greyish. It has a strong NE-SW trending foliation with a dip to the northwest. This rock is 

locally easy to break between the fingers with a flour-like consistency, while in other localities 

it needed a hammer to be broken. Some small-scale folding is observed, but this could not be 

followed into big-scale folds. It consists of quartz, mica (sericite), chlorite and feldspar. Quartz 

appears both as grains in the matrix of the rock and in lenses following the foliation, length 

ranging from 5 to 20 cm.  

3.2.3 Ores hosted in volcanic rocks 

Observations done in the field revealed that only Klettgruva and Grøtådalen have open mine 

entrances. The mines were never explored or examined inside, due to the risk of possible rock 

falls. Therefore, the ore zone was observed at the entrance and by studying the material located 

at the dumps. The ore mineralization is massive and straight with a clear rusty zone on both 

sides. The ore zone follows the foliation of the layers, with a dip towards the north (west). 

Minerals observed are pyrite and chalcopyrite, and sometimes a darker mineral is also observed, 

probably sphalerite. The host rock is interpreted to be a dark green-grey greenschist, the altered 

rock ranges between a quartz-sericite schist and a dark grey amphibolitic schist. The dump 

wastes are examined in every locality, showing massive mineralization of pyrite and 

chalcopyrite. All ore samples are taken from the dumps.  
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3.2.4 Ores hosted in metasedimentary rocks 

The mines situated within the mica schist still have open entrances, except Såttåstollen. None 

of them were explored or examined inside, due to the risk of rock fall. The ore zone was 

observed at the entrance and by looking as far as possible within the mines. The field 

observations revealed that the ore mineralization is irregular with lenses and bands of semi-

massive to massive mineralization, which show local small-scale folding. The observed ore 

minerals are pyrite, chalcopyrite, sphalerite and pyrrhotite. Malachite is often seen at the mine 

entrances, not far away from the mineralized zone. The direction of the ore mineralization is 

constant in every mine: north-west/south-east. A clear rusty zone is seen around the ore zone. 

The host rock is a chloritic mica schist and the altered rock is a sandy equivalent of the host 

rock.  

3.3 Petrographic description of rocks 

3.3.1 Volcanic rocks 

This rock type is characterized by the large amount of chlorite, presence of amphibole and 

plagioclase, and the relatively low content of quartz (only observed in the fine-grained matrix 

together with plagioclase) (Figure 10). This represents a typical mineral assemblage for basalts 

which has undergone greenschist facies metamorphism (Le Maitre et al., 1989). Accessory 

minerals are calcite (as vein material) and epidote (included in the chlorite).  

Chlorite grains are green (pale to dark) in PPL and shows anomalous interference colors 

(turquois, yellow, blue, red, pink) in CPL (Figure 10). It has flake-like anhedral grains with a 

preferred orientation, with grain size ranges from 20 µm to above 2mm. 

The feldspar is typical pale/colorless which shows fractures and cloudy texture in PPL, and 

shows Carlsbad twinning in CPL. The grains are anhedral to subhedral, ranging from very-fine 

grained (when appearing as matrix) to 0.1 mm. This feldspar is concluded to be the plagioclase 

anorthite. Quartz is only seen in the matrix. 

Amphibole is not seen in every sample, but shows a typical 60-120 degree cleavage and high 

interference colors (yellow and pink) in CPL (Figure 10F). The grain size varies between 60 

and 500 µm. In one sample (what sample) the amphibole is altering towards chlorite. 

Quartz and mica, often foliated and sometimes folded, are the dominating minerals in ore 

samples (Figure 10D). The quartz grains are anhedral, aligned in layers and show subgrains and 

undulatory extinction.  
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Figure 10: A: Chlorite and plagioclase dominate the sample, observed in PPL. B: The same view in CPL. C: 

Picture B turned 90 degrees, where the anomalous colors of chlorite and extinction are seen. D: Greenschist-

hosted ore sample, showing foliation and folding of quartz and mica between sphalerite and pyrite. E: Typical 

greenschist, note the big calcite grain at the top. F: Picture E in CPL, where amphibole grains are clear. Chlorite 

do not show anomalous colors. Pictures A-C are from ML1535, picture D is from ML1503, E and F are from 

ML1556. 
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3.2.2 Metasedimentary rocks 

The metasedimentary rock is characterized by foliated quartz and white mica as the dominating 

minerals, with the presence of plagioclase. Accessory minerals are calcite and chlorite. This 

rock type is determined to be a mica schist based on the mineral assemblage and structure 

(Travis, 1970). 

Quartz grains are anhedral, often aligned in layers oriented with the foliation, irregular grain 

boundaries, show subgrains (core-mantle structure) and undulatory extinction with grain sizes 

ranging from 0.1 to 0.4 mm. Quartz also appears as very fine-grained in thin layers between 

coarser grained layers, often associated with chlorite (Figures 11 D, E). The deformation is 

called dislocation creep by subgrain rotation, indicating a medium temperature and water 

content deformation/recrystallization (Passchier & Trouw, 2005). 

The white mica has typically elongated flake grains with perfect cleavage, white or colorless in 

PPL and show variable interference colors in CPL (pink, yellow, blue, green and orange). They 

have a preferred orientation, with grain size very constant around 0.2 mm, but appears also as 

fine-grained masses (~0.05 mm) (Figures 11 G, H).  

Plagioclase occurs as rounded to subangular clasts with grain sizes ranging from 0.15 to 0.6 

mm, oriented randomly without subgrains. Smaller quartz grains are found at the front and tail 

(aligned with the foliation) of some clasts (Figures 11 A-C). 

Calcite is observed as both veins and single crystals within the matrix, with a grain size between 

0.1 to 0.5 mm (Figures 11 G, H).  
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Figure 11: Picture A-C show a typical mica schist, with layered mica and quartz, and randomly distributed 

clasts of plagioclase. B and C are in CPL (pictures are from sample ML1549).  D-E: Layers of different grain 

sizes of quartz associated with chlorite (sample ML1555). F-H: Quartz with subgrains, calcite and mica cut 

perpendicular by a mass of mostly mica (sample ML1554).  
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3.4 Petrographic description of ore mineralization 

3.4.1 Ores hosted by volcanic rocks 

Thin section studies show that the greenschist-hosted ores are dominated by pyrite, with 

variable contents of chalcopyrite and sphalerite, and with little or no pyrrhotite. The matrix is 

always dominated by quartz, with variable contents of chlorite and mica.  

Pyrite appears in many varieties: as perfect cubes to round grains, sizes ranging from 0.05 to 2 

mm. The pyrite may exhibit pores and inclusions, and can be homogenous and without fractures 

to heavily fractured and brecciated. Pyrite grains are found both as single grains and as 

aggregates where they are intergrown with each other; they are impinging on another (Figures 

12 A-D). Rounded and fractured grains are interpreted to be caused by "Durchbewegung" 

(Vokes, 1969).  

Sphalerite and chalcopyrite occur almost always together and appear as massive mineralization 

along rims or in cracks of fractured pyrite (Figures 12 B, G-H). Chalcopyrite-disease, i.e. the 

frequent occurrence of small chalcopyrite blebs in sphalerite (Barton & Bethke, 1987), is also 

observed. A dark rim around chalcopyrite is observed and investigated in the SEM/EDS, 

concluding to be a weathering towards sulphates (appendix F). Sphalerite also occurs as 

massive veins, in pyrite grains and cracks in the host rock itself (Figures 12 C, H). 

Only one greenschist-hosted ore deposit, Grøtådalen, (samples ML1559+60) has pyrrhotite, 

which occurs both as massive aggregates and as disseminated single grains. The single grains 

show two distinct textures (Figures 12 E, F): one is fibrous/flame-like and the other is irregular 

elongated and/or subhedral with bays and spits. Both types show light-brown grains that are 

found on a brighter yellow base/matrix. Fractures are also seen. The fibrous grains (Figure 12 

F) have irregular, subangular and subspherical shapes when they are in contact with other 

pyrrhotite grains, and show more irregularities when they are in contact with other opaque ore 

minerals (pyrite, chalcopyrite). The grain sizes range from 0.15 to 1.25 mm. The fibrous texture 

within the grains do not have a fixed orientation. The fibers have not been successfully 

determined microscopically, but are interpreted to be an alteration/weathering towards iron 

oxide-hydroxides based on SEM and EDS analysis (appendix F). The sizes of the irregular 

elongated/subhedral grains (Figure 12 E) range from 0.2 to 1 mm. This texture is called a 

“Zwischenproduct” by Ramdohr (1980), or a decay texture, which means that pyrrhotite is 

altered to a pyrite-like substance.  
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Figure 12: Ore mineralization in greenschist: A) Typical cubic and angular shapes of pyrite grains in different 

sizes. B) Fractured and cataclastic pyrite grains. Chalcopyrite and sphalerite are localized between the two pyrite 

grains. C) Pyrite grains fractured and filled with sphalerite. D) Rounded and fractured pyrite grains. Note that 

chalcopyrite and sphalerite have filled in cracks between the pyrite grains. E) Pyrrhotite showing a decay texture. 
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F) Weathered, fibrous pyrrhotite grains. G) A distinct boundary between massive pyrrhotite and chalcopyrite. H) 

Chalcopyrite-disease in sphalerite. Pictures are taken from samples ML1501, -02, -04, -07, -5 and -60. 

3.4.2 Ores hosted by metasedimentary rocks  

The ores hosted by the mica schist are dominated by pyrrhotite, with little or no pyrite, and 

variable contents of chalcopyrite, sphalerite and galena. Some samples are very rich in 

chalcopyrite, while others are rich in sphalerite. The matrix is mainly composed of chlorite and 

mica, with variable contents of quartz, often seen as lenses or clasts.  

Pyrrhotite is the dominating ore mineral in the mica schist-hosted ores, and forms massive 

aggregates and single grains (Figures 13 C, E-H). The single grains show two distinct textures: 

one is fibrous/flame-like and the other is irregular elongated and/or subhedral with bays and 

spits. Both types show light-brown grains that are found on a brighter yellow base/matrix. The 

fibrous grains range from 0.07 to 0.30 mm have not been successfully determined, but are 

interpreted to be a weathering towards iron oxide-hydroxide, based on SEM and EDS analysis 

(appendix F). The other texture, which is the most abundant, is a result of the decay texture, 

alteration of pyrrhotite to pyrite. The grain size ranges from 0.10 0.35 mm.  

Pyrite is the most common sulphide mineral in all samples and occurs in a wide variety (Figures 

13 A-C, E). The grains are cubic, angular and rounded with sizes ranging from 0.02 to 1 mm. 

The grains are moderately fractured and impinge on each other, showing evidence of annealing. 

The space between the grains is often filled with chalcopyrite. Several samples show spheroidal 

or colloidal botryoidal pyrite grains in a pyrrhotite matrix (Figure 13 C). They occur as small 

concentric grains with sizes ranging from 0.05 mm to 0.3 mm and show a clear zoning of growth 

circles.  

Chalcopyrite and sphalerite occur often together in massive aggregates, often with common 

chalcopyrite-disease textures (Figure 13 D). Sphalerite occurs also as scattered small blebs 

within chalcopyrite (Figure 13 G). A darker orange/brownish rim is seen around chalcopyrite 

in some samples, often in contact with calcite, which has been investigated in SEM and 

concluded to be a weathering.  

Galena has been recognized sparsely in three mines in the central part of the Tronsvangen area 

(St. Thomas, St. Olaf and Tjæremyr), with grain sizes ranging from 10 µm to 0.15 mm. The 

galena grains are localized along rims of chalcopyrite and sphalerite (grain boundaries), within 

the other ore mineral grains and in holes within the silicate minerals. Use of SEM and EDS 

revealed that the galena grains contain small inclusions (10µm) of bismuth and tellurium 

bearing phases (appendix F).   



31 

 

 

Figure 13: Typical ore mineralization in mica schist: A) Variable sizes and shapes of pyrite grains in a sphalerite 

matrix. B) Rounded and annealed pyrite grains in a sphalerite matrix. Note the chalcopyrite infill in cracks and 

between pyrite grains. C) Different sizes of botryoidal or colloform texture in pyrite in a pyrrhotite matrix. D) 

Chalcopyrite-disease in sphalerite. E) Decay texture of pyrrhotite to pyrite. F) Fibrous and altered pyrrhotite. 
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G+H) Typical assemblage of ore minerals in mica schist: sphalerite, chalcopyrite, pyrrhotite and galena. Note 

the blebs within chalcopyrite in G. Pictures are taken from samples ML1517 , -26, -27, -52, -68 and -71. 

Table 2: Summary and overview of the mineral content, texture and location of the ores. 

 Sample Locality Py Po Ccp Sp Ga Texture 

G
R

EE
N

SC
H

IS
T

-H
O

ST
ED

 O
R

ES
 

ML1501 Klettgruva X   X  Fractured pyrite 

ML1502 Klettgruva X  X X  Rounded and fractured pryite, 

chalcopyrite-disease 

ML1503 Vesletronden X  X X  Fractured and rounded pyrite, 

chalcopyrite-disease  

ML1504 Vesletronden X  X X  Fractured and rounded pyrite. 

ML1507 Vesletronden X  X X  Heavily fractured and rounded 

pyrite 

ML1509 Vesletronden X  X X  Heavily fractured and rounded 

pyrite 

ML1559 Grøtådalen  X X X   

ML1560 Grøtådalen  X X X  Decay and fibrous pyrrhotite 

M
IC

A
 S

C
H

IS
T

-H
O

ST
ES

 O
R

ES
 

ML1516 Brånå  X X X   

ML1517 Brånå X X X X  Botryoidal pyrite, chalcopyrite-

disease 

ML1524 St. Thomas  X (X) X X  

ML1526 St. Thomas X X X X X Decay and fibrous pyrrhotite. 

ML1527 St. Olaf X X X X X Decay of pyrrhotite, alteration 

of chalcopyrite.  

ML1530 Nedre 

Tjæremyr 

X X X X  Botryoidal pyrite, decary of 

pyrrhotite.  

ML1539 St. Knut  X X X  Chalcopyrite-disease, decay of 

pyrrhotite. 

ML1546 Gamle Tronsli  X X X  Decay of pyrrhotite 

ML1547 Gamle Tronsli (X) X X X   

ML1552 Øvre 

Tjæremyr 

X X X X  Botryoidal pyrite, decay of 

pyrrhotite 

ML1568 Såttå X X X X  Chalcopyrite-disease, decay of 

pyrrhotite 

ML1571 Store 

Baugsberget 

X  X X  Fractured and rounded pyrite, 

annealing of pyrite, 

chalcopyrite-disease. 

ML1572 Store 

Baugsberget 

X X X X  Decay of pyrrhotite 

ML1573 Lille 

Baugsberget 

X X X X  Fractured and rounded pyrite, 

fibrouse pyrrhotite, 

chalcopyrite-disease.  

ML1574 Lille 

Baugsberget 

X X X X  Rounded and fractured pyrite,  
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3.5 Geochemistry 

3.5.1 Volcanic rock 

The geochemical data were acquired from Actlabs as described in chapter 2.5. The main 

purpose of the geochemical investigation is to characterize the geochemical composition of the 

unaltered meta-volcanic and meta-sedimentary rocks and with help of discrimination diagrams 

determine the protoliths of these rocks. A further purpose is to describe and interpret the 

geochemical balance between these rocks and the ore-forming fluids, when the ores were 

formed. A third purpose is to provide multi-element information on the metal and sulphur 

contents of the ores. 

The protolith classifications were based on whole rock chemistry, since these metamorphic 

rocks do not have any primary minerals preserved. Under greenschist facies conditions, TiO2, 

Al2O3 and Cr2O3 are the only major elements that are immobile, while the others (Na2O, CaO, 

MgO, FeO and K2O) are mobile with SiO2 behaving as both immobile and mobile dependent 

on the physical properties (Pearce, 1975). Based on the metamorphic grade observed in the 

rock, Harker diagrams and total alkali vs silica (TAS) cannot be used (Floyd & Winchester, 

1978). However, several diagrams based on major element oxides are used in petrology to 

describe the nature of volcanic rocks and such diagrams are therefore used in this thesis. Other 

elements that are mobile during alteration are Ba and Sr, and are unsuitable as primary 

diagnostic elements to determine the rock type. Cr and Ni on the other hand, are immobile. 

Several diagrams and plots from a range of authors (Pearce & Cann, 1973; Pearce et al., 1975; 

Pearce, 1976; Le Maitre et al., 1989) were used to determine and classify the rock type. The 

samples ML1533, ML1535, ML1538 and ML1569 represent the greenschist. The first diagram, 

the total alkali vs. silica (TAS) diagram of Le Maitre et al. (1989) (Figure 14), is useful for the 

classification of volcanic rocks and for distinguishing between alkalic and tholeiitic parental 

magma, where SiO2 contents are plotted against the sum of Na2O and K2O (in weight percent). 

Analyzed samples (black squares in Figure 14) plot within the spectrum of basalt. The 

subdivision of the diagram into alkaline or subalkaline/tholeiite, shows that the samples are 

within the subalkaline/tholeiite serie. 
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Figure 14: Total alkali-silica (TAS) diagram showing what type of igneous mafic rock type the greenschist 

originates from (Le Maitre et al., 1989). The boundaries subdivide the volcanic rocks into alkaline and 

subalkaline/tholeiite series: the Solid straight line is from MacDonald (1968), dashed curved line is from Irvine 

and Baragar (1971) 

The major element discriminant diagram of Pearce (1976) tells what magma type the rock 

descends from (Figure 15). It separates ocean-floor basalts (OFB), volcanic arc basalts (calc-

alkaline basalt (CAB) + low-K tholeiite (LKT) + shoshonite (SHO)) and within-plate basalts 

(ocean island basalt (OIB) + continental basalt (CON)). The functions for determining the axes 

(F1 and F2), are: 

𝐹1 =  + 0.0088𝑆𝑖𝑂2 −  0.0774𝑇𝑖𝑂2 +  0.0102𝐴𝑙2𝑂3 +  0.0066𝐹𝑒𝑂 −

            0.0017𝑀𝑔𝑂 − 0.0143𝐶𝑎𝑂 −  0.0155𝑁𝑎2𝑂 −  0.0007𝐾2𝑂   

𝐹1  =  − 0.0130𝑆𝑖𝑂2 −  0.0185𝑇𝑖𝑂2 −  0.0129𝐴𝑙2𝑂3 − 0.0134𝐹𝑒𝑂 − 0.0300𝑀𝑔𝑂

− 0.0204𝐶𝑎𝑂 − 0.0481𝑁𝑎2𝑂 +  0.0715𝐾2𝑂 

The first function (F1), related to the ratio between TiO2 and SiO2, works best for separating 

high TiO2/low SiO2 within plate basalts from low TiO2/high SiO2 volcanic arc basalts. The 

second function (F2), is related to the ratio between K2O and MgO, and works best for 

separating the low K2O/high MgO ocean-floor basalts from the high K2O/low MgO volcanic 

arc basalts.  
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All samples in Figure 15 plot well within the area of ocean floor basalts.  

 

 

 

 

 

 

 

 

 

The ternary plot of Pearce & Cann (1973) has the same purpose as the discriminant diagram: to 

determine the origin of the magma and in what geotectonic setting it erupted. It discriminates 

between within-plate basalts (ocean island and continental basalts), ocean-floor basalts (OFB), 

low-K tholeiites (LKT) and calc-alkaline basalts (CAB) (Figure 16). In this plot, the elements 

Ti, Zr and Y are used since they are immobile and are not sensitive to secondary processes 

(Cann, 1970). Another discriminant diagram (Pearce & Cann, 1973) in which the ppm 

concentration of Ti is plotted versus Zr, determines if the rock originated as an ocean floor 

basalt, calc-alkaline basalt or low-K basalt (Figure 17).  

All samples plot within the field for ocean floor basalts in both of the mentioned diagrams from 

Pearce and Cann (1973) (Figure 16+17).                                                                                         

Figure 15: Major element discriminant diagram from Pearce 1976. This diagram states what type of magma the 

rocks descends from: within plate boundary (OIB+CON), ocean-floor basalts (OFB), and volcanic-arc basalts 

(CAB+LKT+SHO).  
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Figure 16: Ternary plot of Ti, Zr and Y of Pearce & Cann (1973). This plot determines what type of magmatic 

rock the rock originates from and is divided into within-plate basalts, calc-alkaline basalts, ocean floor basalts 

and low-K arc tholeiites. 

 

Figure 17: Discriminant diagram of Pearce & Cann (1973), using Zr vs Ti (ppm). This diagram distinguishes 

rocks with an origin as ocean-floor basalts, low-K tholeiites or calc-alkaline basalts from each other.  
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The ternary plot of Pearce et al. (1975) uses TiO2, K2O and P2O5 to indicate what type of 

environment the rock originates from: an oceanic vs non-oceanic. Figure 18 shows that all 

samples plot within the oceanic field, implying that the investigated meta-basalts erupted in an 

oceanic environment.  

The rare earth elements (REE) constitute the series of metals with atomic numbers between 57 

and 71; La to Lu. They have all a 3+ charge except Eu, which can be +2 and Cs, which can be 

+4.  With increasing atomic number, their ionic size decreases and the compatibility increases, 

e.g. La is the most incompatible element while Lu is the most compatible element. Because the 

REE’s are immobile they can be used to discriminate between different petrological processes 

(Rollinson, 1993). REE concentrations are normalized to a reference standard, often chondritic 

meteorites, since chondrites are assumed to represent the bulk composition of the Earth.  

REE plots are presented as concentration vs. atomic number, where the concentrations are 

normalized to the chondritic reference, and are expressed with a logarithmic base. The shape of 

Figure 18: Ternary plot where TiO2, K2O and P2O5 are the components, revealing if the rock is originated from 

an oceanic or non-oceanic environment from (Pearce et al., 1975). 
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the REE patterns, may reveal the petrological process. In figure 19, the normalized chondrite 

values are from Nakamura (1974).  

The shape of the plotted samples indicate a MORB affinity (White, 2013) with a small depletion 

of Eu (Figure 20). Data for the altered greenschist are plotted in figure 20 and show both a 

depletion of all the REE (except La) and a general similar trend as the unaltered greenschist.  

 

Figure 19: Rare earth element diagram showing a similar trend as a MORB (dashed line). Normalization values 

are from Nakamura (1974). 

 

Figure 20: Rare earth element diagram, where the proper greenschist is shown as shaded grey, and the altered 

greenschist has colors. All the REE are depleted in the altered sample ML1503 compared to the unaltered 

greenschist, except La, and the other altered greenschist samples ML1537 and 56 show the same trend as the 

unaltered greenschist.  
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Normalized multi-element diagrams use incompatible elements to depict basalt chemistry and 

are extensions of the chondrite-normalized REE diagrams (Rollinson, 1993). Both primitive 

mantle values and chondritic meteorites are used for normalization. In this diagram, the 

elements are arranged from the left to right in order of increasing compatibility. Element 

concentrations are plotted in a logarithmic scale. The elements can also be divided into mobile 

elements (Rb, Ba, K, Sr, Ta, Nb, U (only in oxidized environments)) and immobile elements 

(Hf, Zr, Ti, Y) based on their behavior during post-magmatic processes. The concentrations of 

the mobile elements can be controlled by fluids and the content changes during hydrothermal 

alteration, while the immobile elements are mostly resistant to these processes and reflect the 

chemistry of the source rock and the crystal/melt process. The mobile elements can also indicate 

crustal contamination in magmas.  

Normalization values from McDonough et al. (1991) are chosen to represent the primordial 

mantle (Figure 21). The general trend of all plots are similar to that of a MORB (Rollinson, 

1993), but with some differences: Th is depleted in sample ML1533 and ML1559; Nb and P 

show negative anomalies; Ta shows positive anomaly; and Y is slightly depleted. Rb values 

have not been used since they are below the detection limit (except for sample ML1533). 

Depletion of Nb normally indicates a subduction-related magmatism or a continental crust 

affinity (Kelemen et al., 1993; Baier et al., 2008). 

 

Figure 21: Multi-element diagram where the normalization values are from a primordial mantle, from 

(McDonough et al., 1991). The general trend is similar to that of a MORB (dashed line)(Rollinson, 1993), but with 

negative anomalies of Th, Nb and P.  
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3.5.2 Altered volcanic rock 

The geochemical data for the altered greenschist, samples ML1503, ML1537 and ML1556, 

have been compared with the data for the unaltered greenschist. A few trends are clear when 

considering the depletion or enriched levels of major elements, as shown in figure 22. Ca is 

depleted, while Na is both enriched and depleted. The bars also indicate different levels of 

alteration: ML1503 is the most altered sample, and ML1556 the least. ML1503 may have 

undergone a different alteration since the silica and sodium content have decreased while the 

iron content has increased compared to the other two altered samples.  

 

Figure 22: Graphical view of selected geochemical data for greenschist, from appendix D2. Green colors are the 

unaltered rock, orange colors are the altered rock. 
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3.5.3 Metasedimentary rock 

Interpretation models of geological environments based on geochemical data for sedimentary 

rocks are not as well developed as for igneous rocks (Rollinson, 1993). Sedimentary rock 

classification is often based on features that can be observed in hand specimen or in thin section, 

such as grain size, mineralogy and matrix. Geochemical classification of sandstones 

differentiates between mature and immature sediments, where the SiO2 content and the 

SiO2/Al2O3 ratio are the most common criteria used for sediment maturity (Potter, 1978). These 

criteria reflect the silica, clay and feldspar content in the sedimentary rocks. Another ratio that 

estimates the feldspar content is the alkali content (Na2O+K2O), which also is a useful index 

for the chemical maturity.  

Pettijohn et al. (1972) have made a classification diagram using the chemical maturity and the 

Na2O/K2O ratio for making a plot of log(Na2O/K2O) versus log(SiO2/Al2O3). This diagram has 

to be used with care, since Na and K are mobile elements during metamorphism. All 

metasedimentary samples investigated in this thesis plot within the area of greywacke (Figure 

23).  

Another diagram proposed by Wimmenauer (1984) plots the SiO2/Al2O3 ratios vs. K2O/Na2O 

and separates arkoses from greywackes. In figure 24 all samples plot within the field of 

greywacke.  
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Figure 23: Investigated metasedimentary rocks (samples M1515, 49 and 55) in the classification diagram of 

(Pettijohn et al., 1972).   

Figure 24: Investigated metasedimentary rocks (samples 1515, 49 and 55) in the classification diagram of 

Wimmenauer (1984).  
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3.5.4 Altered metasedimentary rock 

The altered meta-sediments show similar trends as the altered greenschist: Ca and Na have been 

depleted (nearly gone), the same with Al and silica (Figure 25). The K content is stable or shows 

a small increase. There is also a big increase in the iron content. 

 

Figure 25: Graphical view of selected geochemical data for mica schist, from appendix D2. Green colors are the 

unaltered rock, orange colors are the altered rock. 
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3.5.5 Geochemical comparison of volcanic vs metasedimentary rocks 

A multi-element diagram where both the mica schist and greenschist are plotted, using 

normalization values of chondrite (Wood et al., 1979), will reveal if there are differences in 

what type of element the rocks may be enriched or depleted in. As figure 26 shows, the mica 

schist is enriched in incompatible elements compared to the greenschist.  

 

Figure 26: Multi-element diagram displaying data for both mica schist (red color) and greenschist (green color).  
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3.5.6 The ore deposits 

As previously mentioned, the ores are located within two different lithologies. The greenschist 

hosted ores have a (Fe)Cu-Zn signature with no particular enrichment in trace elements (Table 

3). Statistical analysis were done on ore samples, where Ag correlates positively with Cd, Zn 

and Pb, and Cu correlates negatively with Fe and S and positively with Mn (appendix E).  

Table 3: Selected element contents of the greenschist-hosted ores. Red color indicates high level and orange 

medium level of the elements compared to other samples. 

Sample Cu 

(%) 

Zn 

(%) 

Fe 

(%) 

S 

(%) 

Pb 

(ppm) 

As 

(ppm) 

Hg 

(ppb) 

In 

(ppm) 

Cd 

(ppm) 

ML1501 0.07 0.18 28.2 35.3 25.1 27.8 <10 <0.1 4.7 

ML1502 1.16 1.89 38.1 45 471 43.7 10 1.5 54.3 

ML1503 1.04 0.17 21.9 26.8 94.4 160 <10 0.4 5.6 

ML1504 1.57 0.07 26.1 31.5 61 135 <10 0.7 2.7 

ML1507 1.75 0.08 31.3 35.3 87.6 206 <10 0.7 3 

ML1509 2.52 0.71 20.5 23 28.9 97 550 1.1 24 

ML1559 4.6 0.13 11.4 7.69 1.8 8.9 <10 1 35.5 

ML1560 5.32 0.06 18.8 14.8 2.3 9.9 <10 1.6 16.2 

 

The sediment-hosted ores have a general Fe-Cu-Zn-Pb signature, with anomalies of different 

trace elements (Table 4). A division of the mines in the Tronsvangen area (ML1516-68) can be 

done based on the Zn and Pb contents: A Zn-Pb mineralization can be seen in the central part 

(Brånå (ML16-17), St. Olav (ML5127) and Tjæremyr (ML1530)), while the surrounding mines 

have higher Cu-contents.  

The Baugsberget mines (ML1571-74) have the highest Zn-contents and the most significant 

anomalies of Hg, In, As and Cd.  

Statistical analysis revealed that Au correlates positively with As, Ag with Cu, Zn with Cd, Hg 

and In, and Pb with Mo, Bi and Ca (appendix E). Generally the mica schist-hosted ores are 

more enriched in incompatible elements than the greenschist.  

  



46 

 

Table 4: Selected element contents of the sediment-hosted ores. Red color indicates high level and orange medium 

level of the elements compared to other samples. 

Sample Cu 

(%) 

Zn 

(%) 

Fe 

(%) 

S 

(%) 

Pb 

(ppm) 

As 

(ppm) 

Hg 

(ppb) 

In 

(ppm) 

Cd 

(ppm) 

ML1516 0.3 2.19 16.4 9.92 51.4 5.4 <10 3.7 88.6 

ML1517 4.21 5.58 34.6 28.7 170 8.5 70 9.1 206 

ML1524 0.2 1.02 39.6 19.7 1640 5.8 <10 6.9 26.5 

ML1526 0.34 0.06 33.1 14.6 19.1 4 <10 0.2 0.3 

ML1527 1.28 2.05 38.9 27.8 2820 8.4 10 3.9 64.4 

ML1530 1.60 3.91 28.7 19 2880 6.9 160 8 91.7 

ML1539 8.21 0.96 19.9 13.7 9.4 6.4 <10 6 59.8 

ML1546 1.71 0.03 26.7 17.1 48.1 7.2 <10 0.5 2.5 

ML1547 23.9 0.23 24.3 29 782 7.7 60 2.2 25.3 

ML1552 0.27 0.03 19.6 12.9 8.2 7.2 <10 0.2 0.1 

ML1568 14.1 0.9 27.2 26.8 262 10.9 50 1.8 23.7 

ML1571 0.96 22.4 27.1 44.9 153 1250 7380 40.1 704 

ML1572 0.69 5.73 40.3 35.1 116 545 3390 16.7 226 

ML1573 1.42 0.39 42.1 38.9 293 1740 350 5.4 8.3 

ML1574 4.96 0.59 34.6 39.5 48.2 2750 870 4.4 17.2 
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Correlation diagrams of metals and trace elements are useful to distinguish between ore types. 

The diagrams in appendix E show that some elements have a positive correlation in the 

greenschist-hosted ores (like Ag vs Cd, Figure 27), but a negative correlation in the mica schist-

hosted ores, and vice versa. None of the diagrams have the same correlation in ores hosted by 

greenschist and mica schist respectively.  

 

 

Figure 27: Correlation diagram of Ag vs Cd in greenschist-hosted ores (top diagram, blue color) and in mica 

schist-hosted ores (bottom diagram, orange color).  
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4. Discussion 

4.1 Geological setting of the volcanic and meta-sedimentary units and 

interpretation of the geological environment  

4.1.1 Tectonostratigraphic position 

The ore-bearing supracrustal units in the Tynset-Alvdal region are located above the Augen 

gneiss, a zone extending from the south of Baugsberget to the type area for the Tännäs Augen 

gneiss, which is situated at the base of the Särv Nappe (Figs. 3, 5). This implies that the 

supracrustal units in the Tynset-Alvdal region must be part of the Middle Allochthon (or higher 

tectonic units). The Tynset-Alvdal sequence is also located beneath the Tronden Complex, 

which forms part of the Upper Allochthon and rests tectonically as a klippe on top of the 

greenschist (Wellings & Sturt, 1998). Furthermore, the Tynset-Alvdal sequence is located 

beneath the ultramafic rocks situated to the north-west (Ramsay & Siedlecka, 2001) (Figure 3), 

which can be traced to the Vågåmo ophiolite in Gudbrandsdalen and to other ophiolitoid 

complexes that recently have been recognized south of Røros (Sundblad et al., 2010) and north 

in Nord-Trøndelag (Nilsson & Roberts, 2014). Since these ultramafic units form the border 

between the Seve Nappe Complex (Middle Allochthon) and the Köli Nappe Complex (Upper 

Allochthon), it can be concluded that the Tynset-Alvdal sequences must be part of the Middle 

Allochthon. The presence of volcanic rocks in the sequences exclude a Särv affinity, and it is 

more likely that the sequences are part of the Seve Nappe. As a conclusion, the Tynset-Alvdal 

sequence is interpreted to be part of the Seve Nappe within the Middle Allochthon of the 

Scandinavian Caledonides.  

4.1.2 The origin of the host rocks and the geological environment  

Based on field observations, the rock types in the investigated area are interpreted to be low-

grade metamorphosed volcanic and sedimentary rocks, more specific greenschist and mica 

schist. The mineral assemblages of the host rock (chlorite, plagioclase, amphibole and quartz 

in the greenschist; white mica, quartz, chlorite and plagioclase in the mica schist), the foliation, 

presence of quartz lenses aligned with the foliation and local small scale folding support this 

interpretation. The two rock types have different physical features: the mica schist shows 

sedimentary features, has a sandy texture, generally low hardness and is light grey in color, 

while the greenschist shows magmatic features, is massive and harder, and has dominantly a 

dark green color. The contact is hard to distinguish because of the heavy vegetation, but one 

location shows a repeated sequence of mica schist and greenschist, that indicates coeval 

deposition of the rocks or imbrication during the orogeny. Even though the metamorphic grade 
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is low and the deformation mild, it was strong enough to wipe out the sedimentological features 

and the possibility to determine way up directions in the stratigraphy. It can be concluded from 

the field study, that 1) the greenschist originated in a magmatic environment, probably marine, 

and the mica schist in a continent-margin marine environment, and 2) that they both are 

metamorphosed during the Caledonian Orogen. The stratigraphic polarity has not determined: 

the present tectonostratigraphy (with greenschist on top of mica schist) can be inverted. 

4.1.3 Geochemistry and tectonic setting of the host rocks 

The geochemical investigation shows that the greenschist originated as ocean floor basalts in 

a marine environment and has a chemical signature similar to tholeiitic basalts from the mid-

ocean ridge (Figs. 15-19, 21). The mica schist originated as a greywacke, deposited in a marine 

environment close to a continent (Figs. 23, 24). Figure 26 shows that the mica schist is more 

enriched in the more incompatible elements than the greenschist, indicating that the mica schist 

has a more continental crust origin (Hofmann, 1988). Since these two units appear together, 

the environment of deposition and magmatic eruption indicates a marine igneous rift 

environment in a coast near position, similar to the present Red Sea (Bosworth et al., 2012). 

Even though all the diagrams and plots show that the greenschist originated as ocean-floor 

basalts, the depleted level of Nb in the multi-element diagram (Figure 21) rather indicates a 

subduction-related magmatism or a continental crust affinity (Kelemen et al., 1993; Baier et 

al., 2008). Since all the other elements in the same diagram show a MORB-trend, the Nb 

anomaly’s origin remains a mystery. Another notable feature is that Nb and Ta generally 

behave similar (Baier et al., 2008), but in Figure 21, Nb shows a negative anomaly and Ta a 

positive anomaly. Briqueu et al. (1984) have suggested that since Ti shows no anomaly, Nb 

and Ta will show anomalies, which is typical for tholeiitic basalts. Another possibility for 

enriched Ta and depleted Nb, is that this trend is common for medium-Ti (MORB/island-arc 

tholeiitic intermediate) basalts, resulting in no strange anomalies (Saccani, 2015).  

Geochemically, the altered rocks differ from the unaltered ones, especially in the levels of K, 

Na and Ca. These elements are mobile during alteration and indicates a hydrothermal alteration 

process for the rocks. A definite geochemical interpretation of the altered rocks is difficult, due 

to the uncertainty of where the dump samples originally were located in relation to each ore 

type. The total alkali vs silica (TAS) diagram is used in this thesis, even though the alkali 

minerals and SiO2 may be mobile under metamorphism, because it is assumed that the grade 

of metamorphism is low and have not affected these elements significantly. 
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Petrographic analysis of the two rock types revealed that the quartz has undergone deformation 

(Figs. 10D, 11), while the plagioclase has not, indicating a low-grade metamorphic event 

(Passchier & Trouw, 2005). Nevertheless, the geochemical data suggest that variations are due 

to hydrothermal influence rather than the metamorphic event, because of the removal of the 

mobile elements.  

The studied greenschist shows similarities with the greenschist of Ramundberget, Sweden 150 

km NE of the Tynset-Alvdal region (Hill, 1980) in terms of tectonostratigraphic position, 

geotectonic environment and geochemistry. The Ramundberget sequence is also an example 

of a mid-ocean ridge origin, formed during an early rifting phase, and shows similarities with 

the present Red Sea. It is thus likely that these two areas (Tronsvangen-Baugsberget and 

Ramundberget) may be connected and/or related with each other.  

4.2 Geological environment and ore-forming processes of the ores  

4.2.1 Greenschist-hosted ores 

The greenschist-hosted ores are a chalcopyrite-sphalerite-bearing pyrite-rich massive ore type, 

located in the lower part of the greenschist sequence. The adjacent volcanic sequence is clearly 

hydrothermally altered (disturbed K-Ca-Na balance), indicated by geochemical data (Figure 

22) and field observations. Based on the massive sulphide mineralization and appearance within 

the host rock, these ores are similar to a VMS type of ore deposit (Robb, 2005). If these ores 

are a VMS type, the best fit is to have them in the upper part of the volcanic pile, which indicate 

an inverted stratigraphy vs. the present one. Inverted supracrustal sequences with VMS ores 

have been reported from several areas in the Köli Nappes: by Halls et al. (1977) in the Gjersvik 

Nappe, by Sundblad (1980) in Ankarvattnet and by Stephens (1982) in the Stikke Nappe.  

The greenschist-hosted ores show similarities to the Cyprus type of VMS deposits (Franklin et 

al., 1981; Galley et al., 2007), because of the mid-ocean ridge related magmatism, the ore 

mineral assemblage (mostly pyrite, chalcopyrite and sphalerite) and the lithology (greenschist 

that may be related to an ophiolite). However, these ore deposits are not a perfect example of 

the Cyprus type, since the host rock is a greenschist (meta-basalts) and due to the lack of sheeted 

dykes, gabbro and ultramafics that all are components in an ophiolite. It is possible that the 

studied metabasalts may have a relation to the ophiolite, and if so (meaning an inverted 

stratigraphy in the Trondsvangen area) the segments from the ophiolite must have been sliced 

off by the Tron Complex shear zone.  
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Local geochemical zonation patterns are found within the Tronsvangen mines. The central area 

(with St. Thomas, St. Olaf, Tjæremyrgruvene and Brånå) is enriched in Pb and Zn whereas the 

outboard area has higher Cu grades (Table 3), indicating a segregation of the hydrothermal 

fluids that have occurred during the ore-forming process.  

4.2.2 Mica schist-hosted ores  

The ores hosted by the mica schist are of a chalcopyrite-sphalerite-galena bearing pyrrhotite-

rich type that is irregularly distributed at various levels in the sedimentary sequence. The 

adjacent metasedimentary sequence is clearly hydrothermally altered, indicated by geochemical 

data (Figure 25) and field observations. Several elements like Hg, In, Zn and As, are enriched 

in this type compared to the greenschist-hosted ores (Table 4). Locally high levels of Cd, Hg 

and In are found particularly in the Baugsberget ores. These elements correlate well with Zn 

(appendix E), suggesting that they occur within the sphalerite lattice. 

A precise evaluation of the mica-schist hosted ores is difficult. If the stratigraphy is inverted, 

as suggested for the greenschist-hosted ores, then the Tronsvangen ores will be located 

stratigraphically above the greenschist ores and in a geological setting that reminds on the 

Escanaba and/or subsea-floor replacement models (Morton et al., 1994; Doyle & Allen, 2003; 

Piercey, 2015).  

The correlation plots and diagram (appendix E) show positive and negative correlations 

between different elements in the greenschist-hosted ores, compared to the mica schist-hosted 

ores and vice versa, concluding that the ore are not of the same type. 

4.2.3 Deformation of the ore minerals and their textures 

Fracturing or brecciation of ore mineral grains is an evidence for brittle deformation of hard 

minerals, such as pyrite (Figure 12B) (Craig & Vaughan, 1994). When pyrite grains impinge 

upon each other, local brecciation occurs, but if the pyrite grains are mixed with chalcopyrite 

or pyrrhotite, the pyrite usually suffers little deformation because the strain is taken up by the 

softer sulphides. An exception from this is when the pyrite cubes have been rounded by being 

“rolled” in the matrix, often pyrrhotite and chalcopyrite, during deformation. The term 

“Durchbewegung” by Vokes (1969) is a deformation style where minor brecciation to complex 

cataclasis with increasing degree of fragmentation and disorientation have occurred. It is 

common that softer ore minerals have been injected into fractures and clevages in brittle ore 

minerals, like pyrrhotite and chalcopyrite. Pyrite grains tend to recrystallize and anneal under 
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greenschist metamorphic grades and above, and generally the grain size increases with 

increasing metamorphic grade (Craig & Vokes, 1993).  

Botryoidal pyrite (Figure 13C) is a secondary generation reflecting fast precipitation of pyrite. 

Ramdohr (1980) named this texture Melnikovite-pyrite or colloform pyrite, which has 

crystallized from a FeS2 gel. This type is very common in sedimentary and hydrothermal 

deposits formed at low temperatures. Other settings that favor fast precipitation of botryoidal 

pyrite is the sulfur fugacity, and an alkaline solution (Tarr, 1927).  

The decay or “Zwischenproduct” texture in pyrrhotite (Figs. 12E, 13E) is a transformation of 

pyrrhotite to pyrite directly, or via an intermediate product marcasite, reflecting the increase in 

the sulfur fugacity and the change in the Fe:S ratio (Ramdohr, 1980; Qian et al., 2011). Pyrite 

is formed by direct replacement of pyrrhotite and by overgrowth from solution; the mechanism 

is called dissolution-reprecipitation or metasomatism. The fibrous grains (Figs. 12F, 13F) are 

an alteration or partial weathering of pyrrhotite to iron oxide/hydroxides (probably goethite), 

which have been investigated in SEM and EDS. This hydrous iron oxide forms in the 

sedimentary cycle, mostly as a weathering product of iron-bearing sulphides or minerals 

(Ramdohr, 1980). This weathering has happened later than the ore forming process in an 

oxidizing environment, most probably long after the metamorphic event. 

The chalcopyrite-disease in sphalerite is characterized by randomly dispersed or 

crystallographically oriented rows of blebs and rods of chalcopyrite within sphalerite, also 

called sphalerite-chalcopyrite intergrowth (Figs, 12H, 13D) (Barton & Bethke, 1987). This 

texture was interpreted as a result of exsolution by e.g. Ramdohr (1980), since the crystal 

structure of chalcopyrite and sphalerite is very similar. Ramdohr (1980) also stated that a low 

iron content favors chalcopyrite in sphalerite, while high iron contents favors solution of 

chalcopyrite, but this process occurs in high temperature environments only (Craig & Vaughan, 

1994). However, there is not only one process that has led to the formation of chalcopyrite-

disease: Barton and Bethke (1987) concluded that the chalcopyrite in sphalerite either forms by 

epitaxial growth during sphalerite formation or by replacement as copper-rich fluids react with 

the Fe-bearing sphalerite after formation. It is also accompanied by a marked decrease in the 

iron content of the immediately adjacent host sphalerite (Barton, 1991), or it may remain 

unchanged or increase (Bortnikov et al., 1991). Hutchinson and Scott (1981) proposed that the 

chalcopyrite-disease may be a product of a premetamorphic sphalerite-chalcopyrite 

intergrowth, or as exsolution from sphalerite. The formation of chalcopyrite-disease is a 
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common phenomenon in VMS deposits, indicating that the Cu-mineralization occurred later 

than the Zn-mineralization (Ohmoto, 1996).  

The darker rim observed around chalcopyrite (appendix F) is caused by weathering in oxidizing 

environment towards sulphates based on SEM/EDS analysis. This weathering has occurred 

after the deposition of chalcopyrite, reflecting an increase in oxygen fugacity and a low water 

activity. In the field, malachite was often observed in the mine walls located close to the ore 

zone, also indicating weathering. 

Galena is a very soft mineral, easily filling cracks and holes (Figs. 13G, H), but is very resistant 

to weathering and alteration. Based on observations in the microscope, it is concluded that 

galena, chalcopyrite and sphalerite precipitated together.   

Based on observations made in the microscope, the low-grade metamorphism has overprinted 

and deformed the primary structures. Textures, like decay and fibrous pyrrhotite, botryoidal 

pyrite and chalcopyrite-disease, are more developed and common in the mica schist-hosted 

ores, while fractured and rounded pyrite are more common in the greenschist-hosted ores. This 

could be due to the difference in the rock strength during metamorphism and the mineralogical 

differences – that the ores are not the same type and have originated in different environments. 

This assumption is strengthened by the correlation plots (appendix E). The lack of limonite in 

the ores proves that the ores have not undergone heavily oxidation. 

4.3 Regional geological context  

The rocks in the Tronsvangen-Baugsberget sequence are of a low metamorphic grade, which is 

very different from the typical high grade Seve (e.g. Snåsahögarna and Åre) where 

metamorphic diamonds have been reported (Majka et al., 2014). Instead, the ore-bearing 

sequences in the Tronsvangen-Baugsberget area remind more of the ore-bearing sequences in 

the Ramundberget-Vargtjärnsstöten areas, north of Funäsdalen, Sweden (Hill, 1980; Sundblad 

& Stephens, 1983) which form a lowermost part of the Seve Nappes, structurally above the 

Särv Nappe, but structurally below the high-grade metamorphosed Seve units at Snåsahögarna 

and Åre.  

The recognition of syngenetic metalliferous deposition in a submarine environment in the 

lowermost tectonic units of the Seve Nappe, represents most likely the earliest phases of rifting 

during the opening up of the Iapetus Ocean (Figure 28). Such an event must be significantly 

older than any other VMS environment recognized in the Scandinavian Caledonides. Several 

ages have been estimated for the Särv Nappe dolerites, related to the initial opening of the 
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Iapetus Ocean, ranging from 580-610 Ma, where the latest precise age estimation at 596 Ma 

was provided by Kumpulainen et al. (2016). The age of the (upper) Seve, where the dolerite 

dykes in the continent-oceanic transition zone (COT) complex is situated, was determined to 

608 Ma by Svenningsen (2001). Under the COT complex (middle Seve) is a high-pressure 

metamorphic zone with an interpreted age of 607±2 Ma (Root & Corfu, 2012). All these ages 

indicate an Edicaran age of the Baltic igneous rift-related activity in the Särv and Seve nappes. 

The Tronsvangen-Baugsberget sequence, constituting the lowest parts of the Seve Nappe 

Complex, is probably of the same approximate age as the underlying Särv units and the 

overlying Seve units, i.e. around 600 Ma. In contrast, all age estimates for supracrustal 

sequences with proper VMS ores in Løkken, Røros-Ankarvattnet and Stekenjokk (all located 

within the Köli Nappes), indicate much later events. The age of the Stekenjokk volcanics was 

determined to 490 Ma (Claesson et al., 1987), which fits with the age for the lowermost 

Ordovician graphitic Dictyonema shales, found at the Stekenjokk level and at the base for the 

sedimentary sequences of the Røros and Ankarvattnet VMS systems ((Sundblad, 1980; Gee, 

1981; Sundblad & Gee, 1984; Sundblad et al., 2010). The age of the Løkken ophiolite was 

established to Early Ordovician (Grenne, 1989; Grenne et al., 1999) (487±5 Ma by Dunning & 

Grenne, unpublished data). Other VMS ores associated with continent rifting and opening up 

of the Iapetus Ocean are Kvikne and Tverrfjellet, Hedmark, Leksdal, Sør-Trøndelag and Joma, 

Nord-Trøndelag. They are all located within the Köli Nappes, having ages ranging from early 

Cambrian to early Ordovician (Grenne et al., 1999).  

The ore forming process of the mica schist-hosted ores at Tronsvangen and Baugsberget have 

similarities to the model formulated for the sulphide ores off-shore western North-America, 

where mid-ocean ridge related magma interferes with unconsolidated turbiditic sediments 

(Morton et al., 1994), referred to as the Escanaba model. The similarity between the 

Tronsvangen-Baugsberget and the Escanaba case is, however, far from perfect because the 

greenschist at Tronsvangen extruded on the sea floor (over or under the greywacke sediments) 

while the mafic magma in the Escanaba model intrudes into the wet sediments. The important 

thing in both these case is that the sulphide deposition within unconsolidated coast-near 

epiclastic sediments formed from the influence of heat generated by mid-ocean ridge igneous 

activity. The ore forming process of the mica schist-hosted ores can also be seen in the light of 

the concept “subsea-floor replacement in massive sulphide deposits” model (as described in 

chapter 1.6). The ores in the Tronsvangen-Baugsberget area fulfil at least criteria 1, 2, (4) and 

5 (see chapter 1.6.3) of the model proposed by Doyle & Allen (2003). Field observations, that 
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the ores are semi-massive, irregular and appears within the foliated bed of the synvolcanic 

sedimentary unit (mica schist), also strengthen the subsea-floor replacement model. The Zn-Cu 

Storliden deposit, Sweden, is hosted by volcanoclastic sedimentary rocks of Palaeoproterozoic 

age and is conceived to be a seafloor exhalation where the minor semi-massive Cu-ore has 

replaced the feeder zone (Imaña et al., 2005; Imaña & Miettinen, 2016). The Zn-Cu Vihanti 

mines, Finland, is located in volcano-sedimentary rocks having an age of 1.93-1.92 Ga 

originated from island arc (Mäki et al., 2015). This deposit is believed to have formed by 

combined processes involving exhalation and replacement. The ores in the Tronsvangen-

Baugsberget area show similar features with the Storliden and Vihanti deposits, like the host 

rock lithology, type of ore mineralization and occurrence of the ores within the host rocks.  

The sequences seen in the Tronsvangen-Baugsberget areas, their environment of deposition and 

magmatic eruption, and the style and formation of ores, have similarities to the present Red Sea 

(Robb, 2005; Bosworth et al., 2012). Also, the greenschist in the Ramundberget area have also 

been compared with the Red Sea in style of deposition and generation of magma (Hill, 1980). 

Both these areas could thus be older equivalents of the present Red Sea.  

 

 

Figure 28: Suggested environment of the formation of the Tynset-Alvdal ore-bearing sequences in the Ediacara 

with rifting and early opening of the Iapetus Ocean.  
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5. Conclusion 

The study of a set of ore-bearing rocks located in the Tynset-Alvdal region, Hedmark county, 

has resulted in the recognition of the lowermost (and oldest) Cu-bearing VMS ore deposits 

within the Scandinavian Caledonides.  

The ore deposits are located in two different lithologies: greenschist and mica schist, in the 

lower part of the Seve Nappe, Middle Allochthon. The greenschist has originated as ocean-

floor basalts with a tholeiitic signature from a mid-ocean ridge. The mica schist has originated 

as greywacke, deposited in a marine continental margin environment. They are both formed 

during the rifting and early opening up of the Iapetus Ocean during the late Precambrian to 

early Cambrian. Several age determinations of the igneous rocks in the Seve and Särv nappes, 

yield Ediacaran ages (c. 600 Ma). The host rocks have most probably formed at the same 

time, due to their location and origin. Both host rocks have been affected by hydrothermal 

alteration (in connection with the ore-forming process), as seen in the geochemistry of the 

altered rocks in terms of mobile and immobile elements, and a metamorphic event in Late 

Silurian to Early Devonian (Caledonian Orogen), giving the rocks their present mineralogy 

and structure.  

The greenschist-hosted ores are a chalcopyrite-sphalerite-bearing pyrite-rich massive ore type, 

and show similarities to the Cyprus VMS type. If so, then the ores are located within the 

upper part of the volcanic pile, indicating an inverted stratigraphy. The mica schist-hosted 

ores have a significant different mineralogical and geochemical signature: they are a 

chalcopyrite-sphalerite-galena bearing pyrrhotite-rich irregularly distributed ore type. This ore 

type has similarities with both the Escanaba and subsea-floor replacement VMS types, and 

with other deposits like the Vihanti mine, Finland, and the Storliden mine, Sweden.  

The ore-bearing sequences at Tronsvangen-Baugsberget (and Ramundberget) show 

similarities with the present Red Sea in concept of magmatism and sedimentation, and can 

therefore be late Precambrian examples of such a tectonic situation.  
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Appendices 

A. Abbriviated mineral names (from Kretz, 1983).  
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B. Overview of samples 

 

Sample Locality Lithology Mineralogy Sample 

type 

ML1501 Klettgruva Greenschist Pyrite, sphalerite, quartz, 

(chlorite) 

Ore 

ML1502 Klettgruva Greenschist Pyrite, chalcopyrite, 

sphalerite, quartz, 

chlorite 

Ore 

ML1503 Vesletronden Greenschist Pyrite, chalcopyrite, 

sphalerite, quartz, (white 

mica/chlorite) 

Ore/Altered 

rock 

ML1504 Vesletronden Greenschist Pyrite, chalcopyrite, 

sphalerite, quartz, (white 

mica/chlorite) 

Ore 

ML1507 Vesletronden Greenschist Pyrite, chalcopyrite, 

sphalerite, quartz, (white 

mica/chlorite) 

Ore 

ML1509 Vesletronden Greenschist Pyrite, chalcopyrite, 

sphalerite, quartz, 

(chlorite) 

Ore 

ML1515 Gamle Tronsli Mica schist White mica, quartz, 

plagioclase, calcite 

Host rock 

ML1516 Brånå Mica schist Pyrrhotite, sphalerite, 

chalcopyrite, quartz, 

plagioclase, white mica, 

chlorite, calcite 

Ore 

ML1517 Brånå Mica schist Pyrrhotite, sphalerite, 

chalcopyrite, quartz, 

plagioclase, white mica, 

chlorite 

Ore/Altered 

rock 

ML1524 St. Thomas Mica schist Pyrrhotite, sphalerite, 

chalcopyrite, galena, 

quartz, white mica, 

chlorite 

Ore 

ML1526 St. Thomas Mica schist Pyrrhotite, sphalerite, 

chalcopyrite, pyrite, 

quartz, white mica, 

chlorite, calcite 

Ore 
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ML1527 St. Olav Mica schist Pyrrhotite, pyrite, 

sphalerite, chalcopyrite, 

galena, quartz, white 

mica, chlorite, calcite 

Ore 

ML1530 Nedre 

Tjæremyr 

Mica schist Pyrrhotite, pyrite, 

sphalerite, chalcopyrite, 

quartz, white mica, 

chlorite 

Ore 

ML1533 Tronsvangen Greenschist Chlorite, plagioclase, 

white mica, (quartz) 

Host rock 

ML1535 Vesletronden Greenschist Chlorite, plagioclase, 

white mica, (quartz) 

Host rock 

ML1537 Vesletronden Greenschist Quartz, plagioclase, 

white mica, chlorite, 

pyrite 

Altered 

rock 

ML1538 South of 

Sørkletten 

Greenschist Chlorite, plagioclase, 

white mica, amphibole, 

(quartz) 

Host rock 

ML1539 St. Knut Mica schist Pyrrhotite, sphalerite, 

chalcopyrite, quartz, 

white mica, chlorite 

Ore 

ML1542 St. Knut Mica schist Pyrrhotite, sphalerite, 

chalcopyrite, quartz, 

white mica 

Altered 

rock 

ML1544 St. Knut west Mica schist White mica, chlorite, 

quartz, pyrrhotite, 

chalcopyrite, sphalerite,  

Altered 

rock 

ML1546 Gamle Tronsli Mica schist Pyrrhotite, sphalerite, 

chalcopyrite, quartz, 

white mica 

Ore 

ML1547 Gamle Tronsli Mica schist Pyrrhotite, sphalerite, 

chalcopyrite, (pyrite), 

quartz, white mica, 

chlorite 

Ore 

ML1549 Tjæremyr Mica schist White mica, quartz, 

plagioclase 

Host rock 

ML1551 Øvre 

Tjæremyr 

Mica schist Pyrrhotite, sphalerite, 

chalcopyrite, quartz, 

white mica, chlorite, 

calcite 

Ore/altered 

rock 
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ML1552 Øvre 

Tjæremyr 

Mica schist Pyrrhotite, pyrite, 

sphalerite, chalcopyrite, 

quartz, white mica, 

chlorite, calcite 

Ore 

ML1554 Øvre 

Tjæremyr 

Mica schist White mica, chlorite, 

quartz, calcite, 

amphibole  

Altered 

rock 

ML1555 East of 

Tjæremyr 

Mica schist White mica, quartz, 

chlorite, calcite, 

(plagioclase) 

Host rock 

ML1556 Grøtådalen Greenschist Chlorite, plagioclase, 

calcite, amphibole  

Host 

rock/alterati

on rock 

ML1559 Grøtådalen Greenschist Pyrrhotite, chalcopyrite, 

sphalerite, quartz 

Ore 

ML1560 Grøtådalen Greenschist Pyrrhotite, pyrite, 

chalcopyrite, sphalerite, 

quartz, chlorite, 

amphibole 

Ore 

ML1568 Såttå Mica schist Pyrrhotite, pyrite, 

sphalerite, chalcopyrite 

Ore 

ML1569 Nordkletten Greenschist Chlorite, plagioclase, 

(quartz, amphibole)  

Host rock 

ML1570 Store 

Baugsberget 

Mica schist Pyrrhotite, sphalerite, 

chalcopyrite, quartz, 

chlorite, white mica 

Ore 

ML1571 Store 

Baugsberget 

Mica schist Pyrrhotite, pyrite, 

sphalerite, chalcopyrite 

Ore 

ML1572 Store 

Baugsberget 

Mica schist Pyrrhotite, sphalerite, 

chalcopyrite, pyrite 

Ore 

ML1573 Lille 

Baugsberget 

Mica schist Pyrrhotite, pyrite, 

sphalerite, chalcopyrite, 

quartz, calcite 

Ore 

ML1574 Lille 

Baugsberget 

Mica schist Pyrrhotite, pyrite, 

sphalerite, chalcopyrite, 

quartz, white mica 

Ore 



70 

 

 

  



71 

 

C. Scanned thin sections 
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D. Geochemical data 

D.1 Certificate of analysis, Actlabs 
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D.2 Major element diagram (%) of host rocks  

Sample SiO2 Al2O3 Fe2O3(T) MnO MgO CaO Na2O K2O TiO2 P2O5 LOI Total

ML1503 46,06 0,83 33,21 0,026 0,79 0,2 0,1 0,02 0,039 < 0.01 17,4 98,66

ML1515 65,12 11,22 4,3 0,067 2,46 5,79 3,54 0,98 0,618 0,12 5,07 99,29

ML1533 48,46 15,67 10,19 0,16 8,53 12,37 2,05 0,18 1,104 0,07 1,52 100,3

ML1535 48,86 14,43 12,03 0,202 7,45 11,42 2,68 0,05 1,593 0,13 0,7 99,53

ML1537 53,92 14,32 8,09 0,284 6,87 7,04 4,97 0,04 1,631 0,06 2,19 99,41

ML1538 48,38 14,91 13,12 0,206 6,88 11,01 2,8 0,14 2,179 0,18 0,95 100,8

ML1542 57,71 4,76 23,73 0,028 0,48 0,2 0,34 1,32 0,266 < 0.01 5,31 94,15

ML1544 28,41 10,91 35,91 0,177 6,41 0,2 0,06 0,8 0,567 0,02 10,31 93,79

ML1549 64,78 14,05 5,85 0,088 3,09 4,19 2,24 1,74 0,833 0,16 3,65 100,7

ML1555 61,65 13,58 6,04 0,114 3,47 6,07 2,36 0,94 0,774 0,16 4,91 100,1

ML1556 49,35 14,37 11,97 0,199 6,19 9,72 4,83 0,04 1,799 0,14 1,89 100,5

ML1569 48,94 14,92 11,57 0,193 7,17 12,41 2,04 0,07 1,329 0,06 0,99 99,7
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D.3 Rare-earth element diagram (ppm) (only for greenschist samples) 

 

D.4 Trace element diagram (ppm) (only for greenschist samples) 

 

 

    

  

Sample La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

ML1503 0,3 0,7 0,08 0,3 < 0.1 < 0.05 < 0.1 < 0.1 0,2 < 0.1 0,1 < 0.05 0,2 < 0.04

ML1533 1,9 6,1 1,16 6,7 2,6 1,09 4 0,7 4,8 1 2,8 0,44 2,7 0,41

ML1535 3,6 11,2 1,96 10,7 4,1 1,57 5,5 1 6,6 1,4 3,7 0,58 3,7 0,56

ML1537 2,9 9 1,61 8,9 3,4 1,36 4,9 0,9 6 1,3 3,5 0,54 3,5 0,54

ML1538 4,4 14,7 2,62 14,4 5,3 1,77 7,3 1,3 8,9 1,8 5,2 0,8 5,2 0,79

ML1556 3,6 11,6 2,04 11,4 4,2 1,27 5,8 1 6,9 1,4 4 0,6 3,9 0,59

ML1569 2 7 1,32 7,9 3,1 1,31 4,5 0,8 5,4 1,1 3,2 0,49 3 0,45

Sample Sm Ti Tb Y

ML1503 0,7 234 < 0.1 <2

ML1533 2,6 6624 0,7 23

ML1535 4,1 9558 1 32

ML1537 3,4 9789 0,9 29

ML1538 5,3 13074 1,3 45

ML1556 4,2 10794 1 34

ML1569 3,1 7974 0,8 27

Sample Rb Ba Th U K Ta Nb La Ce Sr Nd P Hf Zr

ML1503 <2 <3 0,1 0,2 166 <0,1 <1 0,3 0,7 4 0,3 22 0,2 12

ML1533 7 29 <0,1 <0,1 1494 0,3 0,5 1,9 6,1 102 6,7 308 1,8 58

ML1535 <2 15 0,3 <0,1 415 0,3 2 3,6 11,2 112 10,7 572 2,7 95

ML1537 <2 28 0,2 0,3 332 0,3 2 2,9 9 161 8,9 264 2,7 96

ML1538 <2 15 0,2 <0,1 1162 0,3 2 4,4 14,7 155 14,4 792 4,1 148

ML1556 <2 22 0,4 0,2 332 0,4 2 3,6 11,6 106 11,4 616 3,1 109

ML1569 <2 19 <0,1 <0,1 581 0,3 <1 2 7 113 7,9 264 2 68
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D.5 Metal contents in ore samples 

  

Sample Au (ppb) Ag (ppm) Cu (%) Cd (ppm) Mo (ppm) Pb (ppm) Ni (ppm) Zn (%) S (%) Al (%) As (ppm) Fe (%) Hg (ppb) In (ppm)

ML1501 41 11,3 0,07 4,7 41 25,1 12 0,18 35,5 0,71 27,8 28,2 < 10 < 0.1

ML1502 47 28,9 1,16 54,3 15 471 21,5 1,89 45 0,27 43,7 38,1 10 1,5

ML1503 52 8,45 1,04 5,6 45 94,4 20,9 0,17 26,8 0,42 160 21,9 < 10 0,4

ML1504 106 9,83 1,57 2,7 46 61 18,1 0,07 31,5 0,17 135 26,1 < 10 0,7

ML1507 134 8,07 1,75 3 83 87,6 10,4 0,08 35,3 1,1 206 31,3 < 10 0,7

ML1509 173 13,2 2,52 24 88 28,9 30 0,71 23 1,13 97 20,5 550 1,1

ML1516 19 4,12 0,30 88,6 6 51,4 76,7 2,19 9,92 5,25 5,4 16,4 < 10 3,7

ML1517 107 16,6 4,21 206 6 170 147 5,58 28,7 1,19 8,5 34,6 70 9,1

ML1524 30 9,02 0,20 26,5 35 1640 126 1,02 19,7 1,5 5,8 39,6 < 10 6,9

ML1526 < 2 2,98 0,34 0,3 23 19,1 166 0,06 14,6 3,32 4 33,1 < 10 0,2

ML1527 59 10,5 1,28 64,4 625 2820 74,8 2,05 27,8 0,16 8,4 38,9 10 3,9

ML1530 73 19,5 1,60 91,7 239 2880 65,4 3,91 19 2,45 6,9 28,7 160 8

ML1537 < 2 1,88 0,00 0,2 3 29,7 38,3 0,03 1,14 7,48 8,9 5,37 < 10 < 0.1

ML1539 654 26,6 8,21 59,8 3 9,4 100 0,96 13,7 3,8 6,4 19,9 < 10 6

ML1542 48 4,59 0,56 138 1 6,4 142 2,38 8,28 2,5 7,8 14,8 60 4,5

ML1544 340 26,6 5,06 31 68 11,8 134 0,31 11,4 5,86 6,8 22 10 7,2

ML1546 38 10,7 1,71 2,5 23 48,1 99,3 0,03 17,1 4,23 7,2 26,7 < 10 0,5

ML1547 457 72,8 23,90 25,3 35 782 16,6 0,23 29 1,46 7,7 24,3 60 2,2

ML1552 < 2 4,39 0,27 0,1 24 8,2 147 0,03 12,9 5,12 7,2 19,6 < 10 0,2

ML1559 74 17,9 4,60 35,5 5 1,8 16,4 0,13 7,69 0,18 8,9 11,4 < 10 1

ML1560 128 18,2 5,32 16,2 4 2,3 16,1 0,06 14,8 4,06 9,8 18,8 < 10 1,6

ML1568 205 34,8 14,10 23,7 4 262 77,8 0,90 26,8 2,16 10,9 27,2 50 1,8

ML1571 259 10,1 0,99 704 25 153 3,4 22,40 44,9 0,04 1250 27,1 7380 40,1

ML1572 63 4,84 0,69 226 50 116 38,5 5,73 35,1 0,12 545 40,3 3390 16,7

ML1573 362 6,13 1,42 8,3 27 293 24,8 0,39 38,9 0,53 1740 42,1 350 5,4

ML1574 1590 12,9 4,96 17,2 13 48,2 13,1 0,59 39,5 0,46 2750 34,6 870 4,4
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E. Ore element correlation  

E.1 Correlation plots 
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E.2 Ore element correlation tables 

Greenschist-hosted ores: red values indicate positive correlation (>0.70) and green values indicate negative correlation (<-0.70).  

 

 

 

 

 

Au Ag Cu Cd Mo Pb Ni Zn S Al As Bi Ca Fe Hg In K Mg Mn

Au 1

Ag -0,26 1,00

Cu 0,44 0,27 1,00

Cd -0,19 0,93 0,25 1,00

Mo 0,54 -0,64 -0,45 -0,47 1,00

Pb -0,40 0,69 -0,38 0,66 -0,19 1,00

Ni 0,31 0,24 0,04 0,41 0,21 0,20 1,00

Zn -0,22 0,79 -0,26 0,81 -0,12 0,91 0,48 1,00

S -0,30 0,09 -0,84 0,01 0,31 0,70 -0,09 0,54 1,00

Al 0,45 0,09 0,62 -0,14 -0,21 -0,31 -0,11 -0,25 -0,37 1,00

As 0,28 -0,66 -0,44 -0,55 0,75 -0,01 -0,03 -0,22 0,37 -0,28 1,00

Bi 0,30 -0,61 -0,42 -0,50 0,74 0,03 -0,01 -0,17 0,38 -0,29 1,00 1,00

Ca 0,05 0,28 0,36 -0,04 -0,43 -0,09 -0,32 -0,07 -0,09 0,86 -0,52 -0,53 1,00

Fe -0,25 0,22 -0,70 0,10 0,23 0,76 -0,14 0,59 0,98 -0,23 0,30 0,33 0,04 1,00

Hg 0,66 -0,07 0,06 0,13 0,59 -0,17 0,78 0,20 -0,14 0,04 0,06 0,06 -0,22 -0,19 1,00

In 0,36 0,74 0,67 0,68 -0,39 0,36 0,36 0,48 -0,22 0,49 -0,38 -0,32 0,35 -0,05 0,17 1,00

K -0,19 -0,06 0,33 -0,20 -0,38 -0,35 -0,88 -0,49 -0,27 0,35 -0,30 -0,32 0,48 -0,18 -0,61 -0,12 1,00

Mg 0,67 -0,04 0,61 -0,18 0,04 -0,35 0,06 -0,25 -0,38 0,95 -0,06 -0,07 0,68 -0,26 0,25 0,50 0,16 1,00

Mn 0,52 0,07 0,71 -0,13 -0,20 -0,39 -0,12 -0,31 -0,47 0,99 -0,29 -0,30 0,81 -0,33 0,07 0,51 0,39 0,95 1,00
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Mica schist-hosted ores: red values indicate positive correlation (>0.70) and green values indicate negative correlation (<-0.70). 

 

Au Ag Cu Cd Mo Pb Ni Zn S Al As Bi Ca Fe Hg In K Mg Mn

Au 1,00

Ag 0,23 1,00

Cu 0,31 0,97 1,00

Cd -0,08 -0,13 -0,18 1,00

Mo -0,19 -0,07 -0,17 -0,05 1,00

Pb -0,23 0,09 -0,08 -0,10 0,81 1,00

Ni -0,50 -0,30 -0,30 -0,38 -0,06 -0,05 1,00

Zn -0,08 -0,15 -0,21 0,99 -0,02 -0,05 -0,38 1,00

S 0,43 0,08 0,12 0,53 0,03 -0,05 -0,73 0,53 1,00

Al -0,30 -0,10 -0,09 -0,41 -0,30 -0,27 0,57 -0,41 -0,89 1,00

As 0,77 -0,20 -0,12 0,20 -0,18 -0,26 -0,63 0,21 0,73 -0,51 1,00

Bi -0,12 0,02 -0,14 0,27 0,38 0,73 -0,35 0,32 0,30 -0,51 0,06 1,00

Ca -0,16 -0,14 -0,20 -0,11 0,98 0,72 0,01 -0,09 -0,02 -0,23 -0,16 0,21 1,00

Fe 0,04 -0,28 -0,28 -0,01 0,30 0,30 -0,12 0,00 0,55 -0,77 0,36 0,44 0,27 1,00

Hg 0,04 -0,17 -0,19 0,93 -0,11 -0,19 -0,52 0,93 0,63 -0,47 0,38 0,29 -0,18 0,08 1,00

In -0,01 -0,16 -0,21 0,97 -0,06 -0,06 -0,46 0,97 0,60 -0,50 0,30 0,41 -0,14 0,10 0,96 1,00

K -0,15 0,13 0,12 -0,37 -0,23 -0,17 0,39 -0,37 -0,67 0,76 -0,48 -0,33 -0,22 -0,62 -0,40 -0,42 1,00

Mg -0,25 -0,09 -0,10 -0,47 -0,26 -0,22 0,60 -0,46 -0,88 0,97 -0,48 -0,45 -0,22 -0,70 -0,52 -0,55 0,80 1,00

Mn -0,24 -0,13 -0,22 -0,29 0,81 0,63 0,31 -0,26 -0,45 0,23 -0,42 0,05 0,84 -0,10 -0,42 -0,34 0,29 0,28 1,00
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F. SEM/EDS analysis 

F.1 Bi-Te bearing phases in galena, ML1526 
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F.2 Altered chalcopyrite, ML1503 
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F.3 Altered pyrrhotite, ML1544 

 


