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Abstract     
This study focuses on Paleozoic and Mesozoic brittle faults and fractures found onshore and offshore in 

the northwestern areas of Finnmark, the Finnmark Platform, and the southwestern Barents Sea Margin. 

These structures have been mapped using software for mapping (ArcGIS 10.5 & Petrel 2013) and analyzing 

fault-fracture lineaments and faults from bathymetry, digital elevation models, satellite images, aerial 

images, seismic data, and magnetic anomaly data. The main offshore features studied are the Troms 

Finnmark Fault Complex (TFFC), the Måsøy Fault Complex, Gjesvær Low, southern parts of Nordkapp Basin 

and the northern parts of Hammerfest basin. These record Mesozoic and Paleozoic faults, offsetting from 

the Mesozoic to the Precambrian strata. The Hammerfest- and Nordkapp Basins are bounded by NE-SW 

and NW-SE oriented faults. The onshore areas of the study area comprises Precambrian basement rocks 

and Caledonian allochthons occurring as a NE-SW trending belt extending from Magerøya in the northeast 

to the southwest into Troms County. The foliation and basements rocks are visible affected by brittle faults 

and fractures. Dominant strike directions on northwestern Porsanger Peninsula are NE-SW, NW-SE and E-

W, while Magerøy records dominantly E-W. Directions are related to the TFFC directions. These faults and 

fractures manifest in outcrops, lineaments on aerial photos, DEM and bathymetry. The lineaments can be 

traced onshore to offshore. The landscape displays lineaments, fjords and sounds localized in high-density 

fracture zones, or in the core zones of major faults. The landscape indicates that there are several larger 

faults hidden in western Finnmark. The onshore NE-SW and E-W lineaments, faults and fractures can be 

compared with the offshore NE-SW to E-W faults. These NE-SW to E-W oriented faults, fractures and 

lineaments are related to the tensional stress from the opening of the Atlantic Ocean Margin. NW-SE 

oriented lineaments are presumed to be related to the Trollfjord Komagelv Fault Zone (TKFZ), which 

resulted in strike-slip to oblique-slip faults. The NW-SE oriented leg of TFFC is seen in the extension of 

TKFZ, there is debate to whether this is a segment of TKFZ, but the listric geometry of TFFC makes this 

impossible to figure out, as this might overprint TKFZ if it is there. The Hammerfest Basin and Nordkapp 

Basin in the southwest Barents Sea and the smaller rhombic pull-apart basins on the strandflat and coastal 

areas are both bounded by similar trending NE-SW and NW-SE trending faults and lineaments, indicating 

that these are related. The onshore and offshore data show a high degree of similarity, where the NE-SW 

to E-W striking faults both offshore and onshore exhibits dip-slip to oblique-slip shear. The NW-SE faults 

and lineaments with strike-slip to oblique-slip shear are related to the TKFZ. 
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1 Introduction 
1.1 Background and framework for the study 

This master’s thesis is part of an ongoing research program at the Artic University of Norway (UiT), studying 
the land-shelf and offshore-onshore tectonic relationship from Lofoten to northwest Finnmark, in order to 
further understand the Barents Sea margin tectonic evolution (Gernigon, Laurent et al., 2012; Gernigon, L. et 
al., 2014; Osmundsen et al., 2011). The focus of this thesis is on brittle faults and fractures found onshore 
and offshore in the North Western part of Finnmark, the Finnmark platform, and the south-western parts of 
the Barents Sea margin (fig. 1.1) with special emphasis on their role in generating Paleozoic (Devonian-
carboniferous) basins. This research project is a part of the Research Centre for Artic Petroleum Exploration, 
ARCEx, which is a cooperation between UiT, University of Oslo (UiO), Statoil, and Norwegian University of 
Science and Technology (NTNU) and is a continuation of earlier research at  the UiT, Department of Geology 
(IG), (eg. Indrevær et al. (2014); Indrevær et al. (2013)), focusing on the onshore-offshore tectonics in 
Lofoten-Vesterålen and western Troms. In order to realize the main objectives of the thesis (chap. 1.2), a 
high degree of cross subject and interdisciplinary methods and tools were used in order to gather, process 
and analyze available data. The most important methods used were modern structural field techniques, 
seismic interpretation, aerial surveys, and geomatic surveys onshore and offshore (chap. 1.8). 

 

1.2 Objectives of the thesis 

The main goal of this thesis is to map, describe, and analyze onshore fractures, faults, and lineaments found 
in the study area in West-Finnmark (fig. 1.1), and to compare these with faults and major basin-boundary 
faults offshore on the nearby Finnmark Platform and the southwestern parts of the Barents Sea. Structural 
fieldwork, available bathymetric data, topographic Digital Elevation Models (DEM), selected 2D seismic 
profiles, and a 3D seismic survey are all used to map structures onshore and offshore and to compare this 
new data with structures previously described in earlier studies.  
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Fig. 1.1 a) Large-scale bathymetric and topographic map of the Artic, the study area is enclosed in dashed red square. Modified from 

Jakobsson et al. (2012) b) Regional offshore-onshore tectonic map and setting from Lofoten-Vesterålen to the southwest Barents Sea, 

study area highlighted with dashed red square. Modified from (Indrevær et al., 2013; Jakobsson et al., 2012) 
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1.3 Regional geology 

1.3.1 Geology of Finnmark 

The geology of Finnmark consists of Precambrian basement rocks in tectonic windows in the Caledonides 

and as autochthonous Neoproterozoic units on the eastern side of the Caledonides. The main Caledonian 

allochthons occur as a NE-SW trending belt extending from Magerøya in the northeast to the southwest into 

Troms County (fig. 1.1 & 1.2). The Precambrian basements rocks range in age from Archean to 

Paleoproterozoic (3.0-1.7 Ga) (Kirkland et al., 2008; Rice, 1990) and represent some of the oldest exposed 

rocks in Norway (Bryhni et al., 2006). The dominant lithologies are high-grade metamorphic gneisses and 

granulites, granites and granodiorites, and various meta-volcanic and sedimentary rocks in characteristic 

greenstone belts (Bryhni et al., 2006; Ramsay et al., 1985; Roberts, R. et al., 2010).  

 

Fig. 1.2 Caledonian terranes in Finnmark, as well as the buildup of the Kalak nappe complex, modified from (Bryhni et al. 2006) 
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The Caledonian allochthons of Finnmark define a sequence of metasedimentary rocks that were thrusted on 

top of the autochthonous Neoproterozoic cover rocks and the pre-Caledonian basement. The most 

widespread allocthonous unit in Finnmark is the Middle Nappe sequence, termed the Kalak Nappe Complex 

(KNC) (fig. 1.2). Comprising internal slivers of the Precambrian bedrock (Rice, 1990), overlying 

Neoproterozoic (1030 -730 Ma) meta-sedimentary rocks  (Kirkland et al., 2008; Ramsay et al., 1985; Sturt et 

al., 1978) as well as a collection of Neoproterozoic (570-560 Ma) plutons belonging to the Seiland province  

(Gernigon, L. et al., 2014; Ramsay et al., 1985; Roberts, R. et al., 2010; Sundvoll et al., 2003).                

The Caledonian nappes consist of quartz-feldspar gneisses, schists, meta-sandstone, quartzites, 

amphibolites, and marbles with a general NE-SW strike and NW dip of the main foliation. The type area for 

these rocks is located on Sørøya (the Sørøy-sequence), where a classical stratigraphy was established by 

(Ramsay et al., 1985). Today the sequence is interpreted as multiple thrust-sheets of metasedimentary rocks 

of differing Neoproterozoic ages, as well as 980-600 Ma felsic and mafic plutonic intrusions (Kirkland et al., 

2008; Roberts, R. et al., 2010). The magmatic rocks of the Sørøya sequence and the Seiland-province are 

more massive and have locally well-developed foliation (Sturt et al., 1975), which enables important 

identification of younger brittle fractures and fracture zones. Magerøy, the northernmost island in Finnmark, 

contains rocks belonging to the upper allochthon (Magerøy Nappe) consisting of low-metamorphic shales, 

sandstones and conglomerates, similar to those found in the Lyngen Nappe in Troms. In addition, Magerøy 

nappe record intrusive complex of Silurian age (Andersen, 1981), as well as Carboniferous mafic intrusive 

dykes (Magerøy dykes) (Lippard et al., 1997; Roberts, D. et al., 1991). 
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1.3.2 Study area 

The study area is located along the SW Barents Sea margin (fig. 1.1 & 1.3) and includes: (1) the Porsanger 

Peninsula and Magerøya onshore, (2) the shallow shelf (strandflat) areas off the nearby coast, and (3) the 

offshore areas of the Finnmark Platform (fig. 1.3), adjacent boundary faults (Troms-Finnmark Fault Complex) 

and basins to the northwest (Hammerfest and Nordkapp Basins). Where Magerøy mostly consists of the 

Magerøy nappe, the northwestern areas of Magerøy record lithologies from the KNC. Northwest Porsanger 

Peninsula comprises rocks from the KNC. The geology of these areas will be described successively in chapter 

3. 

 

 

Fig. 1.3, Regional structural map of Northwest Finnmark and the southwestern Barents Sea, from Roberts, D. et al. (2005). 
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1.3.3 The Barents Sea margin offshore western Finnmark and margin evolution 

The southwestern Barents Sea margin offshore western Finnmark was subjected to multiple periods of 

rifting during the Paleozoic and Mesozoic; these rifting episodes have been linked to the break-up of Pangea 

(Indrevær et al., 2013). The evolution resulted in different strain regimes that influenced the formation of 

the basins and the general shape of the Barents Sea. The larger Cretaceous basins found on the Norwegian 

shelf and Barents Sea are linked to a Jurassic-Early Cretaceous rifting event (Faleide et al., 2008). The 

sedimentary cycles in the SW Barents Sea since the Late Devonian (Larssen et al., 2002). Rifting and basin 

creation in SW Barents Sea reflects tectonism since the Jurassic. The most notable rift structures in the west 

SW Barents Sea are the mid-Cretaceous rift basins and fault zones. These are some of the deepest basins 

found on Earth (Skogseid et al., 2000) (Skogseid et al., 2000), and contain sedimentary deposits ranging in 

age from upper Devonian to Eocene-Oligocene in the upper strata of the basins (Larssen et al., 2002). 

The Hammerfest basin is located north of Hammerfest/Sørøya, in the SW Barents Sea. As a wide E-W 

trending basin it is bounded by the Finnmark Platform/TFFC to the south, the Loppa High and the 

Bjarmeland Platform to the north and the Ringvassøy/Loppa FC to the west (fig 1.1) (Indrevær et al., 2013). 

This basin was most likely formed in the Early Carboniferous, with the main subsidence occuring during the 

Triassic and the Early Cretaceous (Gabrielsen et al., 1990). To the northwest, the basin merges via the 

Nysleppen Fault Complex (NFC) into the Nordkapp Basin. There is no evidence of Paleoproterozoic 

evaporites or subsequent diapirism in the Hammerfest Basin as there is in other basins found in the SW 

Barents Sea, including the Nordkapp Basin. The internal structure of the basin is characterized by a complex 

pattern of faults dominantly striking W-E and WNW-ESE, reflecting Late Jurassic tectonism (Gabrielsen et al., 

1990). 

The Nordkapp Basin is located to the north of Magerøy and is a narrow, NE-SW trending sub-basin 150 km 

long and 25-50 km wide (fig. 1.1 & 1.3). The basin is bounded by several NE-SW and NW-SE striking and NW- 

and SE dipping major normal faults complexes, such as the Nysleppen Fault complex (NFC) and the Måsøy 

Fault Complex (MFC) (Smelror et al., 2009). These fault complexes become narrower and merge into the 

Hammerfest Basin in the southwest, making a rhombic-shaped basin geometry. The basin record a 

sedimentary buildup of Carboniferous through Cenozoic strata, and these strata are heavily affected by salt-

doming located along the basin’s axis (fig. 1.1) (Koyi et al., 1993). 
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1.3.4 Post-Caledonian faults of Western Finnmark 

Figs. 1.1 and 1.3 illustrate the major and regional faults along the mid-Norwegian shelf that continue 

northward to the southwest Barents Sea shelf area, including the study onshore-offshore area. Some of the 

major faults illustrated in these figures can be traced into the study area, where the most important features 

are the TFFC, TKFZ, MFC and the NFC, where the TFFC, MCF and NFC follow the same NE-SW strike, as 

opposed to the TKFZ, which strikes NW-SE. Caused by different tectonic events (Gabrielsen et al., 2002). The 

NE-SW striking faults may have formed synchronous with the early stages of rifting of the North-Atlantic 

margin in the Carboniferous (Smelror et al., 2009), and subsequent tectonism. The TKFZ, however, is a 

Neoproterozoic (Vendian) to Early Ordovician dextral strike-slip fault (Gabrielsen et al., 1990; Herrevold et 

al., 2009; Johnson et al., 1978; Roberts, D. et al., 2005), that has multiple reactivations during post-

Caledonian times and possibly also in the Early Carboniferous (Beckinsale et al., 1976).  

Brittle faults-fracture lineaments are visible on aerial images and in the Digital Elevation Model (DEM) in the 

areas from Fugløya in the south, through Loppa/Øksfjordhalvøya, Sørøya, the Porsanger Peninsula and to 

Magerøy in the north (fig. 1.2). These structures are assumed to be of Mesozoic to Cenozoic age and tie the 

rifting and creation to Paleozoic-Mesozoic basins in the Barents Sea (Faleide et al., 2008; Gabrielsen et al., 

2002; Gabrielsen et al., 1990; Smelror et al., 2009). 

Onshore and offshore Lofoten, Vesterålen and western Troms (fig. 1.2) structures have a characteristic 

rhombic pattern, with NNE-SSE and NE-SW trends that are parallel to the Ribban-, Harstad- and Tromsø- 

Basins (Bergh et al., 2007; Eig et al., 2011). Further north, in the SW Barents Sea, these trends can be traced 

along the TFFC, which limits the Hammerfest Basin from the Finnmark Platform, including the Sørvær-Basin 

(fig. 1.1). There is also a dominant NW-SE trend, parallel with assumed transfer zones, e.g. the Fugløya 

transfer zone (Indrevær et al., 2013) and Trollfjord-Komagelv fault zone (TKFZ). Together with the NE-SW 

trending segments, the margin creates a regional stepping pattern and a rhombic fault pattern (Johansen et 

al., 1994), especially in the areas between Sørøya and Magerøya (fig. 1.1).  
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1.3.5 Quaternary geology of western Finnmark and the Finnmark Platform 

During the last Ice Age vast masses of sediments were transported and deposited along the Norwegian coast 

(Winsborrow et al., 2010) by a continental ice-sheet that covered northwest Finnmark and the SW Barents 

Sea from the interior of the continent to the shelf break during the Weichselian (Vorren et al., 1978). As the 

ice sheet advanced to and persisted at its maximum position, sediments and bedrock blocks were eroded 

and redeposited elsewhere, creating the fjords, cross-shelf troughs glacial landforms and sedimentary 

deposits we associate today with coastal Northern Norway (Winsborrow et al., 2010). Offshore in the 

southwestern Barents Sea, some of the prominent features associated with this period of increased glacial 

activity are the Upper Regional Unconformity (URU), which reflects the lowermost surface of glacial erosion 

and the beginning of glacial deposits and tectonism (Andreassen et al., 2008). From the shelf break and 

passive margin to the onshore areas of the study area, the submarine landscape in the study area includes 

the same deep fjords, rocky outcrops, strandflat, glacial moraines, beaches and other marine deposits that 

can be found onshore along most of the Norwegian coastline (Faleide et al., 2008). The overall 

geomorphology of the seafloor is influenced by glacial activity, and the glacial deposits and erosional 

patterns result in landforms that record the directions of past ice flow.  Abrasion, scouring and plucking of 

large pieces of the bedrock are the most common methods by which material is removed during glacial 

erosion (Nichols, 2009).  
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1.3.6 Strandflat and near-costal submarine geomorphology 

The strandflat along the Norwegian coast were first described by Hans Reusch (1894). His description was 

followed closely by other geologists and scientists with who questioned his proposed origin of the strandflat 

(Hans, 1924; Nansen, 1922). Presently, a common consensus is that Norwegian coastal strandflat are the 

result of the Quaternary re-excavation of pre-Cretaceous weathered plains, as easily erodible pre-weathered 

bedrock is removed by frost-weathering, wave abrasion and sea-ice erosion (Holtedahl, 1998; Nansen, 1922; 

Olesen, Odleiv et al., 2013; Reusch, 1894). Recently, the strandflat have garnered attention from structural 

geologists hoping to use them in interpretations of structural features, e.g. tectonic lineaments; bedding, 

faults and fractures. The strandflat fill the “geologic gaps” between onshore and offshore geology mapped 

from seismic data and exploration wells. High resolution bathymetric data is used to map lineaments and 

extend lithology from onshore localities (Indrevær et al., 2014). In the study area (fig. 1.1), the strandflat are 

extension of onshore landforms, reaching out towards the Finnmark platform.  
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2 Methods 

Fieldwork for this thesis was carried out in June to August 2015. The results of this fieldwork have been 

combined with observations and interpretations from remote sensing and interpretation of seismic data. 

The data have been collected and interpreted with the aim of enabling the comparison of structural data 

collected from various sources. However, due to the nature, specifically the spatial resolution, of some of the 

remotely sensed data, there is some uncertainty in accuracy and detail.  

Due to limited access sections of the study area were not available for field observations. In these cases the 

landscape’s macro-scale structural features were mapped from the interpretation of remote sensing data, 

satellite images and aerial photographs. A suite of software programs was used to process this data: 

CorrelDRAW X6, were used to make and modify figures, ArcMAP 10.5 (ESRI) were used to compile maps of 

DEM, bathymetry and aerial images. Global Mapper 17, where used for bathymetric and magnetic anomaly 

data. Petrel 2013 (Schlumberger) were used for seismic interpretation, and Orient 3.4 (Vollmer, 2015) was 

employed to create stereo plots and rose plots.  

2.1 Field work 

The study area has very low vegetation cover and excellent exposed rock and road-cuts give a good 

opportunity for good quality fieldwork. The focus during the fieldwork was to collect structural data, in the 

form of strike, dip and slicken lineament orientations. This data was collected using a Suunto compass, and 

every measurement site was located with a GPS as well as on topographic maps and aerial images for to 

ensure proper placement of data points. The structural data will be presented later in chapter 3. 

2.2 Data analysis of DEM, bathymetry and aerial images 

Aerial photographs have long been used to obtain overviews of landscapes, and as tools in interpreting 

geological features. Digital Elevation Models (DEM) created from point clouds of remotely sensed elevation 

data are a newer tool geologists are starting to use in geological and geomorphological studies (Indrevær et 

al., 2014). 

Multiple computer geoscientific software packages were used to process the great variety of data in this 

study. The analysis of DEM, bathymetry and aerial images were undertaken using the ESRI ArcGIS software 



Methods 

11 

 

suite. The software gives a possibility to create a streamlined workflow that can handle all the different tasks 

and multiple file systems involved in interpreting DEM, aerial images, satellite images and bathymetric 

surveys, as well as in the production of maps and figures. By using ArcMap 10.5, (one component of the ESRI 

ArcGIS software suite), the DEM data from Statens Kartverk (The Norwegian Mapping Authority) was 

converted from a raster-file to a more suitable format for integration with the bathymetry files’ format. This 

allows for creation of a complete topographic model of the study area incorporating both marine and 

terrestrial data. ArcGIS was also used to create a combined DEM and bathymetric model of the available 

data. This model was exported to Petrel 2013 and is used in the visualization of the study area (e.g. fig. 3.1). 

It also enabled the mapping of lineaments from onshore to offshore in the same topographic model.  

The incorporation of seismic data in this thesis has been important, since 2D and 3D seismic data give the 

possibility to map and model geological structures in non-exposed rock. However, there are no seismic 

surveys in close proximity to terrestrial (“onshore”) portion of the study area - covering strandflat or the 

shoreline - thus leaving a gap in the data. In these areas extrapolation of lineaments found on bathymetric 

and terrestrial data are important for tie-in of the seismic sections. 

2.2.1 Lineament interpretation 

A lineament is a linear feature that is continuous, reasonably well expressed (having discernible end points, 

width, and azimuth) and that is able to be related to subsurface features (Gabrielsen et al., 2014; O'leary et 

al., 1976). The lineaments studied in this thesis are faults, fractures and joint lineaments that are a result of 

tectonic activity, where these cut the lithology and are not signs of intrusions or lithological boundaries. 

Lineaments are a result of zones/linear features where the rock is weaker than the surrounding bedrock (fig. 

2.1), leading to a preferential weathering and erosion. During the interpretation of aerial images, DEM, 

bathymetric and satellite images, this theory has been applied.  
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Fig. 2.1, 3D sketch of a normal fault. A) Non-fractured host rock. B) Damage zone, consisting of fractured to heavily fractured host 

rock. C) Fault core, comprising fault rocks, e.g. fault gouge and/or cataclasite. The fault zone is a zone of weakness, and is 

preferentially weathered. Model based on theory from (Gabrielsen et al., 2014; O'leary et al., 1976). 

In ArcMAP 10.3, a Geographic Gnformation System (GIS), one can draw geospatial lines, allowing calculations 

of the azimuth (strike) of lineaments for further analysis. The following method is used to interpret 

lineaments in ArcMAP (fig 2.2): 1) Locate and zoom into the area studied, 2) Interpret lineaments on DEM, 3) 

Use aerial images to increase the accuracy by including colors and vegetation, 4) Interpret lineaments, 

herein shown as purple lines. 

To increase the resolution of interpretation, DEM and aerial images where used as detailed maps of areas of 

interest especially where topography or the DEM showed signs of higher fracture rates. Most of the DEM 

interpretation were backed up with interpretation of aerial images, as the DEM models occasionally do not 

have sufficient spatial resolution to map all lineaments. The aerial images also contain geo-relevant 

information, as preferential weathering, biological growth, and linear depressions often appears on aerial 

images but not in the DEM. The reason is that DEM only records the elevation data, and not color variance.  
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Fig. 2.2 Lineament interpretation method:  1) Large scale map of study area. 2) Zoom in of DEM with a hill-shade surface. 3) Overlay 

of aerial image. Note the increase in detail such as linear green features, bedrock color and scree 4) interpreted lineaments shown as 

purple lines.  

By using “attribute calculation” in ArcMap the azimuth (trend) of interpreted lineaments can be calculated. 

Using the geospatial information of lines; the length and the UTM coordinates at the endpoints of the lines, 

the trend of the lines can be automatically calculated by ArcMap software. The coding language Python was 

used to implement the mathematical formula (Equation 1) for calculating the trend (App. 1). 

Equation 1, Simplified mathematic formula for calculating the azimuth from ends of a line. 

𝛥𝛥𝛥𝛥 = (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) − (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)  

𝛥𝛥𝛥𝛥 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) − (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) 

arctan �
|𝛥𝛥𝛥𝛥|
|𝛥𝛥𝛥𝛥|

� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ 
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2.2.2 Bathymetric Data 

Since the beginning of naval transport, charts were made for navigation and to avoid hazards and shallow 

areas. In the early days of naval mapping crude methods where used: an end weighted rope with knots to 

was used to measure depth, originating the term “fathoms”. Today the seabed is mapped by acoustic 

imaging (sonar). A soundwave is sent from a vessel, reflected off the seafloor, and recorded by a 

hydrophone. Taking into account the velocity of sound in water (varies with temperature, salinity etc.) the 

depth can be calculated. During high-resolution bathymetric mapping, multi-beam sonars is used, where 

multiple directional hydrophones are applied to gather a higher resolution of the seafloor.  

The bathymetric data used in this thesis were gathered by the Mareano 2004 survey 

(http://www.mareano.no/), with a resolution of 25x25 m. To interpret the bathymetric data ArcMap 10.3, 

Petrel 2014 and Global Mapper 17 where used to process bathymetric data from the Mariano survey. The 

resolution for this data is 25x25 m which makes the geological features of the seafloor easy to observe and 

interpret. Since the focus of this thesis is on faults and fault-fracture lineaments, most geomorphological 

features of glacial and sedimentary origin are of little interest. To accommodate for this, select areas have 

been studied, as the strandflat, exposing parts of crystalline bedrock. As the seafloor has a great diversity in 

geomorphology and sediments, some features from the glacial activity in northern Finnmark might obscure 

the view. 

As a basis for the analysis of bathymetric lineaments, the process involving interpretation of the bathymetry 

has been two-fold. Bathymetric lineaments have been interpreted in ArcGIS, where lines have been drawn 

and calculating the azimuth (trend), using the code in shown in Appendix 1. This has been the basis for 

interpretation of the azimuth (trend) distribution of interpreted fault-fracture lineaments and for further 

analysis and interpretation.  

2.3 Seismic data 

Both 2D and 3D seismic surveys were used to interpret the offshore section of the study area. The 2D 

seismic profiles cover the coastal area between the DEM model and the 3D seismic survey. Seismic data is an 

acoustic representation of the subsurface enabling the interpretation of, amongst other things, structural 

geological features such as strata and faults. The 2D seismic survey consists of single lines shot in an grid, 

giving a limited lateral resolution caused by line separation distance, where as a 3D seismic survey is shot 
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with multiple simultaneous lines and gives a denser grid geometry with a much better lateral resolution 

compared to 2D seismic data. 

2D and the 3D seismic data covering the SW Barents Sea have been used to map brittle Mesozoic fractures in 

the study area (fig. 1.1 & 1.3). Seismic data is used in the oil and gas industry as well in academic studies to 

map and interpret subsurface geological features. Offshore seismic surveys, both 2D and 3D, are gathered by 

specialized vessels, that tow seismic arrays consisting of a sound-source and a single streamer for 2D seismic 

surveys, and multiple streamers for 3D seismic surveys (Veeken, 2006). Streamers consists of an array of 

geophones inside a flexible tube. These geophones record the signal strength, arrival time and position of 

reflected sound-waves sent by the sound-source (Andreassen, 2009). Due to the nature of sound traveling 

through different mediums, part of the energy of a sound-wave is reflected when the soundwave passes 

through a boundary where the sound velocity  and/or material density changes. This boundary is often 

referred to as an interface, and often represents one of the following four situations (Veeken, 2006): 

 Sedimentary reflections, represents bedding planes 

 Unconformities; discontinuities in the geological record (e.g. erosional surfaces) 

 Artefacts; e.g. multiples, diffractions etc. 

 Non sedimentary reflections; fault surfaces, fluid contacts, salt diapir etc. 

Based on the different arrival times of sound waves reflected from the subsurface reflectors, the acoustic 

impedance of the subsurface can be determined. The determined impedance can be used to deduce the 

medium i.e. rock or sediment types the soundwave has traveled through. The signal created as the wave 

travels through different types of material can also be influenced by the pore fluid, e.g. water, gas, oil etc. 

(Andreassen, 2009; Veeken, 2006). Artefacts are a phenomena visible in seismic profiles that are a result of 

data acquisition or processing methods that do not reflect changes the geology of the system, and can 

complicate the interpretation of seismic sections and the establishment of direct linkages between the 

seismic section and the geological profile. The origin for these artefacts can be from multiple sources, 

manmade, biological and geological reflections, where the sound wave can be bounced/reflected between 

multiple reflectors, before it arrives at the geophone. This makes it somewhat difficult to make a direct link 

between the seismic section and a true geological profile (Badley, 1985). However, this is not an accurate 

representation of a true cross-section of the subsurface earth, as there are some limitation to the vertical 

and horizontal resolution of seismic study. 
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The data collected is mathematically processed to remove artefacts for further interpretation. The 

process/method for processing seismic data is under constant development and the processing techniques 

are constantly improving, enabling better representations of the subsurface. Newer processing techniques 

can also be used to reprocess old seismic data, in order to improve the quality and recover details that may 

previously have been obscured (Andreassen, 2009).  

The seismic data interpreted in this thesis originates from the Petrel-ready database from NTNU and 

Schlumberger.  Both 2D and 3D data is migrated and zero-crossing seismic data. The  interpretation of the 

seismic data is performed using the software Petrel 2013 developed by Schulmberger. The surveys in the 

database cover large areas of the SW Barents Sea, as well as most of the offshore area in the study area. The 

coverage grid of the 2D seismic lines consists of multiple surveys. Three different surveys have been 

interpreted and mapped in the area. The coverage grid of the 2D seismic lines consists of multiple surveys, 

spaced 10 km apart. 

Since the study area contains the transition from continental margin to deeper sea, the undifferentiated and 

crystalline basement is prevalent in the seismic sections. However, due to the large acoustic impedance the 

basement reflector is often distorted and difficult to pick in the shallow areas. Often, there are multiples 

below, making the basement difficult to interpret.  

 

2.4 Magnetic anomaly data 

Most of Norway, both onshore and offshore, is covered by magnetometric surveys. In this thesis, 

magnetometric data is used to support and correlate the onshore-to-offshore transition of the interpreted 

fault-fracture lineaments. Magnetic anomalies are caused by the magnetic susceptibility of the rock or 

material and the variations in the local magnetic field from the total magnetic field of the earth. These 

anomalies are results of magnetic minerals found in the bedrock, sediments and intrusive rocks, that affects 

the total magnetic field and shows up as anomalies (Reynolds, 2011). The data used is the regional magnetic 

anomaly map produced by the Norwegian Geological Survey (NGU updated 2014, www.ngu.no), where 

fractures, faults or magmatic dykes that contain magnetic minerals (e.g., Titanite, Magnetite and Phyrrhotite 

(Robb, 2013)) show up as linear magnetic anomalies, and are of interest as these can indicate fractures and 

faults (Olesen, O et al., 2007; Reynolds, 2011).  
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2.5 Definitions and Abbreviations 

To accommodate for varying terminology used in scientific literature, this section introduces the terms and 

abbreviations used in this thesis, as it is important to avoid ambiguity and misconceptions surrounding some 

terms used differently by different authors. 

Table 1: Terms used in this thesis 

Term: Definition: 

Accommodation Zone 
A zone where local faulting and/or folding develops to accommodate space 
problems during the development of a larger structure. (Neuendorf, 2005)  

Anastomosing 
Branching pattern/geometry, where several features terminates in feature. 
E.g. Branches of a tree. 

Antithetic fault 
Secondary fault to a larger fault, dipping in opposite direction of the main 
fault. 

Cataclasite Fine grained, cohesive cataclastic rock, formed during fault movement. 

Cataclastic rock 
Chotic fault rock that developed with cohesion, mainly generated by 
frictional flow (Braathen et al., 2004) 

Dip-slip fault A normal fault on which the movement is parallell to the dip 

En echelon  

Geological features that are in an overlapping or staggering arrangement, 
where they collectively form a linear zone, where the individual features are 
oblique to this zone (Neuendorf, 2005)  

Fault gouge 

Soft, unscemented pulverized clayey or claylike mineral, commonly a mixture 
of fine-grained minerals in finely divided form, found along some faults or 
fault zones. (Neuendorf, 2005) 

Fault rock(s) 
One of several rock types physically associated with fault surfaces and 
genetically linked to fault movement (Neuendorf, 2005) 

Geospatial data 
Data or features with specific information about the orientation of the object 
in the real world. E.g. lines with UTM coordinates and/or orientation data 

Lineaments 
In this thesis context, describes linear feature interpreted from remote 
sensing, assumed to be related to fault/fractures  

Listric fault 
A curved downward-flattening faults that are downwards flattening 
(Neuendorf, 2005) 

Oblique slip- fault 
A fault on which the movement is intermediate in orientation between dip 
slip and strike-slip 

Remote sensing 
Information gathered by a recording devise not in physical contact with the 
medium studied, e.g. Aerial photos, satellite images. (Neuendorf, 2005) 

Salt weathering 
The granular disintegration or fragmentation of rock material effected by 
saline solutions or by salt-crystal growth (Wellman & Wilson, 1965) 

Strandflat A rim of gently sloping bedrock plain in front of higher 
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Table 2, Abbreviations used in this thesis: 

DEM  Digital elevation model 
GL Gjesvær Low 
GPS Global positioning system 
GIS Geographic Information System 
MFC Måsøy Fault complex 
TFFC  Troms Finnmark Fault complex 
TKFZ Trollfjord Komagelv Fault Zone 
KNC Kalak Nappe Complex 
HB Hammerfest Basin 
NB Nordkapp Basin 
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3 Description of onshore lineaments, brittle fractures and faults  

3.1 Introduction 

The study onshore areas of northwest Porsanger Peninsula, Magerøy and the islands towards the Finnmark 

platform (fig. 3.1) all comprise brittle faults and fractures with varying azimuth (trend) and crosscutting 

relationship (fig. 3.1). The pattern observed is a part of a major NE-SW and E-W striking fault-fracture and 

topographic lineament pattern distributed throughout the study area. Brittle fractures, faults, and 

lineaments are widespread and easily recorded on both on aerial images, and in outcrops. However, some 

areas inland on Porsanger Peninsula and Magerøy are covered by talus, scree, and vegetation obscuring the 

brittle faults, joints, and lineaments. In aerial images, the lineaments either are outlined as erosional or 

landscape features, or as narrow lineaments in the bedrock, leaving a depression/escarpment in the area 

that crosscut the natural features (fig. 2.1). 

Aerial imagery was used to obtain a two-dimensional view of the study area in large scale while the small 

scale structures were observed in road-cuts. DEM interpretation were used in combination with aerial 

imagery as the high resolution, 5x5 m, of the DEM model. This gives an excellent possibility for study of 

larger lineaments, combining these features with an overlay of the aerial images the lineaments can be 

differentiated from Quaternary and biological features that could be mistaken as lineaments in the bedrock. 

This chapter starts with the description of regional lineaments, followed by description of small-scale fault-

fractures from six selected key areas (fig. 3.1), including their geometry, kinematics and preliminary 

interpretations. The results presented in this chapter along with the results from chapter 3 will form the 

basis for the analysis and discussion presented in chapter 6. 
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3.2 Large scale lineaments  

DEM data and aerial/satellite data of the study area were studied prior to field work in order to identify 

lineaments and areas suitable for further investigation (fig. 3.1). Suitable areas were studied in more detail, 

both on the DEM and in the aerial images and followed up with structural fieldwork. This preliminary 

screening identified five areas (fig 3.1) where the intersection of multiple different oriented lineaments and 

well-exposed road-cuts were chosen for further studies. 

 

Fig. 3.1, Regional DEM and bathymetric map; lineaments onshore shown as solid white lines, lineaments offshore shown as dotted 
white lines. 1-6, represents fieldwork areas. Elevation color scale shown in lower right corner. Modified from MAREANO and Statens 
Kartverk 

Previous regional studies in northwest Finnmark (Gabrielsen et al., 2002; Roberts, D. et al., 2005) have 

identified several large-scale lineaments striking NE-SW and NW-SE. The NW-SE trend is presumed to be the 

onshore representation of TKFZ (Gabrielsen et al., 1989), and the NE-SW and E-W trend is thought to be 

parallel with the main offshore fault trends, i.e. the TFFC and the Hammerfest and Nordkapp Basin trends 

(Faleide et al., 2008; Johansen et al., 1994). 
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3.3 Lineament distribution on northwest Porsanger Peninsula and Magerøy 

Fig. 3.1 shows the overall distribution of small-scale lineaments on Magerøy and Porsanger Peninsula 

onshore, mapped and interpreted from aerial photos and bathymetric data. The bathymetric data are 

described in chapter 4.2. The landscape of the study area is dominated by rounded mountains and with 

narrow linear escarpments, valleys, ridges and gullies/depressions. When comparing the landscape and 

topography of the study area with the bed rock architecture and existing lineament maps of northern 

Norway (e.g. Gabrielsen et al. 2002; Indrevær et al. 2013)  the study area contains multiple similar large-

scale lineaments (fig 2.1) that can indicate the presence of  major brittle fault-fracture trends. 

 

Fig. 3.2, Relief map over Magerøy, displaying onshore lineaments on Magerøya. Lineaments are colored based on their azimuth. Rose 
plot with orientation data for all faults-fracture lineaments. N= number of measurements. 

The lineaments on Magerøy have a dominantly NW-SE to NWW-SEE trend, whereas Porsanger Peninsula 

trends from W-E to NNE-SSW. The areas record a high density of parallel lineaments, e.q. area 2 and 5, 

identified from large a scale DEM, but also irregular patterns exist, such as anastomosing, en echelon/step-
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wise and curved geometries (fig. 3.1). In some areas on the NW coast of Porsanger, for example in fjords and 

valleys, a high density of lineaments occur, and the lineaments terminate in and around the mouth of the 

fjords. Some of the lineaments follow the lower boundary of the KNC and internal thrust faults, in the central 

Porsanger Peninsula (fig. 1.2) 

The regional lineaments in the study area comprise fault-fracture lineaments that offset some of the 

lithological boundaries in addition to geomorphological effects (fig 3.19 & 3.22). The major trends are E-W to 

NE-SW and NW-SE on NW Porsanger peninsula, and NW-SE to E-W and NE-SW on Magerøy (fig. 3.1). The 

lineaments vary from unlinked to partially linked, connecting E-W and NE-SW trending lineaments through 

the Porsanger Peninsula. Magerøya comprises large-scale lineaments with a dominant trend NW-SE (fig. 

3.2), that cut the foliation and bedding of Magerøya and KNC. In some areas, e.g. Gjesvær and to the south 

of the island, the landscape (e.g. the fjords, escarpments, gullies etc.), follows the same large scale trend (fig. 

3.1).The NW-SE and E-W oriented lineaments on Magerøy, compose a rhombic pattern, seen near Gjesvær 

and Southeast of Honningsvåg (fig. 3.2). The areas southeast of Honningsvåg the NE-SW and E-W striking 

lineaments appears as rhombic patterns, cut by the NW-SE striking lineaments. Near Gjesvær the NE-SW and 

E-W striking lineaments make up rhombic patterns, and are cut and offset by longer continuous NW-SE, E-W 

and NE-SW striking lineaments. 

 

The northwest part of the Porsanger Peninsula comprises large-scale lineaments striking mainly E-W to NE-

SW, with a minor constituent striking NW-SE and N-S (fig. 3.1 & 3.3). Similarly to Magerøya, the landscape 

seems to be influenced by the lineaments, where fjords, gullies and escarpments follow the main trends. 

However, some of the fjords (Snefjord, Lillefjord and Bakfjorden) appears to follows a NW-SE trend, opposite 

to the main lineament trends (NE-SW and E-W). In addition, northwest Porsanger Peninsula also contains 

Caledonian thrust faults, located at the middle of the peninsula, that follows the NE-SW lineament trend (fig. 

1.2). The lineament also show a geometry where NE-SW to E-W striking lineaments create anastomosing 

patterns near fjords, e.g. near Bakfjorden and Ryggefjorden, where NE-SW to E-W trending lineaments flow 

into the fjord-mouth. Other areas show acute rhombic to sub-rhombic geometries (e.g. Snefjord). Overall, 

the lineaments on the northwestern parts of Porsanger Peninsula create rhombic to sub-rhombic 

rectangular geometries, where the NE-SW appear to cut the E-W striking lineaments, as can be seen from 

Revsbotn to Snefjord and Ryggefjorden. The distribution in the rose plots (fig. 3.2 & 3.3) shows that the 
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lineaments differ in orientation between Magerøy, NW-SE to E-W strike, and northwest Porsanger Peninsula, 

E-W to NE-SW trend. 

 

Fig. 3.3, Relief map of northwest Porsanger Peninsula, displaying onshore lineaments on Magerøya. Lineaments are colored based on 
their trend. Rose plot with orientation data for all faults-fracture lineaments. N= number of measurements.      
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3.4 Description of onshore brittle fractures and faults 

The bedrock in the study area shows many brittle fractures and faults, sometimes with cataclastic fault core 

rocks and slickensides. This chapter will describe these brittle fractures and faults, as well as smaller scale 

lineaments in selected key areas (fig. 3.1), including their field relations, geometry and kinematic indicators, 

followed by a summary. 

As presented in chapter 1.3, the Caledonian rocks on Magerøya and the Porsanger Peninsula are made up of 

meta-sedimentary rocks and intrusives (Gayer et al., 1987; Roberts, D. et al., 1991). The general foliation on 

the Porsanger Peninsula is horizontal to sub-horizontal in some areas, whereas other areas record steeply 

dipping foliation, all with varying dip directions. Fieldwork has made it possible to characterize several 

orientations of brittle fractures and faults, enabling the correlation of onshore lineaments with the 

lineaments interpreted from bathymetric data and faults interpreted from seismic data in chapters 4 and 5. 

All structural data has been plotted in Schmidt equal-area lower hemisphere stereoplots (Vollmer, 2015). 

The kinematic data is plotted showing slip lineation as tangent arrows (red), indicating the displacement 

sense of the hanging wall, and the strike and dip are represented by a great circle (black) (Vollmer, 2015). 

The six selected areas have been studied in detail due to their high frequency of brittle faults, fractures, fault 

rocks and slickensides, as well as their connection to larger scale lineaments identified on bathymetry or in 

the DEM. These areas are marked in fig. 3.1, and are given the following names: 

1. Havøysund & Myrfjord  

2. Bakfjorden 

3. Snefjord 

4. Lillefjord 

5. Honningsvåg 

6. Gjesvær 
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3.4.1 Area 1 - Havøysund & Myrfjord 

Field relations and rock description: 

The Havøysund and Myrfjorden areas are  located in the northwestern most part of Porsanger Peninsula (fig. 

3.1) The bedrock in the area belongs to the KNC, and includes various meta-sandstones shales/slates, mica-

schists, dioritic to granitic gneisses as well as some intercalated gabbroic and amphibolitic gneisses on some 

of the mountains tops (Kirkland et al., 2008). Bedrock in the area is well exposed and records many well-

preserved fractures in road-cuts and outcrops. These comprise brittle fractures striking in many directions, 

and dipping both ways relative to the strike (fig. 3.4). Some of the fracture and fault surfaces have preserved 

slickensides, while other show signs of eroded slickensides. The bedrocks in the area is well foliated, and 

generally has a competent consistency and is horizontal to sub-horizontal dipping to the south. The 

topography in the area is heavily influenced by the large-scale lineaments where escarpments, fjords and 

sounds have the same orientation as the main lineaments, trending NE-SW and E-W (fig. 3.1). 

  

Fig. 3.4, Aerial photograph showing onshore data of area 1, Havøysund. A-C; Lower-hemisphere Schmidt stereonet displays fracture 
orientation data from field localities. A*-C*; Kinematic data plotted in lower-hemisphere Schmidt stereonet showing slip lineation as 
tangent arrows (red) at intersection of M-plane and fault/fracture surface, indicating the displacement sense of the hanging wall, the 
strike and dip is represented by a great circle (black) (Vollmer, 2015). d) Rose plot showing the strike-distribution of all fracture and 
fault surfaces measured. 
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Lineament data: 

As shown in chapter 2.1, the north Porsanger Peninsula area has regional-scale lineaments striking NE-SW to 

E-W (fig. 3.1).  In higher-resolution aerial photographs, the interpreted lineaments can be seen to compose a 

somewhat different and more mixed trend (fig. 3.4 & 3.5). The rose plot distribution of smaller lineaments in 

the area shows two dominant and distinctive trends: 1) NE-SW strike, including N-S trending lineaments that 

change direction and terminate in the more common NE-SW trending lineaments and 2) NNW-SSE to WNW-

ESE strike, in addition to subsidiary trending lineaments faults (fig. 3.5). E-W striking lineaments are seen as a 

more individual trend, crosscutting the dominant trends.   

 

Fig. 3.5 Geologic relief of Area 1, showing lineaments interpreted from aerial images, lineaments marked as colored lines, where the 
color indicate the azimuth, see legend. Rose plot displays the distribution of lineament azimuth. N indicates sample size in all rose 
plots  Geologic map modified from NGU, Roberts, D. (1981)   
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Brittle faults and fractures: 

The brittle fractures observed in Havøysund display variable strike and dip, with a preference of NE-SW to E-

W and NW-SE striking fractures, dipping both directions relative to the strike (fig. 3.4). In addition, there are 

also steep N-S striking fractures that cut and offset the foliation (fig. 3.6). Most fractures are steeply dipping 

planar surfaces, but there are several examples of steeply dipping stair-stepping fractures as well. Loc. 1A 

records NE-SW to ENE-WSW, NW-SE to NNW-SSE and NNE-SSW to N-S steep brittle faults, where the main 

fault shows an undulating surface, stair stepping with the foliation showing secondary fault-fractures 

splaying out and terminating along the foliation. The dip range from near vertical to 40⁰. Additionally, the 

foliation on the hanging wall appears to be folded downwards along the main fault surface (fig. 3.6).  

 

 

Fig. 3.6, Outcrop photo and sketch interpretation of loc. 1A, east of Havøysund. a) Brittle fault at loc 1A, b) Sketch interpretation of 
a)l, note the highly fractured zones in red, and the bending of the foliation in the hanging-wall 

At location 1.C (fig 3.4), a plateau near the intersection between Myrfjord and Eiterfjorden, the rock consists 

of migmatized granite. This location differs from the other localities in the area, as the rock is mostly uniform 

in texture with indistinguishable foliation. The fractures measured at this locality show a set of parallel 
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surfaces striking ca. E-W and with variable dip (50⁰ and 80⁰) to the south, (fig. 3.7). Crosscutting relations can 

be seen between fractures striking E-W and NW-SE, as evident to the right of the photo on the broken 

surface. Fault sets with similar strike, E-W, but different dip are observed in the road cut (fig. 3.7), indicating 

possible conjugate fault sets.  

 

Fig. 3.7, Outcrop photos of fractures in loc 1c: a) Stereonet of E-W striking faults in b), b) Aerial photo showing location of photos c) 
and d). c) outcrop photo showing possible conjugate faults (dashed white lines) striking E-W, showing a crushed zone in the 
intermediate zone. c) Overview photo of outcrops, showing a cross section of fault fracture lineaments. Note the parallel E-W striking 
fractures as they the direct continuation of faults shown in c).     
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Kinematic data: 

Some of the observed fault/fractures display surfaces with well-developed chlorite slickensides, recording 

chlorite lineation. The orientation data from the slickensides (fig. 3.4) show that the NE-SW striking faults 

record normal oblique-slip and normal dip-slip with components of sinistral and dextral sense of shear (fig 

3.4 A* & B*). NW-SE to N-S striking faults show dominantly normal oblique-slip and dip-slip with 

components of dextral sense of shear (fig. 3.4 A*, B* & C*). The E-W striking faults record normal dip-slip 

sense of shear (fig. 3.4 A*, B* & C*).    

3.4.2 Area 2 - Bakfjorden 

Field relations and rock description: 

Bakfjorden is located on the northwestern part of the Porsanger Peninsula; south of Area 1 and covering an 

area from Selvika in the north to Bakfjorden in the south (fig. 3.1 & 3.9). Bakfjorden comprises similar to 

rocks as area 1, the rocks belongs to the KNC. Recording various meta-sandstones shales/slates, mica-schists, 

dioritic to granitic gneisses, and some intercalated gabbroic and amphibolitic gneisses on some of the 

mountains tops (Kirkland et al., 2008), and records meta-sandstone, shale, garnet-rich mica-schist, dioritic to 

granitic gneisses, and gabbro/amphibolites at some of the mountains tops (fig. 3.9). The main Caledonian 

foliation in the area is horizontal to sub-horizontal dipping slightly to the south. The topography in the area is 

dominated by mountains and encompasses valleys, gullies and cliff-like beach areas. The mountainous areas 

show many escarpments and cliffs, as well as rocky outcrops (fig. 3.8 & 3.9). 
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Fig. 3.8, Aerial photo showing onshore data of Area 1, A-D; Lower-hemisphere Schmidt stereonet displays fracture orientation data 
from field localities. A*-C*; Kinematic data plotted in lower-hemisphere Schmidt stereonet showing slip lineation as tangent arrows 
(red) at intersection of M-plane and fault/fracture surface, indicating the displacement sense of the hanging wall, the strike and dip is 
represented by a great circle (black) (Vollmer, 2015). E) Rose plot of the strike-distribution of all fracture and fault surfaces measured. 

Lineaments: 

Bakfjorden and Selvika comprise large-scale lineaments striking NE-SW and E-W, as described in chapter 2.1 

(fig. 3.1), defining an acute truncating or wedge geometry of fracture sets (fig. 3.9 and 3.10 a, b). On smaller 

scale aerial photographs, the interpreted lineaments at Bakfjorden and Selvika differ somewhat in 

orientation relative to the regional fracture pattern, and compared with that of the Havøysund-Myrfjord 

area (fig. 3.5 & 3.8).  The smaller scale lineaments show the dominant E-W striking trend and the less 

dominating NE-SW trends forming acute truncating and wedge geometries. Whereas some NW-SE striking 

lineaments, e.g. south of Bakfjorden and on Skjarvodden, cut the wedge geometry, other lineaments take 

part in the wedge geometry (fig. 3.9). As seen on rose diagrams the dominant fracture trend is E-W, while 

the NW-SE and NE-SW trending fracture sets do not define distinct peaks, but rather, create overlapping 

zones (fig. 3.9). Comparing the lineaments seen on the map and in the rose diagram, the E-W trends seem to 

gradually merge into the NE-SW and NW-SE trends, the few N-S lineaments follow the same pattern, as they 
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gradually change direction and terminates in either NE-SW or NW-SE trending lineaments. In contrast, the 

NW-SE and NE-SW trending sets at Bakfjorden clearly cross-cut each other (fig. 3.9).  

 

Fig. 3.9, Geologic and DEM relief map. Displaying fault-fracture lineaments interpreted from aerial images. The colors mark the trend 
of the lineaments. Circular rose diagram shows trend distribution. Geologic map modified from Roberts, D. (1981) 

Brittle fault and fractures: 

The dominant E-W trending brittle fractures and faults mapped in Bakfjorden vary in dip and dip direction 

(fig. 3.8 A-C). Moreover, these fractures are generally steeply dipping and cut the foliation of the bedrock. 

Most of the fractures measured have planar surfaces, but there are several examples of en echelon stepping 

fractures with irregular curved and anastomosing surfaces, as well as some listric geometries with 

approximately 20⁰ dip. At location 2.A, near Selvika the measured NE-SW and NW-SE fractures follow the 

same trends as in Bakfjorden (fig. 3.8).  
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The brittle fractures at location 2.A (fig. 3.8) show a varied geometry and a high degree of crosscutting and 

fault interaction. Several faults show both kinematic indicators and fault gauge along the surfaces (fault 

cores) of NW-SE striking faults. The faults in fig 3.10 c show secondary faults splaying outwards into the 

damage zones from the intersection to the main fault surface, whereas the footwall along the main fault 

shows a crushed zone. Figure 3.10 d shows a near-vertical NE-SW striking fault, off-setting a NW-SE striking 

fault vertically, as one can see from the 1-2 m offset of the damaged zone of NW-SE striking fault. Both, the 

NE-SW striking faults show cm-scale stair stepping along the fault-surface, where chlorite slickensides are 

found on the shallow angles (fig. 3.10 c & d). 

The area at Skjarvodden, loc. 2.B, comprises NE-SW, NW-SE and E-W striking faults. The E-W and NE-SW 

striking faults comprises fault gouge and slickenside surfaces, while the NE-SW striking faults show some 

slickensides, but lack fault gauge. NNW-SSE striking faults cut the NE-SW and E-W striking faults (fig. 3.11). 

NE-SW and E-W faults are characterized by undulating fault surfaces and meter- scale damaged zones, as 

well as SE to S dipping secondary faults (fig. 3.11b & d). In addition, NE-SW striking faults are characterized 

by planar fault surfaces, where larger fault surfaces have oppositely dipping secondary fractures terminating 

at the major fault surfaces, similar to loc. 2.A (fig. 3.10 c &. 3.11 d).     
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Fig. 3.10 (preceding page), aerial photo and outcrop examples of brittle fractures at Loc 2.A, Selvika (fig. 3.8). a). overview photo of 
outcrop b) Stereonet of faults displayed in figure, (c) - blue, d) - red). C-C’) outcrop photo & sketch of brittle faults striking NE-SW, 
dipping SE. The main and secondary NE-SW faults interacts; secondary faults splay out from main fault (dashed red & solid black 
lines), offsetting the foliation normally (dashed yellow lines). The listric faults create rotated fault blocks. Grey fault gouge recorded in 
NE-SW striking faults (red shaded areas). The listric secondary fault terminate in the main NE-SW fault plane, recording gray fault 
gouge. d-d’) Outcrop & sketch of fault-fractures. The main fault surfaces (black lines) show a crushed/heavy fractured zone (red 
areas) in the rocks near the footwall. 

 

Fig. 3.11 (this page), Aerial photograph and outcrop examples of brittle fractures at Loc 2.B, Skjarvodden. a) Overview aerial 

photographs of outcrops in b), c) and d). b) Main E-W striking fault dipping N, secondary faults dipping S, terminating in main fault, 

showing undulating surfaces. c) Outcrop photographs of brittle faults striking 1) NNW-SSE and 2) E-W, dipping NE to E and N 

respectably, the NNE-SWW fault offsets the E-W striking faults. E-W striking faults show damaged zone in the footwall, NE-SW show 

planar surface. The E-W striking faults record gray fault gouge. d) Photographs of same outcrop as c) but view to north, secondary 

antithetic fractures (dashed white lines) terminate in NW-SE striking fault.  
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Kinematic data: 

The kinematic data from Area 2 - Bakfjorden indicate an overall normal dip-slip to oblique-slip of measured 

fault surfaces (fig. 3.8). Faults striking NE-SW record dominantly normal dip-slip (fig. 3.8 A*, B* & C*), but 

also records normal oblique-slip to strike-slip with sinistral sense of shear (fig 3.8 B* & C*). NW-SE to NNW-

SSE striking faults displays normal dip-slip and oblique-slip with mainly sinistral sense of shear (fig. 3.8 A*, B* 

& C*), however some record weak sinistral strike-slip to dextral sense of shear (fig. 3.8 B*). 
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3.4.3 Area 3 - Snefjord 

Field relations and rock description: 

Snefjord is located a few kilometers south of Bakfjorden (Area 2) on the Porsanger Peninsula (fig. 3.1). 

Snefjord comprises similar geology as area 1 & 2, recording rocks from KNC (Kirkland et al., 2008), but also 

records granitic to dioritic gneisses and migmatite. The main foliation of the rocks is either sub-horizontal or 

gently dipping southeast. The area displays excellent bedrock-exposure on outcrops and road cuts. The 

topography in the area displays rounded mountaintops and encompasses valleys, gullies, cliffs, rocky 

outcrops and beach areas (fig. 3.12 and 3.13). The mountainous areas show linear escarpments and cliffs.     

 

Fig. 3.12 Aerial photo showing onshore data of area 3, Snefjord, A-C; Lower-hemisphere Schmidt stereonet displays fracture 
orientation data from field localities. A*-C*; Kinematic data plotted in lower-hemisphere Schmidt stereonet showing slip lineation as 
tangent arrows (red) at intersection of M-plane and fault/fracture surface, indicating the displacement sense of the hanging wall, the 
strike and dip is represented by a great circle (black) (Vollmer, 2015). D; Rose plot showing the strike-distribution of all fracture and 
fault surfaces measured. 

 



Description of onshore lineaments, brittle fractures and faults 

37 

 

Lineaments: 

The large-scale interpreted lineaments in the Snefjord area include a dominance of E-W trending lineaments 

(Fig. 3.1). These lineaments have in subsidiary NE-SW and NW-SE trending lineaments. Small-scale aerial 

photographs shows a somewhat similar pattern dominated by ENE-WSW and NE-SW striking fracture 

pattern as well as some distinct NW-SE striking fracture systems (fig. 3.12 & 3.13). Comparing the rose-plot 

of small-scale fractures (fig. 3.13) and the map-view of lineaments (fig. 3.1), the E-W and NE-SW trending 

lineaments create a wedge pattern, where lineaments with intermediate trends splay into these two main 

lineament trends. Notably also, the NW-SE trending lineaments truncate the NE-SW and E-W striking 

lineaments, suggesting a time relationship (see discussion chapter 7). 

 

Fig. 3.13, Geologic map with lineaments interpreted from aerial images of Area 3; lineaments marked as colored lines, where the 
color indicate the azimuth, see legend. Rose plot displays the distribution of lineament azimuth. Geologic map modified from Roberts, 
D. (1981) 
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Brittle fractures and faults: 

Area 3, Snefjord, contains many brittle faults and fractures, where NE-SW to ENE-WSW, NW-SE are the 

dominant strike orientations as well as a subsidiary N-S and E-W strike orientations (fig. 3.12). The faults and 

fractures steeply crosscut the foliation in the area. Fault rocks were observed at loc. 3.A and 3.B, recording 

fault gouge and cataclastic fault rocks. Loc. 3.A records unsolidified brown to red and gray colored zoned 

fault gauge (fig. 3.14). Loc. 3.B records fractured host rock, solidified grey colored fault gouge and dark green 

cataclastic rock (fig. 3.15). 

 

Fig. 3.14. Aerial images and outcrop photos of locality 3.A.  a) Aerial photograph of location 3.A, white dotted lines indicate 
lineaments interpreted from the aerial photograph. Red dotted line indicate fault 1, 2 & 3 shown in b). b) Outcrop photograph of fault 
1 & 2, a brittle fault with red to grey fault gauge, the section between the two fault zones are heavily fractured/crushed. Fault 2 has 
segmented zones where the color alters from dark red light grey, zones of crushed host rock can be found in both faults. c) Interaction 
of fault 2 & 3, shows that fault 2 overprints fault 3, that splays into fault 2. 

At loc. 3.B, there is evidence of a lithified/solidified fault-rock with signs of crushed host-rock clasts, in 

addition mineralization of calcite can be found along smaller fractured and veins. The fault core zone in 

question has internal zonation where the narrow zones have different characters; zones labeled A-D (fig. 

3.15). The host-rock, A), is well foliated and encompasses many brittle fractures, zone B) consists of 

fractured host rock with green (possibly chlorite) and white (calcite) mineralization in the fractures. Zone C) 

is a matrix of green (possibly chlorite) and white (calcite) minerals supporting smaller clasts of fractured host 

rock. Zone D) is a loose matrix of highly fractured host rock, where some of the larger fractures contains fine-

grained fault gouge. 
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Fig. 3.15. 1) Aerial photograph of location 3.B, white dotted lines indicate interpreted lineaments, red lines indicate fault surfaces, 2) 
photo of indicated in 1). Red dotted lines show fault surfaces, white/black dotted lines show fractures. Purple dotted lines separates 
the different zones: A) host rock, B) fractured host-rock with green and white mineralization (calcite) in small fractures and veins. C) 
Matrix of green and white minerals supporting clasts of fractured host rock. D) Matrix of highly fractured host rock, some of the 
larger fractures contain fine-grained fault-gouge.  

 

Kinematic data: 

The kinematic data gathered in Area 3 - Snefjord, records slickensides on NE-SW and NW-SE striking faults 

and fractures. The NE-SW to E-W striking surfaces show mainly normal dip-slip (fig.3.12 A* & B*), as well as 

normal oblique-slip with dextral and sinistral sense of shear (fig. 3.12 A*). NE-SW striking surfaces display 

oblique-slip with sinistral sense of shear (fig. 3.12 A* & B*). E-W striking surfaces shows normal dip-slip (fig. 

3.12 A* & B*). The N-S measurement displays normal oblique-slip with dextral sense of shear (fig. 3.12 C*).  
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3.4.4 Area 4 - Lillefjord         

Field relations and rock description: 

Area 4 - Lillefjord, is located in the areas near Lillefjord (fig. 3.1). Similar to Areas 1-3, the geology consists of 

rocks from the KNC as well as intrusive granites (fig 3.16), showing well-foliated sub-horizontal northwardly-

dipping rocks. Ridges, gullies and escarpments follow the regional lineament trends and abundant rocky 

outcrops characterize the topography. The area comprises NW-SE to N-S, NE-SW and E-W striking faults 

steeply dipping in either direction relative to the strike. Krokneset only records NE-SW and WNW-ESE 

striking faults (fig. 3.16). Due to presumed salt weathering and sea erosion, no kinematic indicators where 

identified. 

 

Fig. 3.16, Aerial photographs showing onshore data of Area 2 - Lillefjord. A- B: Lower-hemisphere Schimdt stereonet displays fracture 

orientation data from field localities. C) Rose plot showing fault-fracture strike distribution. 
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Lineaments: 

Small-scale aerial photograph in this area (fig. 3.16 & 3.17) displays many well visible lineaments, both in 

aerial photos and DEM. The interpreted lineaments show a dominant E-W trend, followed by NE-SW and a 

small NW-SE striking trend. The lineaments show rhombic to conjugate geometries, made by NE-SW to N-S 

and E-W striking lineaments. E-W offsets NE-SW in some areas, whereas NW-SE offsets both E-W and NE-SW 

trends, in areas north of Lillefjord (fig. 3.16 & 3.17). South of the lineaments show anastomosing features, 

where NE-SW and NW-SE striking lineaments terminates in E-W and NE-SW striking lineaments. Both sides 

of Lillefjord record long (km scale) NE-SW to N-S striking lineaments cutting and offsetting (10 m scale) NW-

SE and E-W striking lineaments (fig. 3.17).  

 

Fig. 3.17, Geologic map with lineaments interpreted from aerial images of Area 4, lineaments marked as colored lines, where the 
color indicate the trend, see legend. Rose plot displays the distribution of lineament trend. Geologic map modified from Roberts, D. 
(1981) 
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3.4.5 Area 5 - Honningsvåg 

Field relations and rock description: 

Honningsvåg is located on the northwestern parts of Magerøya, the locations visited includes the areas near 

Honningsvåg, Helneset, and Kamøyvær (fig. 3.1 & 3.18). The bedrock in the area consists of rocks from the 

Magerøy nappe (Kirkland et al., 2008), consisting mostly of meta-volcanic and meta-sedimentary (psammitic) 

rocks and igneous complexes (chapter 1.3) (fig. 3.19). The psammitic rocks are well foliated, with horizontal 

to sub-horizontal dip, while the gabbro and amphibolitic rocks are largely massive and homogenous. 

  

 

Fig. 3.18 Aerial photograph showing onshore data of area 5 - Honningsvåg. A- C; Kinematic data plotted in lower-hemisphere Schmidt 
stereonet showing slip lineation as tangent arrows (red) at intersection of M-plane and fault/fracture surface, indicating the 
displacement sense of the hanging wall. The strike and dip are represented by a great circle (black) (Vollmer, 2015).  D) Rose plots of 
strike distribution of fault-fracture surfaces. 
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Lineaments: 

As presented in chapter 2.1, the area contains large-scale lineaments displaying NW-SE and NE-SW trends 

(fig. 3.1 & 3.19). Small-scale aerial photographs shows dominantly WNW-ESE and ENE-WSW trends, as well 

as subsidiary N-S and E-W trends. West of Honningsvåg lineaments show NE-SW to E-W and NW-SE to N-S 

rhombic geometry, as well as horsetail geometry; single NW-SE lineaments splays out in several NW-SE to N-

S oriented lineaments. The lineaments at Helneset show dominant E-W lineaments splaying out at the 

shoreline, cutting the NE-SW and N-S trends. Comparing the rose plot to the map view of the lineaments, 

not all areas are representative of the rose plot distribution, but rather that the orientation of lineaments 

change from location to location. Helneset shows a dominantly E-W to WNW-ESE trend, whereas the areas 

west and northwest of Honningsvåg show a more equal distribution between the two trends (fig. 3.19). 

 

Fig. 3.19, Geologic map with lineaments interpreted from aerial images of Area 5 - Honningsvåg. Lineaments marked as colored lines, 
where the color indicate the trend, see legend. Rose plot displays the distribution of fault-fracture lineament trend. Geologic map 
modified from Roberts, D. (1981) 
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Brittle fractures: 

The faults and fractures observed in area 5, Honningsvåg, show two dominant and distinct strikes: 1) WNW-

SES and 2) ENE-WSW, where ENE-WSW shows overlap with E-W striking fractures, minor variance in strike is 

seen throughout the area (fig. 3.18). Merging and crosscutting relationship are abundant at all strike-

orientations, where splaying geometries are common (Fig. 3.20). The different localities show a difference in 

strikes; Helneset records NE-SW to ENE-SWS, Kamøyvær E-W to NW-SE, and Honningsvåg records ENE-WSW 

to WNW-ESE and NE-SW striking faults (fig. 3.18)  

  

Fig. 3.20, Loc 5.C, outcrop in rock-quarry near Honningsvåg airport. a) Overview photograph of outcrop containing ENE-WSW striking 
faults (dashed red) in quarry. b) Zoom in of fault interaction; note the downwards splaying of steep E-W striking fault (dashed red)), 
as well as interaction of fractures. c) Sketch of fault surface (black) interaction and movement-interpretation based on chlorite slicken 
fibers on footwall. Red zone marks highly fractured zone. 

Loc 5.C a rock quarry near Honningsvåg airport shows brittle faults with irregular surfaces that show various 

bending, interacting and overlapping geometries (fig. 3.18 and 3.21). The interaction of the two faults shows 

a crushed zone, with many fractures and green minerals, possibly chlorite.  

Kinematic data: 

Area 5 - Honningsvåg, record chlorite slickensides on several faults and fracture surfaces. These slickensides 

show with mineralization lineation along movement direction. The NE-SW to E-W striking faults show normal 

oblique-slip to strike-slip with sinistral sense of shear (fig. 3.18 A* & C*). NW-SE to WNW-ESE striking faults 

and fractures record normal oblique-slip and strike-slip with dextral sense of shear (fig. 3.18 A* & B*). 
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3.4.6 Area 6 - Gjesvær 

Field relations and rock description: 

This area is located on the northwest areas of Magerøya (fig. 3.1) and bedrock near Gjesvær and Nordkapp 

consists mainly of rocks from the Nordkapp nappe, whereas the areas near Gjesvær and the westernmost 

areas of Nordkapphalvøya consist of KNC (Kirkland et al., 2008), recording granite, migmatite, dioritic to 

granatic gneiss, phyllite, schists, psammite, metasandstone, marble, and monzonite (fig. 3.22). The bedrock 

comprise many brittle fractures and faults, as well as clearly visible lineaments on both DEM and aerial 

photographs.  

 

Fig. 3.21 Aerial photographs showing onshore data of area 6, A-B; Lower-hemisphere Schimdt stereonet displays fracture orientation 
data from field localities. C; Kinematic data plotted in lower-hemisphere Schmidt stereonet showing slip lineation as tangent arrows 
(red) at intersection of M-plane and fault/fracture surface, indicating the displacement sense of the hanging wall, the strike and dip is 
represented by a great circle (black) (Vollmer, 2015). D; Rose plot of strike distribution of fault-fracture measurements. 
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Lineaments: 

The Northwestern parts of Magerøy record lineament with preferentially NE-SW to E-W trends (fig. 3.22). 

Longer (km scale) continuous lineaments trend mainly E-W and NW-SE (fig. 3.22). These follow escarpments 

and the main topography of the landscape. Long, NE-SW oriented lineament are also present. Near Gjesvær 

shorter (100 meter scale) NW-SE and E-W trending lineaments form a rhombic pattern, offset by the large 

continuous E-W, NE-SW to N-S and NW-SE trending fault-fracture lineaments (fig. 3.22). NE-SW and E-W 

trending lineaments on the Nordkapp Peninsula form a zigzag pattern, cut by the larger NW-SE trending 

lineaments (fig. 3.21 & 3.22). 

 

Fig. 3.22, Geologic map with fracture lineaments interpreted from aerial images of area 6, Gjesvær. Lineaments are marked as 
colored lines, where the color indicate the azimuth, see legend. Rose plot displays the distribution of fault-fracture lineament trend. 
Geologic map modified from Roberts, D. (1981) 
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Brittle fractures and faults: 

The brittle faults and fractures observed are preferentially NW-SE to E-W striking fault-fracture surfaces (fig. 

3.21). At the Nordkapp Peninsula and near Skarsvågen, fractures strike mainly NE-SW to E-W, steeply dipping 

south and north respectively, while outcrops near Gjesvær record NW-SE, WNW-ESE and NE-SW striking 

fractures (fig. 3.21). The fractures striking NE-SW and WNW-ESE dips south, while NE-SW shows near vertical 

dip. Fault rocks are recorded at both localities, respectably fault gouge and cataclastic fault rock. Loc. 6.A, a 

road-cut in migmatized quarzitic meta-arkose records a number of faults striking ENE-WSW and dips steeply 

north, recording grey fault gauge (fig. 3.21 & 3.23).  

 

Fig. 3.23, Aerial image and outcrop photograph of brittle fractures and fault in a road-cut near Gjesvær a) Aerial photograph of area, 
yellow acute angle indicates outcrop locality, fault-fracture interpretation (solid black lines). b) Sketch interpretation of fault-fracture 
lineaments from aerial photo. c) Outcrop photograph showing interaction of NE-SW striking faults and fractures (red dashed lines). d) 
Sketch interpretation of b). Main ENE-WSW to E-W striking fault (solid black lines) secondary antithetic faults (dashed black lines) and 
faults recording fault gouge (red areas). 
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The WNW-ESE dipping steeply north fault at loc. 6.b is located in a gully, where WNW-ESE to E-S striking 

fractures and faults offset encloses the gully (fig. 3.24). One of the faults in the gully contains a dark green to 

gray colored cataclastic rock, with white mineralization of calcite visible in fractures surrounding the 

cataclasite (fig. 3.24). 

 

Figure 3.24. Aerial image and outcrop photograph of structures in loc. 6B, Skarsvågen a) Aerial photograph with fault-fracture 
lineaments (dashed white) and foliation (dashed yellow), acute angle indicates the photo locality of d) b) Sketch interpretation of 
a),Fault-fracture lineaments (solid black) and foliation(yellow) the right-hand stepping of lineaments along the gully and the sinistral 
offset of foliation. c) Outcrop photograph of dark green to gray cataclastic rock (far right) and fractures with mineralized calcite. d) 
Sketch interpretation of c), cataclastic rock (red) and fractures with mineralized calcite (black). 
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Kinematic data: 

Some of the observed fault and fractures in Area 6 - Gjesvær, display surfaces with well developed chlorite 

slickensides, recording lineation fibers. ENE-WSW striking faults and fractures display normal dip-slip (fig. 

3.21 C). WNW-ESE striking faults and fractures displays normal dip-slip to weak oblique-slip with sinistral 

sense of shear (fig. 3.21 C). 

 

3.5 Summary of onshore brittle fractures and faults 

Lineament data: 

The fault-fracture lineaments interpreted from DEM and aerial images show random, parallel, rhombic, and 

anastomosing geometry throughout the study area. Where the dominant strike of the fault-fracture 

lineaments interpreted from regional DEM and small scale lineaments trends show 1) NE-SW, 2)NW-SE and 

3) E-W trend in northwest Porsanger, and 1) WNW-ESE 2) ENE-WSW trend on Magerøy. Additionally, N-S 

trending lineaments can be observed throughout the study area, but appears in extension of NE-SW or NW-

SE trending lineaments. The lineament data show an overlap with the fault/fracture strike-data collected at 

localities, where in most cases, fault and fractures can be traced in the extension from fractures observed in 

outcrops (e.g. fig. 3.7, 3.14, 3.23 & 3.24).  

Fault and fracture data: 

The faults and fractures measured at northwest Porsanger Peninsula show three dominant strike: 1) NW-SE, 

2) NE-SW, and 3) E-W, in addition N-S striking faults and fractures are present, but not in abundance. The 

rose plot of all strike measurements on northwest Porsanger Peninsula shows an overlap from NW-SE, E-W 

to NW-SE strike (fig. 3.25). Kinematic data gathered from slickensides follows the same trends as the strike 

distribution. The kinematic data show that the three dominant strikes show distinct slip-data:  

1) NE-SW striking faults and fractures show dominantly NW and SE dipping fault surfaces, with oblique-slip 

to dip-slip movement; in addition vertical surfaces show oblique-slip.  

2) NW-SE striking faults and fractures show a more distributed dip, ranging from vertical to 45⁰, where sub-

vertical to vertical are most dominant. The near vertical surfaces mostly oblique-slip, while the shallower 
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dipping surfaces exhibit dip-slip shear. The surfaces recording oblique-slip show both sinistral and dextral 

shear.  

3) E-W striking faults and fractures record slickensides showing dip-slip, some surfaces show oblique-slip. In 

addition, the N-S striking surfaces records sub-vertical to vertical surfaces, showing dextral and sinistral 

oblique-slip, similar to NW-SE striking surfaces (fig. 3.25). 

 

Figure 3.25, Strike distribution and slip linear diagrams of slickensides plotted as tangent-arrows at the interaction of M-plane and 
strike-plane (red arrow and red dot), northwest Porsanger peninsula. a) Rose plot of fault/fracture strike measurements. b) NW-SW 
striking slickensides c) NW-SE striking slickensides. d) E-W striking slickensides. e) N-S striking slickensides.  

The rocks in Magerøy do not record as many slickensides as northwest Porsanger Peninsula. These rocks do 

exhibit signs of different fracture kinematics and strike distribution. The brittle fractures and faults measured 

show two distinct strike: 1) NW-SE to E-W and 2) ENE-SWS. The data from slickensides displays dominantly 

strike to oblique-slip at all strike orientations. However, there are several surfaces recording dip-slip to 

oblique-slip on all strike orientations. 

 

Figure 3.26. Strike distribution and slip linear diagrams of slickensides plotted as tangent-arrows at the interaction of M-plane and 
strike-plane (red arrow and red dot), Magerøy. a) Rose plot of fault/fracture strike orientation. b) E-W striking slickensides c) NE-SW 
striking slickensides. d) NE-SW striking slickensides. 
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Summary 

The study area shows a wide range of lineament, fault and fracture orientations, but there are certain strikes 

and trends that are more dominant, NE-SW, E-W and NE-SW. In addition, the data shows that there are 

several differences between Magerøy and northwest Porsanger Peninsula. However, it is possible to use the 

kinematic data and the dip angle to divide the fault and fractures into populations. The three most dominant 

strike directions are: 

1) NE-SW strike with steep/moderate dip to the NW, ranging from NNE-SSW to ENE-SWS strike, 

primarily recording normal dip-slip movements, secondary normal-oblique slip with sinistral sense of 

shear (fig. 3.25). In addition, NE-SW striking faults on Magerøy records faults displaying strike-slip 

with sinistral sense of shear (fig. 3.26). 

2) NW-SE strike with steep dip primarily to the NE and secondary to SW, ranging from NNW-SSE to 

WNW-ESE strike, primarily recording normal-oblique to strike-slip movement with dominantly 

sinistral sense of shear, and secondary dip-slip movement (fig. 3.25). 

3) E-W strike and dominantly steep N dip, ranging from ENE-WSW to WNW-ESE strike, primarily 

recording normal dip-slip movement (fig. 3.25). In addition, normal oblique-slip to strike-slip with 

both sinistral and dextral components at Magerøy (fig. 3.26).    
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4 Description of bathymetric data 

4.1 Introduction 

The bathymetric data presented were gathered from parts of the MAREANO survey, which has a resolution 

of 25x25 m(see details in chapter 2), allowing many detailed features to be recognized on the shallow 

portion of the Finnmark Platform (fig. 4.1). According to Indrevær et al. (2014), the bedrock and structures 

present on the seafloor on the shallow strandflat off the coast of western Troms is a continuation of the 

rocks and structures found onshore in the same area (described in chapter 1.3.7). We attempt to test if 

similar conclusions can be drawn for the Finnmark Platform areas (fig. 4.1), enabling a comparison of 

lineaments interpreted onshore and offshore. This is important as it allows comparison and correlation of 

onshore-offshore data.  

Large-scale bathymetric data from the shallow shelf (strandflat) to shelf edge (Finnmark platform) show 

deep fjords, drainage channels, moraines, rocky outcrops and marine sediments deposited in troughs and 

linear depressions below the seafloor (fig. 4.1). Coastal areas also show widespread glacial drainage and 

erosional patterns following the same trends of the fjords and offshore valleys (fig. 4.1). Bathymetric data 

covering the study area have been analyzed and interpreted, and forms a database for further description 

and analysis (fig. 4.1). The database records the bathymetric lineaments and consist of up to 4000 individual 

lineament lines, thus representing a base for further discussion in chapter 6.3. The study area has been 

divided into four smaller subareas, labeled A-D, to avoid confusion with onshore areas. The marine 

geomorphology of areas will be described in the following order, 1) Large scale bathymetric lineaments in 

the study area, including marine areas near Magerøya and northwest Porsanger Peninsula, 2) the subareas 

Hjelmsøy (A), Gjesvær (B), Helneset (C), Snefjord (D) followed by a summary and a preliminary 

interpretation. 
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4.2 Large-scale bathymetric lineaments 

The large-scale lineaments have been identified and analyzed from the 25x25 m bathymetric data (fig. 4.1). 

The study area is heavily influenced by glacial activity. The glacial flow direction coincide with many of the 

regional lineaments seen in the study area. The fjords, sounds, channels and depression in the study area 

generally show linear attitudes with the same orientation as the glacial flow direction (fig. 4.1). However, the 

presumed fault-fracture lineaments do not show the same linear trend as the glacial flow directions. The 

tectonic lineaments follow a more zig-zag pattern, where the walls display clear reflections and jagged 

features, indicating they occur in crystalline bedrock, and not in glacial sediments. Rocky outcrops and 

escarpments in the study area continue the same trends found onshore, and are often seen as an extension 

of similar features found onshore. These escarpments follow NE-SW and E-W trends (Fig 4.1). In addition, 

the regional bathymetric lineaments have a dominant E-W followed by NW-SE and NE-SW trend, where the 

bathymetric lineaments can be seen as a continuation of onshore large-scale fault-fracture lineaments (fig. 

4.1). The smaller-scale lineaments interpreted in the study area show distinct trends, that shows a variance 

in the areas around Magerøy and northwest Porsanger Peninsula (fig 4.1, a-b), NW-SE to E-W, NE-SW striking 

lineaments can be seen on both rose plots, where the most dominant trend NW-SE near Magerøy, and E-W 

near northwest Porsanger Peninsula. Both areas record E-W striking lineaments (fig. 4.1, a-b). 

The coastal areas around northwest Porsanger and Magerøya is characterized by a shallow shelf (strandflat) 

with depressions, escarpments, glacial erosional and depositional features and many fractures (fig. 4.1). The 

sound between Måsøy and Magerøy, defining the boundary between Magerøya and Northwest Porsanger 

Peninsula, shows a deep fjord with steep irregular enclosing walls, striking NW-SE, NE-SW and E-W, of what 

seems to be fragments of crystalline bedrock. On the Northeast side of Magerøy, northeast of Helneset, the 

strand-flat shows numerous examples of rounded ridges tapering off from tops and points, channels and 

scour marks, as well as distinct fractured heights. In the areas east of northwest Porsanger Peninsula, points, 

peninsulas, and ridges appears to continue under sea level, as plateaus with similar outline as the onshore 

landforms, as seen from Skjarvodden to Havøysund.  
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Fig. 4.1, DEM and bathymetry of the study area, with interpreted lineaments as white lines. a) rose plot of lineament distribution on 
the coastal areas near Porsanger Peninsula. b) Rose plot of bathymetric lineament distribution on the coastal areas near Magerøya.    
A-D) Locations of the sub-areas presented in later in this chapter. 
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4.3 Area A - Hjelmsøy 

The area northeast of Hjelmsøy is characterized by parallel ridges, troughs, channels, smaller basins, and 

linear erosional features, and rounded featured such as troughs and heights are observed (fig. 4.3). Several 

features on the strandflat are observed: NE-SW trending parallel ridges and troughs, crosscut by NE-SW and 

E-W striking channels and northeast of Hjelmsøy (fig. 4.2 & 4.3). The NW-SE and E-W trending channels form 

rhombic patterns, whereas the NE-SW to N-S trending channels wedge and taper into the E-W trending 

ridges (fig. 4.3). Larger rhombic to square depressions are seen, bound by NW-SE, NE-SW and E-W trending 

escarpments, where the escarpments of the depressions show similar trend.  

The rose plot shows a predominantly WNW-ESE distribution, in a continuous area from NW-SE to E-W, also a 

small contingency of NE-SW trending lineaments are present (fig. 4.4). Comparing the rose plot and the 

geometry seen in the map-view, the lineaments main NW-SE and E-W trend makes up small rhombic 

patterns cut by NE-SW to N-S trending lineaments. 

 

 

Fig. 4.2, Interpreted bathymetric data of Hjelmsøy area. Azimuth of lineaments indicated by different colored lines. Rose plot shows 
the distribution of Lineament azimuth. 
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Fig. 4.3 Bathymetric map and sketch interpretation of lineaments in Area B, near Hjelmsøy. a) Bathymetric surface, blue lines indicate 
lineaments, parallel ridges and troughs indicated by yellow lines. b) Interpretation of lineaments. Fault-fracture lineaments 
interpreted as solid blue lines, dashed lines indicate inferred fault-fracture lineaments. The parallel ridges and troughs are interpreted 
as foliation in the crystalline bedrock. 
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4.4 Area B - Gjesvær  

The area near Gjesvær comprises the similar features as Hjelmsøy (Area A), where NW-SE, NE-SW and E-W 

trending ridges, troughs, and peaks characterize the strandflat, NE-SW to N-S trending parallel ridges and 

troughs are seen in the areas northeast of Gjesvær and east of Knivsjelodden. The area north of Gjesvær 

consist predominantly of E-W and NW-SE trending escarpments. Tufjorden is characterized by NW-SE to E-W 

trending escarpments, bounding rhombic and parallel depressions, trending along the glacial flow direction 

(fig. 4.4).  

The lineaments distribution (fig. 4.4), displays three dominant trends, where the NE-SW, NW-SE and E-W. In 

addition, N-S trending lineaments are present, mainly in the outlet of Tufjorden. The geometry of the 

fractures are predominantly rhombic, contained by NE-SW to E-W and NW-SE trending lineaments, similar to 

the geometry found onshore near Gjesvær.  

 

Fig. 4.4, Bathymetric data of Gjesvær area. Azimuth of lineaments indicated by different colored lines. Rose plot shows the 
distribution of bathymetric lineaments 
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Fig. 4.5, Bathymetric map and interpretation of lineaments in Area B, near Gjesvær, a) bathymetric surface, white dashed lines 

indicate lineaments, parallel ridges and troughs indicated by yellow lines b) Interpretation of lineaments. Fault-fracture lineaments 

interpreted as solid black lines, dashed yellow liens indicate parallel ridges and troughs, and is interpreted as foliation in the 

crystalline bedrock.  
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4.5 Area C - Helneset 

The marine areas northeast of Helneset encompasses ridges, troughs, channels, escarpments, and 

depressions. Compared to the other areas, this strandflat displays more rounded peaks, ridges, and channels 

running parallel to the glacial flow direction (fig 4.7); NW-to E-W and NE-SW trending escarpments 

characterizes the rounded topography. 

The interpreted bathymetric lineaments northeast of Helneset show a predominantly NW-SE to E-W 

distribution (fig. 4.6), as well as a distinct NE-SW striking trend. The geometry of the lineaments shows a 

variance throughout the area, the fjord NW of Helneset show rhombic to linear ridges and lineaments, 

whereas the areas northeast of Helneset displays a rhombic shapes oriented NW-SE near Helneset, and 

parallel to sub-parallel lineaments further to the northeast. 

 

 

Fig. 4.6 Bathymetric data of Helneset area. Azimuth of lineaments indicated by different colored lines. Rose plot shows the 
distribution of Lineament azimuth 
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Fig. 4.7 Bathymetric map and interpretation of lineaments in Area C, near Helneset, a) bathymetric surface, white dashed lines 
indicate lineaments, parallel ridges and troughs indicated by yellow lines b) Interpretation of lineaments. Fault-fracture lineaments 
interpreted as solid black lines. Glacial flow direction indicated by blue arrows. 
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4.6 Area D - Snefjord 

Parallel ridges and troughs, crosscut by NE-SW, NE-SW and E-W trending channels, characterize the 

strandflat near Snefjord. Smaller basins, linear channels, flutes and sedimentary deposits characterizes the 

deeper sections (fig. 4.9). From the extension of Skjarvodden, a NW-SE deep channel splays into NE-SW 

striking escarpments and lineaments, that continue into Selvika, Bakfjorden and the tip of Skjarvodden. 

Similar larger channels can be seen in the outlet of Myrfjorden and Snefjord, where the lineaments connects 

with similar striking onshore lineaments and escarpments (fig. 4.9).  

The bathymetric lineaments in this area show three distinct trends (fig. 4.8), where the most dominant are 

NW-SE and NE-SW, as well as a smaller group of WNW-ESE and E-W striking lineaments. The geometry of the 

lineaments differs throughout the area, where lineaments on the strandflat near Skjarvodden show a 

rhombic shape, the lineaments in Snefjord displays a rectangular to sub-rhombic shape, with some cross-

cutting lineaments.  

 

 

Fig. 4.8, Area D, Snefjord. Distribution of bathymetric lineaments, trend indicated by color. Note the continuation of onshore 
lineament offshore. 
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Fig. 4.9 Bathymetric map and sketch interpretation of area D, Snefjord a) bathymetric surface, white dashed lines indicate 
lineaments, parallel ridges and troughs indicated by yellow lines b) sketch of interpreted bathymetry. Fault-fracture lineaments (black 
& red lines), parallel ridges and troughs (yellow), and is interpreted as foliation in the crystalline bedrock. Note the red lines, 
indicating a direct continuation of lineaments seen onshore (fig. 4.8). 



Description of bathymetric data 

63 

 

4.7 Summary and preliminary interpretation 

The interpreted bathymetric lineament show a similar distribution as the lineaments interpreted onshore. 

The orientation of the lineaments show that there are three major trends: 1) E-W, 2) NE-SW and 3) NW-SE, 

similar to onshore lineaments directions. The glacial flow direction shows a small amount of influence over 

the fracture lineaments, but as it is seen from the escarpments and lineaments, the glacial flow direction 

does not overprint these, but the glacial erosion rather follows pre-existing zones of weakness, rather than 

carving depressions parallel to the glacial flow direction. As seen by the trends in areas heavily influenced by 

glacial erosion, e.g. Snefjord and Helneset (fig. 4.3 & 4.7), the lineaments in the immediate proximity to 

glacial erosional features show trends similar to the dominant fault-fracture trends found offshore in these 

areas. The shallow submarine plateaus encompassing parallel ridges and troughs are being cut by deeper 

channels trending NE-SW, E-W and NW-SE, indicating that the parallel ridges and troughs are not linked to 

fault-fractures (fig. 4.3, 4.5 & 4.9). Deep elongated depressions can be found in the fjords. These are bound 

by NE-SW and NW-SE trending escarpments, showing glacial features such as flutes and rounded topography 

near the bottom, indicating that the glacial erosion has followed pre-existing fracture zones (fig. 4.3, 4.5, 4.7 

& 4.9). 

From these interpretations, the following preliminary interpretations can be drawn:  

1) The strandflat encompasses shallow plateaus continuing the landforms seen onshore. These marine 

plateaus appears as fault-blocs, down faulted in relation to the main topography similar to, but not as 

dramatic as seen in Lofoten, Vesterålen and Troms (Forthun, 2014; Haraldsvik, 2015; Indrevær et al., 2014; 

Thorsnes et al., 2009).  

2) The study area has experienced glacial activity as erosion and deposition, as seen from the flutes, 

moraines and scour marks encompassed in the fjord, supporting the glacial flow direction indicated 

(modified from Barbolla et al., in prep).  

3) Parallel ridges and troughs suggest that they represent the bedrock foliation.  

4) NE-SW, NW-SE and E-W trending channels, troughs and escarpments follows the same patterns as seen 

onshore.  

5) Depressions bound by NE-SW, NW-SE and E-W trending escarpments are interpreted as glacial erosion in 

areas with a high fault-fracture frequency, where this makes the area preferentially eroded compared to 

other areas. 
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5 Description of Seismic data 

5.1 Introduction 

2D and 3D seismic data were used to interpret and map structures on the Finnmark platform. The 3D seismic 

data gives a detailed view of the faults, fault interaction and fault geometry of the intersection between the 

TFFC and the MFC. This chapter will present 2D and 3D seismic surveys that cover the southwestern Barents 

Sea from the coast of Magerøy and the northwest Porsanger Peninsula, the Finnmark Platform, the Gjesvær 

Low (informal term), to the southern parts of the Nordkapp Basin (fig. 5.2). The focus was to compare 

onshore-offshore fault geometry in the area east of Gjesvær Low, where the TFFC changes orientation and 

trends NW-SE before terminating on MFC. Previous studies map a basin/graben-like structure in this fault 

intersection (Roberts, D. et al., 2005).  

The aim in this chapter is to map and interpret the 2D seismic lines in order to map fractures, the changes in 

fracture geometry and the character around this basin. In addition, the presence of TKFZ and its connection 

to the NW-SE leg of TFFC will be explored, as proposed by Gabrielsen et al. (1989). To accomplish this, the 

data is presented in following order: 1) Presentation of the database, 2) Overview of the 2D seismic lines 

interpreted, 3) Interpretation of key 2D seismic lines, 4) interpretation of 3D seismic cube. 5) Summary and 

preliminary fault map. 
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5.2 Database 

The 2D seismic lines interpreted are selected from the NTNU-Schulmberger Petrel ready database. Even 

though more 2D seismic lines have been interpreted, this thesis will present the key 2D lines and the 3D 

survey (fig. 5.1 & 5.2). In addition, the tie line that covers the well-ties is included to support the stratigraphy 

and the interpretation of seismic reflectors (fig 5.3). The 2D seismic surveys available in this database (NTNU-

Schulmberger Petrel ready database) are BSS-01, oriented NE-SW and NE-SW, NPD-FI-84 and NPD-FIØ2-86, 

oriented N-S and E-W (fig. 5.1). The 3D seismic survey covers the interaction of the NW-SE leg of TFFC and 

MFC, this survey has a rectangular outline oriented NE-SW (fig. 5.1). The seismic surveys consist of 

conversional zero-phase 2D and 3D seismic data, and the key lines were chosen due to their placement and 

orientation with regards to the main structures on the Finnmark Platform and SW Barents Sea (fig. 5.2). 

 

Fig. 5.1, Overview map of seismic data available. The different surveys differentiated by color. 2D seismic surveys NPD-FI-84 (yellow), 
NPD-FIOE2-86 (red), BSS_01_FM-TVGC (purple), 3D cube MC3D-MFZ02 (black square, green fill). Structural background map modified 
from Roberts et al., 2005. 
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Fig. 5.2 Overview of selected 2D seismic lines and 3D survey. See table 2 for abbreviations. Structural map modified from Roberts & 
Lippard (2005). 

Table 3: Overview of key seismic lines and data interpreted in this thesis 

Survey 2D line Quality Age of survey/ 
reprocessed 

Survey company Reprocessed 
by 

Area NPDID 

BSS01 204 Good 2001 Nopec AS  S Barents 
Sea 

4091 

 205 Good 2001 Nopec AS  S Barents 
Sea 

4091 

 122 Good 2001 Nopec AS  S Barents 
Sea 

4091 

 124 Good 2001 Nopec AS  S Barents 
Sea 

4091 

 126 Good 2001 Nopec AS  S Barents 
Sea 

4091 

 128 Good 2001 Nopec AS  S Barents 
Sea 

4091 

 130 Good 2001 Nopec AS  S Barents 
Sea 

4091 

NPD-FIØ2-
86 

S-253730 Good 1986 Oljedirektoratet  S Barents 
Sea 

2859 

 S-260730 Good 1986 Oljedirektoratet  S Barents 
Sea 

2859 

BARE02 713230 Good 2002 Fugro AS Nopec As S-SE 
Barents 
Sea 

Not 
available 

MC3D-
MFZ02 

3D cube Very Good 2002 WesternGeco AS  S Barents 
Sea 

4170 
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5.2.1 Seismic Stratigraphy, Lithology and key seismic reflections 

The sequences are based on previous research in Lofoten-Troms (e.g. Haraldsvik (2015); Indrevær et al., 

2013) (Haraldsvik, 2015; Henningsen, 2016; Indrevær et al., 2013; Lundekvam, 2015) and interpretations of 

seismic data and well-ties provided by Statoil (Henningsen, 2016). The reflectors (tab. 4) and sequences (tab. 

5) are based on data from Larssen et al. (2002) and the shallow drill cores 7128/4-1 & 7128/6-1. The 

following describes the composition of sediments found in these wells, from base-up. 

The well-ties show a Quarzitic basement most likely from the Barents-group in northeastern Finnmark, 

resulting in sequence 1, S1, and reflector 1, R1. The following sediments are dominated by siliciclastic 

sediments, changing between sandstone, mudstone and shales. Some areas include coal seams (meter-

scale). This sequence is characterized by varying amplitudes, but similar character possibly due to the coal 

layer (Larssen et al., 2002). After this siliciclastic dominant period, the Barents Sea experienced a regional 

uplift, leading to a regional inconformity that is possible to identify on most seismic data in the Barents Sea 

(pers. com. Henningsen). This sequence is noted S1 and the reflector at the top unconformity is noted R2. 

Following the regional uplift came Late Carboniferous subsidence that lead to continued sediment 

deposition, dominantly siliciclastic. The upper areas of the platform record shallow reefs, whereas halite and 

anhydrite are recorded in depressions and basins.  

The Early Permian deposits are dominated by limestone deposits, whereas the Late Permian is dominated by 

chert interfingered with limestone and varying shales, making up sequence 3, S3. These sediments mark a 

definite seismic reflection that defines the Near Base Triassic reflector, R3. The overlying Triassic sediments 

are mostly siliciclastic and are dominated by sandstones, mudstones and shales, occasionally organic shale. 

The deposit originates mostly from the south to east. This defines sequence 3, S3. The Near Base Cretaceous 

Unconformity represents a regional unconformity in the southwestern Barents Sea. It ranges in age from 

Late Jurassic to Early Cretaceous. This reflection marks an erosional period tied to uplift the Platform, ridges 

and banks as well as a subsidence of basin areas. The Base Paleogene reflector and sequence, R5 and S5, are 

not present in the well ties, but have been tied in via the 2D seismic line BSS01-122 (fig. 5.5). These 

sediments mainly consist of siliciclastic sediments ranging from sandstone, mudstone and shale. The Upper 

Regional Unconformity (URU), R6, marks the lower limit of glacial erosion and the following glacial 

sediments. This sequence is characterized by chaotic reflectors, and records channels, moraines and other 

glacial features (Larssen et al., 2002). This marks the sequence S6, and the seafloor, R7. The interpreted 
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reflectors are colored based on their age in accordance with the geologic timescale presented by Gradstein 

et al. (2012). 

 

Fig. 5.3, Well ties for seismic surveys, a) Composite line from 2D seismic lines BSS-01-205 and BARE02-713230, also showing wells 
7128/4-1 & 7128/6-1, tie in via lines BARE02-713230 (purple) and BSS01-205 (blue). b) Interpreted model in the lower section. 
Reflectors marked by colored lines: R6 blue, R5 yellow, R4 orange, R3 green, R2 purple, R1 red. Light blue and bright green marks 
intra carboniferous reflectors. Modified from Henningsen (2016). 

 

Table 4. Seismic sequences in interpreted seismic sections.  

Sequence Abb. Age (correlated to wells 7128/4-1 & 7128/6-1) 
1 S1 Precambrian, top basements interpreted as quarzitic bedrock in tie-in wells.  
2 S2 Carboniferous- Devonian 
3 S3 Devonian-Late Permian 
4 S4 Triassic-Late Jurassic 
5 S5 Cretaceous 
6 S6 Paleogene 
7 S7 Neogene – late quaternary 
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Table 5. Key seismic reflectors/horizons 

Reflection Abb. Characteristics  Well ties  
1 - Top Basement R1 Strong continuous reflector, differentiating chaotic well stratified 

reflectors to the underlying chaotic or transparent reflectors. 
Difficult to differentiate from R2 in deeper parts of surveys. 

7128/4-1 
7128/6-1 

2- Carboniferous R2 Strong non-continuous reflectors, marks the boundary between 
the somewhat random, but some continuous internal reflectors 
can be traced.  

7128/4-1 
7128/6-1 

3 - Near Base 
Triassic (NB 
Triassic) 

R3 Strong continuous reflector differentiates lower-lying stratified 
reflectors (S2) from the less stratified reflectors above, shows on-
lap on interpreted faults. 

7128/4-1 
7128/6-1 

4 - Base 
Cretaceous 
Unconformity 
(BCU) 

R4 Strong continuous reflector, erosional boundary over lower-lying 
stratified reflectors, mostly continuous along seismic sections. 

7128/4-1 
7128/6-1 

5 - Paleogene R5 Continuous strong reflector differentiates the top of strongly 
stratified cretaceous sediments and the more transparent 
Paleogene sediments. 

Tied in from 
Hammerfest 
Basin (pers. com. 
Henningsen 
2016) 

6 - Upper Regional 
Unconformity 
(URU) 

R6 Strong erosional disconformity, marking the erosional boundary of 
lower-lying sediments, sharply erodes all previous mentioned 
reflectors. 

7128/4-1 
7128/6-1 

7 - Seafloor R7 No seismic reflections above this reflector. However, some 
artefacts are observed above. 

7128/4-1 
7128/6-1 
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5.3 Seismic interpretation 

Due to the similarities and the short interval of the key seismic sections, the description of seismic 2D lines 

will be collectively presented, followed by figure interpretation of the 2D seismic lines. Lastly the 3D seismic 

volume will be described and presented.  

5.3.1 2D seismic data 

The key seismic lines are oriented 1) NE-SW, 2) SE-NW and 3) N-S. The seismic lines cover structural features 

offshore in the study area such as the Gjesvær Low, N. Hammerfest Basin, S. Nordkapp Basin, Nysleppen 

Fault complex (NFC), Troms Finnmark Fault Complex (TFFC), Måsøy Fault Complex (MFC) and the Finnmark 

Platform (Gabrielsen et al., 1989; Johansen et al., 1994; Roberts, D. et al., 2005; Samuelsberg et al., 2003) (fig 

5.2). The seismic lines show several key reflectors and sequences (tab. 5 & 6). The interpreted top basement, 

R1, and the Precambrian basement, S1, appears in all seismic lines, where it exhibits a sharp reflection above 

chaotic deeper reflectors at the Finnmark platform, at -600 ms (twt) depth. In the areas north of TFFC and 

MFC, including Gjesvær Low, N. Hammerfest Basin and S. Nordkapp Basin, R1 is down faulted along TFFC and 

MFC, from -4 s to -6 s (twt) depth (e.g. fig. 5.5), and becomes difficult to differentiate from the lower chaotic 

reflectors in S2. 

R2, boundary between the lower diffuse random reflections from S2, and the more non-random reflectors of 

S3. The internal reflectors of S2 is characterized by segmented tilted reflectors (fig. 5.4 e.g. from MFC to 

Nordkapp Basin). The lower reflections in the sequence shows random/chotic, segmented and rotated 

reflectors, making it hard to differentiate from S1, that also displays some of these random reflections. 

R3 marks the boundary between S3 and S4, and is interpreted as a Triassic erosional upper boundary of S3. 

S2 shows strong stratification and multiple reflectors in the upper parts of the sequence, to more chaotic 

and irregular reflectors toward R1. The seismic profiles (fig. 5.5 – 5.11) show a shallow thickness on the 

Finnmark platform, and a substantially deeper thickness near Gjesvær Low, and north of TFFC and MFC. 

However, at the boundary between Gjesvær Low and north Hammerfest Basin a horst-like structure 

truncates the sequence, before thickening on both sides. From the well ties, S2 comprises Devonian to Late 

Permian sedimentary rocks. S3 ranges from -4.5 s to -2 s (twt).  

S4 marks the Triassic to Late Jurassic sediments and is located between R4 and R5. The sequence shows well 

stratified layers, and parallel reflectors, dipping north. S4 records Triassic to Late Jurassic sediments. The 
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sequence appears to have a constant thickness north from MFC. The top of the sequence is defined as the 

Base Cretaceous Unconformity, R4, where the Cretaceous sediments have eroded the upper Triassic 

reflectors. Parallel reflectors, offset by numerous smaller normal faults and larger faults, such as TFFC and 

MFC, characterize S4. The intensity of faulting increases near the larger regional faults TFFC and MFC. The 

reflectors show onlap onto the larger faults, TFFC and MFC. The southern sections show a dip north and an 

erosional unconformity to where R5 marks the boundary to the chaotic glacial sediments in S6. 

S5 records parallel internal reflectors, and is not found on the shallow Finnmark platform. R5 marks the 

upper boundary, where Cretaceous deposits are eroded by R6. The internal reflectors are generally 

horizontal, recording onlap onto the larger faults, but show some internal faulting, with minor offset of 

reflectors, near MFC and TFFC, and onlap and truncation towards the faults. 

S6 comprises Paleogene deposits containing horizontal reflectors. S6 is narrow throughout the study area 

and truncates towards and terminates at TFFC and MFC. In the southeastern parts of the study area, and 

past MFC in the northeast parts of the study area, S6 has been tied in via the 2D seismic line BSS-01-122 

from the Hammerfest Basin (pers. com. Henningsen). 

S7 records Quaternary deposits characterized by chotic reflectors, and is constrained by R6 & R7. S7 is seen 

throughout the study area, where it erodes lower-lying sequences, marking the lower extent of glacial 

erosion. 

Salt-influenced structures are generally not seen on seismic lines from BSS-01, but vertical dome-shaped 

structures can be seen on 2D seismic lines S-253730-86 and S-260730-86, these domes cut sequences S2-S5 

and can be seen in the northeastern areas of the study area towards southern areas of the Nordkapp Basin. 

  



Description of Seismic data 

72 

 

5.3.1.1 2D line BSS-01-204 

 

 

Fig. 5.4, 2D seismic line, BSS-01-204. a) Non- interpreted line. b) Sketch interpretation of a). Reflectors marked by colored lines: R7 
blue, R6 yellow, R5 orange, R4 green, R3 purple, R2 forest green, R1 red. Faults: primary faults thick black lines, uncertain faults 
shown as dashed lines, secondary and minor faults shown as thin black lines 
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5.3.1.2 2D line BSS-01-122 

 

Fig. 5.5, 2D seismic line, BSS-01-122. a) Non- interpreted line. b) Sketch interpretation of a). Reflectors marked by colored lines: R7 
blue, R6 yellow, R5 orange, R4 green, R3 purple, R2 forest green, R1 red. Faults: primary faults thick black lines, uncertain faults 
shown as dashed lines, secondary and minor faults shown as thin black lines 
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5.3.1.3 2D line BSS-01-124 

 

Fig. 5.6 2D seismic line BSS-01-124 a) Non- interpreted line. b) Sketch interpretation of a). Reflectors marked by colored lines: R7 blue, 
R6 yellow, R5 orange, R4 green, R3 purple, R2 forest green, R1 red. Faults: primary faults thick black lines, uncertain faults dashed 
lines, secondary and minor faults thin black line. 
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5.3.1.4 2D line BSS-01-126 

 

Fig. 5.7, 2D seismic line BSS-01-126. a) Non- interpreted line. b) Sketch interpretation of a). Reflectors marked by colored lines: R7 
blue, R6 yellow, R5 orange, R4 green, R3 purple, R2 forest green, R1 red. Faults: primary faults thick black lines, uncertain faults 
dashed lines, secondary and minor faults thin black line. 
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5.3.1.5 2D line BSS-01-128 

 

Fig. 5.8 2D seismic line BSS-01-128. a) Non- interpreted line. b) Sketch interpretation of a). Reflectors marked by colored lines: R7 
blue, R6 yellow, R5 orange, R4 green, R3 purple, R2 forest green, R1 red. Faults: primary faults thick black lines, uncertain faults 
dashed lines, secondary and minor faults thin black line. 
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5.3.1.6 2D line BSS-01-130 

 

Fig. 5.9 2D seismic line BSS-01-130. a) Non- interpreted line. b) Sketch interpretation of a). Reflectors marked by colored lines: R7 
blue, R6 yellow, R5 orange, R4 green, R3 purple, R2 forest green, R1 red. Faults: primary faults thick black lines, uncertain faults 
dashed lines, secondary and minor faults thin black line. 

 



Description of Seismic data 

78 

 

5.3.1.7 2D line S-253730-86, from survey NPD-FIOE2-86 

 

 

Fig. 5.10, 2D seismic line S-253730-86, from survey NPD-FIØ2-86. a) Non- interpreted line. b) Sketch interpretation of a). Reflectors 
marked by colored lines: R7 blue, R6 yellow, R5 orange, R4 green, R3 purple, R2 forest green, R1 red. Faults: primary faults thick black 
lines, uncertain faults dashed lines, secondary and minor faults thin black line. 
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5.3.1.8 2D line S-260730-86, from survey NPD-FIOE2-86 

 

 

Fig. 5.11 2D seismic line S-260730-86, from survey NPD-FIØ2-86. a) Non- interpreted line. b) Sketch interpretation of a). Reflectors 
marked by colored lines: R7 blue, R6 yellow, R5 orange, R4 green, R3 purple, R2 forest green, R1 red. Faults: primary faults thick black 
lines, uncertain faults dashed lines, secondary and minor faults thin black line. 

 



Description of Seismic data 

80 

 

 

5.3.2 3D seismic data 

This chapter will present the 3D data in order to explore the intersection of the NW-SE leg of TFFC and MFC, 

this is illustrated by using the seismic reflections R3 and R4, as well as three random lines through the cube 

(fig. 5.12-5.16). 

The 3D seismic data consists of the cube MC3D-MFZ02, the resolution of this cube shows excellent quality. 

The reflectors R3 and R4, presented in chapter 5.1 and 5.2, have been interpreted from the 3D seismic data, 

these reflectors are both affected by both TFFC and MFC, and the interaction between the two appears 

clearly on the 3D data. Moreover, the data have been interpreted to highlight the fault interaction of the 

NW-SE striking leg of TFFC and MFC. In addition, the reflectors R3-R7 have been interpreted; only R3 and R4 

(BCU and NB Triassic) show direct fault offset. R5, Paleogene, show onlap onto R4, as well as an apparent 

infill (fig. 5.14 to 5.16). A small graben structure can be seen bounded by NW-SE striking TFFC and the NE-SW 

striking MFC, and a NE-SW striking, south dipping fault (fig. 5.12 & 5.13). The western parts of the E-W 

striking fault curves towards TFFC, while it splays out and terminates before reaching MFC (fig. 5.12 & 5.13). 

At the interaction of MFC and TFFC, the latter appears to splay out into several smaller fault segments. Most 

of these smaller faults display similar trend as TFFC, while others bend and curve to a more E-W trend, 

parallel to the E-W striking fault. The smaller faults shows a north dip (fig. 5.12 & 5.13).   

The hanging wall of both TFFC and MFC, smaller minor faults striking NE-SW, NW-SE and E-W. To the 

northeast of the surface, north of MFC, minor faults make up polygonal faults below R3; these are not seen 

on R4 or the reflectors above. Minor faults dipping both north and south continue along the hanging wall of 

MFC, displaying en echelon, parallel to splaying interaction towards TFFC (fig. 5.12 & 5.13).  
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Figure 5.12. 3D seismic data, non- interpreted seismic horizon and sketch interpretation of R3 (NB Triassic) a) Non interpreted 
horizon, note the gaps in the surface, indicating an escarpment and change of height. b) Sketch interpretation of a), Primary/Major 
faults: TFFC (NW-SE) and MFC (NE-SW) (marked in thick lines) dip NE and NW respectably, secondary faults: synthetic and antithetic 
faults concerning TFFC and MCF (Red SE-SW dip, Black NE to NW dip) 
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Figure 5.13  3D seismic data, non- interpreted seismic horizon and sketch interpretation of R4 (BCU) a) Non interpreted horizon, note 
the gaps in the surface, indicating an escarpment and change of height. b) Sketch interpretation of a), Primary/Major faults: TFFC 
(NW-SE) and MFC (NE-SW) (marked in thick lines) dip NE and NW respectably, secondary faults: synthetic and antithetic faults 
concerning TFFC and MCF (Red SE-SW dip, Black NE to NW dip) 
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Figure 5.14 Random 2D line from seismic 3D cube, illustrating the NW-SE leg of TFFC. Reflectors marked by colored lines: R7 blue, R6 
yellow, R5 orange, R4 green, R3 purple,, R1 red. Faults: primary faults thick black lines, uncertain faults dashed lines, secondary and 
minor faults thin black line. 
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Figure 5.15 Random 2D line from seismic 3D cube, illustrating the interaction of the NW-SE leg of TFFC terminating on MFC. Reflectors 
marked by colored lines: R7 blue, R6 yellow, R5 orange, R4 green, R3 purple,, R1 red. Faults: primary faults thick black lines, uncertain 
faults dashed lines, secondary and minor faults thin black line. 
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Figure 5.16 Random 2D line from seismic 3D cube, illustrating the MFC. Reflectors marked by colored lines: R7 blue, R6 yellow, R5 
orange, R4 green, R3 purple,, R1 red. Faults: primary faults thick black lines, uncertain faults dashed lines, secondary and minor faults 
thin black line. 
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5.4 Summary and Preliminary interpretation 

This chapter will summarize the previous chapters and propose a fault map synthesized from interpreted 

seismic data (fig. 5.17). 

The Finnmark Platform is seen to extend south from MFC and TFFC, where the basement, S1 & R1, subcrops 

to URU (fig. 5.4-5.11). The major faults, TFFC & MFC, have a general NE-SW trend. However, TFFC shows a 

NW-SE striking leg, terminating near MFC. This confirms previous models of the structures of the SW Barents 

Sea (Indrevær et al., 2013; Roberts, D. et al., 2005). However, the 3D seismic data show a more complex fault 

geometry and interaction. The interaction show that TFFC splays out into several smaller faults that show a 

horsetail to anastomosing pattern in map-view, before terminating at MFC.  

The larger fault complexes, TFFC, MFC and NFC, generally appear to encompass several fault surfaces striking 

from ENE-WSW to NNE-SSE, where the NW-SE striking leg of TFFC displays WNW-ESE to NNW-SSE striking 

faults, as well as minor secondary antithetic and synthetic faults, terminating in larger faults. Late tertiary 

uplift (Ronnevik et al., 1982) of the Finnmark platform have exaggerated the visible onlap and drag-

structures in relation to the TFFC and MFC (fig. 5.4-5.11). Both TFFC and MFC show visible fault offset of top 

basement to Early Carboniferous sediment sequences and reflectors, indicating that these where active up 

to Carboniferous, as well as smaller offset in Paleogene indicated by the 3D seismics (fig. 5.14-5.16). 

The NE-SW trending leg of TFFC near the North Hammerfest Basin shows segmented faulting and a graben 

structure towards the Hammerfest Basin (fig. 5.2 & 5.5). Near the Gjesvær Low TFFC appear to form a horst 

structure, where the Hammerfest Basin and Gjesvær Low as graben structures. The majority of the faults in 

TFFC dip north, where antithetic faults form the graben structure seen north of the Gjesvær Low (fig. 5.5 & 

5.6). TFFC comprises listric faults, with steep dip in the upper sequences, offsetting S2-S4, transitioning to 

dip more shallowly towards a detachment plane. Towards NFC, TFFC changes trend to NW-SW (fig. 5.7). In 

these areas, TFFC appears to have several antithetic and synthetic faults offsetting Carboniferous to Late-

Jurassic sequences, S2 to S4.  

At the interaction of TFFC and MFC, smaller graben-structure is observed (fig. 5.12 & 5.13). This graben-

structure shows a displacement of R3-R5, and at the interaction of MFC and TFFC displays a dome like shape. 

This dome comprises several minor faults, to a larger north-dipping fault that make up the graben structure. 

The graben structures seen in the intersection of TFFC and MFC can be interpreted as an accommodation 
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graben, as seen by the doming and minor fault activity at the intersection of TFFC and MFC (fig. 5.13 & 5.14). 

As well as a lack of E-W striking faults on both the Finnmark Plattform and Gjesvær Low. 

Salt diapirism in the southern Nordkapp Basin is the results of the activation of Late Carboniferous halite 

sediments (fig. 5.10 & 5.11). The narrow salt diapirs seen in 2D seismic line S-253730 can be seen in relation 

to fault activity offsetting the reflectors R2 to R4 (fig. 5.10). The wider salt diapir in 2D seismic section S-

260730 displays a fault-induced origin, but the wider berth might indicate a single fault plane. 

Gjesvær Low is bounded by TFFC (fault dipping south) and MFC (north dipping fault), that appear as horst-

structures where the Gjesvær Low composes a graben-like structure between the two fault complexes (fig. 

5.5 & 5.6). The internal structures of the Gjesvær Low shows chaotic reflectors in S2, but it is possible to 

make out rotated fault blocks (fig. 5.4-5.6). The overlying sequences, S3-S7, show no influence of these fault 

structures, and the internal reflectors of these sequences encompasses sub-horizontal north-dipping 

reflectors. Mostly unaffected by faulting beside TFFC and MFC related faults (fig. 5.5 & 5.6). Towards the 

northeast of Gjesvær Low these rotated fault blocs seem to disappear and sequences, S1-S5, appear to be 

affected by both TFFC and MFC. 

The 2D seismic lines NPD-FIOE2-86 S-253730-86 and S-260730-86 (fig. 5.10 & 5.11) shows steep vertical 

faults possibly trending NW-SE, on the southern Finnmark Platform, just north of Magerøy. These fault 

bound a possible basin-structure, where chaotic reflections possibly represents Carboniferous (R2) and Near 

Base Triassic (R3) reflectors. The internal minor faults show steep dip, and the fault architecture show 

antithetic and synthetic smaller faults.  
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Fig. 5.17 Offshore fault map compiled from interpreted 2D and 3D seismic data. Faults interpreted from seismic data (solid black 
lines), faults compiled from Roberts (2005) shown as dashed black lines. * indicates the pull-apart-structure interpreted from fig. 5.10 
& 5.11 
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6 Description of magnetic anomaly data 

NGU’s (2014, www.ngu.no) updated magnetic anomaly maps of northern Finnmark and surrounding 

offshore areas are valued contributions to understanding the overall fault-fracture architecture of the SW 

Barents Sea margin. This map (fig. 6.1) outlines linear anomaly patterns that correspond with NW-SE striking 

fault-fracture lineament patterns and trends that characterize the onshore areas (see chapter 2). The 

magnetic anomaly data covering the study area (fig. 6.1) show that lineaments described/presented in 

chapter 2.2 and 2.3. continue offshore. The magnetometric data shows NE-SW and NW-SE trending linear 

positive anomalies on Magerøy and east to Nordkinn Peninsula. The NE-SW trending lineaments are due to 

magnetic minerals in sedimentary units found in the area (Roberts, D. et al., 2012). The NW-SE trending 

anomalies follows the similar pattern as TKFZ (Beckinsale et al., 1976; Herrevold et al., 2009), and are seen to 

cut through Sværholdt Peninsula and Magerøy before terminating in a large positive anomaly west of 

Magerøy. These NW-SE trending anomalies follow the path of several Carboniferous dolerite dykes on 

Magerøy (Lippard et al., 1997). 
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Figure 6.1, Magnetic filtrated anomaly map and sketch interpretation. a) Magnetic anomaly map of northwest Finnmark, note the 
red positive linear anomalies northwest on the map. b) Sketch interpretation of Magnetic anomaly map on Bathymetric and 
Topographic map. (NW-SE trending positive anomalies as solid red lines). c) Area where NW-SE and NE-SW trending anomalies 
crosscut in a rhombic pattern. Modified from NGU. 
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7 Discussion 

7.1 Introduction 

The main goal of this thesis is to map, describe and analyze onshore fractures, faults and lineaments found in 

the study area in West-Finnmark, and to compare these with faults and major basin-boundary faults 

offshore on the nearby Finnmark Platform and the southwestern parts of the Nordkapp basin (chap. 1.2) 

(Gernigon, L. et al., 2014; Koyi et al., 1993; Roberts, D. et al., 2005). This was done through structural 

fieldwork and interpretation of DEM, aerial images, bathymetric, seismic and magnetic anomaly data. The 

results are presented in the chapters 3-6 and their implications will be discussed in the following chapter. 

7.2 Discussion of the validity of digital data and methods 

Results obtained from DEM, bathymetric data, aerial photos, seismic data and magnetic anomaly data will 

never give a truly accurate description of the geologic features, mainly because of the inaccuracy of the 

method used to gather and process the data. The common denominator for these data types is that they are 

remote sensing data, meaning that they are gathered from afar by electronic instruments. Therefore, in this 

chapter, the digital methods used to gather, interpret and analyze structural features will be briefly 

discussed.  

DEM and bathymetry data, collected by Statens Kartverk and the MAREANO survey collected by the 

Norwegian Hydrographic Service respectably, is data collected by reflecting energy off surfaces, by laser and 

sound respectably. The data used have a resolution of 5x5m for the DEM and 25x25m for the bathymetry. 

This means that features smaller than this scale will not show on the models presented. In order to compare 

major features observed on the bathymetry with similar onshore features aerial images together with DEM 

have been used to increase the accuracy and the resolution. However, there are no such alternative for the 

bathymetric data. So only features larger than 25x25m appears on bathymetric data, and have been mapped 

accordingly.  

Fault-fracture lineaments have been interpreted from aerial photos, DEM- and bathymetric data in order to 

calculate the azimuth (trend). This process used the Polyline tool in ArcGIS. If the polyline (i.e. lineament) is 

curved, ArcGIS construct the line from multiple small straight line segments. The program (see chapter 2.2) 

then calculates the trend for each small segment. However, this affects the results in a rose-plot because the 

sum of each segment will have a higher weight in the rose-plot than a similar straight line. However, due to 
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the large numbers of measurements in the database, the error is not thought to be significant to the overall 

distribution. 

Seismic data are inherently inaccurate compared to aerial images, DEM and bathymetric data. The vertical 

and horizontal resolution is dependent on the frequency and resolution of the survey gathering the data. For 

the 2D seismic data the horizontal and vertical resolution can be as low as 50m, depending on the survey 

and the collection method (pers. com. Henningsen, 2016). Compared to 2D seismic, the 3D seismic data has 

a higher resolution, mainly due to shooting geometry and 3D spatial relations used in the processing 

sequences. Hence, geologic features can be difficult to differentiate, and in some cases smaller features such 

as faults and smaller reflections cannot be differentiated from larger ones. To accommodate for this, the 

outline and throw of faults were used to identify and interpret faults. In addition, the focus has been on 

large-scale faults and fault-related structures, so very high vertical and horizontal resolution of the seismic 

data is not crucial for the regional interpretation of faults, as the interaction of TFFC and MFC is covered by 

3D seismic data. 

Overall, there are several challenges using digital methods and data, as there are multiple sources of errors 

and corresponding uncertainties. However, in the scope of this thesis, the digital methods and data used are 

considered sufficiently accurate.  
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7.3 Discussion of the onshore data 

The following chapter will discuss the onshore regional fault-fracture patterns, fault-fracture interaction, 

relative age and fault-fracture evolution. 

7.3.1 Regional fault-fracture patterns  

This study has shown that the dominant linear features observed from DEM and aerial images can be 

interpreted as brittle faults and fractures with a varied geometry throughout the study area. The key 

difference between glacial and fault-fracture lineaments is both the geometry and relief. Tectonic 

lineaments, e.g. fault-fracture and foliation appears as a sharp, jagged contrast to the surrounding 

landscape, displayed as gullies, fractures, ridges and cracks (fig. 2.2) . Glacial lineaments on the other hand, 

appear as more gentle lineaments, having more rounded erosional patterns (e.g. fjords, u-valleys, rounded 

linear depressions), and striae and scratches from scouring in smaller scale. At larger scale, glaciers leave 

behind linear sedimentary deposits such as flutes, eskers and drumlins (Nichols, 2009). Glacial lineaments 

and fault-fracture lineaments are not mutually exclusive, as glacial erosion often preferentially erodes pre-

existing weakness zones such as bedding, foliation, faults, fractures and softer lithologies (Jansson et al., 

2005; Nichols, 2009; Olvmo et al., 2002). These glacial lineaments can be mistaken as fault-fracture 

lineaments, but is avoided by not interpreting lineaments in areas covered by talus and/or vegetation, by 

employing aerial images in addition to DEM (see chap. 2). However, there is some overlap between glacial 

lineaments and large-scale fault-fracture lineaments (fig. 4.1), where larger depressions are oriented parallel 

with the glacial flow direction (e.g. in Snefjord). 

The geometry of lineaments ranges from chaotic, parallel and rhombic to anastomosing patterns (e.g. fig. 

3.2, 3.3, 3.9, 3.13 and 3.22). The geometry and attitudes of linear features, fjords and sounds vary a lot along 

the studied transect of northwest Porsanger Peninsula, and can be seen as a typical wedge to anastomosing 

geometry near the narrower fjord mouths (Myrfjord, Bakfjorden), while more open fjords (Snefjord) show 

rhombic geometries (fig. 3.1-3-3). The orientation of such landscape elements shows the results of three 

dominant fault-fracture trends on the Porsanger Peninsula: NE-SW, NW-SE and E-W trends, and two 

dominant trends on Magerøy WNW-ESE to E-W and ENE-WSW (chap. 3.5). In addition, subsidiary N-S 

trending lineaments appear in the extension of the more dominant trend direction (fig. 3.2 & 3.3). On 

Magerøy, both the N-S and E-W trending lineaments can be seen as an extension to both the NE-SW and 

NW-SE trends trough the study area. By contrast, on the northwestern Porsanger Peninsula the E-W trending 



Discussion 

94 

 

lineaments appear as a more dominant trend than the NW-SE trending lineaments. Both the lineament 

distribution displayed in rose plots and the geometric patterns seen in maps, fig. 3.2 & 3.3, show that 

Magerøy dominantly encompasses E-W (WNW-ESE to ENE-WSW) trending lineaments, while northwest 

Porsanger peninsula show dominantly NE-SW and E-W trending lineaments, supporting the rose plot 

distribution. At smaller scale, the lineaments show a variation in orientation (fig. 3.3), where the lineaments 

are in line with the shape of the landscape. Wedge and anastomosing geometries can be seen in fjords near 

wedge-shaped peninsulas, such as Selvika and Bakfjorden (fig. 3.8 & 3.9). Rhombic patterns can be seen on 

the inland areas and more open fjord mouths and larger rounded peninsulas, e.g. Snefjord, Lillefjord, 

Gjesvær and the inland areas on northwestern Porsanger Peninsula (fig. 3.2, 3.3, 3.13, 3.17 & 3.22).     

 

Figure 7.1 Distribution of lineament trends at areas (yellow squares) in northwest Porsanger Peninsula and Magerøy a) Area 1, 
Havøysund. b) Area 2, Bakfjorden. c) Area 3, Snefjord. d) Area 4, Lillefjord. e) Area 5, Honningsvåg. f) Area 6, Gjesvær 

The regional lineament trends and fault-fracture strikes vary throughout the study area. For example, in a 

traverse from north to south in the Porsanger peninsula (Localities 1 to 6; fig. 3.3, 3.5, 3.9, 3.12, 3.13 & 3.17), 

the landscape and lineament patterns change character (ch. 3.4). The fault-fracture lineaments on northwest 

Porsanger Peninsula shows a variance in trend, where the dominant trend orientation changes from north to 
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south along the coast of the northwestern parts of the peninsula. Magerøy also shows a variation from this, 

where the dominant lineament trends are NW-SE to E-W, and trends vary over the island (fig. 3.2, 3.18, 3.21 

& 7.1).In more detail, Havøysund (area 1) displays a dominance of NE-SW to ENE-WSW trending lineaments 

and fractures (fig. 3.4, 3.5 & 7.1). Bakfjorden (area 2) shows mainly E-W trending lineaments (fig. 3.9 & 7.1). 

Snefjord (area 3) shows dominantly NE-SW and E-W trending lineaments (fig. 3.13 & 7.1). Lillefjord (area 4) 

displays mainly NNE-SSW and E-W trending lineaments (fig. 3.17 & 7.1). Honningsvåg (area 5) shows WNW-

ESE to ENE-WSW trending lineaments (fig. 3.19 & 7.1). Lastly, Gjesvær shows WNW-ESE trending lineaments 

(fig. 3.22 & 7.1). 

Field observations and structural data show a direct correlation between meso-scale fractures observed in 

the field and the lineaments interpreted from DEM and aerial images (e.g. fig. 3.15, 3.23 & 3.24). From the 

outcrops studied, the lineaments largely follow the same strike orientations as faults observed (e.g. fig. 

3.15). In addition, the rose plots and stereonets show similar trends, both regionally and locally. All these 

observations support an overlap between landscape patterns, regional lineaments, and meso-scale faults 

and fracture systems.   

7.3.2 Fault and fracture geometry 

Observations from fieldwork show that the northwestern Porsanger peninsula has three dominant fault-

fracture strikes: 1) NE-SW, 2) NW-SE and 3) E-W. Magerøy on the other hand record predominantly E-W 

(WNW-ESE to ENE-WSW) striking fractures.  

The faults and fractures observed in meso-scale along these dominant orientations differ throughout the 

study area, display unique characteristics in outcrops. Most of the fractures have a planar geometry (ex. fig. 

3.7 & 3.11) but some become listric downwards, where splaying (fig. 3.10) and apparent conjugate fault sets 

are present (fig. 3.25, stereo plot). Conjugate faults have not been directly observed, but NE-SW and some 

NW-SE and E-W trending faults may interact to produce a conjugate geometry. NW-SE and E-W striking 

faults however, mostly show a planar geometry and steep dips to the north (fig. 3.25), while oppositely 

dipping faults may have formed synchronously as conjugate strike-slip dominated faults. Alternatively, the 

oppositely dipping faults are antithetic relative to the larger and dominant synthetic fault structures (ref. fig. 

3.10 & 3.11). These antithetic faults generally show less vertical offset than the main synthetic fault surface. 

Furthermore, the antithetic faults generally have a listric geometry splaying into the more planar synthetic 
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faults. This is faulting most likely due to space-problems along the fault surface, where the antithetic faulting 

in the hanging wall accommodated by splay faulting and block rotation.      

7.3.3 Kinematic data 

Field observations and orientation data (chapter 3) show that all the dominant fault trends show both dip-

slip and oblique-slip moments. However, the kinematic data on northwest Porsanger Peninsula shows that 

the NW-SE to N-S striking faults and fractures display a dominant normal dip-slip and normal oblique-slip 

shear (fig. 3.25), whereas faults in Magerøya display dominantly normal-oblique to strike-slip shear (fig. 

3.26). Comparing the two data sets, it is apparent that the three main fault orientations identified do not 

share the same kinematic characters and sense of shear. The few (16) measurements of fault kinematic data 

from Magerøya indicate that all or most of the studied fault trends have a shear component, whereas 

northwest Porsanger Peninsula encompasses more measurements where the dominant sense of shear is 

normal dip-slip. This may suggest that the study area have undergone several events of faulting with 

different kinematic characters and senses of shear. The strike-slip character of the NW-SE trending faults in 

Magerøya can tentatively be linked to the TKFZ, which was formed in the Neoproterozoic as a dextral strike-

slip fault and later, reactivated in Caledonian and post-Caledonian times (Herrevold et al., 2009). One 

possibility is that the NW-SE trending brittle faults reflect Carboniferous transtensional reactivation of the 

TKFZ (see discussion below).  The NE-SW trending normal faults, on the other hand, may be onshore faults 

formed during rifting and opening of the North Atlantic Ocean due to NW-SE tensional stress. These two 

tectonic events might explain the variance of the kinematics and shear senses observed throughout the 

study area. As the stipulated trajectory of TKFZ lies north of Magerøy (fig. 1.1), it is natural to assume that 

this area has experienced a higher degree of strike-slip movements since it lies closer to TKFZ, and thus may 

be part of the damage zone. As indicated by the magnetic anomaly data (fig. 6.1), TKFZ splays out into 

several NW-SE to E-W striking linear anomalies that terminates east of and at Magerøy. These data suggest 

that Magerøya might be the “end-zone” where TKFZ terminates by splaying out onto the Finnmark Platform, 

the fjords and sounds, and that the high frequency of NW-SE striking faults may be linked to this wide “end 

zone”. In addition, most NW-SE striking fault-fracture lineaments on northeast Porsanger Peninsula appear 

as smaller segments cut by the NE-SW, E-W and N-S striking fault-fracture lineaments (fig. 3.3). This is not 

seen on Magerøy, where NW-SE to E-W striking lineaments appear to be the dominant strike (fig. 3.2), 

where the NE-SW striking fault-fracture lineaments are cut by NW-SE to E-W striking faults.  
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7.3.4 Fault rocks 

The study area records several faults with a core zone defined by fault gouge and cataclasitic rock (fig. 3.11, 

3.14, 3.15 & 3.24). The faults recording fault rocks on the northwest Porsanger peninsula generally strike NE-

SW to ENE-WSW and dip 50⁰ to 75⁰ NW, e.g. near Snefjord and Bakfjorden (fig. 3.14 & 3.15). These faults 

rocks record grey to dark red fault gouge, with crushed clasts of host rock. The red color of the fault gouges 

is most likely due to precipitation of iron hydroxides and oxides (fig. 3.14). In addition, one of the studied 

fault zones (fig. 3.15) shows zonation with an internal transition from cataclasitic fault rock to a fault gouge, 

indicating two stages of deformation or reactivation of the fault. Cataclasitic fault rocks are also found on 

steep NW-SE striking faults in Magerøya (fig. 3.24), but these faults lack the gouge overprint. Most of the 

faults in the studied area comprise slickensides surfaces with precipitated chlorite (see chapter 3.4). 

The presence of gouge, cataclasites and secondary chlorite on fault surfaces, indicate that the faults formed 

by cataclastic deformation in the frictional regime at shallow to moderate depth in the crust (Twiss et al., 

1994), corresponding with data, e.g. from western Troms (Indrevær et al., 2014). 

7.3.5 Fault timing and interaction 

In order to establish the relative timing between the various fault trends, crosscutting relationships must be 

considered. Such relationships are not commonly observed in the study area. However, there are a few 

examples of crosscutting relationships of lineaments in map scale, and fractures and faults in outcrop scale. 

At Skjarvodden a NW-SE striking fault clearly cross-cuts an E-W striking fault (fig. 3.11), whereas Selvika 

records a NE-SW striking fault cutting a NW-SE striking fault (fig. 3.10). This suggest that the NE-SW striking 

faults are relatively younger than the NW-SE striking faults. Similar interpretations can be inferred from DEM 

and aerial photographs showing that NE-SW and E-W striking lineaments offset and/or truncate W-SE 

striking lineaments on northwestern Porsanger Peninsula (fig. 3.1 & 3.3). By contrast, however, NW-SE to E-

W striking faults also seem to offset NE-SW striking faults in several places on Magerøya (fig 3.1 & 3.2).  

Antithetic and synthetic fault-fracture geometry can be seen in small scale at most localities, where 

Skjarvodden and Selvika has excellent examples of antithetic fractures (Fig. 3.10). WNW-ESE striking, ENE 

dipping faults show antithetic fractures interacting with the main fault plane, and terminating into the main 

fracture as well as several fractures continuing through the main faults surface (fig. 3.10 & 3.11). This 

indicates that these antithetic faults terminates at a larger fault surface not seen. In addition, several 

splaying geometries are found in most areas, where steeply dipping or antithetic faults curve and terminates 
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into the main fault plane (fig. 3.6, 3.10, 3.11, 3.20 & 3.24). These faults and fractures show that there is a 

wide range of fault-interaction, where steep faults curve and trends towards main fault surfaces. This is seen 

in smaller scale near faults with fault rock, where several smaller fractures to joints can be seen to terminate 

into the larger fault (fig. 3.15 & 3.24). However, these smaller fractures show little to no offset of the host 

rock, but show distinct fracturing and in some cases mineralization of calcite and chlorite (fig. 3.15 & 3.24).  

The way faults terminate or merge into each other can also be used to discuss the relative timing and 

kinematic relationships between them. In the study area, N-S and E-W striking faults usually splay out from 

the NW-SE striking (TKFZ) faults. This can be explained by dextral movement along the TKFZ, and the 

formation of subsidiary NE-SW striking normal oblique-slip to strike-slip faults. However, this does not 

account for the normal oblique-slip found on some NE-SW striking faults. If this where the case, the NE-SW 

striking faults would display normal dip-slip, and not normal-oblique shear. However, this can also be 

explained by scissor faults or rotational fault block (Twiss et al., 1994), where the rotation leads an uneven 

distribution of shear along the fault surface from the fulcrum point of the fault. This can be affirmed by the 

many escarpments that displays tilting and rotation (fig. 3.4, 3.7, 3.8 & 3.11), although this tilting is barely 

noticeable compared to for example, tilting of fault blocks in Lofoten (Eig et al., 2011). This suggests that the 

measured fault and fractures themselves have been rotated in situ as part of a larger fault-block. 

7.3.6 Synthesis of onshore data 

Three dominant fault/fracture strikes and lineament trends are seen through the study area on the 

northwestern Porsanger Peninsula: 1) NE-SW, 2) NW-SE and 3) E-W. However, these are not constant as it is 

seen in the areas from Havøysund to Lillefjord, where there are several variations in the distributions of the 

dominant fault strike and lineament trend (chap. 3.4 & fig 3.3). Magerøy shows predominantly E-W (WNW-

ESE to ENE-WSW) trending lineaments. However, these lineaments also varies along the island (fig. 3.2), 

there are several subsidiary trends as well as a variation in fault and fracture strike throughout the island. 

The kinematic data shows that faults on northwestern Porsanger Peninsula striking NE-SW dominantly show 

normal dip-slip, NW-SE dominantly show normal dip-slip and oblique-slip, while E-W show normal dip-slip 

(fig. 3.25), possibly a result of tensional strain from the opening of the North Atlantic Margin. On the other 

hand, the kinematic data of faults on Magerøy on show strike-slip to normal oblique-slip in all strike 

directions (fig. 3.26), and is most likely the result of dextral transtensional stress from TKFZ. The normal 

oblique-slip shear sense seen on NE-SW and E-W striking faults are most likely due to scissor faulting, where 

larger fault-block have had a uneven rotational component in addition to the normal faulting leading to a 

rotation of fractures and their kinematic indicators.  
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7.4 Discussion of the offshore data 

7.4.1 Discussion of the bathymetric data 

The bathymetric data show that the strandflat comprises features such as parallel ridges, troughs, channels, 

deep depressions and fjords (chapter 4: fig. 4.1-4.9). The parallel ridges and troughs can be interpreted as 

bed-rock foliation that is apparently crosscut by NE-SW, NW-SE and E-W trending channels. These features 

are seen in on plateaus near Hjelmsøy, Gjesvær and Snefjord. These are submerged plateaus of the same 

type of bedrock as found onshore (fig. 4.3, 4.5 & 4.9). The crosscutting channels have been interpreted as 

fault-fracture lineaments, as they mark features that are easily eroded (weak zones) and crosscut the 

foliation. These fault-fracture lineaments follow the same trends/distribution as the fault-fracture 

lineaments onshore (fig. 4.2, 4.4, 4.6 & 4.8). Regionally, the bathymetric data show glacial features where 

the glacial flow direction and erosion is thought to influence the fjords, sounds and the strandflat as an 

erosional agent, predominantly eroding weakness-zones, e.g. faults and fracture zones. Comparing the 

onshore and offshore lineament trends, distribution and maps (fig. 4.1-4.9), it is apparent that the onshore 

fault-fracture lineaments continue offshore. This is especially seen on the strandflat where fault-fracture 

lineaments are easy to distinguish from foliation related lineaments (chap. 4.7). In addition, in fjords and 

sounds it is possible to trace multiple fault-fracture lineaments that link to these depressions, because the 

bathymetric images show sediments, and not jagged and exposed rock. This indicates that the fjords, sounds 

and depressions are zones of high fracturing, allowing a higher glacial erosion than the surrounding areas 

(fig. 4.1). The depressions are generally bound by NE-SW, NW-SE and E-W trending escarpments, forming 

rhombic to parallel geometries (fig. 4.1, 4.3, 4.5 & 4.7). In addition, these depressions are elongated, 

following the glacial flow direction, where the base is generally characterized by rounded topography. This 

allows for a tentative interpretation, that some of these depressions are minor pull-apart basins, while the 

elongated depressions are a results of glacial erosion in high density fracture zones (fig. 4.1, 4.3, 4.5 & 4.7).   

  



Discussion 

100 

 

7.4.2 Seismic data 

The 2D seismic sections interpreted in this work show that the regional offshore fault complexes, i.e. the 

TFFC, MFC and NFC, as well as smaller faults, follow a major NE-SW trend (fig. 5.17). This major Nordkapp 

Basin trend changes to a more NW-SE oriented leg around the Gjesvær Low on the Finnmark Platform, 

where the main fault splays out in smaller faults before interacting with the MFC (fig. 5.17). The TKFZ is not 

directly observed on the seismic data, but is thought to be present and having affected the basin 

architectures (fig. 5.4-5.11). Previous research (Herrevold et al., 2009; Johnson et al., 1978; Townsend, 1987) 

has proposed that the NW-SE trending TKFZ appears as segments extending into the southwest and western 

Barents Sea, appearing as NW-SE trending segments. The NW-SE leg of the TFFC e.g. near the Gjesvær Low, 

has previously been interpreted as one of these segments (Herrevold et al., 2009; Johnson et al., 1978; 

Townsend, 1987). However, the seismic data show no signs of strike-slip fault offset of the Finnmark 

Platform, MFC or TFFC (fig. 5.4-5.11). In addition, the NW-SE leg of TFFC shows a listric geometry, not the 

steep to near-vertical faults one would expect from a major strike-slip fault (Hsiao et al., 2004; Okay, Aral I. 

et al., 1999). The seismic data from the Finnmark Platform indicate the presence of a possible NW-SE 

oriented basin-like structure north of Magerøy, near Nordkapp and Helneset (fig. 5.10 & 5.11), bounded by 

steep faults. The internal reflectors show possible Carboniferous and Triassic reflectors, indicating that this 

basin was formed prior to the Middle Triassic. The internal configuration of minor faults indicates a possible 

negative flower-structure (Okay, Aral I. et al., 1999; Okay, A. I. et al., 2000) (fig. 5.10 & 5.11). However, this 

structure does not appear on other seismic sections further west or east, indicating that this a feature 

constrained to the local area. In addition, the 2D seismic lines further to the east show no sign of dextral 

offset. This may be explained by a possibly overprint by the MFC and TFFC at a later age, or that the TKFZ 

terminates before reaching MFC. This supports previous findings (Gabrielsen et al., 1989). However, since 

this structure only appears on two 2D seismic lines, the extent and shape of this basin cannot be determined 

without new seismic data of this area. 

The analyzed 3D seismic data outline the geometries of the main faults north of Magerøya, more specifically 

the interaction of the NW-SE trend of TKFZ and MFC. The 3D seismic data show that TFFC have a listric fault 

geometry, as indicated by 2D seismic data (fig. 5.4, 5.6 & 5.7), random lines through the 3D seismic data also 

suggest the same (fig. 5.14-5.16). In addition, neither MFC nor the Finnmark platform shows any dextral 

offset. This suggests that MFC and TFFC overprints TKFZ, if it is present. The 3D data also indicate the 

presence of an accommodation-graben at the interaction of the NW-SE leg of TFFC and MFC (fig. 5.12 & 

5.13). This graben seems to be a localized graben that dies out just north of the MFC and northeast of 
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Gjesvær low, since neither the TFFC nor the MFC displays any signs of E-W striking faults in the continuation 

of this graben-structure. In addition, the 3D seismic data displays quite clearly the fault-fracture geometry of 

minor faults (fig. 5.12 & 5.13). These surfaces record minor faults with anastomosing, parallel, conjugate to 

rhombic geometries, indicating that the fault geometry changes with relation to the major faults. 

7.5 Magnetic data 

The magnetic anomaly survey displays several linear positive anomalies trough the study area. However, the 

positive NW-SE trending linear anomalies seen on and near Magerøy, Sværholdt Peninsula and Nordkinn 

Peninsula are especially interesting (fig. 6.1). These linear anomalies have the same trend as the proposed 

path of TKFZ (Beckinsale et al., 1976; Herrevold et al., 2009; Johnson et al., 1978; Roberts, D. et al., 2005). In 

addition, the carboniferous dolerite dykes seen on Magerøy (the Magerøy dykes) follow this trend. The 

magnetic data shows that these are possibly related to TKFZ.  

The previous mentioned fault rocks (chap. 7.3.4), recording red to dark brown fault gouge, does not appear 

as linear anomalies on the magnetic anomaly data, indicating that this fault does not have magnetic 

mineralization and are different from the NW-SE striking faults seen on the on Magerøy. 

Besides the NW-SE trending anomalies northeast in the study area the magnetic anomaly data does not 

record any other major linear anomalies. Neither the NE-SW nor the NW-SE trending anomaly, suggest that 

the brittle faults and fractures in the study area comprise enough magnetic minerals to appear as magnetic 

anomalies.  
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7.6 Onshore-offshore fault comparative synthesis 

This study have describe onshore lineaments, faults and fractures in western Finnmark and compared them 

with offshore faults and major basin-boundary faults offshore on the nearby Finnmark Platform and the 

southwestern parts of the Nordkapp basin. These data, based on structural fieldwork, DEM, bathymetric, 

seismic and magnetic data show that the interpreted lineaments (brittle faults and fractures) continue and 

can be directly correlated from the onshore to the offshore areas. The onshore-offshore correlation is well 

illustrated by major NE-SW, E-W and NW-SE trending escarpments and fault-fracture lineaments traced from 

onshore to the shallow strandflat offshore, where they continue and terminates or intersects with similar 

lineaments. In addition, the onshore areas of Helneset and a few areas on Magerøy display linear magnetic 

anomalies that correlate directly with the field-results. The NW-SE trending linear anomalies are perfectly  

parallel with NW-SE trending carboniferous dykes and the TKFZ (Lippard et al., 1997). The study area is 

located where the TKFZ is suggested to die/splay out along the strike (Herrevold et al., 2009; Johnson et al., 

1978; Roberts, D. et al., 2005). This is supported by the magnetic data, as there is not a single linear anomaly 

where the TKFZ is stipulated to be. Instead, there are multiple linear anomalies cutting the Sværholdt 

peninsula and Magerøya (fig. 6.1). This strongly suggest that TKFZ does not appear as a single strike-slip fault 

in the study-area, similar to the Varanger peninsula (Johnson et al., 1978), but rather appears as several fault 

segments. The only signs of strike-slip faulting on the Finnmark Platform is the NW-SE oriented pull-apart 

feature inferred from the seismic interpretation  just north of Magerøya (fig. 5.10 & 5.11). This indicates the 

presence of strike-slip faults and possible negative flower structures on the nearby Finnmark Platform. The 

onshore data also show a higher frequency of NW-SE to E-W striking faults with normal oblique-slip to strike-

slip with dextral and sinistral sense of shear faults on Magerøy than on the northwestern Porsanger 

Peninsula (fig. 3.10 & 3.11).  

The NE-SW and E-W trending lineaments, faults and fractures can be compared with the NE-SW to E-W 

trending MFC in the Nordkapp Basin and the TFFC that marks the boundary between the Finnmark platform 

and the Hammerfest Basin (see Chapter 1.3.4). In this study, there has not been observed any major NE-SW 

striking fault zones, but rather a collection of multiple, parallel, oblique and orthogonal faults striking E-W to 

NE-SW and locally, N-S, allowing a comparison with similar features onshore. Features, such as smaller 

rhombic shaped pull-apart basins and rhombic geometry of fault-fracture lineaments, both offshore and 

onshore indicate that the dominant fault/fracture geometries are similar to the larger basin-bounding faults 

found on in the southwestern Barents Sea. Indicating that these are possible coeval (fig. 3.2, 3.3 &7.1)       
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The seismic data indicate larger fault structures offshore display different throw along the fault surfaces (fig. 

5.12 & 5.13). This apparent scissor faulting can explain why some of the E-W and NE-SW striking faults 

onshore northwestern Porsanger Peninsula display oblique-slip character. In addition, the seismic data 

indicate that several larger fault-bounded structures exist both in the basement and Carboniferous units on 

the Finnmark Platform and these may be interpreted as rotated fault blocks.  

Most of the fjords in the study area may have been localized parallel to high-density fracture zones, or the 

core zones of major faults, as indicated by the large amount of fault-fracture lineaments terminating 

towards the fjords, and the large amount of fracturing seen on the bathymetric data (fig. 4.3, 4.5 & 4.9). The 

landscape itself, also indicates that there are several hidden larger faults in western Finnmark, which have 

affected  the landscape, similar to tectonically induced landscapes in Lofoten and western Troms (Eig et al., 

2011; Indrevær et al., 2014; Thorsnes et al., 2009), as seen by e.g. gently tilted paleosurfaces and steep 

escarpments (fig. 4.9). 
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8 Conclusion 

This thesis concludes that there is a link between the offshore and onshore fault/fracture systems based on 

the following: 

The onshore data shows three dominant fault strike and lineaments trends throughout the study 

area. The lineaments on Porsanger Peninsula show NE-SW and E-W trends, while Magerøy has NW-SE to E-

W trending lineaments. The dominant fracture strikes on Porsanger Peninsula are 1) NE-SW, 2) NW-SE and 3) 

E-W. Magerøy on the other hand records predominantly E-W (WNW-ESE to ENE-WSW) striking fractures. On 

the Porsanger Peninsula the NE-SW and E-W striking fractures record normal dip-slip to oblique-slip, while all 

strike orientations on Magerøy record strike-slip to normal oblique-slip. Overall, the dominant fracture and 

lineaments orientation show a direct relationship, where there are similar variations in strike and trend 

distribution on the northwestern Porsanger Peninsula and Magerøy.  

The bathymetric data indicate that the strandflat in the area record foliation and fault-fracture 

lineaments that display similar trends(NE-SW, NW-SE and E-W) as the onshore fault-fracture lineaments as 

well as linkage with onshore lineaments. The bathymetric data also reveal smaller rhombic shaped pull-apart 

basins with the same orientation. The fjords and sounds are localized in high-density fracture zones. These 

basins, fjords, and sounds are bounded by escarpments trending in the dominant fault and fracture 

orientations. 

The seismic data shows that TFFC and MFC have listric geometries, where the NW-SE leg of TFFC 

possibly overprints older segments of TKFZ. TKFZ does not offset TFFC and MFC, but north of Magerøy a 

possible negative flower-structure indicate that TKFZ have affected the Finnmark Platform, but not the NE-

SW trending fault complexes. 

Magnetic anomaly data illustrates that the NE-SW trending carboniferous dykes on Magerøy are 

parallel to the assumed orientation of TKFZ, showing that TKFZ appears as several segments cutting 

Magerøy, Sværholdt Peninsula and Nordkinn Peninsula. The data also shows a small positive anomaly north 

of Magerøy parallel to the negative flower structure, supporting that this is a NW-SE trending feature, most 

likely a segment of TKFZ.   
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Code 1, Scrip for calculating ΔX (delta value of east coordinates, x1, x2) 

Appendix A: Python coding 

Python programming code for calculating the azimuth of interpreted lineament lines in ArcGIS, using the 

Field Calculator in ArcMAP 10.5, the values calculated are ΔX, ΔY, Sector and Azimuth. The scrips are written 

in Python programming language, implementing the formula 1, presented in chapter 2.2, # indicates a 

comment to the code. 

 

 

 

 

def  deltax(x1,x2): 
  if (x2>x1): 
    return x2-x1 
  else: 
    return x1-x2 
 

Code 3, Script to calculate Sector 

def  deltay(y1,y2): 
  if (y2>y1): 
    return y2-y1 
  else: 
    return y1-y2 

Code 2, Scrip for calculating ΔY (delta value of north coordinates, y1, y2) 

def sector(deltax,deltay): 
#sector = where in the circle the angle is, 0-90=1, 90-180=2,180-270=3,270-360=4 
#degrees 0-90  
  if (deltax > 0 and deltay > 0): 
      return 1 
#degrees 90-180 
  elif (deltax > 0 and deltay < 0): 
    return 2 
#degrees 180-270 
  elif (deltax < 0 and deltay < 0): 
    return 3 
#degrees 270-360 
  elif (deltax < 0 and deltay > 0): 
    return 4 
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def azimuth(deltax,deltay,sector): 
#sector( 0-90 degree =1, 90-180degree =2, 180-270 degree =3, 270-360degree =4) 
  #if deltax = 0 the funtion wont work, but the azimuth=0 (north-south) 
  if (deltax == 0): 
    return 0 
  #if deltay = 0 the fuction wont work, but the azimuth=180 (east-west) 
  elif(deltay == 0): 
    return 180 
  else: 
  #degree 0-90 
    if (sector == 1): 
      return (math.degrees(math.atan(math.fabs(deltax)/math.fabs(deltay)))) 
    #degree 90-180   
    elif (sector == 2): 
      return (180-math.degrees(math.atan(math.fabs(deltax)/math.fabs(deltay)))) 
    #degree 180-270 
    elif (sector == 3): 
      return (180+math.degrees(math.atan(math.fabs(deltax)/math.fabs(deltay)))) 
    #degree 270-360 
    elif (sector == 4): 
      return (360-math.degrees(math.atan(math.fabs(deltax)/math.fabs(deltay)))) 

Code 4, Scrip for calculating Azimuth of lines 
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Appendix B: Field Measurements 

Measurements collected during fieldwork, Fracture & Fault data presented by Strike and Dip. Kinematic fault 

data are presented by Strike, Dip, Plunge, Type (u-up or d-down), Trend and Fault kinematics   
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Table 6, field data consisting of strike and dip, organized by locality. 
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9.1.1 Kinematic fault data from Magerøy and Porsanger Peninsula: 

Table 7, Kinematic data 

loc_1A 
Strike Dip Plunge Type Trend Fault kinematics 
30 40 -25 d 175 Fa-N-sin 
58 89 64 d 149 Fa-N-dex 
60 80 42 d 214 Fa-N-dex 
63 85 56 d 52 Fa-N-dex 
70 84 50 d 153 Fa-N-dex 
120 35 -10 d 184 Fa-N-sin 
246 57 24 d 109 Fa-N-sin 
268 75 -63 d 56 Fa-N-dex 
270 80 -45 d 279 Fa-N-dex 
340 70 -20 d 189 Fa-N-dex 
 
loc_1B 
Strike Dip Plunge Type Trend Fault kinematics 
18 64 64 d 108 Fa-N 
18 70 -69 d 127 Fa-un-slip 
86 84 82 d 134 Fa-N-sin 
95 62 -60 d 208 Fa-N-dex 
100 68 -68 d 190 Fa-N-dex 
120 64 -62 d 233 Fa-N-dex 
130 60 60 d 220 Fa-N 
135 58 50 d 183 Fa-N-sin 
140 80 76 d 185 Fa-N-sin 
150 82 60 d 164 Fa-N-sin 
272 62 62 d 2 Fa-N 
 
loc_1C 
Strike Dip Plunge Type Trend Fault kinematics 
10 88 -20 d 189 Fa-N-dex 
80 80 70 d 109 Fa-N-sin 
90 80 -78 d 214 Fa-N-dex 
135 78 -70 d 279 Fa-N-dex 
160 78 62 d 184 Fa-N-sin 
174 88 30 d 175 Fa-N-sin 
300 60 -58 d 52 Fa-N-dex 
335 80 -31 d 149 Fa-N-dex 
340 78 -30 d 153 Fa-N-dex 
 
loc_2A 
Strike Dip Plunge Type Trend Fault kinematics 
296 80 -37 d 108 Fa-N-dex 
45 51 -47 d 165 Fa-N-dex 
48 50 50 d 138 Fa-N 
39 53 -48 d 162 Fa-N-dex 
46 59 54 d 102 Fa-N-sin 
312 69 68 d 24 Fa-N-sin 
304 69 -68 d 52 Fa-N-dex 
298 76 70 d 341 Fa-N-sin 
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loc_2B 
Strike Dip Plunge Type Trend Fault kinematics 
160 82 46 d 168 Fa-N-sin 
270 65 64 d 343 Fa-N-sin 
220 40 38 d 289 Fa-N-sin 
330 80 75 d 11 Fa-N-sin 
225 45 -45 d 315 Fa-N-dex 
160 80 40 d 169 Fa-N-sin 
330 52 52 d 60 Fa-N 
332 80 64 d 353 Fa-N-sin 
294 46 44 d 3 Fa-N-sin 
309 33 23 d 350 Fa-N-sin 
330 68 38 d 348 Fa-N-sin 
150 78 -31 d 323 Fa-N-dex 
320 84 23 d 323 Fa-N-sin 
130 88 80 d 141 Fa-N-sin 
240 65 -62 d 359 Fa-N-dex 
 
loc_2C 
Strike Dip Plunge Type Trend Fault kinematics 
110 85 -48 d 284 Fa-N-dex 
274 45 45 d 4 Fa-N 
95 57 56 d 169 Fa-N-sin 
332 40 32 d 20 Fa-N-sin 
92 62 62 d 182 Fa-N 
110 49 45 d 170 Fa-N-sin 
206 49 46 d 270 Fa-N-sin 
250 58 52 d 303 Fa-N-sin 
254 43 36 d 305 Fa-N-sin 
307 70 65 d 358 Fa-N-sin 
317 64 64 d 47 Fa-N 
309 64 62 d 16 Fa-N-sin 
258 52 2 d 260 Fa-N-sin 
248 50 20 d 266 Fa-N-sin 
 
loc_2D 
Strike Dip Plunge Type Trend Fault kinematics 
NO_DATA 
 
loc_3A 
Strike Dip Plunge Type Trend Fault kinematics 
254 75 72 d 310 Fa-N-sin 
331 62 58 d 29 Fa-N-sin 
329 66 24 d 340 Fa-N-sin 
240 51 -31 d 31 Fa-N-dex 
316 78 65 d 343 Fa-N-sin 
30 54 54 d 120 Fa-N 
276 50 41 d 323 Fa-N-sin 
261 60 -58 d 13 Fa-N-dex 
 
loc_3B 
Strike Dip Plunge Type Trend Fault kinematics 
60 55 -48 d 189 Fa-N-dex 
30 54 54 d 120 Fa-N 
22 50 50 d 112 Fa-N 
 
loc_3C 
Strike Dip Plunge Type Trend Fault kinematics 
268 70 60 d 307 Fa-N-sin 
2 70 -23 d 173 Fa-N-dex 
276 52 50 d 345 Fa-N-sin 
250 70 -68 d 6 Fa-N-dex 
 
loc_4A 
Strike Dip Plunge Type Trend Fault kinematics 
NO_DATA 
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loc_4B 
Strike Dip Plunge Type Trend Fault kinematics 
NO_DATA 
 
loc_5A 
Strike Dip Plunge Type Trend Fault kinematics 
240 88 25 d 241 Fa-N-sin 
230 70 20 d 238 Fa-N-sin 
260 75 15 d 264 Fa-N-sin 
244 73 22 d 251 Fa-N-sin 
255 68 18 d 263 Fa-N-sin 
303 58 -6 d 119 Fa-N-dex 
 
loc_5B 
Strike Dip Plunge Type Trend Fault kinematics 
280 61 -35 d 77 Fa-N-dex 
285 65 -30 d 89 Fa-N-dex 
315 54 54 d 45 Fa-N 
 
loc_5C 
Strike Dip Plunge Type Trend Fault kinematics 
80 78 -40 d 250 Fa-N-dex 
79 78 -39 d 249 Fa-N-dex 
 
loc_6A 
Strike Dip Plunge Type Trend Fault kinematics 
300 70 70 d 30 Fa-N 
 
loc_6B 
Strike Dip Plunge Type Trend Fault kinematics 
280 85 80 d 310 Fa-N-sin 
110 68 58 d 150 Fa-N-sin 
65 70 70 d 155 Fa-N 
70 68 65 d 130 Fa-N-sin 
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