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Abstract 

Fisheries management research is mostly centered on providing the needed knowledge about 

the fish stock in order to influence fishermen’s behavior at sea for stock sustainability. 

Management should also integrate knowledge acquired from primary producers (particularly 

phytoplankton) which form the foundations for fish production in implementing fishing 

controlling measures. Phytoplankton production therefore was studied in the Balsfjord from 

March to December in 2008. The study focused on nutrients as controlling factors. Water 

samples were collected at 5, 10 and 50 m from the Balsfjord from early March to early 

December. Nitrate, phosphate, silicate, Biogenic silica, chlorophyll a concentrations and 

phytoplankton abundance were analyzed throughout this sampling period. Seawater 

temperature and pH were also measured during sampling. The peak of the spring bloom 

occurred on 1st April at 5 and 10 m. Nitrate depletion and phosphate reduction occurred at 5, 

10 and 50 m during summer and autumn while silicate showed major reduction during the 

spring bloom. Change in concentrations of silicate caused a shift in phytoplankton 

composition and abundance from diatoms to flagellates. The dominant phytoplankton genus 

and abundance was Chaetoceros during the spring bloom and flagellates after the bloom. 

Phytoplankton production in this fjord is controlled by nitrate. 
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1.  Introduction 

The ocean is a complex body of many chemical, physical and biological reactions. It plays a 

very important role in recycling the major nutrients such as nitrogen (N), phosphorus (P) and 

silicon (Si) which are very important in regulating primary production (Lalli and Parsons, 

2001). The ocean’s productivity depends largely on these nutrients. The measurement of the 

oceans productivity is represented as chlorophyll concentration on biological oceanography 

maps. Primary production is the basis of all trophic levels in any ecosystem. On land, the 

green plants are the primary producers while in the ocean it is the phytoplankton. The growth 

of the phytoplankton is controlled by chemical, biological and environmental factors. Spring 

bloom is a sudden and high bloom of phytoplankton production such as diatoms during the 

spring. It occurs in the temperature and sub-polar waters. The beginning of the spring bloom 

depends on the amount of the spores in the sediment from the previous spring bloom collapse 

or vegetative parts transported from the surrounding fjords (Eilertsen and Taasen, 1984). The 

termination of the blooms is normally associated with grazers, coagulation and/or 

sedimentation or lack of one of the many requirements such as nutrients (Kristiansen et al., 

2001). N, P and Si play important role in regulating phytoplankton production due to their 

requirement in biological processes (Kirchman, 2000). Nutrients are most often depleted 

during the blooms. The knowledge of the phytoplankton in the ocean over a given period 

could be used also to determine the stability of the ecosystem (Hegseth et al., 1995). Apart 

from the upwelling and dissolution of nutrients from sediments, input from the atmosphere 

may be important nutrients source (Spokes and Jickells, 2005). Runoff waters containing 

dissolved nutrients mainly from agricultural and non-agricultural lands may be important 

nutrient sources in coastal waters (Hauxwell et al., 2008). Among all these factors, nutrients 

play a very important role in phytoplankton growth in the presence of all other variables (such 

as light, wind and temperature). The Balsfjord is among the well studied and important fjords 

in the Northern Norway for arctic research. The geological topography of the Balsfjord is an 

important factor for making it a productive fjord (Hegseth et al., 1995).  
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1.1. Nutrients 

They are elements or compounds that play direct roles in the physiological, biological or 

chemical processes so that its absence could lead to malfunctioning, reduced growth or 

symptoms of depletion (Ingestad, 2006). Nutrients are classified as major if they are needed in 

large quantities for activities such as photosynthesis, for example N and P. Trace elements 

(minor nutrients) are required in small quantities like Co, Mn and vitamins. Large empirical 

data collected from various parts of the ocean have revealed that phytoplankton require C:N:P 

in the proportions 106:16:1 (Redfield, 1934; Tyrrell and Law, 1997). In freshwater systems P 

is considered to be the limiting nutrient, while in marine systems N is considered to be the 

limiting nutrient (Downing, 1997).  

 

1.1.1. Nutrients absorption mechanisms 

There are two main mechanisms by which nutrients are absorbed by cells (Atlas, 1984). These 

are diffusion and active transport. The properties of the cell membrane regulate which of the 

transport mechanisms take place. 

1) Diffusion: takes place when nutrient particles move from region of higher concentrations 

to region of lower concentrations until there is equilibrium of particles between these two 

regions. During this process, the cell does not require energy to transport the nutrients 

across the cell membrane. The cell membrane restricts free movement of nutrients to and 

from the cell by using energy to maintain concentration gradients with its environment. 

This process also trigger osmosis (movement of water molecules from region of low 

solute concentration into region of higher solute concentration) due to the nutrient 

concentrations that exist between the cell and its environment. The occurrence of osmosis 

is regulated by the cell membrane. 

2) Active transport: occurs when nutrients move across the cell membrane against a 

concentration gradient. It involves the use of energy. Membrane proteins are important as 

they may act as carriers of these nutrients. This process is most important in absorption of 

nutrients by cells. This is because the most important nutrients are generally available in 

low quantities in the cell’s environment. Other long chain molecules are also absorbed 
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through this mechanism. Phytoplankton cell will absorb its nutrients in the water column 

through this process. 

The uptake rate of nutrients is said to follow the Michaelis-Menten kinetics equation 

(Lehninger, 1975): 

V = Vmax [S] /Km + [S]        1 

V is velocity of uptake, Vmax is maximum velocity, [S] is substrate concentration, Km is 

Michaelis constant (substrate concentration) when V=1/2 Vmax 

It was observed that the maximum absorption limits by phytoplankton cells follow similar 

pattern as described in equation 1 but these limit changes from species to species (Lalli and 

Parsons, 2001). In coastal and oceanic waters where nutrient concentrations, temperature and 

light are dynamic, the absorption rates are subject to change which will influence the Km and 

Vmax.  

 

1.2. pH and nutrients availability 

The chemical forms of nutrients change with change in pH of the medium in which they are 

found (Atkins and Beran, 1992). All organisms are controlled by some specific nutrients 

which are only available within a given pH range. All pH ranges are important based on the 

type of organism in question. N is mostly available as ammonium (NH4
+) and nitrate (NO3

-) 

and P as orthophosphates (H3PO4, H2PO4
-, HPO4

2- and PO4
3-). All these forms of nutrients  are 

pH dependent and a change in pH range can make them available or unavailable for the 

growth of phytoplankton. Nitrates are occluded by cations mainly calcium (Ca2+) and 

magnesium (Mg2+) ions at higher pH values. NH4
+ is also occluded by negatively charged 

clay surface. In principle, acidification of the ocean is due to absorption of CO2 by the ocean 

(as in equation 2 and 3).  There is always a balance between HCO3
-/ CO3

2- that keeps the pH 

at an appropriate range. 

CO2 (g) + H2O (aq)                  HCO3
- (aq) + H+ (aq)     2 

2HCO3
- (aq)                      CO3

2- (aq) + H2O (aq) + CO2 (g)    3 
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Phosphorus is less available at lower pH (< 6) where it forms complexes with hydrogen ions 

(H+) and aluminium ions (Al3+) and higher pH (≥ 9) where it is occluded by Ca2+ and Mg2+. 

At pH near 7 nitrate and phosphate are therefore mostly available for biological use. There 

will be high competition among all nitrate and phosphate users at this pH range. 

Microorganisms and biological processes are also pH dependent just as the nutrients  

(VanDemark and Batzing, 1987). The availability of specific nutrient does not warrant it’s 

usage if  the organism of interest (diatoms) cannot make use of it. There is always a balance 

between pH range on nutrients and microorganisms abundance (VanDemark and Batzing, 

1987). 

 

1.3. Biogeochemical cycling of nutrients 

Deep water is nutrient rich. Upwelling of deep water is an important source of N, P and Si 

input into the euphotic zone. The other important source comes as a result of biogeochemical 

nutrient recycling which is discussed below.   

Nitrogen (N): can be available for marine utilization from the deposit and decay of organic 

materials and conversion of atmospheric nitrogen (N2) by N – fixing organisms into useful 

forms (Naqvi, 2006). Capone (2000) stated that low concentrations of nitrate (NO3
- ) can 

control productivity in the ocean surface layer. Apart from the ocean, nitrogen can also 

control the productivity of coastal upwelling areas (Kudela and Dugdale, 2000). It is well 

known that bacteria may compete with phytoplankton for N (Tanaka et al., 2007). Bacteria 

play an important role in breaking down of proteins into amino acids to ammonium and to 

nitrate. The process by which plant and animal materials are broken down into smaller units 

(monomers) by heterotrophic organisms is called mineralization. In the process of 

mineralization, microbial nutrients requirements are met first before the remaining nutrients 

are available for other users such as phytoplankton. The main forms are: NH4
+ and NO3

- . 

These are called dissolved inorganic nitrogen (DIN). According to Kirchman (2000) the 

similarity of heterotrophic bacteria and phytoplankton cells in carbon to nitrogen ratios (C:N) 

makes them to be competitive for nitrogen. A level of C:N is required by heterotrophic 

bacteria for growth, N is assimilated or regenerated to maintain a required ratio.    
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Nitrification is another process for N supply. Nitrification is an oxidation process whereby 

ammonium (NH4
+) is converted into NO3

- by cyanobacteria (Naqvi, 2006). This is only 

carried out by cyanobacteria with the enzyme nitrogenes. These set of bacteria are called 

nitrifiers and are limited by light. It is therefore assumed that nitrification mainly takes place 

in deep waters. Then mixing of the upper and the lower water layers makes NO3
- available for 

phytoplankton utilization in the euphotic zone (Jonathan et al., 2002). Nitrification is aerobic 

reaction undertaken by Azotobacter and Nitrosomonas. Since temperature controls the 

activities of these nitrifiers, it therefore controls indirectly the availability of NO3
- (Carpenter, 

1983).  

Phosphorus (P): is another important nutrient which heterotrophic bacteria may compete 

with phytoplankton for (Tanaka et al., 2007). According to Kirchman (2000), there are 

relatively more P in bacteria cell than phytoplankton cell due to the small cell nature of the 

former.  P is available through microbial decay of plant and animal materials either from the 

marine or terrestrial origin. During summer and autumn, P is regenerated in the water column 

from the excretes of grazers. 

Silicon (Si): is the about 25.7% of the earth’s crust by weight, second most abundant element 

in the earth’s crust (Heiserman, 1992 ). It is not naturally found in its free state but often in its 

oxide states called silica (SiO2). It is transported into the oceans by runoff or wind in the form 

of particles (lithogenic silica, LSi) when it is physically, chemically or biologically weathered. 

It becomes useful only as silicate. Brzezinski et al. (1998) showed that absorption of Si 

follows immediately after cell division for the reconstruction of the cell wall and to complete 

its life cycle. Upwelling brings up the Si in the oceans sediments for utilization. The silicate is 

transformed into Biogenic silica (BSi) in the frustules (Kristiansen et al., 2001) and goes back 

into the geo-chemical cycle after death and sedimentation of diatoms (Treguer et al., 1995). 

Recycling of the Si is mainly carried out by dissolution of frustules (Kristiansen et al., 2001).  

 

1.4. Primary production  

Light reaching the polar waters is greatly reduced as the angle of incidence becomes large 

during winter due to the dark days (Lalli and Parsons, 1997). Also when it is moving from 

dense medium (air) into denser medium (water), its speed and intensity are greatly reduced 

and even further reduced as it travels even more deeper through the water column. This is 
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because light spreads and part of it is also absorbed by the water and particles. These 

properties make light an important factor in controlling primary production. 

During winter, nutrients are supplied by deep mixing from lower layers (Rey, 2004). 

Temperature and salinity are homogeneously distributed by wind and winter cooling during 

this period. Nutrient concentrations generated for the next primary production season depend 

largely on the depth of this mixing. During spring and summer solarization becomes strong 

resulting in the warming the upper layer and low wind speed reduce vertical mixing resulting 

in high stratification during these periods. This divides the water into two main layers; upper 

warm layer and colder deep layer. There is high mixing (low stratification) during winter. 

In this research primary production is confined on phytoplankton and follows equation 5.  

Light 
6CO2 (g) + 6H2O (l)       C6H12O6 (s) + 6O2 (g)   5 
   Nutrients 

There is a high correlation between satellite views of chlorophyll concentration to fish 

landings all over the world (Brander, 2003). Areas of high chlorophyll concentration are 

tantamount to high phytoplankton production. Photosynthesis takes place mostly in the 

euphotic zone and other microorganisms that live far off this zone receive food through 

current transport.  

 

1.5. Phytoplankton community 

Phytoplankton is called ‘the grass of the sea’ (Rey, 2004 ). This is because of its importance 

in serving as the major primary producer. Diatoms are the most important constitutes of 

phytoplankton in terms of nutrients utilization and their preference by zooplankton and fish to 

other groups  (Laane et al., 2005). They therefore establish an important link in the food 

chains as they are being fed upon by many microorganisms, zooplankton, fish larvae and 

grazing animals like mollusks (snails). In the Balsfjord, Chaetoceros are the most important 

representatives during the spring bloom and flagellates after the spring bloom (Lutter et al., 

1989).  
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1.6. Microbial loop 

The importance of microorganisms in nutrient cycling and energy transfer in the food web 

cannot be overlooked (Nybakken and Bertness, 2005). Microbial loop is important for 

nutrient regeneration. Microorganisms of considerable important players in the microbial loop 

are photosynthetic bacteria. It is estimated that the abundance of bacteria in the ocean is 1029 

(Whitman et al., 1998). The abundance and diversity of bacteria in the ocean depicts their 

ability to make use of DOC by producing enzymes with high metabolic rates (Lawrence et al., 

2007). These enzymes can breakdown complex organic materials such as lignin, cellulose and 

chitin into simple absorbable forms for bacteria and others in the microbial community. DOC 

gets into the marine and fresh waters from decay and dissolution of carbon in plants, animals 

and soils from terrestrial origin. DOC is also produced from photosynthesis. Runoff waters 

are the main carriers of DOC into these water bodies. Bacteria release nutrients when 

metabolizing DOC which benefit the whole food web. Feeding in principle is size dependant 

(larger organisms feed on the smaller ones). A simplified transfer of these energy could be as 

protista feed on bacteria,  copepods could feed on protista and then larvae and small fishes 

could also feed on copepods. The transfer of energy from the protozoans to metazoans before 

subsequent transfer to the fish is also important but mostly neglected due to reduction of 

energy levels (Lawrence et al., 2007). 

Primary production by nanoplankton accounted for 80 percent in the open ocean (Malone, 

1980). Account of all microorganisms’ contribution to photosynthesis is mostly impossible as 

some of them are too small to be trapped by the filters. The type, abundance and contributions 

of phytoplankton or nanoplankton to photosynthesis depend on the geographical location 

(coastal or open ocean), agents for nutrient availability (vertical circulation or upwelling) and 

seasonal variations (Nybakken and Bertness, 2005). During phytoplankton blooms the 

contribution of microplankton are very significant in northern Norwegian waters (Holdal and 

Kristiansen, 2008).  
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1.7. Nutrients, Eutrophication and the Environment 

 In recent times N and P concentrations and loads have increased between 10-20 fold due to 

anthropogenic activities in all water bodies mainly from fertilizers used on agricultural lands 

(Jickells, 1998). Eutrophication is nutrient enrichment in aquatic bodies which promote high 

primary production and changes in phytoplankton (algae) composition (Reid, 1977). It may 

reduce the level of oxygen concentration and many macro benthic organisms may decline 

(Rachor, 1980). A change in the primary production constituents affect all the other links in 

the food chain. In high productive shallow waters, piles of high levels of decayed and un-

decayed organic materials become large. The cost of cleaning eutrophicated water is very 

expensive for example, in England and Wales where it costs between 105 and 160 million 

euros per year (Pretty et al., 2003). Eutrophication does not receive the much needed attention 

by the world and may be a more serious environmental problem than overfishing and global 

warming in some few decades to come if the current trend of environmental awareness only 

concentrate on curbing mass production of carbon dioxide evolution. 

 

1.8. The scope of this study 

This study focuses on the role of nutrients in controlling phytoplankton growth through the 

seasons. The main objectives of this study is to: 

1. Evaluate the nutrients (N, P and Si) in the Balsfjord 

2. Identify the various compositions of the phytoplankton in the fjord 

3. Evaluate the controlling factors of primary production in the fjord. 

I hypothesized that nutrients are the main controlling factors of primary production in the 

Balsfjord. 
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2. Materials and methods 

2.1. Settings 

Balsfjord is oriented south-southeast of Tromsø; Straumfjord and Kvalsund are the two inlets 

into this fjord (Eilertsen et al., 1981, Eilertsen and Taasen, 1984). Through Straumfjord, 

Balsfjord is linked to Malangen which is a fjord of about 30 km south of Tromsø. It is a cold-

water fjord with maximum depth of 195 m, temperature which varies from 1 to 70C and 

salinity of 32.80 to 34.00 psu. The fjord is about 46 km long with a width of 5 km and 195 m 

above deep and a sill of 35 m deep.  The fjord is not straight; the bending creates up-wellings 

and down-wellings which are the foundations of its productivity. 0-70 m form the upper layer 

and 70-180 m form the lower layer creating two different circulation patterns. The current is 

strongest in the upper and the bottom layers and is very weak at 70 m where the two layers 

change directions. The upper layer moves northward while the lower layer moves southwards. 

Figure 1 shows the Balsfjord and its surrounding fjords. 

 

Figure 1:  The map showing sampling position of the Balsfjord, Tromsø (Northern Norway). 

The cross is the position with coordinates N 069031.271, E 018058.841 where samples were 

collected. 
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2.2. Sampling 

The sampling was carried out in the upper layer of the fjord with the research boat Hyas. The 

sampling depths were 5, 10 and 50 m. Waters were collected with Niskin water bottles and 5 

liters from each depth were immediately transferred into acid-washed and ocean water rinsed 

5 liter carboys. These were transported immediately to the laboratory for analysis. The YSI 30 

Handheld Salinity Conductivity Temperature System was used to measure salinity and 

temperature at the depths of 2, 4, 6, 8, 10 and 14 m.  

 

2.3. Laboratory analysis 

All equipments used for analysis were acid washed and rinse at least 3 times with de-ionized 

distilled water. 

 

2.3.1. Chlorophyll a determination 

250 ml of sample was filtered through a 2.5 cm GF/F filter. This volume was reduced when 

the concentrations of chlorophyll a were becoming high. The filter was transferred into a test 

tube and 5 ml methanol was added as an extracting agent. The tubes were covered with 

parafilm and stored in the dark for 4 hours or left in the refrigerator overnight. The extract 

was then transferred into miniature test tube and read in a calibrated (Sigma chlorophyll a)  

Tuner fluorometer (Strickland and Parsons, 1972). This was then followed by addition of 2 

drops of 10% HCl and the second reading was done. For each depth 3 replicates samples were 

measured. The values obtained from these two readings (before and after acidification) were 

used in the computation of the chlorophyll a content according to equation 6. 

mg Chl a m-3 = 0.001938 x (Rb-Ra)/Volume    6 

where Rb is reading before acidification and Ra is reading after acidification and volume in 

ml. 
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2.3.2. Biogenic silica (BSi) 

Glassware is a product of silica therefore glassware must be avoided to reduce contamination. 

No forceps were used to handle glass fiber and no glassware was used in this analysis. A 750 

ml of the sample was filtered through 47 mm polycarbonate filters with pore size 0.6 µm. 

Three replicates from each depth were filtered for analysis. The filters were transferred into 

cell culture wells and dried in an oven at 600C for 6 hours. The wells were cooled to room 

temperature and stored in small zip lock plastic bag for further analysis. BSi was measured by 

hydrolysis (Paasche, 1980) as described below.  

Unfolded filters and tube were placed in a 50 ml polypropylene centrifuge and stopped to 

prevent loss of any Si particle. The contents in the centrifuge tubes were subjected to 

hydrolysis by adding 18 ml of 0.5% Na2CO3 (soda) solution and heated at 85oC for 2 hrs. The 

tubes were allowed to cool and the filters were removed. A drop of methyl orange indicator 

was added and 0.5 N HCl was added from a burette to neutralize the soda to the turning point 

of methyl orange (pH 3–4) from red to pink. Distilled water was added to the content to make 

up to 25 ml. Equations 7 and 8 showed stepwise conversions from silica and subsequent 

products by each reagent into Si(OH)4 (aq). 

SiO2 (s) + Na2CO3 (aq)                  Na2SiO3 (aq) + CO2 (g)   (Hydrolysis step)  7 

Na2SiO3 (aq) + 2HCl 
(aq) + H2O (aq)              Si(OH)4 (aq) + 2NaCl (aq)  (Final) 8 

A 10 ml of a molybdate solution was added, the tubes were covered, mixed thoroughly and 

allowed to stand for 10 minutes. Reducing agent was immediately prepared from a mixture of 

methol-sulphite, oxalic acid and sulphuric acid. A volume of this was added to the content in 

the test tube up to the 50 ml mark. The tubes were allowed to stand for 2 – 6 hours before the 

concentration of Si (OH)4  was determined by colorimetric method using 1 cm cells. The 

optical density for the standard ODST (5.00 mmol m-3), blank (polycarbonate filter) ODBL and 

synthetic seawater ODSSW were measured first before the sample readings ODSA were made. 

The concentrations of Si(OH)4 were calculated by using equation 9. Further conversions were 

done to obtain the level of BSi in the ocean at the time of sampling based on the volume of 

sample water filtered. 

mmol m-3 = (5.00/(ODST – ODSSW)) x (ODSA – ODBL)    9 
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BSi concentrations measured were in samples collected at 5 m depths at selected dates based 

on chlorophyll a concentrations and phytoplankton identification and abundance examination. 

 

2.3.3. pH determination 

Electronic pH meter (744 pH meter) was used in determining the pH values on the days the 

samples were collected and throughout the sampling period. It was first calibrated with pH 

standards at 4.0, 7.0 and 9.0. A 20 ml water sample was taken at each depth 5, 10 and 50 m 

and allowed to adjust to the room temperature before pH reading was made.  

 

2.3.4. Nutrients 

100 ml of the sample was transferred into acid washed plastic bottle. Gloves were used in 

handling the plastic bottles. The bottles were put in a zip-lock plastic bag and frozen. The 

samples were used later for further analysis using a nutrient analyzer (O. I. Analytical, Texas 

USA). Nitrate was read as NO3
- + NO2

-, silicate as Si(OH)4 and phosphate as orthophosphate.  

The nutrient analyzer works under the same principles used in the chemistry laboratory for 

colorimetric determination of nitrate, phosphate and silicate according to Stockwell (1996). It 

measures nutrients of very minute concentrations. It works well when carefully operated. The 

major components are: the sampler, processor and monitor.  

 

2.3.4.1. Nutrient analyzer operation mechanisms 

The frozen samples were allowed to thaw and adjust to room temperature and mixed well by 

shaking. The test tubes were rinsed with the water sample three times and filled almost to the 

brim with sample. The filled test tubes were arranged in racks under the sampler according to 

a sample table.  

The analyzer was calibrated with reference water from Ocean Scientific International Limited 

(Marine nutrients standards kit 2001) before water samples were measured. Artificial 

seawater was used as blank.   
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Sampler section: consists of a pistol containing a suction needle for taking fixed volumes of 

seawater from the test tubes. After each suction, artificial seawater flows through the needle 

to wash it of any of the previous water sample before the next sample. 

Processor section: has in-let tube which receives the sample from the needle suction. This is 

then distributed into different tube channels where reagent mixtures are added and mixed in a 

reaction chamber. The out-let flow of the sample is delayed by mixing coils to ensure 

complete color development. Wash water (artificial seawater) and sample are separated by air 

or helium (He) bubbles to avoid dilution. Air is replayed by He in the nitrate line because air 

interferes with the nitrate measurements. As the developed color mixture gets into the 

detector, the air and helium bubbles are removed in a debubler before the color mixture enters 

the detector.  

Monitor: displays the readings made from the detector and converts the readings to 

concentrations. It also allows any part of the graph to be viewed in detail. The detection limits 

for each of these nutrients can also be determined (see section 2.4). 

Nitrate to phosphate ratios were calculated from concentrations of nitrate and phosphate 

obtained at 5 m for the time series plot. The same reason as stated under BSi method. 

 

2.3.5. Phytoplankton 

100 ml sample was transferred into a glass bottle and conserved with neutralized 

formaldehyde (2 ml of formaldehyde in 100 ml of seawater). The bottles were stored in a dark 

room. The samples were examined under a light microscope and genus identification was 

done according to Throndsen et al., (2007). 

2ml of the preserved water samples was transferred into cell culture chamber by a clean-

sterile pipette and covered with the lid. It was allowed to stand for at least 2 hours or 

overnight to allow all cells in the water sample to settle and to adjust to room temperature. A 

calibrated light microscope was used for identification and counting of the cells under 20x 

and 40x magnification respectively. Focusing on the dominating genera, chlorophyll a 

concentrations were used as a guide for which samples to select. Identification and counting 

were done at the 5 m depth before spring bloom, spring bloom and after spring bloom. The 

number of strips observed and counted was influenced by the number of cells seen in each 
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strip. For instant, one strip was enough in estimating the dominating genera in the spring 

bloom because 100 and more cells were identified and counted. In the other seasons, the 

whole cell chamber was counted because of low numbers of cell per each strip. 

 

2.4. Statistical methods 

Sample sizes were influenced by the four seasons: spring (March – April), summer (May – 

July), autumn (August – October) and winter (November – February). Samples were collected 

every week during the spring up to the mid of summer. Weekly collection during March was 

important to monitor the spring bloom peak and collapsed stage due to it’s dynamic nature. 

After the collapse of the spring bloom samples were collected every two weeks. 

Standard deviation (std), coefficient of determination (r2) and coefficient of variation (CV) 

were used to validate the observed values. Most of  CV in Table 2 were < 10%. Simple scatter 

diagrams and graphs were used to analyze relationships between the variables. MATLAB was 

used to draw Balsfjord and locate the position of sample collection. Surfer software was used 

for contour plots. 

 

Table 1: Detection limits for  the Automated nutrient analyzer. 

 Nutreint 
Detection limit 

(mmol m-3) 
NO3

-/NO2
- 0.15  

PO4
3- 0.02  

Si(OH)4 0.02  
 

Detection limits for the nutrient analyzer are given in Table 1. They were calculated as 3 x 

standard deviation from 7 measurements. 
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Table 2: Average CV% of nutrients, BSi and chlorophyll a at 5, 10 and 50 m. 

 Nutrient 5 m 10 m 50 m

Nitrate 6 5 4

Phosphate 9 8 7

Silicate 4 3 4

BSi 10 nd nd 

Chl a 9 7 16
 

nd = not determined 
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3. Results  

3.1. Seawater temperature  

Very low temperatures of 2.3 – 4.3 OC were recorded during spring (Appendix 9). In Figure 2, 

during summer the highest temperature variations ranged from 5.0 – 9.7 OC. Temperature 

variations were very high in the upper layers (2 – 10 m) during this period. During autumn 

temperatures were constant throughout the entire profile. Temperatures during winter ranged 

from 5.5 – 6.5 OC. 
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Figure 2: Temperature throughout the sampling period. The contour plot is based on 

measurements at 2, 4, 6, 8, 10, 12 and 14 m. 

Salinity and density results were biased due to the limitation of the YSI 30 Handheld Salinity 

Conductivity Temperature System used. These results have therefore not been included in this 

presentation. 

 

3.2. Nutrients 

Table 3 shows a summary of the nutrients measured on some specific days for samples 

collected in 2008. The table shows events before (February), during (March) and after (May) 

the spring bloom. 
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Table 3: Nutrient concentrations (mmolm-3) on some specific sampling dates at 5, 10 and 50 m. 

Dates in 
2008  Nitrate Phosphate Silicate 
   5  10  50 5 10 50 5  10  50

7 Mar 6.16 6.86 7.78 0.58 0.66 0.66 5.62 6.15 6.35

12 Mar 7.90 7.97 7.76 0.65 0.65 0.68 6.78 6.90 6.46

28 Mar 2.46 3.99 8.00 0.34 0.44 0.57 3.50 3.95 5.87

1 Apr 3.91 4.25 6.72 0.41 0.43 0.58 5.79 5.95 6.61

11 Apr 3.85 3.82 3.80 0.43 0.44 0.42 3.54 3.46 3.31

13 Apr 2.38 2.70 2.50 0.36 0.33 0.32 2.73 2.73 2.72

23 Apr 1.16 1.13 3.08 0.30 0.30 0.41 3.25 3.05 3.19

28 Apr 2.80 0.03 0.15 0.44 0.23 0.15 3.27 2.89 2.81

5 May 0.56 1.01 2.13 0.10 0.16 0.32 3.04 3.04 3.38

26 May 0.74 1.17 2.52 0.14 0.18 0.36 5.32 5.02 5.31

3 Jun 0.15* 0.15* 2.97 0.07 0.09 0.41 5.32 4.58 5.14

21 Jul 1.95 2.69 4.65 0.19 0.25 0.43 4.62 5.20 5.92
 

*Detection limit. 

 

3.2.1. Nitrate  

Nitrate was depleted during summer with some values <0.15 mmol m-3 (detection limit) at 5 

m and was replenished in November with an average value of 4.25 mmol m-3 as in (Table 3 

and Appendix 4). Depletion trend was similar at 10 m but was not that pronounced at 50 m 

(Figures 3 and 4). 
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Figure 3: Nitrate concentration (average ± std in mmol m-3) in the Balsfjord measured at 5, 
10 and 50 m. A low concentration on November 7 has been excluded from the discussion. 
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Figure 4: Contour plot of the nitrate concentrations at 5, 10 and 50 m. 

 

3.2.2. Phosphate 

Phosphate was gradually reduced from the beginning of the spring and the reduction became 

intense as spring bloom set-in in June (Table 3). Phosphate was highly reduced at 5 and 10 m 

during summer and autumn as compared to concentrations at 50 m. Figure 5 and 6 showed the 

depletion trends.  
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Figure 5: Phosphate concentration (average ± std in mmol m-3) in the Balsfjord measured at 
5, 10 and 50 m. A low concentration on November 7 was not included in the discussion. 
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Figure 6: Contour plot of the phosphate concentrations at 5, 10 and 50 m. 

 

3.2.3. Silicate 

Major reduction of silicate occurred during the spring bloom at all depths (Table 3). 

Reduction was gradual and replenishment was very fast. The average concentrations in all the 

seasons and depths were almost the same (4.9 mmol m-3 for 5 and 10 m and 5.1 mmol m-3 for 
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50 m). Figure 7 and 8 showed minor depletion during mid-summer to mid-autumn mainly at 5 

and 10 m. All depths showed higher replenishment during winter.  
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Figure 7: Silicate concentration (average ± std in mmol m-3) in the Balsfjord measured at 5, 

10 and 50 m. A low concentration on November 7 was excluded from the discussion. 
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Figure 8: Contour plot of the silicate concentrations at 5, 10 and 50 m. 

 

3.3. Nutrient ratios 

Trend lines from scatter plots of nitrate versus phosphate at 5, 10 and 50 m showed slopes in 

the range 12–15 (Figure 9a, b and c). All depths showed positive x intercepts indicating the 
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availability of phosphate when nitrate was depleted. The plots were statistically significant 

with F significance <0.0000 (see Appendix 11-14). 

Seasonal development of the nitrate: phosphate ratio at 5 m depth is given in Figure 10. The 

ratio was higher during the winter and spring (8-10) than during summer and autumn (5). The 

plot for 5 m was shown as a case study for similar trends were seen at 10 and 50 m.  
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Figure 9a: Nitrate verses phosphate plot at 5 m for all seasons in 2008. 
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Figure 9b: Nitrate verses phosphate plot at 10 m for all seasons in 2008. 
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Figure 9c: Nitrate verses phosphate plot at 50 m for all seasons in 2008. 
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Figure 10: Nitrate to phosphate ratio at 5 m start in March 7, 2008 (diamond = spring, square 

= summer, triangle = autumn, cross = winter). 

 

Silicate to nitrate ratios trend as seen in Table 4 showed nitrate were highly depleted as none 

of the ratio values were <1. The highest depletion occurred during the spring bloom (1.3) and 

nutrients rebuilding occurred afterwards. Figure 11 showed a plot of silicate and nitrate 
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concentrations with 4.1 mmol m-3 of silicate when nitrate was completely depleted. The 

regression line is significant at F = 0.0117 (see Appendice 15). 

Table 4: Silicate to nitrate ratios (mol: mol) in the different seasons at 5, 10 and 50 m. 

 
Season 5 m 10 m 50 m 
Spring  1 14 3 

Summer 42 16 4 

Autumn 8 4 2 

Winter 2 1 2 
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Figure 11: Silicate and nitrate concentrations plot at 5 m. 

 

3.4. pH 

pH values ranged from 7.2 – 8.0 at 5 m, 7.6 – 8.0 at 10 m and 7.7 – 8.1 at 50 m (Appendix 8). 

There are similar ranges for all the depths but a wider pH range at the 5 m than at 10 and 50 

m.  
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3.5. Chlorophyll a concentrations 

Figure 12 and 13 showed peaks at all depths and seasons. The average chlorophyll a 

concentration was 2.0 mg m-3 during spring at 5 m (Appendix 2). The highest concentrations 

were 3.9 and 5.7 mg m-3 during the spring bloom on April at 5 and 10 m respectively (Table 

5). After these peaks concentrations declined sharply and steadily (Figures 12 and 13). The 

lowest average chlorophyll a concentrations at these depths occurred during winter. The 

highest peaks during  summer were 3.2 and 4.7 mg m-3 at 5 and 10 m respectively. The 

highest peak of chlorophyll a concentration at 50 m was 3.5 mg m-3 observed during early 

summer and lowest was 0.1 mg  m-3 during early spring and late winter (Table 5).  
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Figure 12: Chlorophyll a concentration (average ± std in mmol m-3) in the Balsfjord 
measured at 5, 10 and 50 m. 
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Figure 13: Contour plot of the chlorophyll a  concentrations at 5, 10 and 50 m. 

 

3.6. Trends of chlorophyll a and nitrate concentrations 

Figure 14 show the chlorophyll a and nitrate depleting trends. Similar trends were seen at all 

depths but only values from 5 m are presented in this figure (see BSi method). Chlorophyll a 

concentrations were very low early during spring when nitrate concentrations were high. 

Nitrate depletion was observed when chlorophyll a concentrations were high during the 

spring bloom, summer and autumn. When chlorophyll a concentrations became low again 

during winter nitrate concentrations recovered and high values of nitrates were observed once 

again.  
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Figure 14: Nitrate depletion and chlorophyll a production trends at 5 m. 
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3.7. Biogenic silica (BSi) concentration 

Selected peaks from the chlorophyll a values were used as a guide for BSi analysis. These 

peaks were before, during and after the spring bloom. The BSi concentrations increased 

steadily as primary production rose until the highest BSi concentration was observed in April. 

After April BSi concentration declined and remained low with no abrupt change. The BSi 

concentration ranged from 0.2–4.3 mmol m-3 (see Figure 15a and Table 5). During spring BSi 

concentrations ranged from 0.2–4.3 mmol m-3 and during summer 0.3–0.9 mmol m-3. 
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Figure 15a: Biogenic silica concentrations at 5 m depth on selected dates.  

There is almost an inverse relationship between silicate and BSi as in Figure 15b. Generally 

there was higher concentration of silicate during the early stages of spring and summer when 

the use of silicate was minimal. A corresponding low concentrations of BSi were recorded. 

Relatively the highest BSi concentration was on April 1 which resulted in high reduction in 

silicate concentration (Table 5). The lowest BSi (0.07 mmol m-3) was observed on March 12 

which also recorded the highest silicate concentration (6.78 mmol m-3). 
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Figure 15b: The concentration between silicate and BSi during before, during and after the 
spring bloom at 5 m. 

 

3.8. Phytoplankton genera composition 

Phytoplankton composition observed from March to July was dominated by Chaetoceros, 

Fragilariopsis, Phaeocystis, unidentified flagellates and unidentified diatoms (see Table 5). 

Early in the spring (March), unidentified diatoms dominated with cell abundance of 120 cells 

mL-1. As spring bloom occurred in April, Chaetoceros became dominant with 1122 cells mL-1 

on  April 1 and declined afterwards on  April 13 with 52 cells mL-1. After the collapse of the 

diatom community, Fragilariopsis then became more dominant than any other genera in those 

periods with 175 and 285 cells mL-1 on April 23 and 28 respectively. It was succeeded by 

Phaeocystis with 55 cells mL-1 on  May 5. Unidentified flagellates dominated after May. All 

flagellates observed were less than half the size of the diatom (Chaetoceros). 
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Table 5: Chlorophyll a concentrations measured at 5, 10 and 50 m and BSi, dominant genera 
identified and cell abundance measured at 5 m on some specific sampling dates. 

Dates in 
2008 Chl a (mg m-3) 

BSi  
(mmol m-3) 

Dominant genera 
identified 

Cell abundance  
(x 1000/L) 

   5  10  50  5 5 5 

7 Mar 0.10 0.11 0.05 0.15 Unidentified diatoms  10 

12 Mar 0.25 0.21 0.08 0.07 Unidentified diatoms 120 

28 Mar 3.76 3.82 1.33 1.66 Unidentified diatoms  75 

1 Apr 3.93 5.65 0.94 4.34 Chaetoceros 1122 

11 Apr 2.59 3.60 2.91 1.24 Chaetoceros 375 

13 Apr 2.01 2.23 2.08 1.83 Chaetoceros 52 

23 Apr 1.90 2.35 1.70 0.41 Fragilariopsis 175 

28 Apr 1.43 1.49 2.62 0.37 Fragilariopsis 285 

5 May 1.94 2.38 3.52 0.38 Phaeocystis 55 

26 May 2.09 2.28 0.72 0.31
Flagellates (autotrophic and 
heterotrophic) 64 

3 Jun 3.19 2.20 0.17 0.26
Flagellates (autotrophic and 
heterotrophic) 72 

21 Jul 2.04 1.62 0.26 0.88
Flagellates (autotrophic and 
heterotrophic) 62 
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4. Limitation of this study 

The sources of the nutrients and the amount they contribute could give information of the 

major nutrient supply into this fjord. Hydrology of the Balsfjord was not included in this 

study which would have provided why there is nutrient reflux and possibility of predicting the 

trend of nutrient availability with time. Other nutrient competitors like bacteria were not 

experimentally sampled and counted.  

Chlorophyll a was used as a measure of phytoplankton production represented total 

production (photosynthesis). This was because essential step such as energy required for 

respiration (for example diatom) was not experimentally determined in this study. 
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5. Discussions 

5.1. Temperature and turbulences control on phytoplankton 

In general phytoplankton growth increase by increasing temperature (Eppley, 1972; Elliot et 

al., 2006). In the Balsfjord low water temperature apparently led to high phytoplankton 

species diversity and Chaetoceros abundance during the spring due to high nutrient 

availability (Table 5) and solarization (Hegseth et al., 1995). Other factors such as low 

stratification of the water masses and light might play a very important role (Huisman and 

Sommeijer, 2002). Temperature values were similar to those observed by Hegseth et al., 

(1995). During spring it was observed from the temperature contour plot that water profile 

became calm (Figure 2). During summer, autumn and winter temperatures were quite high but 

those values did not result in high growth of phytoplankton due to nutrient depletion which is 

discussed below. Temperature is important in regulating phytoplankton growth but data 

collected was not large enough to prove this. Specific nutrients like nitrate and silicate are the 

possible controlling factors of the spring bloom development and will be further discussed 

below.   

The strength of turbulence and stability of the water column are  important in regulating 

phytoplankton production (Ghosal et al., 2000, Kirchman, 2000). These were not also 

considered during sampling as time for this research was limited but were discussed due to 

their importance in phytoplankton production. Turbulence can act as an agent for nutrients 

supply for primary production. The strength of turbulence is important as too low turbulence 

will not bring up nutrients in sediments of the sea floor. Likewise too high turbulence could 

result in too high mixing in the euphotic zone. Therefore intermediary turbulence is required 

for primary production. Temperature contour plot showed mixing after the spring bloom 

(Figure 2).  Apart from change in temperatures, the spring bloom collapse could also be as a 

result of high cell densities and high mixing in the water column (Eilertsen and Taasen, 1984). 

Also aggregation and sedimentation of diatoms are capable of causing the collapse (Tiselius 

and Kuylenstierna,1996). Furthermore grazing by copepods during the summer on 

phytoplankton (diatoms) could have also collapsed the bloom (Nybakken and Bertness, 2005). 

This was because copepod was found in the water sample for phytoplankton species 
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identification under the light microscope examination. This was treated as a flyer since it was 

the only one identified in June.   

 

5.2. Nutrients control on phytoplankton 

Phytoplankton requires nutrients for growth, most important are phosphate, nitrate and silicate 

(Brown et al., 1995). Primary production was highest during the spring but nutrients seemed 

to be less depleted during this period due to high nutrients availability from the last winter 

season. In particular there is always surplus of phosphate in the marine waters which are 

important in the next production. Nitrate depletion occurred during summer, phosphate and 

silicate reduction occurred during summer and spring respectively. Phosphate reduction was 

very prominent at 5 and 10 m than at 50 m (Figure 5). These were regions where active 

photosynthesis takes place and nutrients demand would be high (VanDemark and Batzing, 

1987). 5 and 10 m received a lot of sunlight which encouraged nutrients depletion through 

photosynthesis. In the periods when low concentrations of these nutrients were observed there 

were corresponding high chlorophyll a and abundance of phytoplankton (diatom) composition 

(Table 5). Nitrate was highly depleted at these depths because of its importance in most 

biological activities (Figures 3 and 4). Nitrate must control phytoplankton production. 

Depletion of nitrate was very intense from late spring into summer to autumn at 5 and 10 m 

than the same depths for phosphate due to its utilization in production (Figures 3 and 4). 

There must be constant supply of phosphate or its demand for phytoplankton and bacteria 

activities must be  lower than nitrate (Kirchman, 2000). It is known that phosphate is 

regenerated in the water column but nitrogen is regenerated in the form of ammonia instead of 

nitrate (Kirchman, 2000). Also heterotrophic bacteria have higher cellular phosphate than 

phytoplankton therefore competition for it may be low. These reasons make nitrate supply 

limited by supply of nitrate rich water only and therefore prone to easy depletion when 

demand for it is more than its supply. At 50 m depth nitrate and phosphate values were low 

but nitrate depletion was more intense than phosphate at this depth. Silicate reduction was 

generally slow at all depths throughout the sampling periods as was also observed by Holdal 

and Kristiansen (2008).  Intense reduction occurred during spring bloom because of more cell 

division leading to high diatom abundance (Tables 3 and 5). Similar reduction was observed 

during spring bloom by Kristiansen et al., (2000). Minor reduction also occurred in autumn at 
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5 and 10 m when cell abundance were low. Restoration of silicate concentrations after spring 

bloom was rapid as cell abundance was low and a shift of phytoplankton composition from 

diatoms to flagellates. In most cases reduction was faster at 5 and 10 m and restoration was 

faster at 50 m (Figure 7). This was as a result of the supply of nutrients by upwellings from 

sea floor playing important role in nutrient availability in the water column (Rey, 2004). 

There are also supply of silicate, nitrate and phosphate from in-flow of water from 

surrounding rivers into the fjord (Eilertsen and Taasen, 1984). According to Chester (2003) 

silicate is generally never depleted in marine waters due to constant dissolution of shells 

throughout the water column. The results show that silicate concentrations were intensely 

reduced (for example at 5 m, 21%) during the spring bloom when diatom production was at 

its peak and probably due to the short period of the bloom (Tables 3 and 5). Silicate is 

important for diatom abundance and at low concentrations flagellates increase while diatoms 

decline. The available silicate and BSi trend gave important relationship throughout the 

production seasons. The highest BSi value was observed when diatom abundance was highest 

on 1st April. On this date about 50% of Si expressed in BSi was obtained. The remaining days 

had lower BSi/silicate fractions in accordance to variations in phytoplankton composition 

(Table 5). In general there was an inverse relationship between BSi and silicate as in Figure 

15b. There was also  high concentrations of silicate than actually utilized by the diatoms since 

silicate was never depleted. There was no autumn bloom in 2008 which could have utilized 

more of the silicate available.  

Primary production was highest during the spring but nutrients seemed to be less depleted or 

reduced during this period due to the high nutrients availability from the last winter season 

(Figures 3, 5 and 7). Nitrate and phosphate built up again after summer and autumn when 

their demands were low. The restoration of silicate begun immediately after the spring bloom 

since only diatoms utilize it. Higher nutrient concentrations were observed at 50 m as minimal 

primary production occurred because of low light intensity. Phytoplankton cell size 

distributions are important in pelagic food web (Malone, 1980). This is because smaller cells 

are more efficient in nutrient assimilation than larger cells and most often dominate after the 

peak of the bloom (Holdal and Kristiansen, 2008). Phytoplankton genera changed from 

diatoms Chaetoceros to less abundance flagellates which could survive in low nutrient 

concentrations after the spring bloom. The change in phytoplankton composition from 

Chaetoceros to flagellates was as a result of silicate reduction. The cell abundance per liter 
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confirmed this trend (Table 5). Eilertsen et al., (1981) also observed that the main 

phytoplankton communities were Chaetoceros as among the main genera in Balsfjord and the 

abundance were also similar to what were observed during this research. Cell specialization in 

nutrient utilization could also be the reason for the change in genera composition. 

 

5.3. pH 

pH is important factor which regulates nutrients chemical composition and spectrum of 

biological activities (VanDemark and Batzing, 1987). The pH values observed represented 

typical seawater values also observed by others like Hegseth et al., (1995). Most biological 

reactions occur within these pH ranges 7.2-8.0 (Appendix 8) as was observed by VanDemark 

and Batzing, (1987). This exposes the nutrients required by phytoplankton to competition 

mostly from bacteria. Large amounts of phytoplankton and bacteria  also accounted for the 

rapid reduction of phosphates and depletion of nitrates during the peak seasons of production 

(spring and summer). At these pH values, cations such as Al3+, Ca2+ and Mg2+ would be 

precipitated and nutrients especially phosphates would be in mobile states. The wider range of 

pH observed at 5 m could give a large range spectrum of biological reactions for more 

microbial activities than at 10 and 50 m (VanDemark and Batzing, 1987). 

 

5.4. Nutrient ratios 

Nutrients were highly depleted or reduced during the active seasons of  phytoplankton 

production and this resulted in low nutrient availability in the water column (Figure 9a, b and 

c). Nitrate was depleted during the active production period while phosphate was reduced; 

therefore the collapse of the bloom was probably a result of nitrate deficiency. Tyrrell and 

Law (1997) also observed the same trend in the global ocean studies. The positive x-intercepts 

of at 5, 10 and 50 m respectively (Figure 9a, b and c) were indications of the availability of 

phosphate to support production when nitrates were totally depleted. An equation for these 

depths could be summarized as [NO3
-] = (11-15) [PO4

3-]. The main observation made from 

these graphs was that the slopes were more tilted to the x – axis (phosphate axis) than to the y 

– axis (nitrate axis). Also 1 mmolm-3 of phosphate to 11-15 mmol m-3 of nitrate were required 

for biological activities. These two observations indicated more demand and utilization of 
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nitrate than phosphate. Earlier research by Officer and Rhyther (1980) suggested the 

importance of silicate to nitrate ratios to marine life. Silicate to nitrate ratios observed in this 

research were above 1:1 which were similar observations made by Turner et al. (1998). They 

stated that when the ratio falls below 1:1, there would be a change in the trophic levels from 

diatoms to higher feeders. This would also reduce the diatom abundance. Since all the silicate 

to nitrate ratios were above 1:1 ratio, there would be higher energy efficiency and diatoms 

formed the dominate genera in this fjord. The results of silicate and nitrate ratios also confirm 

that nitrate was the main controlling factor.  

 

5.5. Chlorophyll a and phytoplankton production 

In Figure 12 chlorophyll a concentrations observed at different periods corresponded to 

phytoplankton productions as BSi and cell abundance (Table 5) and are in accordance with 

values observed by Wassmann et al., (2000). Phytoplankton composition varied a lot 

throughout the seasons as nutrients did. Chlorophyll a was highest during spring and lowest 

during winter at 5 and 10 m. Chlorophyll a was highest in early summer and least during 

winter at 50 m. Low light and high mixing of the water column were responsible for the 

lowest production during winter at 5, 10 and 50 m. Chlorophyll a concentration trends 

changed from season to season due to the dynamic nature of oceanic conditions. This also 

resulted in change in phytoplankton composition (Table 5). Microscopic identification and 

abundance revealed that high chlorophyll a peaks have high diversity of phytoplankton genera 

and abundance. For example April 1st at 5 m had the highest phytoplankton abundance and 

genera.   

 

5.6. Phytoplankton and Fisheries management 

The basis of fisheries management begins with the knowledge of phytoplankton on which the 

fish depends. The composition of phytoplankton is dynamic and prone to change in response 

to its environmental conditions such as climate change and pollution (Hays et al., 2005). A 

basic sign to that effect is an increase in smaller cells dominating the water ecosystem such as 

flagellates which were a minority in previous times (Turner et al., 1998). This change could 

increase the number of trophic levels, reduce energy efficiency, reduce fish production and 
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change the flow of energy to other predators. Hydrological conditions do not only result in 

nutrient reflux but can also change the composition of phytoplankton composition (Hays et 

al., 2005). In Table 4, Chaetoceros dominated the genera of phytoplankton community during 

spring and flagellates became dominate after the collapse of the bloom. Flagellates only 

formed 8% while Chaetoceros formed 63% of the phytoplankton community in these two 

seasons (spring and summer). This high cell numbers of Chaetoceros indicated that there was 

enough food to support many forms of primary consumers to support high fish production. 

There would therefore be high energy efficiency within the ecological community of 

Balsfjord. Any shift in phytoplankton composition in the long term can change the spawning 

grounds, feeding and migration pattern of many primary and secondary consumers. In the 

process of photosynthesis, phytoplankton performs other valuable ecological activities such as 

biogeochemical recycling of nutrients, carbon and pollutants as different biochemical 

transformations take place. 
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6. Conclusion  

The study evaluated N, P, Si, identified the dominating compositions of phytoplankton and 

evaluated these controlling factors on primary production in the Balsfjord. It has been 

demonstrated from this study that phytoplankton production is governed by several 

environmental factors which are inter-dependent. It is therefore difficult to single out factors 

like light, turbulence, temperature and nutrients as the only controller of primary production. 

Temperature was low especially during the spring than in the remaining seasons which 

facilitated changed in phytoplankton composition. Nutrient concentrations showed depletion 

during the spring bloom and least during winter. Nitrate was more depleted than phosphate 

than silicate during the entire seasons. Microscopic examination also showed a shift in 

phytoplankton species as nutrients were depleted or reduced. The nitrate to phosphate ratios at 

5, 10 and 50 m revealed a strong correlation between these nutrients in facilitating 

phytoplankton production with r2 of 0.9, 0.9 and 0.8 respectively. Nitrate was the major 

controlling factor of phytoplankton production in the Balsfjord. Also silicate to nitrate ratios 

also revealed nitrate as the controlling factor. Nutrients therefore remain important factors for 

phytoplankton production in the Balsfjord. Balsfjord is therefore an ecologically healthy fjord 

which can support the growth of most species.       
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8. Appendices 

Appendix 1  

Table 5: Chlorophyll a concentrations from March-December 2008 at 5, 10 and 50 m.  

Dates  5m 
Mean±std 

10 m 
Mean±std 

50 m 
Mean±std 

7 Mar 0.10±0.00 0.11±0.00 0.05±0.00
12 Mar  0.25±0.01 0.21±0.00 0.08±0.00
28 Mar 3.76±0.44 3.82±0.59 1.33±0.04
1 Apr 3.93±0.64 5.65±0.21 0.94±0.07
11 Apr 2.59±0.30 3.60±0.53 2.91±0.14
13 Apr 2.01±0.05 2.23±0.24 2.08±0.06
23 Apr 1.90±0.27 2.35±0.05 1.70±0.17
28 Apr 1.43±0.36 1.49±0.23 2.62±0.12
5 May 1.94±0.34 2.38±0.22 3.52±0.16
13 May 0.93±0.14 0.76±0.02 0.55±0.04
23 May 2.03±0.07 2.36±0.02 0.26±0.01
26 May 2.09±0.08 2.28±0.19 0.72±0.04
3 Jun 3.19±0.10 2.20±0.11 0.17±0.02
9 Jun 1.61±0.09 3.47±0.06 0.17±0.02
22 Jun 1.64±0.03 1.33±0.05 0.80±0.02
7 Jul 1.96±0.03 4.71±0.20 1.68±0.18
21 Jul 2.04±0.07 1.62±0.01 0.26±0.02
4 Aug 1.09±0.05 3.35±0.12 0.10±0.00
15 Aug 2.59±0.19 2.18±0.12 0.69±0.04
28 Aug 2.48±0.16 2.90±0.13 0.85±0.05
15 Sep 2.64±0.36 3.42±0.14 1.49±0.18
29 Sep 0.99±0.04 0.90±0.02 0.40±0.02
10 Oct 1.40±0.13 1.42±0.09 0.42±0.02
29 Oct 0.55±0.06 0.52±0.03 0.16±0.01
7 Nov 0.22±0.03 0.21±0.03 0.19±0.04
21 Nov 0.09±0.01 0.09±0.00 0.08±0.00
5 Dec 0.05±0.01 0.04±0.01 0.05±0.01
 

Appendix 2 

Averages of Chl a concentrations in the different seasons at 5, 10 and 50 m depths.  

 Season 5 m 10 m 50 m 
Spring  2.00 2.43 1.46 

Summer 1.94 2.35 0.90 

Autumn 1.68 2.10 0.59 

Winter 0.12 0.11 0.11 
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Appendix 3 

Means of BSi concentrations from March to December 2008 at 5 m. 

Dates in 2008 mean±std 
7 Mar 0.15±0.00 
12 Mar 0.07±0.01 
28 Mar 1.66±0.08 
1 Apr 4.34±0.16 
11 Apr 1.24±0.02 
13 Apr 1.83±0.19 
23 Apr 0.41±0.09 
28 Apr 0.37±0.08 
5 May 0.38±0.01 
26 May 0.31±0.04 
3 Jun 0.26±0.04 
21 Jul 0.88±0.10 
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Appendix 4 

Concentrations of nitrate, phosphate and silicate (average ± std) at 5 m in the Balsfjord in 
2008. 

 Dates in 
2008 

Nitrate  average 
(mmolm‐3)± std 

Phosphate  average 
(mmolm‐3)± std 

Silicate  average 
(mmolm‐3)± std 

7 Mar 6.16±0.34 0.58±0.03 5.62±0.21 

12 Mar  7.90±0.47 0.65±0.05 6.78±0.08 

28 Mar 2.46±0.15 0.34±0.02 3.50±0.09 

1 Apr 3.91±0.03 0.41±0.03 5.79±0.07 

11 Apr 3.85±0.34 0.43±0.01 3.54±0.02 

13 Apr 2.38±0.01 0.36±0.03 2.73±0.02 

23 Apr 1.16±0.08 0.30±0.02 3.25±0.13 

28 Apr 2.70±0.14 0.44±0.03 3.27±0.12 

5 May 0.56±0.09 0.10±0.01 3.04±0.06 

13 May 1.86±0.19 0.28±0.04 6.59±0.28 

23 May 0.02±0.01 0.06±0.01 5.88±0.34 

26 May 0.74±0.05 0.14±0.01 5.32±0.16 

3 Jun 0.15* 0.07±0.01 5.32±0.02 

9 Jun 0.15* 0.09±0.00 5.80±0.11 

22 Jun 2.52±0.18 0.24±0.02 5.89±0.55 

7 Jul 0.15* 0.07±0.02 2.88±0.14 

21 Jul 1.95±0.06 0.19±0.01 4.62±0.36 

4 Aug 0.15* 0.21±0.05 3.50±0.69 

15 Aug 0.58±0.02 0.19±0.03 3.51±0.42 

28 Aug 1.36±0.08 0.31±0.01 na 

15 Sep 0.23±0.01 0.12±0.01 4.08±0.24 

29 Sep 2.74±0.09 0.30±0.04 5.18±0.40 

10 Oct 2.13±0.10 0.27±0.01 5.14±0.08 

29 Oct 2.80±0.27 0.33±0.03 5.36±0.26 

7 Nov 4.08±0.17 0.40±0.03 6.06±0.11 

21 Nov 4.07±0.12 0.47±0.02 6.53±0.10 

5 Dec 4.61±0.27 0.46±0.04 7.01±0.12 

 

*Detection limit; na = not available 
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Appendix 5 

Concentrations of nitrate, phosphate and silicate (average ± std) at 10 m in the Balsfjord in 
2008. 

 Dates in 
2008 

Nitrate  average 
(mmolm‐3)± std 

Phosphate  average 
(mmolm‐3)± std 

Silicate  average 
(mmolm‐3)± std 

7 Mar 6.86±0.22 0.66±0.04 6.15±0.09 

12 Mar  7.97±0.24 0.65±0.02 6.90±0.02 

28 Mar 3.99±0.08 0.44±0.03 3.95±0.04 

1 Apr 4.25±0.28 0.43±0.03 5.95±0.00 

11 Apr 3.82±0.41 0.44±0.02 3.46±0.05 

13 Apr 2.70±0.15 0.33±0.01 2.73±0.11 

23 Apr 1.13±0.05 0.30±0.02 3.05±0.06 

28 Apr 0.03±0.00 0.23±0.06 2.89±0.05 

5 May 1.01±0.06 0.16±0.01 3.04±0.10 

13 May 2.38±0.11 0.28±0.01 5.54±0.48 

23 May 0.15 0.10±0.01 5.21±0.09 

26 May 1.17±0.08 0.18±0.02 5.02±0.16 

3 Jun 0.15* 0.09±0.00 4.58±0.13 

9 Jun 0.15* 0.11±0.01 7.01±0.33 

22 Jun 3.60±0.15 0.30±0.03 5.82±0.52 

7 Jul 0.15* 0.10±0.00 3.01±0.20 

21 Jul 2.69±0.15 0.25±0.02 5.20±0.41 

4 Aug 0.54±0.04 0.13±0.03 3.49±0.41 

15 Aug 1.80±0.05 0.29±0.05 3.79±0.11 

28 Aug 2.43±0.12 0.26±0.06 4.49±0.60 

15 Sep 0.33±0.02 0.16±0.02 3.05±0.04 

29 Sep 2.68±0.12 0.33±0.02 4.90±0.02 

10 Oct 2.11±0.07 0.31±0.01 5.08±0.31 

29 Oct 3.06±0.18 0.34±0.01 5.39±0.24 

7 Nov 4.11±0.35 0.38±0.05 5.81±0.03 

21 Nov 4.48±0.28 0.43±0.04 6.53±0.09 

5 Dec 5.02±0.14 0.46±0.01 7.27±0.13 

 

*Detection limit 
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Appendix 6 

Concentrations of nitrate, phosphate and silicate (average ± std) at 50 m in the Balsfjord in 
2008. 

 Dates in 
2008 

Nitrate  average 
(mmolm‐3)± std 

Phosphate  average 
(mmolm‐3)± std 

Silicate  average 
(mmolm‐3)± std 

7 Mar 7.78±0.06 0.66±0.02 6.35±0.11 

12 Mar  7.76±0.12 0.68±0.04 6.46±0.17 

28 Mar 8.00±0.63 0.57±0.06 5.87±0.08 

1 Apr 6.72±0.07 0.58±0.01 6.61±0.02 

11 Apr 3.80±0.08 0.42±0.02 3.31±0.12 

13 Apr 2.50±0.09 0.32±0.01 2.72±0.09 

23 Apr 3.08±0.13 0.41±0.01 3.19±0.06 

28 Apr 0.15* 0.15±0.01 2.81±0.10 

5 May 2.13±0.10 0.32±0.01 3.38±0.25 

13 May 3.16±0.11 0.41±0.04 4.57±0.07 

23 May 2.71±0.12 0.34±0.01 4.84±0.04 

26 May 2.52±0.02 0.36±0.02 5.31±0.09 

3 Jun 2.97±0.23 0.41±0.01 5.14±0.14 

9 Jun 2.79±0.08 0.39±0.03 6.26±0.11 

22 Jun 3.64±0.23 0.34±0.02 5.77±0.33 

7 Jul 0.22±0.02 0.44±0.06 4.43±0.17 

21 Jul 4.65±0.18 0.43±0.02 5.92±0.11 

4 Aug 3.38±0.23 0.38±0.05 5.58±0.05 

15 Aug 3.74±0.18 0.41±0.01 5.02±0.06 

28 Aug 3.98±0.26 0.41±0.04 5.32±0.33 

15 Sep 3.02±0.25 0.32±0.03 4.94±0.88 

29 Sep 3.79±0.08 0.48±0.02 5.43±0.23 

10 Oct 3.58±0.29 0.46±0.06 6.28±0.32 

29 Oct 4.31±0.10 0.49±0.07 6.63±0.04 

7 Nov 1.79±0.02 0.31±0.00 1.99±0.07 

21 Nov 4.20±0.08 0.41±0.02 6.94±0.56 

5 Dec 5.25±0.35 0.48±0.05 7.11±0.06 

 

*Detection limit 
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Appendix 7 

Averages nutrient concentrations (mmol m-3) at 5, 10 50 m in the different seasons. 

  Nitrates Phosphates Silicates 
 Season 5 10 50 5 10 50 5 10 50 

Spring 3.82 3.84 4.97 0.44 0.43 0.47 4.31 4.39 4.66 

Summer 0.90 1.27 2.75 0.14 0.17 0.38 5.04 4.94 5.07 

Autumn 1.43 1.85 3.69 0.25 0.26 0.42 4.46 4.31 5.60 

Winter 4.25 4.54 3.74 0.44 0.42 0.40 6.53 6.53 5.35 

 

Appendix 8 

The pH values from March to December in 2008 at 5, 10 and 50 m. 

Dates in 
2008 

5 m 10 m 50 m 

7 Mar 7.2 7.6 7.7 
12 Mar  8.0 7.9 8.0 
28 Mar 7.7 8.0 8.0 
1 Apr 8.0 8.0 8.0 
11 Apr 7.8 7.9 7.9 
13 Apr 7.8 7.9 7.9 
23 Apr 7.7 7.8 7.8 
28 Apr 7.8 7.9 7.8 
5 May 7.9 8.0 8.0 
13 May 7.9 7.9 8.0 
23 May 7.9 8.0 8.0 
26 May 7.8 7.9 8.0 
3 Jun 7.9 8.0 7.9 
9 Jun 7.9 8.1 8.1 
22 Jun 7.5 7.7 7.7 
7 Jul 7.9 8.0 7.9 
21 Jul 7.7 8.0 8.0 
4 Aug 7.7 7.9 7.9 
15 Aug 7.5 7.8 7.9 
28 Aug 7.9 8.1 8.0 
15 Sep 8.0 8.0 7.8 
29 Sep 8.0 7.9 8.0 
10 Oct 7.9 8.0 8.0 
29 Oct 7.7 7.8 7.9 
7 Nov 8.0 8.0 8.0 
21 Nov 7.5 7.9 7.9 
5 Dec 7.6 7.9 7.9 
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Appendix 9 

The temperature readings from March to December in 2008 at 2, 4, 6, 8, 10, 12 and 14 m. 

Dates in 2008  2 m 4 m 6 m 8 m 10 m 12 m 14 m 
7 Mar 4.2 4.2 4.2 4.2 4.2 4.2 4.2 
12 Mar  4.3 4.3 4.3 4.3 4.3 4.3 4.3 
28 Mar 3.2 3.2 3.2 3.3 3.3 3.3 3.3 
1 Apr 2.3 2.5 2.6 2.6 2.6 2.6 2.6 
11 Apr 3.1 3.1 3.1 3.2 3.1 3.1 3.1 
13 Apr 3.2 3.1 3.2 3.2 3.2 3.2 3.2 
23 Apr 3.3 3.2 3.2 3.1 3.1 3.1 3.1 
28 Apr 3.5 3.5 3.4 3.4 3.4 3.3 3.3 
5 May 5.0 4.7 4.4 4.3 4.2 4.3 4.2 
13 May 4.3 4.5 4.6 4.5 4.4 4.3 4.3 
23 May 6.9 5.9 5.7 5.4 5.4 5.3 5.1 
26 May 6.5 6.5 5.5 5.4 5.4 5.4 5.3 
3 Jun 7.7 6.4 7.0 6.5 6.5 6.6 6.3 
9 Jun 9.5 9.1 8.0 8.0 7.9 7.9 7.8 
22 Jun 8.4 7.6 7.3 7.2 7.0 6.8 6.7 
7 Jul 9.5 9.4 8.9 8.7 7.9 7.3 7.3 
21 Jul 9.7 8.4 8.1 8.3 7.2 7.1 7.0 
4 Aug 11.8 10.2 8.5 7.8 7.6 7.5 7.4 
15 Aug 9.5 8.9 8.8 8.3 8.3 8.3 8.1 
28 Aug 9.8 9.2 8.9 8.7 8.3 8.3 8.3 
15 Sep 8.2 8.2 8.2 8.2 8.2 8.2 8.2 
29 Sep 8.1 8.1 8.1 8.1 8.1 8.1 8.1 
10 Oct 7.4 7.4 7.4 7.4 7.5 7.4 7.4 
29 Oct 6.2 6.6 6.6 6.6 6.6 6.6 6.6 
7 Nov 5.9 6.4 6.4 6.4 6.4 6.4 6.5 
21 Nov 6.5 6.5 6.5 6.5 6.5 6.5 6.5 
5 Dec 5.5 5.5 5.5 5.5 5.5 5.5 5.5 
 

Appendix 10 

Nitrate verses phosphate ratios (mol: mol) at 5 m. 

Dates in 
2008 N:P 
Spring 8 

Summer  5 

Autumn 5 

Winter 10 
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Appendix 11 

Table of statistical summary 

 Regression 
Statistics  5 m  10 m  50 m 
Multiple R  0.9360  0.7547  0.8646

R2  0.8761  0.5696  0.7475

Adjusted R2  0.8711  0.5524  0.7374
Standard Error  0.7127  1.3254  1.0152
Observations  27  27  27
 

Appendix 12 

Table of ANOVA of nitrate verses phosphate at 5 m 

   df  SS  MS  F 
Significance 

F 
Regression  1  89.7875  89.7875 176.7692 0.0000
Residual  25  12.6984  0.5079      
 

   Coefficients 
Standard 
Error  t Stat  P‐value  Lower 95%  Upper 95% 

Intercept  ‐1.1214  0.2898 ‐3.8701 0.0007 ‐1.7182 ‐0.5246 
Slope  11.7251  0.8819 13.2955 0.0000 9.9088 13.5413 
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Appendix 13 

Table of ANOVA of nitrate verses phosphate at 10 m 

   df  SS  MS  F 
Significance 

F 
Regression  1  58.1256  58.1256 33.0881 0.0000
Residual  25  43.9173  1.7567      
 

   Coefficients 
Standard 
Error  t Stat  P‐value  Lower 95%  Upper 95% 

Intercept  0.8245  0.5711 1.4438 0.1612 ‐0.3516 2.0007 
Slope  9.7366  1.6927 5.7522 0.0000 6.2505 13.2227 
 

Appendix 14 

Table of ANOVA of nitrate verses phosphate at 50 m 

   df  SS  MS  F 
Significance 

F 
Regression  1  76.2768  76.2768 74.0090 0.0000
Residual  25  25.7661  1.0306      
 

   Coefficients 
Standard 
Error  t Stat  P‐value  Lower 95%  Upper 95% 

Intercept  ‐2.7175  0.7783 ‐3.4916 0.0018 ‐4.3204 ‐1.1146 
Slope  15.3576  1.7852 8.6029 0.0000 11.6810 19.0342 
 

Appendix 15 

ANOVA table for silicate and nitrate concentrations at 5 m. 

Sources of 
error  df  SS  MS  F 

Significance 
F 

Regression  1  11.1581  11.1581 7.3904 0.0117
Residual  25  37.7454  1.5098      

 


