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Abstract 
 

The number of personal computers we use every day has increased significantly the last 
couple of years, where the common model is a setup where each device has its own storage 
with separate files and applications. This forces the user to think in a certain way about files 
and applications, where they are to a degree bound to a device unless the user specifically 
moves the files, or installs/uninstalls the applications.  
This thesis aims to explore the possibility of changing the way we interact with our files and 
applications, by attempting to sever the connection between device and file (both data and 
application file) in the users mind.  
In this thesis an option where all devices are aware of each other’s files and applications, and 
are able to run remote files with remote applications is proposed. 
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1 Introduction	

1.1 Problem	Context	
The	number	of	devices	an	average	person	use	per	day	has	increased	significantly	the	last	
decade.	Cisco	predicts	that	by	2019,	2.5	devices	will	be	connected	to	the	Internet	for	
every	person	on	the	earth,	which	translates	to	about	5	devices	for	every	person	with	
Internet	access	[1,	2].	Tablets	and	smart	television	sets	seem	to	be	the	fastest	growing	
category	[3].	
As	the	number	of	devices	per	person	increases,	the	files	belonging	to	each	person	
becomes	increasingly	segmented	onto	different	devices.		
Usually	each	personal	device	has	a	different	use	case,	and	thus	the	applications	and	files	
present	on	any	given	device	will	reflect	what	that	device	is	used	for.	For	example	a	
desktop	or	laptop	computer	is	more	likely	to	contain	text	documents	than	a	cell	phone.	
Also	depending	on	the	type	of	files,	numerous	copies	of	the	same	file	may	be	distributed	
over	the	set	of	devices	and	over	time	have	a	set	of	different	operations	done	to	them.	
The	user	ends	up	with	several	versions	of	the	same	file	[4].	For	example	a	picture	that	is	
taken	on	your	cell	phone,	copied	to	your	laptop	for	editing,	and	later	moved	to	a	desktop	
for	safekeeping	and	display.	And	it	is	not	unlikely	that	the	name	is	changed	to	fit	into	
some	sort	of	catalogue	system	in	the	final	step.		
Moreover,	the	example	illustrates	how	the	different	devices	have	different	use	cases,	and	
thus	are	likely	to	have	a	different	set	of	applications.	This	requires	the	user	to	move	the	
files	between	the	machines	to	apply	the	operations	he/she	wants	to.	
As	the	research	done	in	[6]	shows,	there	is	a	need	for	simplification	of	the	way	
unlearned	users	interact	with	files	on	multiple	devices.		
	
Further	more,	cloud	services	are	increasing	in	popularity,	though	as	mentioned	in	[35],	
the	securities	of	such	services	are	dubious	at	best.	On-line	solutions	may	not	be	in	the	
interest	of	the	individual,	unless	you	want	governments	to	have	all	your	information	
served	on	a	silver	platter.	And	despite	quotes	by	people	like	Steve	Jobs	and	Vivek	
Kundra	implying	that	cloud	services	are	the	future	and	local	storage	is	"byzantine",	
cloud	services	come	with	factors	of	uncertainty	for	the	user	other	than	what	is	directly	
related	to	security;	For	example	possibilities	of	discontinuation,	and	the	fact	that	the	
entire	movement	is	somewhat	experimental,	treating	the	customer	as	a	guinea	pig.	[36]	

1.2 Related	Work	
Several	papers	have	been	focused	on	this	topic,	attacking	the	problem	from	different	
angles,	and	applying	similar	ideas	and	solutions	to	similar	problems.	
	
Eyo:	Device	Transparent	Personal-Storage	is	a	relevant	paper	attempting	to	hinder	the	
segmentation	by	providing	"device	transparency",	aiming	to	let	the	user	"think	in	terms	of	
"file	X",	rather	than	"file	X	on	device	Y"".	The	authors	propose	a	system	where	metadata	
of	all	files	are	present	on	every	device,	and	where	a	version	tree	is	kept	to	ensure	no	
data	is	lost	on	conflicts.	The	metadata	is	thus	split	from	the	data	file.	The	result	is	an	
interesting	but	rather	complex	system	that	works	even	with	some	loss	of	connection,	
but	suffers	under	huge	storage	overheads	when	devices	are	disconnected	over	a	long	
period	of	time.	The	paper	is	focused	on	data	files.	[4]	
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Amber:	Decoupling	User	Data	from	Web	Applications	by	Tej	Chajed	et	al	also	has	some	
interesting	ideas,	suggesting	a	system	for	storing	user	data	and	enabling	web	
applications	to	query	them.	Essentially	(as	the	title	says)	decoupling	user	data	from	web	
applications,	letting	the	users	easily	use	different	web	services	and	applications	with	
their	data	without	having	to	upload	a	copy	of	each	file	to	every	service/application	
provider.	In	practice	this	means	a	user	could	upload	his/her	pictures	to	Amber,	and	then	
let	f.	ex.	Facebook	access	the	pictures	for	sharing	with	his/her	network	of	friends	while	
using	an	online	image	processing	application	from	some	other	provider,	and	the	
pictures	would	not	need	to	be	re-uploaded	to	Facebook	after	editing.	[5]	
	
Perspective:	Semantic	Data	Management	for	the	Home	suggests	a	change	in	how	files	are	
presented	to	the	user.	After	studying	patterns	in	how	the	average	person	interacted	with	
their	computer	and	the	file	system	the	authors	concluded	that	a	"view",	a	semantic	file	
system	construct,	could	simplify	the	management	of	personal	distributed	storage	
systems.	Presenting	the	set	of	files	in	terms	of	views	similar	to	how	the	term	is	used	in	
relation	to	databases	would	let	the	user	interact	with	their	files	in	the	same	way	as	they	
use	them	on	a	regular	basis;	through	media	players	and	catalogue	interfaces.	[6]	
	
The	Distributed	Personal	Computer,	a	master	thesis	by	Karen	Bjørndalen,	looks	at	a	
design	for	a	centralized	distributed	system	that	gives	the	user	access	to	a	set	of	
operations	that	may	be	run	on	remote	devices.	The	set	can	be	extended	by	implementing	
and	adding	the	needed	functionality	in	external	modules.	The	author	aims	to	provide	
functionality	similar	to	that	of	cloud	service	without	sending	the	operations	out	of	the	
network	of	the	users	personal	computers.	[35]	

1.3 Thesis	Statement	
Previous	work	on	this	topic	such	as	Eyo	has	been	large	and	complex,	attempting	to	solve	
multiple	aspects	at	once	[4].	The	main	objective	during	work	on	this	thesis	was	to	
explore	simpler	possibilities	compared	to	the	work	that	has	already	been	done,	as	well	
as	introducing	new	or	different	elements,	such	as	incorporating	applications	into	the	
system.		
The	motivation	for	attempting	to	keep	the	design	simple	was	reduction	of	complexity	
and	the	probability	of	failure,	also	simply	to	explore	different	avenues	than	what	has	
already	been	worked	on	can	be	said	to	be	of	some	importance.	
	
The	thesis	is	in	large	part	based	on	Eyo	by	Strauss	et	al,	while	taking	inspiration	from	
systems	such	as	Amber	by	using	some	of	the	ideas	and	applying	them	to	the	case	of	a	
small	private	network	of	personal	devices.	[4,	5]	
Thus	the	objective	of	this	project	is	to	design	a	simple	device-transparent	personal	
storage	system,	where	the	user	need	not	keep	track	of	where	the	files	are	located.	The	
goal	was	to	reduce	the	importance	of	which	device	the	user	is	currently	operating	when	
interacting	with	his/her	files	and	applications.	
	
Some	assumptions	are	made	to	make	simplifications,	and	to	avoid	tackling	problems	
that	have	already	been	worked	on	extensively:	
	

• We	assume	that	there	is	always	connectivity,	meaning	we	wont	attempt	to	handle	
disconnects	and	network	segmentation.	
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• We	assume	that	each	device	has	a	file	system	that	is	accessible	for	our	
application.	

• We	assume	that	it	is	possible	to	retrieve	information	on	applications	installed	on	
each	device.	

• We	assume	that	the	OS	allows	for	more	than	one	of	the	same	application	to	run	at	
the	same	time.	

• We	assume	that	a	given	file	is	only	touched	by	one	application/user	at	a	time	
	
We	also	define	a	set	of	limitations	(or	goals	if	you	will)	to	explore	new	possibilities:	
	

• Applications	run	at	the	device	they	are	installed.	
• Objects	are	accessed	at	the	device	they	are	stored.	

	
These	limitations	imply	that	we	will	not	transfer	a	file	or	application	(in	its	entirety)	to	a	
remote	device	for	access	or	execution,	but	rather	find	ways	to	give	remote	access	while	
applying	the	requested	operations	locally.	This	means	each	object	is	only	stored	at	a	
single	device	where	the	user	put	it,	instead	of	an	arbitrary	device	decided	by	a	defined	
set	of	rules	such	as	in	Eyo	[4].	Applications	can	however	be	installed	on	multiple	devices,	
as	the	uniqueness	of	application	files	as	approached	in	this	thesis	is	of	less	importance.	

1.4 Contribution	
The	contribution	of	this	thesis	is	the	exploration	of	new	avenues	of	distributed	personal	
storage	systems	with	the	inclusion	of	applications,	and	the	possibility	of	opening	and	
manipulating	files	in	place	with	an	approach	that	is	tailored	for	each	situation,	thus	
reducing	resource	usage	and	network	overhead.	Some	slightly	different	approaches	to	
synchronization	are	also	looked	at.	
Furthermore,	the	thesis	put	forwards	thoughts	on	features	for	operating	systems	that	
could	benefit	these	kinds	of	distributed	storage	systems,	as	well	as	likely	benefit	other	
types	of	solutions.	

1.5 Outline	
In	chapter	2	a	short	introduction	to	technical	terms	and	necessary	background	
information	to	comprehend	the	topics	discussed	in	this	paper	will	be	given,	as	well	as	a	
short	introduction	to	the	tools	used	for	testing	and	experimentation.	
Chapter	3	contains	details	of	the	design,	architecture,	and	implementation	of	the	
prototype.	
Experiments	and	test	results	will	be	shown	and	discussed	in	chapter	4.	
Chapter	5	is	a	discussion	about	the	design	and	implementation	done	for	the	prototype.	
The	discussion	will	be	about	what	could	have	been	better,	and	what	parts	seemed	to	be	
good.	
Chapter	6	looks	into	what	areas	have	potential	for	further	work,	and	possibly	some	
overlap	with	chapter	5	in	what	areas	that	need	further	work.	
The	last	chapter,	7,	is	a	conclusion	in	which	the	thesis	will	be	summarized	and	
concluded.	
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2 Technical	Background	and	Tools	
In	this	chapter,	some	of	the	technology	and	tools	used	in	this	project	will	be	explained	in	
a	few	sentences.	I	will	attempt	to	explain	what	they	are,	and	how	they	are	used	for	the	
thesis.	The	use	of	the	technologies	will	be	gone	through	in	more	detail	when	they	are	
mentioned	in	the	elaboration	of	the	implementation.	

2.1 Go	
Go	(sometimes	referred	to	as	Golang)	is	an	open-source	programming	language	
developed	by	Google.	It	is	statically	and	strongly	typed	as	well	as	compiled.	Its	main	
selling	point	is	its	concurrency	mechanisms	that	let	the	programmer	easily	take	
advantage	of	multiple	cores	and	networked	machines,	and	its	extremely	quick	
compiling.	However,	some	of	the	drawbacks	of	Golang	is	poor	debugging	tools	and	the	
necessity	of	a	bit	bucket.	[9,	16]	
Development	was	prompted	by	frustration	at	Google	by	how	"clumsy	and	slow"	
software	development	was	with	large	software	systems.	The	language	has	exploded	in	
popularity	over	the	last	year	(2015),	particularly	in	Asia.	[10,	11]	
Most	of	the	programming	done	for	this	thesis	(building	of	the	prototype)	is	done	in	
Golang.	

2.2 JavaScript	
JavaScript	is	the	world’s	most	popular	programming	language,	developed	by	Netscape	
for	the	Navigator	2	browser.	It	is	commonly	used	to	write	client-side	code	for	websites	
as	all	the	popular	web	browsers	support	JavaScript	out	of	the	box.	[12,	13]	
It	is	used	to	write	client-side	code	for	the	HTML-based	GUI	in	the	prototype.	

2.3 QML	
QML	is	a	user	interface	specification	and	programming	language,	allowing	the	
programmer	to	easily	create	cross	platform	GUIs	for	applications.	It	is	often	used	to	
write	graphical	interfaces	for	applications	with	a	backend	written	in	more	efficient	
languages	such	as	C++.	But	also	Go	has	modules	for	use	with	QML,	called	Go-QML	
created	by	Gustavo	Niemeyer.	[14,	15]	
It	is	used	to	create	a	GUI	for	a	text	editor	application	to	go	with	the	prototype	of	this	
thesis.	Qt	5	was	used	for	the	prototype.	

2.4 HTML	
Hyper	Text	Markup	Language,	or	HTML	for	short,	is	a	language	used	to	express	web	
documents	consisting	of	"elements"	defined	by	"tags".	The	first	HTML	version	came	out	
in	1991,	and	there	has	since	been	many	iterations	improving	on	what	has	become	the	
standard	markup	language	on	the	Internet.	[31]	
HTML	is	used	to	describe	most	of	the	GUIs	used	for	the	prototype	in	this	thesis.	

2.5 TCP/IP	
"Transmission	Control	Protocol/Internet	Protocol"	is	a	set	of	communication	rules	used	
for	connecting	computers	over	the	Internet.	It	contains	definitions	for	how	information	
should	be	formatted	and	sent	so	that	the	intended	receiver	can	get	and	comprehend	the	
package	of	information.	Bob	Kahn	and	Vint	Cerf	developed	it	in	1978.	[17]	
The	majority	of	communications	in	the	prototype	of	this	thesis	is	done	over	TCP/IP.	
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2.6 HTTP	
Hypertext	Transfer	Protocol,	or	HTTP	for	short,	is	the	protocol	used	by	the	World	Wide	
Web.	Hypertext	is	text	structured	into	nodes	with	logical	links	between	them,	where	the	
hypertext	commonly	is	HTML	documents	in	the	case	of	HTTP.	It	is	a	stateless	protocol,	
implying	that	two	consecutive	commands	are	independent	and	have	no	knowledge	of	
each	other.	The	protocol	is	built	as	a	layer	on	top	of	other	protocols,	usually	TCP,	but	
UDP	can	also	be	used.	[32,	33]	
In	the	thesis,	HTTP	is	used	for	communication	between	the	GUI	described	in	HTML	and	
scripted	with	JavaScript,	and	the	prototype	backend	written	in	Golang.	

2.7 Wireshark	
Wireshark	is	a	piece	of	free	software	designed	to	analyse	network	traffic.	It	is	a	cross-
platform	open-source	software	based	on	libpcap	for	capturing	network	packets.	The	
software	can	be	retrieved	from	Wiresharks	webpages	[26]	for	free.	[27]	
It	is	used	for	capturing	packets	sent	between	devices	during	testing	of	the	prototype	in	
this	project.	Version	2.0.2,	32-bit	build	was	used.	

2.8 Network	Link	Conditioner	
The	Network	Link	Conditioner	is	a	preference	pane	application	created	by	Apple	
included	in	the	"Hardware	IO	Tools	for	Xcode"	package.	The	application	let's	you	set	
bandwidth,	percentage	of	packets	dropped,	and	delay	for	both	up	and	downlink,	as	well	
as	DNS	delay.	It	is	designed	for	developers	to	test	their	applications	in	poor	network	
conditions.		It	affects	the	network	throughput	and	delay	by	changing	firewall	settings	
and	thus	only	work	when	going	through	a	network	interface	other	than	loopback	as	of	
OS	X	10.10	due	to	changes	in	firewall	software.	The	tool	can	be	retrieved	at	Apple	
Developer	Downloads	page	[25].	[24]	
It	is	used	to	emulate	poor	network	conditions	during	testing	of	the	prototype.	

2.9 Routing	Table	
The	routing	table	is	a	set	of	rules	that	determine	where	information	during	
communication	over	IP	is	directed.	When	a	packet	is	received,	the	destination	is	looked	
up	in	the	routing	table	to	figure	out	where	to	forward	the	packet.	[23]	
This	table	can	be	edited,	letting	the	user	determine	where	packets	destined	for	specific	
IPs	should	be	routed.	By	adding	a	rule,	a	packet	that	is	sent	from	a	process	on	one	
machine	to	a	different	process	on	the	same	machine	can	be	forced	to	travel	over	the	
network	instead	of	loopback.	Doing	so	enable	us	to	simulate	the	two	processes	being	on	
opposite	sides	of	a	network,	and	forces	the	traffic	through	the	local	network	device	
which	lets	us	capture	and	manipulate	it	more	easily.	During	testing	of	the	prototype,	the	
routing	table	was	altered	to	let	local	traffic	go	over	LAN	via	the	router	and	back.	My	
machine	is	at	192.168.1.138	in	the	LAN,	and	by	default	retrieving	the	rules	for	that	IP	
returns	(route	-n	get	192.168.1.138):		
	
route	to:	192.168.1.138	
destination:	192.168.1.138	
gateway:	127.0.0.1	
interface:	lo0	
	
As	the	reader	can	see,	the	interface	is	lo0	as	in	loopback,	but	after	adding	a	rule	to	the	
routing	table	for	that	IP	to	go	via	the	router	at	192.168.1.1	(route	-n	add	192.168.1.138	
192.168.1.1),	the	interface	is	no	longer	lo0,	but	en0	as	in	Ethernet:	[20]	
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route	to:	192.168.1.138	
destination:	192.168.1.138	
gateway:	192.168.1.1	
interface:	en0	

2.10 Table	of	Processes	
The	table	of	processes	program,	or	top	for	short,	retrieves	and	displays	sorted	
information	about	processes	on	the	system.	It	is	often	bundled	with	Unix-based	
operating	systems.	It	is	useful	for	retrieving	statistics	of	CPU	and	memory	usage	of	the	
system	in	its	entirety	or	specific	processes.		
The	program	retrieves	samples	every	second	(by	default,	but	can	be	changed).	It	then	
finds	the	difference	between	the	samples	for	the	properties	where	this	is	necessary.	This	
means	that	for	items	such	as	CPU	percentage,	at	least	two	samples	must	be	taken.	
During	testing	of	the	prototype,	CPU	percentage	and	memory	usage	was	retrieved	by	
running	"top	-stats	pid,ppid,cpu,mem		-l	2"	every	third	second.	The	command	runs	top	
retrieving	only	PIDs,	PPIDs,	CPU	percentage,	and	memory	usage	for	each	process,	and	
takes	two	samples	before	returning.	[21]	
The	process	status	program,	or	ps	for	short,	is	also	bundled	with	OS	X	and	provides	a	
lighter	instant	snapshot	of	most	of	the	same	properties,	but	is	inaccurate	for	a	property	
such	as	CPU	percentage	as	it	is	not	possible	to	calculate	from	a	single	sample	(the	CPU	is	
either	in	use,	or	not	in	use).	It	instead	returns	a	decaying	average	from	over	the	last	
minute	or	less.	This	means	that	top	is	likely	to	be	more	useful	for	the	purpose	of	
retrieving	statistics	during	testing	as	is	done	during	this	thesis.	[22]	 	
	

2.11 System	Profiler	
The	system	profiler	is	an	application	bundled	with	OS	X	that	creates	reports	on	system	
configurations	of	both	hardware	and	software.	The	output	can	be	in	both	plain	text	and	
XML	format.	It	was	used	to	retrieve	a	list	of	installed	applications	on	devices	in	the	
prototype	of	this	project,	by	running	"system_profiler	SPApplicationsDataType".	Note	
that	the	application	also	comes	with	a	GUI,	System	Profiler,	which	can	be	found	under	
Utilities.	[29]	
	

2.12 Power	Management	Settings	
Power	Management	Settings,	or	"pmset",	is	an	application	in	OS	X	for	managing	power	
settings.	Amongst	other	things,	it	lets	you	get	the	percentage	of	battery	left,	set	
automatic	restart,	time	idle	sleep	etc.	It	is	used	to	get	the	battery	percentage	in	the	
prototype	of	this	project.	[30]	
Power	Management	Settings	was	used	to	retrieve	the	battery	percentage	value	in	the	
prototype	of	this	project.	

2.13 Tailored	Tools	
A	number	of	tools	were	written	either	for	testing	and	evaluation,	or	debugging.	A	short	
list	of	the	tools	and	their	use	is	presented	here.	Their	implementation	will	be	explained	
more	in	detail	in	the	next	chapter.	
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2.13.1 SimpleTxt	
SimpleTxt	is	a	small	and	simple	text	editor,	built	to	go	with	the	prototype	to	show	how	
the	system	can	cooperate	with	application.	The	application	has	a	GUI	with	some	limited	
functionality;	editing	text,	making	text	bold,	making	text	underlined,	and	making	text	
italic.	The	application	also	allows	for	opening	and	saving	of	files.	All	of	the	same	
functionality	is	implemented	to	work	with	the	distributed	system	too.	

2.13.2 Overview	GUI	
The	overview	GUI,	or	control	panel,	presents	a	view	of	the	prototype	system	as	a	whole.	
It	contains	an	excerpt	of	the	GUI	of	all	running	daemons	and	their	combined	CPU	and	
memory	usage.	A	link	to	each	daemons	files	and	applications	interface	is	given	together	
with	the	excerpt	of	the	corresponding	daemon.	
There	is	also	functionality	for	changing	global	variables	such	as;	how	long	to	log	values	
counted	towards	coordinator	selection,	how	to	weigh	the	different	variables	used	in	
coordinator	selection,	and	how	often	to	evaluate	the	coordinator.	The	interface	will	only	
update	when	refreshed.	The	number	of	daemons	will	be	recounted	as	well	when	the	
refresh	request	is	received.	

2.13.3 Logger	
The	logger	is	a	testing	tool.	It	finds	all	running	daemons,	and	logs	their	individual	CPU	
and	memory	usage.	It	takes	samples	every	three	seconds	until	it	receives	a	<stop>	
command,	or	for	the	number	of	seconds	passed	as	an	argument	when	the	tool	is	started.		
A	dump	of	the	values	logged	for	each	daemon	is	created	under	logs/<date	and	time>,	
together	with	a	simple	HTML	document	showing	any	noteworthy	statistics	in	graph	
format.	The	HTML	output	only	shows	values	above	0.0,	while	the	dumps	contain	all	data	
logged	.txt	files.	

2.13.4 File	Adder	
The	file	adder	is	a	tool	for	testing	the	prototype	system.	It	can	be	used	to	continuously	
add	files	to	the	system.	It	takes	three	arguments;	target	daemon,	refresh	interval	(in	file	
additions),	and	number	of	files	to	add.	Number	of	files	is	an	optional	argument;	if	it	is	
empty	it	will	run	until	a	<stop>	command	is	received.	Type	of	synchronization	or	refresh	
can	be	set	after	start	by	typing	<apps>	or	<objs>.	
Examples:		

• <./file_adder	daemon_8591	10	200>	
Adds	200	files	to	daemon	with	port	at	8591,	and	sends	a	synchronization	request	at	
the	beginning,	and	after	every	10	adds.	Refresh	returns	when	objects	are	
synchronized.	
• <./file_adder	daemon_8593	1>	
	 Adds	files	to	daemon	with	port	at	8593	until	it	receives	a	stop	command,	and	
sends	a	synchronization	request	at	the	beginning,	and	after	every	single	add.	Refresh	
returns	when	objects	are	synchronized.	
• <./file_adder	daemon_8593	1	
	 apps>	
	 Adds	files	to	daemon	with	port	at	8593	until	it	receives	a	stop	command,	and	
sends	a	synchronization	request	at	the	beginning,	and	after	every	single	add.	Refresh	
returns	when	both	objects	and	applications	are	synchronized.	
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2.13.5 The	Application	List	Creator	
The	application	list	creator	is	a	tool	that	emulates	the	system	profiler,	but	instead	of	
returning	the	actual	list	of	installed	applications,	returns	the	list	given	to	it.	It	makes	it	
easier	to	test	the	prototype	by	feeding	various	amounts	of	applications	to	include	in	its	
single	system	view	of	applications.	The	list	it	returns	is	whatever	is	present	in	the	list.txt	
file,	where	a	new	line	separates	each	application.	

2.14 Running	the	Prototype	
The	script	run.sh	starts	a	set	number	of	daemons	with	specified	coordinator	mode,	
which	communicates	over	LAN	if	the	routing	table	has	been	set	as	specified	under	the	
"Routing	Table"	section	(It	will	use	the	IPs	ip_self	and	ip_to,	set	in	the	
support_communication.go	file	of	the	daemon).	Example	of	uses:		

• <./run.sh	5	auto>	Starts	5	daemons	with	automatic	coordinator	selection.		
• <./run.sh	10	fixed>	Starts	10	daemons	where	the	coordinator	is	always	at	the	

first	daemon	started	(daemon	with	port	at	8590)	
The	script	local_run.sh	does	the	same	as	run.sh,	just	that	it	uses	loopback	instead.	It	
takes	the	same	arguments.	To	exit	the	prototype	again,	stop.sh	kills	all	segments	of	the	
system.	This	works	for	both	run.sh	and	local_run.sh.	
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3 Approach	and	Implementation	

3.1 The	Idea	
The	chief	objective	of	the	thesis	was	to	create	a	personal	wide	view	of	all	files,	and	thus	a	
"device-transparent	personal	storage	system".		To	explore	the	concept,	the	idea	was	to	
create	a	system	that	for	all	devices	works	with	the	files	in-place	at	their	location,	instead	
of	transferring	the	files	to	the	device	being	used.	In	other	words	a	"shared	view"	of	all	
data	files.	In	addition	to	this,	the	idea	includes	the	thought	of	creating	a	shared	view	of	
apps/application	files.	An	app	or	application	overlay	if	you	will.	In	sum	the	idea	is	a	
shared	file	view	system,	a	system	where	the	location	of	files	and	applications	are	of	little	
to	no	importance	to	the	user.	The	goal	is	to	let	the	user	merely	think	of	what	device	is	in	
close	proximity,	or	possibly	reflect	on	what	device	fits	the	nature	of	the	tasks	at	hand.	
The	goal	of	a	shared	view	of	files	and	an	overlay	of	apps	and	applications	somewhat	
overlap.	It	would	for	example	be	difficult	to	create	a	shared	view	of	data	files	where	they	
are	worked	on	in-place,	and	not	moved,	without	a	way	of	opening	applications	on	the	
remote	computer.	Also,	applications	are	after	all	files	too.	
	

	
Figure	1	The	idea	

3.2 The	Architecture	
To	achieve	a	shared	file	view	system,	we	first	of	all	need	a	"System-to-User"	output	
module	and	vice	versa	so	that	the	user	can	interact	with	our	system.	Next	we	need	the	
output	module	to	have	access	to	a	single	system	view	of	all	the	personal	devices	to	
create	a	personal	wide	view	for	both	applications	and	objects	(data	files).	The	module	
creating	these	views	then	obviously	needs	to	know	what	applications	and	objects	we	
have	access	to.	Similarly	we	need	a	module	allowing	for	operations	entered	from	the	
interface,	which	also	needs	access	to	the	objects	and	applications.	Thus	architecture	
similar	to	this	is	proposed:	
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Figure	2	The	architecture	

We	get	two	layers	of	abstraction,	where	the	highest	abstraction	is	the	UI	on	top	of	the	
view	reflecting	the	entire	set	of	devices.	The	view	is	then	an	abstraction	of	the	local	files	
and	applications	present	in	the	set.	At	least	one	device,	the	device	the	user	is	interacting	
with,	must	have	a	personal	wide	view,	a	view	of	the	set	of	data	files	and	application	files	
present	in	the	set,	and	reflected	in	the	view.	
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3.3 The	Design	

	
Figure	3	The	design	

To	achieve	the	described	architecture,	segments	that	can	run	on	each	device	and	build	
the	"single	system	view"	based	on	the	local	view	of	objects	and	applications	is	needed,	as	
well	as	information	retrieved	from	other	devices	on	what	objects	and	applications	those	
devices	have.	These	segments	of	our	system	may	then	run	on	each	device,	feeding	the	
GUI	with	information	on	the	state	of	the	objects	and	files	in	the	network	of	personal	
devices.	The	user	with	access	to	this	GUI	should	then	through	some	local	module	be	able	
to	open	applications	with	a	specific	file	on	remote	devices,	from	which	an	interface	of	
this	application	should	be	accessible	on	the	device	the	user	is	interacting	with.	Any	
changes	after	operations	on	any	files	should	also	be	detected	and	reflected	in	an	updated	
SSV.	A	design	such	as	shown	above	should	then	achieve	the	architecture	defined	in	the	
previous	section.	
The	design	lets	the	user	interact	with	a	single	view	that	reflects	the	entire	set	of	his/her	
personal	devices.	Each	device	tracks	its	own	files,	and	notifies	the	other	devices	of	local	
changes	by	pushing	the	updates	when	a	refresh	request	is	received.	The	global	updated	
view	can	then	be	pulled	from	the	local	SSV	builder	on	the	device	the	user	interacts	with	
when	the	other	devices	are	done	pushing.		
Any	commands	the	user	issues	are	forwarded	to	a	server	running	on	the	device	local	to	
the	object	the	operation	is	applied	to.	If	the	user	wishes	to	open	a	file,	the	operation	is	
sent	to	the	remote	device,	where	a	new	server	serving	the	file	is	started.	The	server	
interacts	with	the	local	application	that	operates	on	the	file.	When	operations	have	been	
applied,	and	the	changes	saved,	the	local	SSV	builder	needs	to	be	made	aware	of	the	
change.	The	most	elegant	solution	is	to	let	the	application	push	the	change	to	the	SSV	
builder.	
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When	operations	can	be	applied	from	all	devices,	and	the	changes	tracked	and	reflected	
on	all	devices;	the	circle	is	ended	and	we	have	a	functioning	system.	
	

3.4 The	Implementation	
The	prototype	essentially	consists	of	four	pieces;	the	overview	GUI,	the	daemon,	the	
change	tracker,	and	the	text	editor	application.	All	individual	pieces	are	written	in	
Golang,	at	least	backend.	Most	of	the	GUI	markup	is	in	HTML,	with	the	exception	of	the	
text	editor	where	QML	was	used.	HTML	is	used	as	it	is	easy	to	implement	a	HTTP-server	
in	Golang	with	the	standard	library	and	thus	the	simplest	way	of	creating	a	GUI,	and	
QML	as	it	is	one	of	the	most	fully	implemented	GUI	libraries	for	Golang	at	this	point	with	
good	cross-platform	compatibility	(writing	a	text	editor	in	HTML	would	not	fit	in	a	
realistic	scenario).	Some	JavaScript	is	used	for	client	side	coding	to	go	along	with	the	
HTML	GUI,	which	will	be	explained	further	later.	JavaScript	is	of	course	used,	as	it	is	the	
easiest	and	most	commonly	used	client-side	scripting	language	that	more	or	less	every	
browser	supports	out	of	the	box.	
	
The	overview	GUI	is	used	just	to	get	an	overview	of	the	prototype	while	running.	It	
contains	a	view	of	all	the	running	daemons	it	can	find	with	links	to	each	daemons	GUI.	It	
is	not	an	integral	part	of	the	prototype	and	is	only	used	to	help	get	an	overview	during	
testing.		
	
The	daemon	is	the	core	of	the	prototype,	where	most	all	of	the	operations	and	
communication	is	done.	It	is	not	implemented	as	a	proper	daemon	in	this	prototype,	but	
as	a	normal	process.		
	
The	change	tracker	is	a	process	that	keeps	track	of	updates	and	changes	received	for	
local	files,	either	from	the	local	GUI,	or	a	remote	device.	It	then	feeds	it	back	formatted	to	
the	daemon.	
	
The	last	piece,	the	text	editor,	is	an	example	application	used	to	illustrate	how	a	remote	
access	system	could	be	done	while	keeping	the	file	in	place	during	operation	on	it.	
The	figure	below	shows	how	all	the	pieces	(except	the	overview	GUI)	fits	together.	
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Figure	4	Implementation	

Some	controlling	variables,	such	as	max	size,	and	a	number	of	variables	used	for	
coordinator	evaluation	can	be	set	in	a	file	common	to	all	the	individual	pieces	of	code,	
config.cfg.	The	most	important	of	which	is	the	maximum	size	of	the	network.	This	is	the	
limit	on	how	many	ports	the	prototype	should	range	over	to	look	for	daemons,	thus	
keeping	it	as	low	as	possible	increases	efficiency.	The	rest	of	the	variables	will	be	
detailed	later	in	this	chapter,	as	they	are	also	accessible	through	the	overview	GUI.	

3.4.1 Implementation	of	the	Daemons	Core	
To	implement	the	system	in	a	way	that	can	operate	seamlessly,	having	a	daemon	
running	on	each	device	would	be	a	good	idea.	These	daemons	can	then	operate	as	the	
core	of	the	system	and	exchange	information	with	each	other.	One	of	the	daemons	is	a	
coordinator,	whose	role	is	to	enforce	consistency	across	the	network.	All	updates	and	
changes	pass	through	the	coordinator	when	the	user	requests	an	update	list	of	files.	
It	was	decided	to	implement	the	daemons	for	the	prototype	in	Go,	as	its	concurrency	
mechanisms	were	thought	to	be	useful	for	this	project,	and	the	language	is	designed	in	
such	a	way	that	it	is	easily	readable.	The	cross-platform	compatibility	of	the	language	is	
also	a	very	useful	property.	
The	prototype	implementation	lets	each	daemon	generally	communicate	in	three	ways:	
TCP/IP	with	other	daemons,	HTTP	with	the	browser	and	thus	the	user,	and	standard	
streams	with	some	child	processes	that	will	be	explained	further	in	the	next	section.	
Each	daemon	has	a	list	of	all	the	other	daemons	present	in	the	network	and	has	the	
potential	to	communicate	with	them,	but	direct	communication	has	been	kept	to	a	
minimum.	Letting	information	pass	by	the	coordinator	to	ensure	consistency	across	the	
network	was	seen	as	a	priority,	though	this	consistency	is	in	conflict	with	efficiency.	
This	communications	design	is	not	retain	in	most	scenarios	requiring	high	efficiency	
with	low	latency	however.		
When	started,	each	daemon	is	either	given	a	port,	or	looks	for	an	open	port	while	also	
asking	around	for	a	coordinator.	When	found,	the	TCP/IP	communications	platform	is	
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initialized	and	a	connection	to	the	coordinator	is	established.	The	coordinator	informs	
the	rest	of	the	network	of	the	newly	joined	daemon.	No	information	on	specific	files	or	
applications	are	exchanged	before	the	user	gives	a	refresh/synchronization	request,	as	
shall	be	looked	at	further	in	the	next	section.	But	the	coordinator	sends	a	vector	
containing	all	files	ID	and	their	version	number	to	the	new	daemon.	When	a	refresh	
request	is	made,	all	daemons	are	told	to	check	their	vector	and	requests	updates	on	any	
deviant	tuples.	The	refresh	operation	can	then	run,	in	which	all	new	daemons	receive	a	
full	application	list	from	the	coordinator.	
If	connection	is	lost	to	a	daemon,	the	metadata	on	all	its	files	remain	in	the	system,	but	
the	files	cannot	be	opened	until	the	daemon	reconnects.	
	
Each	daemon	has	as	mentioned	a	HTTP-server	where	a	HTML	GUI	is	exposed	to	the	
user.	The	GUI	shows	the	SSV,	and	operations	available	on	the	SSV,	such	as	changing	
name,	deleting,	adding,	and	opening/editing	files.	The	interface	also	shows	a	subset	each	
files	metadata,	such	as	size	and	modification	date	as	examples.	The	GUI	shows	the	exact	
same	graphics	regardless	of	which	daemons	interface	the	user	accesses,	but	the	way	the	
operations	are	handled	is	different	depending	on	the	location	of	the	file.		

3.4.2 Implementation	of	a	Single	System	View	of	Files	
The	core	functionality	for	each	device	is	incorporated	within	the	daemon	process,	but	
functionality	for	keeping	track	of	changes	was	separated	out	into	its	own	process,	from	
here	on	out	referred	to	as	the	"change	tracker".		The	change	tracker	communicates	with	
the	parent	process,	the	daemon,	through	pipelines	(standard	streams).	It	is	however	
possible	that	other	methods	of	communication	could	be	better,	such	as	shared	memory.	
Splitting	the	change	tracker	into	a	separate	process	might	not	have	been	necessary	in	
the	final	implementation.	Initially	the	thought	was	to	let	the	change	tracker	
communicate	with	the	underlying	OS,	and	possible	other	change	trackers	or	daemons.	
However,	the	state	of	most	operating	systems	more	or	less	makes	scanning	the	local	files	
necessary	if	it	is	to	keep	in	direct	touch	with	each	file.	Optimally,	functionality	of	
subscribing	to	changes	on	each	file	would	let	the	device	tracker	do	its	job.	As	this	was	
not	an	option,	the	applications	must	inform	the	change	tracker	of	any	changes,	so	that	it	
may	inform	the	daemon.	All	other	changes	are	applied	through	a	GUI	provided	with	the	
prototype,	using	HTML.	This	allows	the	prototype	system	to	track	changes	and	
operations	without	having	to	scan	the	entire	files	system,	but	also	limits	the	user	to	
using	this	GUI,	as	any	changes	done	directly	in	the	OS	would	not	be	seen	by	the	
prototype.	It	also	limits	the	number	of	applications	that	may	be	used	to	those	that	either	
has	been	designed	to	work	with	this	system,	or	the	libraries	of	the	applications	are	
altered	to	run	via	our	code.		
The	design	of	this	is	not	the	optimal	one	for	the	current	situation,	but	such	a	design	
could	be	a	good	way	to	do	it	in	the	future,	given	that	OS	designers	improve	on	their	
solutions	in	a	similar	fashion	to	what	is	mentioned	in	this	thesis.	The	topic	will	be	
discussed	further	in	the	discussion	chapter.		
The	prototype	has	a	flow	similar	to	what	is	shown	on	the	graph	below.		
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Figure	5	Change	tracker	flow	in	the	prototype	

When	a	local	change	has	been	detected,	the	change	is	put	into	the	local	change	queue.	
The	change	queue	contains	all	updates	and	changes	done	to	local	files	since	the	last	
synchronization	in	chronological	order.	When	the	user	requests	a	
refresh/synchronization	operation,	the	daemons	pop	the	changes	in	the	queue,	and	push	
them	to	a	coordinator	daemon	one	by	one.	The	coordinator	daemon	then	ensures	that	
there	are	no	synchronization	conflicts,	and	apply	the	update	locally.	When	the	update	is	
successfully	applied	in	the	coordinator,	the	change	is	forwarded	to	all	the	other	
daemons,	including	the	initial	daemon.		
This	means	all	daemons	have	a	local	queue	of	changes,	containing	all	changes	applied	to	
the	files	local	to	their	device.	The	design	ensures	that	all	changes	are	applied	in	
chronological	order	on	any	given	file,	but	it	does	not	promise	that	changes	on	files	from	
different	devices	are	applied	in	chronological	order.	
	

	
Figure	6	File	synchronization	flow	



	 34	

3.4.3 Implementation	of	a	Single	System	View	of	Applications	
The	application	single	system	view	is	implemented	in	a	slightly	different	way	than	the	
SSV	of	files.	This	implementation	reflects	an	alternative	design,	giving	a	different	set	of	
tradeoffs.	For	Applications,	whenever	a	request	for	synchronization	is	received,	the	
daemon	queries	the	OS	for	installed	applications.	In	the	prototype,	this	is	done	using	the	
system_profiler	[29].	The	system_profiler	with	argument	"SPApplicationsDataType"	
compiles	a	list	of	applications	and	returns	it	to	the	daemon	through	the	standard	output	
pipe.	The	daemon	then	compiles	a	list	of	removed	applications	and	new	applications	
since	the	last	synchronization.	The	list	is	then	sent	to	the	coordinator.	The	coordinator	
has	a	structure	containing	all	the	applications	in	the	network	and	the	number	of	devices	
that	a	particular	application	is	present	on.	The	coordinator	will	go	through	the	received	
list;	subtracting	one	from	the	removed	list,	and	add	one	to	the	new	additions	list.	If	there	
are	any	applications	that	now	are	present	on	zero	devices,	the	application	is	removed	
from	the	global	applications	list.	If	the	global	applications	list	has	a	new	application,	or	
has	lost	an	application,	an	updated	list	is	sent	to	all	the	daemons	that	update	their	own	
global	list	of	applications.	This	means	that	each	device	has	two	lists	of	applications;	one	
list	of	local	applications,	and	one	list	of	global	applications.	The	global	applications	list	is	
what	is	showed	to	the	user	in	the	GUI	as	the	SSV	of	applications.	
	

	
Figure	7	Application	synchronization	flow	

The	illustration	above	shows	how	a	refresh/synchronization	request	is	processed	when	
synchronizing	the	SSV	for	applications.	The	request	is	first	sent	to	the	coordinators	SSV	
builder,	which	has	the	task	of	putting	the	lists	together.	When	the	request	is	registered,	
it	is	forwarded	to	every	daemon	in	the	network,	including	the	original	sender.	All	the	
local	SSV	builders	then	retrieves	the	list	of	applications	present	on	the	local	device,	and	
sends	the	list	of	removed	or	added	applications	to	the	"global	SSV	builder".	The	lists	are	
here	put	together,	and	checked	for	changes	since	previous	synchronization.	If	a	change	
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has	occurred,	the	new	list	is	distributed	to	the	daemons.	All	communication	is	done	
through	TCP/IP,	with	the	exception	of	the	initial	request	from	the	GUI,	which	is	by	HTTP.	

3.4.4 Implementation	of	Remote	File	Access	
The	HTML	GUI	of	each	daemon	allows	for	opening	the	files	present	in	the	SSV.	If	opened,	
the	browser	is	forwarded	to	a	page	with	a	simple	HTML	and	JavaScript	text	editor.		
When	the	user	presses	the	open	button,	the	daemon	checks	if	the	file	is	local.	If	it	is	local,	
the	file	is	opened.	If	not,	a	request	is	sent	from	the	local	daemon	to	the	coordinator,	
which	asks	around	for	the	file.	When	the	daemon	that	has	the	file	locally	receives	the	
request,	a	server	and	the	appropriate	application	with	the	file	open	is	started.	A	URL	is	
then	sent	from	the	daemon	with	the	file	locally,	to	the	original	daemon	that	requested	
the	file.	The	daemon	then	forwards	the	users	browser	to	that	URL,	which	leads	to	the	
HTML	and	JavaScript	interface	that	the	server	on	the	device	with	the	file	now	has	set	up.		
The	server	then	asks	the	application	for	the	visible	excerpt	of	the	file	being	worked	on,	
which	it	forwards	to	the	client.	The	client	can	then	edit	the	excerpt,	or	change	the	view	
and	get	a	new	excerpt.	If	the	client	makes	a	change,	a	client	side	JavaScript	is	
continuously	running	checking	for	changes.	If	it	finds	a	change,	the	smallest	possible	
subset	of	the	excerpt	that	was	changed	(or	just	the	requested	operation)	along	with	the	
position	of	the	change,	is	sent	back	to	the	server.	The	server	forwards	the	change	to	the	
application,	which	applies	the	change	in	place.	The	file	then	never	moved	from	its	
original	location,	and	only	a	small	excerpt	of	the	file	was	ever	transferred	to	the	users	
device.		

	
Figure	8	Remote	access	flow	in	the	prototype	

Optimally,	the	SSV	of	applications	would	be	integrated	with	the	remote	access	system.	In	
the	prototype	this	is	not	the	case,	as	it	has	merely	been	implemented	for	a	simple	text	
editor	that	was	made	specifically	to	illustrate	the	functionality.	The	application	is	a	
simple	text	editor,	using	HTML	as	mark	up.	The	backend	is	written	in	Golang,	with	the	
GUI	in	QML	using	GoQML	to	connect	them.	The	application	has	been	called	SimpleTxt,	
and	works	with	what	I've	called	".stxt"	files.	This	means	that	the	interface	will	only	open	
files	with	that	extension.	
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Note	that	the	HTML	and	JavaScript	interface	implemented	in	this	prototype	is	not	fully	
functional.	It	has	several	bugs	caused	by	differences	in	the	way	the	markup	of	the	loaded	
file	is	formatted	in	the	<div>	of	the	HTML	GUI	and	the	text	box	of	the	QML	GUI.	But	it	
does	illustrate	how	such	a	system	could	work	for	text	files.	
The	update	rate	of	the	remote	access	system	is	set	to	500	ms.	This	should	possibly	be	
user	changeable.	A	higher	update	rate	increases	accuracy,	but	also	increase	CPU	and	
network	utilization.	But	with	a	better	algorithm,	the	update	rate	would	probably	be	less	
important.	However,	an	update	rate	of	500	ms	does	not	mean	that	data	is	transferred	
every	500	ms,	but	rather	that	the	JavaScript	checks	for	changes	in	the	textbox	every	500	
ms,	and	sends	the	change	if	any	is	found.	The	topic	will	be	looked	at	further	in	the	
experiments	section.	
	
The	communication	between	the	server	and	the	application	is	done	through	TCP/IP	in	
the	prototype	implementation,	but	this	should	most	certainly	have	been	changed	to	
using	standard	streams.	The	application	and	the	server	is	always	on	the	same	machine,	
thus	using	TCP/IP	is	completely	unnecessary.	

3.4.5 Implementation	of	the	Coordinator	and	Coordinator	Election	
Which	device	is	coordinator	can	have	a	huge	impact	on	performance,	as	we	will	look	
more	into	in	the	experiments	section.	Thus	a	module	for	automatically	selecting	a	
coordinator	can	be	of	some	use	(though	retaining	the	possibility	of	manually	selection	a	
device	to	be	coordinator	is	of	some	importance).		It	was	suspected	that	having	most	of	
the	files	on	the	device	with	the	coordinator	would	be	most	efficient,	as	less	
communication	overhead	was	likely.	Other	factors	of	course	also	was	thought	to	count,	
such	as	what	device	is	being	interacted	with	the	most	by	the	user.		
Most	personal	devices	today	are	also	mobile,	thus	run	on	a	battery.	So	to	avoid	having	
the	coordinator	die,	or	potentially	eating	what	little	battery	remains,	it	was	decided	that	
battery	percentage	should	count	in	too.		
The	election	algorithm	gives	each	device	a	score,	based	on	the	mentioned	factors;	
battery	percentage,	number	of	local	changes,	number	of	application	runs,	and	number	of	
files.	The	battery	percentage	is	retrieved	using	"pmset",	with	the	argument	"-g	batt"	
[30].	If	the	device	is	found	to	be	charging,	the	percentage	is	considered	as	100	%.	If	the	
battery	level	is	below	a	set	threshold,	the	battery	percentage	is	that	devices	score.	If	it	is	
above	the	threshold,	the	score	is	the	threshold	+	number	of	changes	*	a	+	number	of	
runs	*	b	+	number	of	files	*	c,	where	the	constants	are	weights	given	to	each	variable.	
The	constants	in	the	prototype	are	set	to	a	=	5,	b	=	10,	c	=	1.	We	will	however	see	in	the	
experiments	section	that	these	numbers	are	likely	to	be	suboptimal	for	this	prototype.	
They	do	however	provide	an	example.	
The	number	of	runs	and	local	changes	are	based	on	a	record	from	a	set	number	of	
minutes	back	in	time,	set	to	5	minutes	back	in	time	by	default	in	the	prototype.	It	is	
however	changeable.	
When	the	score	is	calculated,	the	variables	of	the	other	devices	in	the	network	is	
retrieved	from	the	other	daemons,	and	the	score	compared	with	their	own	score.	The	
device	that	found	its	own	score	as	the	highest	proclaims	itself	coordinator,	and	notifies	
everyone	else.	The	daemons	that	did	not	find	their	own	as	the	highest	score	simply	wait	
for	the	new	coordinator	to	tell	them	about	the	change.	The	previous	coordinator	keeps	
track	of	all	the	on-going	coordinator	jobs,	and	tells	the	new	coordinator	whenever	it	is	
done	with	all	of	the	jobs	that	were	already	started.	No	new	jobs	are	accepted	during	the	
transition	period.	When	the	transition	is	done,	all	daemons	are	notified,	and	work	may	
continue	as	usual.	
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The	process	of	evaluating	the	coordinator	is	then	repeated	in	a	set	number	of	minutes	or	
seconds,	variable	that	should	be	changeable	for	the	user	as	well.	It	is	set	to	a	mere	5	
seconds	by	default	in	the	prototype.	

3.4.6 Implementation	of	the	Overview	GUI	
The	overview	GUI,	or	control	panel,	was	as	mentioned	in	the	introduction	included	to	
get	a	better	impression	of	how	the	prototype	is	working,	and	to	have	easy	access	to	each	
of	the	individual	daemons	GUI.	It	attempts	to	connect	to	all	local	daemons	within	a	set	
range	from	port	8590,	and	retrieves	their	PID	and	the	URL	to	their	GUI.	The	interface	
has	a	table	showing	a	small	excerpt	from	each	of	the	daemons	GUIs	through	HTML	
iframes,	with	a	link	to	the	full	GUIs.	
It	has	also	got	some	simple,	but	somewhat	inaccurate	stats	on	CPU	and	memory	usage	of	
the	daemons	combined;	all	retrieved	with	ps.	
Some	of	the	user	changeable	variables,	like	coordinator	evaluation	weights	and	
evaluation	intervals,	can	be	set	in	the	control	panel.	They	are	also	settable	in	the	
config.cfg	file.	

	
Figure	9	Flow	of	the	control	panel	implementation	

3.5 Implementation	of	Other	Tools	

3.5.1 Implementation	of	the	Logger	
The	logger	application	can	be	run	while	the	prototype	is	running	locally,	and	it	will	
record	CPU	and	memory	usage	until	it	is	stopped	or	the	prototype	stops.		
It	is	implemented	in	much	the	same	way	as	the	overview	GUI,	in	that	it	checks	for	
running	daemons	by	attempting	to	connect	to	all	ports	within	the	used	range.	It	then	
asks	for	the	PID	of	the	daemons	it	found,	and	then	logs	the	resource	usage	of	processes	
with	either	a	matching	PID	or	PPID.	The	values	are	retrieved	using	ps	to	get	an	instant	
snapshot.	This	does	mean	that	particularly	the	CPU	usage	is	not	entirely	accurate,	but	
give	and	indication.	When	the	logging	is	stopped	a	HTML	document	is	created	based	on	
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the	data	recorded,	and	the	data	is	dumped	to	text	files	where	the	data	is	split	into	a	file	
each	"device".	

3.5.2 Implementation	of	the	File	Adder	
The	file	adder	is	an	application	that	takes	an	input	file,	and	adds	it	a	given	number	of	
times	to	the	prototype	network	via	a	given	device/daemon.		
It	opens	the	input	file,	which	is	whatever	file	is	called	"testfile"	in	the	application	folder,	
and	recreates	it	in	the	folder	specified	for	the	given	daemon	with	a	new	name.	It	then	
connects	to	the	daemon	via	TCP/IP	and	sets	an	add	request	which	is	the	processed	the	
same	way	as	an	add	request	received	from	the	GUI.	The	process	is	repeated	until	the	
limit	on	files	per	refresh/synchronization	request	is	reached,	and	the	request	is	sent.	
When	the	synchronization	is	done,	the	process	is	repeated	until	the	set	number	of	files	
has	been	added.	

	
Figure	10	Flow	of	the	file	adder	application	
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4 Experimentation	and	Evaluation	
	

4.1 Methodology	
The	experiments	were	executed	by	running	the	devices	on	the	same	machine	but	in	
different	processes.	Each	device	consists	of	a	central	process,	the	daemon,	which	spawns	
other	processes	as	needed.	However	this	means	that	they	use	the	same	resources,	and	
communication	between	them	goes	over	loopback.	As	running	all	traffic	between	the	
segments	would	give	significantly	lower	communication	overhead	than	realistically	
possible,	traffic	between	the	"devices"	was	sent	to	a	router	on	LAN	and	back	again	by	
editing	the	routing	table.	The	router	was	operating	at	192.168.1.1,	and	the	traffic	
transmitted	over	Wi-Fi.	The	machine	was	at	192.168.1.138,	thus	adding	a	route	for	
192.168.1.138	to	192.168.1.1	would	force	the	traffic	out	over	the	network	instead	of	
going	over	loopback	when	using	the	IP	192.168.1.138	to	communicate.	Thus	running	the	
following	command	in	terminal	"route	-n	add	192.168.1.138	192.168.1.1"	adds	the	
aforementioned	route	to	the	routing	table.	[20]	
This	means	the	delay	and	traffic	is	doubled	as	each	packet	crosses	the	network	twice.	
Thus	my	results	in	these	experiments	are	likely	to	be	worse	than	what	could	be	
realistically	expected.	However	it	also	means	that	we	can	use	Apples	Network	Link	
Conditioner	to	limit	traffic	further,	and	Wireshark	to	capture	traffic	between	the	devices.	
Wireshark	is	set	to	snoop	on	packets	over	en0	using	TCP	on	the	port	range	of	8500	to	
9500	only	in	these	experiments.	
To	retrieve	memory	and	CPU	usage	a	small	application	that	runs	top	every	three	
seconds	taking	two	samples	was	written.	It	connects	to	the	daemons	on	TCP/IP	over	
loopback	at	the	beginning	of	each	loop	to	check	that	they	are	still	up	and	retrieves	their	
PIDs.	It	then	runs	top	to	retrieve	a	full	list	of	processes	with	their	PIDs,	PPIDs,	CPU	
percentage,	and	memory	usage.	When	the	list	is	retrieved,	it	finds	all	lines	with	PIDs	or	
PPIDs	that	are	one	of	the	daemons	PIDs	and	logs	the	retrieved	stats	for	that	line.	The	
problem	with	this	approach	was	that	when	system	resources	were	close	to	being	
exhausted,	this	application	was	affected	and	slowed	down.	The	long	intervals	also	means	
we	wont	get	more	detailed	information	than	at	the	three	seconds	level.	It	would	be	
possible	to	get	samples	more	often	with	ps,	but	the	values	seem	less	accurate	as	
mentioned	in	chapter	2.	[21,	22]	
	
During	each	experiment,	Wireshark	capturing	would	be	started	first,	then	the	
performance	logger.	Next	the	script	"run.sh"	was	run,	starting	the	set	number	of	devices	
with	the	correct	coordinator	mode.	Lastly,	any	operations	or	interaction	with	the	
prototype	was	done,	running	the	"file	adder"	or	the	GUI	to	give	operations.	Any	round	
trip	times	were	measured	by	inserting	stopwatches	(Golangs	"time"	library)	at	points	of	
interest	in	the	code,	and	printing	them	to	standard	output	or	dumping	them	to	a	txt	or	
csv	file.	

4.2 Metrics	
The	experiments	were	focused	on	retrieving	four	specific	metrics;	CPU	usage,	memory	
usage,	network	traffic,	and	time.	
CPU	usage	is	presented	in	percentage,	were	the	value	is	given	as	percentage	of	each	
core;	meaning	400	%	is	the	maximum	in	the	environment	used.	
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Memory	usage	is	presented	in	kilobytes,	were	the	highest	available	value	is	
approximately	2.5	gigabytes.	
Network	traffic	is	given	in	bytes	per	second,	where	combined	theoretical	up	and	down	
stream	should	be	at	about	54	megabytes	per	second	(6.750.000	bytes	per	second).	
Time	is	given	in	either	seconds	or	milliseconds	depending	on	the	size	of	the	values.	
When	time	is	the	focus	of	the	experiment,	milliseconds	will	most	often	be	used	for	
higher	precision.	However,	when	showing	changes	in	other	metrics	over	time,	seconds	is	
the	most	used	size.	When	time	is	the	focus	of	the	experiment,	what	is	measured	is	
usually	time	from	start	to	finish	of	specific	operations	such	as	writing	to	a	document,	or	
sending	a	vector	etc.	It	may	also	be	a	set	of	operations,	or	a	macro	operation,	such	as	
synchronization	operations,	or	setting	up	of	daemons	etc.	

4.3 Environment	
The	experiments	were	run	on	a	MacBook	Air	13-inch,	from	mid-2012.	The	machine	has	
an	Intel	Core	i5,	dual	core	with	1,8GHz	clock	frequency;	3MB	shared	L3	cache,	and	
Hyper-Threading.	The	memory	size	is	4GB	in	1600MHz	DDR3L.	It	was	running	OS	X	El	
Capitan	v.	10.11.4	(build	15E65,	darwin	15.4.0)	at	the	time	of	the	testing.	Go	version	
1.2.1	darwin/amd64	served	as	compiler,	the	GUI	was	displayed	using	Safari	version	9.1	
and	Chrome	version	50.0.2661.94	(64-bit).	[19]	
The	router	used	in	these	experiments	was	an	Asus	RT-N56U	with	firmware	version	
3.0.0.4.378_5291,	where	traffic	was	sent	over	a	5GHz	connection.	
Wireshark	version	2.0.2	(32-bit	build)	was	used	to	capture	network	packets.	
Processes	and	scripts	were	executed	using	terminal	version	2.6.1.	

4.4 Running	Idle	
In	this	experiment,	CPU	usage,	memory	usage,	and	traffic	was	measured	while	the	
prototype	was	running	idle	with	no	data	or	application	files,	nor	any	other	interaction.	
2,	5,	10,	15	and	20	devices	networks	where	tested,	where	20	devices	proved	to	be	the	
upper	limit	of	what	the	test	machine	could	handle	with	the	automatic	coordinator	
enabled.		
However,	when	the	coordinator	was	fixed	to	the	first	daemon,	absolutely	no	CPU	usage	
or	network	traffic	was	measured	after	the	initial	setup	phase,	meaning	it	used	less	than	
0.0	%	(out	of	400	%	on	the	dual	core	CPU	with	Hyper-Threading)	of	CPU	time.	
The	following	graphs	show	the	measured	values	during	the	experiments,	where	"20	
devices"	has	it's	own	graph	due	to	the	high	and	sometimes	missing	values.	A	projected	
value	of	400	%	for	CPU	usage,	and	2.5	GB	for	memory	usage	has	been	plotted	for	
intervals	where	top	was	unable	to	run	due	to	exhaustion	of	resources,	though	these	
values	are	of	course	not	precise.	2.5	GB	was	chosen	as	it	is	about	the	size	of	memory	that	
is	available	after	OS	and	other	necessities	have	taken	their	share.	This	is	done	to	make	
single	data	points	visible	even	if	the	two	neighbouring	data	points	are	missing.	
NB!	The	graphs	in	this	section	have	different	scales	between	the	set	of	graphs	for	each	
metric	for	better	granularity.		
	



	 41	

	
Figure	11	Idle	CPU	usage	for	2	-	15	devices.	

	
Figure	12	Idle	CPU	usage	for	20	devices.	

	
Figure	13	Idle	memory	usage	for	2	-	15	devices.	
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Figure	14	Idle	memory	usage	for	20	devices.	

	
Figure	15	Idle	memory	usage	with	fixed	coordinator,	2	-	20	devices.	

	
Figure	16	Idle	traffic	for	2	-	15	devices.	

0	

500000	

1000000	

1500000	

2000000	

2500000	

0	 12
	

24
	

36
	

48
	

60
	

72
	

84
	

96
	

10
8	

12
0	

13
2	

14
4	

15
6	

16
8	

18
0	

19
2	

20
4	

21
6	

22
8	

24
0	

25
2	

26
4	

27
6	

28
8	

M
em

or
y	
U
sa
ge
	(K
B)
	

Time	(s)	

Idle	Memory	Usage	with	Automatic	Coordinator,	20	Devices	

Actual	

Projected	

0	

20000	

40000	

60000	

80000	

100000	

120000	

0	 12
	

24
	

36
	

48
	

60
	

72
	

84
	

96
	

10
8	

12
0	

13
2	

14
4	

15
6	

16
8	

18
0	

19
2	

20
4	

21
6	

22
8	

24
0	

25
2	

26
4	

27
6	

28
8	

M
em

or
y	
U
sa
ge
	(K
B)
	

Time	(s)	

Idle	Memory	Usage	with	Fixed	Coordinator,	2	-	20	Devices	

2	Devices	

5	Devices	

10	Devices	

15	Devices	

20	Devices	

0	
50000	
100000	
150000	
200000	
250000	
300000	
350000	
400000	
450000	

0	 12
	

24
	

36
	

48
	

60
	

72
	

84
	

96
	

10
8	

12
0	

13
2	

14
4	

15
6	

16
8	

18
0	

19
2	

20
4	

21
6	

22
8	

24
0	

25
2	

26
4	

27
6	

28
8	

Tr
af
bic
	(B
yt
es
/s
)	

Time	(s)	

Idle	Trafbic	with	Automatic	Coordinator,	2	-	15	Devices	

2	Devices	

5	Devices	

10	Devices	

15	Devices	



	 43	

	
Figure	17	Idle	traffic	for	20	devices.	

There	is	clearly	something	wrong	happening	at	around	200	seconds	when	running	20	
devices.	The	amount	of	network	traffic	hits	the	roof.	Analysing	the	data	in	Wireshark	
shows	that	the	traffic	is	97.06	%	rather	small	packets	in	the	range	of	40-79,	which	
implies	there	is	some	room	for	improvement	here	by	combining	messages.	Furthermore,	
Wireshark	shows	that	there	is	a	big	increase	in	TCP	errors	in	the	period	where	the	
traffic	amount	explodes,	the	amount	of	errors	in	relation	to	amount	of	traffic	is	
significantly	higher.	There	are	many	out-of-order	packets,	duplicate	ACKs	(probably	
related	to	the	out-of-order	packets)	and	"spurious	retransmissions",	meaning	packets	
were	resent	even	though	receiver	replied	with	acknowledgement	of	already	receiving	it.	
Just	before	the	timeout,	numerous	"reset"	requests	have	been	captured,	seemingly	
caused	by	an	ACK	that	gets	lost	after	having	been	sent	to	the	router,	confusing	the	
intended	receiver,	which	in	the	end	times	out.	There	is	then	reason	to	believe	that	the	
problem	here	is	that	the	router	is	incapable	of	tackling	the	traffic,	possibly	due	to	
overload,	causing	packets	to	get	lost,	which	eventually	makes	the	prototype	time	out	
when	no	ACKs	are	able	to	reach	the	receiver.	
The	net	code	of	the	prototype	is	then	in	conclusion	in	need	of	some	refurbishment;	the	
amount	of	traffic	needs	to	be	reduced	if	it	is	to	be	able	to	run	this	many	devices	in	a	
realistic	environment.	
Other	than	that,	there	does	seem	to	be	a	slight	memory	leak,	as	memory	usage	seems	to	
build	up,	even	with	a	fixed	coordinator.	

4.5 Add	and	Refresh	
In	this	experiment	some	devices	were	set	up	with	no	files	in	their	system.	Files	were	
then	added	one	by	one,	five	by	five,	and	hundred	by	hundred,	meaning	a	refresh	was	
done	between	each	one	added,	each	fifth	add,	and	each	hundred	add.	The	three	
experiments	was	done	several	times	with	a	few	variations	in	environment	and	settings,	
changing	one	variable	a	time	from	what	was	set	as	the	"default"	settings;	Fixed	
coordinator	to	one	daemon,	refresh	returned	when	files/objects	are	synchronized	
(before	applications	are	synchronized),	with	each	file	being	a	small	sized	text	file	of	365	
bytes,	and	the	network	conditions	being	a	normal	LAN	Wi-Fi	connection.	All	variations	
were	done	twice,	once	with	two	devices	running,	and	once	with	ten	devices	running.		
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The	default	file	was	decided	to	be	so	small	due	to	space	limitations	on	the	hard	drive	as	
the	size	should	not	affect	the	performance	of	the	prototype.	
The	files	were	added	by	a	small	application	written	in	Golang,	opening	any	file	in	its	
folder	with	the	name	"testfile"	and	creating	a	copy	in	the	folder	designated	to	the	
daemon	it	was	to	add	the	files	to.	The	daemons	change	tracker	was	then	notified	by	this	
application,	and	the	daemon	received	a	refresh	request	when	each	round	of	changes	
were	finished.	Both	communications	operations	were	done	using	TCP/IP	locally	
(loopback).	

4.5.1 Two	Devices	
Two	devices	where	set	up	and	the	files	were	added	to	the	device	that	was	not	the	
coordinator	at	the	start	(the	device	with	the	daemon	running	at	port	8591)	until	it	broke	
down	under	the	following	environments:	

4.5.1.1 Default	Setup	
The	coordinator	is	set	to	be	the	device	with	the	daemon	at	port	8590,	with	the	other	
non-coordinator,	or	profane	daemon	if	you	will,	running	at	8591.		
Communications	between	the	daemons	go	via	the	LAN	and	the	router	with	no	further	
limitations.	The	file	added	is	small	and	of	size	365	bytes,	and	the	refreshes	return	as	
soon	as	the	files	has	been	refreshed.	
During	the	testing	with	one	file	per	synchronization,	the	prototype	synchronized	292	
files	before	crashing	when	synchronizing	the	293.	It	crashed	with	error	“fork/exec	
/usr/sbin/system_profiler:	resource	temporarily	unavailable”,	meaning	it	was	unable	to	
retrieve	a	list	of	applications	installed	on	the	local	machine.	The	error	means	that	the	
application	has	reached	OS	Xs	limit	on	how	many	processes	it	can	have	running	at	the	
same	time,	probably	because	we	move	on	to	add	and	synchronize	another	file	before	the	
previous	synchronization	process	is	entirely	complete,	meaning	we	keep	stacking	up	
processes	over	time.	
When	adding	five	files	between	each	synchronization,	at	first	as	many	as	3483	files	were	
successfully	synchronized	before	a	crash	stopped	it.	This	time	a	segmentation	fault	
occurred	when	attempting	to	access	a	map	structure.	This	could	imply	that	a	mistake	or	
some	bad	Go-programming	practice	was	committed	leading	to	some	unexpected	
behaviour	in	rare	cases	(it	was	not	obvious	to	me	how	the	segmentation	fault	had	
occurred).	However,	after	refactoring	parts	of	the	code,	the	problem	did	not	reoccur,	but	
the	same	error	"resource	temporarily	unavailable"	for	running	system	profiler	started	to	
occur	after	just	over	1000	files.	The	data	present	here	is	from	after	the	changes	in	the	
code.	
During	the	test	adding	100	files	and	then	synchronizing,	the	limit	on	concurrent	open	
files	was	increased	from	256	to	4096.	It	ran	for	about	20	minutes	to	synchronize	20000	
files	at	which	point	it	was	stopped.	As	is	evident	from	the	data,	there	is	a	pattern	where	
the	prototype	seems	to	struggle	when	having	done	operations	for	20	-	30	minutes	
straight.	All	three	cases	did	approximately	200	-	300	synchronization	operations	during	
the	experiment.	
	
The	following	graphs	show	CPU	usage	in	percentage,	memory	usage	in	kilobytes,	and	
bytes	sent	and	received	per	second	over	the	course	of	the	test	(keep	in	mind	the	traffic	
crosses	the	network	device	twice).		
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Figure	18	Default	setup,	two	devices	-	CPU	usage	when	one	file	added	per	synchronization	

	
Figure	19	Default	setup,	two	devices	-	CPU	usage	when	five	files	added	per	synchronization	

	
Figure	20	Default	setup,	two	devices	-	CPU	usage	when	100	files	added	per	synchronization.	
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Figure	21	Default	setup,	two	devices	-	Memory	usage	when	one	file	added	per	synchronization	

	
Figure	22	Default	setup,	two	devices	-	Memory	usage	when	five	files	added	per	synchronization	

	
Figure	23	Default	setup,	two	devices	-	Memory	usage	when	100	files	added	per	synchronization	
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Figure	24	Default	setup,	two	devices	-	Network	traffic	when	100,	5	and	1	file(s)	added	per	synchronization	

Clearly	network	traffic	and	memory	usage	is	what	is	most	heavily	affected	by	the	
increase	in	number	of	file	per	synchronization	operation,	which	should	not	be	
surprising.	
	
A	run	with	2	devices	and	100	files	per	synchronization	was	mistakenly	run	with	the	tool	
emulating	the	system	profiler	instead	of	the	actual	system	profiler.	The	difference	in	
CPU	usage	is	huge.	The	CPU	usage	when	the	actual	system	profiler	is	not	running	is	
much	lower,	while	the	memory	usage	is	close	to	the	same	but	more	stable.	Note	that	this	
experiment	crashed	due	to	a	timeout	after	synchronizing	8500	files,	running	much	short	
of	20	minutes,	and	200	synchronization	operations:	
	

	
Figure	25	Default	setup,	two	devices,	real	system	profiler	versus	emulating	system	profiler	-	CPU	usage	when	
100	files	added	per	synchronization.	(Note	that	the	data	for	the	real	system	profiler	continues	after	525	
seconds.	You	can	see	the	data	in	its	entirety	in	figure	20)	
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Figure	26	Default	setup,	two	devices,	real	system	profiler	versus	emulating	system	profiler	-	Memory	usage	
when	100	files	added	per	synchronization.	(Note	that	the	data	for	the	real	system	profiler	continues	after	525	
seconds.	You	can	see	the	data	in	its	entirety	in	figure	23)	

4.5.1.2 Automatic	Coordinator	
In	this	experiment	the	prototype	is	set	to	attempt	to	elect	the	best	coordinator.	
Otherwise	the	environment	is	the	same	as	in	the	previous	test.	
The	coordinator	was	set	to	the	device	at	8590	at	start,	as	it	was	the	first	device	running,	
but	switched	to	8591	after	the	a	few	files	had	been	added	to	the	system.	
Only	295	files	were	added	before	problems	occurred	during	the	first	test.	The	daemon	
seemed	to	keep	accepting	requests	and	replying,	but	it	did	not	synchronize	properly.	
The	new	files	being	added	did	not	show	up	in	the	system.	It	is	possible	the	function	
evaluating	the	coordinator	got	stuck	and	held	the	synchronization	up,	causing	a	
complete	halt	in	progress	other	than	communications	(deadlock).	The	same	bug	
occurred	when	adding	5	and	100	files	too,	but	this	time	1445	and	5300	files	were	
correctly	synchronized	before	it	locked	down.	The	limit	on	concurrently	open	files	was	
set	to	4096	in	this	test	too,	as	the	limit	would	otherwise	be	reached	very	quickly.	
	
The	following	graphs	show	CPU	usage	in	percentage,	memory	usage	in	kilobytes,	and	
bytes	sent	and	received	per	second	over	the	course	of	the	test.	
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Figure	27	Automatic	coordinator,	two	devices	-	CPU	usage	when	one	file	added	per	synchronization	

	
Figure	28	Automatic	coordinator,	two	devices	-	CPU	usage	when	five	files	added	per	synchronization	

	
Figure	29	Automatic	coordinator,	two	devices	-	CPU	usage	when	100	files	added	per	synchronization	
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Figure	30	Automatic	coordinator,	two	devices	-	Memory	usage	when	one	file	added	per	synchronization	

	
Figure	31	Automatic	coordinator,	two	devices	-	Memory	usage	when	five	files	added	per	synchronization	

	
Figure	32	Automatic	coordinator,	two	devices	-	Memory	usage	when	100	files	added	per	synchronization	
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Figure	33	Automatic	coordinator,	two	devices	-	Network	traffic	when	100,	5	and	1	file(s)	added	per	
synchronization	

It	is	interesting	that	this	experiment	seems	to	show	no	increase	in	CPU	usage	from	the	
previous	experiment,	just	a	more	unpredictable	pattern	in	the	peaks,	but	this	could	
possible	be	blamed	on	the	short	run	time,	giving	to	little	data	to	get	a	proper	pattern.	
The	correlation	between	traffic	and	number	of	files	clearly	continues,	but	the	increase	in	
memory	seems	less	marked,	though	there	is	still	a	correlation.	It	does	look	like	the	
memory	usage	have	increased	a	lot	when	running	with	the	automatic	coordinator	
election,	which	makes	the	difference	in	memory	usage	between	the	test	scenarios	seem	
smaller.	

4.5.1.3 3G	
The	network	is	severely	limited	in	this	experiment.	The	Network	Link	Conditioner	is	set	
to	3G	mode,	which	means	the	following	rules	apply;	
	
Downlink:	
Bandwidth	set	to	780	kbps	
Packages	delayed	for	100	ms	
	
Uplink:	
Bandwidth	set	to	330	kbps	
Packages	delayed	for	100	ms	
	
Otherwise	the	environment	is	the	same	as	in	the	"default"	experiment,	where	the	
coordinator	is	at	the	device	with	the	daemon	at	port	8590.		
A	mere	312	files	were	synchronized	properly	before	receiving	the	same	error	as	in	the	
"default"	scenario	when	adding	one	file	at	a	time,	and	1435	files	when	adding	five	a	time;	
“fork/exec	/usr/sbin/system_profiler:	resource	temporarily	unavailable”.		
When	doing	cycles	of	100	files,	over	20000	files	were	added	over	the	course	of	almost	3	
hours	at	which	point	the	test	was	stopped.	Open	file	limit	was	set	to	4096	during	the	last	
test.	
	
The	following	graphs	show	CPU	usage	in	percentage,	memory	usage	in	kilobytes,	and	
bytes	sent	and	received	per	second	over	the	course	of	the	test.		
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Figure	34	3G,	two	devices	-	CPU	usage	when	one	file	added	per	synchronization	

	
Figure	35	3G,	two	devices	-	CPU	usage	when	five	files	added	per	synchronization	

	
Figure	36	3G,	two	devices	-	CPU	usage	when	100	files	added	per	synchronization	
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Figure	37	3G,	two	devices	-	Memory	usage	when	one	file	added	per	synchronization	

	
Figure	38	3G,	two	devices	-	Memory	usage	when	five	files	added	per	synchronization	

	
Figure	39	3G,	two	devices	-	Memory	usage	when	100	files	added	per	synchronization	
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Figure	40	3G,	two	devices	-	Network	traffic	when	100,	5,	and	1	file(s)	added	per	synchronization	

Noteworthy	in	this	experiment	is	the	dip	in	traffic	in	the	100	files	series	at	round	4500	
seconds.	Exactly	why	this	is	happening	is	hard	to	say,	but	that	some	other	device	or	
application	was	using	bandwidth	affecting	the	experiment	is	a	theory.	Nothing	
conclusive	was	found	when	looking	at	the	Wireshark	data.	

4.5.1.4 Larger	File	Size	
To	be	certain	that	file	size	does	not	affect	the	performance	of	the	prototype,	an	
experiment	was	run	with	the	exact	same	environment	as	in	the	default	scenario,	except	
that	a	file	of	size	3.6	megabytes	was	used	in	stead	of	a	file	at	365	bytes.		3.6	MB	was	
chosen	because	it	is	about	the	same	size	as	the	average	MP3	file	according	to	[28].		
The	first	result	was	similar	to	that	of	the	default	scenario,	adding	289	files	successfully	
before	again	crashing	with	error	“fork/exec	/usr/sbin/system_profiler:	resource	
temporarily	unavailable”.		
When	doing	cycles	of	five	and	hundred	files,	warnings	of	running	out	of	space	started	to	
appear,	and	thus	the	test	was	stopped	after	synchronizing	3605	and	2200	files.	As	in	the	
previous	runs	of	100	files,	the	concurrent	open	file	limit	was	increased	from	256	to	4096	
to	get	a	proper	test.	
	
The	following	graphs	show	CPU	usage	in	percentage,	memory	usage	in	kilobytes,	and	
bytes	sent	and	received	per	second	over	the	course	of	the	test.	
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Figure	41	Large	file,	two	devices	-	CPU	usage	when	one	file	added	per	synchronization	

	
Figure	42	Large	file,	two	devices	-	CPU	usage	when	five	files	added	per	synchronization	

	
Figure	43	Large	file,	two	devices	-	CPU	usage	when	100	files	added	per	synchronization	

0	

20	

40	

60	

80	

100	

0	 51
	

10
2	

15
3	

20
4	

25
5	

30
6	

35
7	

40
8	

45
9	

51
0	

56
1	

61
2	

66
3	

71
4	

76
5	

81
6	

86
7	

91
8	

96
9	

10
20
	

10
71
	

11
22
	

11
73
	

12
24
	

12
75
	

13
26
	

CP
U
	U
sa
ge
	(%

)	

Time	(s)	

Larger	File	Size,	CPU	Usage	(1	File)	

8590	

8591	

0	

20	

40	

60	

80	

100	

0	 33
	

66
	

99
	

13
2	

16
5	

19
8	

23
1	

26
4	

29
7	

33
0	

36
3	

39
6	

42
9	

46
2	

49
5	

52
8	

56
1	

59
4	

62
7	

66
0	

69
3	

72
6	

75
9	

79
2	

82
5	

85
8	

CP
U
	U
sa
ge
	(%

)	

Time	(s)	

Larger	File	Size,	CPU	Usage	(5	Files)	

8590	

8591	

0	

20	

40	

60	

80	

100	

0	 9	 18
	

27
	

36
	

45
	

54
	

63
	

72
	

81
	

90
	

99
	

10
8	

11
7	

12
6	

13
5	

14
4	

15
3	

16
2	

17
1	

18
0	

18
9	

19
8	

20
7	

CP
U
	U
sa
ge
	(%

)	

Time	(s)	

Larger	File	Size,	CPU	Usage	(100	Files)	

8590	

8591	



	 56	

	
Figure	44	Large	file,	two	devices	-	Memory	usage	when	one	file	added	per	synchronization	

	
Figure	45	Large	file,	two	devices	-	Memory	usage	when	five	files	added	per	synchronization	

	
Figure	46	Large	file,	two	devices	-	Memory	usage	when	100	files	added	per	synchronization	
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Figure	47	Large	file,	two	devices	-	Network	traffic	when	100,	5	and	1	file(s)	added	per	synchronization	

4.5.1.5 Full	Synchronization	Before	Returning	
This	test	explores	what	happens	when	we	wait	for	the	synchronization	to	be	fully	
complete	before	we	allow	for	new	operations.	This	implies	that	both	files	and	
applications	are	synchronized	before	the	"refresh"	operation	returns.	
The	result	of	the	first	two	tests	was	somewhat	surprising,	resulting	in	the	same	type	of	
crash	as	before;	“fork/exec	/usr/sbin/system_profiler:	resource	temporarily	
unavailable”.	This	time	after	synchronizing	282	files	for	adding	one	by	one,	and	1415	
files	when	adding	five	by	five.	This	could	imply	that	not	all	functions	or	goroutines	are	
returning	properly,	causing	a	leakage	that	grows	over	time,	as	number	of	
synchronizations	seems	to	be	the	most	important	factor	in	how	early	the	prototype	
crashes	with	this	error.	
When	doing	100	files	per	synchronization,	the	prototype	kept	going	for	an	hour,	at	
which	point	20000	files	had	been	properly	synchronized	when	"ulimit"	had	been	
increased	to	4096.	It	was	stopped	at	that	point.		
	
The	following	graphs	show	CPU	usage	in	percentage,	memory	usage	in	kilobytes,	and	
bytes	sent	and	received	per	second	over	the	course	of	the	test.	Note	for	how	long	the	test	
ran	compared	to	the	default	scenario;	almost	45	minutes	versus	close	to	23	minutes	in	
the	first	test	
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Figure	48	Full	sync,	two	devices	-	CPU	usage	when	one	file	added	per	synchronization	

	
Figure	49	Full	sync,	two	devices	-	CPU	usage	when	five	files	added	per	synchronization	

	
Figure	50	Full	sync,	two	devices	-	CPU	usage	when	100	files	added	per	synchronization	
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Figure	51	Full	sync,	two	devices	-	Memory	usage	when	one	file	added	per	synchronization	

	
Figure	52	Full	sync,	two	devices	-	Memory	usage	when	five	files	added	per	synchronization	

	
Figure	53	Full	sync,	two	devices	-	Memory	usage	when	100	files	added	per	synchronization	
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Figure	54	Full	sync,	two	devices	-	Network	traffic	when	100,	5,	and	1	file(s)	added	per	synchronization	

If	you	are	wondering	where	the	"5	files"	series	is,	its	almost	exactly	the	same	as	the	"1	
file"	series,	thus	the	latter	is	overlapping	it.	

4.5.2 Ten	Devices	
The	machine	used	during	the	experiments	struggled	with	having	ten	devices	running	
locally	at	the	same	time,	frequently	eating	up	almost	all	CPU	time.	Also	the	limit	on	
concurrently	opened	files	was	initially	often	reached	very	quickly.	Merely	200	-	400	files	
were	successfully	synchronized	in	most	cases,	even	after	increasing	the	file	limit	to	
4096.		
The	graphs	have	been	merged	into	fewer	charts	in	this	section	in	the	interest	of	space	
and	clarity,	as	having	a	line	for	each	daemon	would	make	the	charts	too	chaotic.	The	
values	have	instead	been	added	up	into	making	one	graph	showing	total	CPU	and	
memory	usage	at	the	specific	point	in	time.	

4.5.2.1 Default	Setup	
Running	the	experiment	with	ten	devices,	a	significant	lower	amount	of	files	were	
properly	synchronized;	291,	1365,	and	7200	files.	The	first	two	crashed	with	the	usual	
"resource	temporarily	unavailable",	while	the	100	files	run	timed	out.	
	

	
Figure	55	Default	setup,	10	devices	-	CPU	usage	when	one	file	added	per	synchronization	
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Figure	56	Default	setup,	10	devices	-	CPU	usage	when	five	files	added	per	synchronization	

	
Figure	57	Default	setup,	10	devices	-	CPU	usage	when	100	files	added	per	synchronization	

	
Figure	58	Default	setup,	10	devices	-	Memory	usage	when	1	file	added	per	synchronization	
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Figure	59	Default	setup,	10	devices	-	Memory	usage	when	five	files	added	per	synchronization	

	
Figure	60	Default	setup,	10	devices	-	Memory	usage	when	100	files	added	per	synchronization	

	
Figure	61	Default	setup,	10	devices	-	Network	traffic	when	adding,	1	5	and	100	files	per	synchronization	

4.5.2.2 Automatic	Coordinator	
When	adding	one	file	per	synchronization,	the	prototype	bugged	out	during	coordinator	
evaluation	after	adding	mere	60	files	successfully.		
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The	others	ran	to	295	and	4800	files	synchronized	before	the	deadlock	occurred.	There	
again	seems	to	be	a	pattern	in	when	the	bug	occurs;	60/1	=	60,	295/5	=	59,	and	
4800/100	=	48.	The	number	of	successful	synchronization	are	quite	close,	and	seems	to	
decrease	slightly	with	number	of	files	per	synchronization.	The	pattern	does	not	hold	
when	including	the	two	devices	version	of	this	experiment	though,	in	which	the	first	two	
reached	around	200	-	300	synchronizations,	while	100	files	reached	a	more	expected	53.	
	
Interesting	is	the	clear	pattern	where	you	can	see	when	the	coordinator	is	changing	in	
the	resource	usage	graphs.	Curiously	the	peak	is	not	present	in	the	traffic	data	for	the	
100	files	series,	it	seems	likely	the	extra	traffic	caused	by	the	coordinator	change	is	very	
small	compared	to	the	average	transfer	rates	when	adding	so	many	files	as	to	not	make	
a	noticeable	difference.	
	

	
Figure	62	Automatic	coordinator,	10	devices	-	CPU	usage	when	one	file	added	per	synchronization	

	
Figure	63	Automatic	coordinator,	10	devices	-	CPU	usage	when	five	files	adder	per	synchronization	
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Figure	64	Automatic	coordinator,	10	devices	-	CPU	usage	when	100	files	added	per	synchronization	

	
Figure	65	Automatic	coordinator,	10	devices	-	Memory	usage	when	one	file	added	per	synchronization	

	
Figure	66	Automatic	coordinator,	10	devices	-	Memory	usage	when	five	files	added	per	synchronization	
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Figure	67	Automatic	coordinator,	10	devices	-	Memory	usage	when	100	files	added	per	synchronization	

	
Figure	68	Automatic	coordinator,	10	devices	-	Network	traffic	when	1,	5,	and	100	file(s)	added	per	
synchronization	

4.5.2.3 3G	
The	100	files	test	managed	to	synchronize	5500	files	before	exhausting	resources	and	
crashing.	As	for	1	and	5	files,	101	and	415	synchronized	files	proved	to	be	the	limit.	
It	seems	like	the	delay	helps	when	it	comes	to	keeping	number	of	concurrent	files	down	
(when	running	with	ulimit	-n	at	256,	3G	had	a	higher	number	of	file	synchronized	than	
other	scenarios),	but	when	that	aspect	is	removed,	the	delay	does	not	seem	to	have	any	
positive	effects.	It	clearly	slows	the	process	down,	but	the	number	of	synchronized	files	
before	resource	exhaustion	was	also	lower	with	291,	1365,	and	5785	files	for	the	same	
set	up	with	a	normal	LAN	connection.	
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Figure	69	3G,	10	devices	-	CPU	usage	when	one	file	added	per	synchronization	

	
Figure	70	3G,	10	devices	-	CPU	usage	when	five	files	added	per	synchronization	

	
Figure	71	3G,	10	devices	-	CPU	usage	when	100	files	added	per	synchronization	

0	
50	
100	
150	
200	
250	
300	
350	
400	

0	 33
	

66
	

99
	

13
2	

16
5	

19
8	

23
1	

26
4	

29
7	

33
0	

36
3	

39
6	

42
9	

46
2	

49
5	

52
8	

56
1	

59
4	

62
7	

66
0	

69
3	

72
6	

75
9	

79
2	

82
5	

85
8	

89
1	

92
4	

95
7	

99
0	

10
23
	

CP
U
	U
sa
ge
	(%

)	

Time	(s)	

3G,	CPU	Usage	(1	File)	

0	
50	
100	
150	
200	
250	
300	
350	
400	

0	 33
	

66
	

99
	

13
2	

16
5	

19
8	

23
1	

26
4	

29
7	

33
0	

36
3	

39
6	

42
9	

46
2	

49
5	

52
8	

56
1	

59
4	

62
7	

66
0	

69
3	

72
6	

75
9	

79
2	

82
5	

85
8	

89
1	

92
4	

95
7	

99
0	

CP
U
	U
sa
ge
	(%

)	

Time	(s)	

3G,	CPU	Usage	(5	File)	

0	
50	
100	
150	
200	
250	
300	
350	
400	

0	 300	 600	 900	 1200	 1500	 1800	 2100	 2400	 2700	 3000	

CP
U
	U
sa
ge
	(%

)	

Time	(s)	

3G,	CPU	Usage	(100	Files)	



	 67	

	
Figure	72	3G,	10	devices	-	Memory	usage	when	one	file	added	per	synchronization	

	
Figure	73	3G,	10	devices	-	Memory	usage	when	five	files	added	per	synchronization	

	
Figure	74	3G,	10	devices	-	Memory	usage	when	100	files	added	per	synchronization	
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Figure	75	3G,	10	devices	-	Network	traffic	when	1,	5,	and	100	files	added	per	synchronization	

4.5.2.4 Larger	File	Size	
When	increasing	the	file	size,	218,	1240,	and	1700	where	synchronized	before	the	usual	
error	occurred,	and	in	the	last	case	the	disk	filled	up	and	the	run	was	stopped.	This	is	
very	much	comparable	with	the	default	scenario	with	the	exception	of	the	100	files	per	
synchronization	scenario	that	had	to	be	stopped	early.	This	again	indicates	as	suggested	
earlier	that	the	file	size	should	not	matter.	The	resource	usage	does	also	look	
comparable,	though	there	is	some	variation	that	can	likely	be	attributed	to	random	
variables,	but	the	patterns	are	largely	the	same.	
	

	
Figure	76	Larger	file	size,	10	devices	-	CPU	usage	when	one	file	added	per	synchronization	
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Figure	77	Larger	file	size,	10	devices	-	CPU	usage	when	five	files	added	per	synchronization	

	
Figure	78	Larger	file	size,	10	devices	-	CPU	usage	when	100	files	added	per	synchronization	

	
Figure	79	Larger	file	size,	10	devices	-	Memory	usage	when	one	file	added	per	synchronization	
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Figure	80	Larger	file	size,	10	devices	-	Memory	usage	when	five	files	added	per	synchronization	

	
Figure	81	Larger	file	size,	10	devices	-	Memory	usage	when	100	files	added	per	synchronization	

	
Figure	82	Larger	file	size,	10	devices	-	Network	traffic	when	1,	5,	and	100	files	added	per	synchronization	
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adding	100	files	per	synchronization,	while	it	was	275	for	five	files	and	55	for	one	file,	
both	stopping	when	receiving	the	"	fork/exec	/usr/sbin/system_profiler:	resource	
temporarily	unavailable"	error.	Again,	the	slower	progression	of	the	prototype	under	
this	setting	is	likely	helping	the	number	of	open	files	to	stay	low.	Quite	a	few	of	the	ten-
devices-tests	with	normal	file	limits	crashed	due	to	too	many	open	files	initially.		
When	the	file	limit	was	increased,	5700	files	were	synchronized	before	resources	were	
maxed	out:	a	value	that	is	very	much	comparable	to	that	of	the	setup	with	3G	and	the	
default	setup.	Running	a	combination	of	full	synchronization	and	3G,	which	reached	
5600	files	before	crashing	in	the	same	way,	more	or	less	confirms	the	suspicion	that	
these	two	factors	matters	little	on	resource	usage,	at	least	to	a	point	(when	running	two	
devices,	these	two	tests	had	to	be	stopped	after	running	for	hours,	while	the	default	
setup	timed	out	at	8500	files).	
	

	
Figure	83	Full	synchronization	before	returning,	10	devices	-	CPU	usage	when	adding	one	file	per	
synchronization	

	
Figure	84	Full	synchronization	before	returning,	10	devices	-	CPU	usage	when	adding	five	files	per	
synchronization	
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Figure	85	Full	synchronization	before	returning,	10	devices	-	CPU	usage	when	adding	100	files	per	
synchronization	

	
Figure	86	Full	synchronization	before	returning,	10	devices	-	Memory	usage	when	adding	one	file	per	
synchronization	

	
Figure	87	Full	synchronization	before	returning,	10	devices	-	Memory	usage	when	adding	five	files	per	
synchronization	
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Figure	88	Full	synchronization	before	returning,	10	devices	-	Memory	usage	when	adding	100	files	per	
synchronization	

	
Figure	89	Full	synchronization	before	returning,	10	devices	-	Network	traffic	when	adding	1,	5,	and	100	files	
per	synchronization	
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In	this	experiment,	a	specified	number	of	"devices"	were	set	up,	some	of	them	with	a	
small	amount	of	files	just	to	test	the	automatic	coordinator	function	in	the	prototype.	
The	first	devices/daemon	at	port	8590	had	eight	files,	the	second	on	port	8591	had	11	
files,	and	the	fourth	on	port	8593	had	one	file	(this	one	file	is	of	course	not	included	
when	running	less	than	four	devices).		The	automatic	coordinator	selection	was	enabled,	
and	the	network	situation	the	same	as	in	the	previous	experiments.	The	file	size	and	
type	varied,	but	as	proven	in	the	previous	experiments,	this	should	not	affect	anything.		
The	first	daemon	at	8590	was	set	to	be	the	initial	coordinator,	and	as	soon	as	the	initial	
set	up	phase	where	the	daemons	connect	to	each	other	was	over,	a	
refresh/synchronization	request	was	sent	via	the	HTML	GUI	on	the	first	device.	The	time	
was	then	taken	from	the	instant	the	coordinator	evaluation	was	initiated	to	the	daemons	
were	told	a	new	coordinator	was	elected	(should	be	the	daemon	at	8591	as	it	has	the	
most	files).	The	times	were	measured	by	getting	the	time	at	the	start	of	the	function	
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represented	in	the	graph	are	based	on	5	sample	averages.	The	open	file	limit	was	
increased	from	256	to	4096	when	running	50	or	more	devices,	as	the	limit	would	
otherwise	be	reached.	When	running	with	80	devices,	time	outs	would	frequently	
happen,	thus	attempts	at	testing	90	or	more	on	LAN	proved	fruitless.	
The	times	increase	rapidly	with	number	of	devices,	reaching	three	seconds	by	20	
devices.	This	means	there	are	three	seconds	where	the	system	will	be	locked	and	the	
user	cant	do	anything	during	a	transition	period	while	the	coordinator	is	being	moved.	
The	process	should	not	happen	too	often	though,	so	the	long	delay	may	be	survivable.	
	

	
Figure	90	Time	spent	selecting	a	new	coordinator	

4.7 Setup	Time	
This	experiment	was	done	to	measure	the	time	it	takes	from	starting	a	daemon	until	it	
has	initialized	and	is	ready	to	receive	requests	and	synchronize	with	the	other	devices.	
The	times	were	fetched	using	the	same	method	and	library	as	in	the	previous	
experiment	(Golangs	time	library).		
The	set	number	of	devices	was	started	with	one	second	apart.	The	experiment	was	
executed	with	each	daemon	started	1	second	after	the	previous	one.	The	results	shows	
an	average	of	1.58	seconds	when	setting	up	200	devices,	with	a	clear	point	at	around	
145	devices	on	which	breakdown	starts	to	occur.	The	lowest	time	is	the	first	daemon	at	
51.9	ms,	and	the	highest	is	the	last	with	15.3335	s.	Also	notice	that	there	is	almost	a	100	
%	increase	from	the	first	to	the	second	device	(97.7	ms)	from	which	the	time	is	almost	
constant	from	device	number	two	to	device	number	130	(112.8	ms).	
You	can	start	to	see	a	slow	ascent	beginning	at	115,	increasing	rapidly	at	around	145.	
That	is	a	decent	value	for	our	purposes,	as	a	break	down	at	above	100	devices	is	
negligible	for	a	network	of	personal	devices.	
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Figure	91	Setup	time	of	200	devices,	an	overview	

	
Figure	92	Setup	time	of	200	devices,	excerpt	of	1	to	20	devices	

	
Figure	93	Setup	time	of	200	devices,	excerpt	of	115	to	160	devices	
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It	is	likely	that	it	is	a	limit	on	the	prototype	in	terms	of	communications	as	there	seemed	
to	be	hardly	any	hit	on	the	memory,	and	the	CPU	did	not	seem	to	be	maxed	out	based	on	
the	values	presented	in	the	OS	Xs	Activity	Monitor;	Two	virtual	cores	barely	above	20	%	
at	most	in	combined	user	and	system	time,	with	the	two	others	showing	more	heavy	
pressure	but	never	above	50	%.	Peak	combined	CPU	time	percentage	was	at	about	105	
%	out	of	a	total	of	400	%	(dual	core	with	Hyper-Threading).	

4.8 Opening	a	File	Remotely	
The	first	experiment	was	designed	to	see	how	the	size	of	a	document	affects	the	time	it	
takes	to	open	it	in	the	remote	access	interface.	A	file	of	three	different	word	counts	was	
opened	using	the	remote	access	interface.	No	real	variance	in	time	spent	opening	the	
files	nor	amount	of	traffic	was	found.		
	

Word	Count	 Time	(s)	
200	 3.5	
1000	 3.51	
5000	 3.6	
Table	1	Times	of	opening	files	with	various	lengths	remotely	

The	time	was	found	by	subtracting	the	time	at	the	point	when	the	file	was	opened	from	
the	time	when	the	request	was	made.	
Wireshark	was	used	to	capture	the	traffic,	with	the	result	amount	of	captured	data	
virtually	identical.	This	indicates,	as	expected,	that	the	time	is	dominated	by	the	work	
done	to	find	the	file	and	open	the	application.		
In	a	second	experiment,	the	time	between	the	same	points	was	measured,	but	a	file	was	
opened	from	the	GUI	at	the	non-coordinator	with	the	file	at	the	coordinator,	and	then	
the	other	way	around.	The	times	were	again	found	to	be	around	3.5s,	regardless	of	what	
device	was	the	coordinator.	The	results	indicate	that	the	number	of	application	runs	is	
probably	unnecessary	to	include	when	evaluating	the	devices	for	coordinator	election.	
Also,	the	times	seem	reasonable	for	the	scenarios	the	system	is	designed	for.	

4.9 Remote	Access	System	
The	update	rate	is	set	to	500	ms	by	default	in	the	prototype,	as	this	was	found	to	be	a	
decent	balance	between	accuracy	and	resource	utilization.	In	this	experiment,	the	aim	is	
to	test	the	performance	of	the	remote	access	system,	as	well	as	look	at	how	the	update	
rate	affects	accuracy	and	performance.	
In	this	first	part	of	the	experiment,	a	document	with	a	few	thousand	words	was	opened,	
and	the	GUI	was	moved	through	the	document	with	a	time	of	about	10	seconds	per	
view/page	to	see	the	impact	on	the	network.	The	traffic	per	view	change/page	flip	can	
clearly	be	seen	as	spikes	in	the	graph	below.	The	average	time	spent	processing	a	page	
flip	request	server	side	was	9.3	ms.	The	CPU	and	memory	impact	was	not	noticeable.	
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Figure	94	Traffic	in	B/s	when	changing	document	view	

Next	an	attempt	at	measuring	the	time	from	editing	the	document	to	the	change	being	
applied	was	measured.	Unfortunately,	the	times	printed	by	the	client-side	javaScript	was	
not	in	sync	with	the	times	printed	by	the	server-side	times	printed	by	the	application	
written	in	Golang	(the	changes	are	sent	asynchronously).	The	values	can	however	be	
used	as	a	reference	between	the	difference	between	the	different	lengths	of	changes,	
though	the	precise	values	are	incorrect.	
	

	
Figure	95	Relative	time	spent	applying	updates	of	different	lengths.	Note	that	the	time	times	given	at	the	Y-
axis	are	not	correct	times,	but	merely	relative	values.	

There	does	not	seem	to	be	any	significant	difference	in	time	spent	in	relation	to	length	of	
the	change	within	range	of	realistic	values.	And	the	CPU	usage	was	again	insignificant,	
with	the	CPU	peaking	at	3	%	at	one	point,	but	otherwise	never	exceeding	1	%.	The	
network	traffic	and	memory	usage	does	however	show	some	increase	with	length,	but	it	
is	not	a	very	big	impact.	We	should	expect	some	increase	in	time	too	when	the	length	of	
the	changes	grow	larger,	but	it	is	unlikely	that	a	change	done	within	500ms	is	large	
enough	to	make	a	noticeable	difference,	unless	very	large	portions	of	text	is	copied	and	
pasted	in.	
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Figure	96	Traffic	captured	during	editing	of	files	through	the	remote	access	interface	

The	application	was	running	under	the	daemon	with	port	at	8590,	while	the	GUI	was	at	
8591.	The	symbols	were	added,	without	the	set	of	symbols	from	the	previous	set	of	test	
being	removed.	Thus	a	build	up	is	to	be	expected.	The	memory	samples	are	not	from	the	
same	run	of	the	experiment	as	the	network	traffic	graph,	thus	the	variation	in	time	
stamps.	
	

	
Figure	97	Memory	usage	during	changing	of	a	file	through	the	remote	access	interface	

All	the	changes	applied	in	these	tests	seemed	to	be	correctly	applied	to	the	actual	file,	
likely	because	all	the	changes	were	additions	inserted	in	the	middle	of	sentences.	The	
algorithm	was	noticed	to	behave	abnormally	when	changes	were	done	at	the	end	of	
lines,	at	the	end	of	the	documents,	or	in	combinations	with	removing	text.	Other	than	the	
problems	with	the	implementation,	the	resource	usage	and	timing	properties	seem	
reasonable	for	the	intended	use	cases.	

4.10 Synchronization	Time	
An	experiment	to	check	how	the	amount	of	files	already	present	in	the	network	affects	
the	time	of	adding	new	files	was	run.	The	existing	files	were	present	on	the	first	device	
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with	the	daemon	at	port	8590,	which	was	also	set	as	the	coordinator.	The	file	was	then	
added	to	the	second	device.	None,	50,	250,	500,	1000,	2500,	5000,	10.000,	20.000,	and	
30.000	already	existing	files	were	tested.		
The	experiment	was	then	re-run	with	the	files	present	on	the	second	device	(same	as	the	
one	the	file	is	being	added	to).		
The	times	shown	are	from	when	the	request	to	synchronize	the	specified	file	is	sent,	to	
the	change	is	committed	and	applied.	As	can	be	inferred	from	the	data,	the	number	of	
files	already	present	in	the	system	does	not	seem	to	affect	the	performance	much	(at	
least	not	when	adding	a	single	file),	but	which	device	the	files	is	placed	on	does	appear	
to	have	a	significant	impact.	The	first	experiment	has	a	much	higher	average	then	the	
second.		
Finally,	the	second	set	of	data	has	no	points	for	higher	number	of	files.	This	is	because	
the	prototype	appeared	to	be	too	unstable	when	10.000	files	was	reached	with	those	
settings,	timing	out	when	synchronizing	a	high	number	of	files.	The	experiment	then	
implies	that	the	coordinator	is	more	stable	than	the	other	devices,	thus	having	the	
number	of	files	affect	which	daemon	is	elected	the	coordinator	is	a	good	decision.	The	
low	break	point	is	somewhat	scary	however,	as	5000	files	on	a	single	device	is	not	that	
high	a	number.	
	

	
Figure	98	Time	spent	adding	a	single	file	to	a	network	with	a	varying	amount	of	files	on	the	coordinator	(the	
other	device)	

	
Figure	99	Time	spent	adding	a	single	file	to	a	network	with	a	varying	amount	of	files	on	the	device	the	file	is	
being	added	to	
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To	look	deeper	into	the	difference	between	the	times	from	the	two	experiments,	and	to	
confirm	that	the	number	of	files	already	present	in	the	network	does	not	affect	
performance,	an	experiment	with	a	slightly	different	twist	was	devised.	
Here	two	daemons	where	the	first	is	fixed	to	be	coordinator	are	added	1,	50,	100,	500,	
1000,	and	1500	files.	Both	adding	to	the	coordinator	and	adding	to	the	second	device	
was	tested.	The	experiment	was	run	twice,	once	with	an	empty	network,	and	once	
where	both	devices	had	500	files	each.	The	time	was	then	measured	(in	the	coordinator)	
from	the	time	a	synchronization/refresh	request	was	received,	until	all	the	changes	
were	applied	and	pushed.	The	change	in	points	of	measure	was	to	increase	accuracy	as	
this	meant	timing	variables	could	be	kept	within	a	single	function	(in	contrast	to	global	
variables),	reducing	the	chances	of	unexpected	factors	affecting	the	result.		
The	numbers	shown	in	the	graphs	are	averages	of	five	samples.	
	

	
Figure	100	Time	taken	for	the	coordinator	to	enforce	synchronization	under	various	conditions	

The	new	experiment	shows	that	the	number	of	files	in	the	system	clearly	affects	the	
performance	when	you	start	to	synchronize	more	than	a	single	file.	However,	when	
taking	an	excerpt	of	the	lower	end	of	the	graph,	we	can	see	that	this	experiment	is	still	in	
agreement	with	the	previous	one.	When	synchronizing	only	a	few	files,	the	performance	
hit	is	minimal.	Furthermore,	which	device	the	files	are	added	to	(coordinator	or	not)	
seem	to	have	a	significant	effect	on	the	performance	when	there	are	files	already	in	the	
network	(same	as	previous	experiment	showed),	but	has	no	performance	impact	on	an	
empty	network.	The	time	for	adding	a	file	to	the	coordinator	when	there	are	1000	files	
in	the	network	already	is	about	9ms,	while	in	every	other	case	it	is	about	2ms.	
Thus	it	seems	the	coordinator	is	much	more	heavily	affected	by	a	high	number	of	files	
than	the	other	devices,	when	adding	few	files	per	synchronization.	However	this	does	
not	seem	to	be	the	case	when	a	high	number	of	files	are	added	at	a	time.	When	more	
than	a	100	files	are	added	per	synchronization,	the	coordinator	is	in	fact	more	effective,	
but	the	trend	of	the	coordinator	being	slower	persists	when	both	devices	are	empty!	
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This	means	that	there	is	no	solution	in	terms	of	where	to	put	the	coordinator	that	fits	
every	case,	it	should	rather	be	determined	by	the	way	the	system	is	used.	Either	
informing	the	user	and	let	him/her	decide,	or	implementing	a	system	that	determines	
the	most	effective	solution	based	on	historical	use	would	be	the	best	way	to	solve	this,	
though	clearly	the	penalty	is	higher	in	the	worst	case	scenario	if	you	don't	let	the	
coordinator	be	the	device	with	the	most	files.	
	

	
Figure	101	Excerpt	of	synchronization	times	

The	last	experiment	heavily	implies	that	which	device	contains	the	already	existing	files	
is	not	what	mattered	to	the	result	in	the	first	experiment,	but	rather	which	one	was	the	
coordinator.	To	test	this,	a	third	experiment	with	three	devices	was	executed.	In	this,	the	
second	device	had	1000	files,	while	the	others	had	none.	New	files	were	then	added	first	
to	device	number	two,	then	device	number	three	(having	deleted	the	previously	added	
100	files	first).	If	the	times	of	adding	to	the	two	different	devices	were	somewhat	equal,	
that	should	imply	that	only	the	coordinator	impacts	the	performance,	while	the	location	
of	the	files	does	not.	If	they	are	significantly	different,	that	means	both	location	of	files	
and	coordinator	has	a	significant	impact.	
The	data	is	based	on	a	single	sample,	as	the	difference	was	big	enough	that	I	did	not	see	
any	need	for	multiple	samples,	except	for	the	first	data	point	from	adding	a	single	file.	
That	value	is	based	on	an	average	of	few	samples	to	make	sure	there	was	no	mistake	due	
to	its	unexpected	value.	The	data	shows	that	when	adding	a	few	number	of	files	in	the	
synchronization	operation,	the	empty	device	is	a	bit	faster	(2.2ms	versus	4.6ms	at	a	
single	file),	but	when	a	significant	number	of	files	is	reached,	the	non-empty	device	
operates	quite	a	lot	faster	(442ms	versus	41ms	at	50	files)!	We	must	then	conclude	that	
both	file	location	and	coordinator	position	have	a	significant	impact	on	performance	
during	synchronization,	and	that	electing	the	coordinator	to	be	the	device	where	files	
are	added	most	frequently	is	a	good	idea,	if	we	can	assume	that	synchronizations	only	
occur	when	50+	operations	have	been	queued.	
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Figure	102	Time	spent	synchronizing	for	the	coordinator	when	adding	to	either	an	empty	or	not-empty	
device.	

Note	that	"ulimit	-n"	was	increased	from	256	to	4096	for	these	experiments	in	order	to	
operate	on	higher	number	of	files,	and	the	experiments	could	not	use	higher	numbers	of	
files	than	what	is	shown	because	communications	would	break	down	without	any	
meaningful	errors.	It	is	likely	that	too	many	concurrent	TCP/IP	connections	caused	
something	to	go	wrong	with	the	TCP/IP	server.	
(Note	that	these	experiments	focused	on	data	files.	Applications	are	retrieved	using	OS	
Xs	system	profiler,	which	used	a	lot	of	time	on	synchronizing	applications.)	

4.11 Application	Synchronization	
In	this	experiment	how	the	number	of	applications	affect	the	time	spent	synchronizing	
was	tested.	To	get	a	varying	amount	of	applications,	an	application	returning	a	set	
number	of	names	for	placeholder	application	files	was	created	and	used	instead	of	the	
system_profiler.	This	application,	the	app	list	creator,	was	set	to	use	approximately	the	
same	time	as	the	system	profiler	before	returning	a	list	(6	seconds),	as	to	simulate	a	
realistic	environment	as	close	as	possible.	The	time	is	taken	from	the	point	at	which	the	
coordinator	starts	to	work	on	application	synchronization,	till	it	is	done	processing	and	
sending	local	applications.	This	should	include	most	if	not	all	of	the	processing	of	
application	synchronization	on	all	devices.	Do	note	that	all	devices	have	the	same	
applications	in	this	experiment.		
Three	different	sets	of	test	were	executed	with	the	same	number	of	applications:	one	
with	two	devices,	and	one	with	ten	devices,	and	one	with	20.	Communication	was	done	
over	loopback	to	begin	with.	
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Figure	103	Time	spent	synchronizing	applications	over	loopback	

The	experiment	was	then	re-executed	over	Wi-Fi,	with	the	packets	sent	via	the	router	
and	back.	Unfortunately,	timeouts	started	to	occur	when	the	number	of	applications	was	
high	in	combination	with	many	devices,	thus	the	lack	of	data	for	two	of	the	lines.		
	

	
Figure	104	Time	spent	synchronizing	applications	with	communications	passing	by	the	router	on	LAN	

The	graph	for	two	devices	appear	to	be	quite	similar	between	the	two	data	sets,	with	
both	ending	in	the	180	seconds	area	with	75.000	applications,	and	with	a	similar	incline.	
Much	the	same	can	be	said	for	10	devices,	though	the	prototype	timed	out	when	
attempting	75.000	applications.	There	is	as	expected	a	slight	increase	in	time	when	
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running	over	LAN,	though	quite	small;	An	average	increase	of	4	%	for	two	devices,	and	5	
%	for	10	devices	based	on	the	values	for	the	runs	that	finished	properly.		
On	the	other	hand,	20	devices	had	a	huge	increase	of	64	%	based	on	the	tests	up	to	
10.000	applications.	It	is	worth	noting	that	the	increase	is	most	noticeable	in	the	area	
around	the	beginning	of	the	incline	of	the	curve	as	the	incline	hits	slightly	earlier	due	to	
the	increased	time	spent	in	communication.	As	the	prototype	times	out	just	after	the	
point	of	breakdown,	the	performance	hit	seems	greater	than	it	really	would	have	been	if	
it	was	capable	of	surviving.	For	comparison,	when	based	on	the	same	data	points	10	
devices	had	an	increase	of	40	%,	while	two	devices	had	1	%.	It	is	thus	reasonable	to	
believe	the	difference	would	have	evened	out	had	the	prototype	been	capable	of	
continuing	on	with	higher	values.		
Note	that	some	significant	fluctuation	(though	within	reasonable	intervals)	in	the	times	
for	500	-	5000	applications	when	running	20	devices	did	occur	when	routing	the	
packets	over	LAN.	But	they	were	inconsistent	and	the	amount	and	direction	varied	from	
day	to	day,	and	between	reboots.	A	variation	in	the	networks	environment	is	likely	to	
blame.	Never	the	less,	the	results	from	this	experiment	shows	the	system	to	be	feasible,	
as	the	times	are	reasonable,	and	the	likelihood	of	having	more	than	10.000	applications	
installed	on	a	single	device	is	small.	
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5 Discussion	

5.1 Coordinator	Versus	Complete	Decentralization	
A	design	with	a	coordinator	enforcing	consistency	was	chosen	for	the	prototype.	It	is	not	
clear	that	it	is	the	best	design,	as	it	comes	with	a	couple	of	negative	effects;	In	the	real	
world,	failure	and	connection	break	down	is	a	likely	event.	Having	a	solution	that	tends	
towards	a	centralized	design	creates	a	single	point	of	failure	unless	good	solutions	for	
handling	these	scenarios	are	created.	And	even	if	you	have	a	good	way	of	surviving	these	
problems,	network	splitting	would	create	further	difficult	challenges	to	tackle.	
However,	the	design	used	in	the	prototype	does	give	simplicity	and	ensure	
synchronization,	more	so	than	what	would	have	been	easily	implemented	with	a	
completely	decentralized	system.	The	system	only	ever	being	used	by	a	single	user	with	
his/her	personal	devices	also	significantly	reduces	risks	of	failures	and	conflicts.	It	also	
implies	that	scalability	is	not	important,	as	the	number	of	devices	involved	is	likely	be	in	
the	tens	at	most.		
The	final	implemented	prototype	does	not	handle	these	scenarios	very	well,	but	it	
should	not	be	very	difficult	to	ensure	that	it	does.	The	prototype	is	currently	set	to	exit	
when	a	communication	error	occurs,	which	could	be	changed	to	just	cancelling	the	
operation	and	re-evaluating	the	connections	to	the	other	daemons.	A	new	coordinator	
can	be	chosen	if	the	previous	one	was	lost,	and	the	state	of	the	entire	system	re-evaluate	
as	if	it	was	setting	up	for	the	first	time.	When	a	daemon	comes	back	online,	any	changes	
to	files	that	were	saved	to	disk	but	not	committed	before	the	crash	would	be	applied.	
The	challenge	would	be	changes	to	metadata.	As	the	prototype	stands,	metadata	of	
devices	that	were	lost	would	also	be	lost	during	re-evaluation.	A	possible	solution	is	to	
let	the	new	coordinator	keep	the	view	it	had	prior	to	the	crash,	and	if	none	of	the	
daemons	lay	claim	to	files	that	it	does	not	have	locally	either,	the	files	are	assumed	to	be	
out	of	reach	until	a	the	device	reconnects	or	a	device	lays	claim	to	the	files.		
Most	of	these	points	were	originally	done	and	the	functions	are	to	some	extent	there,	but	
were	deactivated	and	set	to	its	current	state	during	debugging,	testing	and	
experimentation	to	make	it	more	transparent.	

5.2 OS	and	Applications	Interface	
A	problem	for	a	system	like	this	is	how	to	efficiently	notice	changes	in	files.	In	this	thesis,	
we	let	the	user	interact	with	our	own	interface	in	order	to	have	full	control	over	which	
applications	and	files	the	user	can	see,	as	well	as	keep	track	of	what	files	and	
applications	are	opened.	It	is	however	necessary	that	the	applications	run	have	an	
interface	for	interacting	with	the	system,	otherwise	the	remote	access	functionality	
would	not	work,	and	the	system	would	be	unable	to	detect	changes	done	by	local	
applications.	Thus	the	prototype	only	allows	for	opening	files	that	may	be	opened	in	the	
text	editor	created	for	this	project.	In	other	words	taking	a	solution	that	is	explicitly	not	
transparent	to	the	applications.	
It	is	clear	that	any	application	that	is	to	be	used	remotely	must	have	an	interface	that	lets	
the	networked	system	communicate	with	it;	however,	it	should	be	possible	to	enable	
other	applications	that	are	only	to	be	run	locally.	Currently	the	problem	is	that	there	is	
no	easy	way	for	the	SDTPS-system	to	track	changes	applied	to	files	by	the	only	local	
applications	that	do	not	communicate	with	our	modules.	We	could	of	course	scan	the	
entire	FS	for	changes,	but	it	is	a	very	inefficient	solution	and	would	eat	up	resources.	A	
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better	solution	would	be	a	subscribe	feature	implemented	in	the	OS.	The	processes	
could	let	the	OS	know	that	it	is	paying	attention	to	specific	files,	thus	whenever	a	change	
occurs	in	a	file,	the	OS	triggers	an	event	letting	the	processes	know	about	the	change.	
This	way	only	the	applications	the	user	needs	to	run	remotely	needs	to	be	changed	to	
have	an	interface	for	communicating	with	the	SDTPS-system,	while	whenever	all	other	
applications	apply	changes,	the	OS	automatically	lets	the	system	know.		Such	a	feature	
would	be	generally	useful	in	several	use	cases,	not	just	for	a	device	transparent	system.	
For	example	an	image	catalogue	application	could	subscribe	to	the	images	the	user	has	
added	and	automatically	update	its	catalogue	whenever	an	image	is	changed,	while	just	
keeping	all	the	other	images	as	they	were.	There	would	be	no	need	to	use	resources	on	
going	through	all	the	folders	and	catalogues	in	the	system	except	for	the	first	time	when	
the	user	adds	them.	
Another	implicitly	transparent	solution	with	regards	to	the	application	would	be	to	alter	
the	libraries	the	application	makes	use	of	for	saving,	having	all	saving	operations	go	by	
our	own	code.	
A	graph	showing	the	flow	of	changes	in	the	current	prototype	was	given	under	the	
implementation	section.	The	proposed	changes	would	enable	an	implementation	with	a	
flow	similar	to	one	of	the	flows	in	the	following	graph:	

	
Figure	105	Possible	change	tracker	flows	given	a	file	subscription	system	or	editing	of	saving	libraries	

5.3 Automatic	Versus	Manual	Refresh/Synchronization	
The	prototype	makes	use	of	a	manual	refresh	function,	which	there	is	many	ways	of	
implementing.	The	prototype	is	implemented	in	such	a	way	that	a	"profane"	daemon	
may	not	commit	updates	without	the	coordinator/consistency	enforcers’	permission.	
Thus	the	system	could	push	the	updates	to	the	consistency	enforcer	as	soon	as	they	are	
done	and	let	the	enforcer	put	them	in	a	queue,	then	when	the	user	refreshes	the	changes	
are	pushed	to	the	entire	network.	Or	the	changes	could	be	queued	locally	on	each	
daemon,	and	then	pushed	to	the	consistency	enforcer	whenever	a	refresh	operation	is	
made.		
A	third	option	is	to	let	the	profane	daemons	commit	changes	locally	and	thus	create	a	
local	view	that	is	merged	with	the	other	devices	upon	refresh.	
The	first	option	ensures	high	consistency.	All	changes	across	the	network	are	applied	in	
chronological	order	on	all	devices.	The	amount	of	traffic	and	extra	memory	used	in	the	
consistency	enforcer	would	be	linearly	related	to	number	of	changes,	if	the	changes	are	
few	between	each	refresh,	so	is	the	amount	of	traffic	and	size	of	extra	memory	used.	
However,	if	a	huge	amount	of	changes	are	done	between	each	refresh,	so	is	the	amount	
of	traffic	and	size	of	memory	used.	
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The	second	option	does	not	guarantee	that	all	changes	from	different	devices	are	
applied	in	chronological	order,	but	all	changes	from	a	single	device	will	be	applied	
chronologically.	Thus	consistency	should	still	be	enforced,	as	a	file	may	only	be	stored	at	
a	single	device	at	a	time,	meaning	all	changes	for	a	single	file	will	be	applied	in	order.	
This	option	has	much	the	same	characteristics	as	the	first	option;	only	difference	is	the	
memory	usage	is	not	concentrated	at	the	consistency	enforcer.	
The	third	options	offers	a	more	predictable	and	likely	larger	amount	of	traffic,	but	
probably	less	extra	memory	overhead	as	it	is	only	necessary	to	keep	track	of	what	files	
are	present	locally,	not	the	changes	in	their	entirety.	It	would	give	an	amount	of	traffic	
proportionate	to	the	number	of	files	across	the	networked	devices,	thus	as	long	as	the	
number	of	changes	between	refreshes	are	fewer	than	the	number	of	files	across	the	
network,	either	one	of	the	two	first	options	will	have	less	traffic	overhead.	But	it	is	
possible	to	reduce	this	traffic	overhead	somewhat	by	not	refreshing	the	SSV	of	every	
device	when	a	refresh	request	is	received,	only	the	devices	the	request	came	from.	This	
is	more	difficult	for	the	first	two	options	as,	as	it	is	the	change	that	is	sent	when	
synchronizing,	not	the	new	view.	The	coordinator	would	have	to	keep	track	of	which	
devices	have	received	each	update,	and	keep	it	until	every	single	devices	is	
synchronized.	The	prototype	makes	use	of	the	second	method	during	normal	
synchronizations,	but	the	third	method	when	a	new	daemon	joins.	
	
Automatic	refresh,	or	simply	continuous	synchronization	is	also	a	possibility.	Meaning	
whenever	the	change	detector	sees	a	change	in	a	file	or	in	the	application	list,	the	local	
daemon	pushes	the	update	right	away.	The	problem	with	this	option	is	the	likelihood	of	
frustration	for	the	user	if	resources	and	network	traffic	slows	him/her	down	with	the	
user	having	little	control	over	it.	Letting	the	user	decide	when	the	system	synchronizes	
ensures	that	the	user	has	increased	control	over	his/her	own	resources	and	that	it	does	
not	affect	the	performance	of	the	devices	and	the	network	at	an	inconvenient	time.	

5.4 Batching	and	Caching	
A	feature	that	the	prototype	lacks	that	likely	would	help	reduce	traffic	overhead	is	the	
batching	of	messages,	particularly	when	using	manual	refresh	anyhow,	meaning	updates	
have	to	wait	anyhow.	As	it	stands,	the	prototype	synchronizes	updates	independently	
from	each	other.	It	could	possibly	be	as	simple	as	sending	the	queue	and	letting	the	
coordinator	pop	it,	rather	than	pop	the	queue	locally,	and	send	them	one	by	one.	
The	coordinator	could	then	wait	until	all	the	queues	received	had	been	fully	exhausted	
before	forwarding	the	changes.	Such	an	implementation	would	also	let	the	coordinator	
have	a	better	overview	over	progress	of	the	synchronization	process,	something	that	is	
somewhat	lacking	in	the	current	implementation.	
	
Furthermore,	the	efficiency	of	the	system	could	likely	be	increased	by	the	use	of	caching.	
For	example,	daemon	through	which	a	file	has	been	opened	recently	could	keep	the	
position	of	the	file	so	querying	the	coordinator	when	the	file	is	reopened	is	unnecessary.		
Caching	of	pages/views	in	the	remote	access	interface	also	has	some	potential,	and	in	
fact	even	pre-fetching	is	possible	here.	When	the	interface	is	started,	the	local	daemon	
could	keep	track	of	previous	pages	and	store	them	locally	while	the	file	is	open.	At	the	
same	time,	the	next	page	could	always	be	fetched	and	kept	in	memory	in	case	the	user	
wants	to	advance	through	the	file.	Caching	of	pages	would	likely	reduce	the	perceived	
loading	time	of	each	page	radically,	but	would	also	require	redesigning	of	the	
application.	
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5.5 Remote	Application	Access	
The	remote	application	access	is	not	a	new	topic,	but	the	aim	during	work	on	this	
project	was	to	look	at	it	from	a	fresh	angle.	The	thought	behind	the	solution	used	in	the	
prototype	was	to	avoid	having	to	transfer	a	copy	of	the	file	from	the	remote	host	to	the	
local	device	where	the	user	is	working.	Instead	the	goal	was	to	work	with	the	file	on	the	
host	and	apply	the	changes	locally	where	the	file	habituates.	One	way	would	be	to	send	a	
picture	of	the	application	interface;	similar	to	the	way	X	Window	does	it	[18].	That	
would	however	be	a	very	inefficient	solution	in	many	cases,	thus	a	more	tailored	
approach	is	likely	to	reduce	the	traffic	load	significantly.	A	local	GUI	communicating	with	
the	remote	device,	running	the	actual	application	is	a	much	more	efficient	solution	with	
for	example	text	processing.	The	remote	host	can	be	limited	to	only	sending	the	part	of	
the	file	that	is	actually	visible	on	the	GUI	the	user	is	interacting	with,	thus	avoid	sending	
the	file	in	its	entirety.	Operations	can	then	be	sent	from	the	GUI	the	user	is	interacting	
with	back	to	the	application	where	they	are	applied	on	the	original	file.	The	prototype	
tries	to	find	the	position	of	each	change,	and	sends	the	position	and	the	operation	
requested	to	the	application	where	the	application	applies	the	changes	to	its	local	file.	
However,	there	are	cases	where	different	approaches	must	be	taken,	such	as	image	post	
processing.	Sending	the	image	over	to	the	GUI	might	be	necessary	in	some	cases,	but	the	
core	of	applying	the	operation	on	the	file	at	the	device	where	the	file	resides	can	still	be	
kept.	In	fact	in	the	case	of	editing	an	image,	just	sending	a	picture	of	the	entire	GUI	
running	the	application	might	be	the	most	efficient	solution.	
But	for	this	to	be	feasible	in	the	real	world,	any	application	that	is	to	be	run	remotely	by	
merely	sending	operations	and	small	intervals	of	a	file	must	have	an	API	for	
communicating	with	the	remote	access	system.	In	other	words,	corporations	such	as	
Microsoft	and	Apple	would	need	to	agree	to	implement	such	APIs,	or	a	reliance	on	
equivalent	open	source	applications	would	be	necessary.		

5.6 Security	
Any	system	that	connects	several	devices	together	will	have	security	issues.	With	this	
system,	the	threat	of	someone	using	it	to	hack	your	personal	files	is	of	course	always	
there,	and	theft	is	a	real	possibility.		
A	hacker	could	easily	figure	out	the	ports	the	prototype	is	using,	and	get	a	way	in.	The	
daemon	can	then	be	dissected	in	memory	using	a	debugger	to	find	valid	commands,	as	
they	are	hard	coded	strings	constants.	The	attacker	at	this	point	has	full	access	to	the	
victims'	files,	and	potentially	applications.	All	communications	are	also	in	plain	text.	
Obviously	any	real	implementation	must	handle	communications	more	carefully;	though	
a	cabled	setup	would	increase	the	security	of	the	network,	but	hinder	the	use	cases	
drastically.	
A	thief	would	be	able	to	access	all	your	files	on	all	your	devices	easily,	and	launch	
applications	on	devices	that	are	still	in	your	possession.		
It	is	clear	that	anyone	attempting	to	implement	and	deploy	a	similar	system	would	need	
to	take	security	measures.		
A	feature	allowing	the	user	to	kick	devices	out	of	the	network	of	devices	in	cases	where	
a	device	is	compromised	and	the	owner	has	no	physical	access	to	it	would	be	very	
useful.	Though	any	unwelcome	person	could	also	abuse	this	feature	with	access	to	one	
device,	so	perhaps	it	would	be	necessary	to	either	identify	the	owner	through	a	
password,	or	use	a	quorum	system	so	that	you	need	physical	access	to	more	than	one	
device	to	commit	administrative	changes.	
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It	is	also	possible	that	it	would	be	best	to	limit	what	type	of	applications	the	system	
allows	the	user	to	run	remotely.	Perhaps	it	should	only	be	possible	to	run	applications	
that	are	designed	for	processing	files,	such	as	photo	editing	and	text	processing.	Access	
to	the	OS'	administrative	application	could	cause	serious	harm	to	all	a	persons	devices	if	
only	a	single	device	is	compromised.	

5.7 	Environment	for	the	Experiments	
The	environment	in	which	the	experiments	were	conducted	may	not	have	been	the	
optimal	one,	as	it	in	some	aspects	does	not	reflect	a	realistic	scenario.	However,	the	
environment	used	should	give	a	significant	worse	result	than	what	would've	been	
measured	in	a	realistic	scenario,	thus	the	experiments	can	show	the	thesis'	relevance.	
A	realistic	scenario,	where	each	daemon	and	its	dependent	processes	runs	on	different	
devices,	would	see	significantly	less	pressure	on	the	CPU	and	memory	on	the	individual	
devices,	and	all	the	traffic	for	the	entire	prototype	would	not	have	to	pass	through	a	
single	network	device,	twice!	This	would	at	the	very	least	imply	that	breakdown	and	
resource	exhaustion	related	crashes	would	be	delayed	greatly,	giving	the	prototype	a	
much	better	ability	to	survive.		
Furthermore,	the	local	area	network	that	the	experiments	were	run	on	had	several	
personal	device	connected	to	it,	some	of	which	could	have	been	using	network	traffic	
during	the	process	of	experimentation	affecting	the	results.	Some	of	the	experiments	did	
as	mentioned	see	a	decent	amount	of	variance	in	the	results	when	running	over	the	
wireless	network.	
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6 Future	Work	

6.1 Relocation	and	Device	Transparency	
For	a	distributed	storage	to	work	in	the	real	world,	complete	device	transparency	is	
unlikely	to	be	feasible.	Devices	disconnect,	get	turned	off,	or	become	out	of	range	in	
reality,	and	complete	transparency	may	thus	cause	files	that	are	essential	to	the	user	to	
become	unavailable.	Thus	users	will	almost	certainly	want	some	control	over	where	
specific	files	are,	or	at	least	specify	where	to	store	groups	of	files.	A	management	system	
similar	to	that	of	Perspective	[6]	would	allow	for	more	control	in	line	with	this	thesis	
objective.		
An	interface	where	the	user	can	view	specific	files	or	group	of	files	in	a	tree	of	folders	
under	the	devices	would	allow	for	more	specific	and	intuitive	control.	Here	the	user	
could	for	example	drag	and	drop	files	to	different	parts	of	the	network,	say	drag	file	X	on	
device	Alfa	to	device	Beta.	However	as	stated	in	[4],	the	user	is	rarely	very	good	at	
predicting	which	files	he/she	is	likely	to	use	on	what	device,	thus	an	automated	AI	
system	for	example	based	on	a	neural	network	is	feasible.	The	system	could	then	be	
taught	were	to	put	certain	files	while	there	is	full	connectivity,	later	giving	the	user	
access	to	the	files	he/she	wants	when	there	is	no	connectivity	while	still	being	fully	
device-transparent	to	the	user.	

6.2 Completely	Decoupling	Application	from	Device	
An	interesting	topic	to	do	more	research	on	would	be	the	possibility	of	handling	
applications	in	the	same	way	as	you	handle	files	normally,	as	in	moving	applications	
between	devices	similarly	to	how	you	can	move	files	between	devices.	The	design	
discussed	in	this	thesis	only	decouples	access	from	device,	but	not	functionality,	in	that	
the	data	file	and	the	application	files	must	be	on	the	same	device.	To	achieve	the	highest	
level	of	transparency,	data	file	and	application	files	should	both	be	decoupled	from	the	
union	of	device	and	each	other.	
There	are	of	course	some	issues	that	would	arise,	such	as	both	software	and	hardware	
compatibility,	but	some	of	the	problems	could	possibly	be	solved	through	virtual	
machines	and	emulation	etc.		
There	are	some	software	developers	who	have	tried	to	explore	this	concept	to	some	
extent,	but	their	systems	seem	limited	and	appear	lack	fluidity.	[34]	
Other	solutions	could	also	be	looked	into,	such	as	designs	similar	to	that	of	the	one	
discussed	in	this	thesis	with	the	users	device	connected	to	the	device	with	the	
application,	which	in	turn	is	connected	to	the	device	with	the	data	file.	This	could	also	
prove	difficult	to	implement	in	an	elegant	way,	as	the	file	in	its	entirety	would	likely	
have	to	be	given	to	the	device	with	the	application,	breaking	with	part	of	the	philosophy	
behind	this	thesis.	

6.3 Pick	and	Choose	Application	
A	necessary	feature	for	a	distributed	personal	system	aiming	to	incorporate	applications	
would	be	to	allow	for	opening	of	files	in	different	applications.	In	this	project	only	
implementation	of	a	single	application	was	done,	thus	the	consequences	of	having	more	
than	a	single	application	capable	of	opening	a	file	was	not	thoroughly	explored.	A	
scheme	for	deciding	which	application	to	use	in	different	scenarios	must	be	made,	and	
the	possibility	of	letting	the	user	choose	what	application	to	open	a	given	file	in	could	be	
very	useful.	
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Also,	as	mentioned	in	the	discussion,	ways	of	making	the	proposed	system	work	with	
other	types	of	applications	than	text	processing	needs	to	be	looked	into.	For	the	most	
complex	cases,	sending	a	picture	is	possible,	but	sending	just	parts	of	the	file,	or	subsets	
of	data	would	in	most	cases	be	preferable	for	reduced	communications	overhead.	
The	experiments	also	proved	that	using	the	system	profiler	on	OS	X	to	retrieve	a	list	of	
application	files	was	very	inefficient.	Alternative	solutions	might	reduce	resource	usage	
significantly.	

6.4 Coordinator	Evaluation	
The	topic	of	electing	the	best	coordinator	was	not	looked	adequately	into	in	this	thesis.	
Mostly	intrinsic	factors	were	used	in	the	prototype,	with	the	exception	of	battery	
percentage.	Hardware	of	devices,	and	energy	efficiency	would've	been	interesting	and	
useful	to	include,	though	they	are	factors	that	may	be	a	bit	more	challenging	to	
implement	in	a	simple	manner,	as	there	are	many	types	of	hardware	that	would	need	to	
be	evaluated	differently	depending	on	brand	for	accuracy,	and	energy	efficiency	is	
difficult	to	get	accurate	information	on	for	all	device	types.	
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7 Conclusion	
This	thesis	introduced	an	idea	for	a	distributed	personal	storage	system,	which	aims	to	
provide	access	to	all	files,	both	data	and	application	files,	of	a	single	user	across	all	of	the	
person’s	devices.	An	architecture	and	a	design	for	such	a	system	has	been	proposed,	and	
a	prototype	was	implemented	and	experimented	upon.	The	experiments	seem	to	
indicate	that	the	system	could	work	in	the	intended	environment,	with	break	down	
occurring	late	enough	for	it	to	be	relevant.	All	though	the	experiments	have	somewhat	
depressing	results	(that	can	partially	be	blamed	on	the	environment	they	were	run	in),	
times	and	resource	usages	show	that	the	architecture	is	possible	to	work	with.	
As	it	stands,	the	prototype	is	in	no	way	in	a	condition	where	it	could	be	deployed	and	
used	actively,	as	some	of	the	conditions	for	it	to	function	optimally	are	not	present	in	the	
current	operating	systems,	and	applications	need	to	communicate	with	the	system	for	
the	remote	access	system	to	work.	Furthermore,	ways	to	implement	the	remote	access	
system	with	various	types	of	applications	other	than	text	processing	needs	to	be	looked	
into.	A	GUI	with	necessary	functionality	is	not	included	in	the	prototype	either,	and	the	
barebones	GUI	that	has	been	implemented	will	likely	not	work	optimally	on	mobile	
devices.	
However,	experiments	at	least	indicate	that	the	ideas	presented	in	this	thesis	are	worth	
pursuing	further,	and	develop	into	a	working	system	providing	flexibility	and	
accessibility	for	the	user,	in	an	environment	that	studies	have	shown	is	simpler	and	less	
complex	for	the	unlearned	user	to	interact	with.	The	architecture	and	design	is	in	
principle	simple,	though	the	prototype	implementation	may	have	become	more	complex	
than	what	would've	been	strictly	necessary.	The	experiments	thus	may	reflect	to	larger	
degree	the	implementation	than	the	actual	architecture	and	design.	
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