UiT Faculty of Science and Technology

THE ARCTIC Department of Computer Science

UNIVERSITY .
OF NORWAY Seadrive

Remote file synchronization for offshore fleets

Peter Haro
INF-3981 Master’s Thesis in computer Science - May 2016

FLTT0TT 0TI iiirrririiiriiriririrri TRTETET R BT AT Ll L LTI I (i rireieriis
LLLLLLLrnn e i nrinnnlnriiieieiiierlgl lIlIlIlllllIlIlIlllIlIlIlllllIlIlIllllllllIlIlIlllllIlIlIlll/
F11000TETrnenrrieieririileliiiilrieiel lIlIlllllIlIlIllllllllIlIlIlllllIlIlIlIlIlIlIlIlIlIIIIIIIIIIII
' 1

UITTEETTEET R aariia i aadidd 1000000000000 0000 00000000000 002000 00002070000 00renqiinnranniininieii
IIIc,cﬁ!IIIIIIIIIIIIIIIIIIIIII LI0T070 000000000 0000007000000 702qiqiqiqairenarqaerenenenireninenen

c,lc,ﬂ{llllllc,ll IIIIIIIIII LO2T000 000000000000 00000000 00000000000 1qqqiqaqiqneiqaeiqneneninoneia

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

"
Jesianaiaaeiiny I IIIMIMIMIMNMMIMNINLNLNILLKG
Jrrpaspiadianiiaiiaaiaiiniiii i IIIIMIMIMIUVNMUINMUENIINIMINIINIIINMUUIG
llIlllllllIlllllllIllllllllllllllllIlllllllIlllllllIlllllllIllllllllllllllllll
i rrrnrnriiiianiiiii il IlIlIIIlIlllIIIIlllllllllllllllllllllll
vorbaaeaedianain I IMIMIMMIINLINN llllllllllll s
ARRNRRRRRRR RN AN NN IIA'IIIII JaraiiinininInIITinng

1

-~
~
-~
~
-
~
-
~
-~
~
-
~
-
~
~
~
-
~
-
~
-~
~
-,
~
-
N
Ny
~
-~
N
Ny
~
-~
~
~
~
~

-
-
N
o
NI
Su~
N
S

~

~
~
~
~
~
~
~

oD

N

~

~

~r

N

~.

~

~

~

.

vy il ll Ly
Il llllllllllllllllllllll lllllllllllllllllllllllll g llllllllllllllllllll
Vrrarareiy I llllllllllllllll winn

sl ll QeI lllllllllllllllllllllllllll
iy I
QIR NIl
Vrriy Il

AR RRaRaRaar 2NN 'lllll l'll'll'll ll'll'llllll'l 'lllll (4 llll' (A llll' llllll'l'll llll'll'll"

[/ L/
L """""""""""""""""""""""""""""""""l""'l'l""""'l' L
LU '""""""'""""""""""'""""""""""""""""""""""""""""'A

" / "" '
L LY ""l"""'l"""'"l"""ll"""l'll"""l'll""l'll"""l'll"""l"""-r
LU 'Wl"""ll""""ll"'l"""'l""ll'l'l"""'""""""""""ll""l'l"'

w LI LI L L L L L L L L L L L L L L L L L] LLLLL] L1 LLLLL] (L 0L
A O A
7 2000000000000 000N RQNNRANRAANARANRNANANIRRNNRRNARANARANARNANANANRNARANARANARANNQNNRRANAANARANANANRN

“Sometimes a scream is better than a thesis”
—Ralph Waldo Emerson

Abstract

File synchronization- and hosting services is not only an integrated service in
everyday life, but also a powerful tool to support business and organizational
activities. In order to provide users with a transparent experience, the sys-
tems relies on sophisticated mechanisms to create a seamless integration. The
problem with these systems is that they are designed for stable network con-
nections with a low variety in latency, throughput and loss-rate. The systems
optimized for low bandwidth networks are implemented to work on a small
set of small text-based files, and assumes no prior knowledge of the contents
on the receiver.

Offshore vessels outside the range cellular networks employ a variety of satellite
based communication suites and accommodating physical hardware. These
networks are notorious for having poor upload- and download speed, high loss
rate, poor latency with high variability and are subject to frequent dropped
connections. Furthermore, the fiscal cost associated by using these connections
are high, as the highest performing networks charge per kilobit transferred.
These connections are unsuitable for modern file hosting services, and file
synchronization frameworks, as they never complete synchronizing, often due
to the assignment of new IPs.

Therefore providing the naval fleet with a reliable file-synchronization protocol,
and small in transmission overhead is of the utmost importance. In order to
facilitate the needs for file hosting services, we created a file synchronization
framework, which allows for different deduplication, file-synchronization and
file transportation schemes. The idea was to support a computationally inex-
pensive method emphasizing speed over reliability on Local Area Networks,
and a robust but slower methodology for Wide Area Networks.

This thesis presents Seadrive- a new file synchronization framework that targets
offshore-based fleets and their land-based counterparts. By utilizing a file syn-
chronization methodology inspired by binary patch distributions, and creating
a novel reliable application level transport protocol, we are able to successfully
synchronize large files through simulated satellite-based network topologies.
In order to assess the capabilities of our framework, we performed various

iV ABSTRACT

experiments on the artifacts in the form of micro- and macro benchmarks,
comparing them to both Rsync and Rdiff based protocols.

Our results show that Seadrive is able to produce smaller patches than both
Rsync and Rdiff based protocols, with fewer TCP and application layer requests
necessary, saving up to 10 hours on the slowest network connection and is able
to reliably transfer data through unreliable network topologies.

Acknowledgements

I would like to express my first and foremost gratitude to my advisors Professor
Otto Anshus, Svein Bertheussen, Vidar Berg and Asbjgrn Pettersen, for your
guidance, support and valuable insights. I would also express my thanks to Dua-
log, for creating this project and providing an office for a measly student.

On a more personal level I would like to thank my colleges at SINTEF Nord,
especially Bard Hanssen for providing good humor and being my personal
scapegoat, and of course the coffee machine providing me with necessary life
support.

Finally, I would like to thank my fiancée Maria Brattfjell and my family, for
showing loving support throughout my madness.

Contents

Abstract iii
Acknowledgements \
List of Figures xi
List of Tables xiii
List of Listings XV
List of Code Snippets xvii
List of Abbreviations Xix
1 Introduction 1
1.1 Problem definition 2
1.2 Targeted Applications 3
1.3 Contributions. 4
1.4 Methods and materials 5
1.4.1 Methodology applied for this thesis 5

1.4.2 Procedures 6

1.5 Context e e e e 7
1.6 Assumptions and Limitations 7
1.7 Structureofthe Thesis 8

2 Review of related literature 9
2.1 Data Deduplication 9
2.1.1 Taxonomy . . . v v v v v v e e e e e e 10

2.1.2 Methodologies 11

2.1.3 Deduplication methodologies 12

2.1.4 Fixed block hashing/Fixed-size Chunking 13

2.1.5 Variable Block hashing/Variable-size chunking 13

2.2 Datadifferencing. 16
2.2.1 Mathematical fundament 17

Vil

viii

CONTENTS
2.3 Conflict resolution in file synchronizers 17
Review of related Technologies 19
3.1 File synchronization protocols 20
3.1.1 Widely used remote file synchronization algorithms . 21
3.1.2 Rsynco oo 21
3.1.3 Unison 22
3.1.4 Dropbox 23
3.2 Distributed file systems 24
3.2.1 Sun Network Filesystem 24
3.2.2 Andrew File System 26
Architecture 29
Design 33
5.1 The Data Abstraction Layer — I/O management 35
5.2 Business Logic Layer — Core functionality 35
5.3 Application Layer — Seadrive 36
5.4 Data Deduplication 36
5.4.1 Delta difference data deduplication 38
5.5 Filesystem monitor, change detection and the application facade 38
5.6 File synchronization and Transport Protocol 38
5.7 Local synchronization protocol 39
5.8 Remote Synchronization protocol 40
Implementation 45
6.1 Data AbstractionLayer. 45
6.2 Business LogicLayer 46
6.3 Application layer - Seadrive 46
6.4 Deduplication 46
6.5 Seadrive artifacts implementation 47
6.6 Clients e 48
6.7 Remote Transport protocol 50
6.8 Remote file synchronizer. 52
6.9 Local Server — Local Synchronization point 53
6.9.1 Sending and receivingdata 53

6.9.2 Local server deduplication for variable-sized chunking
synchronization 53

6.9.3 Local server deduplication for binary difference syn-
chronization 53
6.10 Primary Server Lo o 54
Experimental design and setup 55

7.1 Datasets e e e e e e e e e 55

CONTENTS

7.2 Experimentaldesign
7.2.1 Micro-Benchmarks
7.2.2 Macro-Benchmarks
7.2.3 Experimentalsetups

8 Evaluation and results
8.1 Micro-Benchmarks
8.2 Macro-benchmarks
8.2.1 Full application usage — Window size 256 bytes
8.2.2 Full application 1024 byte window size
8.2.3 Simulated delay sessions

8.3 Analysis .
8.4 Discussion

84.1 Lessonslearned

9 Concluding remarks

9.1 Future work
9.2 Conclusion

Bibliography
A Appendix 1
B Appendix 2

C SOQL scripts

59
59
64
65
67
67
69
70
72

73
74
75
77
83
89

95

List of Figures

2.1
2.2

3.1
3.2

4.1

5.1
5.2
5.3

8.1

8.2

8.3

The generic deduplication process according to [4]
The sliding window algorithm from [13]

NFS architecture as outlinedin [6]
AFS process distribution as outlined in [6]

Birds eye architecture of Seadrive. Clients are reciprocally
synchronized within the LSP, and is continuously synchroniz-
ing with the RSP whenever possible. Red rings indicate the

Shows a simplified model of the entire application stack . . .
Shows the generic Seadrive data deduplication process
State diagram of the sender in the remote transport protocol

Shows the IO graph for the network communication between
the local server and primary server. The green ring indicates
where we killed the connection
Shows the 10 graph for the network communication between
the local server and primary server with 1 second RTT. The
green ring indicates where we killed the connection
Shows the IO graph for the network communication between
the local server and primary server with 3 second RTT, no
retransmissionso e e e e e e

Xi

30

34
37
41

66

68

List of Tables

8.1 Displays the compression rate on the test-set in bytes

8.2 Shows the average run time in order to create delta-differences
in milli- and regular seconds

8.3 Shows the time to transfer the delta-files over various data-
plans in hours

Xiii

61

List of Listings

6.1 private variables of the chunkclass
6.2 Shows the usage of the transport flags

XV

List of Code Snippets

7.1 Python script to generate size random bytes

8.1 C# codetomeasuretime

XVii

List of Abbreviations

ACM Association for Computing Machinery

AFS Andrew File System

API application programming interface

CPU Central Processing Unit

CSP Communicating Sequential Processes

D3 Data-Driven Documents

DAL Data Abstraction Layer

DLL Dynamic Link Library

GUID Globally Unique Identifier

HTMLs5 version 5 of the HyperText Markup Language standard
I/0 Input/Output

IEEE Institute of Electrical and Electronics Engineers
IOCP Input/Output Completion Port

IP Internet Protocol

KB Kilobyte

kb Kilobit

LAN Local Area Network

XiX

XX LIST OF ABBREVIATIONS

LIFO Last In First Out

LSP Local Synchronization point
MB Megabyte

MS Milliseconds

NFS Network File System

OS Operating System

RAM Random Access Memory
RPC Remote Procedure Call

RSP Remote synchronization point
RTT Round trip time

SQL Structured Query Language
TCP Transmission Control Protocol/Internet Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol

UiT University of Tromsg

UUID Universally Unique Identifier
VLC Variable Length Chunking
WAN Wide Area Network

WLAN Wireless Local Area Network

Introduction

Modern naval- and fishing fleets utilize a multitude of various information
systems from different sources when planning and executing offshore opera-
tions. They are equipped with several sensors and instruments, which provide
a constant stream of information regarding various on-board systems, of which
some are readily available to the crew and actively employed during an op-
eration. The governing cooperation of large naval-, fishing-, oil-, etc. fleets
requires information to flow from their management system(s) to their fleet in
a robust manner, likewise the fleets have information required by the governing
entity. The information necessitates the need to differentiate between different
recipients; the captain requires some documents, while crewmembers have
differing needs.

Important legislative rules, regulation certificates and other documents have
real-time constraints for reaching the fleet, and must therefore reach their
intendent destination before a given deadline. In addition, skippers have the
same real-time demands to deliver documents to the governing body.

The information flow in today’s systems consists primarily of e-mail exchange,
however these systems have been deemed unsuccessful, because end users
report them as unsatisfactory for the following reasons:

* Important information is lost in the copious amount of other e-mails

* Documents arrived during shift A are often not read by shift B

2 CHAPTER 1 / INTRODUCTION

* The systems are slow

* The files sent through these systems are constrained not only by file-type,
but also their size

When important information is lost, the results can vary from small trifles
to disasters, such as overfishing, not following updated safety regulations or
monetary losses. Therefore, entities that manage large fleets have experimented
using cloud-based file-synchronization frameworks to deliver data to the end-
users. Although there exists a myriad of file synchronizations frameworks and
file hosting services such as “Dropbox”, “Seagate”, “Box”, “Wuala”, and “Google
drive”, to name a few, the systems do not function correctly for ships connected
to the internet through satellite based network-links. The connections are
plagued with high packet loss and frequent dropped connections, which causes
most file-synchronization services simply to restart the transmission from the
start. This causes files to never be synchronized from and to vessels offshore.
Furthermore, some systems simply just stalls, getting stuck at certain points
and never synchronizing themselves, possibly due to new Internet Protocol (IP)
addresses being assigned.

To provide a useable framework for laymen to dispatch, read and update
various data files, in order to accurately disseminate the required information
to end-users, we propose a file-synchronization application and framework:
Seadrive. The primary objective of the Seadrive project is to establish a robust
file synchronization framework to disseminate data in a many to one, and
one to many relationships. In order to achieve the objective, the application
must support stable transmission over unstable network connections, allow for
retransmissions of a subset of a file, and be able to rebuild the file regardless
of type after transmission.

In this thesis we will explore a subset of the functionality provided by Seadrive,
we will show how the system can manage file-synchronization on unstable
network links with low bandwidth, with emphasis on the file synchronization
mechanisms used to provide reliable data transfer. We outline this functionality
as the transport protocol, and in chapter 7.1, we will provide the lessons we
learned during this process.

1.1 Problem definition

In this thesis, we consider the problems of designing and implementing a file
synchronization framework for creating the Seadrive application. The frame-
work consists of several interconnected modules, such as file synchronizers,

1.2 / TARGETED APPLICATIONS 3

transport protocols and methodologies for facilitating file hosting services. For
this thesis, we delimit ourselves to focus primarily on the file-synchronization
mechanisms required for offshore data communication through satellite based
network bearers. Although usability through accessible interfaces in order to
serve data to consumers is of the utmost importance, it is not an exact mea-
surable metric. Due to this nature, we do not perform usability tests nor do
we consider the look and feel of the application. However, we do examine the
underlying mechanisms required to support data synchronization, both local
and remote, therefore our thesis is that:

An effective framework for synchronizing files between vessels and ship
owning companies can be implemented automating file system man-
agement for usage in real-time applications and operations.

To support our thesis, we have built a prototype allowing us to perform ex-
periments to determine the system characteristics, performance and problems.
The prototype allows us to study the communication protocol in micro and
macro scale. We measure the latency in clock-time to perform small operations
using micro-benchmarks, and perform macro-benchmarks to determine Cen-
tral Processing Unit (CPU)-time, Random Access Memory (RAM) utilization
and latency in clock-time to synchronize files. We also evaluate our methods
by comparing them to two modern Rsync and Rdiff based protocols in order
to determine the necessary data size required to synchronize files.

1.2 Targeted Applications

We do not believe it is tractable to build a feature-complete File Hosting Service
application with file synchronization as the main objective, while achieving full
interoperability across different files, file-systems and Operating System (0S)s,
while having optimal traffic patterns for each case. However, we believe it
possible to create a Windows-based file synchronization framework to support
the most frequent usages of these frameworks with significantly less effort. In
this thesis, we do not aspire to recreate modern frameworks such as Dropbox,
Seafile, etc. Instead, our objective is to create a file synchronization framework
optimized for offshore vessels, with emphasis on the transportation of data
between sender and recipient.

The core functionality of the framework, and transport protocol, by themselves
imposes no limitation of which algorithms are used, or functionality which
may be implemented in the future. However, the server and client communica-
tor(s) are restricted to windows as they utilize Input/Output Completion Port
(1ocPp)[1] to leverage the capabilities of multiprocessor systems. Furthermore,

4 CHAPTER 1 / INTRODUCTION

the algorithms are not designed for speed as every file is treated as binary
chunks of data, and subsequently not exposed to any optimizations based on
file-type.

We have in this thesis focused exclusively on achieving full compatibility with
all file types on windows systems after X versions, as it is the most used system

in our focus domain. We target compatibility for our entire framework using
x641 architectures.

1.3 Contributions
The contributions of this work are:
* Principles

— A file hosting service can reduce the amount of file synchronizations
by utilizing a set of trusted servers in a centralized Approach. This
N
reduces the problem size by O(1 — (—=2))

N
* Nisp - Number of Local Synchronization points

* N, - Number of clients requiring the synchronized file

— Synchronize as much as possible locally, short traveled data and
computations.

e Models for

— File synchronization — Parallel synchronization based on signature
systems and Delta-Differential

— Remote data transport protocol for robustness

— Designing a rudimentary file-synchronization framework with em-
phasis on the remote transport protocol

e Artifacts
— Seadrive Framework

1. Note that we will use the term x64 throughout the entirety of this thesis to denote both
the Intel-86-64 and AMD64 platforms collectively

1.4 / METHODS AND MATERIALS 5

o
x*

A business layer to manage cross cutting concerns

*

A Data Abstraction Layer for data management

*

A implementation and concretization of the framework

s

* An experimental project to perform experimental evaluation

— An implementation of the remote and local synchronization points
in order to realize the system architecture

* Lessons learned

— New approaches to file synchronization might be more suited for
the offshore domain

- Input/Output (1/0), memory and CPU overhead is often negligible
in the context of very poor network connections

— Established frameworks are not always the optimal solution

1.4 Methods and materials
1.4.1 Methodology applied for this thesis

Computer science is one of the youngest science disciplines, having evolved for
just over 60 years into what it is today. In 1989 the Task Force of the Core of
Computer Science, formed by the Association for Computing Machinery (ACM)
and the Institute of Electrical and Electronics Engineers (IEEE) Computer
Society; provided us with a definition of computer- science and engineer-
ing: “Computer science and engineering is the systematic study of algorithmic
processes-their theory, analysis, design, efficiency, implementation, and appli-
cation that describe and transform information. ..” [5]. They conveyed this
definition in their final report, which deduced an intellectual framework for the
disciplines of research within the computing field. The report also identified
three paradigms, which forms the basis of computer science research: theory,
abstraction, and design

Theory is an iterative process rooted in mathematics, which is based on the
idea of characterizing the objects of the study to create a definition and
hypothesizing among their possible relationships to provide a theorem.
The relationships provided in the theorem are thus analyzed to be proven

6 CHAPTER 1 / INTRODUCTION

or disproven and the results are evaluated.

Abstraction outlines an experimental scientific method aiming to examine
phenomenon’s using an iterative method. The method forms hypotheses
to construct models, which are challenged by experiments in order to
make a prediction. The data collected from experiments is vital in this
stage, as the hypothesis are not mathematically proven.

Design is the final paradigm and has its roots in engineering, where system
requirements and specifications are defined, the systems designed, im-
plemented and tested. Like the other paradigms, it is an iterative process,
which lasts until the system fulfills the requirements.

This thesis is rooted in the area of Information Systems Research[26], which
covers certain aspects of all three paradigms. The initial stages of this thesis
were composed of compiling existing understanding and theory, in order to
provide a solid theoretical fundament. By using this knowledge, we were able
to devise requirements for our system, and design components to complete
the specification devised by the requirements. Aided by theory and abstraction
we were able to implement our framework for file synchronization, and by
following the iterative process, we successively increased our knowledge in
this domain. We respectively obtained more knowledge on the intricacies of
file synchronization frameworks; we were subsequently able to discover new
requirements and refine existing ones, thus allowing us to implement function-
ality to satisfy these. Finally, we evaluate our work experimentally showing its
capabilities and assessing its efficiency, using a quantitative analysis.

1.4.2 Procedures

We performed two micro benchmarks on the file-synchronization methodology
(some refer to these methodologies as deduplication as well), provided by the ar-
tifacts, with each benchmark being run 100 times to generate consistent results.
The experiments were conducted on a newly rebooted Windows 7 installation,
booting in selective startup with only the system services loading using the
original boot configuration for the machine. For the micro-benchmarks, we
measured the latency, i.e. the real time an operation took to complete, and the
file-size generated by these commands. The primary dataset used was the files
located in the folder DATA/testFiles.

We also performed macro-benchmarks in order to evaluate operations integral
to the file synchronization framework, with metrics such as Packets per second,
RAM and CPU usage and the effectiveness of the remote transport protocol.
We used the dataset located in the folder "DATA/SYNCFILES". We tested the

1.5 / CONTEXT 7

synchronization of these files and breaking the connection once in order to
determine the effectiveness of retransmission.

A more complete description of the procedures can be found in chapter 5 &
6.

1.5 Context

This thesis is written as a part of Dualog’s project Seadrive in collaboration
with my advisors Otto Anshus (University of Tromsg, Department of Computer
Science), Svein Bertheussen (Dualog A/S), Vidar Berg (Dualog A/S) and As-
bjgrn Pettersen (Dualog A/S). This thesis primarily focuses on creating an
application for file synchronization between fishing fleets and the fisheries,
both inland and offshore, thus providing a common access interface for files
across a multitude of platforms, users and use-cases.

1.6 Assumptions and Limitations

The following assumptions and limitations were contrived during the work
with this thesis. Hopefully all limitations of the artifacts, and the assumptions
made will be clear after reading the details in the upcoming chapters.

* Three machines has been used in this work, all with 64-bit operating
systems and 64 Structured Query Language (SQL) server enterprise
version, we assume comparable results across all SQL-server installations
as long as named pipes are available.

* We assume network bandwidth and capacities based on real data plans
available for offshore entities the spring of 2016 in Norway.

* We will not examine methods for patching new files, i.e. creating a patch
for a file new to the system from another existing file.

* We will delimit ourselves to focus on the methods provided for file-
synchronization in the overall system

* We do not handle automatic merge-conflicts which may arise due to
conflicting file-synchronization

* We do not consider security aspects of our file-synchronization framework

8 CHAPTER 1 / INTRODUCTION

as it is considered outside the scope of the thesis

1.7 Structure of the Thesis

This thesis is structured in 9 chapters including the introduction.

Chapter 2 provides an introduction to related literature in the field of file
synchronization. It is divided into three main parts, Data deduplication in
which most system base their technology around. Data differencing which
is an interesting technique usually found in binary patch distribution and

conflict resolution for file synchronizers.

Chapter 3 provides an review of "state of the art" technologies, showing what
techniques these systems use.

Chapter 4 presents the Architecture of Seadrive and provides an introduction
to the concepts of local- and remote synchronization points

Chapter 5 describes the design the Seadrive framework
Chapter 6 describes and detail the implementation of the Seadrive framework

Chapter 7 outlines the experimental design and setup, including datasets
employed

Chapter 8 provides an thorough analysis of Seadrive as a framework and how
the remote transport protocol perform

Chapter 9 summarizes the results, and prupose proposes future work to ex-
tend this thesis.

Review of related literature

In this chapter, we provide an overview over related literature relevant for
understanding the underlying mechanisms required for effective transportation
of data, with emphasis on methodologies used for file-synchronization. We will
primarily focus on Data deduplication and applicable techniques in the domain
of data synchronization.

2.1 Data Deduplication

Data deduplication (henceforth deduplication), is the process of eliminating
copies of repeating data, thus reducing both the intra-file- and inter-file data
redundancies [29]. "By identifying common chunks of data both within and
between files and storing them only once, deduplication can yield cost savings by
increasing the utility of a given amount of storage[43]."

The effectiveness of deduplication varies widely across the different dedupli-
cation algorithms and different data sets. Although deduplication can provide
great savings in terms of space savings, it is a data intensive application and
comes with higher resource overheads on existing storage infrastructure.

10 CHAPTER 2 / REVIEW OF RELATED LITERATURE

2.1.1 Taxonomy

According to [29] deduplication solutions differ along three key dimensions;
Placement of the deduplication functionality, Timing of deduplication with
regards to the foreground 1/0 operations and Algorithm used to find data
redundancies.

Placement

Deduplication can be performed at different locations, depending on the partic-
ular needs of the targeted application; it can be performed either on the client,
storage array or on an appliance [29]. Appliance deduplication is utilized with
specialized hardware and is therefore not subject to further discussion as we
do not have access to these appliances and thus not applicable within the scope
of this thesis.

In client deduplication, the duplicated data is removed before transmitting data
to the server, thus reducing the data required to transmit the file. Therefore, it
is often denoted as transmission deduplication. The reduction in bandwidth is
a tradeoff between information sent, and processing capabilities at the client
side, as it is required to process the files before exchanging metadata. The
storage array deduplication is also referred to server-side deduplication i.e. the
recipient of the data performs the deduplication process. This removes any
types of content-aware deduplication algorithms that operate by understanding
the details of data.

Timing

Deduplication can either be performed as the data is transferred to the recip-
ient (Synchronous/in-band) or asynchronously in pre-defined intervals (out-
of-band). In a synchronous operation, every attempt to write to stable storage
goes through the deduplication process, i.e. data written to stable storage
is deduplicated. This makes the process amendable to client-side placement
because the data store metadata synchronously reflects its contents and can
be queried immediately by clients, eliminating duplicate network traffic [29].
This method of deduplication can add a significant amount of latency to the
system.

In the asynchronous operations the data is first written to stable storage before
performing the deduplication process. This causes the deduplication process to
happen after writes, and requires the system to purge duplicated data. These
properties makes the placement of out-of-band operations amendable to the

2.1/ DATA DEDUPLICATION "

server side, however, this removes the benefits of reduces network traffic of
synchronous operations. Placing an out-of-band operation at clients, causes
the clients to not have up to date files, which is not beneficial. Although
the out-of-band operations solve the bottleneck in terms of throughput at
the server, it greatly increases the amount of 1/0 operations required. Thus
making the choice of timing a decision based on the application Service Level
Objectives.

2.1.2 Methodologies

There exists a myriad of deduplication methodologies, which involves invoking
several processes to both chunk and restore the files. Irrespective of framework,
application or algorithm, deduplication can be categorized into four major
steps [28]:

1. Identifying the unit of comparison

2. Creating smaller unique identifier of these units to be compared
3. Match for duplicates

4. Saving unique data blocks

Therefore, the deduplication process itself can be divided into three generic
steps as seen in figure 2.1 [4]:

2. Identify duplicate chunks

e Hash each chunk to
produce unique identifier

e Compare each chunk
identifier with index to
determine whether chunk
is already stored

3. Eliminate redundant chunks
e Update index to reference
matching chunks
e Deallocate space for
redundant chunks

1. Chunk the object
* Divide object into logical
Segments called chunks

5 LI L LJL L

| Ooooooo | & DO00o0d

Figure 2.1: The generic deduplication process according to [4]

In step one; a given file is divided into individual chunks of either fixed or
variable size. In step two, each chunk is hashed to produce a unique iden-

12 CHAPTER 2 / REVIEW OF RELATED LITERATURE

tifier, which we will denote as the checksum for that chunk. The checksums
are subsequently compared with an index to determine whether that chunk
is already stored in the system. In step three, the actual deduplication takes
place i.e. where redundant chunks are eliminated by updating the indexes ref-
erencing matching chunks, and de-allocating space/deleting for the redundant
ones.

2.1.3 Deduplication methodologies

Deduplication is a process often specialized to solve specific Service Level
Objectives, therefore based on the objective of the application and its needs;
the methodology of the frameworks varies in terms of how they achieve the
deduplication. The methods for deduplication are a tradeoff between 1/0 usage,
processing time and storage needs. The process can be dived into two main
categories based on how they manage their files, Course- and Fine-grained
chunking.

Course-grained chunking creates larger blocks of data, and is therefore less
resource intensive in regards to I/0 usage, CPU utilization as opposed to fine-
grained chunking. Because of the larger blocks of data, the index of chunks
has fewer entries thus reducing the time spent looking for a specific chunk and
creates few checksums.

We present the three most commonly methodologies for deduplication, and
outline their advantages and disadvantages.

Whole file hashing/Single Instance storage

Whole file hashing does not break the file into several smaller chunks, but rather
generate a hash value for the binary contents of the file [29][28]. Files with
equal hash values, and optionally a byte-by-byte comparison, will be eliminated
as duplicates from the system. Therefore, whole file hashing can only detect and
remove redundant files, thus storing only a single instance of a given file.

Whole file hashing does not need to keep a complex index to manage blocks,
nor is it computationally expensive, it creates minimal metadata therefore it
does not create high 1/0 overhead. However, whole file hashing stores an
abundance of redundant data compared to other methods of deduplication,
and is therefore not very eligible to reduce network bandwidth.

2.1/ DATA DEDUPLICATION 13

2.1.4 Fixed block hashing/Fixed-size Chunking

Fixed block hashing divides a file into smaller entities called chunks at a fixed
interval, regardless of content-type. For each block, a hash-function is used to
generate a signature for the binary data, which uniquely identifies its contents.
If a chunk’s checksum corresponds to another checksum stored in the system,
the chunk is redundant, and therefore not stored.

This methodology appears to overcome the problems that occur under whole file
hashing. If a file is modified from N bytes into the file, only the remaining chunks
including N needs to be transmitted to the recipient in order to update the given
file. By utilizing a more fine-grained approach than whole file hashing, fixed-
size chunking is able to further remove redundancies in the system. Although
fixed-size chunking can greatly reduce the storage required for several files,
it cost more in terms of CPU-utilization, 1/0 overhead and metadata storage.
Furthermore, it does not handle prepending changes to files very well; one
prepended byte would invalidate all chunks in the file. This happens because
all blocks have new binary contents, and thus new checksums to identify
themselves.

2.1.5 Variable Block hashing/Variable-size chunking

In order to avoid rebuilding entire files as a result of prepending bytes to a file,
variable block hashing does not divide a file into fixed-sized chunks. Rather,
this methodology utilizes a technique known as Content-based chunking which
is a way of breaking a file into a sequence of chunks so that chunk boundaries
are determined by the local contents of the file[13].

This is achieved through the utilization of a sliding window algorithm that
works as follows: There is a pair of predetermined integers D and r,r < D. A
fixed width sliding window protocol of width W is moved across the file and at
every position k in the file, the fingerprint, Fy, of the contents of this window
is computed, and k is s a chunk boundary if FxmodD = r. The fingerprinting
algorithm must in this case be both fast and efficient, because of the many
fingerprints required. In order words, the algorithm creates chunks when a
pre-determined condition has been satisfied, and at that breakpoint, a chunk
is created.

14 CHAPTER 2 / REVIEW OF RELATED LITERATURE

v

Previous Chunk Sliding Window

k modD=r

/N

no yes

/ N

kis not a chunk boundary kis a chunk boundary

Figure 2.2: The sliding window algorithm from [13]

Due to the nature of the sliding window algorithm, variable-sized chunk-
ing methodologies applies specialized fingerprinting algorithms optimized for
speed. Although regular hash-functions could be used to compute the finger-
prints, they are too slow for this use-case. Therefore, variable block hashing
utilizes rolling hash algorithms, because these hashes can be computed quickly
based on earlier calculated checksums, which makes them ideal for sliding
window algorithms. Instead of computing the entire checksum for each chunk,
they can utilize the old checksum as input and transform it using the new data
at the current position. This solves the major problem of fixed block hashing,
because inserted or deleted bytes moves the boundaries of all chunks according
to their amount of modification, resulting in fewer chunks modified. However,
this method is not only the most computational expensive, it also creates the
most overhead in 1/0 operations. The biggest contributing factor to the per-
formance of variable block hashing is the rolling hash algorithm, and as such,
we will outline three well-documented applicable methodologies for rolling
hashes.

Rabin fingerprints are calculated using randomly chosen polynomials p(t) € Z,[t]
over a finite field to calculate the hash for a given sequence of bytes [37].
These fingerprints are calculated over a sliding window protocol; as a
result, the new fingerprints can be calculated based on the old ones, thus
making it an efficient algorithm. The Rabin fingerprints are used in many
systems ranging from file systems to search algorithms [7][44][31][13].

PLAIN The Pretty Light And INtuitive (PLAIN) fingerprint algorithm was cre-
ated as a part of the Low Bandwidth File System [42]. Alex Spiridonov et
Al. argues that the randomization in the Rabin fingerprints is redundant;

2.1/ DATA DEDUPLICATION 15

because of this, they replace the randomization with a summation of the
underlying data. This allows them to use a very efficient add-operation
in order to greatly increase the efficiency of the algorithm, causing it to
outperform the Rabin fingerprinting scheme in terms of speed.

Adler32 is a checksum algorithm developed by Mark Adler in 1995, which
is designed to increase speed over reliability [30]. During his PHD dis-
sertation, Andrew Tridgell modified Adler32 into a rolling fingerprint
algorithm, which he used for Rsync [47]. The algorithm works by con-
catenating two separately calculated 16-bit checksums, which is based
on an efficient summation process as with PLAIN.

The problem with variable block hashing, ignoring the 1/0 overhead, is the
fact that they are based upon the basic sliding window protocol. The algorithm
requires the rolling hash method to determine the chunk boundaries, and will
only split the file if the pre-determined condition is met. This shows that the
chunk boundaries are determined by the probability of the condition occurring,
which means that there is no minimum- or maximum block size. Even when
dealing with non-random data, it is possible for the break condition to never
be true, thus causing chunks to grow in size until infinity.

Opposed to the basic sliding window protocol, other variable block hashing
methods aims to resolve these shortcomings caused by not having minimum-
and maximum block sizes.

Two Threshold Two Divisor is a method for creating variable sized blocks
that also assures that a block is not smaller than a given threshold, and
not larger than a maximum size [11]. In order to maintain the maximum
size for a given block, the algorithm two divisors D and D’, where D > D’.
Because D’ is strictly smaller than D it has a higher probability of finding
a set cut-point, however if neither D’ or D finds a cut-point, it simply
creates one at the maximum block size. If D does not find one, but D’
does, it reverts to the cut-point found by D’, because D’ works as a
backup divisor [11].

Bimodal Content defined Chunking utilizes blocks of two different sizes, in
which the algorithm creates large blocks unless the file is in a “...limited
region of transition from duplicate to non-duplicate data” [23]. Kruus
et.al claims that this method increase the average chunk size, while
maintaining a reasonable deduplication elimination ratio, without any
special purpose metadata. This is achieved by maximizing the probability
of long binary sequences in currently unknown data to appear in later
sequences and that breaking these large chunks into smaller chunks
around what the authors define as “change regions”, will benefit the

16 CHAPTER 2 / REVIEW OF RELATED LITERATURE

application.

2.2 Data differencing

"Data differencing is the process of computing a compact and invertible encoding
of a "target file" given a "source file""[22]. The output comes in the form of a
patch file, which allows the source file to transform into the target file. Data
compression is considered a special case of data differencing and we will not
further expand upon this as we expect the reader to have some familiarity with
data compression.

The problem domain in data differencing is managing memory constraints
and processing time when compared to usability. In order to create optimal
patches (smallest), the processing time might near infinite and the memory
requirements skyrocket. Therefore, usability refers to whether creating the
patches can be applicable in the target domain within a certain time frame and
memory constraints. We can further divide the data differencing approaches
into two categories:

Known data differencing: This methodology knows what the storage format
is, and is optimized to work specifically on the target format

Unknown data differencing or Generic data differencing: This methodology
is designed to work on any storage targeted formats, and subsequently
cannot be optimized to target a specific format.

Irrespective of the algorithmic approach applied by the data differencing soft-
ware, the patch generation methodology always relies on delta encoding. From
a pure mathematical standpoint, the delta encoding aims to create a patch for
any given file ideally within the absolute entropy, but in reality the patches are
subject to the Kullback-Leibler divergence [24].

The delta encoding algorithms therefore aims to record the changes between
two files using the smallest amount of data. These algorithms are defined in
two ways, Symmetric deltas, and directed deltas, where a directed delta is the
change-set required to transform a version v; into version v,. The symmetric
deltas are denoted as deltas where A(vy,v3) = (v1 \ v2) U (03 \ 1)

There exists a multitude of delta encoding algorithms for data differencing,
some working on entire files, some on fixed block sizes and others on variable
sized chunks. We will later in this thesis explore one case and how it can be
applicable to the domain of file synchronization. However, first we address the

2.3 / CONFLICT RESOLUTION IN FILE SYNCHRONIZERS 17

problem space for these methodologies, without examining how the problems
are solved.

2.2.1 Mathematical fundament

The theoretical fundament is the process of counting matches with mismatches
with respect to the edit distance, i.e. Given two strings, S T of lengths n,m
over an alphabet X,n > m, to find all substrings S” of S such that S’ can
be transformed into T via a sequence of most k substitutions, insertions and
deletions[34].

Therefore, the problem with mismatches is in actuality a number of problems.
Taking: 8> X ¥ — R as a function that identifies how close two symbols
match, and defining:

Vi = 388 T)),
The following problem arises as shown in [34]
1. Compute V; forall0 <i<n—-m
2. Given some k € R, find all integers i € [0, n — m] satisfying V; > k

3. Given some t € N, find values x;...x; such that V, takes on the t largest
possible values

4. Lett € N be given a set X = x7..x; be fixed but unknown, and suppose
that S and T are generated by random process in such a manner that
E((Si, Tyli—-je X)X > X = E((S;, T;)li —j ¢ X) for some constants
X, XeR Find X with high probability

2.3 Conflict resolution in file synchronizers

Detecting and resolving merge conflicts in file synchronizers can be difficult to
understand and the validity of conflict resolution policy can differ, depending
on the targeted domain[38]. Tao et Al. formalized the problem in [38], as
first finding the set S of all operations that have been performed in order to
compute the subset of S such that within the subset, "all global orderings that
are consistent with the local orderings have the same effect"[38]. This subset
can be used to compute the sequences of commands S’ to be applied at each

18 CHAPTER 2 / REVIEW OF RELATED LITERATURE

replica. They summarize this into the following three steps:

1. Update detection examines each replica to determine the update se-
quence of Si that have been executed at the replica

2. Reconciliation takes as many commands as possible from the sequences
S; and computes the sequences S; to be executed at each replica

3. Conflict resolution takes the leftover, "conflicting", commands and figures
out what to do with them

Although this formalization is made for file synchronization in distributed
filesystems, they are applicable to geo distributed file hosting services, as they
face the same issues. Once connections take place over inter- networks, geo-
distributed networks needs to make trade-offs between consistency and the
validity of their services, which has been formalized in the CAP-theorem[14].
Conflict resolution in geo-distributed file systems are classified into two groups:
operations- and state-based [46].

Operation-based approaches log the file system operations on each site and
then propagate the log to the other sites on which these operations may
be replayed to keep the replicas consistent. However, this approach usually
require global synchronizations, which causes all sites to stop receiving more
updates and exchange their logs to define new sequences of operations to
be applied on each site; this is not practical in real-world geo-distributed file
systems[46]

State-based approaches keep track of the state of each file and directory, then
the final states or deltas of the changed files and directories are propagated
to the other sites to be merged there. Although this approach is feasible, it is
hard to implement as modeling a filesystem incorrectly can lead to erroneous
behavior.

Review of related
Technologies

There exists a multitude of both file synchronization software and frameworks,
as well as file hosting services. Understanding the theoretical foundation and
the “state of the art” in technological advancement is a vital prerequisite in
order to progress. In relation to our thesis we will present some of the most
widely used file synchronization frameworks and two distributed file system as
their technologies aims to accomplish the same objectives as Seadrive, albeit
with different constraints.

Data synchronization is the process of establishing consistency among data
from a source to target data storage and vice versa, as well as the continuous
harmonization of data over time. File synchronization is a subset of data
synchronization, in which data synchronization is the fundamental process
allowing files to be shared between differing applications and users. File
synchronization is the process of ensuring computer files in two or more
locations are updated via a set of rules defined in the system, and there
exists several file-based solutions for data synchronization. In this thesis we
delimit ourselves only to the strict interpretation of file synchronization, and
purposefully disregard version control systems and content mirroring, however
we will explore distributed file systems. Data synchronization in the context of
files can coarsely be divided into three categories.

19

20 CHAPTER 3 / REVIEW OF RELATED TECHNOLOGIES

* One-way file synchronization (mirroring) where files are copied or up-
dated from a single source location and disseminated to one or many
recipients.

* Two-way file synchronization where files are transferred and updated
in a bi-directional manner, with the purpose of keeping two locations
identical to each other.

* Many-to-Many file synchronization, where multiple entities updates and
transfer files in an overlay network, commonly used in distributed appli-
cations.

A file synchronizer is the process that makes files consistent, while preserving
changes made in a system where more than one entity requires the given
file(s). When changes are made to a file in the system, the replicas no longer
contain the same information, thus facilitating the need for synchronization.
The process of synchronization is not tautological, as the different set of replicas
can contain different, conflicting information. A simple file containing the string
“Hello, my name is abc”, and the same file at a different location containing
“Hello, my name is bed”, it is not obvious which file should be kept over the
other. In cases like these, the file synchronizer requires a policy for conflict
resolution.

3.1 File synchronization protocols

The purpose of file synchronization frameworks differs in what they aspire
to accomplish, and therefore they attempt to solve the file synchronization
problem[47][38][45]differently. In some systems, immediate updates are re-
quired, while others simply populate updates periodically. The algorithms used
to achieve the updates, whether periodically, immediate or on demand, can be
divided into either single-round or multi-round algorithms [16].

Single-round protocols utilizes fixed or variable sized chunking mechanisms
to compare file contents and generating binary patches in an iterative manner.
These protocols are preferable in scenarios involving small files and large
network latencies due to protocol complexity, computing and 1/0 overheads
[16]. Multi-round algorithms will often use recursive partitioning of unmatched
blocks, mostly in a breath manner first. The divide and conquer algorithm are
subsequently used to send hashes between the server and client to detect
changes in remote files[20]. The multi-round algorithms are preferable to the
single-round algorithms in the case of large collections over slow networks,
because of the many rounds of compression [16]. However, these advantages

3.1/ FILE SYNCHRONIZATION PROTOCOLS 21

can be lost in very slow wide-area networks[51].

3.1.1 Widely used remote file synchronization algorithms

There exists are myriad of remote file synchronization algorithms in the wild,
however for this thesis we will outline what we believe to be the most influential
methodologies.

We will try to give a simplified formalization of the file synchronization problem:
Given two files fye. and f,;4€ X* over a given alphabet %, in this case bytes,
and two computers A and B, connected by a communication link [44], where
Aholds frew-

The content of f;.., is denoted as a; and of fold as b;, the aim of the algorithm
is for B to receive a copy or updated version of f from A. The basis of a remote
algorithm can thus be denoted as [47]:

1. B sends some data S based on b; to A
2. A matches this against a; and sends some data D to B
3. B constructs f,e,, using b;, S and D

As Andrew Tridgell put it in his PHD dissertation [47]:

“The questions [sic] then is what form S will take, how A uses
S to match on f,.,, and how B reconstructs f,.,, “(modified for
the formalization in this chapter).

3.1.2 Rsync

Rsync is the best-known single-round protocol for file synchronization [16] and
is bundled in several Linux distributions. Rsync is fundamentally an improved
version of the fixed-size chunking approach into variable-sized, and in similar
fashion breaks a file into chunks, which are transmitted from A to B. Rsync
specifically splits files into disjoint chunks of a fixed size b and utilizes hash
functions to calculate the fingerprint of each chunk, and sends the fingerprint to
the receiver. Due to the possible misalignments between the files, it is necessary
for the recipient to consider every window size of b in the new file for a possible
match with a chunk in fold [48]. The formal definition of the algorithm is as
follows:

22 CHAPTER 3 / REVIEW OF RELATED TECHNOLOGIES

Given the same denotations used in the preceding section approach with R
and H as hash algorithms, one fast to calculate all byte offsets, and one slow
to ensure no data collision

1. B divides b; into N equally sized blocks b]'. and computes signatures R;
and H; on each block. These signatures are sent to A.

2. For each byte offset i in a; A computes R; on the block starting at i.
3. A compares r; to each R; received from B
4. For each j where R} matches R;A computes H; and compares it to H;

5. If Hl’ matches H; then A sends a token to B indicating a block match and
which block matches. Otherwise A sends a literal byte to B.

6. B receives literal bytes and tokens from A and uses these to construct a;

As we can see from the Rsync method for synchronizing files, it can efficiently
group changes in blocks and compress the data transfer to speed up transmis-
sion. However, it requires both the sender and recipient to actively gather and
generate chunks, and generate checksums for each round in its run. These
characteristics of Rsync make the algorithm unsuitable for frequent changes in
large repositories [16] [20].

3.1.3 Unison

Unison is a well-known multi-round file synchronizer that works in similar
fashion to Rsync [36] [35] [3]. It chunks the files into disjoint blocks, compares
these blocks before merging changes, and utilizes a rolling checksum algorithm
to detect changes. Unlike Rsync, Unison utilizes a two-way file synchronization
algorithm. This causes Unison to split the synchronization into two phases:
Update detection and reconciliation. During the update detection phase, it
monitors for file changes based on modification time, the cryptographic finger-
prints and other metadata [36]. If changes are detected the file is marked as
dirty. During the reconciliation phase it merges the updates into what they
call a task list, and based on its recursive multi-round method, they solve for
merge-conflicts and recreate the files.

The similarity of Unison and Rsync’s algorithmic approach means that Unison
shares the drawbacks in regards to frequent updates of small files. Although
unisons update phase is significantly shorter because of their usage of metadata
rather than checksums.

3.1/ FILE SYNCHRONIZATION PROTOCOLS 23

3.1.4 Dropbox

Unlike the systems we have shown so far, which are on-demand file synchro-
nization frameworks, Dropbox is a near real-time file synchronizer. Dropbox
in itself is a file hosting service, however for the thesis we will focus on the file
synchronization mechanisms known as of spring 2016.

Dropbox as a file synchronizer offers live synchronization or continuous reconcil-
iation [3], to achieve this functionality it employs file watchers. File watchers
are mechanisms, which react to operating system events whenever a file is
changed, renamed, updated or deleted locally, and these events are registered
in the Dropbox application. This allows Dropbox to do automatic recording
of file versions. However, the inner workings of Dropbox is unknown as the
system is undergoing continuous changes, and based on proprietary software.
We will outline the information we know that has not changed since written
about.

The data deduplication in Dropbox is proprietary but we do know they use a
form of either statically or Variable Length Chunking (VLC), but the sources
that have analyzed Dropbox differs. For instance Jin San Kong ET. Al. claims
Dropbox to use VLC [40] while [9] [8] [50] claims Dropbox is using static
length chunking. Regardless of the deduplication scheme employed, we know
that they no longer utilize global deduplication, which can be validated by the
reader by simply uploading two identical files on different repositories. We
cannot know why they removed this feature, but it is speculated to be because
of privacy concerns or the high cost of retrieving files.

The Dropbox client control flow can be divided into three partitions[8]:
1. Notification
2. Metadata administration

3. System logging which we ignore as it is considered irrelevant for the
thesis

The Dropbox client keeps a continuously open Transmission Control Protocol
(TCP) connection used for receiving changes remotely where remote changes
are periodically polled on 60 seconds intervals, unlike local changes, which are
updated instantly. Upon local changes, a synchronization transaction starts by
sending messages sent to the metadata servers. Once the metadata exchange
protocol is completed, the remote data storage protocol manage the actual
exchange of data.

24 CHAPTER 3 / REVIEW OF RELATED TECHNOLOGIES

In [27] Z Li. Et Al. Measures the amount of network traffic generated by adding
new files to the Dropbox sync folder, and they observe the amount of metadata
to remain near constant for files in the range of 1 byte to 100 Megabyte (MB).
The metadata is on average 33 Kilobyte (KB) +- sKilobit (kb). However, the
traffic sent to the synchronization varies greatly; the ratio of data to upload is
38200 times larger for the 1-byte file, but only 1.1266 times larger for the 100
MB file. This is mostly caused by the close to fixed sized metadata information
sent which causes the Dropbox overhead to amortize over large file sizes.

3.2 Distributed file systems

Distributed file systems is a file system that supports the sharing of informa-
tion in the form of files and hardware resources in the form of persistent
storage throughout an intranet [6]. We will not outline the functionality and
requirements of a distributed file systems as we consider this to be outside
the scope of this thesis. However, we will present two case studies to examine
their architecture. We do this in order to exemplify architectural solutions for
solving the file synchronization problem, as it is a subset of distributed file
system demands.

3.2.1 Sun Network Filesystem

The Sun Network File System (NFS) follows an abstract model where all
implementations of the NFS support the NFS protocol — which is a set of remote
produce calls that provide the means for clients to perform operations on a
remote file store. Although the NFS protocol is operating system independent,
we will outline the UNIX implementation as it was initially developed for
UNIX.

3.2 / DISTRIBUTED FILE SYSTEMS 25

Client Computer

Server computer

Application Application
Program Program

UNIX system calls

(E— -
UNIX kerne! I Virtual file system

Virtual file system

|
Local M \Remote

UNIX i NFS NFS
file file :
- . Client server
2 U NFS
protocol

UNIX
file
system

Figure 3.1: NFS architecture as outlined in [6]

The NFS Server module resides in the kernel on each computer that acts as an
NFS server. Requests referring to files in a remote file system are translated
by the client module to NFS protocol operations and then passed to the NFS
server module as the computer holding the relevant file system [41].

The NFs client and server modules communicate using Remote Procedure Call
(RPC). Sun’s RPC system developed for use in NFS is built upon the Open
Networking Computing RPC. It can be configured to use either User Datagram
Protocol (UDP) or TCP, and the NFS protocol is compatible with both. A port
mapper service is included to enable clients to bind to services in a given host
by name. The RPC interface to the NFS server is open: any process can send
requests to an NFS server; if the requests are valid and they include valid user
credentials, they will be acted upon. The submission of signed user credentials
can be required as an optional security feature, as can the encryption of data
for privacy and integrity.

The NFS server implementation is stateless, enabling clients and servers to
resume execution after a failure without the need for any recovery procedures.
Migration of files or filesystem is not supported, except at the level of manual
intervention to reconfigure mount directives after the movement of a filesystem
to a new location.

The caching of file blocks at each client computer enhances the performance of
NFS. This is important for the achievement of satisfactory performance but re-

26 CHAPTER 3 / REVIEW OF RELATED TECHNOLOGIES

sults in some deviation from strict UNIX one-copy file update semantics.

3.2.2 Andrew File System

In similar fashion to NFS, the AFS, provides transparent access to remote shared
files for UNIX programs running on workstations. Access to AFS files is via the
normal UNIX file primitives, enabling existing UNIX programs to access AFS
files without modification or recompilation. AFS is compatible with NFS. AFS
servers hold ‘local’ UNIX files, but the filing system in the servers is NFS based,
so files are referenced by NFS-style file handles rather than i-node numbers,
and the files may be remotely accessed via NFs[18].

AFS differs markedly from NFS in its design and implementation. The differ-
ences are primarily attributable to the identification of scalability as the most
important design goal. AFS is designed to perform well with larger numbers of
active users than other distributed file systems. The key strategy for achieving
scalability is the caching of whole files in client nodes. AFS has two unusual
design characteristics:

* Whole-file serving: AFS servers (in AFS-3, files larger than 64 kb are
transferred in 64-kb chunks) transmit the entire contents of directories
and files to client computers.

* Whole-file caching: Once a copy of a file or a chunk has been transferred
to a client computer, it is stored in a cache on the local disk. The cache
contains several hundred of the files most recently used on that computer.
The cache is permanent, surviving reboots of the client computer. Local
copies of files are used to satisfy clients’ open requests in preference to
remote copies whenever possible.

The four following steps illustrates an operation running on AFS:

1. When a user process in a client computer issues an open system call for
a file in the shared file space and there is not a current copy of the file in
the local cache, the server holding the file is located and is sent a request
for a copy of the file.

2. The copy is stored in the local UNIX file system in the client computer.
The copy is then opened and the resulting UNIX file descriptor is returned
to the client.

3. Subsequent read, write and other operations on the file by the process
in the client computer are applied to the local copy.

3.2 / DISTRIBUTED FILE SYSTEMS 27

4. When the process in thee client issues a close system call, if the local
copy has been updated its contents are sent back to the server. The server
updates the file contents and the timestamps on the file. The copy on
the client’s local disk is retained in case it is needed again by a user-level
process on the same workstation.

AFS is implemented as two software components that exist as UNIX processes
called Vice and Venus. Vice is the name given to the server software that runs
as a user-level UNIX process in each server computer, and Venus is a user-level
process that runs in each client computer.

Workstations

Servers
Venus| Network

program

‘ UNIX kernel ‘ \07
@ ‘ UNIX kernel |

Venus| —0 ; ; ; ; ; ;
program

‘ UNIX kernel ‘ \@7
@ VICE
/ ‘ UNIX kernel |
Venus|
SUser ‘ ' ‘ ' ‘ '
program
‘ UNIX kernel ‘ \@7

VICE

Figure 3.2: AFS process distribution as outlined in [6]

The files available to user processes running on workstations are either local
or shared. Local files are handled as normal UNIX files. They are stored on
a workstation’s disk and are available only to local user processes. Shared
files are stored on servers, and copies of them are cached on the local disks
of workstations. In order to support the caching mechanisms one of the file
partitions on the local disk of each workstation is used as the cache, holding

28 CHAPTER 3 / REVIEW OF RELATED TECHNOLOGIES

the cached copies of files from the shared space. Venus manages the cache,
removing the least recently used files when a new file is acquired from a server
to make the required space if the partition is full.

AFS utilizes a weak consistency model supported by the local cache. Once a
read or write operation have completed, and the file has become modified the
local copy are copied back to the file server maintained by callbacks.

Architecture

Seadrive provides a framework that consists of several different components,
where each component encapsulates a particular functionality. These compo-
nents are interconnected to work in unison in order to create the client- and
server side software. The architecture will show the inter- and intra-connection
between the different file synchronizers and how these components commu-
nicate in order to minimize traffic of the high latency network connections
subjected to frequent drops. In order to complete the primary objectives defined
for the Seadrive application, the architecture must accommodate for physical
constrains such as hardware, network bandwidth, loss ratio, and network
topology. The overall architecture concerning communication and dataflow is
outlined in figure 4.1.

29

30 CHAPTER 4 / ARCHITECTURE

Remote Synchronization Point

(o)

Local Synchronization Point

| Boat 1

Local Synchronization Point

[~

rrww | T

Client A Client B
Client C Client D

Figure 4.1: Birds eye architecture of Seadrive. Clients are reciprocally synchronized
within the LSP, and is continuously synchronizing with the RSP whenever
possible. Red rings indicate the LSP.

Synchronization Point. In this thesis we will delimit ourselves to focus on the
following components outlined in Figure 2, and we’ll not discuss the intricacies
of the software required to actually use satellite based network links, such as
Dualog Connection Suite! or Inmarsat launch pad2, nor will we examine how
these network suits affects the application itself. We will also disregard how
land based partners affect the server- and remote file repositories on vessels.
Rather, we will focus on the components required to synchronize, transfer and
update files among all clients on a vessel, and to the main land-based storage

1. http://dualog.com/services/overview/how-it-works
2. http://www.inmarsat.com/support/bgan-firmware/bgan-launchpad/

31
facility and vice versa.

The logical architecture can be roughly divided into three parts: The Client,
the LsP and the RSP. The clients are the end-users of the application that
interacts with files in a Dropbox like manner. Files are dragged and dropped
to a folder denoted as the Seadrive sync folder, and these files are immediately
uploaded to the LSP. Likewise, the client application continuously downloads
or updates new files from the L.SP. The LSP synchronizes all clients with each
other and with the RSP. Its other responsibilities contain managing possible
merge conflicts and facilitate all remote and local communication. The RSP
simply store all files from all clients and disseminates these accordingly.

The architectural choice of having LSPs on each vessel for several clients was
inspired by AFS [18][19]. The local server can leverage the advantages of
Local Area Network (LAN) networks with low latency, high bandwidth and
minimal packet loss, or Wireless Local Area Network (WLAN) with 4G or
5G. Therefore, changes done locally at a vessel can use a simplistic transport
protocol to transfer changes within the vessel. Furthermore, this architectural
choice allows us to have a single point of entry for all data communication both
in- and outbound from a vessel. This also alleviates the RSPs resources, because
it does not have to send the same information to each client, i.e. if a vessel has
20 users on average, the load is reduced by 20 * number of vessels.

Similar to AFS, Seadrive utilizes a weak consistency model on the client side.
Read and write operations on an open file are not updated remotely until the
file is closed. During modification, the file is marked as dirty, to indicate that
the file has changed contents, and not until Windows release the file lock are
changes merged into the LSPs’ copy.

In order to detect modification, deletion or creation of files, Seadrive utilizes a
callback centric event driven daemon. On remote changes not local to the vessel,
the local and RSPs initiates a negotiation protocol in order to determine the
changes between the differing versions. Once the change set has been identified,
the changes are transferred in statically sized chunks. New files added to the
RSP from a land-based client takes priority over the vessel based files, because
management entities have a higher priority to disseminate files.

The Seadrive framework uses an N-tier architecture[21], and we currently
employ four layers. The N-tier architecture was selected for its ability to al-
low developers to create more flexible and reusable applications [10]. We
employ what we denote as the Data Abstraction Layer (DAL) [APPENDIX
1], the business logic layer, the application layer and the presentation layer
(implementations).

32 CHAPTER 4 / ARCHITECTURE

The quintessential aspects of the framework is the division of intra- and inter
communication. The intra communication between clients and the local syn-
chronization uses a lightweight transport protocol, which is not designed for
robustness nor speed, but for simplicity. The remote transport protocol between
local and RsPs is designed for robustness and to use minimal bandwidth.

Design

framework on the windows platform. We explore both the inter- and intra-
communication required to perform remote file synchronization, how data is
managed in the system, and the mechanisms necessary to facilitate real-time
file synchronization within the local network on the boat. We focus on the
methods we employ in order to facilitate the requisites of file synchronization
over satellite-based connections. Although the requirements to provide file
hosting services, file synchronization and deduplication differs, they rely on
many of the same mechanisms in order to accomplish their task, and at a
high level of abstraction, the application can be presented as seen in figure 5.1

33

34 CHAPTER 5 / DESIGN

Seadrive Presentation layer

Client LocalServer PrimaryServer

Seadrive — Application Layer

File
Synchronization
Protocols

Compression

Transport Protocols N
Engine

Daemon

Seadrive — Businesslogic

Business

Compory

Business Entities

Cross cutting
Extensions/Utilities

Data abstraction Layer

Common chunk representation and rebuilding

Simple Data Access

System

Data

Figure 5.1: Shows a simplified model of the entire application stack

The presentation/Application layer are formed from the architectural demands
to reduce the traffic over the high latency, low bandwidth network connec-
tions. We will discuss each section of the framework in the following subchap-
ters.

5.1 / THE DATA ABSTRACTION LAYER — I/O MANAGEMENT 35

5.1 The Data Abstraction Layer - 1/0
management

The DAL was created in the project “eSushi” which was developed by the
author in an earlier project, and what is denoted as the simple data access
model described in Appendix A is re-used for Seadrive. We store data in
a MSSQL database in a parallel environment, thus we require the ability to
handle concurrency issues in a transparent manner, which alleviates the burden
for developers.

“The DAL’s primary purpose is to provide unified access to all
data available in the system. Subsidiary is it required to lessen the
burden of managing data, resolving issues such as weak typing
of the business data, centralizing data-related policies and apply
a domain model to simplify the business logic. We also want to
have a resolution of concurrency problems which may arise with
conflicting requests in the same time window.” [Appendix A]

The Read and Write 1/0 operations regarding the deduplication, preparing
data for transportation and maintaining a serializable in-memory cache in
this file synchronization framework does not deal with large file (gigabyte+),
manipulation due to the nature of the application. The application also requires
simple data access throughout the entire stack and is modeled after the classical
Data Access Pattern. The design of the DAL is fully described in Appendix A
and is denoted as the “Simple Data Model, or Simple Data Access”.

5.2 Business Logic Layer - Core functionality

The business Logic Layer aims to reduce complexity by separating tasks into
different areas of concern. Applications can have many cross-cutting concerns
such as authentication, logging, validation, coupling and cohesion, and a com-
mon representation of data. The Business layer tries to resolve these problems
by centralizing the rules in order to enforce correct usage.

The core functionality of “Seadrive” is simply all functionality required through-
out the entire stack of the application itself, thus ranging from simple extensions
i.e. checking whether an item exists, or access to the functionality implemented
over several instances. The core functionality thus functions as a library provid-
ing convenience functionality to developers and users, while abstracting away
underlying implementation, such as inversion of control [49]. It also holds all
object data models in use by the system, allowing all applications developed

36 CHAPTER 5 / DESIGN

to have a unified understanding of the data in the system.

This methodology facilities data sharing on every level in the framework al-
lowing applications to be developed, while ignoring the DAL. Utilizing these
methods, flexible components can be registered in the system, implemented as
a module, and mounted wherever needed, while maintaining data interoper-
ability.

5.3 Application Layer - Seadrive

By the virtue of N-tiered applications, Seadrive is detached into several compo-
nents with different responsibilities. Each component encapsulates a particular
functionality and interacts with other components in order to implement the
applications. The application layer is thusly responsible for the concretization
of the high-level components in the file synchronization framework, which
is required for data deduplication, transport protocols, compression and the
interconnection of these components.

This library is then able to form the basis for Seadrive and its functionality at a
high-level abstraction allowing the representation of complex operations in a
unified manner, where implementations from the business layer can be changed
without affecting development. In the following sections, we will outline the
application layers’ primary responsibilities, on which the framework places its
fundament.

5.4 Data Deduplication

Data deduplication is a core asset to Seadrive as both a file synchronization
framework and as a file hosting service. In order to reduce both the bandwidth
and the number of messages required to perform file synchronization, data
duplication is a powerful ally as it can lower both. The deduplication schemes
can reduce both the data sent by identifying redundant byte sequence and thus
not sending them, and local file storage can be reduced immensely by only
storing a single instance of a byte sequence. The data deduplication process in
Seadrive is generic to facilitate supporting the optimal methodology beneficial
to the users’ needs.

The deduplication process consists of three components; the chunker, the
compression engine, and the rebuilder.

5.4 / DATA DEDUPLICATION 37

* Chunker: In order for the system to perform data deduplication at a finer
level than file-based deduplication, a key component is the chunker. This
component divides an 0OS file into several smaller sequences of bytes
denoted as chunks (singular: chunk). The chunks are interchangeable
regardless of static or variable sized chunking, as they contain metadata
fields to support this. The chunks have an overhead of 44 bytes to support
integrity checking of data, owned files and to report its own size.

* Compression Engine: The compression engine is simply an engine which
allows chunks to be compressed or decompressed using different com-
pression algorithms. This allows the de-duplicated data to be reduced
further in size before storage or transmission.

* Rebuilder: The rebuilder is simply the entity that rebuilds a file from
given chunks.

These components work in unison with the DAL to perform Data Deduplication
in Seadrive. A given file is divided into chunks by the chunker, the chunks
are subsequently compressed through the compression engine, and the non-
redundant chunks are stored locally in an MSSQL database. The compressed
chunks can also be used for transmission by identifying non-redundant chunks
both locally and remotely and therefore only transmitting necessary chunks in
order to rebuild the files by the rebuilder.

Store non-
redundant chunks

Input file

Split file into chunks

Figure 5.2: Shows the generic Seadrive data deduplication process

Rebuild file from
deduplicated data
storage

38 CHAPTER 5 / DESIGN

5.4.1 Delta difference data deduplication

The data deduplication process shines when dealing with variable- or fixed-
size chunks, however a comparable process should exist for systems based on
delta-difference file synchronization. Therefore, data deduplication based on
delta differences differs in their design. These methodologies are also designed
around the DAL in order to perform data deduplication, but instead of chunks,
patches for each file version is stored. For any given file whom at one point has
been changed, patches has been created. These patches must be symmetric in
order to change the file between different versions. In this manner, content
revision is supported, and only patches needs to be stored.

5.5 Filesystem monitor, change detection and
the application facade

The Seadrive Synchronization relies on repositories, which is a subscribable
entity. Repository is a windows folder in which the entire file-tree within the
folder is replicated at all targeted applications, at clients, the LSP and the RSP.
To reliably detect changes to the file-tree we employ file system watchers (also
known as file alteration monitors), these services watches the local replica of
the repository as a folder in windows. Whenever a change occurs to the folder,
be it added files, deletion, renaming files or folders or files are changed, events
fire which are handled by an event driven application facade.

The facade is the primary Seadrive daemon that handles everything the frame-
work require to manage local changes, and disseminating the changes to other
replicas. The events from the filesystem watcher is filtered at the daemon to
avoid multiple events caused by the same action to propagate, and these events
determines whether a file should be marked as dirty. The facade determines
when change sets will be propagated further in the system. The dirty files
are subsequently prepped for transportation by feeding the changes to the
de-duplicator to re-calculate the change sets, which are then disseminated to
recipients.

5.6 File synchronization and Transport Protocol

In order to support bi-directional file synchronization among multiple users
and with file hosting capabilities at a land-based operational center, the frame-
work has different strategies for resolving the needs at different applications.

5.7 / LOCAL SYNCHRONIZATION PROTOCOL 39

By virtue of the architecture, the data flow in Seadrive is straightforward;
it can logically be divided into two parts, local and remote changes. Local
changes consist of all changes done at the client side to the LSP. While remote
synchronization is the process between the RSP and the local. This division
of the models is a deliberate design choice, based on the problems they at-
tempt to solve. The differing methodologies these models apply will be further
expanded upon in the following subchapters.

The primary concern for a file synchronization framework is synchronizing
files between different locations and applications without corrupting the data.
The synchronization process should happen unbeknownst to the user in a
non-blocking manner to provide the illusion of always reaching your files
regardless of data locality in a file hosting service and should be simple to
use. However, a comparable concern, especially with large files, is speed. Data
should be delivered within a user-specific definition of reasonable time, thus
having differing methodologies for local and remote storage allows for tradeoffs
between 1/0 complexity, memory utilization and transfer speed. We will show
the design for the two different approaches separately and compare them to
each other in the experiments chapter. For both methods, we will show the
design from the bottom up until the entire data path has been realized.

5.7 Local synchronization protocol

The local synchronization protocol is the process of synchronizing all the data in
a given repository within a vessel. It is the primary method of communication
between each client interconnected in the LSP, its responsibilities include
managing uploads and downloads within all entities in the LSP.

Once the daemon in conjunction with the deduplication process has calculated
change sets and stored local compressed copies of the file-tree as a snapshot,
the data is transferred from either client to the LSP or vice versa. The local
synchronization protocol is designed to be a lightweight process both computa-
tionally and in memory, as the process takes place on reliable high throughput
networks. The protocol is not designed as a rigorous algorithm, rather allowing
for a high degree of flexibility, but some rules of conduct is necessary.

The data transfer in the local synchronization protocol is a two-step process,
which starts by negotiating changes. A set of metadata concerning the changed
file(s) is transmitted from sender to receiver in order to validate that the files
have actually changed. The receiver responds by requesting changes from the
file(s) in one of two methods. The simplest methodology is to request the
entire file in order to rebuild it from scratch, or request the missing chunks in

40 CHAPTER 5 / DESIGN

order to patch the file. For LSPs, once it has received a new file, the changes
disseminated to all clients used a broadcast mechanism. To ensure that the data
has been transferred completely, the receiving entity compares the checksum
of the rebuilt file with the checksum(s) received in the negotiation.

The protocol is initiated in two different manners, differing slightly in their
respective behaviors. On the client’s application startup, the local synchroniza-
tion protocol assumes the LSP to contain the newest file version if conflicts
occur. This is a deliberate design choice in order to avoid automatic merge con-
flicts management, as this process is immensely difficult where the worst-case
scenario can completely ruin files. We chose this approach because when a
previously disconnected client connects to the system; the client computer has
most likely been powered off or suspended and is therefore most likely out of
date with the LSP replica.

During continuous use, i.e. both the client and LSP online, once changes are
registered for transportation, the last entity to update a given replica in the
system will have the prevailing change. This means that when two or more
entities updates a given replica, the last to be registered in the system is the
final version, and propagate throughout all replicas. Based on surveys on the
stakeholders in this project, we have determined this to be an unlikely scenario
and is thusly not handled because of the mentioned complexity and risks of
automatic merge conflict management.

5.8 Remote Synchronization protocol

Remote synchronization is the process of synchronizing files between the LsSP
to the RSP, and vice versa. This synchronization is the critical mechanism that
makes offshore-based file synchronization possible. Like the clients, the LSP
monitors changes within itself, which creates a changed-set, consisting of dirty
files and the given deduplication and synchronization mechanism. Once the
changed set is prepared and ready for transportation, the LSP initiate contact
with the RSP to negotiate the transmission.

Unlike the Local Synchronization protocol, the remote protocol utilizes a rigid
algorithm for the transmission of data focusing on robustness. The remote
synchronization protocol is designed to be a stateful algorithm, in which every
operation must correspond to a pre-determined state. This means data sent
out-of-order between expected states must retransmit from a previous state
known to both the sender and recipient.

5.8 / REMOTE SYNCHRONIZATION PROTOCOL 11

Data successfully transported

Completion state

Data unsuccessfully transported
Dirty Files v P

Data transport state

Missing
chunks

Retransmission State

No dirty files

Initial state

Figure 5.3: State diagram of the sender in the remote transport protocol

The protocol is initiated by the sender sending an initial packet, which contains
the set of files the sender believes to be changed, and corresponding metadata
for each file. This causes the recipient to mirror the state to initial for this con-
nection. Subsequently the recipient parses the initial metadata, and produces
an initial response, which contains the given file(s) that it does not have up
to date, and negotiates the data transfer protocol in use for the remaining file
synchronization. Consequently, both the recipient and sender advances in the
context of the current connection to the data transport state.

To support reliable backtracking, the sender dispatches a metadata packet,
which contains all metadata, required to synchronize the upcoming file. After
the metadata packet has been successfully sent, the sender begins sending the
data necessary to recreate the file, based on the currently employed synchro-
nization scheme. Irrespective of the selected synchronization scheme, the data
is split into fixed-length chunks of binary data and transmitted to the recipient.

42 CHAPTER 5 / DESIGN

Once all chunks of the data required to synchronize the file has been trans-
ferred, the recipient applies the changes to a copy of the replica, calculate a
checksum for its binary contents and validates if it has been successfully rebuilt.
If the data transfer was incomplete, the recipient begins the retransmission
state.

Given successful transportation and patching of all files marked dirty from
the sender, both entities begins the completion state. The completion state
contains of the recipient sending a metadata packet equal to the initial packet
containing metadata of replicas the recipient believes the sender not to have. If
the sender responds with files it needs synchronized, the algorithm reinstates
the data transport state, making the recipient the sender, and vice versa.

As previously specified, if a given data transfer is incomplete, or a connection
has been dropped, the retransmission protocol begins. The retransmission
state differs depending on what caused it. If data transfer was unsuccessful,
the recipient ensures all checksums of all chunks corresponds to the expected
value and demands the retransmission of the corrupted/missing chunks. Once
completed, both parties involved switches over to the data transport state.

In order to support retransmission of data for dropped connections, the primary
synchronization point contains an in memory cache of all connected clients,
clients meaning connected entities, most likely LSPs. The cache contains a
Globally Unique Identifier (GUID), of the connected entity which corresponds
to their connection. If a connection has been dropped, the GUID is used to
locate the exact state of the previous connection. It is important to note that
1P-addresses cannot be used as identifiers in the system, as several vessels can
utilize identical 1P-addresses and they are subjected to frequent changes.

The retransmission protocol for dropped connections is thusly initiated by
reconnecting entities, which begins by dispatching a retransmission packet,
which sets the state of both the sender and recipient to the retransmission state.
Once the recipient receives the retransmission packet, which must contain the
Universally Unique Identifier (UUID) of the sender, it determines which chunks
of the current file in transit it is missing based on the earlier received metadata
file. If no metadata file is found, it signals the sender to begin transmission from
the last file not transferred. Otherwise, it sends a list of integers corresponding
to missing chunks, and the sender parses these, to send only missing chunks.
Once the sender calculates which chunks to send, both entities reverts to the
data transportation state.

The remote synchronization protocol is comparable to a serial sequential
algorithm, although the physical the transportation of data happens in parallel;
files are sent one at a time in order. The following pseudo code outlines the

5.8 / REMOTE SYNCHRONIZATION PROTOCOL 43

transport of data from both the sender and recipient’s perspective.

Sender very simplified which unlike a real scenario assumes synchronous

NN A WN R

NN A WN R

connections, and does not indicate the states.

Algorithm 5.1: Sender pseudocode

initialResponse = SendInitialPacket(intialMetadata);
dirtyFiles = ParselnitialResponseToDetermineDirtyFiles
RequiredToSyncRepository(initialResponse);

SendLoop ():
for dirtyFile in dirtyFiles:
metadata = CreateMetadata(dirtyFile);
await SendMetadata (metadata);
TransportData(dirtyFile);

TransportData(dirtyFile);
dataChunks = Chunker.CreateChunks(dirtyFile);
response = Paralell.Send(dataChunks);
if not response.ok:
SendMissingChunks (response . MissingChunks) ;

Timeout ():
response = RegisterRetransmission (myGUID) ;

SendMissingChunks (response . missingChunks);

SendMissingChunks (missingChunks) ;

response = Parallel.Send(missingChunks);
if not ok:

SendMissingChunks (response . MissingChunks) ;
else:

RemoveCurrentDirtyFile ();
SendLoop () ;

Simplified recipient with the same assumptions and limitations:

Algorithm 5.2: Receiver pseudocode

OnPacketReceived (packet):
switch (packet.packetType) {

case initialData:
CreatelnitialDataResponse (packet);

case metadata:
CreateMetadataResponse (packet);

case transmission:
AddData(packet);

case retransmission:
HandleRetransmission (packet);

case default:
SendInvalidPacketResponse (Sender);

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

44 CHAPTER 5 / DESIGN

}

AddData(packet):
AddDataChunkToExistingChunks (packet.Chunk)
if ChunksComplete:
file = RebuildFile ()
if file.Checksum != metadata. file .Checksum:
BeginRetransmission ()
else:
SendPositiveResponse ()

HandleRetransmission (packet):
RegisterClient (packet. Client);
oldConnection = UpdateClientInformationAndRemoveOld (
packet. Client);
ResumeFromState (oldConnection)

ResumeFromState (connection):
OurChunks = RetrieveChunks (connection. File);
missingChunks = OurChunks.Where (
ourChunks.Id not in ListOfAllChunks);
SendMissingChunks (missingChunks);

Implementation

Because of the different methodologies applied in the design of each layer
and the selection of an N-tiered architecture, each layer must be discussed
separately in order to uncover their different characteristics. We will disclose
a set of methods showing how the design can be realized and cover our
implementation specific details.

6.1 Data Abstraction Layer

The DAL has been implemented in C#.net with dependencies to the System
Configuration, SQL server runtime, and the Business Logic Layer. The DAL
project references the Microsoft Data Annotations library to allow models the
flexibility of being pure code, database tables and other entities simultaneously.
It also has the Entity Framework package installed to ensure interoperability
of the models invoked by the Entity Framework and depends on the Business
logic layer in order to access the system entities.

We’ve implemented the DAL to hold important state information regarding the
system such as updated files, files which needs to be synchronized and the

entire repository replica as a serializable in-memory filesystem tree.

The implementation details are outlined in Appendix B denoted as the simple
data access pattern.

45

46 CHAPTER 6 / IMPLEMENTATION

6.2 Business Logic Layer

The business layer has been implemented in C#.net utilizing the .NET runtime.
In addition to the same references used in the DAL, it also references the Mi-
crosoft Core Libraries in order to utilize IOCP. It also has the entity framework
package installed in order to achieve system interoperability.

As designed, the business logic layer contains all entities that the system re-
quires throughout the entire application stack. This include things such as
concurrency entities, chunks, extensions and utility. We utilized the underly-
ing .NET implementation for Transmission Control Protocol/Internet Protocol
(TCP) communication, but we must note that we implemented our own servers,
clients and socket in order to harness the power of IOCP. We based aspects of
our IOCP implementation of EPServer!.

We went with the 10CP programming model because if effectively resolves
the "one thread per client problem" while sharing the load between multiple
threads. The threads in an 10CP model are placed in an Last In First Out (LIFO)-
queue [1], which means that there is a high probability for an awoken thread
to still have data in cache. Furthermore, this alleviates developers the burden
of creating high performance server/clients by advanced thread handlers and
event buses, as the asynchronous 1/0 are provided "out of the box" by the .NET
framework.

6.3 Application layer - Seadrive

The application layer contains the interconnection of all entities in the system
to create the complex structures required by the application, thus forming
the concretization of the framework. We will discuss these entities separately
in order to detail the implementation technicalities and provide a thorough
explanation of their usage.

6.4 Deduplication

The deduplication process has been implemented as designed, i.e. partitioned
into several domains of concern, where a respective entity resolves a single
issue. The chunker is a generic interface in which the user requests a concrete
instantiation based on the preferred chunking methodology. The chunker emits

1. http://www.codeproject.com/Articles/10330/A-simple-IOCP-Server-Client-Class

OO A WN

6.5 / SEADRIVE ARTIFACTS IMPLEMENTATION 47

the file divided into several smaller sequences of binary data with 44 bytes of
metadata fields as the code listing 6.1 shows:

public class Chunk
{
private readonly byte[] _checksum;
private readonly byte[] _contents;
private readonly byte[] _size;
private readonly byte[] _fileChecksum;
b

The checksum algorithm used to verify the integrity the binary contents of
a file is the SHA1 algorithm while the checksum for the contents of a given
chunk is user-selectable. We do this in order to support multiple chunking
methodologies, as some algorithm relies on a rolling checksum. We selected
the SHA1 algorithm for files, because of the low frequency for collisions, while
performing reasonably fast. The chunker emits a list of chunks or compressed
chunks on completion.

The compression engine has been implemented to either provide data compres-
sion on either chunks local to the chunker, or on the resulting uncompressed
chunks. We utilize this scheme, so that users have choice on zip algorithms and
data locality. The compressed chunks are subsequently stored in the system
by utilizing the Unit of Work pattern from the DAL. This allows us to keep a
thread-safe serializable in memory cache in the form of a SQL database.

6.5 Seadrive artifacts implementation

To actualize the architecture of Seadrive and implement the design of the
different component in the framework, we have implemented the system as
a tripartite solution. The LSPs are realized as TCP servers and denoted as
local servers, and the RSP is a cluster of machines communicating with the
LSP’s over TCP, through a server implementation denoted as the primary server.
The clients are implemented as windows applications utilizing the Seadrive
framework as a Dynamic Link Library (DLL).

Though the following subchapters we’ll explore the implications of the design,
specifically how the deduplication process, the file synchronization and the
real-time constrains of file hosting services affect the application framework
and how the design resolve the constrains set forth in 1.2.

48 CHAPTER 6 / IMPLEMENTATION

6.6 Clients

Users interacts with a desktop/laptop frontend known as the Seadrive client,
which displays how the system manage the synchronizable folder, the status of
the files and progress report. The Seadrive client is modeled as a daemon or
service depending on the terminology and this service will handle deduplication,
synchronization and reconciliation of the file(s). The user selects a folder that
functions as a local replica of the remote synchronization repository and from
that point on the service is live.

The client has two primary states, which is indicative of its behavior, startup
and runtime. It is important to differentiate between these two states, because
if the computer, or the service, has been suspended, the application assumes the
remote changes since the last execution will be newer and the file-tree should
be updated before continuation. Furthermore, it is equally important to detect
whether local changes has occurred while the service been suspended.

During the startup phase, the service immediately resumes communication with
the Windows file system watcher on the local repository replica and registers
the event filter to the system. The next step is to update the system based
on the previous known state of the system, i.e. which files are and are not
synchronized.

The algorithm for change detection is straightforward and implemented as
follows:

1. Request existing known replica filesystem tree locally (if one is known
at all)

(a) If the system is not known create an empty tree
2. Scan all files in the repository

3. If we detect files with a different checksum to what the file previously
had, this indicates local changes

(a) Mark the file as dirty

(b) Pass the new chunks through the de-duplicator to store the new file
in its entirety as compressed chunks without redundancy

4. If we detect a new file to the system, dispatch the file for deduplication
and subsequently mark the file as dirty

6.6 / CLIENTS 49

5. Store changes in the local database and leave the startup phase and enter
the runtime phase

The runtime phase is a continuous cycle of which primarily communicate with
the local server to support continuous reconciliation and detect local changes.
As the startup phase registered the file system watcher, the runtime phase
filters these events as the OS fires them. Parallel to application usage, such as
synchronization and reconciliation, the event bus is continuously listening for
file system events concerning our local replica of the repository, and updates
entities accordingly.

We have decided to prioritize different file system events individually in order
to optimize our synchronization process and to avoid merge resolving, (conflict
resolution). If a file or subdirectory is deleted these entities are immediately
handled and detached from the in-memory file system tree before being stored
to disk. Renaming a file simply updates the relative path and marks the entity as
dirty and informs the local server of the change. Changing the binary contents
of a file requires deduplication at multiple locations and are therefore not
immediately managed, rather we mark the file as dirty and await until we
prepare data for dissemination.

At regular intervals, the runtime phase polls the local server to determine
whether any remote changes to the repository has materialized. Simultaneously
it polls the local database to request dirty files if any, and if either parties
respond positively it initiates file synchronization with the local server. If we
detect local dirty files we create a snapshot of the current file as of this time,
de-duplicate the file, and dispatch the updates to the local server. We await
transportation before creating the snapshot of dirty files because Windows
create hidden files called “lock files” which accommodate open files; in order
to avoid forcibly taking control over these files. The snapshot can thus be
uploaded safely, without damaging the integrity of the local file.

Once the daemon has processed all local files which needs to be transported,
the data is transferred in memory to the local client, which is a I0CP Sender
and Receiver. The synchronization protocol from client to the local server is
based on simplicity rather than the ideal solution. The dirty files are sent as
tuples of file GUID and the checksum of the file contents. The server responds
with a list of GUIDs which are not identical or missing. The client thus sends the
invalid files in its eternity. Once the final file is transferred it requests files that
the client itself does not have, or have been updated, if any the transmission
happens identical just from the local server to client.

OOV WN -

50 CHAPTER 6 / IMPLEMENTATION

6.7 Remote Transport protocol

The remote transport protocol is the methodology applied to conduct file
synchronization from shore-based vessels to a land based storage facility or
vice versa. The implementation of the protocol makes use of TCP as the
underlying transport protocol in order to have reliable connection oriented
network communication[12]. This choice was not taken lightly, however due
to the volatile networks this application targets, the reliability and data flow
control options favors TCP over UDP. We utilized an abstract base class to
represent all communication structures transmitted through our 10CP network
implementation. This class is simply our application layer [52] container which
contains the current data, the type of data and the state of the sender.

Although the remote transport protocol is a stateful algorithm it has not been
implemented as a finite state machine due to the fact we’re working in a
parallel environment in which we could find no suitable model applicable to
be both computationally effective while achieving good resource management
and control logic [15][32]. Therefore, we elected to use a binary sequence
detailing the state of the current sender of our packet abstraction.

We denote a binary sequence packet into a 16-bit integer as the transport flags,
where we currently employ 13 of the 16 bits available. This is comparable to the
hardware implementation of structures where each binary digit is equivalent
to a value assigned by humans. This allows us to interpret the binary sequence
as a collection of flags, utilized to indicate the senders state, from whom and
to whom the packet is ment and the current expected operation. For example,
the sequence 1001000001100 means that the operation is currently sent from
the LSP to the primary server, requesting to upload a response which contains
missing data. This allows the recipient to not only respond appropriately to a
given package, it allows both parties to validate that they are in fact in the same
state, so that data is not misinterpreted in the system. The following example
is an extremely simplified version of the receiver in the primary server daemon
showing how this binary sequence encode the order of operations.

RemoteTransportFlags flag = remoteMessage.GetMessageType ();
if (flag.HasFlag(RemoteTransportFlags.ClientToServer))

{
if (flag.HasFlag(RemoteTransportFlags.InitialPacket))

{
}

//Local server is transmitting file data to primary server
if (flag.HasFlag(RemoteTransportFlags.FileUpload))

{
if (flag.HasFlag(RemoteTransportFlags. TransportMetadata))

14
15
16
17
18
19
20
21
22
23

6.7 / REMOTE TRANSPORT PROTOCOL 51

{
¥
if (flag.HasFlag(RemoteTransportFlags. TransportData))
{
b

}
¥

In this manner, we can build trees where the current packet received can
only drop to its correct container, and subsequently interpreted, ignoring TCP
corruption because is the only way to corrupts the flags while maintaining
a valid checksum. Although the transmission of these packages are at the
lowest level dispatched by the .NET provided sockets in System.Net.Sockets,
we encapsulate these sockets into our own interface to achieve a higher level
of abstraction. Combined with the sender registering itself with its GUID,
this abstraction allows us to have a unified understanding of whom we are
communicating with, and which state both participants are in.

The protocol is initiated by the sender establishing a connection with the
recipient, once established, the recipient stores the UUID and the connection
metadata. Each packet used in this process are serialized and compressed to
minimize the traffic demands through specialized serialization protocols. The
sender dispatches an initial packet to start the synchronization negotiation
consisting of a list of dirty files in the form of tuples, which contains the GUID,
and checksum of the local file(s). The recipient compares these values against
their own copy of the replicated file(s), and responds in a specialized initial
response packet.

The initial response packet consists of the GUID of the file, and the missing
chunks required to rebuild the file(s). However, the response packet might be
different depending on the current deduplication scheme and whether or not
a delta-differential methodology is applied, it might simply respond with the
GUID of the missing file, thus requesting a patch.

Once the parties have established the data required to keep the file(s) in sync,
the sender begins the data transfer. The data is divided into configurable fixed
size chunks and dispatched to the recipient. To accommodate the variable, but
always high latency of the connections, the receiving side sockets will never
time out. Therefore, the recipient cannot identify whether the connection
has been truly broken during the data transfer phase. To accommodate for

52 CHAPTER 6 / IMPLEMENTATION

this predicament, once a client has a network connection again, it transfers a
specialized packet encoded with a retransmission flag.

This causes the server to look through its existing connections, validate that
the client has in fact started transportation of data at a prior time, and resumes
the transfer at the point the connection was lost. This implies that the recipient
must send a response depicting exactly how much data he received, which
chunks he has and receive the remaining ones.

To indicate the final packet from the sender, it is encoded with a terminate
connection packet, however this does not necessarily end the connection. If
the recipient has new data the sender does not have, it is sent to the sender in
using the same protocol, but switching the roles from recipient to sender and
vice versa.

6.8 Remote file synchronizer

The primary methodology applied for remote file synchronization in Seadrive
has been implemented as a binary difference file synchronizer. The funda-
ment is based on Colin Percivals BSdiff in [34]. However, as the reference
implementation in C2 utilizes gfsusort [25] for the generation of sorted suffix
arrays, it does not work with all files, and performs very slowly with high
memory footprint. Therefore we ported the C code to C# and replaced the
suffix array generation with SA-IS[33] to improve both the performance and
reliability.

This allows file synchronization to utilize only one step to generate the patch,
as the sender simply calculates the patch from the previous known version local
to the recipient and transmits the patch directly, without needing to negotiate
the results. For every dirty file in the system, both forward and backwards
deltas are created in order to support synchronization from multiple version
of the file. The preceding operations allows for content revision, as we can
restore any file to a previous version by simply patching the file N steps in
either direction.

2. http://www.daemonology.net/bsdiff/

6.9 / LOCAL SERVER — LOCAL SYNCHRONIZATION POINT 53

6.9 Local Server - Local Synchronization point

The local server is a TCP based server located at each vessel that utilizes
Seadrive. It serves two purposes, to synchronize the repository for each client
on the vessel, and to provide a single access point for incoming and outgoing
data with primary server. The local server consists of a sender, a receiver
and the event driven service for managing data. Therefore, it functions as
a server, a client and a service. Due to the duality of its nature, we will
discuss the incorporation of new information versus the dissemination of
known information separately.

6.9.1 Sending and receiving data

The appropriation of new data to the local server causes a chain of events
to happen, once the file(s) has been successfully transferred. The completion
raises an event that new files are ready for dissemination, and in similar fashion
to the client, they are marked as dirty and de-duplicated to reduce storage. If
the data originates from the primary server, the local server simply broadcast
the new files to all clients connected using the transfer protocol outlined in
5.7. If the files originate from the client after deduplication takes place, it
attempts to contact the primary server, and keeps contacting the remote server
until a connection is established. Once a connection is established, the remote
transport protocol negotiation is initiated following 6.7.

6.9.2 Local server deduplication for variable-sized
chunking synchronization

The local server handles significantly more data simultaneously than the clients
themselves do. In order to accommodate the increased 1/0 operations the
files are fed into Communicating Sequential Processes (CSP) based channels
[391[17], which are de-duplicated by parallel consumers which creates files
prepared for transportation. These consumers receive the event from the 10CP
sockets, which begin the process for consuming files. The broadcast simply
fetches the resulting files from the channels whenever they are completed for
dissemination.

6.9.3 Local server deduplication for binary difference
synchronization

This deduplication process is simpler and can simply be managed by a single
thread, which computes both reverse and regular delta patches in order to si-

54 CHAPTER 6 / IMPLEMENTATION

multaneously support updating and reverting files. Although this methodology
alleviates 1/0 resources it is computationally more expensive.

6.10 Primary Server

The primary server is a land-based computing cluster which holds all the data
from all the different local-servers in use. It stores all data in the system as de-
duplicated compressed chunks of data, or as a list of reverse and regular delta
patches. The primary server is simply a web server which can function as both
a recipient and sender. Whenever it communicates with a local server it utilizes
the remote transport protocol, but it also has the capability to broadcast data
to each local server currently connected. It should be noted that it’s a software
level broadcast which disseminate a message to all participants connected to a
“room”.

Contradictory to the local server, the events registered in the system when
receiving data is not equally worth. When a land-based entity dispatches data
to the primary server, this is indicative of a high priority event, and is therefore
disseminated immediately to its intended recipient.

Data deduplication in the primary server is identical to the local server, depend-
ing on the file synchronization configured for the connected LSP.

Experimental design and
setup

This chapter outlines the experimental setup employed to evaluate the dedu-
plication scheme for data transmission and the synchronization protocol. We
examine both the design and methodology for the experiments and the datasets
used. The experiments are designed to cover the responsibilities for file synchro-
nization in Seadrive, ranging from selecting deduplication scheme to integral
operations supported by the application. We do this by creating micro- and
macro-benchmarks.

7.1 Datasets

The datasets used as a part of this evaluation are a folder consisting of various
files, a sub-directory and a file in the sub-directory. The files are deliberately in
various file-formats in order to evaluate how the system performs on differing
formats. The files consist of random and non-random data for the sake of
properly evaluating the different deduplication methodologies. All experiments
make use of the same set of files.

All files can be viewed in the folder /Data/sync_files/", and within the set of files
containing "non-random_english" and"..caesar_commentary.." are fetched from

55

A OWON R

56 CHAPTER 7 / EXPERIMENTAL DESIGN AND SETUP

Project Gutenberg!. The file "Oversized pdf testo" is retrieved from Princeton
University2, while the author produced the rest. In the final subset provided
by the author; the random files prefixed with "random_...", are generated from
a simple python script as seen in listing 7.1

Code Snippet 7.1: Python script to generate size random bytes

import os

size = 512000000

with open(’large random file’, ’wb’) as fout:
fout.write (os.urandom(size))

To complement the files, we created a set of equal size to the original, which
contains randomly modified files, where sections are both removed and added.
The only exception is the file " random _large file base modified", as we tried
our hardest to create a worst-case scenario for deduplication. All modified files
are suffixed with the sequence " modified".

7.2 Experimental design

We employ two different systems for evaluating Seadrive because of the na-
ture of the application. Micro-benchmarks are used in order to evaluate the
different file synchronization methodologies and does not require more than
a single computer. However, to evaluate the synchronization protocol a more
sophisticated setup is required to provide a thorough analysis of its character-
istics.

Therefore, we provide two different methodologies for evaluating the systems
independently.

7.2.1 Micro-Benchmarks

The micro-benchmarks evaluate the performance of various file-synchronization
schemes in terms of data required to patch a file, thus affecting time for
transportation and the time required to create the patches. The experiments
are designed in order to identify which mechanism Seadrive utilizes for file-
synchronization, thus we will compare their relative performance to simulated
ones.

1. https://www.gutenberg.org/
2. http://scholar.princeton.edu/sites/default/files/oversize _pdf test o.pdf

7.2 / EXPERIMENTAL DESIGN 57

We have conducted micro-benchmarks on a reference implementation Octodiff3,
which is an optimized version of Rdiff, implemented in C#.net for usage in
Octopus Deploy“. Furthermore, we utilize our own version of 5, based on the
.net port publicly available on Github¢. The original .net implementation was
to slow for our needs. Finally, we compare these results to the Seadrive Binary
patch utility, although their methodologies differ.

To validate the result, all micro-benchmarks were run 100 times, with no data
in neither memory nor the CPU cache, and the application terminates once
completed. We also manually applied the patches to the files to ensure that
the processes worked as intended. We will also examine the memory and
cpuU-utilization to identify potential bottlenecks.

7.2.2 Macro-Benchmarks

The macro-benchmarks has been designed in order to uncover the character-
istics of the Seadrive file synchronization protocol. In order to do so, we per-
formed remote file synchronization from the Local- to the Primary server.

The taxonomy of file synchronization[2] services postulates that the most
important metrics are the amount of data exchanged between synchronizing
devices, computations, network size, robustness and memory. Therefore, we
measured the performance of Seadrive on several different configurations.
Normal land-based Wide Area Network (WAN) RTT with patches in 256 and
1024 bytes chunk size. For RTT variability, we simulated the network to have
from 1 to 3 second RTT, and we tried configurations with loss-rate from o to
15

To validate the result, all macro-benchmarks were run 3o times, with no data
in neither memory nor the CPU cache, and between each run, we truncated
the database tables. We also manually applied the patches to the files to ensure
that the processes worked as intended. We will also examine the memory and
cpuU-utilization to identify bottlenecks, and try to determine when the protocol
break.

3. https://github.com/OctopusDeploy/Octodiff
4. https://octopus.com/

5. http://librsync.sourcefrog.net/

6. https://github.com/braddodson/librsync.net

58 CHAPTER 7 / EXPERIMENTAL DESIGN AND SETUP

7.2.3 Experimental setups

All experiments have been carried out on 64-bit Microsoft Windows based
operating systems, using a Microsoft Enterprise SQL Server 64-bit for logical
storage. All micro-benchmark experiments used a single machine implemen-
tation of the applications in order to be evaluated by the examinators, and
were run on a DELL Latitude E7440 using Microsoft Windows 7 64-bit 0S with
the following specifications: Intel Core i7-4600U @ 2.10 GHz with four cores,
Intel Graphics, 16GB RAM @ 2100 GHz, and a LITONIT-LMT-256 SCSI disk. We
denote this machine as "reference-laptop".

The reference-laptop is used to simulate the client, and client activities in the
macro-benchmarks, with two other machines for the local- and primary server.
The local server is a laptop with identical specifications to the reference-laptop.
The primary server is a custom built server using Windows Server 2016 64-bit
Standard Edition 0s with the following specifications: Intel Xeon E3-1231 V3,
Socket-LLGA1150 CPU @ 3.4 GHz with 4 physical cores and 32 logical, ASUS
Radeon HD 5450 1GB DDR3 Silent, 32 GB ECC-RAM @ 1600 MHz, Crucial
SSD(unused), and a crucial Barracuda 3TB disk @9800 RPM.

The benchmarks are not pinned to a single CPU-core despite the fact that it
might provide unhindered results. Doing so would prevent the operating system
thread schedulers from moving threads between cores for balancing load once
interference from system calls occur. We observed this to happen frequently,
most likely due to two of the test machines being laptops and Windows does
this motivated by power saving benefits. However, the algorithms employed in
all experiments are parallel in nature, pinning the benchmark to a single core
would completely ruin their performance and not be equivalent to live systems
which employs the Seadrive framework.

Evaluation and results

Although the main objective for Seadrive was ensuring data could be synchro-
nized correctly between land-based systems to offshore vessels with a focus
on correctness of the functionality. A tantamount facet to the usefulness of
the file synchronization framework is performance and scalability, as we aim
to deliver large quantities of data across several consumers in a structured
manner.

In this chapter, we evaluate the experiments performed on the file synchroniza-
tion framework and analyze what the results indicate for future usage.

8.1 Micro-Benchmarks

The first micro-benchmark measures the average size in bytes the methodology
needs to send over the network in order to synchronize the file(s). The Rsync
inspired procedures creates a signature for each file, before computing the
delta file containing the required changes. They do this because the algorithm
assumes no prior knowledge to the recipient files. Therefore, the total content
they need to send is the signature file in addition to the delta file, although
in actuality they receive the signature from the intended recipient. We will
address this issue in depth later in the evaluation.

The following table 8.1 presents the data and compares it to the number of bytes

59

60 CHAPTER 8 / EVALUATION AND RESULTS

changed in each file. The field "byte-differential" shows the number of bytes
changed from the original to the modified file. The changes are at different
locations within the files, sometimes additions, sometimes removal of data and
some are restructured. It’s important to note that a single change can change
the entire binary content of a file, for instance appending a byte to the start of
a file will cause all subsequent bytes to be "off by one", causing a large binary
difference, even if the files have very similar contents.

Table 8.1: Displays the compression rate on the test-set in bytes

Filename Byte-differential LibRsync-Signature | LibRsync-DELTA LibRsync-Complete | Octodiff-Signature | Octodiff-DELTA Octodiff-Complete Seadrive-BinaryDiff
asdf.txt 51 48 61 109 50 108 158 185
non-random_ceasar_commentary_i_v.txt | 139143 3000 12614 15614 2182 12751 14933 194
non-random_english. txt 5453131 114096 11847 125943 82418 11964 94382 695
non-random_english_in_word.docx 2955660 52248 3195130 3247378 37750 3195181 3232931 3200710
oversize_pdf test_o.pdf 85935769 1787520 28100 1815620 1291002 28331 1319333 6833
PeterCapstone.docx 1164096 22836 1092278 1115114 16508 1092518 1109026 1040333
random_large_file_base 509971950 9000012 14605 9014617 6500024 14725 6514749 39154
random_small_file base 34280 5412 7151 12563 3924 7238 11162 161
repetetive_medium_sized.txt 4606944 5088 19946 25034 3690 53386 57076 575
smalltxt.txt 29 48 51 99 50 93 143 138
smallword.docx 9954 264 11325 11589 206 11365 11571 9040
Thesis.pdf 639867 38748 26099 64847 28000 25024 53024 311
Oversize_pdf additionTest.pdf 159207227 1787520 60611514 62399034 1261000 59266518 60527518 40897843

Average

59239853.92307692

985910.76923076925

5002363.153846154

5988273.923076923

709754.15384615387

4901477.076923077

5611231.230769231

3476628.6153846155

% of original file size

o

o

(o]

10.108522432976809

o]

o

9.4720544686950561

5.868732593262342

Compression-Rate %

o

o

o

89.891477567023188

o

o

90.527945531304937

94.131267406737663

SHYVINHONIG-OUDIN / L'Q

19

A wWwN -

62 CHAPTER 8 / EVALUATION AND RESULTS

The reason the algorithms performs so well is because they are all based
on finding equal patterns for usage in updating the files to a new version.
When comparing the differing methodologies, we see that the Rysnc-based
methodologies perform very similar in compression, both in the signature and
delta file. Only differing a total of ~0.9% on their average size required to
transport in order to update a given file. The noticeable entry is the binary-
diff mechanism; it produces on average 4% smaller patch sizes, although it
massively outperforms the remaining methods on the large binary file with
random data and the oversize pdf with additions, accounting for this, the
difference is still 4%. We also note that on small files, we observe some overhead
caused by the approaches, which in some cases are larger than the changes
itself.

We also measured the time it took for these operations to finish, i.e. the time it
took for signature generation, delta generation or to generate the binary diffs.
To measure the time, we use the Microsoft Stopwatch Library built into the
.NET runtime to measure the latency of each operation. We measure only the
latency of the operation itself; specifically, we measure only the generation of
signatures, delta files or the binary diff, not the initialization of the application,
nor the clean up before finishing. E.G:

Code Snippet 8.1: C# code to measure time

Stopwatch sw = new Stopwatch ();

sw. Start ();

SeadriveRsync.ComputeSignature (path, outputFullPath);
sw.Stop ();

In order to accurately measure the aforementioned procedures, we mitigated
them into their own applications, where we ran a different program to clear
out the cpU-cache, writing and reading 8-MB of garbage data to ensure no
cache hits would interfere with the measurements of the code in question. We
do this because data might reside in virtual memory of the application or the
CPU-cache, furthermore since we run the programs in execution scripts some
might have been cached to the surrounding application.

Table 8.2: Shows the average run time in order to create delta-differences in milli- and regular seconds

Filename LibRsync-Signature LibRsync-DELTA LibRsync-Complete | Octodiff-Signature Octodiff-DELTA Octodiff-Complete Seadrive-BinaryDiff
asdf.txt 29 11 40 4 105 109 53
non-random_ceasar_commentary_i_v.txt | 5 45 50 7 125 132 738
non-random_english.txt 164 269 433 104 381 485 8105
non-random_english_in_word.docx 60 3762 3822 52 287 339 22228
oversize_pdf test_o.pdf 1831 3179 5010 1546 3958 5504 220915
PeterCapstone.docx 23 1399 1422 21 171 192 6501
random_large_file_base 8709 18339 27048 9 22482 22491 1153983
random_small_file_base 7 17 24 8 102 110 211
repetetive_medium_sized.txt 7 202 209 4 297 301 3107
smalltxt.txt 1 2 3 4 108 112 9
smallword.docx 1 16 17 4 109 113 48
Thesis.pdf 52 67 119 41 124 165 2240
Oversize_pdf additionTest.pdf 1969 78611 80580 1272 85100 86372 586557

Average

989.07692307692309

8147.6153846153848

9136.6923076923085

236.61538461538461

8719.1538461538457

8955.7692307692305

154207.30769230769

average in Seconds

0.98907692307692308

8.1476153846153849

9.136692307692309

0.23661538461538462

8.719153846153846

8.9557692307692314

154.20730769230769

SHYVINHONIG-OUDIN / L'Q

€9

64

Table 8.3: Shows the time to transfer the delta-files over various dataplans in hours

CHAPTER 8 / EVALUATION AND RESULTS

libRsync | Octodiff | Seadrive-binary-diff
8 kb/s 1.66 H 1.55 H 0.96573 H
4 kb/s 3.32 H 3.1 H 1.93146 H
512 bits/s | 25.990 H | 24.35 H | 15.089 H

The latency-measurements unsurprisingly shows that sliding window protocols
are significantly faster than an algorithm based on suffix-array sorting. They
run in an almost negligible time in our use case, with Octodiff as the fastest
method clocking in at ~8.7 seconds. We observe a significant overhead of
running the Seadrive binary diff protocol, it is ~17 times slower than Octodiff
at producing the patch-files and uses on average 154 seconds to produce the
patch.

Combining the two tables, we can see that in order to select algorithms for
synchronizing files one must look at the surrounding system and its intricacies.
In Seadrive, we are specifically dealing with two types of networks, Geo-Sync
network with 500-600 Milliseconds (MS) RTT and a low-orbit mesh-system
with 500-5000 MS RTT. These networks provide a maximum bandwidth
available to the application at 8KB/s, 4KB/s and 512 bits/s, where the maximum
throughput is dependent on the data plan. For the following results in table 8.3,
we measure the time in hours required to transfer the average data required to
successfully synchronize the files. We ignore the costs of multiple transmission
required by the Rsync algorithms, as they are negligible in the time windows
presented.

We observe that all protocols create files so large that the time spent construct-
ing the various files have almost no impact on the overall time required for
synchronizing the files. We note that the time saved by the Seadrive-binary diff
methodology is significant, by a 1.5 order of magnitude. This causes the time
spent to generate the binary diffs insignificant; furthermore, it saves a huge
fiscal cost, as each byte sent is equivalent to monetary values. By the virtue of
these results, the binary diffs are clearly the optimal method to save both time
and monetary values.

8.2 Macro-benchmarks

Due to the volatile nature of satellite-based networks, we were sadly not able
to test a real-life implementation on the networks set up for experimental eval-
uation. The network we had access to, a geo synchronized Inmarsat network,

8.2 / MACRO-BENCHMARKS 65

never successfully synchronized for data transfer. Therefore, we set up a con-
figuration on a LAN network to test the resource consumption on the primary
server during active usage. Simulation technology could show some parts of
how the system works on low-throughput high latency networks but will not
detail how it actually performs. However, dropping the connection can easily
be simulated through killing the connection during transfer. To measure the
intricacies of the network connection such as actual TCP packets and packet
types, we used Wireshark! to listen on the exact connection filtering only
application usage. We used Perfmon.exe to measure the total CPU utilization
of the execution and RedGate ANTS2 Performance profiler for virtual memory,
CcPU-time within the application, thread counting and 1/0 operations.

8.2.1 Full application usage - Window size 256 bytes

The first session reported a total of 21825 TCP packets with an average length
of 1053 bytes and no packages in the range of 0-39 and > 2560 bytes. Because
we were stress-testing on a high throughput network we were able to observe
whether the server was able to properly respond to all packages, which it was.
This indicates that the server at even such a small window size on the chunks
is capable of parsing the data from a client at much higher speeds than it
would in a real-case scenario. The whole session lasted about 5.6 seconds on
average.

1. https://www.wireshark.org/
2. http://www.red-gate.com/products/dotnet-development/ants-performance-profiler/

66 CHAPTER 8 / EVALUATION AND RESULTS

Wireshark I0 Graphs: 256 releasebuild

12000
10000

8000

Packets/s

6000

4000

2000

12 15 18
Time (s)

Figure 8.1: Shows the IO graph for the network communication between the local
server and primary server. The green ring indicates where we killed the
connection

We see from the graph in figure 8.1that a stateful implementation for both
client and server does not prohibit the client from sending the data in large
burst, although a real-life satellite network would limit this to 8kb/s or lower,
worth of packages. Interesting to note is that the algorithm is able to quickly
increase in speed once the local and primary achieve re-transmission. However,
due to this being a simulation it is advisable to be skeptical to the results.

The primary server reports a total of 6% CPU-load distributed across 8 logical
cores. We define these 6% of cPU-load as 100% of the application cumulative
load. We observed the application to utilize 34 threads to receive and dissemi-
nate the incoming data from the network card, three for applying the binary
patches in combination with the application main thread. This results in a
total of 38 threads. Most of the CPU-time was spent retrieving and pushing
data from the network card, accumulated at 81.642 % of the total cumulative
load. The second most CPU-intensive task was patching the files, accounting for
17.013% of the application total. This implies that the synchronization protocol,
i.e. the protocol which decide where disseminated packages are placed and
interpreted only required 1% of the application total. We observed that we
spent on average about 0.45% time in the garbage collector and utilized a
maximum of 632 MB RAM. This is caused by the fact that the .NET virtual
machine does not perform garbage collection during CPU -intensive tasks nor
does it so until required.

8.2 / MACRO-BENCHMARKS 67

8.2.2 Full application 1024 byte window size

Increasing the window size sped the application up by 0.6 seconds on average,
but used more TCP packages reporting a total of 22428 packages with an
average size of 1110.5 bytes. Similarly, to the previous result, we observed no
irregularities in the packages, and that the protocol worked as intended.

Perfmon reported on average 5% CPU utilization, 1 % less than on 256-byte
window size. Just like the previous experiment, most of the application time
was spent waiting for and disseminating packages, totaling of 84% of the overall
time. We observed the number of threads to be identical, probably due to the
data size staying the same. However, we noticed an increased amount of data
stored in RAM, peaking at 750 MB RAM, and we spent zero time in the garbage
collector until the final file was transferred. During the execution, we achieved
a total of 456 MB in 1/0 data bytes during the patching of large files, which
roughly translated into 74.239 data operations per second. Based on the trends
we saw, it indicates that larger chunk sizes trades CPU-time for memory load,
thus making the application faster.

8.2.3 Simulated delay sessions

All simulated delay sessions used the configuration that had 1024 byte chunk
sizes, as it seemed to run slightly faster than the 256 bytes. We used the clumsy?
0.2 software to simulate the network environment from the local server to the
primary server. We simulated the connection first using a realistic RTT of about
1 second, with no additional packet loss. This did not affect the program in
any significant manner as the application was only 1 second slower and the
packet graph in 8.2 looked almost identical to the configuration without delay
in 8.1.

3. https://jagt.github.io/clumsy/

68 CHAPTER 8 / EVALUATION AND RESULTS

Wireshark IO Graphs: 1 second delay, 1 retransmission

9000 -
7500 -

6000 -

Packets/s

4500 -

3000 -

1500 -

9 10 11 12 13 14 15 16
Time (s)

Figure 8.2: Shows the IO graph for the network communication between the local

server and primary server with 1 second RTT. The green ring indicates
where we killed the connection

However, increasing the delay to 3000 Ms even without packet lossage, the
system grinds close to a halt, as shown in the following figure:

Wireshark IO Graphs: 3 Seconds delay no loss
180 -

150 -

90 -

Packets/s

60 -

L L L L L
0 60 120 180 240 300 360
Time (s)

Figure 8.3: Shows the IO graph for the network communication between the local
server and primary server with 3 second RTT, no retransmissions

8.3 / ANALYSIS 69

The system will eventually complete the operation, although at a significantly
slower rate. We also simulated packet loss over the network and at about ~10%
packet loss or higher the application grinds to a halt. This shows that the
application does not cause significant overhead, which affects the transmission
of data, rather that we must abide by the rules of TCP. The network traffic data
shows that we simply follow regular transfer of data over TCP.

8.3 Analysis

We refer to the taxonomy of synchronization protocols outlined in section 7.2.2
when we evaluate the performance of the application itself, with primary focus
on the file transfer protocol. The most critical aspect of a file synchronization
protocol is the amount of data exchanged. The metric is particularly important
both for scalability and because it directly affects the time required in order to
complete the synchronization.

In Seadrive, we propose to utilize a binary-delta differential approach in order
to minimize the data transmitted over WAN, however we must know how
much data we actually send on average compared to the ideal amount of 8MB.
The 256 chunk size configuration sent on average 21825 TCP packets with
Ethernet encapsulation. This means the underlying transmission protocol had
54 additional bytes of metadata per packet (14 from Ethernet, 20 from IPv4
and 20 from TCP). This means the total overhead for aforementioned session
is 1.17855 MB. The 1024-byte configuration which used on average 22428 TCP
packets had an overhead of 1.211 MB.

The fact that Seadrive utilizes a high-level serialization scheme for the different
types of packages in order to alleviate the developers and the application
level state implementation with negotiations creates a significant amount of
overhead. The entire conversation from start to finish, utilized a total of 25 MB,
an overhead of ~15MB. In light of this information, we need to either reduce
the scheme down to simply sending bytes and interpret it based on hard coded
variables, or modify the remote transport protocol to send less information.
Although these luxuries can be afforded on land-based systems, this will have
significant fiscal cost on an offshore based system.

The system does not require as much computation as expected when consider-
ing the binary delta differential approach. Furthermore, it is possible to simply
mark the files as dirty during transmission allowing the system to perform this
computation should it ever interfere with transmission of data. Even at large
loads the system is able to process the files without any problems and does
not affect the running time of the application, nor use substantial amount of

70 CHAPTER 8 / EVALUATION AND RESULTS

resources.

The system network size is a fundamental aspect of the scalability of the overall
system, and Seadrive performs well in this category by basing its design on
AFS. This allows us to communicate with N/boats rather than N clients, thus
increasing scalability. Because we utilize patch files for synchronization there
is no need to lock and important system files even when patching, as the
operation can take place in memory. The only drawback is that the primary
server serves as a single point of failure and can disable the entire system,
where a distributed protocol could allow for more connections.

When a client loses its connection to the primary server, the system allows for re-

transmission of data without significant overhead, only 32+(4+success fullytrans f erredchunks)
bytes. This shows that the synchronization protocol offers a form of robust

data transfer, however due to the usage of a primary server it also contains

a single point of failure. A distributed methodology could reduce the risk of

synchronization failure, but could be significantly more expensive in monetary

resources. This would require several entities in the system to perform data

transfer which for a company could be very expensive as more recipients would

be involved.

The memory overhead of the application is smaller than expected; the pro-
tocol itself contains very little overhead. However, doing the binary patches
in memory instead of through buffers on disk causes us to use more memory
than necessary. Because we have mitigated the response for the remote file
synchronization algorithm to work between two powerful computing entities
(personal pc to powerful server and vice versa), we have sufficient memory
in all use cases. The clients connected to the local server does not require
much memory as files are streamed, thus only buffering the required data on
demand.

8.4 Discussion

The Seadrive file synchronization framework are able to synchronize files to a
remote location without losing data. It provides a robust interface which allows
lost connections to continue the synchronization where it left off, thus resulting
in less overhead rather than retransmitting all missing content of that file. We
observed the remote protocol to function well on good network connections.
As we do not modify TCP nor implement reliable connections over UDP, we are
at the behest of the underlying transport algorithm during high delay and/or
loss rate.

8.4 / DISCUSSION 7

Contrasted to traditional file synchronization- and file hosting services, we
observed that using a binary delta-differential methodology as the synchro-
nization protocol were able to reduce the data size required to patch a file, thus
lowering the demands for the underlying network. Due to the controversies
surrounding the use of global deduplication concerning privacy, and the cost of
rebuilding these files, we have not applied such a scheme to our system, even
if it can reduce network communication.

We demonstrated that the protocol works close to normal on 1-second delay
on both incoming and outbound packages. We further observe that the few
responses generated by the recipient in the algorithm allows the sender to fully
utilize the connection for data transmission, thus only being limited by the
underlying connection while still maintaining the context required to patch
a file. The primary servers’ statefulnes neither does not interfere with the
transportation of data, nor does it hinder the robustness of the application,
rather it aids it.

We observed several drawbacks and limitations of the framework, especially
concerning the file synchronization protocol. Primarily, the system is required
to manage old file versions, either store the binary contents or as we do, keep
the old checksum stored. Using our methodology, the old patches must also
be kept in storage so that entities with N different versions can patch the file.
In order to provide robustness if not all file versions are stored, we must fall
back to Rsync/Rdiff based algorithms in order to successfully synchronize the
file(s).

Our choice to keep programmable models easy, relying on the binary formatting
and serialization through the .NET virtual machine to use high level classes
comes with overhead in data transmission. This makes the system have a higher
cost in monetary, time and processing resources. The new binary artifact for
the primary server is also lacking in a standard deduplication scheme, which
requires further research.

The application provided insights into file synchronization frameworks at
several levels, and creating a robust software level transport protocol was
necessary in order to support offshore systems. We have observed that binary
delta differential algorithms might have a future for high latency low bandwidth
networks and that the overhead in clock-time required for such methods are
negligible for very slow internet connections.

72 CHAPTER 8 / EVALUATION AND RESULTS

8.4.1 Lessons learned

In the process of developing this application, we discovered several lessons to be
learned, both in engineering practices and commonly applied knowledge. We
learned that most traditional out of the box software does not work on offshore
vessels due to a high chance of connection drop. This causes the program to run
on infinite loops as the 1P addresses might change. Furthermore, we observe
that the traditional methodologies does not prove optimal in such environments
because minimizing transfer size is more important than calculating the file
differences fast. Finally, we learned that processing time is not an important
factor, in fact, it might be considered the least important factor as the time
spent transporting data is so large.

Concluding remarks

File- synchronization and hosting services has become an integrated part
in in people’s lives, such as Dropbox, Unison and Rsync. In order for the
aforementioned type of services to accommodate offshore users, it is essential
to understand why the existing systems breaks, and how we can provide reliable
synchronization.

In this thesis, we have described and analyzed key issues when performing
file synchronization and some of the most popular frameworks. We have
developed Seadrive, a novel file-synchronization framework to solve the file
synchronization problem in the domain of offshore entities, and compared
the output size and speed to generate differential files. Seadrive outperform
traditional methods for generating file differentials, but are slower to do so. We
analyzed the remote transport protocol and provided insights into the scalability
of the architecture in order to identify possible bottlenecks. We observed the
protocol to function as well as TCP does during remote synchronization and
that retransmission where you continue from whence the connection broke, is
possible. The Primary server is the most critical entity in the system and its
resource consumption is modest.

73

74 CHAPTER 9 / CONCLUDING REMARKS

9.1 Future work

The Seadrive framework and application requires thorough investigation in
deduplication techniques that works in combination with binary delta genera-
tion. Methodologies employed such as ZFS Deduplucation! are of interest, how-
ever, as we have discovered throughout this thesis, delving into new schemes
might be beneficiary.

The system does not use global deduplication as previously outlined. Therefore,
small repositories does seldom have the chunks required to de-duplicate a file,
thus the file must be sent in its entirety. In order to avoid such cases, we want to
investigate the usage of similarity searches in order to locate files close to the
entity in question, thus creating a patch, which can create the new file from an
existing one. As suffix array generation in SA-IS is closely related to similarity
search, we believe this to be an interesting route worth examining.

The Seadrive file synchronization framework has been implemented and eval-
uated as part of this thesis in the context of offshore-based file synchronization.
However, delta-differential algorithms as part of file distribution is applicable
to many fields, such as data distribution or one-way file synchronization. An-
alyzing the binary delta approach for green computing could provide further
insight into the advantages and disadvantages for this algorithm usability on
embedded devices.

For the application, Seadrive needs to reduce the metadata overhead required
for serialization, although having a high level class interpreted directly from
transferred data is beneficiary for developers, this will increase fiscal costs
for customers. Therefore, the implementation should mitigate the usage of
high-level classes down to binary arrays. This should be straightforward due
to all operations encoded with a preceding binary field denoting the transport
packet.

For robustness and real practical results, the system needs to be evaluated on
a real satellite based network and not only on simulated networks. This will
reveal the real characteristics of the application and the most critical areas
to improve upon and optimize. Furthermore, the transport protocol requires
further investigation in order to reduce the amount of messages sent to combat
the varying rate of packet loss.

Having specialized algorithms and protocols based on the different file formats
and also incorporate database systems are part of future work and was out of

scope for this thesis

1. https://blogs.oracle.com/bonwick/entry/zfs\dedup

9.2 / CONCLUSION 75

9.2 Conclusion

As part of this thesis, we have successfully designed and implemented a novel
file-synchronization framework and we have placed special emphasis on the
remote transport protocol. Our contribution delivers a new methodology to
remotely synchronize files, which seems to work satisfactory for their current
usage. The files are harmlessly deliver to the remote recipient, which can
process the files in parallel to its other responsibilities.

We were initially surprised to see the reduced size a binary-delta approach
produces compared to the Rsync-based protocols, however we understand why
academia and most software utilize this methodology. There is seldom cases
where reducing the file size compared to producing fast patches benefits the
application thus causing the process to speed up.

Based on the findings in this thesis the Seadrive file-synchronization framework
works satisfactory for its purpose, but future work can provide additional
benefits at almost every layer of the application.

Bibliography

[1]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]

2016. URL https://msdn.microsoft.com/en-us/library/windows/
desktop/aa365198(v=vs.85) .aspx.

Sachin Agarwal, David Starobinski, and Ari Trachtenberg. On the scal-
ability of data synchronization protocols for pdas and mobile devices.
Network, IEEE, 16(4):22—28, 2002.

Sundar Balasubramaniam and Benjamin C Pierce. What is a file synchro-
nizer? In Proceedings of the 4th annual ACM/IEEE international conference
on Mobile computing and networking, pages 98-108. ACM, 1998.

Dave Cannon. Data deduplication and tivoli storage manager. Tivoli
Storage, IBM Software Group (September 2007), 2009.

Douglas E Comer, David Gries, Michael C Mulder, Allen Tucker, A Joe
Turner, Paul R Young, and Peter J Denning. Computing as a discipline.
Communications of the ACM, 32(1):9-23, 1989.

George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed sys-
tems: concepts and design. pearson education, 2005.

Landon P Cox, Christopher D Murray, and Brian D Noble. Pastiche: Making
backup cheap and easy. ACM SIGOPS Operating Systems Review, 36(SI):
285-208, 2002.

Idilio Drago, Marco Mellia, Maurizio M Munafo, Anna Sperotto, Ramin
Sadre, and Aiko Pras. Inside dropbox: understanding personal cloud
storage services. In Proceedings of the 2012 ACM conference on Internet
measurement conference, pages 481—494. ACM, 2012.

Idilio Drago, Enrico Bocchi, Marco Mellia, Herman Slatman, and Aiko

Pras. Benchmarking personal cloud storage. In Proceedings of the 2013
conference on Internet measurement conference, pages 205—212. ACM, 2013.

77

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx

78

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BIBLIOGRAPHY

Intel e Business Center. N-tier architecture improves scalability, availabil-
ity and ease of integration, 2001. URL http://cadeiras.iscte.pt/CDSI/
fich/N-tier%20Architectures-Intel.pdf.

Kave Eshghi and Hsiu Khuern Tang. A framework for analyzing and
improving content-based chunking algorithms. Hewlett-Packard Labs
Technical Report TR, 30:2005, 2005.

Kevin R Fall and W Richard Stevens. TCP/IP illustrated, volume 1: The
protocols. addison-Wesley, 2011.

George Forman, Kave Eshghi, and Stephane Chiocchetti. Finding similar
files in large document repositories. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining,
pages 394—400. ACM, 2005.

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT News,

33(2):51-59, 2002.

A. Girault, Bilung Lee, and E. A. Lee. Hierarchical finite state machines
with multiple concurrency models. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 18(6):742—760, Jun 1999. ISSN
0278-0070. doi: 10.1109/43.766725.

Deepak Gupta and Kalpana Sagar. Remote file synchronization single-
round algorithms. International Journal of Computer Applications, 4(1):
32—-36, 2010.

Charles Antony R Hoare. Communicating sequential processes. Commu-
nications of the ACM, 26(1):100-106, 1983.

John H Howard, Michael L Kazar, Sherri G Menees, David A Nichols,
Mahadev Satyanarayanan, Robert N Sidebotham, and Michael J West.
Scale and performance in a distributed file system. ACM Transactions on
Computer Systems (TOCS), 6(1):51-81, 1988.

John H Howard et al. An overview of the andrew file system. Carnegie
Mellon University, Information Technology Center, 1988.

Utku Irmak, Svilen Mihaylov, and Torsden Suel. Improved single-round
protocols for remote file synchronization. In INFOCOM 2005. 24th An-
nual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, volume 3, pages 1665-1676. IEEE, 2005.

http://cadeiras.iscte.pt/CDSI/fich/N-tier%20Architectures-Intel.pdf
http://cadeiras.iscte.pt/CDSI/fich/N-tier%20Architectures-Intel.pdf

BIBLIOGRAPHY 79

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Adrian Kearns. s-layer architecture, November 2010. URL
https://morphological.files.wordpress.com/2011/08/5-1layer-
architecture-draft.pdf.

David Korn, J MacDonald, J Mogul, and K Vo. The vcdiff generic differ-
encing and compression data format. Technical report, 2002.

Erik Kruus, Cristian Ungureanu, and Cezary Dubnicki. Bimodal content
defined chunking for backup streams. In FAST, pages 239—252, 2010.

Solomon Kullback and Richard A Leibler. On information and sufficiency.
The annals of mathematical statistics, 22(1):79—86, 1951.

N Jesper Larsson and Kunihiko Sadakane. Faster suffix sorting. Citeseet,
1999.

Allen S Lee and Richard L Baskerville. Generalizing generalizability in
information systems research. Information systems research, 14(3):221-243,
2003.

Zhenhua Li, Christo Wilson, Zhefu Jiang, Yao Liu, Ben Y Zhao, Cheng
Jin, Zhi-Li Zhang, and Yafei Dai. Efficient batched synchronization in
dropbox-like cloud storage services. In Middleware 2013, pages 307-327.
Springer, 2013.

Ravindra Mahabaleshwar. Effective data deduplication implemen-
tation, 2011. URL http://www.tcs.com/SiteCollectionDocuments/
White20Papers/HiTech_Whitepaper_Effective_Data_Deduplication_
Implementation_05_2011.pdf.

Nagapramod Mandagere, Pin Zhou, Mark A Smith, and Sandeep Uttam-
chandani. Demystifying data deduplication. In Proceedings of the ACM/I-
FIP/USENIX Middleware’o8 Conference Companion, pages 12-17. ACM,
2008.

Theresa C Maxino and Philip J Koopman. The effectiveness of checksums
for embedded control networks. Dependable and Secure Computing, IEEE
Transactions on, 6(1):59—72, 2009.

Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-
bandwidth network file system. In ACM SIGOPS Operating Systems Review,
volume 35, pages 174-187. ACM, 2001.

Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-

https://morphological.files.wordpress.com/2011/08/5-layer-architecture-draft.pdf
https://morphological.files.wordpress.com/2011/08/5-layer-architecture-draft.pdf
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/HiTech_Whitepaper_Effective_Data_Deduplication_Implementation_05_2011.pdf
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/HiTech_Whitepaper_Effective_Data_Deduplication_Implementation_05_2011.pdf
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/HiTech_Whitepaper_Effective_Data_Deduplication_Implementation_05_2011.pdf

80 BIBLIOGRAPHY

parallel finite-state machines. ACM SIGPLAN Notices, 49(4):529-542, 2014.

[33] Ge Nong, Sen Zhang, and Wai Hong Chan. Linear suffix array construction
by almost pure induced-sorting. In Data Compression Conference, 2009.
DCC’09., pages 193—202. IEEE, 2009.

[34] Colin Percival. Matching with mismatches and assorted applications. Uni-
versity of Oxford, 2006.

[35] Benjamin C Pierce. Foundations for bidirectional programming. In Theory
and Practice of Model Transformations, pages 1-3. Springer, 2009.

[36] Benjamin C Pierce and Jérome Vouillon. What’s in unison? a formal
specification and reference implementation of a file synchronizer. 2004.

[37] Michael O Rabin et al. Fingerprinting by random polynomials. Center
for Research in Computing Techn., Aiken Computation Laboratory, Univ.,
1981.

[38] Norman Ramsey, El Csirmaz, et al. An algebraic approach to file synchro-
nization. In ACM SIGSOFT Software Engineering Notes, volume 26, pages
175—-185. ACM, 2001.

[39] Bill Roscoe. The theory and practice of concurrency. 1998.

[40] Jin San Kong, Min Ja Kim, Wan Yeon Lee, Chuck Yoo, and Young Woong
Ko. Multi-level metadata management scheme for cloud storage system.
International Journal of Multimedia and Ubiquitous Engineering, 9(1):231—
240, 2014.

[41] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob
Lyon. Design and implementation or the sun network filesystem, 198s5.

[42] Alex Spiridonov, Sahil Thaker, and Sourabh Patwardhan. Sharing and
bandwidth consumption in the low bandwidth file system. Technical
report, Citeseer, 2005.

[43] Mark W Storer, Kevin Greenan, Darrell DE Long, and Ethan L Miller.
Secure data deduplication. In Proceedings of the 4th ACM international
workshop on Storage security and survivability, pages 1-10. ACM, 2008.

[44] Torsten Suel and Nasir Memon. Algorithms for delta compression and
remote file synchronization, 2002.

BIBLIOGRAPHY 81

[45] Torsten Suel, Patrick Noel, and Dimitre Trendafilov. Improved file syn-
chronization techniques for maintaining large replicated collections over
slow networks. In Data Engineering, 2004. Proceedings. 2oth International
Conference on, pages 153-164. IEEE, 2004.

[46] Vinh Tao, Marc Shapiro, and Vianney Rancurel. Merging semantics for
conflict updates in geo-distributed file systems. In Proceedings of the 8th
ACM International Systems and Storage Conference, page 10. ACM, 2015.

[47] Andrew Tridgell. Efficient algorithms for sorting and synchronization.
Australian National University Canberra, 1999.

[48] Andrew Tridgell, Paul Mackerras, et al. The rsync algorithm. 1996.

[49] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. Design
patterns: Elements of reusable object-oriented software. Reading: Addison-
Wesley, 49(120):11, 1995.

[s0] Haiyang Wang, Ryan Shea, Feng Wang, and Jiangchuan Liu. On the im-
pact of virtualization on dropbox-like cloud file storage/synchronization
services. In Proceedings of the 2012 IEEE 20th international workshop on
quality of service, page 11. IEEE Press, 2012.

[51] Hao Yan, Utku Irmak, and Torsten Suel. Low-latency file synchronization
in distributed systems.

[52] Hubert Zimmermann. Osi reference model-the iso model of architecture
for open systems interconnection. Communications, IEEE Transactions on,

28(4):425-432, 1980.

/A

Appendix 1

83

Appendix 1: Data abstraction layer design

3.2 The data abstraction layer

The Data Abstraction Layers primary purpose is to provide unified access all data available to the system.
Subsidiary is it required to lessen the burden of managing data, resolving issues such as weak typing of
the business data, centralizing data-related policies and applies a domain model to simply business logic.
We also want to have a resolution of concurrency problems which may arise with conflicting requests in
the same time window.

The data in eSushi is stored in two different formats, Microsoft Enterprise SQL Server databases and
NetCDF/HDF-5 [8] [9] files. All files added to the system, are either in, or converted to these formats. This
choice was made to create simple and unified data access patterns, thus alleviating the common
problems of dealing with large quantities of heterogeneous data, also known as a high degree of variety.
However data used internally by the decision support system in the calculation cluster might use
intermediate data-sets of different formats, however they are believed to be outside the scope of this
thesis.

At the lowest level data access in eSushi is provided through pure SQL and file read/write. The choice of
supporting .SQL scripts and NetCDF/HDF-5 files is for time-critical applications which require
schema/array-based data as quickly as possible. On top of the raw access, the system divides into two
different subsystems taking advantage of the speed of raw access to populate models of the users'
choice and high level abstractions to interact with the user. In this submission we will show the complete
cycle of both methods, but only on MSSQL as data storage, as the code artifacts for NetCDF/HDF-5
contains trade secrets.

3.3 Data Models and access patterns
Through the course of this thesis we will use the terms simple- and complex models interchangeably
with simple- and complex access patterns to denote the same mechanisms. We denote a data model, or

data access pattern as a method of managing external and remote data sources. The data models
provided in our decision support framework can be divided into two parts; simple and complex models.
This division of the models is a deliberate design choice, based on the problems they attempt to solve.
These models provide data access in differing methods which will be further expanded upon in the
following subchapters.

The primary concern for us as developers is simple access to data throughout the complete application
stack, regardless of placement. The model should also be simple to use and require little programming to
accomplish their requests. However a comparable concern, especially when dealing with large data sets,
is speed. Data should be delivered within a user-specific definition of reasonable time, thus creating a
more complex method of retrieving data, as there's a tradeoff between speed and complexity. Allowing
simple access at less speed also reduces the time to develop interfaces and applications based on
existing data, thus alleviating the finances of further software engineering on the project [10]. We will
show the design for the two different approaches separately and compare them to each other in the
experiments chapter. For both methods we will show the design from the bottom up until the full flow
has been described. An overview of a subset of the DAL describing the data access patterns can be seen
in the following figure:

Complex data access pattern

Builder

Simple data access pattern
Complex Model

Unit of work

Repository Repository

Context

SqlExecutor

Entity Framework DLL

Figure 4: Simplified design of the data access patterns

3.3.1 Simple data models

The simple models bare many similarities to the classical Data Access Pattern entities (also known as
data access components in literature and throughout MDSN), meaning that the model correspond to
exactly one entity in the system. In this context an entity is defined as either a database object or a
NetCDF/HDF-5 object, connoting to a simple mapping with a one-to-one correspondence with a table
schema or the metadata description object described in the NETCDF/HDF-5 file. This allows users a
complete overview of all available data stores in the system at a higher abstraction level, namely a class
in the selected programming language, without any consideration to how the data is retrieved. [11]

The simple data models in eSushi can easily be compared to the data models in the Entity Framework
[12] without the excessive boilerplate which arises when creating Ado.Net data models. The simple data
model usage is exactly the same without 400 lines+ generated for each model, thus alleviating the code
base of this burden, simultaneously lessening the technical debt which can arise with auto-generated
code.

3.3.2 Genericrepository

In applications with many different clients retrieving data, writing data, and data management consists
of many cross-cutting concerns. In order to manage these concerns, especially when they have complex
domain models, it’s often beneficiary to form a layer which isolates domain objects from details of
database code. The repository pattern was popularized in the book “Patterns of Enterprise Application
Architecture”, by Martin Fowler Et al, and the best description of the pattern can be found in the book
itself:

“A Repository mediates between the domain and data mapping layers, acting like an in-memory domain
object collection. Client objects construct query specifications declaratively and submit them to
Repository for satisfaction. Objects can be added to and removed from the Repository, as they can from
a simple collection of objects, and the mapping code encapsulated by the Repository will carry out the
appropriate operations behind the scenes. Conceptually, a Repository encapsulates the set of objects
persisted in a data store and the operations performed over them, providing a more object-oriented
view of the persistence layer. Repository also supports the objective of achieving a clean separation and
one-way dependency between the domain and data mapping layers.” [13]

Therefore a repository strategy was selected for the simple models when providing easy access as it
simplifies data-related policies such as caching. However the repository method for providing data
access can in itself easily overburden the programmers with tons of code if each model provided its own
data rules. Therefore for eSushi we created a generic repository which works with any entity in the
system with all the described properties, the repositories exposes a simple CRUD interface with supports
for filters. However in order to consolidate access rules for specific data store, they have their own
generic repository to ensure proper usage across applications.

3.3.3 Unit of Work

The generic repository removes redundant code and the effects of partial updates. For instance two
different entities within the same transaction might utilize different data stores as their contexts (two
different databases/netCDF-HDF-5 files or a combination therein), one might fail silently where the other

succeeds. In order to ensure all repositories runs within the same data store context, thus coordinating
all transactions, is to use a Unit of Work.

In practicalities this means that the unit of work maintains lists of objects affected by a business
transaction and coordinates the writing out of changes the resolution of concurrency problems. The unit
of work for eSushi has been designed to avoid changing the databases for each change in the object
models, because it ends up becoming very slow. Furthermore, interactions spanning for a long time or
across different data stores can cause inconsistent reads if you're required to keep track of all objects.
The key functionality provided by the Unit of Work is deciding what happens at commit time. It opens
the transactions, does any concurrency checking, and writes the changes; thus alleviating the need for
applications to explicitly call updates on the data-stores.

3.4 Complex data models

The complex models are complex in the amount of code needed to utilize their functionality, not in their
methodology. The complex models are simple objects containing the resulting data one entity at a time
after retrieving and performing calculations on the data storages. This allows the user both to tune
exactly what output is expected, while simultaneously populating a high level abstraction. However, this
abstraction contains a burden in code artifacts as they also contains a Data Abstraction Layer Query
which defines the means for communicating with the underlying store, the method for retrieving data,
and the calculations required for their data sets. The DAL queries utilized by the complex models are
created through the usage of what we call builders, which allows the users to quickly create advanced
queries which can use several data stores in their operations.

3.4.1 Execution engine and builders

The builders are a set of specific objects used to create DAL queries. They have a base which is shared
amongst all builders to simplify the operation and are exposed to a generic interface for datatypes. This
ensures the resulting dataset to be interoperable with the complex model. They utilize a builder pattern
[7] to manage the parameters required and lessen the probability of errors.

The execution engine is simply a generic engine to execute the resulting command contained in the DAL
Query. It starts by opening a connection to the necessary data stores, once the store is connected; it
performs the specified commands, and the resulting set of data is disseminated back into the model.

/B

Appendix 2

89

Appendix 2: Data abstraction Layer implementation

4.2 Data Abstraction Layer

The data abstraction layer has been implemented in C# with dependencies to the System Configuration,
SQL server runtime, and the Business Logic Layer. It also has the Entity Framework package installed.
Here we will outline the implementation of both the simple and complex data access functionality and
give a detailed exposition of their usage.

4.2.1 Simple data access

The basic entity in the simple data access pattern is the object mapped model (1 to 1 mapping between
code class and data-store entity), which is exposes to the developer as a common class. This is the core
entity in which data is populated, and the developer receives either a single entity or a collection of
entities. The generic repositories are implemented supporting a simple Create, Read, and Update API
(CRUD), with additional support for filtering and reordering, done by user specific methods. Figure 4
shows the relationship between the different entities which constitutes the simple data access model.

Species

Attributes witheld

Vessel

Attributes witheld

Catch

Attributes witheld

Haul

Attributes witheld

Data-store Context
_________ |

+Context() |

Generic Repository

\/_CatchRepository

context
Context -

_disposed
Datastore Set lﬁ _haulRepository
+ Delete (1 overload method) T SPETIEREPOSITOTY
+Get() % _vesselRepository
+GetByld() +Dispose(+1 overload method)
+Constructor() +Save()
+Insert()
+Update()

Figure 5: Shows the relationships within the Simple Data Access pattern

The generic is repository functions as a container for an entity within the framework and concrete
instantiations are contained in the Unit of Work, once for each entity in the system. By combining the
repositories with the unit of work, we can cover the desired aspects described in the design, while

keeping code artifacts minimal.

Combining the repositories with the Unit of Work allows for new entities to be added to the system with
just two lines of code, while simultaneously enforcing the data access rules. The data flow interacting
with the Unit of Work can be seen the Figure. 5, where the mechanism of the repository layer will we

expanded upon later.

_MNew—p

A4

load Entity:

«
____Select———_’I

—_——— e e L _, Mewms

Commit— »

I1_ —Differences to Entity Clone—___

Entity changed

I ¢ update

Figure 6: Displays an overview of the data flow in the Simple Data Access Model, without the details of the repositories

To add a new entity to the system, the developer adds a property to the Unit of Work, let's call it
_specieRepository and thus create a getter for said repository.

public GenericRepository<Species> SpecieRepository

get { return _specieRepository ?? (_specieRepository = new
GenericRepository<Species>(_context)); }
J} Code 2: Shows a getter for a concrete instance of the generic repository

The execution flow of the simple data model can be segregated into two parts, input and output. In this
definition output is requesting stored data in the system; we will show its usage through an example, in
this instance the developer requests the Norwegian name of all fish species known today:

var species = _unitOfWork.SpecieRepository.Get().Select(specie => specie.NName).TolList();

Code 3: Complete code required to generate a list of all species filtered by their
Norwegian name

This line of codes starts a chain of events, first we request that the unit of work should collect all the data
from the repository of fish species, secondly we request that the output data should be filtered to only
return the Norwegian names. The specie repository connects to the data-store using the context
provided by the Unit of Work. The data-store retrieves the values requested and filters them based on
the function inputted through the usage of LINQ. Lastly it converts it into a list for convenience. The data
flow interacting with the repository layer is outlined in the following model:

ne'

Not match

Matching Criteria > Matching Criteria

Satesfied a C rterla—fl

Entities which satisfied
< the criteria

Figure 7: An equal model can be found in [13] and our pattern is implemented in the same manner. Displays the
characteristics of the repository.

The Repository allows functions to be submitted in either the Get method or you can do it while

selecting data as in the example. The get method is parameterized by
(Code 4) which are simply added to the generated query. It also supports
adding other properties by mapping the properties inputted, reducing them, and finally transforming
them to the query format. Furthermore data is retrieved using eager loading, which means when an
entity is retrieved, all related entities are also collected, thus allowing faster subsequent access.

query = includeProperties.Split(new[] {',"},

StringSplitOptions.RemoveEmptyEntries).Aggregate(query, (current, includeProperty) =>|

VTR (e I GN TR Lo [T Lol IIgaAP Code 5: Shows how the system maps, reduces and

transforms properties to the query format

After this has happened the data resides in memory until the Unit of Work determines it is no longer
needed. In order to achieve control over what the Unit of Work puts into memory it inherits from the C#
IDisposable interface. This allows the developer to simply override the dispose method wherever the
Unit of Work is used to have complete control over the memory lifecycle.

Submitting data to the system is done through the simple data access interface. For the developeritis a
very simple operation consisting of these two lines, as the Unit of Work handles both the transactions
and the context of the data store.

_unitOfWork.CatchRepository.Insert(new Catch());
I R0 T WY@ Code 6: Displays how new entities are stored in the system

4.2.2 Complex data access

When performing complex data access not already existing in the system, the developer starts by
creating a new model containing the expected output data, which extends the capabilities of the store(s)
it needs to contact. In this submission he would extend the capabilities of the SQL execution engine,
where all output models are covariant. He would go on to create a builder for the DAL query, which
inherits from the base builder and extend an interface which denotes the possible features provided by
the system. Finally he would supply the model to the execution engine which would retrieve the data
back to the user.

We will show a simple example for generating a heatmap of the positions off all fishing activity by
Norwegian ships, weighted by the quantity found.

HeatmapQueryBuilder queryBuilder = new HeatmapQueryBuilder();
SqlExecutor executor = new SqlExecutor();
var initializer = new HeatmapData(queryBuilden
.SetVessels(boatNames)
.SetSpecies(speciesNames)

.SetFromDate(fromDate)
.SetToDate(toDate)

, allVessels);
return executor.ExecuteSql(initializer);
j] Code 7: Complete code required to generate a heatmap of all fishing activies in
the system

OO A WN R

SQL scripts

Algorithm C.1: Primary Server schema

USE [master]

GO

/****%*%% Qbject: Database [SeadrivePrimaryServer] Script Date: 01
CREATE DATABASE [SeadrivePrimaryServer]

CONTAINMENT = NONE

ON PRIMARY

(NAME = N’SeadrivePrimaryServer’, FILENAME = N’C:\Program_Files\Mic
LOG ON

(NAME = N’SeadrivePrimaryServer log’, FILENAME = N’C:\Program_Files
GO

ALTER DATABASE [SeadrivePrimaryServer] SET COMPATIBILITY LEVEL = 120
GO

IF (1 = FULLTEXTSERVICEPROPERTY (’IsFullTextInstalled ’))

begin

EXEC [SeadrivePrimaryServer].[dbo].[sp fulltext database] @action =

end

GO

ALTER DATABASE [SeadrivePrimaryServer] SET ANSI NULL DEFAULT OFF

GO

ALTER DATABASE [SeadrivePrimaryServer] SET ANSI NULLS OFF

GO

ALTER DATABASE [SeadrivePrimaryServer] SET ANSI PADDING OFF

GO

ALTER DATABASE [SeadrivePrimaryServer] SET ANSI WARNINGS OFF

GO

ALTER DATABASE [SeadrivePrimaryServer] SET ARITHABORT OFF

GO

ALTER DATABASE [SeadrivePrimaryServer] SET AUTO _CLOSE OFF

95

06.2016 20:35:45 #xxxws/

rosoft_SQL_Server\MSSQL12.S

Microsoft_SQL_Server\MSSQI

enable’

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

06 APPENDIX C / SQL SCRIPTS

GO

ALTER DATABASE [SeadrivePrimaryServer] SET AUTO_SHRINK OFF

GO

ALTER DATABASE [SeadrivePrimaryServer] SET AUTO UPDATE_STATISTICS ON
GO

ALTER DATABASE [SeadrivePrimaryServer] SET CURSOR_CLOSE ON_COMMIT OFF

GO
ALTER DATABASE [SeadrivePrimaryServer] SET CURSOR DEFAULT GLOBAL
GO

ALTER DATABASE [SeadrivePrimaryServer] SET CONCAT _NULL YIELDS NULL OFF

iLOTER DATABASE [SeadrivePrimaryServer] SET NUMERIC ROUNDABORT OFF
S;A(I?TER DATABASE [SeadrivePrimaryServer] SET QUOTED_IDENTIFIER OFF
i(L)TER DATABASE [SeadrivePrimaryServer] SET RECURSIVE TRIGGERS OFF
S;A(L)TER DATABASE [SeadrivePrimaryServer] SET DISABLE BROKER

GO

ALTER DATABASE [SeadrivePrimaryServer] SET AUTO_UPDATE STATISTICS ASYNC OFF

GO

ALTER DATABASE [SeadrivePrimaryServer] SET DATE_CORRELATION_ OPTIMIZATION OFF

GO
ALTER DATABASE [SeadrivePrimaryServer] SET TRUSTWORTHY OFF
GO

ALTER DATABASE [SeadrivePrimaryServer] SET ALLOW_SNAPSHOT ISOLATION QFF

GO
ALTER DATABASE [SeadrivePrimaryServer] SET PARAMETERIZATION SIMPLE
GO

ALTER DATABASE [SeadrivePrimaryServer] SET READ COMMITTED SNAPSHOT OFF

S;Ai)TER DATABASE [SeadrivePrimaryServer] SET HONOR BROKER PRIORITY OFF
S;AE)TER DATABASE [SeadrivePrimaryServer] SET RECOVERY SIMPLE

i(L)TER DATABASE [SeadrivePrimaryServer] SET MULTI USER

?‘ETER DATABASE [SeadrivePrimaryServer] SET PAGE VERIFY CHECKSUM
S;A(I?TER DATABASE [SeadrivePrimaryServer] SET DB _CHAINING OFF

i(L)TER DATABASE [SeadrivePrimaryServer] SET FILESTREAM(NON_TRANSACTE]
GO

ALTER DATABASE [SeadrivePrimaryServer] SET TARGET RECOVERY TIME = 0 SECONDS

GO

ALTER DATABASE [SeadrivePrimaryServer] SET DELAYED DURABILITY = DISABLED

GO

EXEC sys.sp_db_vardecimal storage format N’SeadrivePrimaryServer’, N
GO

USE [SeadrivePrimaryServer]

GO

/*#***%x Object: Table [dbo].[ChunksReceived] Script Date: 01.06.2
SET ANSI NULLS ON

GO

ON’

016 20:35:45

D ACCESS = OFF)

Fokkok

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

SET QUOTED_IDENTIFIER ON

GO

SET ANSI PADDING ON

GO

CREATE TABLE [dbo].[ChunksReceived](
[LocalServerld] [nvarchar](50) NOT NULL,
[FileChecksum] [varbinary](20) NOT NULL,
[ChunkNum] [int] NOT NULL,
[Size] [int] NOT NULL,
[Id] [int] IDENTITY(1,1) NOT NULL

) ON [PRIMARY]

GO
SET ANSI PADDING OFF
GO

97

/****%%% QObject: Table [dbo].[localServerIdSession] Script Date:

SET ANSI NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI PADDING ON

GO

CREATE TABLE [dbo].[localServerIdSession](
[LocalServerld] [nvarchar](50) NOT NULL,
[CurrentFileInTransit] [varbinary](20) NULL

) ON [PRIMARY]

GO

SET ANSI PADDING OFF

GO

/****%*% QObject: Table [dbo].[VirtualFile] Script Date:

SET ANSI NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI PADDING ON

GO

CREATE TABLE [dbo].[VirtualFile](
[Guid] [nvarchar](200) NOT NULL,
[RelativePath] [nvarchar](200) NOT NULL,
[FileChecksum] [varbinary](20) NOT NULL,
[PreviousVersionChecksum] [varbinary](20) NULL

) ON [PRIMARY]

GO

SET ANSI_PADDING OFF

GO

USE [master]

GO

ALTER DATABASE [SeadrivePrimaryServer] SET READ WRITE
GO

01.06.20186

Algorithm C.2: localserver schema

1.06.2016 20:35:45

20:35:45

dok ok ko 7':/

* %

sk /

oONNOUphWN R

08 APPENDIX C / SQL SCRIPTS

USE [master]

GO

/***%%% Qbject: Database [seadriveServer] Script Date: 01.06.2016
CREATE DATABASE [seadriveServer]

CONTAINMENT = NONE

ON PRIMARY

(NAME = N’seadriveServer’, FILENAME = N’C:\Program_Files\Microsoft_{
LOG ON

203714 :':7':7':7‘::‘:7‘:/

QL_Server\MSSQL12

(NAME = N’seadriveServer_log’, FILENAME = N’C:\Program_Files\Microsoft_SQL_Server\MSS

S;A(I?TER DATABASE [seadriveServer] SET COMPATIBILITY LEVEL = 120
CI;I? (1 = FULLTEXTSERVICEPROPERTY(’IsFullTextInstalled ’))

begin

EXEC [seadriveServer].[dbo].[sp_fulltext database] @action = ’enable
end

GO

ALTER DATABASE [seadriveServer] SET ANSI NULL DEFAULT OFF
S;Ai)TER DATABASE [seadriveServer] SET ANSI NULLS OFF

S;Ai)TER DATABASE [seadriveServer] SET ANSI PADDING OFF

S;A(L)TER DATABASE [seadriveServer] SET ANSI WARNINGS OFF

S;Ai)TER DATABASE [seadriveServer] SET ARITHABORT OFF

S;AgTER DATABASE [seadriveServer] SET AUTO CLOSE OFF

i(L)TER DATABASE [seadriveServer] SET AUTO_SHRINK OFF

?‘ETER DATABASE [seadriveServer] SET AUTO_UPDATE_STATISTICS ON
S;A(I?TER DATABASE [seadriveServer] SET CURSOR _CLOSE ON_COMMIT OFF
i(L)TER DATABASE [seadriveServer] SET CURSOR DEFAULT GLOBAL
?‘ETER DATABASE [seadriveServer] SET CONCAT NULL YIELDS NULL OFF
S;A(I?TER DATABASE [seadriveServer] SET NUMERIC ROUNDABORT OFF
i(L)TER DATABASE [seadriveServer] SET QUOTED_IDENTIFIER OFF
?‘ETER DATABASE [seadriveServer] SET RECURSIVE TRIGGERS OFF
S;A(I?TER DATABASE [seadriveServer] SET DISABLE BROKER

i(L)TER DATABASE [seadriveServer] SET AUTO_UPDATE_STATISTICS ASYNC OFF
GO

ALTER DATABASE [seadriveServer] SET DATE_CORRELATION OPTIMIZATION OFF

GO
ALTER DATABASE [seadriveServer] SET TRUSTWORTHY OFF
GO

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

99

ALTER DATABASE [seadriveServer] SET ALLOW SNAPSHOT ISOLATION OFF
i(L)TER DATABASE [seadriveServer] SET PARAMETERIZATION SIMPLE

i(L)TER DATABASE [seadriveServer] SET READ COMMITTED SNAPSHOT OFF
igTER DATABASE [seadriveServer] SET HONOR BROKER PRIORITY OFF

i(L).TER DATABASE [seadriveServer] SET RECOVERY SIMPLE

i(I?TER DATABASE [seadriveServer] SET MULTI USER

igTER DATABASE [seadriveServer] SET PAGE VERIFY CHECKSUM

i(L).TER DATABASE [seadriveServer] SET DB CHAINING OFF

i(I?TER DATABASE [seadriveServer] SET FILESTREAM(NON TRANSACTED ACCESS
igTER DATABASE [seadriveServer] SET TARGET RECOVERY TIME = 0 SECONDS
i(L).TER DATABASE [seadriveServer] SET DELAYED DURABILITY = DISABLED
GE?()EC sys.sp_db_vardecimal storage format N’seadriveServer’, N’ON’

GO

USE [seadriveServer]

GO

/****%%% Qbject: Table [dbo].[CacheEntries] Script Date: 01.06.201
SET ANSI NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI PADDING ON

GO

CREATE TABLE [dbo].[CacheEntries](
[Id] [int] IDENTITY(1,1) NOT NULL,
[FileChecksum] [varbinary](20) NOT NULL,
[BlockNum] [int] NOT NULL,
[ZippedData] [varbinary](1024) NOT NULL,
[BlockChecksum] [varbinary](20) NOT NULL,
CONSTRAINT [PK_CacheEntries] PRIMARY KEY CLUSTERED
(
[Id] ASC
JWITH (PAD INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE DUP KEY
) ON [PRIMARY]

GO

SET ANSI PADDING OFF

GO

/****%*% QObject: Table [dbo].[FileDirectory] Script Date: 01.06.20
SET ANSI NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

SET ANSI PADDING ON

= OFF)

6 203714 7':-,'::':7':7':7’:/

= OFF, ALLOW ROW LOCKS = O

16 20:37:14 #xxwis/

100 APPENDIX C / SQL SCRIPTS

108 |GO

109 |CREATE TABLE [dbo].[FileDirectory](

110 [Filename] [varchar](250) NOT NULL,
111 [IsDirectory] [bit] NOT NULL,

112 [Checksum] [varbinary](20) NOT NULL,
113 [IsDirty] [bit] NOT NULL

114 |) ON [PRIMARY]

115

116 |GO

117 | SET ANSI PADDING OFF

118 |GO

119 |USE [master]

120 |GO

121 |ALTER DATABASE [seadriveServer] SET READ WRITE
122 |GO

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	List of Code Snippets
	List of Abbreviations
	1 Introduction
	1.1 Problem definition
	1.2 Targeted Applications
	1.3 Contributions
	1.4 Methods and materials
	1.4.1 Methodology applied for this thesis
	1.4.2 Procedures

	1.5 Context
	1.6 Assumptions and Limitations
	1.7 Structure of the Thesis

	2 Review of related literature
	2.1 Data Deduplication
	2.1.1 Taxonomy
	2.1.2 Methodologies
	2.1.3 Deduplication methodologies
	2.1.4 Fixed block hashing/Fixed-size Chunking
	2.1.5 Variable Block hashing/Variable-size chunking

	2.2 Data differencing
	2.2.1 Mathematical fundament

	2.3 Conflict resolution in file synchronizers

	3 Review of related Technologies
	3.1 File synchronization protocols
	3.1.1 Widely used remote file synchronization algorithms
	3.1.2 Rsync
	3.1.3 Unison
	3.1.4 Dropbox

	3.2 Distributed file systems
	3.2.1 Sun Network Filesystem
	3.2.2 Andrew File System

	4 Architecture
	5 Design
	5.1 The Data Abstraction Layer – I/O management
	5.2 Business Logic Layer – Core functionality
	5.3 Application Layer – Seadrive
	5.4 Data Deduplication
	5.4.1 Delta difference data deduplication

	5.5 Filesystem monitor, change detection and the application facade
	5.6 File synchronization and Transport Protocol
	5.7 Local synchronization protocol
	5.8 Remote Synchronization protocol

	6 Implementation
	6.1 Data Abstraction Layer
	6.2 Business Logic Layer
	6.3 Application layer - Seadrive
	6.4 Deduplication
	6.5 Seadrive artifacts implementation
	6.6 Clients
	6.7 Remote Transport protocol
	6.8 Remote file synchronizer
	6.9 Local Server – Local Synchronization point
	6.9.1 Sending and receiving data
	6.9.2 Local server deduplication for variable-sized chunking synchronization
	6.9.3 Local server deduplication for binary difference synchronization

	6.10 Primary Server

	7 Experimental design and setup
	7.1 Datasets
	7.2 Experimental design
	7.2.1 Micro-Benchmarks
	7.2.2 Macro-Benchmarks
	7.2.3 Experimental setups

	8 Evaluation and results
	8.1 Micro-Benchmarks
	8.2 Macro-benchmarks
	8.2.1 Full application usage – Window size 256 bytes
	8.2.2 Full application 1024 byte window size
	8.2.3 Simulated delay sessions

	8.3 Analysis
	8.4 Discussion
	8.4.1 Lessons learned

	9 Concluding remarks
	9.1 Future work
	9.2 Conclusion

	Bibliography
	A Appendix 1
	B Appendix 2
	C SQL scripts

