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Abstract 

Recently acquired datasets of multibeam, echosounder and seismic data reveal the 

geomorphology and distribution of seafloor craters and mounds in central Barents Sea. The 

study found 288 craters, 227 pingos and 119 gas flares in the area, each with its own distinctive 

appearance. The majority of pingos lie inside or close to craters. This indicate a connection 

between the two features. 

 

Inspection of the subsurface shows several faulting systems and migration pathways underneath 

the seabed features. Migration of hydrocarbons supplies the shallow subsurface with gas, 

trapping the gas inside cages of ice, to become gas hydrates. Models of the gas hydrate stability 

zone (GHSZ) show conditions sufficient to sustain a considerable amount of hydrates in the 

subsurface. Signs of gas hydrate BSRs are observable inside and outside of the study area. 

 

Four major glaciations covered the study area during Late Cenozoic. This have resulted in 

different climatic events, affecting the GHSZ. The GHSZ has decreased significantly since Last 

Glacial Maximum, leading to vast dissolution of gas hydrates and release of free gas. The 

pressure change, caused by the ice sheet movement, reactivated faults and enhanced supply of 

gas to the shallow subsurface. Gas flares at the seafloor indicate an active fluid system. The 

hydrates push the seafloor upwards to create submarine pingos. This has caused one or several 

blowouts after reaching the threshold limit of the seafloor. The depressions, created by the 

blowouts, are interpreted to consist of 20 % pockmarks (50-100 m), 53 % large pockmarks 

(100-300 m) and 27 % fluid flow craters (>300m). 
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1-Introduction 

Solheim and Elverhøi (1993) discovered circular depressions and mounds on the seafloor in the 

central Barents Sea (Fig.1). The observed features varied in size, and occurred with different 

densities throughout the study area (Fig.2). Recently acquired marine geophysical datasets 

enable us to visualize and study the geomorphological features in more detail. In addition, the 

datasets show the internal structures, and links with deeper lying structures. 

1.1 - Objective 

The overall objective of this thesis is to get a better understanding of the formation of craters 

and mounds in the central Barents Sea (Fig.2). 

In order to accomplish the main goal, there are several secondary objectives: 

- Map the distribution of craters and mounds. 

- Map the internal structure of features. 

- Map fluid flow features. 

- Relate gas flares in the water column with geomorphological features 

This study utilizes multibeam-datasets to visualize the bathymetry, echosounder-datasets to 

visualize gas in the water column, and seismic data from University of Tromsø and the 

Norwegian Petroleum Directorate to visualize the subsurface. 

1.2 - Motivation 

Studying the geomorphological features is of great interest in a scientific matter. The features 

are important to understand in several topics. One topic is the global climate change. Global 

warming is an increasing problem. The knowledge of fluid migration is an element to improve 

knowledge on global climate change. Fluid seepage poses a threat to the environment, as the 

fluids mainly consist of methane. Methane is a gas with a significant environmental impact. It 

is 10 times as dangerous over a 100-year period as carbon dioxide (IPCC, 2013). A large release 

of methane into the water column, and possibly to the atmosphere, would have possible serious 

consequences for the climate system 

The release of gas to the water column is usually linked with craters on the seafloor. Craters on 

the seafloor also act as a reminder of the stability issues of the seafloor. Submarine landslides 

occur from time to time. The Storegga-slide, outside the coast of Norway, as one of the most 



 

 

  2 

 

famous. The development of craters on the seafloor, leads to a stability reduction of the 

subsurface and poses as a geohazard. Additionally, the presence of gas shows that there are 

factors in the subsurface able to create landslides. The formation mechanism for the 

geomorphological features are thus important to understand, both to avoid landslides and to 

predict the occurrences. 

The fluid migration of the area is important in order to understand the formation mechanism. 

Fluid migration acts as a stability factor, and can direct attention towards deeper laying 

structural features. Possible also concerning new gas and oil reservoirs. Except the obvious 

relation to conventional hydrocarbon exploration, gas hydrates are another possible new 

resource. Similar observed craters and mounds, as those of the study area (Fig.2), proved to be 

gas hydrate related. Gas hydrates are a conceivable new energy resource, as the hydrates consist 

of large amounts of compressed methane. The world may find a new energy resource with 

further research and understanding of gas hydrates and their properties. 

 

Figure 1: Overview of the Barents Sea, with the study area lying inside the red box. 
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Figure 2: Overview bathymetric map of the study area. 
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2 – Subsea fluid flow 

Identifying subsea fluid flow on geophysical datasets is performed by looking for specific signs 

in the seismic sections. Fluids present in the subsurface affect the properties of the subsurface, 

leading to visible changes on seismic surveys. The change is observable as high amplitude 

anomalies. Hydrocarbons present in the subsurface result in a prominent reduction of the p-

wave velocity, changing the acoustic impedance. The acoustic impedance is the product of 

density and seismic velocity of sediment packages, and is observable at interfaces between these 

packages. Acoustic impedance is the property that produces the seismic reflection. The high 

amplitude reflection anomaly, commonly called a hydrocarbon indicator, represents a fluid 

contact, and is shown as bright spots (Andreassen, 2009) (Fig.3).  

Several other signs of hydrocarbons present in the subsurface exist, like phase reversal, meaning 

a shift of 180° along a continuous reflector (Fig.3), resulting in a peak becoming a trough and 

vice versa (Løseth et al., 2009). Two other signs are dim spots and flat spots (Fig.3). Dim spot 

is the effect of a local decrease of amplitude along a reflector, while flat spot refer to the effect 

the lower part of a gas/oil-water contact have in the seismic section. The flat spot is easily 

visible as they have an angle relative to the surrounding stratigraphic layers (Løseth et al., 

2009).  

 

Figure 3: Image showing different seismic amplitude anomalies. From Løseth et.al (2009). 
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2.1 – Gas chimney 

Fluid migration in the subsurface disturb the seismic reflectors. In seismic sections, migration 

pathways for fluids appear as vertical zones of acoustic masking, referred to as gas chimneys 

(Løseth et al., 2009). Fluid migration create vertical zones of low seismic amplitude, frequency 

and coherency, at which hydrocarbons migrate to shallower subsurface conditions (Sun et al., 

2012). The transportation zone may appear as both distinct vertical zones, but also as diffusively 

masked areas (Løseth et al., 2009). 

Typically, gas chimneys are in association with bright spots at the edges (Andreassen et al., 

2007). Gas in the sediments create overpressure, which result in fracturing of friable rocks. 

Fracturing of rocks results in increased fluid migration and horizontal migration of fluids, into 

sediment packages. Thus, it is possible to observe fluids as bright spots on the flanks of gas 

chimney features. 

It is important to emphasize that the hydrocarbon indicators need to appear together, in order to 

conclude whether or not the anomalies are made of hydrocarbons, or just are lithological 

changes. 

2.2 – Gas hydrates: 

Previous studies of gas chimneys document a trend of being associated with the gas hydrate 

stability zone (GHSZ) (Mienert et al., 2001; Bünz et al., 2003). The GHSZ is the zone where 

gas hydrates are stable. Gas hydrates are gas trapped inside a compound of ice (Sloan, 1998). 

Predominantly methane (CH4), but also propane (C3H8) and ethane (C2H6) among others. 

Gas hydrates exist in various parts of the world, but present with a set of necessary basic 

conditions (Collett et al., 2009). From the gas chimneys or fluids migrating through faults, an 

adequate supply of gas is necessary. Secondly, an adequate supply of water is needed. Either 

provided through absorption of seawater, or by natural occurrences in the subsurface. At last, 

there is a need for specific temperature and pressure conditions (Hovland, 2005). Generally, the 

right conditions are on land in Polar Regions, since the surface temperatures are sufficiently 

cold. In marine environments, gas hydrates exist at depths deeper than 300-500 m (Hovland, 

2005). The occurrence of gas hydrates are disperse molecules in sediment pore spaces, like 

nodules of pure hydrate, cementing pore spaces, or as a layered structure (Sloan, 1998). 
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2.2.1 – Gas hydrate stability zone 

 

Figure 4: Sketch showing the gas hydrates stability zone in Polar Regions. Modified from Chand & Minshull (2003). 

Gas hydrates are stable in specific conditions, and are vulnerable to change in environment.  

The zone of which they are stable is the gas hydrate stability zone (Fig.4) (Hyndman and Davis, 

1992). Inside this zone gas hydrates can form, while underneath this zone free gas exist in the 

sediments. This creates a transition zone at the lowermost end of the GHSZ. The transition zone 

creates a change in acoustic impedance, because free gas has lower seismic velocity compared 

to gas hydrates. The interface is observable as a reversed polarity reflector mimicking the 

seafloor, called a bottom-simulating reflector (BSR) (Shipley et al., 1979; Hyndman and Davis, 

1992). Two other types of BSRs exist, both related to biogenic material, and occur with the 

same polarity as the seabed reflector in seismic sections (Nouzé et al., 2009).  

The gas hydrate BSR depends on gas hydrate formation, and relies on temperature and pressure 

conditions. Thus, the BSR follows isotherms rather than stratigraphic horizons. In turn, it make 

the BSR crosscut dipping bedding planes. Consequently, detection of a BSR proves difficult 

when sediment packages are parallel (Hornbach et al., 2003). 
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Gas hydrate stability relies on several factors: pressure, temperature, salinity, hydrothermal 

gradient and chemical composition of gas. Pressure and temperature are the most influential 

factors. Increased pressure increase the GHSZ and vice-versa. Increased temperature decrease 

the GHSZ and vice-versa. Salinity affect the pressure and temperature, resulting in a decreasing 

GHSZ with increasing salinity. Additionally, the chemical composition and ionic impurities 

plays a vital part (Collett, 2000; Hovland, 2005; Vadakkepuliyambatta et al., 2015). 

2.3 - Pockmarks 

Pockmarks are geomorphological features related to fluid flow and gas hydrate accumulation. 

They are shallow seabed depressions, but may also occur in deeper water. The physical 

appearance and shape of the depressions varies greatly. Most often pockmarks appear with 

circular shape. There are several definitions of the size and depth of pockmarks. Generally, 

pockmarks are between 50 and 100 m in diameter, and with a depth ranging from 1-3 m (Judd 

and Hovland, 2007). Ostanin (2013) developed a classification system based on the size and 

depth of observed craters. The system far exceed the suggested dimension from Judd and 

Hovland (2007), but act as a reminder of the difference in approach as to what define a 

pockmark. 

Generally, pockmarks exist in siliciclastic sediments. However, they are also observable in 

carbonate settings (Benjamin et al., 2015). The main factor separating them from other 

morphological depressions is that they are erosive features, where the erosive agent acts from 

underneath, rather than from above (Judd and Hovland, 2007). 

According to Judd and Hovland (2007) three main factors determine the formation of 

pockmarks: 

1: Formation mechanism 

Meaning a sufficient supply of gas, and an accumulation of gas in the subsurface. 

2: Stable seabed 

Meaning a seabed not consisting of large-scale erosional or depositional events. 

3: Sediments suitable for pockmark formation 

Meaning mainly fine-grained sediments in the area. However, pockmarks are also observable 

in relation to other features, such as iceberg ploughmarks and submarine channels. 

The pockmark triggering mechanism is important to understand, and extensive research have 

been and is still performed. A range of triggering factors have been suggested, but each 
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dismissed due to a lack of correlation with the observed features. Solheim and Elverhøi (1993) 

preferred the gas hydrate explanation, and dismissed mechanisms such as meteors and glacial 

erosion. 

 

Figure 5: Sketch showing the different stages of pockmark formation as suggested by Sultan. Modified from Sultan et.al. (2010). 

The principle behind formation of pockmarks is based on a continuous supply of gas either 

from deeper reservoirs, or from dissolution of gas hydrates (Fig.5). Supplying the shallow 

stratigraphic features with free gas leads to accumulation in the subsurface. A layer seals the 

dissolute free gas until the accumulated gas exceed a threshold limit, resulting in an explosive 

release of free gas and expulsion of sediments from the seafloor, creating a deep crater called 

pockmark. 
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Pockmarks found at present day tend to be inactive or dormant features (Judd and Hovland, 

2007). Faulting systems underneath the depressions often link with the features, but as the crater 

form, a sealing of the migration pathway occur.  

2.4 – Gas hydrate mounds 

In contrast to the negative topographical features of the previous section, there are positive 

features. Mounds are such features, and appear as elevated areas on bathymetric datasets. The 

mounds appear in a variety of sizes, but tend to be smaller than the depressions. Seafloor 

mounds related to fluid flow characterizes in two groups: mud volcanoes and submarine pingos.  

Submarine pingos are positive topographical features related to gas hydrates. Pingos have a 

variety of shapes, but generally, they are circular. They are commonly 30-50 m high, and up to 

400 m in diameter (Bates and Jackson, 1987). The first research on pingos suggested water 

migration as a formation mechanism. Frozen water in the subsurface expands, and the seafloor 

rises. The reason for the suggested triggering mechanism was observation of mounds in high 

latitudes and cold climates. In 2006, Hovland and Svensen found that gas hydrates also 

contribute to formation of pingos.  

They postulated three prerequisite factors for pingo formation;  

 

1: High flux 

Meaning a relatively high flux of hydrocarbons flowing in the subsurface, resulting in a 

continuous supply of hydrocarbons are essential to sustained hydrate growth. 

2: Cool bottom water temperature 

Low temperature enhancing the formation of gas hydrates. In addition, cool water temperature 

lead to low dissolution of existing gas hydrates, further contributing to growth.  

3: Water depths deeper than 400 m 

At water depths sufficiently deep a higher degree of supercooling of fine-grained sediments 

occur. Ensuring gas hydrate formation. 

To summarize, according to Hovland and Svensen (2006), gas hydrates are necessary, both in 

stable form, but also under continuous formation. This means an accumulation of hydrates is 

necessary.  Hydrates grow in size for a prolonged period of time result in hydrates pushing on 

the seafloor, to create pingos. During this process, gas migrates upwards from deeper laying 



 

 

  11 

 

reservoirs. From the water column, seawater enters through the adjacent sediments, exchanging 

the depleted seawater from hydrate formation (Hovland and Svensen, 2006). 

2.5 – Gas flares 

After migration of gas from shallow or deep reservoirs to the shallow subsurface, the gas may 

breach the seafloor, leaking into the water column. Seepage of gas appear as bubbles. Gas flares 

refer to the bubbles in the water column, floating towards the sea level. The gas inside the 

bubbles affect the acoustic and mechanical properties of the water. This means that the sound 

attenuation increases, sonic energy scatters, speed of sound propagation changes and tensile 

strength of seawater and sediments are reduced (Judd and Hovland, 2007).  

Due to the changes of water properties, gas flares are easy to map with an echosounder. 

Dependent on the pressure when gas release, the flare can reach high in the water column. West 

of Svalbard gas flares reached 700 m from the seafloor (Bünz et al., 2012). The existence of 

gas flares is an indication of an active fluid system at present day.  
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3-Geological Setting 

3.1 – The Barents Sea region 

The Barents Sea is a large region, located north of Norway and Russia (Fig.1). Eastwards the 

island Novaya Zemlya bounds the sea, Franz Josef Land bounds to the north, Svalbard to the 

west. While southwest, the Barents Sea is bounded by the eastern margin of the deep Atlantic 

Ocean. In total, the Barents Sea as a region covers 1.3 million km2 (Doré, 1995). The 

bathymetry of the Barents Sea characterizes by being an epicontinental shelf with average water 

depth of 300 m (Doré, 1995). Banks and troughs are visible, ranging from 50-300 m and 300-

500 m, respectively (Vorren et al., 2011) (Fig.1).  

A large-scale monoclinal structure in the middle of the Barents Sea divide the sea into two 

major provinces. The monoclinal stretch from north to south, and result in a western part and 

an eastern part. Complex tectonic activity influence the eastern Barents Sea at Novaya Zemlya, 

Timan-Pechora Basin and the Uralian orogeny (Smelror et al., 2009). On the other hand, a major 

rifting process during post-Caledonian time shaped the land of the western Barents Sea 

province. In addition, there were several other rifting periods, leading to continental break-up 

along the western margin of the Eurasian plate (Smelror et al., 2009). 

3.2 – Geological history of the Barents Sea 

The Barents Sea area originally formed from two major continental collisions during the 

Paleozoic, succeeded by a time of separation. The first took place in the Caledonian orogeny 

about 400 million years ago (ma.), resulting in a closing of the Iapetus Ocean. This collision 

led to the merging of the Laurentian and Baltican plates, known as the Laurasian continent 

(Doré, 1995; Smelror et al., 2009). 

Several sightings of north-south strike and northeast-southwest strike basins appeared due to 

the orogeny. Post-Caledonian rifting led to a change in strike from N-S in Svalbard, to NE-SW 

outside of Finnmark. After the Caledonian orogeny extensive erosion took place, culminating 

in several horst-graben structures and deposition of evaporates (Smelror et al., 2009). 

In the Triassic, the two orogenies collapsed, and the supercontinent Pangea separated (Doré, 

1995). Several clinoform belts are observable in Triassic sediments, ranging from 200 to 400 

m high (Lundschien et al., 2014). Two such clinoform-belts dominate the central part of the 

Barents Sea (Riis et al., 2008). They are potentially good source rocks, due to the high organic 

content. A dramatic thinning of the Lower and Middle Triassic occur from Bjarmeland Platform 

towards Fingerdjupet Basin (Fig.7). A larger thickness of Late Triassic compensate for the 
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thinning (Lundschien et al., 2014). During the Triassic, few large tectonic activities occurred, 

but erosion continued and led to uplift of the Barents Sea Shelf, resulting in a westward 

progradation and deltaic environment (Smelror et al., 2009). A major transgression in Late 

Jurassic led to flooding of the entire Barents Sea, resulting in a deep-marine setting. A major 

volcanic event in the Cretaceous near Franz Josef Land led to even more uplift, and the area 

transported sediments westwards, while rifting processes occurred, thus creating deep basins 

(Smelror et al., 2009). 

In Paleocene-Eocene continental break-up of the North Atlantic occurred. A passive shear-

margin developed. The two areas, Norwegian and Greenland Sea, suffered from dispersion 

throughout the Oligocene, establishing a marine connection of the North Atlantic-Arctic marine 

setting in the Miocene. Deposits from the Cenozoic are practically non-existent in the central 

Barents Sea, because of extensive erosion during the Plio-Pleistocene deposited large amounts 

of sediments at the shelf break (Smelror et al., 2009). 

3.3 – Glacial history of the Barents Sea 

Signs of large-scale glaciations, through increased ice-rafted debris flux and increased 

distribution of dropstones (>1 cm), in the Barents Sea are from about 2.7 Ma (Knies et al., 

2002). Indication of growth of ice between 2.3-1.6 Ma, mainly limited to the northern areas of 

the Barents Sea, are in contrast to the southwestern part of the Barents Sea (Butt et al., 2000; 

Sejrup et al., 2005; Vorren et al., 2011). At seismic sections from the southwestern part of the 

Barents Sea, indications of sixteen glacial advances during the last 1 Ma are observed (Solheim 

et al., 1996). Based on seismic sections evidence of eight major glacial advances during the last 

0.44 Ma and 1.5 Ma have also been suggested (Sættem et al., 1992; Laberg and Vorren, 1996; 

Andreassen et al., 2004). 

During the Quaternary, these glaciations extended from the Barents and Kara Sea, toward the 

land areas in the south (Svendsen et al., 2004). There have been much debate upon the extent 

of the ice sheet in the different ice age periods, and especially the last glacial maximum (LGM).  

Based on seismic data, Andreassen (2004) suggested that during the last 1.5 Ma grounded ice 

reached the southwestern shelf edge in the Barents Sea eight times. Recent studies of the Late 

Cenozoic show ice sheets reached the shelf edge four times (Vorren et al., 2011). Extensive 

geological fieldwork resulted in modelling of a reconstruction of the ice sheet extent. 

Knowledge of the sediments found at present day comes from core-samples. Inspection of long 

cores and 3D seismic surveys have resulted in better understanding of the chronology and 
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dynamics of the ice sheets (Vorren et al., 2011). Thus, ice reaching the shelf edge happened 

during these four periods (Fig.6): 1) Late Saalian (130 000 years ago), 2) Early Weichselian 

(90-80 000 years ago), 3) Middle Weichselian (60-50 000 years ago) and 4) Late Weichselian 

(20-15 000 years ago) (Svendsen et al., 2004).  

 

Figure 6: Ice sheet extent during the last four major glaciations. Modified from Svendsen et al. (2004). 

Bjørnøyrenna trough is a major geomorphological feature of the Barents Sea, stretching 750 

km in length, and 150-200 km in width, Its location is easily visible on bathymetric maps of the 

Barents Sea (Vorren et al., 2011) (Fig.1). At the shelf edge visible fan-shaped protrusions are 

observable. Large ice streams in the trough transported sediments towards the trough mouth 

fan, at the shelf edge (Andreassen et al., 2008). Investigation of the trough mouth fans suggest 

the fans acted as depocentres for sediments. Transportation of sediments due to large ice 

streams and glaciers, acts as erosional agent of the seabed. This led to a difference in sediments 

in the subsurface. At the very top there are glacial deposits, while underneath there is 

sedimentary bedrock. The difference in rock properties between these two create a strong 

reflector, called the upper regional unconformity (URU). Vorren et al., (2011) proposed that 

the URU is the erosional base of the glacial periods the area experienced.  
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3.4 – The study area 

The study area (Fig.2) is situated in central Barents Sea, and is selected because of the large 

amounts of depressions and mounds. In this report, investigation of an area of 690 km2 took 

place. The location of this area is 245 km northeast of Bjørnøya and 187 km southeast of Hopen 

(Fig.1). Its location is at the edge towards Spitsbergenbanken, in the middle of Bjørnøyrenna 

trough. The trough acted as transport route for sediments and ice sheets, which in turn 

influenced the study area.  

 

Figure 7: Overview of the structural elements of the Barents Sea. Modified from NPD (2016). 
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The Barents Sea consist of several basins and platforms (Fig.7). Each with its own distinctive 

sedimentological property. The study area location crosscuts two structural elements. These are 

Gardabanken High, and Bjarmeland Platform (Fig.7). Gardabanken High is a cretaceous high, 

while Bjarmeland Platform is a platform. Gardabanken High being a cretaceous high refer to 

the fact that the elevated bank area was part of a Mesozoic uplift. The uplift of Gardabanken 

High led to even more transport of sediments into Bjørnøyrenna from north-northwest. The 

erosion as a cause of mass movement in Bjørnøyrenna, combined with large-scale tectonic 

events has contributed to the slope of the study area (Fig.2). The highest area of the study area 

lies at a water depth of 317 m, while the lowest lies at water depths of 362 m. Despite this, the 

seafloor is relatively flat, with the exception of the geomorphological features observed (Fig.2).  

 

Figure 8: Regional setting of the study area from the seismic section NPD_BA_82_STR_06.MIG_FIN.D10_82.-22.5-9868. 

The red rectangle outlines the study area extent. 

In the subsurface, there are visible faulting system bearing witness to the rifting processes the 

Barents Sea experienced (Smelror et al., 2009). In the subsurface of the study area, an anticline 

exist (Fig.8), showing that the area previously experienced uplift. Anticlines are generally good 

structures for hydrocarbons to migrate. Anticlines also tend to enhance fault systems, which 

contributes to the already existing faults caused by rifting processes.  

The geological setting of the study area has changed between continental and marine (Smelror 

et al., 2009), resulting in deltaic environment underneath the study area, when the shoreline 

extent was sufficient. This has led to formation of clinoforms that are observable in the 

subsurface of the study area (Fig.8).  
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In addition to the geological influence, the glacial environment clearly contributed to the present 

day appearance of the study area. During the Quaternary, the study area experienced several 

major glaciations (Fig.6). Bjørnøyrenna acted as the main transport route for ice sheets, during 

these glaciations. The four major glaciations occurred 130 thousand years ago (ka), 90-80 ka, 

60-50 ka and 20-15 ka (Fig.6). At the second glaciation (Fig.6, B) happening 90-80 ka the ice 

sheet extent was more limited in Bjørnøyrenna. Thus, the study area lies almost at what was the 

edge of the ice sheet extent.  

 

Figure 9: Glacial setting of the study area. Modified from Bjarnadóttir et al. (2014). 
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Bjarnadottir et al. (2014) performed an extensive study of the glacial features found in 

Bjørnøyrenna (Fig.9). In the beginning of Bjørnøyrenna, mega-scale glacial lineations, ice 

margin positions, boundaries of acoustically transparent bodies, iceberg ploughmarks, needles 

and stagnation ridges and stagnation networks are observable (Fig.9). These acoustic 

transparent bodies, ice margin positions and ridges or breaks in seafloor slopes, goes across the 

whole of Bjørnøyrenna. Thus, it is reason to believe that the same processes are observed in 

other locations of Bjørnøyrenna (Bjarnadóttir et al., 2014), affecting the seafloor of the study 

area.  
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4- Data and Methods: 

4.1-Data Acquisition 

Data acquisition happened during two cruises. The first acquisition took place in 2013, and the 

second in 2015. Centre of Excellence for Gas Hydrate, Environment and Climate (CAGE) were 

responsible for collecting the data. CAGE is a part of the geology department at the University 

of Tromsø that own the research vessel Helmer Hanssen. The boat is equipped with several 

monitoring devices, such as multibeam echosounder, single beam echosounder and a 2D 

reflection seismic device. 

4.1.1 - Multibeam echosounder: 

A Kongsberg Simrad EM 300 is installed at Helmer Hansen. This is a multibeam echosounder 

device, which measures the two-way travel time of a sound wave, from the transmitter to the 

seafloor, and back. The sound pulses have frequencies of 30 KHz, which is too high to penetrate 

the seafloor, leading to high-resolution bathymetric maps of the seafloor. The horizontal 

gridding consisted of the whole area being mapped by a cell size (X, Y) of 15x15 m, whereas 

a portion of the study area were mapped with cell size 5x5 m. 

The swath width of the system is dependent on the seabed sediments. In shallow water, the 

swath width is commonly four times the water depth, and here it means it is less than 500 m. 

The maximum swath width is 5 km. The gathered signal attenuate due to a security measure to 

avoid damaging the system when hitting ice. In addition, there is a lower quality of the signals 

furthest away from the transmitter, as these signals travel the longest distance and have a lower 

angle of reflection.  

4.1.2 - Single beam echosounder: 

A Kongsberg Simrad EK 60 is keel-mounted at the Helmer Hansen. Primarily the single beam 

echosounder estimate depth to the seafloor. Sound pulses shoot out from the transducer, and 

are later received. The Simrad EK 60 can use three different frequencies: 18 kHz, 38 kHz, and 

120 kHz. The use of different frequencies depend on the depth of the surface. 18 kHz is for 

depths up to 10 km, 38 kHz for depths up to 2 km, while 120 kHz is used for depths up to 500 

m. The single beam echosounder map gas in the water column, leaking from the seafloor. For 

this purpose either 18 KHz or 38 KHz is preferred.  

 



 

 

  22 

 

4.1.3 - 2D Reflection Seismic: 

At Helmer Hansen, a mini GI (Generator-Injector) acts as seismic source. The air gun is suitable 

to acquire high-resolution seismic surveys. To be able to visualize the deeper surfaces 2D 

reflection seismic analysis is performed. Each lithological interface visualizes because of a 

change in acoustic impedance. Two main components are necessary to complete the survey. 

These are the source and the streamer. The mini GI is the source, and shoot seismic waves 

towards the seafloor by releasing compressed air. A total volume of 30 in3 is the maximum 

capacity of the air gun, whereas in harmonic mode, used in this survey, there are pulses of 15 

in3. The air supply to the air gun comes from a compressor operating at maximum 210 bars. A 

high-frequency signal provides information to study the shallow subsurface. 

In these surveys oil-filled tubes encloses the hydrophones, commonly known as the streamer. 

A 16 m long streamer consisting of 20 sensors spread over 6 meters, acquired the data. The air 

gun was 32 meters behind the ship, while the streamer was at twice the distance. In order to 

avoid too much noise in the acquired data, the mini GI was 2 m below sea level. The ship had 

a speed of four knots during the acquisition. 
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The data were collected with different properties, shown in Table 1. 

Table 1: Overview of properties for the Cage seismic data. 

Seismic Line Traces Samples per 

trace 

Sample 

Interval (m) 

Frequency 

(Hz) 

CAGE_14_KA_SR_03_ 

brute_stack_mig 

5551 6000 0,25 154 

CAGE_14_KA_SR_04_ 

brute_stack_mig 

3257 6000 0,25 105 

CAGE_14_KA_SR_05_ 

brute_stack_mig 

4036 6000 0,25 143 

CAGE_14_KA_SR_06_ 

brute_stack_mig 

3077 6000 0,25 169 

CAGE_14_KA_SR_999spark 

_stack_fkFilt_equalized 

3852 4000 0,25 473 

CAGE_14_KA_SR_08spark1 

_brute_stack_fkFilt 

3746 4000 0,25 363 

CAGE_14_KA_SR_9spark 

_stack_fkFilt_equalized 

3870 4000 0,25 363 

CAGE_14_KA_SR_10spark 

_stack_fkFilt_equalized 

3345 4000 0,25 473 

CAGE_14_KA_SR_11spark 

_stack_fkFilt_equalized 

5154 4000 0,25 363 

CAGE_14_KA_SR_12_ 

Brute_stack_deghost_mig 

8408 6000 0,25 143 

HH13_038_mig_deghost 876 3000 0,5 36 

HH13_039_mig_deghost 1080 3000 0,5 86 

HH13_040_mig_deghost 1132 3000 0,5 83 

HH13_041_mig_deghost 1206 3000 0,5 53 

HH13_042_mig_deghost 1624 3000 0,5 95 

CAGE15-5-001 5791 3401 0,25 67 
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2D seismic sections from the Norwegian Petroleum Directorate (NPD) are also provided. The 

following data properties applied to the NPD lines (Table 2).  

Table 2: Overview of properties for NPD seismic sections. 

Seismic Line Traces Samples per 

trace 

Sample Interval 

(m) 

Frequency 

(Hz) 

2737-89-LS 2958 1501 2 31 

7455-87-W 10250 1550 4 23 

745730-93 21234 1501 4 20 

2730-87(2) 14120 1500 4 18 

2735-89-L 2630 1501 2 33 

2745-87 13674 1490 4 18 

2745-87-SBSW 9156 1500 4 18 

745230-94 6598 1500 4 16 

G-1-89-LS 2142 1501 2 29 

G-3-89-LS 3294 1501 2 24 

NPD_BA_82_STR_06.MIG 

_FIN.D10_82.-22.5-9868 

24504 1501 4 14 

NPD_BA_82_STR_06.MIG 

_fin.d23_82.-24.5-4390 

13438 1501 4 13 
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4.1.4 – Artefacts 

All data acquisition result in survey footprints, known as artefacts. These footprints occur as 

parallel lines in both the seismic data and the bathymetric data. Survey footprints are noise in 

the collected data, leading to features on the seafloor that may be mistaken for real 

geomorphological features. The survey footprints are noise that correspond to the acquisition 

geometry (Bulat, 2005).  

 

Figure 10: Image showing lineations following the acquisition geometry. 

As seen from the image above (Fig.10), there are lineations indicating a time-gap in the survey. 

The time-gaps suggest real features, while they in fact only exist because of the sampling of 

data. 
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4.2-Software 

Three main computer programs were used in interpretation of the geomorphological features of 

the subsea and seabed. 

4.2.1 - Fledermaus: 

Fledermaus enabled visualization of the bathymetric data. It is used both to map the amount of 

craters and mounds found, as well as to showing the bathymetric profiles of different features. 

FMMidwater enabled visualization of gas flares. Differences in density of the gas-bearing 

water, and seawater are possible to inspect. These can be individually marked, and further 

implemented in the Fledermaus program. The bathymetric data was further linked with the gas 

flares. 

4.2.2 - Petrel: 

Petrel is a software used in order to interpret the seafloor features and subsurface. Petrel enabled 

visualization of the 2D seismic sections. In addition, the bathymetric data is observable, helping 

to relate the subsurface with the seafloor. In Petrel, the seabed was interpreted in order to create 

a relationship with deeper laying features. 

4.2.3 - ArcGIS: 

The software enabled creation of the overview map of the Barents Sea. Its usage extended to 

give a better understanding of the geographical location of the study area, and it enabled a better 

relation of the study area to glacial processes.  
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4.3 – Modelling of BSR-thickness 

The gas hydrate stability zone (2.2.1 – Gas hydrate stability zone) is important to map, as it 

gives vital information as to where gas hydrates are stable today. It has a very important role in 

identification of any BSR of the area, thus three models based on the CSMHYD model of Sloan 

(1998) was created. These are from last glacial maximum, deglaciation, and present day. 

Modelling two different parts of the study area, resulting in one model, for each period. For the 

deepest part of the study area, lying at 27°45’36, 7”E, 74°43’3, 7”N and with a depth of 362 m. 

The second location is for the shallower area at 27°50’41”E, 75°4’12”N and with a water depth 

of 317 m. To obtain the GHSZ for the area, the software MatLab was used. The software enables 

to write a code, which calculates the GHSZ depending on different input parameters. 

The different input parameters which affect the model are:  

1: Gas composition 

Two different gas compositions were used in these models. The first was a 100 % methane 

model, as pure methane gives the thinnest GHSZ. The second composition consisted of 96 % 

methane, 3 % propane and 1 % ethane based on a study done by Chand et al., (2008) 

suggesting that in the Barents Sea there is a small amount of 4 % of higher order carbon. 

2: Salinity 

The salinity, salt content, of the seawater affects the GHSZ. The two models are made with 

the usual salinity of 35 ‰. 

3: Geothermal gradient 

Usually, there is an assumption of a constant geothermal gradient of a study area. However, the 

gradient may be different if different factors are present. These are (Chand et al., 2008): 

1: The proximity to piercement features. 

2: Basin inversion, resulting in shallow basement rocks. 

3: Presence of faults, resulting in a focussed fluid flow in the area.  

Previous studies have shown different geothermal gradients in the Barents Sea. Ranging from 

31° C/km in the west, to 30 and 35 °C/km in the south (Long et al., 1998). The average 

geothermal gradient is 30 °C/km in the Barents Sea (Laberg et al., 1998) For the purpose of this 

model, a geothermal gradient of 40 °C/km was used (International Heat Flow Commision, 
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2016). The geothermal gradient measurement is situated 80 km northwest of the study area, but 

is the nearest measurement of the geothermal gradient. 

4: Bottom water temperature 

CTD data from a cruise in 2015 indicated a bottom water temperature of the two different areas 

of the study area to be 1.4°C for the deep area, and 1.645°C for the shallow area. The bottom 

water temperature is determined by controlling water masses moving from the Atlantic, 

bringing warm water northwards, while the Arctic Ocean brings cold water southwards. 

The bottom water temperatures during LGM are -3.582612°C for the deep area, and -

3.9709076°C for the shallow area. These two temperatures are not constant during LGM, and 

are merely guidelines in order to simplify the model. During deglaciation, a bottom water 

temperature of 2°C is usually used. 

5: Ice thickness 

Different properties of the water column have also affected the study area. For the present day 

model there is only seawater, meaning that the model uses the density of seawater (1027 kg/m3) 

in its calculations. Ice covered the area during LGM, and thus the density was 917 kg/m3. 

The ice sheet thickness of the two locations, deep and shallow, are respectively 2088.6 m and 

2109.48 m. The retreat of the ice sheet led to isostatic rebound of the seafloor during 

deglaciation. Hence, during deglaciation the seafloor laid at a depth of 474 m and 431 m. 
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5 – Results 

5.1 – Seafloor furrows 

 

Figure 11: A: Bathymetric overview map of the seafloor furrows. B: Bathymetric profile, Y-Y’, across the large furrows. C: 

Bathymetric profile, Z-Z’, inside a large furrow. Illumination: SW-8°. Vertical exaggeration (VE): 6. 
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An area consisting of loads of parallel furrows are observed northeast in the study area (Fig.11). 

The furrows are parallel to subparallel in orientation, going from northeast to southwest. Two 

main furrows crosscut the others, but the main direction of them remain the same. The 

dimension of the furrows are partly limited, as they stretch outside of the study area. 

Observations show that the length range from 400 m to 4.4 km, and with a width of 40 to 200 

m. The ridges on the side of the furrows range from 1-4 m in height and 40-90 m in width 

(Fig.11, B).  

Inside the largest furrow, there are small parallel ridges with a height between 0.2-0.8 m. The 

ridges cross the furrow with have spacing of 75 to 200 m (Fig.11, C).  
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5.2 – Bedrock craters 

5.2.1 – Depression overview 

 

Figure 12: Overview map showing the distribution of circular depressions in the study area. 
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Mapping of the depressions in the study area show that there are 288 depressions. The lateral 

extent of each varies greatly. Mapping of the circular depressions and their properties are listed 

in Table 3. The shortest length across the depressions act as measurement length for the lateral 

dimension. Some of them will be even larger upon investigation in other directions. Mapping 

of the features proved difficult due to the resolution. A horizontal cell grid of 15x15m of the 

large area led to loss of features, as they cannot be properly distinguished from the natural 

topography of the area.  Some of the craters counted as systems, which mean that not every 

single depression is marked as a distinct feature. 

Circular depressions found in the study area have a lateral extent varying from 43 m (depression 

nr.264, Figure 12) to 906 m (depression nr.21, Fig.12). Generally, the depressions are 100-200 

m wide, but with an average of 226 m. The depth of these depressions range from 0.5 m 

(depression nr.85, 256, 273 and 278, Fig.12) to 34 m (depression nr.123, Fig.12). The average 

depth of the circular depressions are 6.3 m, whereas generally they are 5 m deep. 212 (73.6 %) 

of the depressions are not found in relation to mounds in the area. Meaning that 76 (26.4 %) are 

located in close proximity to mounds. Different shapes, like circular, elliptical and semi-circular 

define the outline of the depression. No specific trend emerge, and the shapes seem evenly 

distributed, with a slight tendency towards the elliptical shape. 
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5.2.2 – Extent of depressions 

 

Figure 13: A) Overview of the dimension of depressions. B) Overview of the depth of depressions. C) Scatter plot of the 

correlation between depth and dimension. 
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Based on Figure 13, C, a trend in the dimensions of the depressions emerge. This line is 

expressed as (1): 

𝐷𝑒𝑝𝑡ℎ = 0,0289 ∗ 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 − 0,2489 

Equation (1) enable us to calculate the depth of a depression if we know the diameter of it.  

The circular depressions are evenly distributed throughout the study area, and there is no sign 

of them favouring any water depth. Regarding the size distribution, it is difficult to find any 

trend whether they are larger in the shallower or deeper parts of the study area. Investigating 

the depth of the depressions show a trend where deeper depressions favour shallower areas 

(Fig.13, B). 
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5.3 – Seafloor mounds 

5.3.1 – Mound overview 

 

Figure 14: Overview map showing the distribution of mounds in the study area. 
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Mapping of the mounds in the study area show 227 elevated areas (Fig.14). The features and 

their properties are listed in Table 4. The short axis act as measuring length. Due to the grid 

resolution of the bathymetric data, loss of smaller mounds occur. Mapping the features proved 

more difficult than the depressions, as the mounds are generally smaller than the depressions. 

The mounds typically seem much more similar to each other than the depressions. Mounds of 

the study area have a lateral extent ranging from 28 m (mound nr.17, 18 and 26, Fig.14), while 

the largest mound spread for 650 m (mound nr.35, Fig.14). The average dimension is 132 m, 

but with a general trend of them being smaller. Concerning elevation, the mounds range from 

only 0.2 m (mound nr.37, Fig.14), to 25 m (mound nr.105, Fig.14). Average elevation is 4 m, 

but with a clear tendency, that generally they are lower. The mounds appear mostly in proximity 

of depressions, with 55 % doing so, while 12 % have a possible connection with the depressions. 

30 % of the mounds in proximity of depressions lay inside a depression. The shape of the 

mounds are the same as the depressions, with a slight favouring of the elliptical shape. The 

topographical shape varies from cone-shaped, rounded-cone and flat top. Cone is the least 

favoured shape of these, but with no specific tendency towards any of them.  
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5.3.2 – Extent of mounds 

 

Figure 15: A) Overview of the dimensions of mounds. B) Overview of the elevation of mounds. C) Scatter plot of the 

correlation between elevation and dimension. 
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Based on the scatter plot of Figure 15, C a trend is visible. A linear equation of this trend turns 

out to be (2): 

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = 0,0158 ∗ 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 + 1,9014 

Equation (2) enable us to estimate the elevation of the mounds if the dimension is stated. The 

trend is not as obvious as for the depressions. This means that the formula has a larger 

uncertainty. 

Upon inspection of the distribution of mounds, there is a trend that the mounds prefer shallower 

water depth. However, there is no tendency of mounds favouring shallow or deep waters when 

it comes to the dimension. An almost even distribution is observable, where the spikes also 

occur evenly. Higher elevated mounds lies in the shallower areas. 
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5.4 – Gas flares 

 

Figure 16: Overview map showing the distribution of gas flares in the study area. Marked in red for easier visualization and 

mapping. 
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Mapping of gas flares show that there are 119 flares in the study area (Fig.16). The different 

flares are listed in Table 5. The lowest flares are 4 m high (flare nr.38, 65 and 72, Fig.16). The 

tallest flare is 95 m (flare nr.17, Fig.16). Generally, the flares appear with a similar lateral 

extent, with a few exceptions like flare nr.85 (Fig.16). 

 

Figure 17: Overview of the height distribution of the gas flares. 

The flares seem evenly distributed throughout the study area (Fig.16). Due to limited data 

coverage, the echosounder data only cover part of the whole study area (Fig.2). Based on the 

location of the flares, most of them appear in northeast, at the location of the parallel furrows 

(Fig.16). The craters and mounds exist with some flares inside and on them. The majority of 

them appear in no relation to any features. However, there are more flares at the edges and 

outside, than inside any features (Fig.16). The height of the different flares also appear evenly 

distributed, with no preference towards the shallow or deep area (Fig.17).  
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5.5 – Areas 

The study area is divided into three regions, consisting of craters and mounds that will be more 

closely looked into (Fig.18). The different areas were chosen based on available seismic data 

from the seafloor features. Both mounds and craters are visible. The three areas lies northwest 

in the study area, but consist of a considerable amount of geomorphological features. 

 

Figure 18: Overview map of the study area. Three different areas, outlined with red, are chosen to be further inspected. 
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5.5.1 – Area 1 

Area 1 (Fig.19) lies northwest in the study area (Fig.18). It covers an area of 23.735 km2. The 

water depth of the area range from 300 to 352 m. In the area, there are 13 craters and 4 mounds. 

Two seismic sections go across four features.  

 

Figure 19: Overview map of area 1. Two 2D seismic lines crosscut the geomorphological features visible in this area. Line 

1.1 is HH13_038_mig_deghost, and lies furthest north. Line 1.2 is745730-93Potential2, observable to the south. VE: 6. 

Illumination: S - 8° 
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5.5.1.1 – Line 1.1 

 

Figure 20: 3D bathymetric map, with a crosscutting 2D seismic line. The seismic line is the line HH13_038_mig_deghost 

collected by CAGE. The direction of the line is NE-SW. Vertical exaggeration (VE): 5. Illumination: Two sources: N - 60°. 

N - 50°. 

Line 1.1 crosscut four features (Fig.20). These features are depressions nr.4 and nr.5 (Fig.12), 

and mounds nr.2 and nr.3 (Fig.14). From Table 3 and Table 4 they are respectively 336, 301, 

331 and 324 m wide. They are all quite similar in appearance as they are elated in an N to S 

direction, and have gentle slopes. 

Down to the centre of depression, nr.4 (Fig.12) there is a dip of 4° in N-S-direction. From west 

to east, the depression characterizes by having a higher dip than from north to south, found to 

be 10°, and ending in a depression 22 m below the seafloor. The corresponding mound is 13 m 

high, with a gentle slope to the north, 2°, and a steep slope to the south, 7°. A flat plateau mark 

the top of the mound, and the slopes in W and E direction are 7° and 5° respectively. 

The eastern crater and corresponding mound have the same direction as the previous feature 

(Fig.20). The depression is 17 m deep, and has the same dip of 4° in N-S direction. That means 

the same as for depression nr.4. From E-W, there is also a slightly steeper dip, estimated to be 

7-10°. Mound nr.3 (Fig.14) is 15 m high, with a flat plateau on the top. The slope towards the 

highest point of the mound is 3° from north, 7° from south, 3° from east and 8° from the crater 

side. 
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The seismic line (Fig.20), HH13_038_mig_deghost, shows the sediments under the features. 

Due to use of high frequencies during collection of the data, the penetration of the seismic is 

low, reaching only 700 ms down. From the seismic section (Fig.20), there may be a slight 

tendency towards some stronger reflectors directly underneath the features. Underneath the 

craters and mounds, there are several visible faults. They stretch from around 550 ms and up to 

the seabed. The faults may be even longer, but since the resolution is poor, it is hard to tell. 

Upon inspection, the seabed reflector is a continuous reflector. However, the seabed reflector 

at the geomorphological features are only slightly distorted for the mounds, whereas the craters 

are more discontinuous.  
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5.5.1.2 – Line 1.2 

 

Figure 21: 3D bathymetric map, with a crosscutting 2D seismic line. The seismic line is the line 745730-93Potential2.The 

direction of the line is NE-SW. VE: 5. Illumination: Two sources; N - 60°, N - 50°. 

The second line of area 1 crosscut four features (Fig.21). These are depression nr.8 and nr.9 

(Fig.12), and mound nr.4 and nr.5 (Fig.14). Similar to the features from Figure 20, these are 

also oriented in an N-S direction. The features are more complex than the previous ones. This 

is observable in the bathymetric data, as the topography of the features are more variable. 
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Depression nr.8 has a depth of 19 m, and a width of 306 m along the shortest axis (Fig.21). 

Here, the dip is 10°. The long axis is 850 m, with a gentle dip of 2° to the north, and 5° to the 

south. Inside the depression, there is an elevated area of 6 m, which has rounded shape. Several 

other small mounds are observable that only reach 1 m above the seabed. Associated with 

depression nr.8, mound nr.4 stretch 13 m above the general seafloor. It can be split into two 

mounds, which seem to have grown together. However, it is interpreted as one mound. The 

width of the feature is 438 m, and has a length of 901 m. A dip of 3° to the north, 2° to the east, 

2° to the south, and 3° to the east indicate a generally gentle mound. 

Depression nr.9 and nr.5 are located east of depression nr.8 and nr.4 (Fig.12, 14). Depression 

nr.9 is a relatively thin elongated depression (Fig.19). The short axis is 246 m, while the long 

axis is 880 m. A dip of 3° from the north, 4° from the south, 18° from the west and 14° from 

the east lead down to the lowest point of the depression of 25.5 m below the seabed. 

Mound nr.5 (Fig.14) is a feature with a flat plateau on the top. It reach 14 m above the seabed. 

The short axis, with a length of 306 m, has a dip of 8° to the east and 5° to the west. The long 

axis is 767 m long and has a dip of 5° to the south, and 2° to the north. 

On the seismic section (Fig.21), collections of faults are visible underneath depression nr.9 and 

mound nr.5. One region of sediment packages are dipping westward from between 600ms to 

1000 ms. At the lowermost end of this section there is a pull-up of the reflectors. At the edges 

of this pull-up-effect, there is a slight blanking area, leading further up to the faults. Towards 

the deeper parts of the seismic section there are several vertical to sub-vertical distortions of 

seismic reflectors. These are mainly based underneath the seafloor features.  
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Figure 22: 3D bathymetric map, with a crosscutting 2D seismic line. The seismic line is the line 745730-93Potential2. The 

seismic attribute envelope is applied on the seismic line. VE: 5 Illumination: Two sources; N - 60°, N - 50°. The red arrows 

indicate the possible migration pathway of hydrocarbons. 

The seismic attribute envelope (Fig.22) shows the reflection strength. It is a seismic attribute 

sensitive to acoustic impedance change. Hence, its usage extend to show lithological change, 

porosity change, thin-bed tuning and the presence of hydrocarbons (Chopra and Marfurt, 2005). 

For the purpose of this seismic section, it mainly show the possible migration paths of 

hydrocarbons. Fluids migrating in the subsurface tend to move horizontally when hitting a new 

layer. This is due to the permeability change when going to another sediment package. 

Several layers of higher reflection strength are observable (Fig.22). These are mainly located at 

large depths, and follow trends seen in the reflection amplitude seismic section (Fig.21). At 

depths around 2000 ms, there is a larger degree of distortion and masking of the seismic signal 

underneath the geomorphological seabed features (Fig.22). In between this masking, there are 

local areas of higher amplitude. Based on the vertical distortions seen in Figure 21, the 
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amplitude anomalies observed in Figure 22 may be related to the migration of hydrocarbons 

towards lower pressure, and the seabed. 
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5.5.2 – Area 2 

Area 2 is an area of 16.53 km2 (Fig.23). The water depth range from 318 to 366 m. In this area, 

there is a total of 10 depressions and 24 mounds. Mapping two depressions with the seismic 

line 2737-89-LS, seven of the depressions with a bathymetric profile (Fig.23), and two 

depressions with the seismic line 7455-87-WPotential1. 

 

Figure 23: Overview map of area 2. The area is located southwest of area 1. Three lines crosscut geomorphological features 

visible in the area. Line 2.1 is 2737-89-LS located east in the area. Line 2.2 refers to a bathymetric profile. Line 2.3 refers to 

the seismic section 7455-87-WPotential1. VE: 6. Illumination: S - 8°. 
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5.5.2.1 – Line 2.1 

 

Figure 24: 3D bathymetric map, with a crosscutting 2D seismic line. The seismic line is the line 2737-89-LS. The direction of 

the line is from N to S. VE: 5. Illumination: Two sources: NW - 60°, N - 50°. 
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The seismic line crosscut two depressions. These are depression nr.36 and nr.39 (Fig.12). 

Depression nr.36 is 411 m wide and 598 m long, with an N-S direction (Fig.24). It is a smooth 

depression, with two small internal features, each 3 m high. The depression is 24 m deep. A dip 

of 3° to the north, 7° to the south, 7° to the west and 5° to the east, lead down to the deepest 

point of the crater. 

Depression nr.39 is 405 m wide and 607 m long. It has the same direction as depression nr.38, 

and shows no sign of internal features (Fig.24). A dip of 5° to the north and south, 9° to the 

west and 5° to the east, lead down to the deepest point 24 m below the seabed. 

In the seismic section (Fig.24), there are several distortions in the reflectors, which are marked 

as possible migration pathways. These are especially located underneath the geomorphological 

features. In contrast to the distortions in the surrounding area, the distortions underneath the 

bedrock craters seem to have a possible migration path towards the seabed. The surrounding 

areas tend to have distortions ending some place in a reflector. In addition, there are few to no 

signs of masked reflectors. 
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5.5.2.2 – Line 2.2 

 

Figure 25: A: 3D bathymetric map, showing the seven depressions. B: Bathymetric profile across the seven depressions. 

VE: 6 

Line Z-Z’ (Fig.25, A) shows the location of the bathymetric profile (Fig.25, B). It passes seven 

large depressions northwest in the study area. The depressions are number 27, 28, 29, 32, 34, 

36 and 38 (Fig.12). In addition, mounds number 52, 54, 56, 58 and 60 are visible in the 

bathymetric profile (Fig.25, B). 

The depth of the different depressions are 15 m (nr.27), 12 m (nr.28), 18 m (nr.29), 16 m (nr.32), 

28 m (nr.34), 24 m (nr.36) and 14 m (nr.38), while the mounds are 6 m (nr.52), 17 m (nr.54), 8 

m (nr.56), 17 m (nr.58) and 8 m (nr.60). They range in size from 386 to 568 m for the 

depressions, and 61 to 134 m for the mounds, and most of them have an elliptical shape. 

Typically, the depressions have steep slopes in the west to east direction, and a gentler slope 

from north to south. The slopes are generally in the range of 3-6°, but for depression nr.34 

slopes of 12 and 15° were found for the northwest and southeast slope, respectively. Being by 

far the steepest slope of area 2.  
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The mounds of the area show a variety of shapes, from flat to cone-shaped, and no preferred 

appearance exist. From the main depressions, a few mounds reach above the seafloor. Generally 

not more than 2-3 m above the seafloor. The mounds appear to reach above the seabed if they 

are large lateral features. Otherwise, the only possibility for them to reach the seabed is if they 

are part of a larger feature inside the crater. 
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5.5.2.3 – Line 2.3 

 

Figure 26: 3D bathymetric map, with a crosscutting 2D seismic line. The seismic line is the line 7455-87-WPotential1. The 

direction of the line is W-E.  VE: 5. Illumination: Two sources: N - 50°, S - 60°. 

The seismic section (Fig.26) is the line 7455-87-WPotential1. It shows one of the seven 

depressions, more precisely depression nr.34. The crater is described in the previous section, 

and it has been established that it is has the steepest slopes in area 2 (Fig.23). The seismic 

section show several large faults close to the seabed. In addition, there are vertical distortions 

of the seismic reflectors visible at a two-way travel time of 1300 ms, marked as possible 

migration pathways. 

Previously, the subsurface distortions occur underneath the seabed features, which is also the 

case here. The largest degree of change of reflectors appear underneath depression nr.34. 

Whereas for the other depressions, depression nr.37, there are fewer possible migration 

pathways and faults. This depression is shallow and only 4.5 m deep. The lateral extent of it is 

390 m, and it has slopes of 0-2°.  
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5.5.3 – Area 3 

Area 3 (Fig.27) lies slightly north of the centre of the study area. The water depth of the area 

varies from 326 to 374 m. The size of the area is 28 km2. Mapping of geomorphological features 

of the area show 19 depressions and 34 mounds. In addition, 22 gas flares lies in the area. The 

different lines crosscut respectively two mounds and a depression, a mound and the large 

complex. 

 

Figure 27: Overview map of area 3. Three lines crosscuts the geomorphological features visible in the area. Line 3.1 refers 

to the Cage15-5-001. Line 3.2 refers to the seismic section 7455-87-WPotential1. Line 3.3 is a bathymetric profile.  VE: 6. 

Illumination: S - 8°. 

  



 

 

  56 

 

5.5.3.1 – Line 3.1 

 

Figure 28: 3D bathymetric map, with a crosscutting 2D seismic line. The seismic line is the line Cage15-5-001. The direction 

of the line is from SW to NE.  VE: 5. Illumination: Two sources: W - 55°, NW - 60°. 

The seismic section (Fig.28) crosscut two mounds and one depression. These are located north 

in area 3 (Fig.27). Mound nr.27 and nr.35, as well as depression nr.115 are those features that 

Figure 28 covers. Depression nr.115 is 15 m deep and 377 m wide. It has a semi-circular shape, 

and the long axis is 603 m. No internal features are observable, and the slopes are 3° to the 

north, 4° to the south, 4° to the west and 6° to the east. Associated with the depression mound 

nr.27 appear, which lies east of the depression. This contribute to a steeper slope in this 

direction. 

Mound nr.27 is 11 m high, and has a flat top (Fig.28). It is 468 m wide and 640 m long. Giving 

an elliptical shape. The slopes towards the highest point are generally 2-3°, with the western 

side being steeper as the depression lies here. The second mound is mound nr.35. This is 6 m 

high, 460 m wide and 540 m long. Calculation show that the slopes are from 1° to 3°.  

Observation of the seismic section (Fig.28) show a lack of deep penetration from the seismic. 

Underneath the seabed features, vertically there are slightly stronger reflectors. In the 

subsurface, at around 520 ms, there is an elevated reflector. Beneath this, there is also slightly 

stronger reflectors in the vertical section. 
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5.5.3.2 – Line 3.2 

 

Figure 29: 3D bathymetric map, with a crosscutting 2D seismic line. The seismic line is the line 7455-87-WPotential1. The 

direction of the line is from W to E.  VE: 5. Illumination: Two sources: N - 50°, S - 60°. 

The feature of interest is mound nr.27 on the seismic section to the left (Fig.29). It is previously 

described in the section 5.5.3.1. As the seismic penetration in Figure 28 was limited, a seismic 

section of better penetration is shown here (Fig.29). Underneath the mound, there are several 

faults that stretch for 300 ms. At larger depths there are several small, vertical distortions of the 

seismic reflectors, marked as possible migration pathways. These vary from 80 ms to 400 ms 

in length. 
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5.5.3.3 – Line 3.3 

 

Figure 30: A: 3D bathymetric overview of depression nr.123. B: Bathymetric profile trough line X-X’. VE: 6. 

The complex observed in Figure 30, A, is the largest of the study area. It consists of a large 

depression, surrounded by four smaller depressions. Inside the main depression, there are two 

small mounds, and a large horseshoe-shaped mound. On the rim of the depression there is a 

mound going from the northeastern side and round to the southwestern side. Associated with 

the surrounding depressions there are also smaller mounds, which contribute to the whole 

complex being 1.98 km long and 1.5 km wide. 

Depression nr.123 is 25 m deep (Fig.13, 30, B). The width of the main crater is 623 m, and it 

has a length of 1165 m. Towards the deep centre of the crater the slopes are 3° to the north, 5° 

to the south, 9° to the west and 7° to the east. The surrounding depressions range from 6 to 15 

m, and are 72 to 212 m wide along the shortest axis. 

The observed mounds are nr.105-110. They are 25 m high (nr.105), 18 m (nr.106), 7 m (nr.107), 

10 m(nr.108), 10 m (nr.109) and 15 m (nr.110). The width of them are 157 m (nr.105), 73 m 
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(nr.106), 71 m (nr.107), 238 m (nr.108), 302 m (nr.109) and 467 m (nr.110). Two out of three 

of those mounds observed inside the main depression reach above the seabed. All of the mounds 

are flat, as the top of them typically only have a few scours to differ the topography from a flat 

plateau. The differing mound is mound nr.106 (Fig.30, B), which has the shape of a cone. 
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5.5.3.4 – Gas flares 

 

Figure 31: A-D: Bathymetric map view of four selected gas flares. E: Overview map of area 3, with the marked locations of 

the selected gas flares. For visualization purposes, the gas flares are red. 
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The four selected flares are A: nr.9, B: nr.30, C: nr.28, D: nr.10 (Fig.16, 31). Respectively, they 

are 38, 79, 67 and 36 m high. Sampling of data was in one direction, hence the dimension of 

the flares are just in one direction. The different flares are respectively 273, 510, 111 and 70 m 

long (Fig.31). The longest lies at a slightly elevated area at the end/beginning of a furrow 

(Fig.31, B), while one lies at the edge of a crater (Fig.31, A), and the last two lays on the 

generally flat seafloor (Fig.31, C, D). 
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5.5.4 – Gas hydrate stability zone models 

5.5.4.1 – Gas hydrate stability zone-model at LGM 

 

Figure 32: A) Model of the deep part of the study area during LGM. The horizontal line indicates the seafloor at the time, 

while the red indicates the geothermal gradient, which decreases with depth. The dotted line indicates the stability curve for 

mixed gas composition, and the covered line indicates the stability curve for the 100 % methane composition. B) Model for 

the shallow part of the study area during LGM. 

The model depicts at what depths gas hydrates are stable (Fig.32). At the point where the 

stability curve and geothermal gradient crosscut, the hydrates are stable in the subsurface at the 

conditions above the geothermal gradient and below the seafloor. Based on this, gas hydrates 

consisting of 100 % methane are stable down to 572 m below the seafloor in the deep part of 

the study area (Fig.32, A), while those of mixed composition are stable down to 610 m below 

the seafloor. 

In the shallow area (Fig.32, B), the 100 % methane hydrates are stable at even larger depth, 584 

m below the seafloor, while the mixed are stable down to 622 m below seafloor. The increase 

of the stability zone from the deep to the shallow contradict logic. However, due to an increased 

ice sheet thickness in the shallow area, as well as colder bottom water temperature, the model 

show a reasonable result. 
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5.5.4.2 – Gas hydrate stability zone-model during deglaciation 

 

Figure 33: A) Model of the deep part of the area during deglaciation. B) Model of the shallow part of the area during 

deglaciation. 

During deglaciation, the seafloor lied at shallower depth. In addition, the ice-free conditions 

implies both a higher bottom water temperature as well as different properties of the overburden 

material. The change result in a thinner gas hydrate stability zone, found to be 128 m below 

seafloor for 100 % methane in the deep area (Fig.33, A), and 293 m below seafloor for mixed 

composition of gas (Fig.33, A). 

At the shallow seafloor (Fig.33, B), the stability zone is even thinner, and here at 94 m below 

seafloor for 100 % methane, and 279 m below seafloor for the mixed composition. 
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5.5.4.3 – Gas hydrate stability zone-model at present day 

 

Figure 34: A) Model of the deep part of the study area at present day. B) Model of the shallow part of the study area at 

present day. 

At present day, gas hydrates are predicted to be stable down to 42 m below seafloor in the deep 

area, with a gas composition of 100 % methane (Fig.34, A). For the mixed composition, gas 

hydrates are stable at larger depths, 274 m below seafloor. 

In the shallow area (Fig.34, B), gas hydrates of 100 % methane cannot be stable, and will act 

as free gas in the sediments. With the mixed gas composition, gas hydrates are stable down to 

244 m below seafloor. 
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6 – Interpretation and discussion 

Topographical change of the seafloor is a result of many different processes. From the 

geological history of the Barents Sea, it is evident that huge forces contributed to the present 

day geomorphology and stratigraphical layers. The same applies for the glacial history of the 

Barents Sea. The different forces of the glaciers having acted on the Barents Sea surface, created 

mega-scale glacial lineations, ploughmarks, acoustically transparent bodies, retreat moraines, 

ridge networks, and corrugation ridges (Ottesen and Dowdeswell, 2006; 2009; Winsborrow et 

al., 2010; Andreassen et al., 2014; Bjarnadóttir et al., 2014). 

Being an epicontinental shelf with trough and bank areas (Fig.1), led to erosion of the surface 

of the troughs, and deposition of sediments at the edges and end of troughs. These troughs have 

acted as the main area for glacial movement. The study area for this thesis lies inside such a 

trough. More exactly, Bjørnøyrenna trough (Fig.1). 

Furrows on the seafloor, as observed in the northern part of the study area (Fig.2, 11), suggest 

an erosive agent that scraped away sediments from the seafloor. The other explanation is 

sediment accumulation, thereby creating ridges. Creation of ridges suggest an ocean current 

whirling sediments in a specific direction. The ridges of the study area are typically 1-4 m high, 

with some ridges lying parallel to sub-parallel (Fig.11, B). The water currents need to have 

accumulated sediments for a prolonged period, to create ridges of this size. Combining this with 

the differences in orientation of the furrows, and observation of small depressions at the end of 

some furrows, dismisses the possibility of the water currents. 

Uplift of different areas of the Barents Sea led to movement of sediments from high areas 

towards the lower parts. Sediments travelling downwards erode the surface, but the deep, wide 

(40-200 m) and long (several kilometres long) furrows would need a large boulder in order to 

create such features (Fig.11, A). Boulders of this size exist, but as the environment contributes 

with sediments, the furrows are too long and wide to be made of this process. 

Apart from geological history of the area, glacial movement has contributed to the appearance 

of present day. Studies of glacial processes and features correspond with those observed in the 

study area. Glacial ploughmarks are typically 0.5-15 m deep, depending on whether they are 

individual or combined ploughmarks (Andreassen et al., 2014). They have a width of 60-200 

m, and combined parallel furrows can be up to 800 m wide (Andreassen et al., 2014). In 

Bjørnøyrenna (Fig.1), similar furrows are found to be 2-5 m deep and 60-100 m wide, 

interpreted as iceberg ploughmarks (Bjarnadóttir et al., 2014). The findings of this thesis 
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correspond with those sightings, and the furrows in the study area are interpreted as iceberg 

ploughmarks. 

Circular depressions occur at the end of some of these ploughmarks. Iceberg ploughmarks have 

been previously found to terminate in rimmed pits (Bass and Woodworth-Lynas, 1988; 

Andreassen et al., 2014). The pits are a result of terminating icebergs, rolling at the same 

location for a prolonged period, leading to icebergs digging down in the underlying sediments, 

to create circular depressions. 

Small bumps inside furrows lying perpendicular to the inferred iceberg flow exist in the study 

area (Fig.11, C). The small ridges going across the furrows have the same appearance as 

previously observed ridges, identified as corrugation ridges (Jakobsson et al., 2011; Andreassen 

et al., 2014). All these features, rimmed pits and corrugation ridges, are observable in the 

furrows of the study area, and further confirm that the furrows are iceberg ploughmarks. 

Having established that the glacial period influenced the study area, there are several features 

that are interesting to investigate further. The circular depressions and mounds of the study area 

(Fig.2) drape the seafloor. Some of the circular depressions are iceberg pits. However, the 

majority of the depressions lies in no relation to any of the ploughmarks of the study area. 

Inferring that there is another reason why these geomorphological features appear on the 

seabed. 

The first study of seafloor circular depressions done by King and Maclean (1970) suggested 

seven different formation mechanisms; Man’s activities, falling boulders of ice, meteorites, 

biological activity (fish scouring the surface), water percolation or gas flow. Throughout time, 

several others have also suggested different mechanisms. Solheim and Elverhøi (1993) 

suggested three different formation mechanisms; meteorite impact, glacial erosion and shallow 

gas or gas hydrates. Fichler et al., (2005) suggested the following mechanisms: meteorite 

impact, volcanism, sediment injection and gas/fluid movement. All of which ended up with the 

gas flow mechanism as the most likely. In addition, there are new studies that from the 

beginning inferred that the features were made of gas flow (Nicholas et al., 2014; Nakajima et 

al., 2014; Ingrassia et al., 2015; Riboulot et al., 2016). 
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Assessment of the possible explanations for the craters;  

1: Man’s activities: 

For the depressions to be man-made, sign of human activity, or any report of human activity 

in the area need to be documented. No report of mechanical operations in the area exist, and 

there are no evidence on the seafloor itself suggesting that humans have created the craters. 

The study area lies at water depths of 317 to 362 m (Fig.2), and the Barents Sea experience 

uplift even today, meaning that the water depths previously was deeper. This makes the 

possibility of having craters made by humans highly unlikely. 

The theory is dismissed. 

2: Ice-rafted falling boulders: 

Falling ice-rafted boulders may create craters. Dependent on the height from which they fall, 

the impact of boulders hitting soft sediments at the seafloor may create craters. There are 

however pitfalls to this theory. First, the water depth is high, leading to a slowing down of the 

boulder, before even hitting the seafloor. Secondly, the dimensions of the craters are massive, 

which mean that the impact would need to be severe. At last, the depressions are in bedrock, 

not soft sediments. It would thus be highly unlikely for boulders to hit the seafloor with the 

amount of force needed to both penetrate the deep water, and yet still have enough force to 

create massive craters in bedrock. 

The theory is dismissed. 

3: Meteorites: 

The same arguments as for ice-rafted boulders applies for the meteorite theory. Formation of 

craters due to meteorites is possible, but the condition of the study area and the appearance of 

the depressions suggest otherwise. The water depth would most likely prevent the meteorites 

from hitting the seafloor with the force needed. In addition, a meteorite would create a rim at 

the edge of the craters. The majority of the depressions have no rim. There is the possibility of 

eroding the rim away post formation of craters, but yet again, the water depth issue is 

significant. 

The theory is dismissed. 
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4: Biological activity: 

Fish and other smaller organisms are able to create craters. Bacteria and marine life exist inside 

craters, but research show that communities are based on gas seepage, rather than the actual 

crater (Judd and Hovland, 2007). The massive distribution of craters diminish the possibility of 

biological activity. 

The theory is dismissed. 

5: Glacial erosion: 

Glacitectonic processes creating circular depressions is well documented, and described as 

rimmed pits (Bass and Woodworth-Lynas, 1988). These craters occur at the end of glacial 

ploughmarks. The majority of craters appear alone or at least with no relation to any glacial 

ploughmarks (Fig.12). Erosion of the seafloor could remove such a relation, but this is highly 

unlikely, especially since ploughmarks are observed all over the study area. 

The other obvious possible mechanism for glaciers to create craters is the so-called hill-hole 

pair. This theory is based on glaciers moving sediments such that a hill of remaining sediments, 

as the glacier retreats, follows a hole. The sediments from the hole are thus creating the 

downstream hill (Sættem, 1990). This means that the hill lies on top of the seafloor, and hence 

exist with a basal seafloor reflection. Many of the craters exist in close proximity to mounds, 

but no immediate sign of them laying in the downstream direction of the inferred glacial 

movement exist. 

The theory is plausible. 

6: Water percolation: 

Water percolation is a process where water migrate in the sediment packages. Through up-dip 

bedding planes and faults, water can access the seafloor, and send sediments into suspension. 

Slumping of material at the edge, and further suspension of the sediments would gradually build 

a large depression. The process is a plausible theory, and may explain the observed seabed 

features. 

The theory is plausible. 
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7: Gas in the subsurface: 

The last possible theory is a process involving hydrocarbons. It is in some way similar to the 

theory of water percolation. As gas migrates towards the seafloor, there will be a gradual 

accumulation of gas in the subsurface. The accumulated gas breach the threshold level and 

bursts into the water column. The process is explosive and sediments are blown away. Since 

the process is explosive, and happen at a short period, it is a plausible explanation. 

The theory is plausible. 

 

Three theories stand as the most plausible explanations; glacial erosion, water percolation and 

gas.  

Ice sheet movement of the study area is inferred to be from northeast to southwest (Winsborrow 

et al., 2010; Bjarnadóttir et al., 2014). In order to establish glacial erosion and glacitectonic 

processes as the triggering factor for the craters, a further investigation of the craters is 

necessary. In investigation of glacial erosional processes, it is common to separate between 

subglacial and proglacial erosion. Subglacial erosion is the process of erosion underneath the 

ice sheet, while proglacial erosion is the process of erosion in front of the ice sheet.  

Two main processes occur in a subglacial environment. These are abrasion and plucking 

(Goduie, 2004). Abrasion refer to the process of a glacier carrying coarse debris at the base of 

the ice sheet to grind the bedrock beneath the glacier. Plucking refers to the process of the 

glacier detaching large rocks from the already weathered bedrock (Goduie, 2004). In addition, 

there is the meltwater dynamics occurring in a subglacial environment. 

Abrasion of the surface alone would not be able to create craters, as the process scour the 

seafloor, rather than creating craters. Thus, a secondary process of meltwater dynamics is 

necessary as a digging and polishing factor. First of all this suggest that the craters are found in 

association with glacial striations, and in addition, that the observed features appear with a 

smoothed surface. The majority of craters have a complex appearance, and appear in no relation 

to any observed glacial striations. This means that abrasion and meltwater dynamics are not 

able to create the observed craters. 

Formation of observed depressions as a cause of plucking is more likely, since circular rock 

particles can be quarried. Different environments like marine and continental has affected the 

study area. Thus, there is considerable reason to believe that weathering of the seafloor would 
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have taken place. Pressure differences due to the different glaciations affecting the study area 

obviously create faults in the subsurface, but can also create joints in the seafloor. This enhance 

weathering and increase the possibility of plucking of rock particles from the study area. 

However, this process mostly create cirques, arêtes and horns (Goduie, 2004). These are huge 

landforms with no relationship to circular depressions observed on the seafloor. Thus, the 

possibility of subglacial erosion creating the depressions is highly unlikely, and dismissed as a 

theory. 

 

Figure 35: Overview map, showing possible hill-hole pair. C: Seismic section HH13_038_mig_deghost. D: Seismic section 

745730-93Potential2. 

Proglacial erosion occur in the front, and create large features such as meltwater channels, 

moraines, ridges, banks and outwash plains (Goduie, 2004). The craters formed by proglacial 

erosion lies next to mounds, and are called hill-hole pairs. The mounds of the study area are 

typically associated with pockmarks, meaning that the possibility of them being hill-hole pairs 

exist. The typical hill-hole system as a whole is between 1 km2 to 100 km2, and has a structural 

relief of 30 to 200 m (Aber et al., 1989). The most notable craters occurring as hill-hole pairs 

are the system of crater and mound nr.4/3, nr.5/2, nr.8/4 and nr.9/5 (Fig.35). All four lies in area 

1 (Fig.19), and follow the same direction concerning what side the mounds lies on. The 

dimensions of the four systems are between 0.3 and 0.7 km2. Thus, they are not in the size limit 

observed by Aber et al., (1989). Since sediments from the hole form an adjacent mound, the 

sediments lies on top of the seafloor. Upon inspection of the seismic section, the four mounds 

appear with a basal seafloor reflection. On the two seismic sections (Fig.35, C, D) there are no 

basal reflection corresponding to the seafloor. This mean that the systems are not hill-hole pairs, 

and in total dismissing the theory of glacial erosion being the triggering factor for the craters. 
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Previous studies of similar circular depressions all suggested that gas is the triggering 

mechanism (Solheim and Elverhøi, 1993; Fichler et al., 2005; Sultan et al., 2010; Chand et al., 

2012; Nakajima et al., 2014). This is further inferred from the seismic sections (Fig.21, 22, 24, 

26, 28, and 29). There are several signs of possible migration pathways for gas in the subsurface. 

As well as observed gas flares in the study area (Fig.31). In seismic sections, gas is observed as 

distortions in the seismic reflectors. This is not the case for water. Most of the seismic sections 

(Fig.21, 24, 26 and 29) show that there are vertical distortions interpreted to be possible 

migration pathways, and acoustic pipes. Gas in the subsurface contribute to a significant loss 

of p-wave velocity. Even small amounts of gas in the subsurface lead to change in the seismic 

sections (Andreassen et al., 2007). 

The zones of vertical distortion of seismic reflectors characterizes by having low seismic 

amplitude and low coherency. A different setting is observed underneath the geomorphological 

features at Figure 20 and Figure 28. At these locations, there are stronger reflections underneath 

the seabed features. Low penetration lead to a highly reflected seabed, but less reflected 

subsurface. Underneath the geomorphological features, there are vertically stronger reflectors. 

Gas in sediments does not only wipe out the reflections, but may also enhance them, in an 

environment where there is generally low reflection strength. Hence, the stronger vertical 

reflectors are interpreted as fluid migration pathways, and acoustic pipes (Løseth et al., 2011).  

Pull-up and pull-down of seismic reflectors are visible on Figure 21. The pull-down effect is a 

good indication of gas in sediments. Hydrocarbons lower the velocity of the sediments, and 

increase the travel time compared to the surrounding sediments. This create a pull-down effect. 

In opposition to the pull-down effect, the pull-up effect usually appear because of authigenic 

carbonates or salt (Marfurt and Alves, 2015). A pull-up effect is also observable in association 

with the GHSZ (Collett, 2000). The effect typically lies inside the GHSZ, while the opposite 

pull-down effect usually lies outside of the GHSZ. Due to the lack of a prominent BSR, and the 

depths at which this effect exist (1000 ms), it is unlikely that the pull-up effect relate to gas 

hydrates. At the edges of the pull-up (Fig.21), possible fault systems exist. This suggest that 

compressional faulting cause the effect, rather than gas hydrates. 
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Figure 36: Images showing the fault systems underneath the geomorphological features. A: HH_13_038_mig_deghost. B: 

745730-93Potential2. C: 7455-87-8WPotential1. Illumination and vertical exaggeration as the whole images shown in 

previous sections. 

Fault systems close to the seabed (Fig.36) show no specific trend in the orientation of the dip. 

The faults appear both closely spaced and with large spacing (Fig.36, A, C). The majority of 

faults in the area appear underneath the seabed features, inferring that there is a link between 

them and the observed geomorphological features. These seafloor features are thought to be 

formed by gas, and faults act as good conduits for fluids. Strengthening the theory of gas as the 

triggering factor. 

The mounds of the study area generally occur in association with the craters and are found with 

many of the same subsurface properties, such as faults and possible migration pathways. 

However, they are positive topographical features, suggesting that there is another triggering 

factor. Serié et al., (2012) postulated two main explanations for fluid flow mounds. These are 

sub-marine volcanoes and gas hydrate mounds. The two theories have different approach as to 

how the formation mechanism is. Sub-marine volcanoes are extrusive features, expelling 

fluidized sediments and gases, while gas hydrate mounds are mounds formed due to internal 

growth of hydrates in the shallow subsurface. With growth of hydrates, an increasing pressure 

is inflicted on the seafloor, giving rise to the seafloor mound (Serié et al., 2012). 
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The main factor differentiating the two formation mechanisms is that while sub-marine 

volcanoes occur with an internal structure and basal reflection corresponding to the seafloor, 

gas hydrate mounds appear with a lack of internal structure and basal reflection corresponding 

to the seafloor (Serié et al., 2012). Based on this, and the appearance of the mounds in the 

seismic section (Fig.36), the gas hydrate mound-theory is most likely correct for the study area. 

None of the mounds appears with a basal reflection corresponding to the seafloor. Suggesting 

that the formation mechanism is the growth of gas hydrates, and that they are submarine pingos. 

To confirm this theory there is a need to find the features in close association with a BSR. 

 

Figure 37: Overview of the three seismic sections with possible BSRs. A: 7455-87-8WPotential1. B: 

HH_13_038_mig_deghost. C: Cage15-5-001. 

Modelling of the GHSZ show that a BSR should exist between the depths of 42 m, and 274 m 

below seabed (Fig.34). Depending on the gas composition and geothermal gradient, it may exist 

in between or at even larger depths. By looking after a reversed amplitude reflector, compared 

to the seafloor, it is possible to identify gas hydrate BSRs. The BSR reflector follows the 

seafloor depth, and crosscut the sediment packages, as the existence rest on whether or not 

hydrates are stable (Hyndman and Davis, 1992). A possible BSR is marked in Figure 37, A. 

The BSR in the seismic section is a negative amplitude layer, opposite of the positive seabed 

reflector. The same factors applies for the two other possible BSRs (Fig.37, B, C). 
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Upon inspection of the suggested BSRs, the first (Fig.37, A) appears to be a side-trough. In 

addition, the BSR appear at very shallow depth. The possible BSR of Figure 37, A, is thus 

dismissed. The other two bear no sign of being side-troughs. The possible BSR of Figure 37, 

B, crosscut the underlying clinoforms at 750 ms TWTT, and lies at a depth of 719 ms TWTT. 

Meaning it lies in the possible BSR range. Due to a lack of log data, the exact depth of the 

modelled BSR is not possible to illustrate. Based on the model (Fig.34), and the fact that the 

layer crosscut the clinoforms, it is interpreted to be a gas hydrate BSR. 

The third possible BSR lies at a depth of 560 ms TWTT, with the seabed at a deeper water 

depth than the previous (Fig.37, C). Conditions the model at present day (Fig.34) deem as 

unstable conditions for gas hydrates. Suggesting that the possible BSR is a regular 

stratigraphical layer.  

Modelling the GHSZ is highly dependent on input parameters. The insecurities of the models 

is mainly based on gas compositions and geothermal gradient. The 100 % methane composition 

is an easy choice, as this is the thinnest possible stability zone. However, the chosen mixed gas 

composition may be wrong, which would lead to either a thinner or thicker stability zone. Only 

one seismic section show an interpreted BSR that fit the identification factors for BSRs. Thus, 

there are several possibilities: 1) Gas hydrates are unstable in the study area as a whole. 2) BSRs 

exist in the study area, but only in local areas not covered by the seismic lines. 3) Too low 

resolution of the seismic lines to be able to identify any BSR. 4) The model depicts correctly, 

and the interpreted BSR (Fig.37, B) is an actual BSR. Inferring that gas hydrates are stable in 

the study area. 
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Figure 38: A: Seismic section of 745230-94, with interpreted BSR. B: Seismic section of 745730-93Potential2, with 

interpreted BSR. C: Seismic section 2745-87_SBSW, with interpreted BSR. 

Outside of the study area, several prominent BSRs are visible (Fig.38). Each of which crosscuts 

the stratigraphy, and at a reasonable depth for gas hydrate BSR occurrence. Gas hydrate BSRs 
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exist in several different locations throughout the Barents Sea (Chand et al., 2012; Ostanin et 

al., 2013; Vadakkepuliyambatta et al., 2015). All three BSRs on the outside of the study area 

occur at the same depth compared to the seafloor as the interpreted BSR of Figure 37, B. Thus, 

it is reasonable that gas hydrates are stable in the area, and that the lack of BSRs underneath the 

craters and mounds ascribe to poor seismic resolution, low concentrations of free gas or that it 

is difficult to detect due to a lack of dipping bedding planes in the subsurface. 

It is obvious that the GHSZ is severely reduced because of the retreat of ice sheets (Fig. 32 and 

34).  Thus, the dissolution of gas hydrates indisputably contributed to an accumulation of free 

gas in the subsurface. In the most extreme case of the models, there is a release of 622 m of free 

gas (Fig.32 and 34). This add a massive volume of free gas in the subsurface. Keeping in mind 

that the volume correlation of 1 m3 gas hydrate equal 164 m3 of free gas (Kvenvolden, 1998), 

result in a considerable amount of potential free gas. 

Despite of this there are few clear signs of gas in the subsurface in the seismic sections (Fig.20, 

21, 22, 24, 26, 28 and 29). Two possible explanations emerge to explain this. The first is that 

water has migrated in the migration pathways, while the second is that the gas has left the area. 

Suggesting a dormant area. Migration of water through fault systems is no new observation, but 

the biggest issue with the water theory is that it is highly unlikely for water to accumulate 

enough pressure to create the circular depressions. Hence, it is more likely that gas inflicted the 

area. 

At the seafloor of the study area, several gas flares are visible (Fig.31). This shows that the area 

is active today. A larger number of gas flares exist on top of mounds, rather than inside the 

craters, where most of them rather lies on the rim, suggesting that a cementation takes place 

when the gas vent out of the crater (Hovland and Svensen, 2006).  The result is that the gas 

need to find another way to migrate, and thus move to the sides of the craters, where it can 

migrate into the water column. 

As gas flares show that the area is active today, it is likely to observe clear hydrocarbon 

indications in the subsurface. Except for the possible migration pathways and acoustic pipes, 

the seismic sections (Fig.20, 21, 22, 24, 26, 28 and 29) lacks bright spots and other normal 

hydrocarbon indications. Interpreted to be because of permeable layers in the subsurface, the 

hydrocarbons never accumulate enough free gas under a sealing sediment package, and just 

continue to migrate towards the seafloor. 
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The migration take place both inside faults and through permeable sediment packages. Tectonic 

movement enhances and reactivate the faults in the subsurface. In addition, the proven glacial 

movement add further stress to the already brittle rock. Further reactivating the faults, 

enhancing the migration pathway (Ostanin et al., 2013). In respect to this, it is crucial how old 

the geomorphological features are. 

Observation of the mounds of the study area (Fig.14) show that many of them exist with glacial 

ploughmarks. This means that icebergs moved in the area at the time these mounds already had 

formed. Dating the mounds with ploughmarks to be younger than LGM and created during 

deglaciation. During deglaciation, the icebergs floated in the water, and had a sufficient ice 

supply upstream of the study area. Some of the mounds appear without glacial ploughmarks, 

and are interpreted to be even younger than those created during deglaciation.  

Craters made before LGM characterizes by gentle slopes, partly infill of sediments in the 

direction of the glacial movement, and lack of rims at the edges (Solheim and Elverhøi, 1993). 

Few to none of the craters in the study area (Fig.12) have these characteristics, and thus the 

craters are interpreted to be younger than LGM.  

During the different major glaciations, large ice sheets covered the study area (Fig.6). In 

addition, the large ice sheets contributed to a more suitable environment for gas hydrates to be 

stable. With increased pressure and colder climate, the GHSZ increased. When the ice sheet 

retreats, pressure release and the GHSZ decrease. Gas hydrates start to dissolute, and there is a 

massive release of free gas. Methane in hydrates expand to 164 times the original volume, when 

melting (Kvenvolden, 1998). Gas breaching the threshold value of the overburden sediments, 

create one or several massive expulsions of gas to the water column, and thus craters form. 
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Figure 39: Suggested formation mechanism of the observed features. 
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The model (Fig.39) shows the suggested formation mechanism of the observed features. In the 

beginning fault systems in the subsurface exist (Fig.39, A), but with limited extent. The GHSZ 

decrease as the ice sheet retreat (Fig.39, B), leading to dissolution of gas hydrates, as well as 

reactivation of faults. With the advance of the ice sheet, the small mound of accumulated gas 

hydrates in Figure 39, B, is eroded away (C), before reappearing as the ice retreats (D). After 

LGM the ice sheet retreat and the gas hydrate environment has time to mature (E). In this 

process, hydrate dissolution and increased pore pressure lead to a collapse of the seafloor at the 

edges of the mound.  Gas leaking into the seafloor at the collapse is observable as gas flares. 

Continuous dissolution of gas hydrates and an increasing pore pressure result in gas reaching 

the threshold value for the seafloor. Thus breaching the seafloor in an explosive blowout, 

creating the crater (F). In some cases, several blowouts have formed the present day craters. 

Inferring that the geomorphological features form due to gas hydrates, and it is therefore 

possible to classify circular depressions based on size. Judd and Hovland (2007) postulated that 

pockmarks are craters of size smaller than 100 m in diameter. Thus, 20 % of the craters in the 

study area are pockmarks. Calling those with a diameter of 100-300 m large pockmarks, result 

in 53 % of them being large pockmarks. The rest are referred to as fluid flow craters, and count 

for 27 % of the total depressions. Gas hydrate mounds are generally referred to as submarine 

pingos or just pingos, and thus there are 227 pingos in the study area. 
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7 – Conclusion 

Mapping of geomorphological features and gas flares show that there are 288 craters, 227 

mounds and 119 gas flares in the study area. The features have its own distinctive shape and 

dimension. Dimensions of the depressions range from 43 to 906 m, and with depth of 0.5 to 34 

m, while the mounds are 28 to 650 m in width and 0.2 to 25 m in height. The mounds clearly 

relate to the depressions. They exist either inside or in close proximity, interpreted as one 

system. 

 

Large vertical faulting systems are visible underneath the geomorphological features. Some of 

them are difficult to clearly observe as faults. They may act as migration paths for hydrocarbons 

travelling to the seabed. The base of the craters consist of multiple faults that either reach or are 

close to the seabed. Generally, the inspected mounds lack internal structure and basal reflection 

corresponding to the seafloor. They are interpreted as gas hydrate mounds or submarine pingos. 

An observed reversed reflector crosscutting the stratigraphic layers is interpreted to be a gas 

hydrate BSR. In addition, three other seismic lines show BSRs lying on the outside of the study 

area. 

 

Models of the GHSZ during LGM, deglaciation and present day show a large change of the 

stability zone. The decrease of the GHSZ result in release of free gas, migrating in the migration 

pathways. Extensive signs of glacial activity cover the study area. Advance and retreat of ice 

sheets led to fracturing and reactivation of faults, enhancing the fluid migration paths. Gas flares 

observed on the seafloor indicate that the area is still active. There are few clear hydrocarbon 

signs underneath the craters and mounds. This is interpreted to be because of sufficient fluid 

flow towards the seafloor. Lack of gas flares observed inside and near craters is thought to be 

due to cementing of the migration pathways inside the crater. This result in gas migrating on 

the outside of the crater, and migrating to the neighbour pingos, where a sufficient migration 

system exist. 

 

The increased free gas accumulation, either from fluid flow or dissolution of gas hydrates, 

accumulated gas in the subsurface. Seabed elevated because of gas hydrate accumulation, 

resulting in pingos. Continuous supply resulted in breaching of the threshold value. Thus, one 

or several expulsions of free gas created the craters. Based on size there are 58 pockmarks, 153 

large pockmarks and 77 fluid flow craters.  
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9 – Appendix 

9.1 – Depressions spreadsheet 

Table 3: Overview of depressions in the study area, and their properties. Y=Yes, N=No. 

Number: Dimension (m): Depth (m): Shape: Relation to mounds 

(Y/N): 

Type: 

1 82 2 Circular N Pockmark 

2 61 1 Circular N Pockmark 

3 81 2 Elliptical N Pockmark 

4 336 22 Elliptical Y Crater 

5 301 17 Elliptical Y Crater 

6 164 2.5 Semi-circular N Large 

pockmark 

7 121 3.5 Elliptical N Large 

pockmark 

8 306 19 Elliptical Y Crater 

9 246 25.5 Elliptical Y Large 

pockmark 

10 93 2.5 Circular N Pockmark 

11 313 9 Circular N Crater 

12 318 12 Circular N Crater 

13 178 7 Semi-circular N Large 

pockmark 

14 414 25.5 Circular N Crater 

15 200 3.5 Circular N Large 

pockmark 

16 203 2.5 Semi-circular Y Large 

pockmark 

17 82 1 Semi-circular N Pockmark 

18 381 5 Semi-circular N Crater 

19 410 5 Semi-circular N Crater 

20 372 7 Elliptical Y Crater 
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21 976 17 Semi-circular Y Crater 

22 340 5 Semi-circular Y Crater 

23 268 4 Semi-circular Y Large 

pockmark 

24 226 6.5 Elliptical Y Large 

pockmark 

25 218 2 Semi-circular N Large 

pockmark 

26 219 8 Elliptical Y Large 

pockmark 

27 386 15 Elliptical N Crater 

28 467 12 Circular Y Crater 

29 563 18 Semi-circular Y Crater 

30 382 13 Elliptical Y Crater 

31 188 2 Circular N Large 

pockmark 

32 536 16 Elliptical Y Crater 

33 253 7  Circular N Large 

pockmark 

34 568 28 Elliptical Y Crater 

35 100 2.5 Elliptical N Pockmark 

36 411 24 Elliptical N Crater 

37 390 4.5 Circular N Crater 

38 390 14 Elliptical N Crater 

39 405 24 Elliptical N Crater 

40 458 2 Elliptical N Crater 

41 414 24 Elliptical N Crater 

42 330 14 Circular Y Crater 

43 495 23 Circular N Crater 

44 131 8 Elliptical N Large 

pockmark 

45 127 6.5 Elliptical N Large 

pockmark 
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46 170 10 Elliptical N Large 

pockmark 

47 582 30 Circular N Crater 

48 188 5 Circular N Large 

pockmark 

49 178 5.5 Circular N Large 

pockmark 

50 136 1.5 Elliptical N Large 

pockmark 

51 276 8 Elliptical Y Large 

pockmark 

52 387 20 Circular N Crater 

53 190 6 Circular N Large 

pockmark 

54 294 6 Elliptical N Large 

pockmark 

55 232 3 Circular N Large 

pockmark 

56 131 3 Circular N Large 

pockmark 

57 164 1.5 Circular N Large 

pockmark 

58 157 1.5 Circular N Large 

pockmark 

59 185 4 Circular N Large 

pockmark 

60 157 1.5 Circular N Large 

pockmark 

61 159 4.5 Elliptical N Large 

pockmark 

62 150 4.5 Elliptical N Large 

pockmark 
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63 188 3.5 Elliptical Y Large 

pockmark 

64 98 3 Circular N Pockmark 

65 167 2 Circular N Large 

pockmark 

66 149 4 Elliptical N Large 

pockmark 

67 327 6 Semi-circular N Crater 

68 353 8.5 Circular N Crater 

69 290 9 Circular Y Large 

pockmark 

70 123 1.5 Circular N Large 

pockmark 

71 180 3.5 Elliptical N Large 

pockmark 

72 196 7 Circular N Large 

pockmark 

73 426 8 Semi-circular Y Crater 

74 586 17 Semi-circular Y Crater 

75 230 3 Elliptical Y Large 

pockmark 

76 381 7 Circular N Crater 

77 429 10 Semi-circular Y Crater 

78 37 10 Semi-circular N Crater 

79 433 6.5 Elliptical Y Crater 

80 488 9 Circular N Crater 

81 785 6 Circular Y Crater 

82 398 11 Elliptical Y Crater 

83 341 6 Elliptical N Crater 

84 62 1 Circular N Pockmark 

85 54 0.5 Elliptical N Pockmark 

86 394 2.5 Circular Y Crater 

87 330 3.5 Semi-circular Y Crater 
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88 93 1.5 Circular N Pockmark 

89 235 3 Circular N Large 

pockmark 

90 573 7 Circular Y Crater 

91 224 4 Elliptical N Large 

pockmark 

92 150 2 Circular N Large 

pockmark 

93 463 10 Circular N Crater 

94 353 6 Semi-circular N Crater 

95 218 4 Elliptical N Large 

pockmark 

96 124 3.5 Elliptical N Large 

pockmark 

97 150 3 Elliptical N Large 

pockmark 

98 158 1 Elliptical N Large 

pockmark 

99 334 12 Elliptical Y Crater 

100 283 8 Circular N Large 

pockmark 

101 126 2 Semi-circular N Large 

pockmark 

102 237 6 Elliptical N Large 

pockmark 

103 144 4.5 Elliptical N Large 

pockmark 

104 180 2 Elliptical N Large 

pockmark 

105 201 4 Elliptical N Large 

pockmark 

106 174 4 Elliptical N Large 

pockmark 
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107 89 1.5 Semi-circular N Pockmark 

108 112 3 Circular N Large 

pockmark 

109 387 12 Circular N Crater 

110 400 11 Circular Y Crater 

111 117 2 Elliptical N Large 

pockmark 

112 162 2 Semi-circular N Large 

pockmark 

113 154 3 Semi-circular N Large 

pockmark 

114 81 1.5 Circular N Pockmark 

115 377 15 Semi-circular Y Crater 

116 221 8 Elliptical N Large 

pockmark 

117 141 8 Elliptical N Large 

pockmark 

118 152 2 Circular N Large 

pockmark 

119 522 22 Circular Y Crater 

120 425 11 Circular Y Crater 

121 445 8 Elliptical N Crater 

122 137 4 Elliptical Y Large 

pockmark 

123 623 25 Elliptical Y Crater 

124 80 1.5 Semi-circular N Pockmark 

125 120 2 Semi-circular N Large 

pockmark 

126 130 6 Semi-circular N Large 

pockmark 

127 216 12 Elliptical N Large 

pockmark 

128 637 25 Circular Y Crater 
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129 129 2.5 Circular N Large 

pockmark 

130 310 7 Semi-circular N Crater 

131 114 2 Elliptical N Large 

pockmark 

132 63 1 Circular N Pockmark 

133 342 11 Elliptical Y Crater 

134 187 10 Elliptical N Large 

pockmark 

135 487 20 Elliptical Y Crater 

136 315 6.5 Semi-circular Y Crater 

137 71 1 Elliptical N Pockmark 

138 125 2 Elliptical N Large 

pockmark 

139 90 2.5 Circular N Pockmark 

140 396 20 Circular Y Crater 

141 72 2 Circular N Pockmark 

142 114 2.5 Elliptical N Large 

pockmark 

143 348 11 Semi-circular Y Crater 

144 427 12.5 Elliptical N Crater 

145 255 7 Semi-circular N Large 

pockmark 

146 179 6 Semi-circular N Large 

pockmark 

147 161 7 Circular N Large 

pockmark 

148 215 3 Circular N Large 

pockmark 

149 88 1.5 Circular N Pockmark 

150 117 2 Semi-circular N Large 

pockmark 



 

 

  96 

 

151 300 10.5 Elliptical N Large 

pockmark 

152 272 7 Semi-circular N Large 

pockmark 

153 122 3 Elliptical N Large 

pockmark 

154 221 3.5 Elliptical N Large 

pockmark 

155 91 6 Elliptical N Pockmark 

156 142 4 Elliptical N Large 

pockmark 

157 295 9 Elliptical N Large 

pockmark 

158 200 4 Semi-circular N Large 

pockmark 

159 66 0.8 Circular N Pockmark 

160 252 4 Semi-circular N Large 

pockmark 

161 675 7 Elliptical Y Crater 

162 110 3 Elliptical N Large 

pockmark 

163 149 3 Semi-circular N Large 

pockmark 

164 184 8 Circular N Large 

pockmark 

165 526 14 Semi-circular Y Crater 

166 77 1.5 Semi-circular Y Pockmark 

167 51 1.5 Elliptical N Pockmark 

168 77 1 Elliptical N Pockmark 

169 111 1.5 Semi-circular N Large 

pockmark 

170 262 12 Circular N Large 

pockmark 
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171 62 1 Circular N Pockmark 

172 165 1.5 Semi-circular Y Large 

pockmark 

173 165 2.5 Semi-circular Y Large 

pockmark 

174 147 1 Elliptical N Large 

pockmark 

175 140 2 Semi-circular N Large 

pockmark 

176 149 2 Semi-circular N Large 

pockmark 

177 246 6 Elliptical N Large 

pockmark 

178 345 8 Semi-circular N Crater 

179 353 6.5 Circular N Crater 

180 87 3 Elliptical N Pockmark 

181 116 2 Elliptical N Large 

pockmark 

182 115 3.5 Semi-circular N Large 

pockmark 

183 444 8 Semi-circular N Crater 

184 638 6 Semi-circular Y Crater 

185 397 10 Elliptical Y Crater 

186 293 8 Elliptical Y Large 

pockmark 

187 139 2.5 Circular N Large 

pockmark 

188 175 6.5 Elliptical N Large 

pockmark 

189 260 5 Elliptical Y Large 

pockmark 

190 120 2 Semi-circular N Large 

pockmark 
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191 107 2 Circular N Large 

pockmark 

192 110 1.5 Elliptical N Large 

pockmark 

193 94 4 Elliptical N Pockmark 

194 84 3 Elliptical N Pockmark 

195 457 11 Semi-circular N Crater 

196 80 0.8 Circular N Pockmark 

197 140 2 Semi-circular N Large 

pockmark 

198 191 10 Circular Y Large 

pockmark 

199 200 6 Semi-circular Y Large 

pockmark 

200 193 6 Elliptical N Large 

pockmark 

201 178 3 Semi-circular N Large 

pockmark 

202 100 3 Semi-circular N Pockmark 

203 129 4 Elliptical N Large 

pockmark 

204 109 3 Semi-circular N Large 

pockmark 

205 162 6 Elliptical N Large 

pockmark 

206 257 12 Elliptical N Large 

pockmark 

207 233 12 Elliptical Y Large 

pockmark 

208 111 1.5 Elliptical N Large 

pockmark 

209 100 2 Circular N Pockmark 
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210 146 4 Semi-circular N Large 

pockmark 

211 147 2 Elliptical N Large 

pockmark 

212 123 3.5 Elliptical N Large 

pockmark 

213 293 11 Circular Y Large 

pockmark 

214 362 15 Elliptical N Crater 

215 249 4.5 Elliptical N Large 

pockmark 

216 110 4 Elliptical Y Large 

pockmark 

217 405 20 Elliptical N Crater 

218 65 3 Elliptical N Pockmark 

219 87 1.5 Circular N Pockmark 

220 210 6 Elliptical N Large 

pockmark 

221 165 7 Elliptical N Large 

pockmark 

222 250 8 Elliptical Y Large 

pockmark 

223 288 6.5 Elliptical N Large 

pockmark 

224 163 3 Semi-circular N Large 

pockmark 

225 129 5 Elliptical N Large 

pockmark 

226 210 12 Elliptical Y Large 

pockmark 

227 127 6 Circular Y Large 

pockmark 
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228 148 2.5 Circular N Large 

pockmark 

229 450 20 Semi-circular Y Crater 

230 80 3 Circular N Pockmark 

231 693 25 Semi-circular Y Crater 

232 200 6 Semi-circular N Large 

pockmark 

233 160 4 Semi-circular N Large 

pockmark 

234 173 1.5 Semi-circular N Large 

pockmark 

235 236 5 Elliptical N Large 

pockmark 

236 277 12 Elliptical N Large 

pockmark 

237 195 5 Semi-circular N Large 

pockmark 

238 292 6 Elliptical N Large 

pockmark 

239 569 9 Semi-circular Y Crater 

240 178 10.5 Elliptical Y Large 

pockmark 

241 144 4 Circular Y Large 

pockmark 

242 224 6 Circular N Large 

pockmark 

243 120 3 Semi-circular N Large 

pockmark 

244 128 6 Circular Y Large 

pockmark 

245 147 2 Semi-circular N Large 

pockmark 
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246 126 1.5 Circular N Large 

pockmark 

247 82 3 Circular N Pockmark 

248 78 3.5 Circular N Pockmark 

249 80 1.2 Semi-circular N Pockmark 

250 276 5 Elliptical Y Large 

pockmark 

251 83 2.5 Circular N Pockmark 

252 87 1 Circular N Pockmark 

253 62 1 Circular N Pockmark 

254 546 6 Semi-circular N Crater 

255 100 2.5 Elliptical N Pockmark 

256 50 0.5 Semi-circular N Pockmark 

257 285 4 Circular N Large 

pockmark 

258 152 3 Elliptical Y Large 

pockmark 

259 78 2 Circular N Pockmark 

260 128 1 Elliptical N Large 

pockmark 

261 265 4.5 Elliptical Y Large 

pockmark 

262 121 3 Elliptical N Large 

pockmark 

263 91 2.5 Elliptical N Pockmark 

264 43 1 Semi-circular N Pockmark 

265 145 3 Circular Y Large 

pockmark 

266 104 2 Circular N Large 

pockmark 

267 152 2 Elliptical N Large 

pockmark 
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268 101 2 Circular N Large 

pockmark 

269 112 2.5 Elliptical Y Large 

pockmark 

270 94 2.5 Elliptical Y Pockmark 

271 75 1.5 Circular N Pockmark 

272 64 1 Circular N Pockmark 

273 46 0.5 Circular N Pockmark 

274 69 0.8 Circular N Pockmark 

275 56 1 Semi-circular N Pockmark 

276 60 1 Circular N Pockmark 

277 108 3 Circular Y Large 

pockmark 

278 104 0.5 Elliptical Y Large 

pockmark 

279 82 2 Circular Y Pockmark 

280 83 1 Circular N Pockmark 

281 475  Semi-circular N Crater 

282 97 2.5 Semi-circular N Pockmark 

283 66 3 Circular N Pockmark 

284 67 1 Circular N Pockmark 

285 83 0.8 Circular N Pockmark 

286 106 2.5 Circular N Large 

pockmark 

287 46 0.6 Circular N Pockmark 

288 62 1 Semi-circular N Pockmark 
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9.2 – Mounds spreadsheet 

Table 4: Overview of mounds in the study area and their different properties. Y=Yes, P=Possibly, N=No. R-cone=Rounded 

cone. 

Number: Size (m): Height (m): Shape: Shape2: Related to pockmark 

(Y/P/N): 

Inside pockmark 

(Y/N): 

1 265 15 Elliptical Flat P N 

2 331 13 Elliptical Flat Y N 

3 324 15 Semi-

circular 

Flat Y N 

4 438 13 Elliptical Flat Y N 

5 306 14 Elliptical Flat Y N 

6 70 1.5 Circular Cone N N 

7 79 2 Circular Cone N N 

8 69 2 Circular Cone P N 

9 71 1.5 Circular Cone N N 

10 59 1.5 Circular Cone N N 

11 103 6 Circular R-cone P N 

12 175 4 Semi-

circular 

Cone Y Y 

13 73 2 Semi-

circular 

Cone P N 

14 145 3 Elliptical Flat P N 

15 86 2 Elliptical Flat P N 

16 45 1 Circular Cone N N 

17 28 1.2 Circular Cone N N 

18 28 1 Circular R-cone N N 

19 280 8 Elliptical Flat N N 

20 93 6 Circular R-cone P N 

21 94 5 Elliptical Cone Y N 

22 110 4 Elliptical Cone Y Y 

23 156 2 Semi-

circular 

Flat Y N 

24 43 2 Circular Cone N N 
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25 46 1.5 Circular R-cone N N 

26 28 0.8 Circular R-cone N N 

27 468 11 Elliptical Flat Y N 

28 41 1 Circular R-cone N N 

29 167 1.5 Elliptical Flat Y N 

30 50 1.5 Circular R-cone P N 

31 605 6 Semi-

circular 

Flat N N 

32 55 2 Circular R-cone N N 

33 37 1.5 Circular R-cone N N 

34 75 3 Circular R-cone N N 

35 460 6 Semi-

circular 

Flat Y Y 

36 52 2.5 Circular R-cone N N 

37 31 0.2 Semi-

circular 

Cone N N 

38 3 2.5 Elliptical R-cone N N 

39 54 3 Circular R-cone N N 

40 463 7 Semi-

circular 

Flat Y N 

41 130 2 Circular Flat Y N 

42 81 10 Circular Flat Y Y 

43 132 4 Semi-

circular 

Flat Y N 

44 90 5 Elliptical Cone P N 

45 79 6 Circular R-cone P N 

46 38 1 Circular Cone N N 

47 78 4 Circular Cone N N 

48 150 12 Elliptical R-cone Y Y 

49 96 6 Elliptical Flat Y N 

50 248 8 Semi-

circular 

R-cone Y N 

51 199 8 Elliptical Flat N N 
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52 117 6 Semi-

circular 

R-cone Y N 

53 89 15 Semi-

circular 

Flat Y Y 

54 75 17 Elliptical Cone Y Y 

55 56 10 Elliptical Flat Y Y 

56 61 8 Circular R-cone Y Y 

57 344 15 Semi-

circular 

Flat Y Y 

58 134 17 Elliptical Flat Y Y 

59 99 15 Semi-

circular 

Flat Y Y 

60 79 8 Elliptical Flat Y Y 

61 73 4 Circular R-cone P N 

62 89 2 Semi-

circular 

R-cone Y N 

63 93 4 Semi-

circular 

Flat N N 

64 118 5 Semi-

circular 

R-cone P N 

65 349 5 Elliptical Flat Y N 

66 150 5 Semi-

circular 

Flat Y N 

67 54 4 Circular R-cone Y N 

68 55 3 Circular R-cone P N 

69 150 3 Semi-

circular 

R-cone P N 

70 54 0.5 Circular Cone N N 

71 41 1 Circular R-cone N N 

72 45 2 Circular Cone N N 

73 182 4 Semi-

circular 

Cone N N 
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74 139 1.5 Semi-

circular 

Cone Y N 

75 98 10 Elliptical Flat Y Y 

76 75 4 Semi-

circular 

Cone Y N 

77 100 1 Semi-

circular 

Cone P N 

78 63 1 Elliptical R-cone Y N 

79 93 4 Elliptical Cone N N 

80 100 3 Elliptical Cone N N 

81 87 1.5 Elliptical Cone N N 

82 94 2 Elliptical Flat N N 

83 115 4 Elliptical Cone P N 

84 68 3 Elliptical Cone Y Y 

85 96 1.5 Elliptical R-cone N N 

86 141 5 Elliptical R-cone Y Y 

87 159 3 Elliptical R-cone P N 

88 208 2 Semi-

circular 

Flat P N 

89 110 1.5 Circular R-cone Y N 

90 143 3 Elliptical Flat N N 

91 254 4 Semi-

circular 

Flat Y N 

92 125 8 Elliptical Flat Y Y 

93 260 4 Elliptical Flat P N 

94 68 1.5 Elliptical Cone Y Y 

95 104 2 Elliptical Cone Y N 

96 48 1 Circular Cone N N 

97 54 2 Circular R-cone Y N 

98 338 5 Elliptical Flat Y N 

99 205 5 Semi-

circular 

R-cone Y N 

100 120 2 Elliptical Flat N N 
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101 127 4 Semi-

circular 

Flat N N 

102 171 2.5 Semi-

circular 

Cone N N 

103 90 2 Semi-

circular 

R-cone Y N 

104 128 3 Elliptical Flat Y N 

105 157 25 Elliptical Flat Y Y 

106 73 18 Circular Cone Y Y 

107 71 7 Elliptical Flat Y Y 

108 238 10 Elliptical Flat Y N 

109 302 10 Elliptical Flat Y N 

110 467 15 Elliptical Flat Y N 

111 126 2.5 Elliptical Flat N N 

112 154 2.5 Elliptical Flat N N 

113 180 4 Semi-

circular 

Cone Y N 

114 88 1.5 Elliptical R-cone P N 

115 90 3 Semi-

circular 

R-cone N N 

116 44 1 Circular Cone N N 

117 86 1.5 Elliptical Cone Y N 

118 63 2 Circular Cone N N 

119 59 1.5 Circular Cone N N 

120 50 1 Circular R-cone N N 

121 65 2 Circular Cone N N 

122 67 2 Circular Cone N N 

123 37 0.6 Circular Cone N N 

124 81 2.5 Elliptical R-cone N N 

125 53 1 Circular Cone P N 

126 62 2 Circular R-cone P N 

127 49 1.5 Semi-

circular 

R-cone N N 
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128 321 3 Elliptical Flat N N 

129 84 1.5 Elliptical R-cone N N 

130 70 2 Semi-

circular 

Cone N N 

131 97 5 Elliptical Cone Y N 

132 493 10 Elliptical Flat P N 

133 100 5 Elliptical Flat Y N 

134 83 4 Elliptical R-cone Y N 

135 494 5 Semi-

circular 

Flat Y N 

136 117 3 Semi-

circular 

Flat N N 

137 105 3 Elliptical Flat N N 

138 235 4 Semi-

circular 

Flat N N 

139 262 3 Elliptical Flat Y N 

140 63 10 Elliptical R-cone Y Y 

141 269 8 Elliptical Flat Y N 

142 81 1.5 Elliptical Cone N N 

143 92 1 Circular Cone N N 

144 75 4 Circular R-cone Y Y 

145 85 0.8 Circular R-cone N N 

146 109 2.5 Circular R-cone N N 

147 147 3 Elliptical Flat Y N 

148 260 4 Elliptical Flat Y Y 

149 198 7 Elliptical R-cone Y Y 

150 205 2 Circular R-cone Y N 

151 92 1 Semi-

circular 

R-cone N N 

152 140 5 Semi-

circular 

Cone N N 

153 236 2 Elliptical Flat Y N 

154 272 4 Circular R-cone N N 
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155 117 2 Semi-

circular 

Cone N N 

156 76 1.5 Semi-

circular 

Cone N N 

157 100 2 Semi-

circular 

R-cone N N 

158 127 1.5 Semi-

circular 

R-cone N N 

159 110 3.5 Elliptical R-cone P N 

160 103 3 Elliptical R-cone Y N 

161 93 2 Circular R-cone Y N 

162 100 2 Circular Cone Y N 

163 109 2 Semi-

circular 

R-cone Y N 

164 110 1.5 Circular Cone N N 

165 182 2.5 Semi-

circular 

Flat N N 

166 323 3 Elliptical Flat Y N 

167 135 1 Elliptical R-cone Y N 

168 69 4 Semi-

circular 

Cone N N 

169 229 10 Circular Flat Y Y 

170 178 3 Elliptical Flat Y N 

171 211 3 Semi-

circular 

Flat Y N 

172 146 4 Elliptical Flat Y Y 

173 206 2 Semi-

circular 

Flat Y Y 

174 217 2 Elliptical Flat Y N 

175 93 4 Semi-

circular 

Flat Y Y 

176 74 3 Elliptical R-cone N N 

177 77 4 Elliptical R-cone Y N 
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178 84 3 Semi-

circular 

R-cone N N 

179 105 2.5 Semi-

circular 

R-cone N N 

180 70 2.5 Circular R-cone Y N 

181 121 4 Semi-

circular 

R-cone N N 

182 188 2 Elliptical Flat N N 

183 82 1.5 Elliptical R-cone N N 

184 255 4 Elliptical Flat N N 

185 60 2.5 Semi-

circular 

Cone P N 

186 71 3 Elliptical Cone P N 

187 125 2 Elliptical R-cone N N 

188 87 2 Elliptical Cone N N 

189 94 2 Semi-

circular 

Cone N N 

190 109 3 Elliptical R-cone N N 

191 156 2 Semi-

circular 

Flat N N 

192 73 1 Elliptical R-cone N N 

193 53 1 Semi-

circular 

R-cone N N 

194 67 0.5 Circular R-cone N N 

195 57 1.5 Elliptical R-cone N N 

196 54 1 Circular R-cone N N 

197 69 0.4 Semi-

circular 

Cone Y N 

198 45 0.5 Semi-

circular 

Cone Y N 

199 70 1 Semi-

circular 

R-cone Y N 
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200 361 2 Semi-

circular 

Flat Y N 

201 267 5 Semi-

circular 

Flat Y Y 

202 86 2 Elliptical Flat Y N 

203 127 10 Circular R-cone Y Y 

204 94 2 Elliptical R-cone Y N 

205 52 4 Elliptical Cone Y N 

206 66 2.5 Elliptical R-cone N N 

207 81 3.5 Semi-

circular 

Cone Y Y 

208 119 3 Elliptical R-cone Y N 

209 61 1.5 Semi-

circular 

R-cone N N 

210 79 2 Circular R-cone N N 

211 43 0.5 Elliptical Cone N N 

212 56 2 Semi-

circular 

Cone N N 

213 74 4 Elliptical Cone Y N 

214 124 4 Elliptical Flat Y N 

215 58 1.5 Circular Cone Y N 

216 110 2 Circular R-cone P N 

217 60 1 Semi-

circular 

R-cone P N 

218 93 2.5 Circular R-cone N N 

219 64 2 Semi-

circular 

Cone Y N 

220 68 2 Circular R-cone Y N 

221 59 1.5 Semi-

circular 

Cone Y N 

222 54 2 Circular R-cone N N 

223 293 3 Elliptical Flat Y N 
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224 230 3 Semi-

circular 

Flat Y N 

225 72 4 Semi-

circular 

R-cone Y N 

226 160 5 Elliptical Flat N N 

227 278 4 Semi-

circular 

Flat Y N 
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9.3 – Gas flares spreadsheet 

Table 5: Overview of gas flares in the study area and their height. 

Number: Height (m): 

1 22 

2 73 

3 58 

4 74 

5 31 

6 46 

7 37 

8 11 

9 38 

10 36 

11 46 

12 24 

13 64 

14 81 

15 18 

16 19 

17 95 

18 85 

19 64 

20 20 

21 44 

22 27 

23 37 

24 17 

25 66 

26 47 

27 48 

28 67 

29 10 
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30 79 

31 9 

32 32 

33 40 

34 49 

35 88 

36 81 

37 9 

38 4 

39 43 

40 17 

41 71 

42 13 

43 34 

44 16 

45 24 

46 18 

47 19 

48 15 

49 37 

50 20 

51 31 

52 8 

53 54 

54 80 

55 51 

56 30 

57 61 

58 59 

59 28 

60 46 

61 19 

62 33 
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63 27 

64 28 

65 4 

66 28 

67 54 

68 10 

69 6 

70 8 

71 5 

72 4 

73 32 

74 45 

75 74 

76 16 

77 38 

78 46 

79 18 

80 25 

81 57 

82 30 

83 37 

84 18 

85 12 

86 23 

87 5 

88 29 

89 40 

90 34 

91 11 

92 13 

93 16 

94 16 

95 37 
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96 23 

97 75 

98 28 

99 35 

100 37 

101 68 

102 36 

103 10 

104 13 

105 19 

106 45 

107 13 

108 46 

109 51 

110 18 

111 29 

112 29 

113 15 

114 7 

115 49 

116 59 

117 15 

118 10 

119 24 

 

 


