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Abstract

We consider sequential bargaining between three �rms that are all
essential in creating a surplus. One of the �rms is dominant in the
sense that it ultimately decides whether the surplus will be created.
The other �rms have an incentive to get a large share of the pie for
themselves, but leaving enough for the dominant �rm that it �nds it
pro�table to create the surplus. Hence, the smaller �rms have pref-
erences over who they take their share from. Of all of the bargaining
protocols that we consider, we identify the set of Pareto optimal pro-
tocols, and show which of them will be uniquely preferred by each
�rm.
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1 Introduction

Bargaining models attempt to capture situations involving two or many par-
ties, who can cooperate in the creation of a commonly desirable surplus, but
over whose distribution all parties are in con�ict. In such a situation the more
one party can get, the less that remains for the other parties. Each party in-
�icts a one-to-one externality on each other opponent. However many social,
political and economic problems of relevance do not exhibit this underly-
ing feature. In this paper we consider a three-player bargaining situation
in which the players have preferences over whom they take a share of the
surplus from. Coase�s (1960) famous example of the negotiations between
a railroad company and a group of farmers is a case in point.1 In order to
create the surplus, the railroad is dependent on securing an agreement with
each farmer; however, in pursuing the largest possible share of the surplus,
each farmer is mindful of the fact that the project must be pro�table enough
for the railroad to want to instigate the project that creates the surplus.
Hence each farmer wants to increase his share at the expense of the other
farmers, not the railroad.
In this paper we consider bargaining situations between three �rms. To

�x ideas, consider the following example. Suppose that two small �rms are
dependent upon a larger one to create the surplus. The dominant �rm de-
pends upon the inputs of the smaller ones to create the surplus, but will only
take the step of creating if it is su¢ ciently pro�table. Suppose that the cost
of creating the surplus is not known ex ante when the �rms bargain over the
shares they will get. The smaller �rms then realize that the creation of the
surplus will only occur if the share that the dominant �rm is o¤ered covers
the cost once it is revealed. Hence, we have a situation in which the smaller
�rms want to secure a large share at the expense of each other, and not at
the expense of the dominant �rm. In this situation we investigate the e¤ect
that the bargaining protocols between the three players have on the shares
obtained, and on the probability that the surplus is created. Hence the model
exhibits an asymmetric externality, and also endogenizes the expected size
of the surplus created.
The non-cooperative model of Rubinstein (1982) o¤ers a useful tool to

tackle the strategic dimension of such bargaining situations. However it is
well-known that the Rubinstein result on the uniqueness of the subgame per-
fect equilibrium outcome cannot be extended to three or more players. As
shown by Shaked (see Osborne and Rubinstein, 1990, section 3.13), there

1Cai (2000) recasts Coase�s example in a bargaining model. The relationship of the
current paper to Cai (2000) is discussed later.
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exist a multiplicity of equilibria when unanimity is required. In such a game,
a proposal made by one player has to be accepted by all the other players
in order to be implemented. But if only one of them rejects it, negotia-
tions continue until the next period to a new o¤er made by another player.
The result is that every feasible agreement can be supported as a subgame
perfect equilibrium. The uniqueness of the outcome can be restored in the
multilateral extension of the Rubinstein model by introducing an exit rule
as in Krishna and Serrano (1996). This rule asserts that after a proposal
has been made to all the players, any player can accept the o¤ered share,
leave the negotiation table with the awarded share and let the remaining
players continue to bargain over the rest of the pie. A new division of the
surplus is then o¤ered until agreement is reached. In this paper, we concen-
trate on a sequential negotiation involving bilateral bargaining protocols as
in the multi-issue model of Fershtman (2000) or in the model of Suh and Wen
(2006).2 Since the sequence is �nite, there always exists a unique subgame
perfect equilibrium for any bargaining procedure.
We then examine di¤erent sequential bilateral bargaining protocols and

calculate the equilibrium agreements and expected payo¤s that they yield.
Our results emphasize the role of the bargaining agenda and show how players
can manipulate it. In a situation involving three parties, there exist 24
combinations of pairs of the players where each is represented in at least one
round of bargaining. However, we show that only few of them are not Pareto
dominated. As in the model of Rubinstein, we show that there is always an
advantage for a player to be proposer in the �rst round of bargaining but it
may be not enough to ensure a high payo¤. In some protocols, we show that
it might be better for one player to be present in the �rst round but also in
the second round or to be in the �rst round but not in the second. One of
the main results in the paper is that out of the 24 possible protocols, we can
uniquely determine the one that each player will want to see implemented
given only information on the discount factor.
The bargaining situations that we consider in this paper have some com-

mon features with other works in this �eld. As mentioned, the bargaining
protocols that we examine exhibit exit by one player as in Krishna and Ser-
rano (1996). Cai (2000, 2003) also considers bargaining situations involving
one central player who has a pro�table project and needs cooperation from
each of the other players to undertake it. In these works, only the central
player is active in the bargaining process since he has to bargain in a bilateral

2These papers concentrate on the limiting case where the discount factor approaches
unity. Our model is solved for all values of the discount factor. Indeed, the aim of Suh
and Wen (2006) is to �nd bargaining protocols that give the Nash solution in this limit.
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manner with all the other passive players according the following rule. In
each round, the central player bargains with one passive player. If an agree-
ment is reached, the passive player leaves the game with a binding share while
in case of disagreement, he/she is moved to the end of the queue. Then the
bargaining process moves to the next round with a new passive player until
the emergence of a global agreement with all the passive players ensuring
that the project will be implemented.
Our model di¤ers in several ways. In Cai�s models, there is no link be-

tween the implementation of the project and the bargaining process. Even if
the value of the project is common knowledge (and normalized to one), the
problem remains a version of the Rubinstein model of splitting a pie among
many players with symmetric externalities. Moreover, we allow bilateral bar-
gaining under protocols in which all of the players may get to actively make
o¤ers and countero¤ers.
In Fershtman (2000), a "buyer" negotiates with two �rms over the prices

of two goods; each �rm bene�ts from generally high prices, but each would
prefer to see its price highest. An alternative interpretation is that each �rm
places more weight on an "issue" that is bargained over. Several protocols
are considered, but the buyer is present in all negotiations; some of these
protocols involve simultaneous resolution of issues and some are placed in a
sequential framework. Our perspective di¤ers to that of Fershtman (2000)
since we consider only one issue, and there is pure con�ict among the smaller
�rms over this; furthermore, we do not constrain protocols to always involve
the "strong" player, giving our framework more of a multilateral perspective.
Suh and Wen (2006) have a somewhat di¤erent focus to the current paper

and consider a multilateral Rubinstein game with n players and a �xed pie.
To establish the link to our model, consider the case of three players. These
authors show that the backward-induction equilibrium of the procedure in
which players 1 and 2 bargains in a �rst round followed by a bargain between
2 and 3 in a second round always gives an advantage to the player (here 1)
who can exit �rst from the game. In order to eliminate this advantage of one
player over the others, Suh andWen (2006) develop two particular procedures
under which multilateral bargaining (through bilateral rounds) converges to
the Nash solution. The two procedures specify at each bilateral round who
exits the game and who moves to the next round. To establish equivalence
with the Nash solution, they consider the case when the discount factor goes
to one.
Our work also shares some common features with the model of Calvo-

Armengol (1999) who considers a particular version of the "three-player/one
pie" game where players hold asymmetric positions. The bargaining process
involves a central player who is the only one that can bargain in a bilateral
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manner for a �xed length of time with the two di¤erent partners. However,
to reach a agreement, only one partner is needed. Hence, the author exam-
ines which position favors the central player. It is shown that the outcome
for the central player will be better when he bargains with the relatively
more impatient partner because the latter is more eager to accept tougher
proposals.
The paper is organized as follows: In Section 2 the model is presented,

and the di¤erent bargaining protocols are discussed and solved in Section
3. Section 4 looks at which of the protocols each player would prefer and
Section 5 concludes.

2 The model

We consider a two stage model. Stage 1 de�nes a bargaining model of some
kind, the exact details of which we return to in the next section. The bargains
made at this stage re�ect shares of a surplus that will be obtained contingent
upon the surplus actually being created at stage 2. Stage 2 analyses the
creation of the surplus. Inputs from all of the �rms are essential in creating
the surplus, but suppose �rmX takes on the job of coordinating its creation.
Given that X has obtained binding agreements on surplus division with �rms
1 and 2 at stage 1, it must then decide whether it is pro�table to create the
surplus and share it accordingly. Fix the size of the surplus at B > 0. At
the start of stage 2, the cost of creating the surplus is made known as the
result of a draw from a uniform distribution on [0; T ] where T is a known
positive parameter. Let x be the realized cost. Firm X then creates the
surplus as long as the share of the surplus it receives at least covers the cost
of its creation.
Given shares s1 and s2 from the �rst stage, X will create the surplus as

long as
(1� s1 � s2)B � x

Seen from stage 1, the probability that the surplus gets created is then

P = Pr((1� s1 � s2)B � x) =
(1� s1 � s2)B

T

At stage 1, none of the �rms know whether the surplus will be created or
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not. Then the expected pro�t of �rms 1, 2 and X seen from stage 1 are

��1 = Ps1B =
(1� s1 � s2)s1B

2

T

��2 = Ps2B =
(1� s1 � s2)s2B

2

T

��X = P (1� s1 � s2)B =
(1� s1 � s2)

2B2

T

Writing  = B2=T and sX = 1 � s1 � s2, and de�ning 1 � � > 0 to be the
common discount factor, the expected pro�t of X obtained at time t can be
rewritten as

��X (s1; s2; t) = �t(sX)
2 (1)

and for �rms 1 and 2

��1 (s1; s2; t) = �ts1sX (2)

��2 (s1; s2; t) = �ts2sX (3)

As explained in the introduction, the payo¤ of �rm 1 does not only depend
on the share that he/she is able to get at the expense of the other players.
His/her payo¤ is de�ned as a share of what the �rm X will be able to keep
in the bargaining process with both �rms. Firm 1 faces a trade o¤ between
its own share and the share of X. If a higher share demanded by �rm 1
reduces the share of X then this will reduce the probability that there is a
surplus to share. Hence �rm 1 prefers to get the highest share possible but
by preserving the share of X, and at the expense of �rm 2. The logic here
is supported by the symmetric Nash bargaining solution for which we would
maximize

max
s1;s2


 = (1� s1 � s2)
4s1s2

with �rst order condition for s1:

@


@s1
= s2 (5s1 + s2 � 1) (s1 + s2 � 1)3 = 0

Evaluating at a symmetric situation gives s1 = s2 =
1
6
and sX = 2

3
(with

corresponding expected payo¤s ( 
9
;  
9
; 4 
9
)). Hence an equal division of the

surplus would not be the outcome of static Nash bargaining in this model.
We note below that none of the protocols that we consider converge to the
Nash solution in the limit as � ! 1.
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3 Possible bargaining protocols at stage 1

3.1 The di¤erent cases

At the bargaining stage of the game we assume that all three players must
participate. This gives 24 combinations of pairs of the players where each is
represented in at least one round of bargaining. Of these, 12 involve X and
�rm 1 bargaining in the �rst round and these are represented in the table
below.3

Round 1nRound 2 X ! 2 1! 2 2! 1 2! X 1! X X ! 1
X ! 1 A B C D - -
1! X E F G H - -
1! 2 E - - H I J

The rows represent the �rst round of bargaining and the columns are the
second. The letters in the table represent distinct cases for the bargaining
protocols. Notice that the protocol where 1 o¤ers to X in the �rst round and
X o¤ers to 2 in the second is called E, as is the case in which 1 o¤ers to 2 in
the �rst round and X o¤ers to 2 in the second. This is because the equilibria
for these cases turns out to be identical, and we have chosen at this early
stage to economize on notation for the number of cases.4 The other twelve
cases are obtained by exchanging 1 and 2 in the �rst round. The shares and
payo¤s obtained by 1 and 2 are then also interchanged for these cases. Hence
we focus on the ten distinct cases that are represented in the table.

3.2 Method of solution

Let s(i)j be the o¤er or the countero¤er made by player i with i = X; 1; 2
concerning the share sj received by player j with j = 1; 2. Consider case
A where X makes the �rst o¤er in round 1 to �rm 1 and then in round 2
to �rm 2. At each round, we solve a Rubinstein bargaining situation. We
thus have in mind the following situation: in round 1, X makes an o¤er
of a share s(X)1 to �rm 1. If 1 accepts then he leaves the bargaining table
and round 2 begins. If 1 declines the o¤er it then makes a countero¤er s(1)1 .
The o¤er-countero¤er procedure continues until agreement is reached. Upon
agreement, 1 leaves the bargaining table, and X and �rm 2 then bargain in
the same manner over the share that 2 will be given (with X making the �rst

3To avoid confusion with the two stages in the game, we shall refer to di¤erent periods
in the bargaining stage as "rounds" in what follows.

4Notice that protocols E and H are the only ones in which �rm 1 proposes at the �rst
stage, and then leaves the negotiation table.
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o¤er in case A). Since there are two rounds of negotiations, we solve for the
unique subgame perfect Nash equilibrium by backwards induction. In round
2, X o¤ers s(X)2 and accepts s(2)2 , and 2 o¤ers s

(2)
2 and accepts s(X)2 where the

equilibrium o¤ers s(X)2 and s(2)2 have to satisfy the following two conditions

��2

�
s1; s

(X)
2 ; 0

�
= ��2

�
s1; s

(2)
2 ; 1

�
(4)

��X

�
s1; s

(2)
2 ; 0

�
= ��X

�
s1; s

(X)
2 ; 1

�
(5)

which leads to �
1� s1 � s

(X)
2

�
s
(X)
2 = �s

(2)
2

�
1� s1 � s

(2)
2

�
(6)�

1� s1 � s
(2)
2

�2
= �

�
1� s1 � s

(X)
2

�2
(7)

Equation (4) asserts that 2 is indi¤erent in terms of expected payo¤s between
accepting X�s o¤er s(X)2 in the current period or rejecting it, and making the
countero¤er s(2)2 in the following period that will be accepted by X. (5)
re�ects the same indi¤erence for X given the share demanded by 2 s(2)2 , and
the countero¤er by X (s(X)2 ). Note that s1 is the share that �rm 1 secures
in the �rst round of bargaining. Solving (6) and (7) simultaneously for the
o¤ers yields a unique positive solution

s
(X)
2 =

�
3
2 (1� s1)�p
� + 1

�
(� + 1)

, s(2)2 =
1� s1�p

� + 1
�
(� + 1)

(8)

Since we are assuming here that X makes the �rst o¤er, s(X)2 is the relevant
o¤er. Turning to round 1 and using s(X)2 from (8), subgame perfect o¤ers
must satisfy0@1� s

(X)
1 �

�
3
2

�
1� s

(X)
1

�
�p

� + 1
�
(� + 1)

1A s
(X)
1 = �s

(1)
1

0@1� s
(1)
1 �

�
3
2

�
1� s

(1)
1

�
�p

� + 1
�
(� + 1)

1A
(9)0@1� s

(1)
1 �

�
3
2

�
1� s

(1)
1

�
�p

� + 1
�
(� + 1)

1A2

= �

0@1� s
(X)
1 �

�
3
2

�
1� s

(X)
1

�
�p

� + 1
�
(� + 1)

1A2

(10)

Note that the o¤ers made by the players in the �rst round of the bar-
gaining process a¤ect the share given to �rm 2 in the next round, and the
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optimal o¤ers take account of this. Solving (9) and (10) simultaneously gives

s
(X)
1 =

�
3
2�p

� + 1
�
(� + 1)

, s(1)1 =
1�p

� + 1
�
(� + 1)

(11)

as the unique positive solutions. Since X makes the �rst o¤er, s(X)1 is the
relevant share here. Inserting this into s(X)2 in (8), and noting sX = 1�s1�s2
gives the subgame perfect equilibrium shares of the entire game for protocol
A as

sA1 (�) =
�
3
2�p

� + 1
�
(� + 1)

,

sA2 (�) =
�2 + �

3
2 + �

5
2�p

� + 1
�2
(� + 1)2

,

sAX(�) =

�
� +

p
� + 1

�2
�p

� + 1
�2
(� + 1)2

which are depicted in the �gure. The solid line is sX , the dashed one is s1,
and the dotted line is s2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Discount factor

shares

It is easily veri�ed that sA1 (�) > sA2 (�) so that �rm 1 reaps an advantage from
being involved in the �rst round of negotiations. To understand this recall
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that each of �rms 1 and 2 want X to get as large a share as possible. In
the �rst round, �rm 1 knows that making higher bids will reduce the claims
made by �rm 2 in the next round (see (8)) since the �rms that bargain in
round 2 are essentially bargaining over the surplus that is left after �rm 1 has
committed to a share and left the negotiations. Firm 2 knows that attempting
to secure a large share will reduce the probability that the surplus is created
and hence it accepts o¤ers that are lower than the share that �rm 1 has
obtained. Since X makes all o¤ers in case A, we note that �rms 1 and 2 are
held to a low share by X when they are impatient, and that the share rises
as the players become more patient.
The limiting shares for � = 1 are sAX(1) = 9=16; sA1 (1) = 1=4; sA2 (1) =

3=16. Inserting the shares into (1), (2) and (3), the expected payo¤s in
equilibrium using protocol A can be determined as

�AX(�) =

�
� +

p
� + 1

�2
�p

� + 1
�2
(� + 1)2

 

�A1 (�) =
�
3
2

�
� +

p
� + 1

�2
�p

� + 1
�3
(� + 1)3

 

�A2 (�) =

�
�2 + �

3
2 + �

5
2

��
� +

p
� + 1

�2
�p

� + 1
�4
(� + 1)4

 

where it is straightforward to verify that �AX(�) > �A1 (�) > �A2 (�). In the
limiting case we have that �AX(1) = (81=256) , �

A
1 (1) = (9=64) , �

A
2 (1) =

(27=256) .

3.3 General solutions

The problem that we are considering at stage 1 of the game has some general
properties that we now discuss. Consider the bargaining that occurs in round
two. In the cases considered, the participants will either be �rm 1 and 2, X
and �rm 2 or X and �rm 1. When 1 and 2 bargain in the second round, the
program to be solved for optimal o¤ers is�

1� s1 � s
(2)
2

�
s1 = �s1

�
1� s1 � s

(1)
2

�
(12)�

1� s1 � s
(1)
2

�
s
(1)
2 = �

�
1� s1 � s

(2)
2

�
s
(2)
2
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and this has unique positive solution5

s
(2)
2 =

(1� s1)

� + �2 + 1
� �(1� s1), s

(1)
2 =

�2(1� s1)

� + �2 + 1
� �(1� s1) (13)

On the other hand if X and 2 negotiate in the second round the optimal
o¤ers must satisfy�

1� s1 � s
(X)
2

�
s
(X)
2 = �s

(2)
2

�
1� s1 � s

(2)
2

�
�
1� s1 � s

(2)
2

�2
= �

�
1� s1 � s

(X)
2

�2
(14)

with unique positive solutions

s
(X)
2 =

�p
�
�3
(1� s1)�p

� + 1
�
(� + 1)

� � (1� s1) , s
(2)
2 =

1� s1�p
� + 1

�
(� + 1)

� 
 (1� s1)

(15)
By analogy, when X and 1 negotiate in the second round, the o¤ers made
by the players are for 1�s share, and take the form

s
(X)
1 = � (1� s2) , s

(1)
1 = 
 (1� s2) (16)

Hence, in protocols A-J, the optimal o¤er in the second stage will belong
to the set f� (1� s1) ; �(1� s1); 
 (1� s1) ; �(1� s1); � (1� s2) ; 
 (1� s2)g.
Note that the second stage o¤er is a proportion of the pie that is left after
the round 1 share is deducted.
The possibilities for the �rst round of bargaining are that 1 and X or 1

and 2 participate. In the former case �rm 2 must be present in the second
round. This means that the o¤er in the second round will take the form
� (1� s1) or �(1 � s1) or 
 (1� s1) or �(1 � s1) depending upon who is
involved in this round and which of the participants makes the �rst o¤er.
Suppose that � (1� s1) is the o¤er where 1 > � � 0.6 Then when 1 and X
bargain at the �rst stage optimal o¤ers satisfy�

1� s
(X)
1 � �

�
1� s

(X)
1

��
s
(X)
1 = �s

(1)
1

�
1� s

(1)
1 � �

�
1� s

(1)
1

��
�
1� s

(1)
1 � �

�
1� s

(1)
1

��2
= �

�
1� s

(X)
1 � �

�
1� s

(X)
1

��2
5The dependence of �; �; 
 and � on � is supressed in the following.
6Strictly speaking, one should remember the fact that in representing �; �; 
 and �, �

is a function of �. However, we wish to demonstrate the generic nature of the solutions
here, and in particular their independence of the term that � represents.
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with unique solution

s
(X)
1 =

�p
�
�3�p

� + 1
�
(� + 1)

= �, s(1)1 =
1�p

� + 1
�
(� + 1)

= 


The point to note is that the solution is independent of � whatever value this
should take in the second round. When 1 and 2 participate in the �rst round
of negotiations, the program solved if �rm 2 is present in the second round
is �

1� s
(2)
1 � �

�
1� s

(2)
1

��
s
(2)
1 = �s

(1)
1

�
1� s

(1)
1 � �

�
1� s

(1)
1

��
�
1� s

(1)
1 � �

�
1� s

(1)
1

��
�
�
1� s

(1)
1

�
= ��

�
1� s

(2)
1

��
1� s

(2)
1 � �

�
1� s

(2)
1

��
with solution s(2)1 = �; s

(1)
1 = 
 which are again independent of � . When

�rms 1 and 2 open the negotiations and 2 is not present in the second round
(cases I and J), the second round o¤er takes the form � (1� s2) ; 
 (1� s2).
Again representing this generically as � (1� s2), the �rst round program is�
1� �

�
1� s

(2)
2

�
� s

(2)
2

�
�
�
1� s

(2)
2

�
= ��

�
1� s

(1)
2

��
1� �

�
1� s

(1)
2

�
� s

(1)
2

�
�
1� �

�
1� s

(1)
2

�
� s

(1)
2

�
s
(1)
2 = �s

(2)
2

�
1� �

�
1� s

(2)
2

�
� s

(2)
2

�
It can readily be veri�ed that the following values solve these equations
uniquely: s(1)2 = �; s

(2)
2 = 
.

Hence we can conclude the following

Proposition 1 i) When �rm 1 opens the negotiations in the �rst round
with �rm 2 and �rm 2 is not present in the second round of bargaining (cases
I and J) then the subgame perfect equilibrium share obtained by �rm 2 is

s2 =
(
p
�)
3

(
p
�+1)(�+1)

� �.

ii) When �rm 1 opens the negotiations in the �rst round with X or �rm
2 and 2 is present in the second round (cases E, F, G, H), then the subgame
perfect equilibrium share obtained by �rm 1 is s1 = 1

(
p
�+1)(�+1)

� 
.

iii) When X opens the negotiations in round 1 (cases A, B, C, D), the

subgame perfect equilibrium share obtained by �rm 1 is s1 =
(
p
�)
3

(
p
�+1)(�+1)

� �.

In each case A-I, the share of the other �rm is determined by using the
appropriate expression from (13), (15) or (16). The share of X is then
sX = 1� s1 � s2.
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The limit case � ! 1 for the shares and expected payo¤s that result in the
subgame perfect equilibrium of the bargaining protocols in A-I are summed
up in Proposition 2.

Proposition 2 Let � ! 1. Then in cases B, C, F and G, the shares and
expected payo¤s for �rms 1, 2 and X are

�
1
4
; 1
4
; 1
2

�
;
�
1
8
 ; 1

8
 ; 1

4
 
�
. In cases

A, D, E, and H they are
�
1
4
; 3
16
; 9
16

�
;
�
9
64
 ; 27

256
 ; 81

256
 
�
, and for cases I and J�

3
16
; 1
4
; 9
16

�
;
�
27
256
 ; 9

64
 ; 81

256
 
�
.

Note that in cases B, C, F and G, the total surplus is  
2
whilst it is higher

at 9 
16
in all of the other cases in the limit. In the former cases, the share

obtained by X is lower and this a¤ects the likelihood that the surplus is
created. Common for the cases B, C, F and G is that X does not participate
in the second round of negotiations. In all of the other cases, X is present
in the second round and in the limit case it manages to "steal" an extra 1

16

of the pie from its partner in this round. Hence, in the limit case it is an
advantage for X to be present in the second round, and �rms 1 and 2 would
wish to avoid meeting this player there.

4 The choice of protocol

The following table gives a complete picture of the expected payo¤s that can
be achieved by each player in the di¤erent protocols.
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�1(�) �2(�) �X(�)

A (
p
�)
3
(�+

p
�+1)

2

(
p
�+1)

3
(�+1)3

 
(
p
�)
3
(�+

p
�+1)

3

(
p
�+1)

4
(�+1)4

 
(�+

p
�+1)

4

(
p
�+1)

4
(�+1)4

 

B (
p
�)
3

(�+1)(��
p
�+1)(

p
�+1)

2 
�2

(�+1)
�
�
3
2+1

�2 1�
�
3
2+1

�2 
C (

p
�)
5

(
p
�+1)

2
(��

p
�+1)(�+1)

 �

(
p
�+1)

2
(��

p
�+1)

2
(�+1)

 �2�
�
3
2+1

�2 
D

�2(�+
p
�+1)

2

(�+1)3(
p
�+1)

3 
p
�(�+

p
�+1)

3

(�+1)4(
p
�+1)

4 
�(�+

p
�+1)

4

(�+1)4(
p
�+1)

4 

E
p
�(�+

p
�+1)

2

(�+1)3(
p
�+1)

3 
(
p
�)
5
(�+

p
�+1)

3

(�+1)4(
p
�+1)

4  
�(�+

p
�+1)

4

(�+1)4(
p
�+1)

4 

F
p
�

(�+1)(��
p
�+1)(

p
�+1)

2 
�3

(
p
�+1)

2
(��

p
�+1)

2
(�+1)

 ��
�
3
2+1

�2 
G (

p
�)
3

(
p
�+1)

2
(��

p
�+1)(�+1)

 �2

(
p
�+1)

2
(��

p
�+1)

2
(�+1)

 �3

(
p
�+1)

2
(��

p
�+1)

2 

H
�(�+

p
�+1)

2

(�+1)3(
p
�+1)

3 
(
p
�)
3
(�+

p
�+1)

3

(�+1)4(
p
�+1)

4  
�2(�+

p
�+1)

4

(�+1)4(
p
�+1)

4 

I
p
�(�+

p
�+1)

3

(�+1)4(
p
�+1)

4 
�2(�+

p
�+1)

2

(�+1)3(
p
�+1)

3 
�(�+

p
�+1)

4

(�+1)4(
p
�+1)

4 

J
�3(�+

p
�+1)

2

(�+1)4(
p
�+1)

4 
�3(�+

p
�+1)

(�+1)3(
p
�+1)

3 
�3(�+

p
�+1)

2

(�+1)4(
p
�+1)

4 

The following comparisons are immediate by inspection.
Between cases B,C,F,G (converging in the limit � ! 1 to 1

8
 for each of

1 and 2, and 1
4
 for X) we can verify

�F1 (�) � �B1 (�) = �G1 (�) � �C1 (�)

�F2 (�) � �G2 (�) = �C2 (�) � �B2 (�)

�BX(�) � �FX(�) � �CX(�) � �GX(�)

For cases A,D,E,H (
�
9
64
 ; 27

256
 ; 81

256
 
�
in the limit) we get

�E1 (�) � �H1 (�) = �A1 (�) � �D1 (�)

�D2 (�) � �H2 (�) = �A2 (�) � �E2 (�)

�AX(�) � �DX(�) = �EX(�) = �IX(�) � �HX(�) � �JX(�)

where the comparison in the last line includes cases I and J for X as it
converges to the same limit as the other cases.
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Cases I,J give
�
27
256
 ; 9

64
 ; 81

256
 
�
as payo¤s in the limit, and the comparison

is as follows:

�I1(�) � �J1 (�)

�I2(�) � �J2 (�)

�IX(�) � �JX(�)

From these comparisons we can see that I weakly Pareto dominates J, A
dominates H and F is at least as good for all players as C and G. Hence we
have only six protocols that are not weakly Pareto dominated: A, B, D, E, F,
I. When considering which protocols are likely candidates for implementation,
we can concentrate on the expected payo¤s of X and �rm 1, since there exist
complement protocols in which 2 can achieve the same payo¤s as �rm 1. For
example protocol A has complement A�in which X o¤ers to 2 in the �rst
round and then X o¤ers to 1 in the second; hence �A1 (�) = �A

0
2 (�). In the

above, the largest payo¤ that 2 can achieve in equilibrium is either from D
or F.7 However 2 would prefer to swap places with 1 if it could gain more
by being a proposer in the �rst round. Consider the complement protocol to
E; in this case the expected equilibrium payo¤ to 2 would be �E

0
2 (�) = �E1 (�)

and it is straightforward to verify that this expression is larger than �D2 (�)
and �F2 (�). Hence we can conclude that if �rm 2 could choose protocol then
it would be one of the complements to the cases A-J.
Thus we consider the protocols that are not Pareto dominated and ask

which of these X and �rm 1 would prefer if they could choose. The results
of the comparison that is based upon the expected equilibrium payo¤s are
summarized in the following proposition.

Proposition 3 Let b� = 0:46557.
i) If X can choose the protocol then it selects A for � > b� and B otherwise.
ii) If �rm 1 can choose the protocol then it selects E for � > b� and F

otherwise.

Concerning the preferred choice of X, both protocols A and B involve X
making the o¤er to �rm 1 in the �rst round. We know that this elicits an
equilibrium o¤er of s1 = �. In protocol A, the second round o¤er of X to 2 is
s2 = �(1�s1) = �(1��), while in protocol B it is s2 = �(1�s1) = �(1��).
When � > b� we have that � < � and hence X gives a lower share to 2 in
protocol A, compared to B. A similar argument can be made for part ii)
of the proposition. In protocols E and F s1 = 
 in the �rst round, and

7F is preferred by �rm 2 for � > 0:9197.
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sE2 = �(1 � 
) whilst sF2 = �(1 � 
). Hence 1 has a constant share in both
protocols but makes sure that less is given to 2 in E when � > b� since this
makes sE2 < sF2 . Given that it has a constant share, �rm 1 is interested in
making the share of X as large as possible since the expected pro�t of 1 is a
proportion of s1sX from (2).
When � is large, then X prefers to be proposer in both rounds and prefers

to make the �rst o¤er in round 1 and then leave when � is small. For �rm
1, the picture is reversed. It prefers to make both o¤ers when � is low, and
to make the �rst o¤er in round 1 and then let X bargain with 2 in round 2
when � is high.
To explain the intuition here, consider part (i) of the proposition. The

�rst round share is the same in each of cases A and B. Given the bargain
struck over s1 in the �rst round, when 1 and 2 bargain at the second round,
the rule used by 1 to solve (12) is

s
(1)
2 =

s
(2)
2 � (1� s1)(1� �)

�

which is decreasing in the size of the pie left after round 1 (1 � s1). When
X and 2 bargain in the second round, the o¤er used by X satis�es (14):

s
(X)
2 =

s
(2)
2 + (1� s1)(

p
� � 1)p

�

which is increasing in (1 � s1). Hence, when (1 � s1) is large, X prefers to
send 1 to the second round to negotiate with 2 (case B) since the fact that
(1� s1) is large elicits tough o¤ers from 1. Firm 1 has only received a small
share in round one, and wants most of the remaining pie to go to X to secure
provision of the surplus. When (1 � s1) is small, 1 becomes less tough at
round 2 and X prefers to negotiate himself (case A). When � is large, (1�s1)
is low, and X prefers case A, and vice versa for low �. The same logic applies
when �rm 1 chooses the protocol.

5 Conclusion

In this paper we have considered bargaining between three �rms, one of
whom is central in the creation of the surplus to be shared. In order to
ensure that the surplus gets created, a �rm wants to obtain a large share
for itself but not at the expense of the central player. Of the 24 possible
bargaining protocols that can be envisaged in bilateral bargaining over two
rounds with each player active in at least one round, we have managed to
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identify the one that each �rm would prefer to see implemented. The model
has many applications such as to the railroad example of Coase (1960). Al-
ternatively, �rms 1 and 2 could own components or patents that are essential
in the creation of a new product for example, and these must be combined
with a third component/patent that the central �rm attempts to discover
by investing in R&D. The willingness of this �rm to expend resources, and
hence the probability of innovation, will depend upon the bargains that are
struck. The smaller �rms have to take account of this when they enter ne-
gotiations. Hence, the bargaining procedure will be an important factor in
determining how much R&D that is carried out in the attempt to innovate.
Given sequential multilateral bargaining between all players, our results can
identify the protocol that will be expected to be implemented according to
the value of the discount factor and which of the players that can make the
choice.
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