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ABSTRACT 

 

The exposure to pollutants is a serious and increasing health problem, which has been 

associated with increased morbidity and mortality among people. Many toxic compounds can 

accumulate in the environment and evidence suggests that most people have varying degrees 

of toxic compounds within their body. This can result in disruption of many physiological 

processes in the human body and the development of several central nervous system (CNS) 

diseases, including Alzheimer’s disease (AD). Glutamate and -aminobutyric acid (GABA) 

are the major excitatory and inhibitory neurotransmitters in the human brain, which target 

both G protein-coupled receptors (GPCRs) and ionotropic receptors. They have important 

roles in physiological processes and play roles in different CNS diseases, and disruption of 

their neurotransmission may cause harmful effects in humans. 

 

The aim of this study was to use constructed homology models and some resolved X-ray 

structures of glutamatergic GPCRs and homology models of the GABA transporter 1 

(GAT1), in order to predict putative interactions and binding modes of several toxic 

compounds retrieved from the Toxicology in the 21st Century (Tox21) database. 

 

Receptor and transporter models were able to bind several of the toxic compounds, including 

some drugs. Many of them showed better affinity to the models than their known binders. 

Toxicants with good affinity to a receptor or transporter can result in adverse effects in 

humans, where the toxicants can outperform several endogenous and exogenous binders. 

Further studies should involve in vitro assays to investigate the binding of toxicants, and 

especially those that have the ability to cross the blood brain barrier (BBB). 
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1. INTRODUCTION 
 

 

1.1 Environmental pollutants/toxicants 

 

Exposure to pollutants is a serious and increasing public health problem. Pollutants, such as 

air pollution have been associated with a more frequent morbidity and increased mortality 

among humans and wild life. Diseases affecting the human CNS, including stroke, AD, 

Parkinson’s disease, and neurodevelopmental disorders have also been associated with 

exposure to pollution (1). Many toxicants have a half live that can take many years, and 

evidence suggests that most people have varying degree of assorted toxic pollutants within 

their body. Exposure of toxicants is usually not a single event, and most often humans are 

repeatedly exposed for chemical toxicants on a daily basis, and some of them can accumulate 

in human tissues for decades (2). 

The human CNS comprises of many neurotransmitters and their corresponding receptors. 

Neurotransmitters are chemical substances that act as signaling molecules and transmit 

impulses between nerve cells, or between nerve cells and effector cells (glands and muscles). 

Neurotransmission consists of the following steps: [1] synthesis of neurotransmitters, [2] 

package of neurotransmitters in storage vesicles, [3] action potential reaching nerve terminals, 

[4] release of neurotransmitters into the synaptic cleft by exocytosis, [5] activation of pre- and 

postsynaptic receptors, [6] removal of neurotransmitters from the synaptic cleft by 

transporters and enzymes. Toxicants that enter the CNS may interfere with the 

neurotransmitter systems, which can result in a wide range of adverse effects in humans 

including neurodegenerative diseases. In fact, if one neurotransmitter system is affected it can 

result in a secondary effect on other systems. Pollutants may also give indirect effects on 

neurotransmitter systems by causing mitochondrial damage, oxidative stress, cell death, or 

endocrine disruption. Toxicant induced mitochondrial damage and oxidative stress seem to 

contribute to neurodegenerative diseases such as dementia (2,3). 

Depending on the type of toxicant and dose, a single exposure may not be harmful for humans 

but repeatedly exposure and accumulation of toxicants in the body may interfere with 

physiological functions in humans. Many people are aware of the harmful effects of smoking 

cigarettes, but there is not enough knowledge about how low levels of exposure to other 
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toxicants can cause disruption of physiological function in the human body, and in the CNS. 

Acute high dose poisoning can easily be recognized, but the chronic accumulative low-dose 

exposure of toxicants is harder to identity. A consequence of this can be that underlying cause 

of some diseases such as neurodegenerative diseases can go unnoticed because clinicians only 

focus on symptomatic treatments (2). 

Long term exposure to toxicants and the bioaccumulation in humans over time may induce 

neuroinflammation resulting in the development of dementia. The progression of AD can 

occur over several decades, making it difficult to point out the major factors triggering the 

disease. Even though epidemiological association between environmental pollutants and 

dementia are still limited, there are emerging evidences that there may be a link between 

development of AD and the exposure of different environmental factors. Environmental 

factors such as, various inorganic and organic toxicants, including toxic metals, pesticides, 

industrial chemicals, solvents, air pollution, plasticizers (table 1) (2,4). In addition to AD, 

there is ongoing research on the relationship of exposure to environmental toxicants and the 

development of other CNS diseases such as Parkinson´s disease, Multiple Sclerosis (MS) and 

Amyptropic Lateral Sclerosis (ALS) (2). 

Acute or chronic toxicity of different metals does not always result in degenerative diseases, 

and some of them are essential to maintain the human health. But there has been evidence that 

metals, such at lead, can disrupt cell-to-cell communication and the release of glutamate and 

GABA in the CNS. In addition, lead may also make the brain extra vulnerable to compounds 

by increasing the permeability of the BBB, which seems to have an impact on CNS diseases 

including Parkinson´s disease, ALS and AD (2,4). 

Exposure to pesticides has shown to result in cognitive and psychomotor impairment which 

can result in the development of AD and Parkinson´s disease. Plasticizers can cross the 

fetoplacental barrier and cause growth retardation and neurological damage to the fetus (4). 

The increasing prevalence of neurodegenerative diseases in humans is often thought of as a 

result of old age, but it can also occur due to long exposure and accumulation of toxicants in 

the body and the increase of pollutants in the environment. Specific toxic agents and levels of 

exposure that can cause different neurodegenerative diseases remain unknown, but this is an 

important field of continuous research (2,4). Tox21 is an initiative by the United States 

Environmental Protection Agency (EPA) and The National Institutes of Health (NIH). Tox21 
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consists of collaborative research teams that try to develop better methods to be able to 

quickly and efficiently test and evaluate whether certain chemical compounds have the 

possibility to be harmful for different physiologic processes in the human body. The aim is to 

develop tools that can be used in the risk assessments process and reduce the need for animal 

testing. The Tox21 initiative is also maintaining a database of potentially harmful 

environmental chemicals and drugs (5). 

 

Table 1: Overview of some toxicants that have been associated with neurodegenerative diseases (2,4). 

Environmental factors Compounds 

Toxic metals Aluminum, 

copper, 

lead 

Pesticides DDE, 

Organophosphates insecticides, 

Organochlorine 

Industrial chemicals Flame retardants 

Solvents Carbon disulfide, 

toluene, 

PERC 

Air pollution Particulate matter, 

ozone, 

nitrogen oxide, 

second hand smoke, 

carbon monoxide 

Plasticizers Phthalate esters, 

Bisphenol A 
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1.2 Blood brain barrier 

 

To be able to enter the CNS, toxic compounds have to cross the BBB. BBB consists of a thick 

layer of endothelial cells that selectively control transfer of compounds in and out of the 

brain. The compounds can penetrate the BBB by mainly two processes: passive and active 

transport. Active transfer of compounds is often carrier mediated and is an energy dependent 

process. This applies often for polar compounds, which is not able to penetrate the BBB by 

passive transport (6). 

There are certain physical properties that have to be met to be able to penetrate into the brain 

by passive transport. General rules were developed of Lipinski et al., which aimed to provide 

an overview of physicochemical properties for compounds regarding solubility and membrane 

penetration. This was primarily aimed at CNS drugs but other compounds, such as toxicants, 

must also satisfy the requirements for being able to cross the BBB. Lipinski’s “rule of five” 

summarizes the essential physical parameters for good absorption and permeability 

(molecular weight (Mw)  500; Log P  5; number of hydrogen bond donor (HBD)  5; 

number of hydrogen bond acceptor (HBA)  10; number rotatable bonds  10). In general, if 

two or more of this “rules” are not fulfilled, the compounds are not likely to be soluble and 

able to penetrate the BBB (6). Such hard cutoffs can result in a disregard of compounds that 

can actually cross the BBB. 

Central Nervous System Multiparameter Optimization (CNS MPO) is a tool that has been 

developed in order to predict if a molecule has physicochemical properties similar to known 

CNS drugs and most probably can pass the BBB. CNS MPO balances different variables 

without a hard cutoff, because there are many ways for compounds to get a similar score 

value (7). CNS MPO algorithm is build on the basis of six parameters (table 2). All 

physicochemical properties have a desirable score ranging from less desirable (0.0) to more 

desirable (1.0). The summation of each scoring range yields in the final CNS MPO desirable 

score, which ranges from 0 to 6 were the most desirable score is  4 (7). 
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Table 2: Overview of the CNS MPO properties. The range values are from less desirable to more desirable 

(0.0-1.0) for each property. The summation of the properties score results in the final CNS MPO score. 

Physicochemical 

properties 

Less desirable range 

(Score = 0.0) 

More desirable range 

(Score = 1.0) 

Clog P > 5  3 

Clog D > 4  2 

Mw > 500  360 

TPSA 20  TPSA  120 40 < TPSA  90 

HBD > 3.5  0.5 

pKa > 10  8 

Clog P: calculated log P, Clog D: calculated log D, TPSA: Topological polar surface area, pKa: the most basic 

center. 

 

By using this tool it is possible to predict the ability of toxicants to cross the BBB. In order to 

know which toxicants that can harm the human brain, it is of importance to sort out only those 

that can reach the CNS. To be able to understand how the toxicants can affect the CNS it is 

also important to have knowledge about the CNS systems and its major neurotransmitters. 

 

1.3 Glutamate and GABA as neurotransmitters 
 

 

1.3.1 Glutamatergic neurotransmission 

 

Glutamate is the major excitatory neurotransmitter in the human CNS and has important roles 

in sensing, motor coordination, emotion and cognition. Approximately 80-90 % of the 

neurons in the CNS use glutamate as their neurotransmitter and up to 90 % of the synapses 

are glutamatergic (8). Glutamate is packed into vesicles in the presynaptic neuron. When such 

a neuron fires, glutamate-containing vesicles fuse with the presynaptic membrane and release 

their contents into the synaptic cleft by exocytosis. Glutamate then enters the synaptic cleft 

and induce fast excitatory responses trough activation of three ionotropic glutamate receptors 

(NMDA, AMPA and kainate) and slower responses through activation of eight metabotropic 

glutamate receptors (mGlu1 to mGlu8 receptors) in the brain. Glutamate can also diffuse 

away from the synaptic cleft and bind to extrasynaptic receptors or be taken up by EAAT 
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glutamate transporters 1 and 2 (EAAT1, EAAT2) in gliacells. EAAT 3, which is estimated to 

be expressed postsynaptic, plays a minor role in the reuptake of synaptic glutamate (figure 1) 

(9–11). 

 

 

Figure 1: The main components of the glutamate synapsis. Glutamate is packed into vesicles by the 

ventricular glutamate transporter (vGluT). Glutamate can bind to its receptors presynaptic, postsynaptic and 

extrasynaptic. Glia cells play a major role in glutamate reuptake through the EAAT1 and EAAT2 transporters, 

terminating the glutamate signal. Adopted from (11). 
 

NMDA, AMPA and kainate are tetrameric receptors and comprise of different subunits. 

When an agonist binds to an ionotropic glutamate receptor, a conformation change occurs in 

the receptor and it increases the probability of the channel to open which leads to influx of 

sodium and calcium ions into the cell (8). 

 

Excessive activation of glutamate neurons can promote degeneration and cell death. The toxic 

effect of glutamate is primarily related to its excitatory properties, and this type of toxicity is 

called excitotoxicity. Excessive activation of e.g NMDA can kill the neuron by flooding the 

cell with too much calcium ions. In addition, activation of extrasynaptic NMDA receptors can 

lead to apoptosis and cell death. Glutamate concentration is therefore carefully controlled and 

regulated through high affinity glutamate transporters (8). 
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1.3.2 GABAergic neurotransmission 

 

Glutamate is the precursor for GABA, which is the major inhibitory neurotransmitter in the 

human CNS. Glutamate is converted to GABA by glutamic acid dehydrogenase (GAD) in 

GABAergic cells. GABA is then packed into vesicles and fuses through the cell membrane by 

depolarization of the presynaptic neuron, and enters the synaptic cleft where it primarily 

targets receptors in the postsynaptic surface. It is removed from the synaptic cleft by the 

GABA transporters by reuptake into presynaptic neurons and glia cells (11,12). 

 

GABA is present in high concentration in several regions in the human brain. In fact, the 

concentration of GABA is approximately 1000 times higher than the concentrations of the 

monoamine neurotransmitters in many brain regions. Studies of the GABA receptors have led 

to the discovery of at least three distinct GABA receptors: the GABA-A, the GABA-B and 

the GABA-C receptor. The GABA-A receptor is a ligand-gated ion channel. The receptor 

consists of five subunits (main ones are α, β and  subunits). GABA can bind to the receptor 

on two binding sites, located between the α and β subunits. The receptor is primarily located 

postsynaptic and activation results in opening of the channel and influx of Cl- ions into the 

postsynaptic neuron. (12). The GABA-B receptor is a GPCR and has structural similarities to 

the mGlu receptors and mediates slow signals in the CNS in response to agonist binding, 

while the GABA-C receptor is also a ligand gated ion channel (13). 

 

GABA plays a part in several diseases and GABA dysfunction has been implicated in 

neurological and psychiatric disorders including development malfunctions, mental 

retardation and epilepsy, sleep disorders, drug dependence, sensorimotor processing and 

motor coordination (12). 

The GABA-A receptor is a target for several CNS acting drugs, including benzodiazepines 

and barbiturates. Benzodiazepines bind selectively to an allosteric binding site in GABA-A 

with high affinity, in which enhances GABAergic transmission by increasing the frequency of 

channel opening of GABA-A receptors in response to GABA. This can result in sedative, 

anxiolytic and anticonvulsant effects. Long term use of benzodiazepines has shown to induce 

tolerance and dependence, where the patient has to increase the dose in order to produce the 

required effect. Sudden cessation of the drug intake can cause physical and psychological 

withdrawal symptoms. Barbiturates have been used since 1921 to treat epilepsy, and are now 
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also used as anesthesia. The most commonly used barbiturates are phenobarbital and 

pentobarbital. At pharmacological concentrations barbiturates increase the binding of GABA 

to its binding site through allosteric binding. In addition, high concentrations of barbiturates 

can activate the GABA-A receptor directly. The GABA analog Baclofen ((β-(4-chloro-

phenyl)-γ-aminobutyric acid)) has shown to be a potent and selective GABA-B receptor 

agonist and is primarily used in the treatment of muscle spasticity especially in MS patients 

(12,13). 

 

Glutamate and GABA both target GPCRs in the human CNS. GPCRs are in a complex 

network and have the ability to interact with each other. Toxicants can modulate the 

neurotransmission of glutamate and GABA by interacting with specific receptors or by 

interacting with specific transporters. 

 

1.4 G protein-coupled receptors 

 

GPCRs comprise of approximately 800 members and represent the largest protein 

superfamily of cell surface signaling receptors in the human genome (14,15). They are 

expressed in nearly all tissues and have diverse role in many physiological processes, ranging 

from vision, smell, and taste, to endocrine system, and neurological and cardiovascular 

functions. Many GPCRs are also involved in diseases, including cardiovascular, 

neurodegenerative, psychiatric, cancer and infectious diseases (15–17). Because of their 

diverse physiological roles, these receptors are attractive drug targets. In fact, more than 30 %  

of drugs on the market target GPCRs for the treatment of heart failure and hypertension (e.g 

β-adrenoceptors, adrenergic and angiotensin receptors), peptic ulcer (histamine receptors), 

pain (opioid receptors) and bronchial asthma (β2-adrenoceptors) (16). Many endogenous 

compounds bind to GPCRs, including neurotransmitters, hormones, lipids, ions and enzymes 

(15,17). Since this type of receptors mediates such diverse physiological effects, 

agonist/antagonist binding can have great impact on the physiological processes (14,15). 

 

All GPCRs share a 7 transmembrane α-helical (TMH) topology with three intra- and 

extracellular loops (ICL and ECL) and an extracellular N-terminal and an intracellular C-

terminal (figure 2). 
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Figure 2: Structure representation of a GPCR. The figure shows the backbone of the 2-adrenergic receptor 

that has a 7 TMH topology with three ICL and ECL. The GPCRs also have an extracellular N-terminal and an 

intracellular C-terminal. Adopted from (14). 
 

Agonists bind to the receptors on the extracellular side resulting in conformational changes in 

the 7 TMH domain, and activation of a heterotrimeric G protein that interacts with the 

intracellular regions of the receptor. The G protein comprises of three subunits: Gα, Gβ and 

G. When the protein is in the inactive resting state, the Gα subunit contains guanosine 

diphosphate (GDP). When an agonist binds to the receptor and the G protein is activated, the 

subunits split into Gα and Gβ complex and GDP dissociates from the Gα subunit and is 

replaced by guanosine triphosphate (GTP) (active state). The Gβ complex has the ability to 

activate or inhibit specific target effectors (enzymes and ion channels) leading to cellular 

effects. The Gα-GTP complex dissociates from the receptor and activates target effectors 

leading to cellular effects. Finally, GTP hydrolyzes to GDP and the α-unit reunites with the 

Gβ complex. The GPCR goes back to its resting state (figure 3) (16,18). 
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Figure 3: Schematic representation of the function of a GPCR. Adapted from (18). 

 

Several different G proteins have been identified in the human genome, which contributes to 

the specificity of GPCR signaling and effects (16). Which signaling pathway a receptor 

activates, depends on the type of G protein the receptor recognizes and binds (19). 

 

GPCRs in humans are classified into four main classes (or five families): A (Rhodopsin), B 

(Secretin and Adhesion), C (Glutamate) and F (Frizzled/TAS2) depending on the basis of 

sequence similarity. Class B, C and F are relatively small receptor classes, while the class A is 

the largest class and comprises of hundreds of receptors, which can be divided into 

subgroups: , ,  and . (14). 

 

There are mainly two numbering systems for amino acid residues in the 7 TMH domain. The 

residues can either be identified by its sequence number or by a generic numbering system 

proposed by Ballesteros and Weinstein. In the latter numbering system, the amino acid 

residues are assigned two numbers termed X.YY, which is superscripted. The first number 

(X) refers to the TMH domain number (1 to 7) and the second number (YY) indicates the 

amino acids position relative to the highest conserved residue within one helix, which is given 

the number 50 (20,21). For instance, amino acid Arg3.32 exists for both the mGlu2 and the 

mGlu7 receptors, located 18 amino acids upstream of the most conserved amino acid in 

TMH3. For the mGlu2 receptor, this Arginine is amino acid number 635 in the sequence, 

while for the mGlu7 receptor it is number 658. 
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1.4.1 Class C of G protein-coupled receptors 

 

The class C of GPCRs are mainly activated by small molecules and comprises fifteen 

receptors, including eight mGlu receptors, the GABA-B receptor, and the calcium sensing 

receptor, taste 1 receptors and some orphan receptors (19). As for all the other GPCRs, class 

C receptors contain a 7 TMH domain. In addition, most class C receptors also have a large 

extracellular domain, which contains the orthosteric binding site. The mGlu and the calcium 

sensing receptors are homodimers, whereas the GABA-B and taste receptors are 

heterodimers. 

 

1.4.1.1 Metabotropic glutamate receptors 

 

mGlu receptors were first discovered in the late 1980s and belong to the class C of GPCRs 

(22). MGlu receptors are mainly expressed in the CNS and eight receptor subtypes have been 

identified: mGlu1 to mGlu8 receptors. The receptors are divided into three groups based on 

their sequence homology, pharmacology, and signal transduction mechanism (G-protein 

coupling preferences) (table 3) (20). The receptors activate intracellular heterotrimeric G 

protein, which further activates signaling cascades inside the cell (14,19). 

 

Table 3: An overview of the mGlu receptor subtypes. Their primarily G protein-coupling pathways and their 

location in the synapsis are indicated. 

Group Receptors G protein pathway Location 

I mGlu1 

mGlu5 

Gq – Increases intracellular    

calcium 

Post-synaptic 

II mGlu2 

mGlu3 

Gi/o - Decreases cAMP synthesis Pre-synaptic 

(Often located far from the 

synaptic cleft along the axon) 

III mGlu4 

mGlu6 

mGlu7 

mGlu8 

Gi/o – Decreases cAMP synthesis Pre-synaptic 

(Expressed near the site of 

fusion with synaptic vesicles) 
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Group I mGlu receptors are mainly expressed postsynaptic in excitatory glutamatergic 

synapses in the CNS. The mGlu5 receptor is found in brain areas involved in emotion, 

motivation and cognition, which makes this receptor an important drug target (22,23). 

 

Group II and III mGlu receptors are primarily found presynaptically in glutamateric synapses 

of the brain. They serve as autoreceptors and the activation of these receptors has shown to 

decrease glutamate release. Their mechanism contributes to the regulation of glutamate 

concentration in the synapsis and thereby regulating the synaptic transmission (22). 

 

MGlu receptors exist as homodimers that are cross-linked through an intermolecular disulfide 

bond. Each monomer consists of the GPCR signature motif of 7 TMH with three ICL and 

three ECL that connect the helices, as well as an intracellular C-terminal and an extracellular 

N-terminal. In addition, mGlu receptors also contain a large extracellular domain (ECD) 

composed of a Venus Flytrap (VFT) domain linked to the 7 TMH via a cysteine-rich domain 

(CRD) (figure 4) (19,24). 
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Figure 4: Full length mGlu1 receptor. The figure is modified from Wu et al. (24) and is showing the backbone 

of a full length mGlu1 receptor homodimer with the VFT, CRD and 7 TMH domains colored in purple, red and 

green. Disulfide bonds link the ECD together, and a cluster of cholesterol molecules (shown as green molecules) 

makes interactions between the two TMH1 in each dimer (24). 
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The mGlu receptors can be activated in two different ways: [1] By binding to the orthosteric 

binding site in VFT [2] By activation through allosteric binding, referred as the allosteric 

binding site (22). 

 

The VFT forms a bi-lobed structure, where each lobe (I and II) is separated by a cleft in 

which the ligand can bind and interact. It is now clear that this region serves as the orthosteric 

binding site and is responsible for agonist activity (figure 5). VFT domain is in a constant 

dynamic equilibrium between an open and a closed conformational state. The exogenous 

ligands that bind to the orthosteric binding site are competing with the endogenous 

neurotransmitter, glutamate. When the receptor is bound to an agonist, the VFT is generally 

stabilized in a closed conformational state, whereas in the absent of a ligand or bound to an 

antagonist, the VFT is more frequently in an open conformational state. In the same way as 

glutamate, the exogenous agonists induce a conformational change in the receptor, which 

activates the second messenger system inside the cell (14,19,22). 

 

Figure 5: The crystallized three dimensional (3D) structure of the homodimer VFT of mGlu5 receptor 

(PDB ID: 3lmk) in complex with the neurotransmitter glutamate (shown in bulked cartoon). The figure 

shows the backbone of the VFT of mGlu5 receptor in a closed conformational state. Lobe I and II are indicated. 

Both ligands placed in the binding pockets are glutamate, but one is orientated so that the nitrogen is not visible. 

The carbons in glutamate are shown in gray color, oxygens are shown in red color and nitrogens are shown in 

blue color. 
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The allosteric binding pocket is located within the 7 TMH domain of mGlu receptors (figure 

6). Allosteric activation adjusts the intensity of the receptor response and is only functional if 

the orthosteric ligand is present. Compounds that bind to the allosteric binding site are 

referred to as allosteric modulators and are classified on the basis of their pharmacology. 

They act primarily by inducing conformation changes in the receptor without activating the G 

protein pathway on its own and modulate affinity or efficacy of orthosteric agonists in a 

positive or negative way. Allosteric modulators that enhance an agonist-mediated receptor 

response are referred to as “positive allosteric modulators” or PAMs, while allosteric 

modulators that reduce receptor activity are known as “negative allosteric modulators” or 

NAMs. In addition, a special type of agonist PAMs also exists, which are able to activate the 

receptor as an allosteric agonist without the need of an agonist that binds to the orthosteric site 

(22,25,26). With some variety among the mGlu receptors, the main TMH and ECL that 

participate in the binding of allosteric modulators are TM2, TM3, TM5, TM6 and TM7 and 

ECL2 (23,24,27). 

 

 

Figure 6: A ribbon representation of the backbone of the 3D structure of mGlu5 receptor 7 TMH domain 

bound to the NAM mavoglurant (shown in translucent stick representation). a) View of the receptor domain 

from the side parallel to the cell membrane. b) View down into the 7 TMH domain from the extracellular side. 

Adapted from (23). 
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1.4.1.2 GABA-B receptor 

 

GABA-B receptor is also a member of class C of GPCRs and has a structural topology similar 

to that of the mGlu receptors. GABA-B receptor is the target for the major inhibitory 

neurotransmitter GABA, and mediates slow and prolonged synaptic inhibition effects in the 

CNS. The receptor is localized both pre- and postsynaptic, in which the presynaptic GABA-B 

receptor suppresses neurotransmitter release and the postsynaptic GABA-B receptor 

hyperpolarizes neurons (12,13). 

 

GABA-B and mGlu receptors are similar in structure, but unlike mGlu receptors that are 

homodimers, GABA-B receptor is a heterodimer that comprises of two subunits: GABA-B1 

and GABA-B2 subunits. In addition, GABA-B receptor does not comprise of a CRD, and the 

VFT and the 7 TMH domain are therefore directly linked to each other (figure 7). The 

GABA-B1 subunit contains the orthosteric binding site and is responsible for ligand binding 

on the extracellular site. The GABA-B2 subunit contains the allosteric binding site within the 

7 TMH, and interacts and activates the G protein inside the cell (Gi/o). GABA-B2 VFT 

domain does not have any known binder, but it contributes to enhancement of the agonist 

affinity of the receptor by interacting with the VFT of the GABA-B1 subunit. Both subunits 

for the GABA-B receptor must be present for the receptor to function (8,13,22,28). 

 

Figure 7: Schematic representation of GABA-B receptor and mGlu receptor as hetero- and homodimers. 

The cysteine rich domain in mGlu receptors is not present in GABA-B receptors. The X in GABA-B2 VFT 

indicates that it is not the orthosteric binding site. Adopted from (28). 
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1.4.2 X-ray structures of G protein-coupled receptors 

 

Knowledge about the structures and the dynamics of proteins are important for understanding 

many biological processes as well as for getting a better understanding of molecular 

physiological processes (16,29). Resolved high-resolution X-ray structures of GPCRs and the 

knowledge of 3D structure of a receptor have a great impact on drug discovery. It opens up 

for more reliable structure-based drug design, and the ability of designing drugs with better 

selectivity and pharmacokinetic properties (30). 

 

The recent years breakthrough in crystallography and protein engineering have expanded the 

understanding of GPCRs 3D structures. Crystal structures of GPCRs can provide better 

templates in homology modeling and provide detailed information about ligand binding to 

GPCRs. Nearly all of the receptor crystal structures are in complex with a ligand, which helps 

stabilizing the protein structure. Most of the ligands are high-affinity antagonists, and some 

are agonists (30). 

 

The first GPCR to be crystallized was rhodopsin in 2000. Later on, more and more GPCRs 

have been crystallized. In fact, more than 60 ligands and 20 receptor X-ray structures, for all 

classes of GPCRs (A, B, C and F) have been reported. Most of the structures solved for mGlu 

receptors have been of the VFT domain only, containing the orthosteric binding site. In 2014, 

the first X-ray structures of 7 TMH of mGlu1 and mGlu5 receptor in complex with a NAM 

were reported. MGlu1 receptor in complex with FITM (4-fluoro-N-(4-(6-

(isopropylamino)pyrimidin-4-yl)thiazol-2-yl)-N- methylbenzamide) and mGlu5 receptor in 

complex with mavoglurant (methyl (3aR,4S,7aR)-4-hydroxyl-4-[(3-methylphenyl) ethynyl] 

octahydro-1H-indole-1- carboxylate) (30). 

 

1.5 GABA transporters 
 

GABA is not enzymatically removed from the synaptic cleft and its clearance depends on 

GABA transporter reuptake (31). GABA transporters are widely expressed in the human brain 

and they belong to a large family referred to as the solute carrier 6 (SLC6), which also 

includes transporters for dopamine, serotonin, norepinephrine, tryptophan, tyrosine, leucine 

and glycine. Approximately 117 eukaryotic and 167 prokaryotic transporters have been 
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classified, and the first X-ray crystal structure of a prokaryotic SLC6 member was published 

in 2005, the Aquifex aeolicus leucine transporter (LeuT) (31,32). Since then, several crystal 

structures of these transporters have been resolved and in April 2016 six X-ray structures of 

the human serotonin transporter (hSERT) were published (PDB ID: 5I6X, 5I6Z, 5I71, 5I73, 

5I74 and 5I75), which must be considered as breakthrough. The SLC6 family is membrane 

proteins comprised of 12 TMH expanding through the membrane with cytoplasmic N- and C-

terminal domain (31). The 3D structure of the drosophilia dopamine transporter (dDAT) or 

the hSERT structures can be used as representative members of the SLC6 family (figure 8). 

 

 

Figure 8: The crystal structure of drosophila dopamine transporter (dDAT) (PDB ID: 4XP4) retrieved 

from www.pdb.org. The dopamine transporter structure comprises of 12 TMH and is a structural representative 

for the SLC6 family. The extracellular site of the transporter is located at the top of the figure. 

 

 

 

 

 

 

http://www.pdb.org/
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The GABA transporters are secondary transporters that are classified into six groups, where 

GAT1, GAT2 and GAT3 are the most characterized. GAT1 are located both pre- and 

postsynaptic. The function of postsynaptic GAT1 is not completely understood. Presynaptic 

GAT1 is primarily responsible for reuptake of extracellular GABA but it also translocates 

GABA from the intracellular cytoplasm to the extracellular space. The transport of GABA 

across the membrane is an active process and requires Na+ electrochemical gradient, which is 

mainly created by the membrane Na+/K+ ATPase that actively pumps Na+ out and K+ into the 

cell by using the energy from adenosine triphosphate (ATP) (31,32). 

 

1.6 New approaches in treatment of CNS disorders 

 

The widespread location of mGlu receptors throughout the CNS makes them attractive targets 

for drug treatment of generalized anxiety disorder, Parkinson’s disease, Fragile X syndrome, 

schizophrenia, acute migraine, gastro esophageal reflux disease (GERD), drug addiction, 

chronic pain and certain types of cancers (20,33). 

 

It was assumed that the orthosteric binding site in the VFT among the mGlu receptors were 

well conserved compared with the 7 TMH domain, making it an unattractive drug binding site 

because of difficulties with selectivity. But recently it was shown that there is in fact greater 

sequence conservation among the 7 TMH than the VFT. However, the main focus in drug 

development for mGlu receptors are allosteric modulators (14,33). 

 

There has been an increase in the discovery and understanding of allosteric modulators of 

GPCRs over the years, and there are now some allosteric modulators marketed as drugs, 

including treatment of HIV infections (interacting with class A receptors) and 

hyperparathyroidism (interacting with a class B receptors). However, no allosteric modulators 

for the mGlu receptors have been approved as drugs for threatening psychiatric and 

neurological disorders but some have entered clinical studies (17). 

 

NAMs for the mGlu5 receptor have or are being tested in clinical trials for the treatment of 

Fragile X syndrome, Parkinson’s disease, levodopa-induced dyskinesia, anxiety, GERD, 

neuropathic pain, obsessive-compulsive disorder, migraine, chorea in Huntington’s disease 

and depression. The NAM mavoglurant were tested for the treatment of Fragile X syndrome 
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but the study failed to show efficacy. Reports from phase II in clinical trial by Roche with the 

use of the NAM basimglurant as an adjunctive drug in major depressive disorder has shown 

encouraging results, which can strengthen the approach of developing novel antidepressant 

for glutamateric systems in the CNS. In addition, the Addex Therapautic’s NAM dipraglurant 

is in clinical development for rare dystonia and Novartis have evaluated mavoglurant in the 

phase II in the treatment of obsessive-compulsive disorder (34). 

 

Some drug candidates that target mGlu receptors have been tested in both preclinical and 

clinical studies. Preclinical studies have shown that these drug candidates have putative 

antidepressant, anxiolytic, antipsychotic, anti-parkinsonian, anti-addictive, analgesic and anti-

fragile X syndrome activities in animal models (22). 

 

Designing allosteric modulators for mGlu receptors offers great possibilities for subtype 

selectivity, but there are some challenges. It exists some possibility for cross activity among 

the receptors, where for example mGlu4 receptor PAMs act as NAMs for mGlu1 and mGlu5 

receptors. It is important to design drugs that are selective for a subtype receptor and does not 

act on other receptors, to avoid side effects and toxic effect in humans (10,20). 

 

1.7 Molecular modeling 

 

Molecular modeling is a collective term of different computational techniques where 

scientists are allowed to visualize 3D molecules, to simulate, analyze and predict properties 

and behaviors of molecules on an atomic level. It is also used in the discovery of new lead 

compounds for drug development and to refine existing drugs in silico. Molecular modeling 

includes molecular mechanics (MM) and quantum mechanics (QM) methods (35). 

 

MM is a relative fast computational method and is based on the assumption that the energy of 

a whole system is the sum of inter- and intra molecular interactions. MM calculates the total 

energy of a molecule (Etot) as the sum of bonded and non-bonded interactions, including bond 

stretching energy (Estr), angle bending energy (Eangle), energy for rotation around a bond 

(Etors), van der Waals interaction energy (EvdW) and electrostatic interaction energy (Eel) 

(35,36). The total energy function is given by the following equation: 
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Etot = Ebonded + Enon-bonded; or 

Etot = (Estr + Eangle + Etors) + (EvdW + Eel) 

 

The collections of these individual interaction values are referred to as force field (36). 

 

QM methods can calculate molecular geometry and relative conformational energy and offers 

the most detailed description of molecules chemical behavior. It has disadvantages relative to 

MM that it has high computational costs and it is limited to only small molecules (35,36). 

 

1.7.1 Homology modeling 

 

Computational methods in protein modeling for constructing 3D structural models are widely 

used in research within academia and pharmaceutical industry. Several 3D structures of 

proteins have been crystallized and the structures have been solved at high resolution. 

However, there are still several proteins with unknown 3D structure, and there are still quite 

few membrane proteins of known 3D structure (37). To be able to study their structure and 

function, homology modeling is an important approach for constructing 3D models of GPCRs 

and other membrane proteins (38). 

 

Homology modeling is considered to be the most accurate available computational method for 

studying proteins with unknown structure and has been commonly applied in drug discovery. 

It is based on the fundamental observations that evolutionally related proteins can adopt 

similar 3D structures. The homology modeling approach is primarily based on the different 

steps included in figure 9, which can be repeated until the satisfactory model quality is 

achieved or until it cannot be further improved (37–39). 
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Figure 9: Main steps in homology modeling. 

 

Selection of the most suitable experimental template structure 

 

Selection of a suitable crystallized 3D structure (“template”) for the modeling is the first step 

in homology modeling. Since only the amino acid sequence of the receptor structure of 

interest (“target”) is known, it is important to select a template that has as high sequence and 

functional similarity to the target as possible. Template structures can be obtained by 

comparing its amino acid sequence to the target sequence. If the target and the template share 

sequence similarity, it can be said that they share a common evolutionary structure and their 

3D structures can be expected to be similar (39). For modeling of receptor structures in an 

active or an inactive state, it is desired to select templates bound to an agonist or an antagonist 

to examine interaction with the appropriate active or inactive conformational state of the 

receptor. The most suitable template is the one that is in the appropriate conformation state 

and has the highest sequence homology to the target (21). 
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Target-template sequence alignment 

 

After the template has been selected, the target sequence is aligned with the amino acid 

sequence of the template. Target-template sequence alignment is a major determinant for the 

final resulting quality of the constructed model. The more accurate the alignment is, the more 

accurate are the models and less work is to be done with the final model refinements (29,39). 

 

When generating a target-template sequence alignment it is important to locate the regions in 

the alignment that may need adjustments, for instance removing gaps from regions in the 

alignment representing structurally conserved regions (e.g. conserved helices and beta-

strands). There may be regions in the alignment displaying significant structural differences 

between the target and the template. This becomes common for proteins that are not so 

structurally related. Often it is desired to align the target with a number of available templates 

to get an accurate alignment. Different regions in the target sequence can be aligned with 

different templates to improve the alignment and the model. It is possible that only some 

regions of the receptor template are available as 3D structures or that the alignment is not 

accurate over the entire sequence length of the target. Multiple template alignment can 

contribute to an improvement of the modeling procedure (39). 

 

A correct target-template sequence alignment should include all the similar structural and 

evolutionary residue pairs, but at the same time leave out structurally divergent regions 

between the target and the template (39). 

 

Homology model building 

 

When the sequence alignment has been obtained, a 3D structure of the target can be 

constructed by homology modeling. The 3D structure is built on the basis of the target-

template sequence alignment. 

 

In general, the amino acids in the 7 TMH domains are often conserved in different GPCRs. 

This makes the modeling quite straight forward concerning the helices. Modeling of ICL and 

ECL is a challenge because they can differ between the GPCRs in shape and in number of 
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amino acids (21). However, it has been demonstrated that “loop-less” models can be used in 

structure based virtual screening, where the binding pocket is of main interest (37). 

 

Model refinement 

 

Model refinement is an important step in homology modeling. It is used to eliminate the 

structural errors that may have occurred in the building of the 3D models. Energy functions in 

homology modeling can give the models correct covalent geometry and it can also help 

avoiding errors, like steric clashes and atomic overlap of residues (40). 

 

Homology modeling is based on Anfinsen’s thermodynamic hypothesis, where a proteins 

native structure is determined by its amino acid sequence and that its favorable conformation 

is the one with the lowest free energy. This assumption gives an approach in protein structure 

modeling to construct a structure with as low free energy as possible. Model refinement with 

energy functions can help selecting the near-native structures based on the Anfinsen’s 

thermodynamic hypothesis. Overall, it helps to refine the models and give a final model with 

high quality (40). 

 

Model quality validation 

 

Making a series of virtual screening experiments is an optimal approach to validate the 

correctness and predictivety of the constructed models. This applies especially if the purpose 

of the homology models is to investigate receptor-ligand interactions. A set of active 

compounds (known binders) for the receptor and a large number of inactive compounds 

(decoys) are docked with molecular docking to the binding site in the receptor model (41). 

Decoys are compounds with similar Mw and physiochemical properties as the known binders, 

but their affinity for the receptor is much lower. The result from the docking calculations is 

then evaluated by calculations of enrichment factors (EF) and Boltzmann-enhanced 

discrimination of receiver-operating characteristic (BEDROC) parameters and enrichment 

plots for each receptor model are also constructed. The models are ranked by their ability to 

discriminate between decoys and actives (41–43). 
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1.7.2 Docking and scoring 

 

A major challenge many molecular modeling programs have today is to be able to mimic the 

flexibility of a protein target. A native protein target will always be in equilibrium between 

different conformations, and the ligand bound conformation is not necessarily the 

conformation obtained by X-ray crystallography or homology modeling. 

 

Molecular programs use docking and scoring to be able to identify the best ligand binding 

pose and protein structure conformation. A binding pose is the preferred orientation and 

conformation a ligand gets in a protein binding site during docking [37]. Many molecular 

modeling programs uses semi-flexible docking, with a flexible ligand docked into a rigid 

receptor (44). An ideal situation would be for both the ligand and the receptor to be flexible, 

and one approach to enhance the docking procedure is by including some flexibility into the 

receptor. This includes induced fit docking (IFD) protocol where the receptor side chains in 

the binding pocket are refined after docking a ligand to the binding pocket. In addition, 

docking one ligand into an ensemble of several receptor conformations can also incorporate 

receptor flexibility (45). 

 

Scoring assess the quality of a binding pose where each predicted pose is given a score and is 

ranked from lowest to highest score (44). The free energy of binding (G) is given by the 

Gibbs-Helmholtz equation: 

 

G = H - TS = -RTlnKi 

 

H is the enthalpy, T is the temperature in kelvin, S is the entropy, R is the gas constant and 

Ki is the binding constant. It exists several techniques for predicting the binding free energy 

and the scoring function can be classified into four main categories: the empirical, the force-

field-based, the knowledge-based and the consensus function. The functions differ in 

accuracy and speed, where one with the highest accuracy is generally the one that is the most 

time consuming. The ideal scoring function would rank highest the binding mode that is most 

similar to the experimental one. The empirical energy function calculates binding scores fast 

based on simple energy terms known to be important in ligand binding such as vdW, 

electrostatics, hydrogen bond (H-bond), desolvation, entropy and hydrophobicity energy 

terms. Force-field-based scoring function is based on terms of MM force field, including bond 
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stretching/bending/torsional forces and vdW interactions and electrostatic interactions. The 

knowledge-based scoring function uses energy potentials derived from structural information 

gathered from experimentally determined atomic structures. Consensus scoring function 

combines the empirical, the force-field-based and the knowledge-base scoring function 

(36,46). 

 

Docking and scoring can be used for different purposes, including identifying the binding 

mode of a known ligand in a binding site or screening a set of ligands to the binding site. In 

addition, docking and scoring can be used for searching large virtual databases for 

identification of potential drug hit/lead compounds for a particular protein and for prediction 

of binding affinity of a ligand to a protein structure or homology model (44,46). 
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2. AIM 

 

The aim of this study is to predict putative interactions and binding modes of 8194 exogenous 

toxicants from the Tox21 database (version spring 2012) with mGlu receptors and the GAT1 

using molecular docking. Constructed homology models of mGlu receptors and the GAT1 

and known X-ray structures of mGlu receptors retrieved from Protein Data Bank were used 

for the docking. 

 

Interactions of exogenous toxicants with these receptors and transporters could possibly result 

in harmful CNS effects and diseases. These proteins are also very interesting targets for new 

drug development and exogenous toxicants may interfere with the effects of drugs functioning 

by binding to these receptors. The study will provide information concerning which of the 

toxicants that may interact with the mGlu receptors and the GAT1. Docking calculations is 

done for 3D structures/models of mGlu receptors (mGlu2, mGlu5 and mGlu7 receptors) and 

the GAT1 models with known agonists, antagonists, allosteric modulators and decoys in order 

to test the predictivety of the models. Therefore, the study also gives detailed information into 

how known agonists, antagonists, NAMs and PAMs interact with the binding sites in mGlu2, 

mGlu5 and mGlu7 receptor and the GAT1. The information of different binding interactions 

in these proteins is of pharmacological importance for development of future drugs. 
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3. METHODS 

 

3.1 Software 

 

Molsoft Internal Coordinate Mechanics software (ICM) (version 3.8.4) 

 

ICM is an approach, which gives a general modeling and structure prediction framework for 

many different tasks of structural biology and rational drug design. In this thesis, ICM was 

used to convert ligands and decoys from SMILES to two dimensional (2D) structures and 

construction of multiple sequence alignments of mGlu receptors. 

 

Schrödinger (version 2015.3) 

 

Maestro is a software that gives a molecular environment with a wide selection of analysis 

tools. It is an interface for all Schrödinger software (http://www.schrodinger.com/Maestro/). 

Modules used for docking in this thesis were glide docking. Protocols used were one-step 

protein preparation, ligand preparation (Ligprep), virtual screening workflow (VSW) and 

induced fit docking (IFD). 

 

MODELLER (version 9.13) 

 

MODELLER is a computer program for protein structure modeling that is frequently used in 

homology modeling. It is a non-graphical program that is used with a scripted language. 

Based on aligned protein sequences, MODELLER will automatically calculate and construct 

3D structure models of proteins that include all non-hydrogen atoms (47). In this thesis, 

MODELLER was utilized for homology model building of mGlu2 and mGlu7 receptors and 

the GAT1. 

 

CNS MPO 

 

Putative BBB penetration of the compounds of the Tox21 database was performed with the 

CNS MPO software. CNS MPO is normally used to predict BBB penetration of CNS drug 

candidates. The CNS MPO algorithm is built on the basis of six parameters: [1] Clog P; [2] 

http://www.schrodinger.com/Maestro/
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Clog D; [3] Mw; [4] TPSA; [5] number of HBD; [6] pKa. All of these physicochemical 

properties have a desirable score ranging from less desirable (0.0) to more desirable (1.0). 

Summarized scoring range yields in the final CNS MPO desirable score, which ranges from 0 

to 6 were the most desirable score is  4 (7). 

 

3.2 Databases 

 

Protein Data Bank (PDB) 

 

The Research Collaboratory for Structural Bioinformatics (RCSM) is responsible for the 

management of the PDB, which is available at no cost for users. PDB consists of different 

databases to form a single uniform worldwide PDB (wwPDB) for all users, in collaboration 

with PDBe (UK), PDBj (Japan) and BMRB (USA). PDB contains information about 3D 

structures of large biological molecules of proteins and nucleic acids found in all organisms, 

including bacteria, flies, human and other animals (48). Most of the structures in PDB have 

been solved using X-ray crystallography. The template crystal structures used in homology 

modeling are downloaded from this database. (www.pdb.org). 

 

Universal Protein Resource Knowledgebase (UniProtKB) 

 

The UniProtKB provide users with scientific collection of functional information about 

proteins and protein sequences. The database comprises of two sections; Swiss-Prot and 

TrEMBL. The targets sequences used for the construction of multiple sequence alignment and 

in homology modeling are retrieved from Swiss-Prot section of UniProtKB. The database was 

also used to align sequences to identify their homology. (www.uniprot.org) 

 

Database of Useful Decoys: Enhanced (DUD.E) 

 

DUD.E is a database with useful decoys. These are molecules that have similar physical 

properties as the binders, but different topology. DUD.E were used to generate and download 

decoys of active compounds that were further used in docking calculations. 

(www.dude.docking.org) 

 

http://www.pdb.org)/
http://www.uniprot.org)/
http://www.dude.docking.org)/
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IUPHAR/BSP Guide to Pharmacology 

 

The database provides quantitative information about drug targets and compounds that act on 

them, including some medicines and experimental drugs. The British Pharmacological 

Society (BPS) and the International Union of Basic and Clinical Pharmacology (IUPHAR), in 

collaboration create this database. It exists detailed introductory chapters for each target 

receptor with information about pharmacological, physiological, structural, genetic and 

pathophysiological properties (49). Known binders (agonists, antagonists, NAMs and PAMs) 

for each receptor subtype were retrieved as SMILES from this database and used in docking 

calculations. (http://www.guidetopharmacology.org) 

 

PubChem 

 

Pubchem contains information of the biological activities of small molecules. It is organized 

into three sections: PubChem Substance, PubChem Compound, and Pubchem BioAssay. In 

this thesis, PubChem Compound section was used to download SMILES of compounds that 

were not to be found in the IUPHAR/BSP Guide to Pharmacology database. 

(https://pubchem.ncbi.nlm.nih.gov) 

 

Toxicology in the 21st Century (version spring 2012) 

 

Tox21 is a collaboration between research teams including United States Environmental 

Protection Agency (EPA), NIH, including National Center for Advancing Translational 

Sciences and the National Toxicology Program at the National Institute of Environmental 

Health Sciences, and the Food and Drug Administration (5). The initiative is also to maintain 

a database of approximately 8000 environmental toxicants. In this thesis, the Tox21 database 

was used to retrieve 8194 exogenous toxic compounds for docking into constructed homology 

models and X-ray structures. 

 

 

 

 

 

https://pubchem.ncbi.nlm.nih.gov/
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3.3 Homology modeling 

 

The crystal structures of 7 TMH of mGlu2 and mGlu7 receptors have not yet been resolved. 

In order to calculate interactions between exogenous toxicants and the allosteric binding sites 

of these receptors, it was necessary to build theoretical 3D models by using the homology 

modeling approach. In addition, 3D structure models of GAT1 were constructed with 

homology modeling based on the related dDAT as template. 

 

Selection of the most suitable experimental template structure 

 

The template was chosen based on the following criteria 1) the template should have as high 

as possible homology to the target, 2) contain the binding site of interest in complex with a 

ligand 3) have as high resolution as possible. 

 

There are only few structures of the 7 TMH for mGlu receptors that have been crystallized, so 

the selection was limited to crystal structures of the mGlu1 receptor and the mGlu5 receptor. 

The crystallized 7 TMH of mGlu5 receptor (PDB ID: 4OO9) had a higher resolution than of 

the crystal structure of mGlu1 receptor (PDB ID: 4OR2) and was therefore selected as 

template for the homology modeling of the allosteric site of mGlu2 and mGlu7 receptor (table 

4). Selection of template for GAT1 was based on the homology identity between GAT1 and 

DAT. The sequences of the transporters were aligned in Uniprot databased to identify their 

homology. The overall sequence identity between GAT1 and DAT was approximately 41 %. 

In addition, the template dDAT (PDB ID: 4XP4) had the highest resolution out of the 

available DAT X-ray structures and was therefor selected as template for the homology 

modeling of GAT1. 

 

Table 4: Information about the crystal structures of the templates used in homology modeling. 7 TMH of 

mGlu5 receptor was used for the modeling of 7 TMH of mGlu2 and mGlu7 receptor, and dDAT was used for the 

modeling of GAT1. 

PDB 

ID 

Receptor Area of the 

receptor 

Ligand Resolution 

(Å) 

Binding 

site 

4OO9 mGlu5 7 TMH Mavoglurant (NAM) 2.6 Allosteric 

4XP4 dDAT Entire transporter Cocaine (inhibitor) 2.8 Orthosteric 
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Target-template sequence alignment 

 

The protein sequences of the mGlu receptor targets were retrieved from UniProt 

(www.uniprot.org) with the codes Q14416 for the mGlu2 receptor and Q14831 for the mGlu7 

receptor. Crystal structure of 7 TMH mGlu5 receptor bound to mavoglurant (PDB IDs: 

4OO9) was downloaded from the PDB (www.pdb.org) and used as template. The amino acid 

sequence of GAT1 was retrieved from UniProt (code: P30531) and the crystal structure of the 

selected template dDAT (PDB ID: 4XP4) was downloaded from the PDB. 

 

The sequences of the target and template were aligned in the multiple sequence viewer of 

maestro (version 2015.3), and inspected and adjusted for gaps. A lysozyme domain in the 

crystal structure of 7 TMH mGlu5 receptor and an antibody fragment in the crystal structure 

of dDAT were removed before modeling. 

 

Homology model building 

 

Based on the constructed alignments, MODELLER automatically calculated and constructed 

3D models of the targets. Different restraints were extracted from the target-template 

sequence alignment, such as Cα-Cα distances, main chain and side chain dihedral angles and 

H-bonds. The final 3D models comprised of the main chain and side chains without hydrogen 

atoms. One hundred homology models of each target (GAT1 and 7 TMH of mGlu2 and 

mGlu7 receptors) were constructed with MODELLER (version 9.13). All the 100 models 

varied slightly in the initial structure and increased the possibility of getting one or several 

high quality models. 

 

The constructed 3D homology models were imported to maestro (version 2015.3) and 

renumbered such that the residue numbers in the models could match the target sequence 

numbering. The models were prepared with one-step protein preparation in maestro (version 

2015.3) with default settings. Disulfide bonds were created and H-bonds were added in proper 

distances and angles, and the models were energy minimized and prepared for docking. 

 

 

http://www.uniprot.org)/
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3.4 Molecular docking 

 

Different docking calculations with known binders and decoys were performed in order to 

validate the models. This approach aimed to test if the constructed homology models and 

retrieved X-ray structures were reliable for docking of toxicants and if they were as near the 

native favorable state as possible. Docking calculations with known binders and decoys were 

performed for the allosteric site of the 7 TMH homology models of mGlu2 and mGlu7 

receptor, and the homology models of GAT1. In addition, docking calculation were also 

performed for the allosteric binding site of 7 TMH crystal structure of the mGlu5 receptor 

(PDB ID: 4OO9), the orthosteric binding site of the crystal structure of the VFT of the mGlu2 

receptor (PDB ID: 5CNJ) and the mGlu7 receptor (PDB ID: 3MQ4). The molecular docking 

steps varied slightly for the homology models and the retrieved X-ray structures. The main 

steps are included in figure 10, which were repeated until the models had sufficient quality or 

until they could not be further improved. 

 

 
Figure 10: The main steps of the molecular docking approach for the constructed homology models and 

the retrieved X-ray structures. 
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3.4.1 Generation of binders and decoys 

 

Known binders for GAT1, mGlu2 and mGlu7 receptors were retrieved from IUPHAR 

(www.guidetopharmacology.org) as SMILES and converted to 2D structures in ICM (version 

3.8.4). To simulate the physiological pH of blood circulation system in human body, the pH 

was set to 7.4 to protonate the molecules (ICM Chemistry: assign formal charge). 

 

Decoys for each binder were downloaded from DUD.E (www.dude.docking.org) in the 

relationship 200:1 (200 decoys per 1 ligand). The decoys were imported into ICM and 

prepared and adjusted with the same settings as for the binders. 

 

To find the individual energy minimum state for each compound, all binders and decoys were 

imported to maestro (version 2015.3) and prepared for docking with ligand preparation 

(Schrodinger: LigPrep). There was some deviation from the default settings: no changes in 

ionization, no desalt, no generation of tautomers and generate at most 2 conformations per 

ligand. 

 

3.4.2 Virtual screening workflow 

 

VSW module was used to dock sets of ligands and decoys into the receptor and transporter 

models. A python-script (grider), developed by collaborators in Krakow, Poland, (Krzysztof 

Rataj), was used to generate receptor grids from the constructed homology models and the 

retrieved X-ray structures. The ligands to be docked were confined to an enclosing box 

(inner- and outer box) where they could bind (binding pocket). The outer box was set to 30 Å, 

and the inner box was set to 10 Å. The binding pocket for each constructed homology model 

of the mGlu2 and mGlu7 receptors was defined by selecting residues that have been identified 

to be important for binding of NAMs (table 5). This was retrieved from a previous study by 

Harpsøe et al. (36) where they compared binding modes of different mGlu receptors in 

complex with ligands with available mutagenesis data. The allosteric binding pocket of the 7 

TMH mGlu5 receptor was defined on the basis of its interactions with the NAM mavoglurant. 

It was decided that the selected residues were used for both the active (PAM) and the inactive 

(NAM) state, since most of the same residues are anticipating in binding of NAMs and 

PAMs. 
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Table 5: Overview of residues that were selected to define the allosteric binding site in the 7 TMH. 

Residues that were defined as the key residues for the allosteric binding site during docking into mGlu2 and 

mGlu7 receptor models are highlighted in red. They were not necessarily in direct contact with the ligands after 

docking. Corresponding amino acids in mGlu5 receptor are also shown. The corresponding residues between 

mGlu2, mGlu7 and mGlu5 7 TMH are shown in black. “Residues in 7 TMH” are shown with Ballesteros and 

Weinstein numbering system. 

Residues in 7 TMH mGlu2 mGlu7 mGlu5 

3.32 R635 R658 Q647 

3.33 R636 R659 R661 

3.44 Y647 Y670 Y659 

5.40 M728 I756 V740 

5.43 S731 S759 P743 

5.47 N735 S763 N747 

6.50 W773 W801 W785 

6.53 F776 F804 F788 

7.36 S797 S828 S805 

 

 

The crystal structure of VFT mGlu2 receptor (PDB ID: 5CNJ) is in complex with the 

glutamate analog LY2812223 and the crystal structure of VFT mGlu7 receptor (PDB ID: 

3MQ4) is in complex with the antagonist LY-341495. The orthosteric binding pocket of 

mGlu2 and mGlu7 receptor was defined on the basis of residues that were within an 

approximate 3.5 Å sphere radius of the bound ligand (table 6). 

 

It was decided to use the same residues for both agonist and antagonist state of the selected 

residues for mGlu2 and mGlu7 receptor orthosteric binding site. 
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Table 6: Overview of residues that were selected to define the orthosteric binding site in the VFT. Residues 

that were defined as the key residues of the orthosteric binding site during docking into mGlu2 and mGlu7 

receptor models are highlighted in red. They were not necessarily in contact with the ligands after docking. 

Corresponding amino acids in mGlu5 receptor are also shown. The corresponding residues between mGlu2, 

mGlu7 and mGlu5 VFT are shown in black. Docking calculations for the mGlu5 receptor VFT domain were not 

performed. 

mGlu2 mGlu7 mGlu5 

Arg 57 Asn74 Ala 59 

Tyr 144 Gly 158 Val 146 

Ser 145 Ser 159 Ile147 

Ala 166 Ala 180 Ala 166 

Ser167 Ser 181 Ser 167 

Thr 168 Thr 182 Ile 170 

Tyr 216 Tyr 230 His 218 

Asp 295 Asp 314 Leu 302 

Lys377 Lys 407 Lys 377 

 

 

The binding site of GAT1 was defined on the basis of dDAT in complex with cocaine. By 

selecting residues 3.5 Å in distance from cocaine, it was possible to detect the corresponding 

residues in GAT1 by comparing both transporters amino acid sequences in the constructed 

alignment (table 7). 

 

Table 7: Overview of residues that were selected to define the orthosteric binding site in GAT1. Residues 

3.5 Å from the inhibitor cocaine bound to dDAT crystal structure are shown. The corresponding amino acid 

residues in GAT1 are shown, and were selected to define the binding pocket of GAT1 during docking. These 

residues were not necessarily in direct contact with the ligands after docking. 

dDAT GAT1 

Phe43 Tyr60 

Asp46 Gly63 

Ala117 Phe134 

Asp121 Ile138 

Tyr123 Tyr140 

Phe319 Ser295 

Phe325 Gly301 

Ser421 Gln397 
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All the generated binders and decoys for each receptor and transporter were docked with 

VSW protocol in the prepared grid models.  

 

3.4.3 Induced fit docking 

 

Selected receptor-ligand complexes were further optimized with IFD protocol in maestro 

(version 2015.3). The outputs from the IFD are different ligand-receptor complexes with 

slightly different structure of the ligand and the receptor. The IFD protocol is based on the 

Glide module and the Refinement of Prime module. Receptor flexibility is incorporated by 

Prime and the ligands are docked into their respective receptors with Glide. The receptors and 

ligands were prepared in the same manners as for the VSW module. The binding sites were 

defined with the same residues as before (see section 3.4.2). Default settings were used and 

the docking score and the IFD score were estimated for each output pose. 

 

Compounds that have been reported as high affinity binders at target receptors were selected 

for IFD. After IFD, grids were constructed for each output pose (different receptor 

conformations) and the ligand sets (known binders and decoys) were docked with VSW 

protocol and BEDROC was calculated. 

 

3.4.4 Evaluation of homology models, BEDROC 

 

To evaluate the models, enrichment factors and BEDROC parameters were calculated for 

each VSW result and enrichment plots were generated. Those models that performed best in 

discriminating active compounds (known binders) from inactive compounds (decoys) were 

considered as the most reliable models. Models with the best BEDROC score were selected 

for docking with toxicants, and models that did not have satisfaction BEDROC scores were 

improved further with IFD protocol in maestro (version 2015.3). 
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3.4.5 Docking calculations with exogenous toxicants 

 

The ligand set of toxicants retrieved from Tox21 database (spring 2012) were imported to 

ICM (version 3.8.4), prepared by removing ions from the ligands and protonated at pH = 7.4, 

to mimic the native pH in the human body (ICM Chemistry: assign formal charge). The 

toxicants were then imported to maestro (version 2015.3) and prepared with ligand 

preparation (Schrödinger: LigPrep). Ligand preparation separates ligands according to their 

chirality and conformations, which resulted in that the number of molecules for docking was 

increased from 8194 to 9757. 

 

The models with satisfactory BEDROC scores for each target were used for docking with 

toxicants. A total of 9757 putative toxic molecules were docked with Glide into the 

constructed homology models and crystal structures, and scored. Default settings were used 

for all glide docking calculations. 
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4. RESULTS 

 

4.1 Homology models 

 

4.1.1 Alignments 

 

A multiple sequence alignment of mGlu1-mGlu8 receptors was generated in ICM (version 

3.8.4) and used to investigate the conservation of amino acids between the subtypes (figure 

11).  The amino acid sequences were retrieved from UniProt with the codes GRM1_HUMAN 

to GRM8_HUMAN, which represents human mGlu1-mGlu8 receptors. The amino acid 

sequence of the crystal structure of VFT and 7 TMH of the mGlu5 receptor (PDB ID: 3lmk 

and 4OO9) were also included in the alignment and are in addition illustrated as secondary 

structures beneath the amino acid sequences. 

 

The amino acid residues are highly conserved between the subtypes of mGlu receptors, and 

the conservation are indicated with different colors in the alignment. 

 

An alignment of GAT1 and DAT were also constructed in order to find the suitable template 

for GAT1 (figure 12). This was done in www.uniprot.org with the UniProt codes P30531 for 

GAT1 and Q01959 for DAT. Figure 12 shows the alignment of the DAT and the GAT1. 

 

 

 

 

 

 

 

http://www.uniprot.org/
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Figure 11: Alignment of human mGlu receptors (mGlu1 to mGlu8). Each TMH is indicated with a red square 

and is given the name TMH1-7. The degree of conservation in the alignment is shown in colors. The most 

conserved residues are shown in dark green color, then follows lighter green, yellow, pink, lighter pink and the 

least conserved residues are shown in white color. Red and purple cylinders represent -helices and -helices, 

and the green arrows represent -sheets for the secondary structure. 
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Figure 12: Alignment of GAT1 and DAT constructed in www.uniprot.org. The upper amino sequence is 

GAT1 and the lower is DAT. The 12 TMHs are indicated in yellow color. * represents identical amino acids.  

: and . represents similar amino acids. The overall identity between GAT1 and DAT were 41 %. 
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4.1.2 Models constructed by MODELLER 

 

One hundred homology models of the 7 TMH of the mGlu2 and mGlu7 receptors and of 

GAT1 were constructed with MODELLER. The models of the mGlu2 and mGlu7 receptors 

were constructed based on the target-template sequence alignment of the mGlu receptor 

(target) and the crystal structure of the 7 TMH of mGlu5 receptor (PDB ID: 4OO9) as 

template. The models of GAT1 were based on an alignment between GAT1 and the dDAT, 

which also was used as the template (PDB ID: 4XP4). MODELLER automatically 

constructed non-hydrogen 3D models of the targets by extracting different restrains from the 

target-template alignment, including Cα-Cα distances, main chain and side chain dihedral 

angles and H-bonds. 

 

Superposition of the constructed models showed that the 100 models differ slightly from each 

other in structure conformation (figure 13-15). The most variable regions are in the loops 

where both backbone and side chain conformations differs, while in the TMH, the main 

difference between the models were seen in the side chain conformations. Loop modeling is 

quite challenging due to limited amino acid conservation and structural flexibility, and this 

enables larger variation in loop regions. 

 

The TMH1-7 for the mGlu2 and the mGlu7 receptor are shown in different colors (figure 13-

14). The TMH1 is in red color, then follows orange, yellow, green, turquoise, blue and TMH7 

which is shown in dark purple color. The allosteric binding pockets for the mGlu receptors are 

mainly situated between TM2, TM3, TM5, TM6 and TM7 and ECL2 (corresponding to 

orange, yellow, turquoise, blue and dark purple color. The ECL2 are shown in dark green 

color). 
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Figure 15: Superposition of the backbone of one hundred homology models of GAT1. The extracellular site 

of the receptor is located at the top of the figure. The crystal structure of dDAT (PDB ID: 4XP4) was used as 

template. 

 

Figure 13: Superposition of the backbone of 

one hundred homology models of the 7 TMH 

of mGlu2 receptor. The extracellular site of the 

receptor is located at the top of the figure. The 

crystal structure of 7 TMH mGlu5 receptor (PDB 

ID: 4OO9) was used as template.  

 

Figure 14: Superposition of the backbone of one 

hundred homology models of the 7 TMH of 

mGlu7 receptor. The extracellular site of the 

receptor is located at the top of the figure. The 

crystal structure of 7 TMH mGlu5 receptor (PDB 

ID: 4OO9) was used as template. 
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4.2 Molecular docking 

 

In order to validate the constructed homology models, molecular docking approaches were 

performed using libraries of known binders and decoys for the different mGlu receptors and 

GAT1. 

 

4.2.1 Virtual screening scoring values 

 

VSW protocol was performed on constructed grids of the receptor models in maestro (version 

2015.3). The retrieved crystal structures of VFT of the mGlu2 and the mGlu7 receptor (PDB 

ID: 5CNJ, 3MQ4) and 7 TMH of the mGlu5 receptor (PDB ID: 4OO9) were first docked with 

the IFD protocol in maestro before the VSW protocol. The one hundred constructed 

homology models of 7 TMH mGlu2 and mGlu7 receptor and GAT1 were docked with VSW 

protocol first, but the PAM state of mGlu7 receptor homology model and both NAM and 

PAM state of mGlu2 receptor homology model had to be further improved with IFD protocol. 

The IFD protocol generated new conformational states of the receptors that were used for 

docking. 

 

It is desirable that all known binders for a particular receptor can bind and form interactions 

with the binding site of the receptor model. In order to use the models for predictions of 

ligand interactions the models should also be able to split between known binders and non-

binders/decoys for the receptors, such that the binding site is more reliable when docking the 

library of toxicants. Ligand sets of both known binders and non-binders/decoys were docked 

with Glide by the VSW module into receptor grids and scored. The negative docking values 

equal high scores, so the lower docking score the better score and stronger affinity for the 

binder to the model. 

 

The receptor models are snapshots of a conformational state of the receptor, which means that 

the docking scores from VSW are not final and can vary depending on the conformational 

state of the model. A mean docking score value was therefore calculated for each receptor 

model, which was used as a threshold value when docking the toxicants. 
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The following tables (8-13) lists the results from VSW for the receptor and transporter models 

that were able to dock all known binders and were used in the glide docking with toxicants 

(Tox21 library). Figure 16-18 shows three binding modes from VSW protocol with NAMs in 

the allosteric binding pocket of the mGlu2, the mGlu7 and the mGlu5 receptor. 

 

mGlu2 receptor: 

 

The crystal structure of the VFT domain of the mGlu2 receptor (PDB ID: 5CNJ) was used in 

docking calculations of agonists and antagonists. During ligand recognition and binding, the 

binding pocket needs to adapt to the structure of the ligand, and therefore the agonist bound 

conformation must differ from the antagonist bound conformation of a receptor. To account 

for this, the crystal structure first had to be docked with one agonist and one antagonist with 

IFD protocol in maestro (version 2015.3). Known agonists and antagonists were then docked 

into different conformational states of the VFT from the IFD process using the VSW protocol, 

and scored (table 8). 

 

The more negative docking score, the stronger is the compound predicted to bind to the 

targets. It was desirable that the ligands with the highest experimental affinity score had the 

best docking scores in the model, which can be seen in table 8 where there is a good relative 

correlation between the docking scores and the affinity of the ligands to the receptor. 
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Table 8: Docking scores from VSW with 13 agonists and 7 antagonists in the orthosteric binding site of the 

crystal structure of VFT mGlu2 receptor (PDB ID: 5CNJ). The table includes the 10 best ranked agonists 

ligands (of a total of 13 ligands) and the 7 best ranked antagonists from VSW. The compounds with the lowest 

docking scores are predicted to have highest affinity to the receptor. The calculated mean scoring values are also 

shown. 

mGlu2 receptor orthosteric binding site 

Agonist    
(chirality) 

Docking

score 

Affinity 

(pKi) 

Antagonist 
(chirality) 

Docking 

score 

Affinity 
(pKi) 

MGS0028 -8.97 9.2 MGS0039 -9.20 8.6-8.7 

(S)-4C3HPG -8.72 4.8 LY341495 -9.16 8.6 

DCG-IV (1S,3R) -7.56 7.0 PCCG-4 -7.78 5.1* 

Eglumegad -7.35 7.8-7.9 (+)-MCPG -6.75 4.6 

LY379268 -7.32 7.9 -methylserine-

O-phosohate (R) 

-6.73 5.3 

(1S,3R)-ACPD -6.95 5.0-5.4 -methylserine-

O-phosphate (S) 

-6.67 5.3 

DCG-IV (2R,2S) -6.93 7.0 eGlu -5.22 4.4-4.6 

(2R,3R)-APDC -6.86 5.0    

L-CCG-I -5.99 6.3    

LY2812223 -5.89 -    

Mean score values       -7.25   -7.36  

* pIC50. - no available affinity value for that particular ligand. 

 

The one hundred constructed homology models of 7 TMH of the mGlu2 receptor were 

docked with known PAMs and known NAMs using the VSW protocol in maestro (version 

2015.3). None of the homology models were able to dock all the known PAMs and NAMs, so 

we needed to generate new conformational states of the receptor with IFD protocol and re-

dock the known PAMs and NAMs with the VSW protocol. The final PAM and the NAM 

conformational state of 7 TMH of the mGlu2 receptor used in VSW are based on the IFD 

with the high affinity binders JNJ-40068782 (PAM) and RO4988546 (NAM). All known 

PAMs were then able to dock into the final PAM conformational state, and all known NAMs 

could dock into the final NAM conformational state. There were a good relative correlation 

between the docking scores and the affinity values for the known binders (table 9). 
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Table 9: Docking scores from VSW with 31 PAMs and 13 NAMs in the allosteric binding site of the 

constructed homology model of 7 TMH mGlu2 receptor. The table includes the 10 best ranked allosteric 

modulators from VSW. The compounds with the lowest docking scores are predicted to have highest affinity to 

the receptor. The calculated mean scoring values are also shown. 

mGlu2 receptor allosteric binding site 

PAM 

(Chirality) 

Docking 

score 

Affinity 

(pEC50) 

NAM 

(Chirality) 

Docking 

score 

Affinity 

(pIC50) 

JNJ-40068782 -11.56 7.3 RO5488608 -12.10 7.9-8.7* 

Compound 34 -11.43 7.1 Ro4491533 -11.98 7.8 

AZD8529 -11.34 6.7 RO4988546 -11.60 - 

Compound 14 -11.04 6.8 MNI-136 -11.04 7.3-8.1 

Compound 48 -11.03 6.4 Compound 4 (R) -10.44 6.0 

4-MPPTS -11.02 5.8 Compound 2 (R) -10.34 6.1 

JNJ-40411813 -10.92 6.8 Compound 3 (R) -9.59 5.8 

JNJ-42153605_1 -10.58 7.8 MNI-137 -9.33 7.1-7.9 

BINA (R) -10.40 7.0 MNI-135 -9.27 6.9-8.0 

JNJ-40411813 -10.34 6.8 Compound 4 (S) -8.97 6.0 

Mean score values   -10.96   -10.47  

*pKi. - no available affinity value for that particular ligand. 
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Figure 16: Binding mode of RO5488608 (NAM) in the allosteric binding pocket of the constructed 

homology model of the mGlu2 receptor. The backbone of the 7 TMH are shown in ribbon. The amino acid 

residues are in a 3 Å sphere radius around the ligand. The residue Phe6433.40 is displayed in black. 
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mGlu7 receptor: 

 

The crystal structure of VFT mGlu7 receptor (PDB ID: 3MQ4) was used for docking to the 

orthosteric binding site of the mGlu7 receptor. The IFD protocol was first performed in order 

to incorporate correct agonist/antagonist conformational states of the crystal structure before 

docking with the VSW protocol. The results from VSW protocol with the final models of 

mGlu7 receptor agonist/antagonist conformational states are shown in the following table. 

There was a good relative correlation between the docking scores and the experimental 

affinity scores. 

 

Table 10: Docking scores from VSW with 13 agonists and 15 antagonists in the orthosteric binding site in 

the crystal structure of the VFT of mGlu7 receptor (PDB ID: 3MQ4). The table includes the 10 best ranked 

ligands for each conformational state. The compounds with the lowest docking scores are predicted to have 

highest affinity to the receptor. The calculated mean scoring values are also shown. 

mGlu7 orthosteric binding site 

Agonist 

(Chirality) 

Docking 

score 

Affinity 

(pEC50) 

Antagonist 

(Chirality) 

Docking 

score 

Affinity 

(pKi) 

LSP1-2111 (S) -6.74 4.3 DCG-IV (R) -7.07 4.7 

LSP4-2022 (R) -6.56 4.9 DCG-IV (S) -6.38 4.7 

LSP4-2022 (S) -6.46 4.9 LY341495 -6.23 6.1 

PPG (S) -6.43 3.7* -methylserine-O-

phosphate (S) 

-5.82 4.4 

LSP1-2111 (R) -6.34 4.3 MSOPPE (S) -5.79 3.6 

L-serine-O-

phosphate 

-6.22 4.5 MAP4 -5.69 3.8 

L-AP4 -6.19 3.7* MPPG (R) -5.26 3.8 

PPG (R) -6.18 3.7* -methylserine-O-

phosphate (R) 

-5.24 4.4 

(1S,3R)-ACPD -5.96 3.0-3.1* (+)-MCPG -5.20 3.2 

L-glutamic acid -5.11 3.1* MPPG (S) -5.18 3.8 

Mean score values     -6.22   -5.79  

* pKi 
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One hundred homology models of the 7 TMH of mGlu7 receptor were docked with known 

NAM binders with VSW protocol. The ligand set comprised of 5 NAMs. Nineteen out of the 

100 homology models were able to dock all the 5 NAMs. The model listed in table 11 was the 

one with the best BEDROC score and was used for the docking calculations with the 

toxicants of the Tox21 library. There was a good relative correlation between the docking 

scores and the affinity scores for each known NAM, where the one with the lowest docking 

score (most negative value) was predicted to be a ligand that had the best affinity for the 

receptor. It was not performed VSW protocol on the PAM conformational state of the mGlu7 

receptor (conformational state generated by IFD protocol) because there is only one known 

PAM for this receptor. 

 

Table 11: Docking scores from VSW with 5 NAMs in the allosteric binding site of the constructed 

homology model of 7 TMH mGlu7 receptor. The compounds with the lowest docking scores are predicted to 

have highest affinity to the receptor. The calculated mean scoring value is also shown. 

mGlu7 receptor allosteric binding site 

NAM (chirality) Docking score Affinity (pIC50) 

ADX71743 (S) -9.40 7.2 

ADX71743 (R) -9.40 7.2 

MDIP -9.23 7.6 

MMPIP -8.74 6.1-7.6 

XAP044 -7.50 5.2 

Mean score value -8.85  
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Figure 17: Binding mode of ADX71743 (S) (NAM) in the allosteric binding pocket of the constructed 

homology model of the mGlu7 receptor. The backbone of the 7 TMH are shown in ribbon. The amino acid 

residues are in a 3 Å sphere radius around the ligand (except for Cys6392.49 and Met8297.44, which are 4 Å 

sphere radius around the ligand). The amino acid residues Cys6392.49, Met6663.40 and Met8297.44 are displayed in 

black. 
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mGlu5 receptor: 

 

VSW calculations were performed on the crystal structure of 7 TMH of mGlu5 receptor (PDB 

ID: 4OO9). IFD protocol was first performed with VU0405386-1 (PAM) and basimglurant 

(NAM) in order to get PAM and NAM induced conformational states of the binding pocket. 

The following table lists the results from VSW protocol with known PAMs and NAMs for the 

mGlu5 receptor. 

 

Table 12: Docking scores from VSW with 23 PAMs and 58 NAMs to the allosteric binding site of the 

crystal structure of 7 TMH mGlu5 receptor (PDB ID: 4OO9). The table includes the 10 best ranked PAMs 

and NAMs from VSW. The compounds with the lowest docking scores are predicted to have highest affinity to 

the receptor. The calculated mean scoring values are also shown. 

mGlu5 receptor allosteric binding site 

PAM       

(Chirality) 

Docking 

score 

Affinity 

(pEC50) 

NAM          

(Chirality) 

Docking 

score 

Affinity 

(pIC50) 

CPPHA -10.76 6.3* GRN-529 -11.19 8.6 

ADX-47273 -10.75 7.3 Compound 30 -10.83 7.8 

NCFP -10.52 6.0-6.7 Basimglurant -9.97 - 

VU0092273 -10.32 7.5 VU0366058 -9.80 7.0 

VU0364289 -10.24 5.8 Compound 41 -9.18 7.9** 

VU0424465 -10.24 8.8 Dipraglurant -9.18 7.7 

VU0361747 -10.22 6.9 Compound 23 -9.17 9.1 

VU-29 -10.04 8.1 Compound 11a (R) -9.15 7.4 

VU0357121 -9.93 7.5 Compound 29b -9.01 7.8 

VU0403602-4 -9.90 - Mavoglurant (S) -8.98 - 

Mean score values    -10.29   -9.65  

*pIC50.  **pEC50. - no available affinity value for the particular ligand. 
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Figure 18: The binding mode of basimglurant (NAM) in the allosteric binding pocket of the crystal 

structure of the mGlu5 receptor (PDB ID: 4OO9). The backbone of the 7 TMH are shown in ribbon. The 

amino acid residues are in a 3 Å sphere radius around the ligand. The amino acid residues Gly6282.49, Pro6553.40 

and Ala8107.41 are displayed in black. 
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GAT1: 

 

One hundred constructed homology models of GAT1 were docked with 18 known inhibitors 

with VSW protocol. One of the models was able to dock all the ligands and was used in 

docking calculations with toxicants. The following table lists the 10 top ranked inhibitors 

from the VSW protocol with GAT1. 

 

Table 13: Docking scores from VSW with 18 inhibitors to GAT1. The table includes the 10 best ranked 

ligands. The compounds with the lowest docking scores are predicted to have highest affinity to the receptor. 

The calculated mean score value is also shown. 

GAT1 orthosteric binding site 

Inhibitor (Chirality) Docking score Affinity (pIC50) 

Tiagabine (R) -8.83 7.2 

CI-966 (R) -8.17 6.6 

Tiagabine (S) -7.92 7.2 

SKF89976A (S) -7.69 6.9 

EF-1500 (R) -7.45 4.9-5.7 

EF-1500 (S) -7.45 4.9-5.7 

SKF89976A (R) -7.45 6.9 

LU32-176B (R) -7.43 5.4 

EF-1520 (R) -7.42 5.1-5.4 

EF-1520 (S) -7.05 3.6-3.9 

Mean score value -7.69  
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4.2.2 Induced fit docking scores 

 

By using the IFD protocol the binding pocket for several receptor models were improved. IFD 

was performed on retrieved crystal structures of VFT of the mGlu2 and the mGlu7 receptor 

(PDB ID: 5CNJ, 3MQ4) and the 7 TMH domain of the mGlu5 receptor (PDB ID: 4OO9) in 

order to prepare them for further docking. IFD was also used to improve models with the best 

BEDROC score, which needed refinements. In the IFD, a known high affinity binder for each 

selected receptor model was docked and scored and the structure of the ligand and receptor 

could freely change conformation to adapt to each other (table 14). 

 

Table 14: Overview of the results from IFD with agonist, antagonists, PAMs and NAMs with each of the 

receptor models that needed to be improved. The more negative docking and IFD scores, the stronger was the 

compound predicted to bind to the receptors. 

Receptor Type of 

binder 

Ligand (Chirality) Docking 

score 

IFD score Affinity (pKi) 

mGlu2 Agonist Eglumegad -6.91 -854.52 6.9 

Antagonist LY341495 -8.50 -862.20 8.6 

PAM JNJ-40068782 -11.40 -340.15 7.3* 

NAM RO4988546 -10.87 -348.32 - 

mGlu7 Agonist L-serine-O-

phosphate 

-6.07 -610.74 4.5 

Antagonist -methylserine-

O-phosphate (R) 

-4.14 -610.48 4.4 

PAM AMN082 -12.60 -438.40 6.5-6.8* 

mGlu5 PAM VU0405386-1 -9.91 -388.78 - 

NAM Basimglurant -9.08 -384.33 - 

* pEC50. - no available affinity value for the particular ligand. 

 

 

The selection of the binders for IFD was based on their affinity to their receptors and their 

structural topology. If the purpose of the improvement was to make the binding pocket bigger, 

so all the known binders for the receptor binding site could dock and interact with the binding 

site, a large compound was selected.  
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The crystal structure of the VFT of mGlu2 receptor (PDB ID: 5CNJ) is in complex with an 

agonist (LY2812223), which makes the VFT in a closed conformational state, and the 

purpose with the IFD was to “open up” the conformation. This had to be taken into account 

when selecting an antagonist for the IFD protocol. The antagonist could not be too large 

because it would not be able to fit into the closed conformation. In addition, the ligand had to 

have high affinity to the receptor. The high affinity antagonists LY341495 were therefore 

selected. 

 

None of the 100 constructed homology models of the 7 TMH of mGlu2 receptor were able to 

dock all the known NAMs and PAMs. The known allosteric modulators for the mGlu2 

receptor are relatively large molecules, and it was necessary to utilize IFD in order to fit the 

large JNJ-40068782 (PAM) and RO4988546 (NAM) inside the binding pocket. 

 

The crystal structure of the VFT of mGlu7 receptor (PDB ID: 3MQ4) is in complex with the 

antagonist LY-341495. (LY-341495 and LY341495 are two different compounds; LY-341495 

is an antagonist for the mGlu7 receptor, and LY341495 is an antagonist for the mGlu2 

receptor). The VFT is in an open conformational state, which makes the binding pocket large 

compared to an agonist state. It was therefore necessary to select a relative small agonist (L-

serine-O-phosphate) in order to get the VFT in a more closed state. 

 

By using the IFD protocol and incorporate flexibility into the receptor and the ligand, it was 

possible to optimize the binding pocket such that all ligand could be docked by using VSW to 

these IFD optimized receptor models. This was also the case for the PAM state of the 

constructed homology models of mGlu7 receptor. The mGlu7 receptor has so far only one 

known PAM, the agonist PAM AMN082. AMN082 was first docked with Glide (VSW 

protocol) to one hundred constructed homology models of the 7 TMH of mGlu7 receptor, 

where none of the models could fully fit the ligand into the binding pocket. It was then 

performed IFD protocol with AMN082 to improve the binding pocket, which resulted in 

output poses where the ligand were fully docked inside the binding pocket. The best ranked 

output pose from IFD were selected as the best binding mode. This was clearly an 

improvement from the previous VSW docking. 
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4.2.3 Evaluation of the models, BEDROC scores 

 

To evaluate the models, BEDROC was performed on the models to determine if they could 

differentiate between the actives and the decoys. The models with the best BEDROC scores 

were used for the docking of the Tox21 library. 

 

Table 15 shows the BEDROC scores for the final models that were used in glide docking with 

toxicants. The =20 weights the first 8 % of the screening results and ranges from 0 to 1, with 

1 being the ideal score. The models represented in table 15 were the ones that were the best in 

distinguishing between the actives and the decoys, and were considered as the most reliable 

models. 

 

Table 15: Overview of the BEDROC score for the final models that were used in glide docking with the 

Tox21 library. 

Receptor/ 

Transporter 

Conformation 

State 

BEDROC score 

(=20) 

mGlu2 Agonist 0.394 

Antagonist 0.454 

PAM 0.168 

NAM 0.175 

mGlu7 Agonist 0.163 

Antagonist 0.157 

PAM (-) 

NAM 0.522 

mGlu5 PAM 0.436 

NAM 0.375 

GAT1 Inhibitor 0.625 

(–) indicates lack of BEDROC score for the PAM state of the mGlu7 receptor since only one PAM is known. 
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Enrichment plots for each model was also generated, that illustrated the performance of the 

models (figure 19-23). The Y-axis represents the “sensitivity” and defines the true positive 

results. The blue dots in the plot represent the ligands that are docked. The X-axis represents 

“specificity” that defines how many incorrect positive results that occurs among the negative 

results. The black diagonal line represents random results. 

 

 

Figure 19: Enrichment plots of agonist (left) and antagonist (right) states of the mGlu2 receptor. 

 

 

Figure 20: Enrichment plots of PAM (left) and NAM (right) states of the mGlu2 receptor. 
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Figure 21: Enrichment plots of agonist (left) and antagonist (right) states of the mGlu7 receptor. 

 

Figure 22: Enrichment plots of a NAM state of the mGlu7 receptor (left) and an inhibitor state of the 

GAT1 (right). 
 

Figure 23: Enrichment plots of PAM (left) and NAM (right) states of the mGlu5 receptor. 
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It was not possible to perform BEDROC approach in order to validate the PAM 

conformational state of the mGlu7 receptor model, since only one PAM for the mGlu7 

receptor has been published (agonist PAM, AMN082). It was therefore necessary to compare 

the best binding mode from the IFD protocol with former IFD calculations of AMN082 to 

mGlu7 receptors, done by Feng et al. (27) to see if the IFD result were realistic. The binding 

site of mGlu7 receptor has a large overall fraction of hydrophobic residues that can form 

hydrophobic interactions with the ligand (27). Our docking showed that a benzene ring in 

AMN082 and the amino acid Trp8016.50 formed a π-π interaction and that Phe8086.57 formed a 

π-cation bond to the protonated amine group in AMN082 (figure 24). According to the results 

from Feng et al. the amino acid residue Ile 7565.40 can contribute to the selectivity of the 

receptor and be important in the binding of AMN082. In our model, Ile 7565.40 was located 

2,1 Å from one of the benzene rings of AMN082, which could indicate a hydrophobic 

interaction between the receptor and the ligand. It was therefore concluded that the result 

from IFD protocol with AMN082 were realistic and the model were used for docking 

prediction of the toxicants. 

 

             

Figure 24: The binding mode of the agonist PAM AMN082 in the allosteric binding site of mGlu7 receptor. 

The dotted dark blue line represents π-π interactions and the green line represents π-cation interactions between 

the ligand and the residues. The amino acid residues are in a 3 Å sphere radius around the ligand. 
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4.2.4 Screening scores of exogenous toxicants 

 

In order to predict if toxicants could bind to the receptor models, a ligand set of 8194 different 

toxic compounds, that increased to 9757 compounds after preparation with LigPrep in 

maestro (version 2015.3) where they were separated according to their chirality and 

conformations, were docked with Glide and scored in each receptor and transporter model. 

 

During docking into orthosteric and allosteric binding sites of the mGlu receptor models, 

several conformational states of the receptors were considered. For docking into the 

orthosteric site both agonist and antagonist induced conformations from the IFD were used, 

and for docking into the allosteric site, both PAM and NAM induced conformations were 

used. This enabled investigations of both active and inactive receptor conformations in the 

binding of the toxicants. For the GAT1 model the orthosteric binding site was investigated for 

the binding of the toxicants. The average docking scores from VSW were used to estimate 

mean score values for each receptor and the transporter model. The mean score values were 

used as threshold values in order to predict which toxicants that interacted most strongly with 

the mGlu receptors and GAT1 (lower docking scores than threshold value for known binders) 

 

The scoring values from the docking calculation with toxicants predicted several of them to 

dock stronger than the known binders to the receptor models. This applied especially for the 

antagonist conformational state of the mGlu7 receptor, where 475 toxicants had better scoring 

values than the threshold value from the known antagonist binders. Table A1-A6 in appendix 

A gives an overview of the 10 top ranked toxicants for each target that had a better docking 

score than the calculated threshold values. Table 16 includes the toxicants that were further 

investigated and discussed in this thesis. This included toxicants with the best docking scores 

in combination with the highest CNS MPO value. 

 

The following figures (25-35) illustrate the binding modes of the selected toxicants and 

known binders for each conformational state of the models. The labeled amino acids are 

mainly the ones that anticipated in the binding of the toxicants and the binders. 
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Table 16: Scoring values of toxicants docked to different conformation states of the models. The more 

negative docking score the higher the compounds are predicted to bind to the receptor. The calculated threshold 

values from VSW protocol for each model are also included in the table. 

Model Conformational 

state 

Toxicant (chirality) Docking 

score 

Threshold value 

from VSW of 

known binders 

mGlu2 Agonist 1,4-cyclohexane 

dicarboxylic acid 

-8.66 -7.25 

 Antagonist Thalidomide (S) -8.59 -7.36 

 PAM Oxyphenbutazone -12.11 -10.96 

 NAM Fluspirilene -14.34 -10.47 

mGlu7 Agonist Goserelin -9.74 -6.22 

 Antagonist Argipressin -9.47 -5.79 

 PAM 5-{4'-[(2-butyl-  3H-

imidazo[4,5b]pyridine -3-

yl)methyl] biphenyl-2-

yl}tetrazol-1-ide 

 

-11.39 

 

 

-12.60 

 NAM Xenalipin -10.04 -8.85 

mGlu5 PAM Taprostene -12.78 -10.29 

NAM Droperidol -10.89 -9.65 

GAT1 Inhibitor Liarozole (R) -9.68 -7.69 

 

mGlu2 receptor: 

 

A total of 8378 toxicants were able to dock to the agonist state of the crystal structure of 

mGlu2 receptor (PDB ID: 5CNJ), where 35 of them had a docking score better than the 

threshold score. 9404 toxicants were docked to the antagonist state of mGlu2 receptor, where 

95 of them had a better scoring value than the threshold value. The constructed homology 

model of 7 TMH mGlu2 receptor in PAM conformational state were able to dock 8324 

toxicants in the allosteric binding site, where 53 compounds had a better score than the 

calculated threshold value. The NAM conformational state docked a total of 8887 toxicants, 

where 332 had a scoring value better than the threshold value. 
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Figure 25: The binding mode of the toxicant 1,4-cyclohexanedicarboxylic acid (shown in orange carbons) 

in the orthosteric binding site of mGlu2 receptor agonist conformational state superimposed with the 

agonist (S)-4C3HPG (shown in dark green). The dotted purple line represents H-bonds and the amino acid 

residues are in a 3 Å sphere radius around the ligands. 
 

 

              
Figure 26: The binding mode of the toxicant thalidomide (S) (shown in orange carbons) in the orthosteric 

binding site of mGlu2 receptor in an antagonist conformational state, superimposed with the antagonist 

MGS0039 (shown in light pink color). The dotted purple lines represent H-bonds and the dark blue line 

represents - interactions. The amino acid residues are in a 3 Å sphere radius around the ligands. 
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Figure 27: The binding mode of the toxicant oxyphenbutazone (orange carbons) in the allosteric binding 

site in the mGlu2 receptor PAM conformational state superimposed with the PAM JNJ-40068782 (light 

green). The dotted purple lines represent H-bonds, - interactions are shown in dark blue and the green dotted 

line represent -cation interations. The amino acid residues are in a 3 Å sphere radius around the ligands. 

 

                             
Figure 28: The binding mode of the toxicant fluspirilene (orange carbons) in the allosteric binding site in 

the mGlu2 receptor NAM conformational state superimposed with the NAM RO5488608 (dark green). 

The purple dotted lines represent H-bonds, - interactions are shown in dark blue, -cation interactions are 

shown in green. The amino acid residues are in a 3 Å sphere radius around the ligands. 
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mGlu7 receptor: 

 

A total of 9685 toxicants were docked to the orthosteric binding site of the agonist 

conformational state of the crystal structure of VFT mGlu7 receptor (PDB ID: 3MQ4), where 

220 had a docking score better than the calculated threshold value. 9647 toxicants were 

docked into the antagonist conformational state, and 475 had a scoring value over the 

threshold value. 

 

Since it exists only one known PAM for the mGlu7 receptor, it was impossible to calculate a 

mean score value from VSW. Therefore, the docking score from the IFD protocol was used as 

a threshold value. A total of 8586 toxicants were able to dock to the allosteric binding site of 

mGlu7 receptor PAM state, but none had a scoring value better than the threshold value. For 

the NAM conformational state, 7354 toxicants were docked to the allosteric binding site and 

out of these 158 compounds had better scoring value than the threshold value. 

 

mGlu5 receptor: 

 

A total of 8319 toxicants were able to dock into the allosteric binding site of PAM state of the 

crystal structure of mGlu5 receptor (PDB ID: 4OO9) and 23 of these had a better docking 

score than the threshold value. Out of 8338 toxicants docked to the NAM conformational 

state, 83 had a better scoring value than the threshold value. 

 

GAT1: 

 

The constructed homology model of GAT1 were able to dock a total of 9518 toxicants in the 

orthosteric binding pocket and 276 compounds with a scoring value better than the calculated 

threshold value. 
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Figure 29: The binding mode of the toxicant goserelin (shown in gray carbons) in the orthosteric binding 

site of the mGlu7 receptor antagonist conformational state superimposed with the known agonist LSP1-

2111 (S) (shown in pink). The dotted purple lines represent H-bonds between the agonist and the amino acid 

residues. The amino acid residues are in a 3 Å sphere radius around the ligands. 

                 

Figure 30: The binding mode of the toxicant argipressin (gray carbons) in the orthosteric binding site of 

the mGlu7 receptor antagonist conformational state superimposed with the antagonist DCG-IV (R) 

(shown in dark green). The dotted purple lines represent H-bonds between the antagonist and the amino acid 

residues. The amino acid residues are in a 3 Å sphere radius around the ligands. 
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Figure 31: The binding mode of toxicant 5-{4'-[(2-butyl-3H-imidazo[4,5-b]pyridin-3-yl)methyl]biphenyl-2-

yl}tetrazol-1-ide (shown in orange carbons) in the allosteric binding site of the mGlu7 receptor NAM 

conformational state superimposed with the agonist PAM AMN082 (shown in light purple). - 

interactions are shown in dark blue dotted lines and -cation interactions are shown in dotted green line. The 

amino acid residues are in a 3 Å sphere radius around the ligands. 

 

                   
Figure 32: The binding mode of toxicant xenalipin (shown in orange carbons) in the mGlu7 model NAM 

conformational state superimposed with the NAM ADX71743 (S) (shown in dark green). H-bond between 

the carboxyl group in xenalipin and the backbone of Leu6625.46, is shown in purple color. The amino acid 

residues are in a 3 Å sphere radius around the ligands. 
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Figure 33: The binding mode of toxicant taprostene (shown in orange carbons) in the allosteric binding site 

of the mGlu5 receptor PAM conformational state superimposed with the PAM VU0425565 (shown in 

dark purple). The fluoro substituent on the acetylated phenyl ring on VU0425565 is not indicated, but it is 

situated against Gln6473.32 in a meta-position relative to the acetylene area. The dotted purple lines represent H-

bonds. The amino acid residues are in a 3 Å sphere radius around the ligands. 
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Figure 34: The binding mode of the toxicant droperidol (orange carbons) in the allosteric binding site in 

the mGlu5 receptor NAM conformational state superimposed with the NAM basimglurant (dark green). 

The dotted purple line represents H-bonds, - interactions are shown in dark blue dotted lines and -cation 

interactions are shown in a dotted green line. The amino acid residues are in a 3 Å sphere radius around the 

ligands. 

               
  

Figure 35: The binding mode of the toxicant liarozole (R) (shown in orange carbons) in the GAT1 model 

superimposed with GAT1 inhibitor tiagabine (R) (shown in dark purple). The purple dotted lines represents 

H-bonds and -cation interaction are shown in a dotted green line. The amino acid residues are in a 3 Å sphere 

radius around the ligands. 
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4.3 CNS MPO predictions 

 

CNS-MPO was used to predict BBB penetration for the toxic compounds retrieved from the 

Tox21 database (spring 2012). From a total of 9757 toxic compounds, 6803 compounds had a 

CNS-MPO score  4, which indicates that these compounds have physicochemical properties 

similar to CNS drugs and that they probably are able to pass the BBB. In addition, 388 of the 

toxic compounds had the maximum score of 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 71 

5. DISCUSSION 
 

The results show that many toxicants of the Tox21 virtual library may interact with mGlu 

receptors and the GAT1. This included toxic compounds that varied in size and in 

physicochemical properties. Many of the toxicants had also better docking scores than several 

of the known binders, including high affinity binders. 

 

5.1 Alignments 
 

Visual inspection of the multiple sequence alignment between the mGlu receptors showed 

high amino acid conservation, especially in the 7 TMH and the ECD regions (figure 11). In 

addition, mGlu1 and mGlu5 receptor had a longer intracellular C-terminal tail than the other 

mGlu receptors. This similarity between mGlu1 and mGlu5 receptor may reflect that they 

belong to the same subgroup of mGlu receptors. 

 

Available literature indicates that the TM2, TM3, TM5, TM6, TM7 and ECL2 are the main 

contributors to the binding of allosteric modulators in mGlu receptors (23–25). Interestingly, 

it was observed that there was high conservation in these regions, especially in TM6. These 

observations is in agreement with the observations by Topiol et al. (33), that also suggested 

that it is greater sequence conservation in the 7 TMH than in the ECD VFT regions. 

 

The loop regions were the least conserved regions in the alignment, which differed both in 

type of amino acid residues and length of the loops. There are more challenges in loop 

modeling, because of the differences between the GPCRs and the less conservation among the 

amino acid residues in these regions. The differences of the conservation in the sequences 

could also be seen in the structure of the constructed homology models of mGlu2 and mGlu7 

receptors. The superposition of the 100 homology models of mGlu2 and mGlu7 receptors 

showed that the backbone of the helices were quite similar, which could reflect the high 

conservation in the 7 TMH (figure 13-14). The loop regions were slightly different among the 

100 homology models and were the most inaccurate parts of the models, due to the lack of 

conservation and structural flexibility. Since the allosteric binding pocket were the main 

interest in this thesis, loop region was not focused on regarding accurate loop modeling. 
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5.2 Evaluation of the models 

 

A good relative correlation was observed between the docking (Glide) scores from the VSW 

protocol and the binding affinity for several of the known binders to the mGlu receptors and 

GAT1. If a model is reliable, a ligand with high affinity for the receptor should get a good 

docking score and be ranked on the top of the list. This could indicate that the models give a 

good prediction for compounds that bind to the native mGlu receptors and GAT1. 

 

The ideal template for homology modeling should be in an appropriate conformational state. 

If the purpose is to construct an agonist binding state of a receptor, it is desirable to use a 

template that is bound to an agonist, and to an antagonist if the goal is an antagonist induced 

conformation of the receptor. For modeling of the inhibitor conformational state of GAT1, 

this was not a problem since the template dDAT (PDB ID: 4XP4) were bound to an inhibitor. 

For the modeling of 7 TMH mGlu2 and mGlu7 receptor, available 7 TMH template structures 

were in complexes with NAMs only, which made the modeling of the PAM conformational 

state more challenging. Different templates, including active/inactive states, will result in 

different homology models. It is reasonable to believe that the homology modeling would 

have been easier and some of the models may have had higher quality if templates with the 

correct type of compound were available for all the targets. 

 

In the validation of the models, it was also important with visual inspection of the binding 

pockets. The allosteric binding sites of the mGlu receptor in the present study were similar in 

shape and in size, except for a small unique sub-pocket in the allosteric binding site of the 

mGlu5 receptor, which was situated between the TM2, TM3 and TM7. This small sub-pocket 

exists for all the mGlu receptors but it is only in the mGlu5 receptor that it is possible for 

ligands to enter this sub-pocket due to the size of the amino acid residues. The mGlu5 

receptor possesses smaller amino acid residues in this part of the binding site, including 

Gly6282.49, Pro6553.40 and Ala8107.41 (figure 18) (10). The mGlu2 receptor and the mGlu7 

receptor have larger amino acid residues in this area of the binding site, which block ligands 

to enter. This includes the residue Phe6433.40 and Val8237.41 in the mGlu2 receptor and 

Cys6392.49, Met6663.40 and Met8297.44 in the mGlu7 receptor (figure 16 and 17) (10). By 

comparing binding modes from VSW of the constructed homology models of the 7 TMH of 

mGlu2 and mGlu7 receptor to crystal structure of the 7 TMH of mGlu5 receptor it was clear 

that this was the case. The high affinity mGlu5 receptor NAM basimglurant did bind much 
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deeper into the allosteric binding site of mGlu5 receptor and the acetylene aromatic area of 

the ligand was able to enter the sub-pocket (figure 18). The amino acid residue Phe6433.40 in 

the allosteric binding pocket of mGlu2 receptor blocks the RO5488608 (NAM) from entering 

the sub-pocket (figure 16). The NAM ADX71743 is blocked by the residues Cys6392.49, 

Met6663.40 and Met8297.44 and is not able to reach the corresponding sub-pocket in mGlu7 

receptor (figure 17). Another observation was that the ligands for mGlu2 and mGlu7 receptor 

are bound much higher in the binding pocket, further against the extracellular side of the 

receptor compared to the binders for mGlu5 receptor. This observations corresponds to the 

results from Harpsøe et al. (10), which indicates that there are residues in the binding pocket 

of the models that are in correct conformation concerning this sub pocket. 

 

The BEDROC results showed that there were some variations between the scoring of the 

models ranging from 0.157 for the mGlu7 receptor antagonist conformational state to 0.625 

for the GAT1 model (table 15). A bad BEDROC score can indicate that a model is not able to 

differentiate between binders and non-binders/decoys. However, a bad BEDROC value does 

not necessary mean that the model is not accurate. Decoys for each known binders were 

downloaded from DUD.E. The decoys are theoretical compounds with similar Mw and 

physiochemical properties as the binders, but most probably do not bind to the receptors. Each 

model that has been used in this thesis has relative few known binders, and many of them 

have different topology, some are very small molecules and some much larger molecules for 

the same receptor. It was decided to construct models that were able to fit all binders for a 

receptor, which resulted in that many of the models had conformations with a big and open 

binding pocket, also capable of binding decoy molecules. A bad BEDROC score may come 

from the open binding pockets of some of the models that can easier adopt to the structure of 

some of the decoys in front of larger known binders. This could probably have been avoided 

if the binding pocket had been in a more closed state, but then again the larger known binders 

could not be able to fit into the binding pocket. Even though some BEDROC scores were not 

optimal, it did not directly mean that the models had low quality, but that the size of the 

binding pockets were open and the size of the known binders for one receptor varied. In 

addition, BEDROC as a statistic method is not optimal for receptor models with few known 

binders. Ideally each receptor should have at least 50 known binders for the method to be 

optimal. An alternative approach could be to upload the constructed homology models to 

Structural Analysis and Verification Server (SAVES, http://services.mbi.ucla.edu/SAVES/) or 
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Model Quality Assessment Server (ModFOLD, http://www.reading.ac.uk/bioinf/ModFOLD/) 

in order to validate the protein structures. 

 

Since the native receptors can be in different conformational states, there are possibilities that 

the final models in the present study are not optimal for some of the ligands. It may have been 

better to dock toxicants with several conformation states of one target, in order to include 

different variations in the binding pockets. One approach could be to use IFD protocol for the 

receptor model with all the known binders, and select the best output poses from each docking 

and use them in glide docking with toxicants. This would result in different conformations of 

the binding pocket and it could increase the likelihood of getting a representative model in the 

best conformational state for each ligand. However, the main goal was to predict if the 

compounds of the Tox21 library could bind or not, and the docking of known binders and 

decoys clearly indicates that. 

 

5.3 Glide docking with exogenous toxicants 

 

By investigating the binding mode of the selected toxicants, and compare them to the docking 

studies of known compounds, it was possible to predict if the binding of the toxicants were 

likely to occur (table 16). If the binding poses of a known binder and a toxicant have much in 

common, it increases the probability for the toxicant to actually bind to the receptor. Together 

with the scoring value that gives the most important contribution to the prediction. 

 

The Tox21 ligand set (spring 2012) comprised of several CNS drugs in addition to 

environmental toxicants. Many CNS drugs were able to bind to the models with high affinity 

and get better docking scores than many of the environmental toxicants. This may be due to 

that CNS drugs are designed and optimized to reach and bind with high affinity to different 

CNS receptors and transporters. Even though some of the ligands from the Tox21 dataset are 

known CNS drugs, they are referred as toxic compounds throughout this thesis. 

 

It is important to have in mind, that the receptor models are only snapshots of the native 

receptor structure and some of the toxicants that did not bind or had a worse docking score 

than the calculated mean score from VSW protocol, may bind to another conformations of the 

receptor. There may be a possibility that other conformation state of the receptor models 

http://www.reading.ac.uk/bioinf/ModFOLD/
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would result in both higher docking score and the binding of some of the low scored 

toxicants. 

 

5.3.1 mGlu2 receptor 

 

The highest ranked toxicant for the agonist state of mGlu2 receptor was deferoxamine, which 

is a quite large molecule. That such a large molecule may bind to the orthosteric binding site 

is quite surprising, as the known agonists for the mGlu2 receptor are in general small 

molecules. The third on the list was 1,4-cyclohexanedicarboxylic acid, which is a relatively 

small molecule. Its binding mode was compared with the binding mode of the mGlu2 receptor 

known agonist (S)-4C3HPG since they were quite similar in shape and structure (figure 25). 

The molecules were orientated in the same region in the binding site, and 1,4-

cyclohexanedicarboxylic acid formed interaction with the same residues as for (S)-4C3HPG 

(although the agonist did form H-bonds with some more residues that are not mentioned in 

this thesis). Both compounds formed H-bonds with Arg57, Arg61, Ser145 (backbone) and 

Arg271. They also formed a salt bridge to Lys377, which is not shown in the figure 25. In 

addition, 1,4-cyclohexanedicarboxylic acid also formed a salt bridge to Arg61. Its docking 

value was better than the calculated mean score, which could indicate that 1,4-

cyclohexanedicarboxylic acid has the potential to bind stronger than some known agonists. 

 

Antagonists in general are much larger molecules than most agonist compounds for a 

receptor. This could also be observed for the binding of toxicants for the antagonist 

conformation state for the mGlu2 receptor. Larger toxicants were able to fit into the binding 

pocket of the antagonist state rather than to the agonist state, which also could reflect the fact 

that the VFT is in a more open state when bound to an antagonist. Thalidomide (S) was the 

fourth ranked toxicants that bound to the antagonist state of mGlu2 receptor, and is the toxic 

enantiomer that gives serious adverse effects for unborn children. Showed in figure 26 is the 

binding pose of thalidomide (S) and the antagonist MGS0039. The molecules are placed in 

the same region in the orthosteric binding site. Thalidomide (S) had a better docking score 

than the calculated mean score, but the high affinity antagonist MGS0039 had the overall best 

docking score. This could indicate that thalidomide (S) can compete with several of the 

known antagonists for the orthosteric binding site of the mGlu2 receptor. 
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It is important to note that environmental toxicants can affect humans in different ways. If a 

pregnant woman is exposed to some toxicants, it could harm the unborn child in many ways. 

This happened with the scandal in Germany in the late 50s where the toxic enantiomer (S) of 

thalidomide were administrated to pregnant women, which resulted in several fetal death and 

many children that were born with malfunctioned limbs. This negative effect of the drug was 

fortunately discovered, but it may be that there are more toxic compounds that can affect 

unborn children but are not identified yet. 

 

The 10 best ranked toxicants for both the PAM and the NAM conformational state of mGlu2 

receptor had better docking score than the calculated mean score value from VSW. 

Oxyphenbutazone and fluspirilene had the best docking scores and were able to form 

interactions with the PAM and the NAM conformational states of mGlu2 receptor. It was also 

observed that many of the same amino acid residues were involved in the binding of toxicants 

both in the PAM and NAM conformational states. This is in agreement with Lundstrom et al. 

(20) that suggested that PAMs and NAMs have overlapping binding sites in the mGlu2 

receptor. 

 

Comparing oxyphenbutazone binding mode with the binding mode of JNJ-40068782 (PAM) 

showed that the ligands were occupying the same region in the receptor binding pocket, 

despite their structural dissimilarities (figure 27). They both interacted with the amino acid 

residue Phe7766.53, but JNJ-40068782 formed -cation interactions with its protonated amino 

group and oxyphenbutazone formed - interactions with one of its benzene rings. 

Oxyphenbutazone also formed H-bond with the backbone of Thr7937.31, H-bond with 

Asn7355.47 and Gln7907.29 and - interactions with Phe6433.40. 

 

Figure 28 shows the binding mode of fluspirilene superimposed with the binding mode of the 

high affinity mGlu2 receptor binder RO5488608. They occupied the same region in the 

binding pocket and both compounds formed H-bond with the amino acid residue Gln7907.29. 

Fluspirilene also formed -cation interactions with Phe6433.40 and - interactions with 

Arg6363.33, which according to Lundstrom et al. (20) are both residues of importance for the 

binding of NAMs in mGlu2 receptors. In addition, both RO5499608 and fluspirilene formed 

favorable contact with Phe7806.57, which also plays a role in the binding of allosteric 

modulators to mGlu2 receptors (20). 
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Fluspirilene did also bind to the allosteric binding site of the mGlu7 receptor. This was not so 

surprising considering the high conservation in the allosteric binding pocket between the 

mGlu receptors. Table 5 (section 3.4.2) gives an example of the conservation between 

corresponding amino acid residues in the 7 TMH, especially between the mGlu2 receptor and 

the mGlu7 receptor. 

 

5.3.2 mGlu7 receptor 

 

In general, known agonists for the mGlu7 receptor are larger molecules than the known 

antagonists. This is interesting, since most often receptor antagonists are bigger molecules 

than receptor agonists. The toxicants that were able to dock to the agonist and the antagonist 

conformation state of mGlu7 receptor were in general large molecules with poor BBB 

penetration properties. These results may be due to the fact that the models had poor 

BEDROC score (agonist: 0.163, antagonist: 0.157). 

 

As observed in figure 29 and 30 the size and structure of the agonist LSP1-2111 (S), the 

antagonist DCG-IV and the toxicants goserelin and argipressin are quite different. The 

docking indicated that these toxicants were not able to make any interactions with the 

orthosteric binding site (both agonist and antagonist state) and docked in a region different 

from that of the known orthosteric binders. Goserelin could not be fully docked into the 

binding site, and large parts of the molecule were on the outside of the binding pocket (figure 

29). 

 

Fluspirilene, which was top ranked for the mGlu2 receptor, was also able to dock into the 

mGlu7 receptor and was predicted as the third best binder of the docked toxicants. 5-{4'-[(2-

butyl-3H-imidazo[4,5-b]pyridin-3-yl)methyl]biphenyl-2-yl}tetrazol-1-ide, was the second on 

the list and was able to dock into the allosteric binding site of mGlu7 receptor in the PAM 

conformational state (figure 31). AMN082 (agonist PAM) is a symmetrical molecule with 

two benzene rings on each side. 5-{4'-[(2-butyl-3H-imidazo[4,5-b]pyridin-3-

yl)methyl]biphenyl-2-yl}tetrazol-1-ide on the other hand, is not a symmetrical molecule, but 

it seems to have the ability to be orientated in the same region as AMN082. The compounds 

did not form the same interactions in the receptor but both molecules had good contact with 

Ile7565.40, which according to Feng et al. (27) might contribute to receptor selectivity. A 
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tetrazole ring on the toxicant was able to form - interactions with Phe8046.53 and 

Trp8016.50. Feng et al. (27) also proposed that Phe8046.53 could contribute to enhancing the 

binding affinity of the AMN082, which may be an important amino acid in the binding of 

ligands to the allosteric binding site. None of the toxicants that bound to the PAM 

conformation state of mGlu7 receptor had a better docking score than the threshold value. The 

threshold value was -12.60, which only represents the docking score of the high affinity 

agonist PAM binder AMN082. It may be the case that it exists more mGlu7 receptor PAMs 

with less affinity than AMN082. 5-{4'-[(2-butyl-3H-imidazo[4,5-b]pyridin-3-

yl)methyl]biphenyl-2-yl}tetrazol-1-ide got a relative high docking score of -11.39 and it 

would have been interesting to have more PAMs to compare with. 

 

The exogenous compound xenalipin got the highest docking score of the toxic compounds for 

the NAM state of the mGlu7 receptor (figure 32). According to Harpsøe et al. (10) Ile7565.40, 

Gln7755.39 and Val8006.49 are important determinants for selective NAM binding to the 

mGlu7 receptor. Val8006.49 is placed deep in the binding pocket, and makes good contact with 

the methyl group of ADX71743 (S) and the fluorocarbon moiety of xenalipin. These groups 

also have good contact with Ile7565.40. In addition, the hydroxycarbon group in xenalipin 

forms H-bond with Leu6623.36. Compared to the known NAM binder ADX71743 (S), 

xenalipin can be considered as a shorter molecule without a long chain, which is present in 

the NAM and points up against the extracellular side. The lack of this long chain results in 

that xenalipin does not form good interactions with Gln7555.39, because this residue is too far 

away from the ligand. Since we do not know which amino acids that are essential for binding 

and activation, it is not clear if xenalipin can make the “right” contacts for being a NAM, but 

it is clear that there is some similarities with the binding mode of ADX71743 (S). 

 

5.3.3 mGlu5 receptor 

 

The mGlu5 receptor allosteric binding site goes more deeply into the receptor due to its sub-

pocket, compared with the mGlu2 and mGlu7 receptor. It was observed that the toxicants that 

bound to the mGlu5 receptor were longer in size than those interacting with mGlu2 and 

mGlu7 and were able to dock deeply into the allosteric binding pocket. 

 

According to Dore ́ et al. (23), by changing the methyl substituent on the phenyl ring in the 

acetylene area on mavoglurant to a fluoro substituent, switches the molecule from a NAM to a 
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PAM. This was observed for several of the mGlu5 receptor PAMs, including the high affinity 

VU0424465 (PAM) where the phenyl ring included a fluoro substituent. Figure 33 shows 

VU0424465 superimposed with the top ranked docked toxicant taprostene in the allosteric 

binding pocket. These compounds have quite similar topology and taprostene were able to 

dock in the same region as the PAM. Unfortunately, VU0424465 was orientated so it could 

not reach the sub pocket in the allosteric binding site. It is reasonable to believe that the 

benzene ring in the acetylene area in VU0424465 could be docked into the sub-pocket of the 

receptor, but instead it points towards the extracellular side of the receptor. This was in fact 

the case for all the PAMs having such benzene ring. The reason for this is not clear, it may be 

correct, but it can be because some of the amino residues are not in an optimal conformation. 

Droperidol, which is a potent antidopaminergic drug that also has some antagonist activity at 

histamine and serotonin receptors, was the fourth compound on the list that bound to the 

NAM state of the mGlu5 receptor. It had a docking score of -10.89 that was better than the 

calculated mean score. As seen in figure 34 droperidol has the ability to bind deeply into the 

allosteric binding site, similarly to the NAM basimglurant. Basimglurant was able to form H-

bonds with Tyr6593.44. For the upper part of droperidol, as seen in figure 34, the molecule is 

rotated so that the benzene ring is in a parallel position relative to its own cyclohexane. It is 

assumed that a molecule always wants to be in an orientation that gives it as low internal 

energy as possible. The present orientation for droperidol will probably give the molecule a 

high internal energy. However, the benzene ring was able to form - interactions with 

Phe7886.53 and Trp7856.50. In addition, Phe7886.53 also formed -cation interactions with the 

protonated amino group on droperidol. 

 

According to Harpsøe et al. (10) and Dore ́ et al. (23) a stable water network is present in the 

bottom of the allosteric binding pocket in the mGlu5 receptor, which can create H-bonds and 

lower the activation energy in the receptor. These water molecules create a H-bond network 

with the amino acid residues Tyr6593.44, Thr7816.46 and the backbone of Ser8097.39 in the 

bottom of the allosteric binding pocket (10,23). It was observed that many of the toxicants 

with a long topology were able to create H-bonds with these amino acid residues, this applied 

especially for the toxicants that docked into the PAM conformational state. It would have 

been interesting to add water molecule in order to see if they would have affected the binding 

mode and the docking score. 
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5.3.4 GAT1 

 

Liarozole (R) was the fourth ranked toxicant that was able to dock into the GAT1. It had a 

docking score above the calculated mean score, which may indicate that this toxicant can be a 

strong binder for the transporter. Figure 35 illustrates the binding mode of both the toxicant 

and the high affinity inhibitor tiagabine (R) in the GAT1 binding pocket. According to the 

binding modes, they are both occupying the same region of the binding pocket, and they seem 

to have corresponding functional groups that theoretically can form the same type of 

hydrophobic interactions with amino acid residues. However, there are some small 

differences. Tiagabine (R) was able to form H-bonds with the backbone of Leu64 and Gly65 

and H-bond with Tyr140.  Liarozole (R) on the other hand, could form H-bonds with the 

backbone of Tyr60 and Ser456, H-bond with Asp451 and -cation interaction with Tyr60. 

 

5.4 CNS MPO predictions 

 

CNS MPO values can predict CNS drug-like properties for the toxic compounds in order to 

investigate if the compounds have physicochemical properties to penetrate the BBB and enter 

the CNS. Several of the toxicants that were able to dock into the receptor and transporter 

models had a CNS MPO scoring value  4, which is considered as the threshold for putative 

BBB penetration. The CNS MPO results selected out those toxicants with the CNS drug like 

properties, which was taken for further analysis. The toxicants that were investigated and 

discussed in this thesis were the ones with the best docking scores in combination with the 

highest CNS MPO value. 

 

Most of the toxic compounds that were analyzed had a CNS MPO scoring value  4, but there 

were some with a CNS MPO value below 4. This included the toxic compounds that docked 

into the VFT of mGlu7 receptor. None of the top 10 ranked toxicants for the VFT mGlu7 

receptor, both agonist and antagonist conformational state, had a CNS MPO value  4. This 

could reflect the fact that their binding pockets were very open and that large compounds 

were able to bind, and the two top docked toxicants to mGlu7 receptor goserelin (agonist 

conformational state) and argipressing (antagonist conformational state) had a CNS MPO 

value of 2.0. This value may appear due to their large structure and high Mw, and may 

indicate that they are not able to cross the BBB. 
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It is also important not to rely entirely on this calculated value. The toxicant fluspirilene was 

the top ranked ligand for the NAM conformation state of mGlu2 receptor. This toxicant had a 

calculated CNS MPO value of 1.86, which would reflect that the ligand would not be able to 

penetrate the BBB. In fact, this is a typical antipsychotic drug used in the treatment of 

schizophrenia. 

 

The CNS MPO value may give an indication about which compounds that may cross the BBB 

by passive transport. It is not taken into account that some toxic compounds may be able to 

enter the CNS through active transport. However, the CNS MPO values give a good 

prediction for sorting out compounds with CNS drug-like physicochemical properties, but it 

has some flaws where some compounds that do cross the BBB, get values below 4. 

 

5.5 Future Directions 

 

The present study predicts several compounds of the Tox21 database as putative binders to 

the tested mGlu receptors and GAT1. The toxic library contained many CNS drugs, which 

were able to dock with high affinity to the receptor and transporter models. It would perhaps 

be advantageous to sort out CNS drugs prior to docking, in order to only investigate the 

environmental toxicants. However, it is very important to recognize the impact CNS drugs 

could have on these receptors and GAT1, where unexplained adverse effects could in fact be a 

result of drugs acting on some of these mGlu receptors and GAT1. 

 

The GABA-B receptor plays an important role in the CNS and has close structural similarities 

with the mGlu receptors. The receptor is widely distributed within the CNS and disruption of 

the receptor could interfere with several physiological processes in humans. Due to structural 

and functional similarities between mGlu receptors and GABA-B receptor it would have been 

interesting to dock the Tox21 library into the GABA-B receptor to see if some toxicants could 

bind to this receptor. 

 

The limited knowledge about how toxic compounds can affect the humans and if they play a 

role in the development of several CNS diseases makes this field of study very important for 

the public health and treatment of several diseases. The studies in this thesis are theoretical 

approaches where 3D protein structures and ligands are treated rigid or semi-rigid, which do 
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not fully represent the true native proteins and their environments. In order to optimize the 

theoretical docking processes it could have been interesting to include some environmental 

factors such as water. In addition, the toxic compounds also need to be tested in vitro before 

any clear conclusion about their binding affinity and putative CNS toxicity can be made. 

Studies in investigating the potential effects that the pollutants have on humans on individual 

and population levels would also be necessary. 
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6. CONCLUSION 

 

The docking calculations of toxicants in constructed homology models and X-ray structures 

of mGlu2, mGlu5 and mGlu7 receptors and GAT1 revealed that several toxicants with 

different topology have the ability to bind to the receptors and the GAT1. There was observed 

a correlation between the type of binding pocket and the kind of toxicants that could bind and 

interact. Many toxicants had better docking scores than known binders, and could compete 

with endogenous and exogenous compounds that target these receptors and GAT1. The 

Tox21 library also included several CNS drugs, which were able to bind with high affinity to 

many of the models. By using CNS MPO values it was possible to sort out and focus mainly 

on substances that seemed to have physiochemical properties that enable them to reach the 

CNS. 

 

Further studies should include in vitro affinity investigations of the toxicants for the receptors 

and the GAT1, in addition to the testing of type of putative CNS toxicity they may give. If the 

toxic compounds can outcompete the binding of glutamate, GABA or CNS drugs it can result 

in adverse effects in humans, possibly give rise to increased side effects and reduce the 

effectiveness of CNS drugs. 
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APPENDIX 
 

 

A. Docking scores of toxicants docked to the mGlu receptor and 

GAT1 models. 
 

 

Table A1: Scoring values of toxicants docked to agonist and antagonist conformational state of the crystal 

structure of mGlu2 receptor (PDB ID: 5CNJ). The more negative docking score the higher the compounds are 

predicted to bind to the receptor. 1,4-cyclohexanedicarboxylic acid are listed twice because of axial and 

equatorial positions of the functional groups. 

mGlu2 receptor orthosteric binding site 

Agonist Antagonist 

Toxicant Docking score Toxicant Docking score 

Deferoxamine  -8.76 Imidazolidinyl urea -8.74 

Uric acid -8.73 2,4-Diaminohypoxanthine -8.73 

1,4-cyclohexane 

dicarboxylic acid 

-8.66 4-Aminofolic acid -8.60 

1,4-cyclohexane 

dicarboxylic acid 

-8.27 Thalidomide (S) -8.59 

Tipranavir -8.00 FD&C Green no. 1 -8.55 

Imidazolidinyl urea -7.94 2-Amino-1-phenol-4-

sulfonic acid 

-8.54 

6-Propyl-2-thiouracil -7.91 Folic acid -8.32 

3-Nitrobenzamide -7.87 1,4-cyclohexane 

dicarboxylic acid 

-8.30 

Taltirelin -7.77 Raltitrexed -8.24 

5-Amino-3-sulfosalicylic 

acid 

-7.66 Thymopentin -8.20 
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Table A2: Scoring values of toxicants docked to PAM and NAM conformational state of the constructed 

homology model of the 7 TMH of mGlu2 receptor. The more negative docking score the stronger the 

compounds are predicted to bind to the receptor. Fluspirilene are listed twice because of axial and equatorial 

positions of the functional groups. 

mGlu 2 receptor allosteric binding site 

PAM NAM 

Toxicant Docking score Toxicant Docking score 

Oxyphenbutazone -12.11 Fluspirilene -14.34 

Carbocyanine -11.90 Penfluridol -13.82 

Fluridone -11.83 Itriglumide -13.44 

Imatinib -11.78 N-[1-{2-[(2R)-2-(3,4-

dichlorophenyl)-5-oxo-4-

phenylmorpholin-2-

yl]ethyl}-4-(3-

fluorophenyl)piperidin-4-

yl]acetamide butanedioate 

-13.27 

6-Hydroxy-2-naphthyl 

disulfide 

-11.75 (2-{[4-(4-chloro-2,5-

dimethoxyphenyl)-5-(2-

cyclohexylethyl)-1,3-

thiazol-2-yl]carbamoyl}-

5,7-dimethyl-1H-indol-1-

yl)acetic acid 

trifluoroacetate 

-13.25 

Metolazone -11.75 Spiperone -13.02 

5-fluoro-1-(3-

fluorobenzyl)-N-(1H-

indol-5-yl)-1H-indole-2-

carboxamide 

-11.70 Rutin -12.98 

Feprazone -11.64 Cromolyn -12.96 

Flufenpyr-ethyl -11.64 Fluspirilene -12.91 

Taprostene  -11.58 Pimozide -12.85 
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Table A3: Scoring values of toxicants docked to agonist and antagonist conformational state of the crystal 

structure of VFT of mGlu7 receptor (PDB ID: 3MQ4). The 10 best ranked toxicants are shown in this table. 

The more negative docking score the stronger the compounds are predicted to bind to the receptor. 

mGlu7 orthosteric binding site 

Agonist Antagonist 

Toxicant Docking score Toxicant Docking score 

Goserelin  -9.74 Argipressin -10.28 

Argipressin -9.47 Desmopressin -10.11 

Terlipressin -9.34 Triptorelin pamoate -10.04 

Saralasin -9.14 Pentagastrin -9.23 

Peplomycin  -8.92 Gonadorelin -9.17 

Polymycin B  -8.68 Suramin -9.03 

Peplomycin  -8.56 Colistin a -8.91 

Polymycin B  -8.56 Bleomycin  -8.91 

Bimosiamose -8.53 Mecobalamin -8.79 

Vancomycin -8.31 Deslorelin  -8.79 
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Table A4: Results from glide docking with toxicants to NAM and PAM conformational state for the 

constructed homology model of 7 TMH of mGlu7 receptor.  The 10 best ranked toxicants are shown in this 

table. The more negative docking score the higher the compounds are predicted to bind to the receptor. 

mGlu7 receptor allosteric binding site 

PAM NAM 

Toxicant Docking score Toxicant Docking score 

Devazepide -11.74 Xenalipin -10.04 

5-{4'-[(2-butyl-3H-

imidazo[4,5-b]pyridin-3-

yl)methyl]biphenyl-2-

yl}tetrazol-1-ide 

 

-11.39 

2-Ethylanthracene- 

9,10-dione 

 

-10.02 

Fluspirilene -11.32 9-Anthracenemethanol -10.00 

Bifonazole -10.99 1-Amino-2-

methylanthraquinone 

-9.93 

Bisoxatin  -10.94 2,7-Acetyl aminofluorene -9.86 

Losartan -10.94 2-Hydroxy anthraquinone -9.83 

Halofantrine -10.72 Oxcarbazepine -9.82 

Fluorescein 5(6)-

isothiocyanate 

-10.71 2-Acetylaminofluorene -9.78 

Fendiline -10.70 2-Methylanthraquinone -9.78 

Phenolphthalin -10.69 Tenylidone -9.78 
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Table A5: Results from Glide docking with toxicants to PAM and NAM conformational state for the 

crystal structure of 7 TMH mGlu5 receptor (PDB ID: 4OO9). The 10 best ranked toxicants are shown. The 

more negative docking score the higher the compounds are predicted to bind to the receptor. 

Mglu5 receptor allosteric binding site 

PAM NAM 

Toxicant Docking score Toxicant Docking score 

Taprostene -12.78 Bucindolol -11.64 

{4-[3 

(aminomethyl)phenyl] 

piperidin-1-yl}{5-

[(2fluoro phenyl) 

ethynyl]furan-2-yl} 

methanone 

-11.87 Fluprostenol -11.26 

Fluprostenol -11.79 Doxazosin  -11.22 

L-Cichoric acid -11.39 Droperidol -10.89 

4-(3-{[4-(2-methyl-1H-

imidazol -1-yl)phenyl] 

sulfanyl}phenyl) 

tetrahydro-2H-pyran-4-

carbox amide 

methanesulfonate 

-11.21 2,4-

Diaminohypoxanthine 

-10.74 

Praziquantel -11.02 3-({(3R,4R)-6-[(5-

fluoro-1,3-benzothiazol-

2-yl) methoxy]-4-

hydroxy-3,4-dihydro-2H-

chromen-3-yl}methyl) 

benzoic acid 

-10.62 

6-Hydroxy-2-naphthyl 

disulfide 

-11.01 Talniflumate -10.56 

Ketanserin -10.87 Trazodone  -10.47 

[2-({[2-(4-tert-Butyl-1,3-

thiazol -2-yl)-1-

benzofuran-5-yl]oxy} 

methyl)phenyl]acetic acid 

-10.84 Prazosin -10.38 

Famprofazone -10.72 Doxazosin  -10.33 
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Table A6: Scoring values of toxicants docked to the constructed homology model of GAT1. The 10 best 

ranked toxicants are shown in this table. The more negative docking score the higher the compounds are 

predicted to bind to the receptor. 

GAT1 orthosteric binding site 

Toxicant (chirality) Docking score 

Efonidipine -10.01 

Ioversol (S) -9.85 

Chlorhexidine -9.71 

Azelnidipine -9.68 

Liarozole (R) -9.68 

Fluorescein -9.56 

Manidipine dihydrochloride -9.45 

Ioversol (R) -9.44 

Relcovaptan -9.37 

Liarozole (S) -9.35 
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