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The identification and characterization of the complete ensemble of genes is a main goal of deciphering the digital
information stored in the human genome. Many algorithms for computational gene prediction have been described,
ultimately derived from two basic concepts: (1) modeling gene structure and (2) recognizing sequence similarity.
Successful hybrid methods combining these two concepts have also been developed. We present a third orthogonal
approach to gene prediction, based on detecting the genomic signatures of transcription, accumulated over
evolutionary time. We discuss four algorithms based on this third concept: Greens and CHOWDER, which quantify
mutational strand biases caused by transcription-coupled DNA repair, and ROAST and PASTA, which are based on
strand-specific selection against polyadenylation signals. We combined these algorithms into an integrated method
called FEAST, which we used to predict the location and orientation of thousands of putative transcription units not
overlapping known genes. Many of the newly predicted transcriptional units do not appear to code for proteins. The
new algorithms are particularly apt at detecting genes with long introns and lacking sequence conservation. They
therefore complement existing gene prediction methods and will help identify functional transcripts within many
apparent ‘‘genomic deserts.’’
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Introduction

The current annotation of human genes is likely to be
incomplete, particularly for genes not coding for proteins.
Wong et al. [1] have argued that the vast majority of the
human genome is transcribed. Indeed, there is mounting
experimental evidence showing that the human transcrip-
tome is more complex and extensive than previously thought
(Cheng et al. [2] and references therein). Computational
sequence analysis can help direct the experimental discovery
of novel genes; even the highly experimentally annotated
Caenorhabditis elegans ORFeome was significantly enriched by
computational gene predictions [3].

Several types of software for gene prediction are currently
available. There are two basic concepts underlying these
methods: (1) the recognition of gene structure and (2)
sequence similarity. Methods that predict gene structure
identify the structural and functional requirements for a
segment of genomic sequence to be able to be transcribed,
spliced, and finally to be translated into a protein sequence,
e.g., GenScan [4]. Methods based on sequence similarity
identify genes by detecting regions of sequence that have
been conserved in evolution, e.g., spliced alignment in
Procrustes [5]. The two concepts have been combined leading
to significant improvements in accuracy [6,7]. Finally, gene
predictions can be validated computationally by comparison
to gene structures derived from coalignment and clustering
of locus-specific mRNAs and ESTs on the genomic sequence.

Here, we develop a third basic concept in gene prediction
that is based solely on the analysis of genomic sequence data:

the recognition of ‘‘transcription footprints.’’ These are the
side effects of sustained transcription on the genomic
sequence, leading over evolutionary time to an accumulation
of differences between the two DNA strands, which can be
detected by appropriate statistical analysis. We present here
an integrated suite of four prediction methods exemplifying
this third basic concept. Importantly, the method presented
here can readily predict transcriptional units that do not
code for proteins.
Many of the transcription footprints are buried in inter-

spersed repeats, which comprise almost half of the human
genomic sequence, including intronic sequences. Most of these
repeats are copies of transposable elements exhibiting various
levels of sequence decay and are systematically excluded
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(‘‘masked’’) as a first step in most standard gene prediction
methodologies. The present work takes advantage of a detailed
analysis of interspersed repeats, as a reference framework for
detecting the otherwise overlooked transcription footprints.

Results

Strand Biases as Transcription Footprints
In this work, we focus on the detection of transcription

footprints in the form of significant differences between the
‘‘forward’’ (coding, sense) and ‘‘reverse’’ (antisense) strands of
transcribed regions. Two sources for orientation biases
within genes are (1) mutations influenced by the act of
transcription and (2) selection against harmful signals that
disrupt transcription.

Biased mutation. A transcription-associated strand asym-
metry has been described [8] and attributed to a byproduct of
transcription-coupled DNA repair in germline cells. Tran-
scription encourages the early resolution of mutations from
polymerase base misinsertions, which are biased toward
purines [9]. Two gene prediction algorithms taking into
account these biases were suggested [8]: a ‘‘nucleotide
compositional analysis,’’ which identifies composition skews
in the sequence studied, and a ‘‘substitution rate analysis,’’
identifying all lineage-specific mutations from multispecies
alignments.

Biased selection. The identification of ORFs has long been
considered the method of choice for identifying genes in
genomes with little or no splicing. Where mRNA splicing is
prevalent, this method loses power since ORFs can be split
into several short segments separated by potentially long
introns. In conceptual similarity to ORF identification, we
hypothesized the existence of selection against the introduc-
tion of any signal that could prematurely interrupt the
transcription process, in particular, polyadenylation signals
(PASs). Since the PAS is asymmetric, with consensus sequence
AATAAA or ATTAAA, selection should lead to orientation
biases: introduction of the same signal in the opposite
orientation would typically be a neutral event.

Four Novel Transcript Predictors
We describe here four algorithms for transcript prediction

and then present their combination as an integrated method
(Figure 1).

The first algorithm: Greens. The combined mutational
biases yield an excess of G þ T over A þ C in the forward
strand of genes, leading to an equilibrium value of 52.7% Gþ
T [8,10]. The nucleotide compositional analysis employs a log-
likelihood ratio system derived from this expected nucleotide
composition at equilibrium and then identifies segments of
sequence with significant orientation biases. In this method,
though, the strongest scores are obtained by the most biased
sequences, not those nearest the equilibrium value (Figure
S1A). By training on transcribed genomic sequence, we
obtained an empirical distribution describing the strength
of strand bias as a function of the local G þ T composition
(Figure S1B). We found extremely biased nucleotide compo-
sitions to be less orientationally biased within genes than the
more prevalent moderate compositions. The log-likelihood
ratio scores obtained empirically from this analysis represent
a better model for saturation of the mutation process and
serve as the basis for this first algorithm (Greens), which is a
refined version of the published nucleotide composition
analysis.
The second algorithm: CHOWDER. The Greens algorithm

is not applicable to interspersed repeats, most of which have
inserted into the genome too recently to have reached
equilibrium with respect to G þ T composition [8]; some
repeats introduce large compositional distortions, e.g., LINE1
retrotransposons have a 2:1 ratio of A to T in the forward
strand [11]. Excluding repeats from the analysis is, though,
equivalent to discarding almost half of the genomic data [12].
The alignment of an interspersed repeat copy to its repeat
family consensus sequence provides an enumeration of the
substitutions it accrued since the time it inserted into the
genome (Figure S2A). These substitutions have well-defined
evolutionary directionality, from the state observed in the
consensus to that observed in the extant sequence. A strand
orientation can be established by arbitrarily normalizing
mutations to one strand, e.g., the C!T mutation is equivalent
to a G!A mutation on the opposite strand. We analyzed the
alignments of all repeats contained within known transcripts
and tabulated the observed frequencies of the different
mutations (Figure S2B). Using log-likelihood ratios derived
from these observed frequencies, we implemented this
second algorithm for transcript prediction (CHOWDER
[CHanges Oriented Within DispErsed Repeats]). As observed
for unique sequences, the overall trend for repeats leads to a
rise in the frequency of G þ T in the forward strand of
transcripts. Interestingly, the strongest skews are for the
G!T mutation (C!A on the opposite strand), which lowers
the G þ C content of transcribed regions.
The third algorithm: ROAST. Many retrotransposons have

a highly conserved PAS; this suggests that the retroposition of
such elements into the genome could be harmful when the
orientation of the repeat is the same as the host gene (Figure
S3A). We found interspersed repeats of most types to be
significantly biased in their orientation within transcribed
regions, typically with a preference for the antisense strand
[13,14]. We observed a strong correlation between the repeat
orientation biases in the human and mouse genomes (Figure
S3B). There is also a qualitative correlation between the
extent of the orientation bias of a repeat family and the
strength of the PAS it introduces into the genome: LTR
elements are the most biased, LINE1 elements are strongly
biased but less so, and DNA transposons are the least biased.
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Synopsis

To date, genes have been identified from genomic sequence using
two basic concepts: the identification of specific signals delineating
the structure of the genes and by similarity to previously known
genes. Here the authors describe four novel algorithms based on a
third basic concept: the identification and quantification of muta-
tional and selectional effects of transcription. Central to this work is
a detailed analysis of interspersed repeats, the ‘‘junk DNA’’ left
behind by transposon activity, that is usually discarded when
predicting genes even though it amounts to nearly half the human
genome. Using the new methodology, the authors identify
thousands of potential novel genes, some of which appear not to
code for protein products. The new algorithms are particularly apt at
detecting genes with long introns and lacking sequence conserva-
tion. They therefore complement existing gene prediction methods
and will help identify functional transcripts within many ‘‘genomic
deserts,’’ regions currently thought to be devoid of genes.
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While the LINE1 consensus sequences do not show canonical
PAS, approximately 85% of LINE1 insertions terminate at
the 39 end of the consensus sequence, suggesting that active
LINE1 retroposons have reasonably strong PASs [15]. It has
been suggested that forward-strand LINE1 repeats attenuate
gene expression due to its idiosyncratic A-rich nucleotide
composition [16]; in this case, we would expect longer LINE1
inserts to be more strongly skewed than shorter ones. We
observed LINE1 skews to be invariant with element length
(skew¼�0.3), suggesting that the biasing mechanism involves
a discrete signal (e.g., the PAS) and not a length-dependent
compositional signal. DNA transposons do not replicate via
their transcript, and read-through transcription is probably
of very little effect on their survival. Being transcribed by
RNA polymerase III, Alu repeats have no PAS, yet they are
significantly biased in orientation. To elucidate why, we
performed a simulation experiment in which the consensus
sequence for each repeat was integrated into randomly
picked locations in a 4.4-Mb human genomic sequence
(GenBank accession number NT_001520) in random ori-
entation and studied the location and quality values for the
potential PASs observed in the resulting sequences. In this
simulation experiment, we found that the combination of the
Alu polyA tail with the integration target site frequently
generates a novel PAS (not shown). This third algorithm for
transcript prediction (ROAST [Repeat Orientation Analysis
Suggesting Transcripts]) is based on the statistical quantifi-
cation of repeat orientation skews, stratified by repeat family
and age and by the regional %GC of the sequence.

The fourth algorithm: PASTA. We further hypothesized
that selective pressure to maintain functionally transcribed
regions ‘‘open’’ to uninterrupted transcription might act
against mutations making a weak forward-strand PAS
stronger and in turn might favor mutations weakening
cryptic PAS-like sites within transcripts (Figure S4A). We
identified PAS-like sequences using the polyadq program [17]
and indeed found them to be significantly biased within
known transcripts, with a strong preference for the reverse
orientation. Most of this bias can be explained by random
expectation from a GþT–skewed sequence (see above): since
the PAS is A rich, it is expected to be more prevalent in the
reverse strand of a T-rich sequence (Figure S4B). We
therefore implemented a statistical correction to compensate
for these expected biases in PAS orientation, based on
training on intergenic sequences. Furthermore, the differ-
ential fixation of repeats itself yields a skew in PAS favoring
the reverse strand. We therefore generated a ‘‘sequence
mask’’ in which each repeat was replaced with the corre-
sponding section of its consensus sequence and corrected
PAS counts and strengths within repeats to reflect changes
from the consensus. Significant PAS biases remain after these
corrections, yielding this fourth independent predictor
(PASTA [Polyadenylation Signal Transcript Analysis]).
The integrated method: FEAST. We implemented the four

methods using the same conceptual structure, as follows.
First, we obtained log-likelihood ratio parameters for each
predictor by genomewide training on annotated known
genes. Second, we scanned the whole genome and tabulated

Figure 1. Information Flow in FEAST

The genomic sequence is analyzed using RepeatMasker, yielding a masked sequence (studied for its base composition), a repeat table, and an
alignment file, which is used to list mutations in repeats and to produce a ‘‘sequence mask.’’ Both the original sequence and the sequence mask are
studied using polyadq, yielding tables of predicted PASs. The nucleotide composition of the unique sequence, and the mutations within repeats, is
tabulated as well. The tables are then analyzed to calculate skews, which are finally used to produce predictive scores, separately for each method
(Greens, ROAST, CHOWDER, and PASTA) or in combination (FEAST).
DOI: 10.1371/journal.pcbi.0020018.g001

PLoS Computational Biology | www.ploscompbiol.org March 2006 | Volume 2 | Issue 3 | e180162

Predicting Genes from Orientation Biases



local frequencies and orientations for each of the predictors.
Third, we calculated for each genomic location four scores
representing the significance level of the strand bias; these
scores indicate each method’s support for a claim of
transcription at that genomic location. These four scores
are then combined, yielding an integrated predictive score
(Figure 1). Finally, we integrated these scores into maximal
segments [18,19], predicted to correspond to transcribed
regions. FEAST (Fast Empirical Algorithms Suggesting Tran-
scripts) scores are calculated as Z scores analytically calcu-
lated from the distribution expected from an independent
assortment of randomly oriented predictors, under the
assumption that the four combined methods are mutually
independent under the null hypothesis that a region is not
transcribed (with observed correlations due to uniformly
higher expected scores within transcribed regions). Positive
scores indicate evidence for transcription on the forward
strand; negative scores support transcription on the reverse
strand, and small values of either sign indicate the absence of
significant orientation biases. See Materials and Methods and
Supporting Information for a detailed description.

Reanalysis of Known Genes and Gene Predictions
The FEAST analysis can be used as an independent

qualification of known genes and gene predictions, by
combining FEAST scores included within the genomic span
of each gene. It is important to stress that here we are not
comparing two independent sets of transcript predictions but
rather calculating FEAST scores for transcribed regions as
predicted by other methods, and predicting just the tran-
script orientation based on our log-likelihood model. We
performed this calculation for all known genes in the human
genome, excluding those for which an overlapping antisense
transcript has been annotated (Figure 2). This analysis shows
that the FEAST method typically requires more than 10 kb of
sequence to identify the transcript’s orientation: a significant
positive score (Z . 2) was obtained for only 8% of the genes
shorter than 10 kb, rising to 86% for genes longer than 100 kb
(Figure 3, top left). Conversely, incorrect orientation identi-
fications (Z ,�2) were made for 1.4% of genes shorter than
10 kb but for only 3% of genes longer than 100 kb. Therefore,

a useful property of FEAST is that longer transcribed regions
typically produce higher scores, making this approach useful
for identification of large genes with long introns. Such genes
are particularly difficult to identify using current computa-
tional gene prediction methodologies.
We observed some extremely negative scores for some

annotated genes, typically indicating errors in the annota-
tion. For example, the AF118089 transcript spanning the
range chr1:88,617,147–88,738,864 (q!p strand) was assigned
a FEAST score of�37.4. This transcript in fact corresponds to
the reverse strand of the first nine exons of the PRKCL2 gene
and likely represents a clerical error. Some of the observed
negative scores may indicate actual transcription on the
reverse strand of those genes.
We similarly calculated FEAST scores for all GenScan,

Twinscan, and AceView annotations in the human genome
and found them to be largely in agreement (Figure 3, right)
while preserving the trend of higher scores for longer genes.
When considering only gene models not overlapping known
genes, the rate of agreement was significantly lower,
particularly for GenScan. This suggests that a combined
method accepting input from ab initio and FEAST-like
sensors might have a lower error rate by virtue of combining
additional sources of information.
Finally, we applied the FEAST algorithms to qualify

experimentally derived gene structures, as represented in
the University of California Santa Cruz (UCSC) Genome
Browser [20] by the rnaCluster and mgcGenes tracks. These
respectively denote gene boundaries deduced from clustering
spliced ESTs and mRNAs against the genome and cDNA
clones from the Mammalian Gene Collection [21]. We again
found that longer gene structures are typically recognized at
higher levels of certainty by FEAST (Figure 3, center and
bottom left). Importantly, the success rate was only moder-
ately lower when excluding gene structures overlapping those
in the knownGenes track on which the FEAST method was
trained; e.g., for 69% of rnaCluster entries not corresponding
to known genes, the orientation was properly predicted by
FEAST, with only 4.3% being mispredicted.

Whole-Genome Transcript Prediction
We implemented a variation on the maximal segment

analysis [18,19] to translate genome-wide FEAST scores into
specific transcript predictions. When using a Z score cutoff of
2, this analysis yielded a set of 13,623 human genomic regions
predicted to be transcribed, with a median size of 81 kb and
covering 1,521.3 Mb of genomic sequence. Using a more
stringent cutoff (Z¼ 3) FEAST identifies 6,579 regions with a
median size of 138 kb and encompassing 1,132.1 Mb. In
contrast, the training set of known transcripts included
19,449 regions totaling just 1,078.4 Mb. This suggests that the
current implementation of FEAST yields predictions that (1)
miss short genes (Figure 2), (2) correspond to known genes
but extend further than annotated, (3) merge separate genes
into combined predictions, and/or (4) reveal novel large
transcribed regions.
Extensions. We aligned the known genes at their start and

end positions and studied the average FEAST values
surrounding gene boundaries. As expected, the observed
scores outside the transcripts are low while those within
transcripts are significant (Figure 4). The transition at the
beginning of genes is much sharper than that observed at

Figure 2. FEAST Reanalysis of Known Genes

Scatterplot of FEAST scores versus gene length for known genes from
the UCSC Genome Bioinformatics Site [20]. Genes overlapping known
genes on the complementary strand were excluded. Scores greater than
3 are considered significant.
DOI: 10.1371/journal.pcbi.0020018.g002
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their ends, consistent with well-defined transcription start
sites and less sharply defined termination signals. We also
observed an apparent linear decay in scores from gene start
to gene end. The same pattern is obtained when studying
expressed mRNAs and ESTs (rnaCluster track). A related but
different pattern is observed when analyzing the boundaries
of gene predictions, e.g., by Twinscan. According to our
analysis, transcripts are expected to extend further than
predicted, particularly toward the 59 end. This is as expected
since Twinscan predicts the protein-coding section of genes,
to the exclusion of long initial introns and noncoding first
exons.

Transcription between consecutive genes. We identified
9,237 intergenic segments between consecutive genes on the

same strand (‘‘head to tail’’) and calculated integrated FEAST
values for them. As a general rule, location between two
similarly oriented genes appears to be strongly predictive of
intergenic transcription on the same strand, e.g., 52% for
intergenic segments in the 10-to 100-kb range, versus 28% for
the opposite strand (Figure S5). Such scores frequently cause
the bridging of the consecutive genes into a joint prediction,
which in some cases might reflect the existence of biologically
functional ‘‘chimeric’’ transcripts.
Novel transcribed regions. We identified 5,286 regions that

are predicted to be transcribed (Z score � 2) but do not
overlap with any previously known genes on the same strand
(Figure S6). In this case, ‘‘known genes’’ collates annotated
genes and predictions from the knownGene and the ensEmbl

Figure 3. FEAST Reanalysis of Existing Annotation

Success rates for FEAST reanalysis of known genes (top left), experimental gene annotations (center and bottom left), and gene predictions (right). Gene
annotations were stratified by length into three classes: short (,10 kb), medium (10 to 100 kb), and long (.100 kb); the number of genes in each class
is given above each bar. FEAST scores were stratified into nonsignificant (white,�2 , Z , 2), giving significant scores for the expected strand (shades of
brown, Z . 2) and giving significant scores for the wrong strand (shades of red, Z ,�2). The Z ,�4 and Z . 4 bins include potentially large values as
displayed in Figure 2. Columns labeled with asterisks include the gene regions longer than 100 kb remaining after subtraction of overlaps with known
genes, on which FEAST had been trained.
DOI: 10.1371/journal.pcbi.0020018.g003

PLoS Computational Biology | www.ploscompbiol.org March 2006 | Volume 2 | Issue 3 | e180164

Predicting Genes from Orientation Biases



tracks in the UCSC database. While the median length of the
FEAST predictions is approximately 50 kb, many are less than
20 kb long. A more stringent cutoff (Z � 3) yields 1,293
predictions, with median size of approximately 130 kb. Some
of the FEAST predictions may encompass more than one
gene each, and we expect many of the predictions with Z
scores between 2 and 3 to represent novel genes. Our analysis
of the whole human genome suggests the potential existence
of thousands of heretofore-unidentified genes.

Several of the new predictions have been confirmed by
gene annotations that were introduced at a later stage, i.e.,
they did not contribute to the training set. For example, a
112-kb-long prediction in 19q13.42 (Z¼ 8.8) corresponds to a
recently published microRNA (miRNA) cluster [22]. Our
FEAST analysis suggests that this miRNA cluster may be
polycistronic, transcribed as a unit from the CpG island near
the 59 end of the FEAST prediction (Figure S7).

Since many computational gene prediction strategies start
by masking the sequence for repeats, we tested whether the
novel FEAST predictions are substantially enriched in
repetitive sequences when compared to previously known
genes. We found this not to be the case: the repeat content of
known genes and that of novel FEAST predictions are
comparable (Figure S8).

Finally, the possibility exists that some of the novel
predictions correspond to genomic regions that are tran-
scribed for miscellaneous reasons other than gene encoding,
e.g., chromatin remodeling [23].

Comparison to Genome Tiling Experiments
With the availability of experimental expression data from

dense genomic tiling microarray experiments for ten human
chromosomes [2], we asked how successful the FEAST
predictions are at identifying novel transcribed regions not
already included within known genes. By collating 2,162,170
transcribed fragments (‘‘transfrags’’) from 11 experiments, we
created a nonredundant set of 503,650 transfrags, of which
260,628 are already included within known genes. FEAST
predictions with Z . 3 encompass 76,649 additional trans-
frags, i.e., 31.5% of those previously unaccounted for by

known genes (Table S1). Taking into account that the novel
FEAST predictions span only 25.8% of the chromosomal
sequence outside known genes, FEAST predictions are very
significantly enriched in novel transfrags (Z . 61, p , 10�15).
A significant enrichment was observed for all the chromo-
somes except the very highly annotated chr19 and chr22. The
strongest enrichment ratios were observed for chrY, chr13,
and chr21 (Table S1).
We next considered the possibility that the genomic tiling

data may include noise in the form of scattered, spurious
transfrags. We therefore clustered the transfrags by joining
those separated by less than 1 kb of unique sequence (i.e.,
excluding interspersed repeats) and using maximal linkage.
We excluded all resulting clusters less than 5 kb long, which
yielded 14,302 clusters including 311,441 transfrags. Ninety
percent of the clusters include four to 50 transfrags each, with
a typical constituency of ten transfrags per cluster. As for the
unfiltered data, the novel FEAST predictions for all chromo-
somes are significantly enriched in transfrags except for
chr19 and chr22. Interestingly, filtering disjoint transfrags
from the data set increases the enrichment ratios, particularly
for chr7, chr13, chr21, and chrY (Table S1).
Finally, we compared the enrichment ratios observed when

partitioning the transfrags by source: polyAþ versus polyA�
and cytoplasmic versus nuclear. We observed the highest
enrichment ratios for transfrags derived from polyA� and
nuclear samples (Table S2). These results suggest that the
FEAST algorithms can help identify novel transcribed regions
beyond those already annotated as known genes.

Multidimensional Scaling Analysis
We used multidimensional scaling (MDS) [24] to compare

the genomewide FEAST predictions to those from other gene
prediction methods and gene annotations. We devised a
distance metric representing the disagreement between the
methods, calculated this distance for all possible pairs of
methods, and represented these distances by points in two
dimensions. The resulting visualization (Figure 5) reveals
three main clusters: one including the observed RNA
structures and all methods involving curation, a second one
including the ab initio and hybrid gene prediction methods,
and, finally, a more dispersed cluster including the FEAST
components. These results suggest that the FEAST predic-
tions identify a different subset of genes than established
gene prediction methods and that a future integrated method
incorporating ab initio gene structure prediction, database
comparisons and transcriptional side effects could provide a
much closer unsupervised approximation to the observed
mRNA (transcriptome) data. A similar analysis including
randomized versions of the same annotations indicates that
the results of FEAST analysis are nevertheless similar in
nature to those obtained by other methods (Figure S9).

Experimental Testing
We performed an initial experimental validation for some

of the newly predicted novel transcribed regions.
CPHL1: A novel ceruloplasmin-related gene. Ceruloplasmin

(ferroxidase) is a medically important metalloprotein that
evolved by internal tandem triplication [25]. ROAST analysis
of the ceruloplasmin gene locus (3q25.1) suggested the
presence of a transcript significantly longer than the 50-kb-

Figure 4. FEAST Scores at Gene Boundaries

The average FEAST scores for known genes (thick black, n ¼ 10,023),
aligned at the position of gene start, show a sharp shift from
nonsignificant values (near 0) outside the gene, to significant values at
the 59 end of the gene. The opposite shift is seen at the gene end,
although it is more gradual. RNA cluster sequences (thin red, n¼ 13,749)
show a very similar graph. Twinscan predictions (dashed green, n ¼
9,131) display positive FEAST scores outside the predicted regions,
suggesting an underprediction of gene ends, particularly toward the 59
end. Known genes, RNA clusters, and Twinscan predictions shorter than
20 kb were excluded from this analysis.
DOI: 10.1371/journal.pcbi.0020018.g004
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long CP gene [26]. The predicted transcribed region outside
CP has neither annotated known genes nor mRNA data
(Figure 6) and very few spliced EST clones (AA994511,
AI217109, BX113166, and BG189564). Using the GESTALT
Workbench [27], we identified a putative new gene structure
(Figure 6) yielding a predicted protein sequence 57%
identical to CP and related to hephaestin (HEPH). This new
gene, which we named CPHL1 (ceruloplasmin and hephaes-
tin-like), is absent from the orthologous locus in mouse and
rat genomes, and there is no evidence for its presence
elsewhere in those genomes. Orthologs of CPHL1 exist in the
dog and opossum genomes, located immediately upstream of
CP as in human. Phylogenetic analysis suggests that this
probable metal transport protein is a mammalian-specific
duplicate of ceruloplasmin that was later lost in rodents
(Figure 6, inset). Using PCR primers designed to be specific
for the predicted ORF, we observed its expression in prostate
cancer CL1 cells [28] and in a mixture of mRNAs from over
30 human tissues. We identified two different isoforms of
CPHL1, suggesting alternative splicing.
AGBL1: A novel putative zinc carboxypeptidase. FEAST

analysis of a 2-Mb ‘‘gene desert’’ between the AKAP13 and
NTRK3 genes on human chr15 indicated the presence of a
transcript spanning at least half of this region. Lacking
reliable gene predictions or observed transcripts, we used
FASTY [29] to perform a sensitive translated comparison of
every nonrepetitive sequence in this locus to protein data-

Figure 5. Genomewide Comparison of Gene Annotations

The matrix of disagreement measures for all pairs of annotation methods
is represented by point in two dimensions using MDS. Filled black circles
represent experimentally observed transcripts, the vast majority being in
the ‘‘RNA’’ set. Triangles represent methods involving significant manual
curation and/or based on the RNA set. ‘‘S,’’ ‘‘H,’’ and ‘‘F’’ represent
methods based on gene structure prediction, hybrid methods (gene
structure and sequence similarity), and methods measuring footprints of
transcription, respectively. The combined FEAST method was excluded
from the MDS analysis, and its projected location (squared F) was
calculated later (see Materials and Methods). Note that, like geographical
maps of intercity distances, MDS representations have no axes.
DOI: 10.1371/journal.pcbi.0020018.g005

Figure 6. CPHL1, a Novel Ceruloplasmin-Like Gene

Standard UCSC Genome Browser view of the CP locus showing a 90-kb ‘‘desert’’ separating it from the next known gene, LOC116441, and GESTALT view
of the same locus, indicating the extent of the transcribed region predicted by ROAST (red bar in ROAST track) and the predicted gene structure for
CPHL1. Interspersed repeats are color-coded, with red, green, pink, and brown bars representing Alu, MIR, LINE, and other repeats, respectively, and bar
height indicating repeat age (younger repeats are taller); the megabase scale starts at the p telomere. The newly discovered gene overlaps with a gene
structure predicted by Twinscan (chr3.151.005.a) but shares only seven of 21 exons, one imprecisely. GenScan predicts a much longer structure
continuous with the CP gene, sharing 14 exons with CPHL1, of which ten are precisely predicted.
Inset: Phylogenetic analysis of the CP/CPHL1 family rooted using the hephaestin protein sequence as outgroup. Numbers above branches represent
percentage bootstrap support over 1,000 replicates; the horizontal bar indicates 10% divergence along each branch.
DOI: 10.1371/journal.pcbi.0020018.g006
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bases, followed by detailed manual annotation of additional
potential exons using the GESTALT Workbench [27]. We
predicted a novel gene encompassing 765 kb of genomic
sequence and including at least 21 exons (Figure 7). Using
specific PCR primers, we observed its expression in the
ovarian cancer cell line IGROV-1 [30] and in a mixture of
mRNAs from over 30 human tissues (Figure S10). The
predicted protein sequence, currently incomplete at its
amino end, is at least 940 amino acids long and includes a
z inc carboxypept idase domain ( smart00631 .10 ,
pfam00246.11). This novel gene, called AGBL1, is most closely
related to the zinc carboxypeptidase AGTBPB1, from which it
diverged prior to the teleost-tetrapod split (not shown). In
mice, Agtbpb1 (Nna1) is expressed in regenerating motor
neurons [31], suggesting that the expression of AGBL1 may
also be developmentally regulated and highly specialized.
After our analysis, the sequence of a cDNA clone corre-
sponding to the 39 half of the predicted structure of AGBL1
has been deposited in GenBank and annotated as being
expressed in prostate tissue.

LOC401237: A novel large nonprotein-coding gene. The
strongest novel FEAST prediction not overlapping any
previously known gene indicated the presence of a novel
transcript between the SOX4 and PRL genes on human chr6,
spanning over 530 kb (Figure 8). Over 30 spliced ESTs and
mRNAs from a wide variety of tissues, including embryonic
stem cells, adult brain, uterus, renal epithelial cells, and eye
lens, have been assigned to this locus. With the single
exception of AK126168, all of these transcripts are annotated
in the orientation predicted by FEAST and are the basis for
the gene model LOC401237. We designed PCR primers based
on AK026189, which spans most of the predicted region, and
experimentally verified its expression in the mRNA panel. No
open reading frame can be identified by splicing the observed
exons; a translated comparison by FASTY [29] against the
protein databases fails to identify any significant similarity.

Furthermore, while orthologs for some of the exons are
identifiable in other vertebrate genomes (dog, mouse, rat,
opossum, chicken, and frog), the exact exon boundaries are
not conserved, and many ‘‘frameshifting’’ mutations appear
to have been accepted in the evolution of these exons. In fact,
the exons do not display higher conservation levels than the
introns, which in turn contain several conserved noncoding
sequences (CNSs) (Figure 8). The function of the intron CNSs
remains to be determined. CNSs also exist between
LOC401237 and PRL (Figure 8). Significant FEAST biases
extend 320 kb beyond the 39 end of LOC401237, suggesting
the presence of additional novel transcripts in this locus.

Discussion

Current methods for gene prediction perform well on
genes that are ‘‘typical’’ in several respects, including number
and length of exons, length of introns, quality of splice sites,
and conservation (similarity to known genes). Some divergent
genes may be difficult to discover by experimental observa-
tion of transcripts if their range of expression is restricted to
one or a few cell types or if they are expressed at very low
levels. It is significantly more difficult to identify and produce
correct models of genes with extremely long introns or short
exons or that have diverged extensively from other genes; this
is particularly true for genes that do not code for proteins.
Such genes would be composed almost entirely of intronic
sequence and could be practically ‘‘invisible’’ to current
computational gene prediction methods.
We found that transcribed sequences hold significant

information about the direction of transcription, in the form
of significant orientation biases of (1) nucleotide composi-
tion, (2) mutations within interspersed repeats, (3) the
interspersed repeats themselves, and (4) PASs. We imple-
mented and integrated four algorithms (Figure 1). Greens and
CHOWDER rely on biases introduced by transcription in the

Figure 7. GESTALT View of the AGBL1 Locus between the AKAP13 and NTRK3 Genes on Human Chromosome 15, 84.1 to 86.1 Mb from the p Telomere

PASTA, Greens, CHOWDER, and FEAST predictions are displayed for each strand in brown, green, pink, and red, respectively, with lighter shades
indicating less significant scores. In the FEAST track, actual scores are indicated in red, and maximal segments are displayed in blue. The AGBL1 gene
structure was modeled based on translated sequence similarity to the AGTPBP1 protein.
DOI: 10.1371/journal.pcbi.0020018.g007
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germline, but the generality of the skews suggests that this
includes a large fraction of the genes [32]. ROAST and
PASTA reflect functional transcription in both autosomal
and germline tissues. The observed skews are evidence for
sustained transcription over evolutionary time, and are not
caused by ‘‘transcriptional noise,’’ i.e., indiscriminate tran-
scription of random regions of the genome, that complicate
the interpretation of most experimentally based transcript
identification methods.

For the purpose of the current work, interspersed repeats
have two interesting characteristics. First, since copies
generally do not adopt a function within the genome, they
accumulate substitutions in a neutral fashion. The availability
of sufficient copies allows for a relatively accurate recon-
struction of the element sequence at the time of integration,
while comparison of the extant copies against these ‘‘con-
sensus sequences’’ gives an accurate account of the frequency
spectrum of neutral substitutions. These data have, for
example, been used to derive log-odds matrices for compar-
ison of interspersed repeats to a consensus database in the
program RepeatMasker as well as for the alignment of
genomic sequences of different mammals [33,34]. We exploit
this aspect of interspersed repeats by measuring the strand-
specific substitution biases in repeats (CHOWDER) and the
changes in PAS strength (PASTA) to predict the presence and
orientation of a transcribed region. Second, while decayed
interspersed repeats are generally relatively inert, except for
promoting homologous recombination, at the time of
integration they contain functional transcription regulatory
signals that can affect nearby gene transcription, as exempli-
fied by the discovery of oncogenes constitutively expressed

from nearby retroviral LTR [35]. Probably mostly because of
transcriptional disruption by their PAS, LINE and LTR
elements are underrepresented in the forward orientation of
genes [13,14,16,36]. Although the nature of the interaction of
other interspersed repeats with genes is less clear, their
distribution is nonrandom with respect to the location of
genes as well. Notably, the location of lineage specific (and
therefore independently accumulated) SINEs in different
mammals is remarkably similar [37,38]. Thus, the distribution
pattern of repeats harbors significant information concern-
ing the location of genes. We have utilized this aspect to infer
transcription unit locations, by quantifying the abundance of
each type of repeat in the forward and reverse strand of
genes. The data were stratified by GC level, to accommodate
the large-scale correlation of repeat densities with isochores.
The ‘‘transcriptional footprints’’ described here have some

conceptual similarity to ‘‘content’’ methods like coding
potential and coding sequence compositional biases. While
those are limited to coding exons, the signal of transcrip-
tional footprints can be observed throughout the length of
the transcript, the vast majority of which is usually intronic in
nature. Furthermore, while the ‘‘content’’ methods detect
deviations from the sequence composition expected under a
random model, the FEAST methods detect significant strand
biases of selected signals, regardless of their absolute
frequency. A generalized linear model for transcript detec-
tion was published [39], integrating nucleotide skews and
some repeat densities (not strand biases). Sémon and Duret
used a 20-kb sliding window approach to identify putatively
transcribed regions but found their method to be insuffi-
ciently accurate for automatic gene prediction.

Figure 8. The Highest-Scoring Novel Predicted Transcript, LOC401237

VISTA and GESTALT analyses of the LOC401237 locus, showing sequence conservation with the mouse, chicken, and frog orthologous loci; the observed
intron-exon structure of LOC401237 and location of neighboring genes, with black circles representing CpG islands; the integrated FEAST scores for the
forward (þ) and reverse (�) strands, with the black arrow representing the calculated maximal segment; the repeat distribution on both strands, with
red, green, pink, and brown bars, respectively, representing Alu, MIR, LINE, and other repeats, and bar height indicating repeat age (younger repeats are
taller); the megabase scale, range 21.7 to 22.4 Mb from the p telomere.
Inset on top: Detail on the conserved intronic noncoding sequences, between two nonconserved exons.
DOI: 10.1371/journal.pcbi.0020018.g008
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The basic model underlying the four FEAST methods
assumes the accumulation in introns and UTRs of strand-
biased signals arising as side effects of transcription. Several
deviations from this model can be postulated: (1) a significant
proportion of the genomic region included in a gene might
not be transcribed, as is the case for somatic rearranging
immune loci; (2) antisense overlapping transcripts may lead
to partial signal cancellation; and (3) a gene may have long
coding exons, or a large number of exons separated by short
introns. Furthermore, the statistical model used assumes
independence between the observed signals, which may not
be true for (4) arrays of tandemly duplicated sequences or (5)
interspersed repeats ‘‘homing’’ into similar repeats, e.g., Alu
[40]. Finally, sensitivity may suffer if there is insufficient
signal, e.g., for (6) short genes or (7) evolutionarily new
transcribed regions, or if the signal was lost by (8) inversions
within the introns or other genomic rearrangements. Con-
versely, (9) decaying pseudogenes derived from genomic
duplications may yield spurious signals. Most of these model
deviations are expected to lead to false negatives, suggesting
that FEAST may be underpredicting the number and/or the
extent of genes.

In the current implementation of FEAST, the four
algorithms are combined with equal weights, except for
Greens and CHOWDER being weighted according to the
repeat fraction. This will be improved in future versions by
identifying context-dependent optimal weights for the differ-
ent algorithms. Since the mutation-based methods refer to
germline expression but the selection-based methods reflect
functional importance at any developmental stage, additional
functional information could be obtained by using different
combinations of the four algorithms. Finally, a promising
area for future development is the joint gene prediction on
orthologous regions, by collating biases accrued independ-
ently in different species lineages.

Sequence-based gene prediction has long been dominated
by methods based on modeling gene structure and sequence

comparisons, followed by extensive expert curation. It might
have appeared impossible to detect genes from genomic
sequence without identifying splicing signals or sequence
conservation and not even relying on the genomic local-
ization of experimentally observed expressed sequences. We
presented here a third basic concept (Figure 9), i.e., the
genomic effects of sustained transcription, and four tran-
script prediction algorithms based on it. It is important to
stress that the methods described here differ from conven-
tional gene prediction methods in that they do not lead to
detailed prediction of the intron-exon structure of the
predicted genes but rather identify the overall extent and
orientation of the transcribed regions. To achieve a complete
gene model, further analyses are required.
In addition to yielding hypotheses for correcting 59

incomplete gene annotations and novel independent pre-
dictions, many of which cannot be detected by gene structure
or similarity, the new algorithms are complementary to
existing methods (Figure 5). We therefore expect these tools
to add valuable information when integrated with the
algorithms based on gene structure and sequence similarity,
as a further step toward achieving the sensitivity and
specificity required for fully automated whole-genome
annotation.

Materials and Methods

Overview of computational analyses. We analyzed the human
genomic sequence [12]. The whole genome was analyzed using
RepeatMasker (http://repeatmasker.org), Tandem Repeats Finder
[41], polyadq [17], and custom Perl scripts to calculate nucleotide
compositions and enumerate mutation events within interspersed
repeats based on RepeatMasker alignment files. We identified
transcribed genomic regions based on the annotation of ‘‘known
genes,’’ suppressing those annotated as overlapping other genes. We
trained on this data set by counting frequencies of the observed
elements (repeats, GþT nucleotides, mutations within repeats, PASs)
in both orientations and within nonoverlapping 1-kb bins and then
calculated log-likelihood ratio parameters for each, with appropriate
stratifications. Using these empirically derived parameters, we
reanalyzed the known genes to assign a score to each. We further
analyzed the entire human genome to predict transcripts, using a
maximal segment analysis approach [18,19] with separate extension
models for transcribed and intergenic sequence. Finally, we com-
pared the overall distribution of FEAST predictions to those
obtained by several gene prediction programs and mRNA/EST
annotations.

Definition of training sets. We obtained the July 2003 freeze of the
human genome (hg16, based on NCBI Build 34) and its annotation
database from the UCSC Genome Bioinformatics Site [20]. For
training the algorithms, we defined two data sets: (1) the ‘‘TRON’’ set
of transcribed sequences (which are mostly inTRONs), reverse-
complemented if needed, such that all genes are transcribed in the
same (forward) strand, and (2) the ‘‘TERG’’ set of untranscribed
(inTERGenic) sequences, including all sequences not annotated to be
transcribed, but excluding any gaps longer than 1 kb (e.g.,
centromeres). We based our definition on the ‘‘knownGene’’ track
of the UCSC Genome Browser [20], which collates annotation about
protein-coding genes based on proteins from SWISS-PROT, TrEMBL,
and TrEMBL-NEW, and their corresponding mRNAs from GenBank,
and includes 38,482 entries totaling 1,860.8 Mb. We removed
redundancy (e.g., alternative transcripts of the same gene) by maximal
clustering of overlapping features on the same strand, yielding 18,956
clusters spanning 1,023.9 Mb. We observed very limited overlap of
transcripts on opposite strands (totaling 15.4 Mb). We excluded from
the training set all transcript clusters overlapping known transcripts
on the opposite strand. We performed a similar analysis on the mouse
genome [37] (October 2003 freeze, mm4, based on NCBI Build 32).

We stratified the genomes by Gþ C content into five nearly equal
parts by sequence length. Any genomic sequence (and hence the
repeats in it) is classified as having low, medium low, medium,
medium high, or high G þ C content. The optimal cutoffs to obtain

Figure 9. A Third Basic Concept

By studying various sources of sequence information (pink boxes), genes
have been identified using a variety of computational methods based on
the identification of gene structure and/or the identification of sequence
conservation. The FEAST methods represent a third basic concept, in
which sustained transcriptional activity is inferred by its mutational and
selective effects on the genomic sequence, the ‘‘transcriptional foot-
prints.’’ Light blue boxes indicate the three basic concepts for gene
prediction. The dashed vertical line separates gene prediction (to the
left), from gene identification (to the right): the latter is based on the
analysis of sequences expressed from the same locus.
DOI: 10.1371/journal.pcbi.0020018.g009
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such separation are calculated to be 35.9%, 38.5%, 41.3%, and 45.4%
GþC for the human genome and 38.0%, 40.0%, 42.3%, and 45.2% G
þC for the mouse. When considering sequences in the TRON sets, the
forward strand was defined to be the one running 59 to 39 in the
direction of transcription of the gene. For intergenic sequences
(TERG set), both strands are equivalent, and the forward strand is
arbitrarily defined to be that which runs from the p telomere to the q
telomere of the chromosome.

Genomewide repeat analysis.We identified and classified all SINEs,
LINEs, LTR, and DNA elements in the human and mouse genomes,
using the standard classification implemented in the RepeatMasker
software (version of 23 June 2003, at sensitive settings; http://
repeatmasker.org). We tabulated the number of repeats in each of
the genomic sets (Table S1), excluding simple sequence repeats and
low complexity regions, and calculated their density as repeat counts
per Mb of sequence. RepeatMasker identifies which repeat fragments
likely derive from one single original repeat, avoiding most ‘‘double-
counting’’ of disrupted repeat elements.

We stratified the repeats by GþC content as described above. We
further stratified the repeats by age. The percentage of divergence of
each repeat from its consensus sequence was used as an estimate of its
age, assuming that an older repeat would have diverged more from its
corresponding family consensus than a younger one: we subdivided
repeats into nonoverlapping 5% divergence bins.

This analysis resulted in a detailed catalog of repeat counts,
stratified by repeat type, repeat family, G þ C content, divergence
level, and orientation (see below). For example, in the human genome
we observed 17.55 LINE/L1 repeats less than 5% divergent from
consensus, per Mb of low G þ C content sequence in intergenic
regions, but 14.86 such repeats per Mb in similar regions that are
annotated to be transcribed. The data sets are available at http://
repeatmasker.org/FEAST.

Greens: Quantification of G þ T skews. We implemented a
variation on the nucleotide composition method published by Green
et al. [8]. Instead of using the predicted equilibrium frequency of
0.527, we studied transcribed, nonrepetitive sequences in 100-bp bins
and plotted the distribution of observed log-likelihood ratios as a
function of the G þ T skew (Figure S1B). This curve shows a clear
saturation effect for extreme G þ T skews, which are not modeled
using a single log-likelihood ratio score. To avoid artifacts of low
sampling, we fitted an arbitrary function of the shape:

k1 � x � 10k2ðxþk3Þ
2

ð1Þ

where x is the GþT skew. Best fit was obtained with k1¼ 3.2, k2¼�2,
and k3¼ 0.07 (red fit curve in Figure S1B). The relationship between
the forward and reverse log-likelihood ratio curves is given by:

2 f rw þ 2rev ¼ 2 ð2Þ

When studying a genomic sequence for prediction purposes, the
Greens score of a 1-kb bin was calculated as the sum of the scores of
100-bp nonrepetitive windows contained within it and normalized to
Z scores in the same way as for ROAST scores (described below).

CHOWDER: Quantification of mutations within repeats. We
studied the alignment files produced by RepeatMasker to identify
all the single-nucleotide differences between each interspersed
repeat (with the same exclusions as in ROAST) and its corresponding
consensus sequence. These differences can be assumed to represent
directional mutations from the consensus sequence state to the
extant sequence state (Figure S2A). This method is akin to the
‘‘substitution rate’’ method described by Green et al. but is applied to
the content of interspersed repeats. Since most repeats cannot be
assumed to have approached mutational equilibrium, the method
used here is empirical. We excluded from the analysis CpG mutations
and tabulated only isolated mutations, defined as those for which the
59 and 39 neighboring sites were identical between the repeat
consensus and the extant sequence. We defined the orientation of a
mutation as that in which a purine has mutated. For example, a
mutation changing a forward-strand C in the consensus sequence to a
T in the extant sequence is considered instead a change from a
reverse-strand G into an A. Thus, instead of 12 possible mutations, we
considered six possible mutations, each with two possible orienta-
tions. We tabulated their frequencies relative to the orientation of
transcripts and found them to be biased (Figure S2B). We then
calculated log-likelihood ratios and integrated the observed values in
the same way as for ROAST scores (described below).

ROAST: Quantification of repeat orientation biases. Interspersed
repeat consensus sequences in the RepeatMasker/RepBase Update
databases are oriented in the direction of transcription of the
transposable element, which is usually recognized by the coding

region. This orientation was unknown for a fraction of repeats,
primarily LTR sequences without an associated internal sequence or
noncoding DNA transposons. We determined orientations for these
based on similarity to oriented elements or discovery of internal
sequences or coding region in extended consensus sequences, leaving
for the human genome only the Mariner-like MADE and MER1-group
MER119 DNA transposons nonoriented and excluded from further
analysis. A significant fraction of L1 repeats show an inversion,
attributed to a ‘‘twin priming’’ mechanism [42]. We defined the
orientation of such inverted L1 repeats as the orientation of the
segment corresponding to the 39 end of the L1 consensus sequence.
Failure to implement this correction can lead to the underestimation
of L1 bias in transcripts and to the artifactual observation of
significant L1 orientation biases in intergenic sequences.

When a repeat is located within a transcript, we refer to it as a
‘‘forward repeat’’ if its orientation is the same as that of the
transcript; otherwise, we consider it a ‘‘reverse repeat.’’ For each
repeat family, stratified by repeat age and regional GþC content, we
calculated a score based on log-likelihood ratios, with the null
hypothesis claiming the expectation of observing equal numbers of
forward and reverse repeats. If F and R represent the observed
number of repeats in the forward or reverse orientation relative to
the enclosing transcript, the log-likelihood ratio contribution to the
ROAST prediction of transcription in the same orientation as such a
repeat is given by:

LLF ¼ log2
f rF
0:5

� �
where f rF ¼

F
F þ R

ð3Þ

For example, we observed 26,191 mid-aged reverse Alu repeats
within transcripts of intermediate G þ C content but only 19,976 in
the forward strand. Therefore, as only 43.27% were observed in the
forward strand (and not the expected 50%), the score contribution
for a transcription claim in the same orientation as such an Alu
repeat is log2(0.4327/0.5)¼�0.209, while the contribution to the claim
of transcription in the reverse orientation receives a score of log2[(1�
0.4327)/0.5] ¼ 0.182. The �0.209 figure for the forward strand is
different from the value plotted in Figure S3B, because the latter
includes information about all Alu repeats in the genome.

For testing genomic sequences, we subdivided them into non-
overlapping 1-kb bins and assigned to each bin those interspersed
repeats for which the midpoint lies within the bin. The ROAST score
for a bin is the sum of the log-likelihood scores of its repeats,
normalized to the average and standard deviation of the distribution
of scores obtained if the same repeats had been observed in random
orientations. Therefore, the ROAST score is expressed as a Z score, or
standard deviations away from the mean value (under the null
hypothesis), i.e.:

ROASTbin; F ¼

X
i

LLi; F � avgðROASTbinÞ

stdðROASTbinÞ
ð4Þ

with:

avgðROASTbinÞ ¼
1
2

X
i

ðLLi; F þ LLi;RÞ

and

stdðROASTbinÞ ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðLLi;R � LLi; F Þ2
r

ð5Þ

where i represents each repeat observed in the genomic bin studied,
and LLi,F is either LLF or LLR according to whether repeat i is in the
same or opposite direction as the direction of transcription being
tested.

PASTA: Quantification of PASs. Based on the RepeatMasker
alignment files, we produced a ‘‘sequence mask,’’ which is a version
of the genomic sequence in which each interspersed repeat is
replaced by the corresponding segment from its consensus sequence
(Figure S4A). We then predicted PASs on both the unmodified
genomic sequence and the ‘‘sequence mask’’ using polyadq [17] with
default parameters. We tabulated the frequencies of PAS relative to
the orientation of transcripts, stratifying them by T/A skew [i.e., T/(T
þA)], PAS consensus (AATAAA or ATTAAA), and PAS strength, and
subtracting PAS observed within repeats in the ‘‘sequence mask.’’ We
then calculated log-likelihood ratios as for ROAST, but instead of the
expected value of 0.5, we used the ratio observed in intergenic
sequences of similar T/A skew; this is to compensate for the expected
depletion of forward-strand PAS in T-rich sequences (Figure S4B).
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Integration of scores. The FEAST score for a single bin is
calculated from the individual method scores as follows:

FEASTbin ¼

X
M

ðMbin � weightMÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
M

weight 2M
r ð6Þ

where M is each of ROAST, Greens, CHOWDER, and PASTA, and
weightM is the relative weight given to each method. Currently, the
weight of Greens’ method is set to the fraction of unique sequence in
the sequence bin, the weight of CHOWDER is set to the fraction of
repetitive sequence, and the weight of the other methods is set to 1. It
is therefore possible to calculate a FEAST score for any combination
of methods.

The FEAST score of the range of bins x..y (inclusive) is calculated as:

FEASTx:y ¼

Xy
bin¼x

FEASTbin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� xþ 1

p ð7Þ

We identified maximal scoring segments [18,19] by linearly
extending segments with positive scores and reporting only those
segments with combined score FEASTx..y . 2 in either orientation. To
avoid merging distinct high-scoring segments separated by a region
of negative or low scores, we tabulated the frequency of low-scoring
segments within annotated genes, and we used these values to
determine the probability that a low-scoring segment following a
maximal scoring segment is still included within the same predicted
transcript. Where this probability was less than 10�3 for 1,000 shuffles,
the low-scoring segment was considered to represent the beginning
of an intergenic region and was used as the boundary for the previous
maximal segment.

Comparison to genome tiling data. We obtained the transcribed
fragment (‘‘transfrag’’) data from the UCSC Genome Bioinformatics
Site [20] in 11 files listing transfrags expressed in different experi-
ments [2]. We excluded a very small number of transfrags that were
annotated as deriving from chr12, and those from a chr6 haplotype.
This yielded a redundant set of 2,162,170 transfrags, which we
collated into a nonredundant set of 503,650 transfrags that were
expressed in at least one experiment. For each pair of consecutive
transfrags along a chromosome, we removed the interspersed repeats
from the sequence between the transfrags, and if the remaining
sequence was less than 1 kb (an arbitrary cutoff based on the observed
distribution of lengths), we considered the transfrags to be linked
into a cluster. We then excluded clusters spanning less than 5 kb of
(unmasked) genomic sequence. We studied all the transfrag data
combined or stratified by sample type (polyAþ, polyA�, cytosolic, and
nuclear).

MDS analysis. We computed for eachmethodM its total extent TEM
as the sum of the lengths of all the gene ranges annotated by it
(collapsing overlapping ranges on each strand). For each pair of
prediction methods x and y (e.g., ROAST and GenScan), we computed
the measure of minimal possible disagreement minDx,y as abs(TEx �
TEy); i.e., the least disagreement will be observed when one set of
predictions is entirely contained in the other, and their extents are
exactly the same. We then calculated the maximal possible disagree-
mentmaxDx,y as TExþTEy (i.e., maximal when they are totally disjoint),
or 2 � length(chrom)� (TExþTEy) when TExþTEy . length(chrom).
The actual observed nucleotide overlap disagreement between the
methods obsDx,y is then normalized linearly to the range minDx,y
..maxDx,y, yielding a distance measure equal to 0 when the methods
yield identical results and equal to 1 when they are maximally disjoint.

We then created a two-dimensional visualization of the relation-
ships among the methods from the matrix of pairwise distance
measures, using the MDS algorithm ALSCAL as implemented by the
SPSS statistical system, while specifying a ratio level of measurement
with Euclidean distance, thereby creating a metric scaling solution.
The technique of MDS seeks to create a configuration of points in
two-dimensional space such that the pairwise Euclidean distances
between pairs of points are closest to their respective actual distance
measures. The ALSCAL algorithm iteratively seeks to minimize
Young’s S-stress formula 1, which is defined as the square root of the
ratio (sum over all pairs of the squared difference between squared
actual and squared Euclidean distances) divided by (sum over all pairs
of the fourth power of the scaled Euclidean distance). Further details
may be found, for example, in Davidson [43] or in Young [44].

In order to avoid giving additional weight to the FEAST
components in Figure 4, an initial MDS was obtained with the
FEAST components (ROAST, CHOWDER, Greens, and PASTA) but

without FEAST itself. The optimal location for FEAST, as displayed,
was then computed by minimizing the total S-stress but without
changing the locations of the other points. An MDS without
excluding FEAST gave substantially similar results.

Experimental verification. Selected novel gene predictions were
confirmed by PCR amplification from double-stranded cDNA, which
was prepared from a mixture of over 30 different human tissues. PCR
primers were specifically designed for each gene based on predicted
exon sequences. Amplification products were sequenced to confirm
their identity and to establish intron-exon boundaries.

Primers were designed using the primer3 software [45]. To achieve
higher specificity, primers were designed to have a Tm of approx-
imately 70 8C in a two-step cycling program with a 68 8C annealing/
extension step. PCR was performed with BD Advantage2 Polymerase
Mix (catalog No. 639201; BD Biosciences Clontech, Palo Alto,
California, United States) and Human Universal QUICK-Clone II
cDNA as template (catalog No. 637260; BD Biosciences Clontech).
Universal QUICK-Clone II is double-stranded cDNA reverse-tran-
scribed from RNA prepared from a mixture of over 30 different
human tissues (adrenal gland, aorta, bone marrow, brain, cerebellum,
cerebral cortex, hyppocampus, thalamus, fat cell, fetal brain, fetal
heart, fetal kidney, fetal lung, fetal liver, heart, kidney, leukocytes,
liver, lung, lymph node, mammary gland, ovary, pancreas, pituitary
gland, placenta, prostate, retina, salivary gland, skeletal muscle, small
intestine, spinal cord, spleen, stomach, testis, thymus, thyroid gland,
and uterus). Double-stranded cDNA was synthesized from polyAþ
RNA using an oligo(dT) primer, purified to remove interfering RNA
and genomic DNA, and size-selected to remove fragments smaller
than approximately 400 bp. BD Advantage2 DNA polymerase
contains built-in hot-start PCR from BD TaqStart Antibody. It is
claimed to give consistent and efficient amplifications of up to 18-kb
PCR products for a noncomplex template or up to 6 kb for high-
complexity genomic DNA. It is also claimed to exhibit an error rate of
25 errors per 100,000 bp after 25 PCR cycles.

The PCR cycle parameters used were optimized for target size 5 to
9 kb as recommended by the manufacturer—melting: 95 8C for 1 min;
35 cycles annealing and extension: 95 8C for 30 s, 68 8C for 6 min;
hold: 68 8C for 10 min, 4 8C indefinitely.

The PCR products were visualized under long-wave UV light on
1.2% agarose gel loaded with 1-kb DNA ladder, stained with ethidium
bromide. The PCR product bands were cut from the gel and purified
by Qiaquick gel extraction kit (Qiagen, Valencia, California, United
States). The DNA samples eluted from gel extraction columns were
used directly for sequencing reactions or further amplified by PCR
prior to sequencing.

Sequencing reactions were performed using 1/16 dilution of
Applied Biosystems Big Dye Terminator v3.1 Reaction Mix (Foster
City, California, United States). Reactions are performed in 50 cycles
on MJ Research PTC-225 thermocycler tetrads (Waltham, Massachu-
setts, United States) and precipitated with isopropanol and centri-
fugation. The sequencing ladders were resolved using Applied
Biosystems 3730XL sequencer and accompanying base-calling and
data quality analyses software.

Supporting Information

Figure S1. The Corrected Greens Algorithm

(A) Schematic describing how excessive G þ T skews may not be
predictive of transcription.
(B) Log-likelihood ratio contribution of different strengths of Gþ T
skew, within known genes. Skews range from �1 (only A þ C) to þ1
(only G þ T). Observed values are given in blue, and arbitrary fit
curve, in red. Highly skewed G þ T compositions are observed to be
less indicative of transcription than more moderate skews.

Found at DOI: 10.1371/journal.pcbi.0020018.sg001 (49 KB PPT).

Figure S2. CHOWDER: Transcript Prediction Based on Substitutions
within Repeats

(A) Schematic describing the integration of a transposable element,
potentially truncated, followed by accumulation of generally neutral
substitutions. A comparison of the consensus sequence for many
copies of this element, approximating the original sequence (filled),
to the extant sequence (striped) yields a list of substitutions. To avoid
distortions from alignment artifacts, only substitutions flanked by
unchanged nucleotides are considered (thick vertical lines). Muta-
tions involving CpG dinucleotides are also excluded.
(B) The chart indicates the total number (in millions) of directional
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mutational events observed in interspersed repeats within genes in
the entire human genome, from repeat consensus to extant sequence.
For each mutation, the upper value represents the mutation in the
forward strand of the enclosing gene, while the lower value represents
the same mutation in the reverse strand. For example, we observed
4.583 106 mutations from an A in the repeat consensus to a G in the
forward strand of the extant sequence but only 4.11 3 106 mutations
from a reverse-strand A in the repeat consensus to a reverse-strand G
in the extant sequence (i.e., a T!C mutation in the forward strand).
Bold arrows indicate mutations that are more frequent in the forward
strand than in the reverse strand.

Found at DOI: 10.1371/journal.pcbi.0020018.sg002 (29 KB PPT).

Figure S3. ROAST: Biased Repeats

(A) Schematic describing the hypothesis of how the introduction of
an interrupting signal (red) tends to be rejected, while the same signal
in the opposite strand is not disruptive (white) and therefore is
neutral. This process yields a strand bias.
(B) The log-likelihood ratio contribution, of a single repeat, to the
claim of transcription in the same orientation as the repeat. Negative
log-likelihood ratio values represent the prevalence of repeats in the
reverse strand. The values for the various interspersed repeat families
in human and mouse are correlated. The correlation was calculated
based on repeat families that are significantly biased in both lineages,
represented by filled icons. SINEs, LINEs, LTR elements, and DNA
repeats are shown in red, green, blue, and black, respectively.

Found at DOI: 10.1371/journal.pcbi.0020018.sg003 (29 KB PPT).

Figure S4. PASTA: PASs

(A) A statistical analysis of PASs in transcribed nonrepetitive
sequence revealed significant orientation biases, after correcting for
nucleotide composition skews. In this schematic, PAS are represented
by octagons, with color indicating signal strength (darker represents
stronger signals). Within repeats, we found biases in PAS strength
changes from the repeat consensus (filled repeat icons) to the extant
sequence (open repeat icons).
(B) Expected PAS frequency skew as a function of nucleotide
composition skew. Sequences enriched in T in the forward strand
are expected to have more PASs in the reverse strand. Since the
AATAAA signal is more biased than ATTAAA, its expected random
skew is stronger.

Found at DOI: 10.1371/journal.pcbi.0020018.sg004 (31 KB PPT).

Figure S5. FEAST Scores in Intergenic Segments

We selected the regions between consecutive genes in the same
orientation and normalized their orientation to the forward strand.
These regions show a prevalence of positive FEAST scores, indicating
preference for transcription in the same strand as that of the flanking
genes. Legend is the same as for Figure 3.

Found at DOI: 10.1371/journal.pcbi.0020018.sg005 (30 KB PPT).

Figure S6. Novel Gene Predictions, Not Overlapping Any Known
Gene or Ensembl Prediction on the Same Strand

FEAST score versus prediction length given in kilobases, logarithmic
scale.

Found at DOI: 10.1371/journal.pcbi.0020018.sg006 (109 KB PPT).

Figure S7. GESTALT Workbench Analysis of the miRNA Clusters on
chr19:58835001–59000000

From top to bottom: CpG contrast values, %G þ C; predictions by
PASTA, Greens, CHOWDER, and ROAST on the top strand, and
their integration into FEAST; interspersed repeats color-coded by
family; gene annotations; annotations and predictions on the bottom
strand; Mb scale from the p telomere of chr19. The novel 43 miRNA
cluster appears to be transcribed as a unit from the CpG island at
58.84 Mb. The FEAST prediction on the top strand (score ¼ 8.8) is
consistent with the orientation of the miRNA genes. The smaller
miRNA cluster (including mir-371, mir-372, and mir-373) appears to
be transcribed separately.

Found at DOI: 10.1371/journal.pcbi.0020018.sg007 (39 KB PPT).

Figure S8. Repeat Content of Known Genes and Novel FEAST
Predictions

There is a large set of annotated known genes (blue) composed
entirely of repetitive sequence. The novel FEAST predictions (Z . 3,
red) with greater than 90% repeats are mostly satellite-rich
pericentromeric regions and most probably represent false positives.

Found at DOI: 10.1371/journal.pcbi.0020018.sg008 (190 KB PPT).

Figure S9. Expanded MDS Analysis

We include here the genomewide annotation of known genes (KG),
Ensembl genes (ENS), Twinscan (TW), GenScan (GS), Softberry genes
(SB), EC genes (EC), GeneID (GID), RNAs (RNA), Mammalian Gene
Collection (MGC), pseudogenes (PS), Exoniphy exons (EX), Exoniphy
exons bridged when in the same orientation and within 25 kb of each
other, and not separated by exons in the opposite strand (EXB), all
combinations of FEAST methods (e.g., CP is CHOWDER and PASTA;
RCG includes ROAST, CHOWDER, and Greens), and a randomized
version of each annotation method (names appended with ‘‘.s’’ for
‘‘shuffled’’). The randomized versions are distributed along a wide arc
that includes the pseudogenes and are clearly distinct from the
unshuffled annotations (including the four FEAST methods and all
their combinations). Note that, like geographical maps of intercity
distances, MDS representations have no axes.

Found at DOI: 10.1371/journal.pcbi.0020018.sg009 (105 KB PPT).

Figure S10. Experimental Verification of Expression of AGBL1
(A) Lane 3: Two PCR product bands amplified using AGBL1-specific
primers were cut (indicated by the white arrows) under long-wave UV
light on agarose gel stained with ethidium bromide. Lane M: 1-kb
DNA ladder (Invitrogen, Carlsbad, California, United States). Lane 1:
335-bp human actin gene PCR product as positive control. The PCR
products in gel slices were purified with Qiaquick gel extraction kit
(Qiagen).
(B) The DNA products purified from the lower band (;750 bp) and
higher band (;1,350 bp) were further amplified by PCR before
sequencing. Lane M: 1-kb DNA ladder. Lanes 2 through 4: PCR
products amplified from AGBL1 lower band at 55, 62, and 68 8C PCR
annealing temperature, respectively. Lanes 6 through 8: PCR
products amplified from AGBL1 higher band at 55, 62, and 68 8C
PCR annealing temperature, respectively.

Found at DOI: 10.1371/journal.pcbi.0020018.sg010 (482 KB PDF).

Table S1. Comparison to Affymetrix Transfrags

(A) All transfrags in the ten chromosomes listed.
(B) The filtered transfrags after clustering. All FEAST predictions
have Z . 3. The columns indicate the chromosome; the total number
of transfrags; the number of transfrags in known genes, in FEAST
predictions, in FEAST predictions but outside known genes, and the
percentage of transfrags outside known genes that were included in
FEAST predictions; the effective chromosome length (excluding
gaps); the length of sequence included in known genes, in FEAST
predictions but outside known genes, and the percentage of sequence
outside known genes that was included in FEAST predictions; and the
novel/out ratio between number of transfrags and sequence length
(enrichment), its standard error, its Z score, and the probability to
observe such enrichment under the null hypothesis. Numbers shown
in italics are not significant (p . 0.01).

Found at DOI: 10.1371/journal.pcbi.0020018.st001 (23 KB XLS).

Table S2. Enrichment Ratios for Stratified Transfrags

For each chromosome, and for all chromosomes in combination, we
calculated enrichment ratios as in Table S1, stratifying by sample
type. Numbers shown in italics are not significant (p . 0.01).

Found at DOI: 10.1371/journal.pcbi.0020018.st002 (17 KB XLS).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession num-
bers for the genes and gene products discussed in this paper are
AA994511, AI217109, BG189564, BX113166, CP (NT_005612.954),
hephaestin protein sequence (NP_620074.1), gene model LOC401237
(XM_379398, AK056872, and AK026189), and NT_001520.
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