

Reductive demetalation of copper corroles: first simple route to free-base β -octabromocorroles

Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway

Received 26 June 2008 Accepted 28 August 2008

ABSTRACT: Although the chemistry of corroles has grown spectacularly in recent years, the field has been marred by the lack of convenient protocols for demetalation of metallocorroles. Reported herein is a superior procedure for demetalating copper corroles with concentrated H_2SO_4 and 5-200 equiv $FeCl_2$ or $SnCl_2$. The yields obtained with this reductive procedure are generally substantially better than with $CHCl_3/H_2SO_4$, CH_2Cl_2/H_2SO_4 , or H_2SO_4 alone. With an oxidation-prone metallocorrole such as Cu[T(p-OMeP)C], the reductive protocol was essential for obtaining any measurable yield of the free base at all. Free-base β -octabromo-*meso*-triarylcorroles were also obtained in pure form, in good yields, and with relative ease *via* this procedure. Copyright © 2008 Society of Porphyrins & Phthalocyanines.

KEYWORDS: demetalation, corrole, octabromocorrole.

INTRODUCTION

Ever since the development of convenient onepot syntheses of corroles a few years ago [1, 2], their chemistry has blossomed in the most extraordinary manner [3, 4]. Indeed, both the coordination chemistry and range of applications of corroles promise to be just as diverse as those of porphyrins. Unfortunately, the field has been marred by a crucial irritant: unlike metalloporphyrins, for which a host of demetalation procedures are available [5], no such broadly applicable procedure has been available for corroles. Thus, until most recently, just two isolated instances of demetalation of a corrole were documented, one of Mn[OEC] [Mn(III) octaethylcorrole)] with HBr/ HOAc [6] and the other of Ag(III) triarylcorroles with aqueous HCl in a biphasic medium [7]. Earlier this year, while this paper was in preparation, Paolesse and coworkers reported a considerably more general method for corrole demetalation, involving CHCl₃/ H₂SO₄ [8]. In our own studies, we also found concentrated H₂SO₄ to be the acid of choice, with, however, a crucial twist: concentrated H₂SO₄ with several equivalents of FeCl₂ or SnCl₂ (relative to the metallocorrole) resulted in dramatically better yields of freebase corrole, fewer impurities and somewhat shorter reaction times, compared to H₂SO₄ alone.

RESULTS AND DISCUSSION

Just as Ni(II), Cu(II), and Zn(II) porphyrins are most often used for porphyrin functionalization, Cu(III) corroles play a similar role in corrole chemistry. As stable, diamagnetic species that are readily characterized (although a number of them exhibit thermally accessible, paramagnetic Cu(II) corrole*2-excited states) [9], Cu corroles are ideally suited for peripheral functionalization and subsequent elaboration of the corrole macrocycle [10]. We therefore chose to focus our efforts on copper corroles in this study.

Table 1 presents our experimental results for six copper corroles, including three Cu triarylcorroles as well as their β -octabromo derivatives [10]. As shown, neat concentrated H_2SO_4 gave useful,

[♦]SPP full member in good standing

^{*}Correspondence to: Abhik Ghosh, email: abhik@chem.uit. no

if rather low, yields for only a couple of the most electron-deficient copper corroles. Adding a solvent such as CHCl₃ or CH₂Cl₂ (the best conditions being about 20:1 v/v solvent:H₂SO₄) improved matters in certain cases, resulting in useful yields for the corroles in question. With two exceptions, Cu[TPC] (copper triphenylcorrole) and Cu[Br₈TPC], the complexes studied by us and Paolesse and coworkers are not the same, so an exact comparison is not possible. However, for Cu[TPC], we failed to reproduce the high yield of free-base corrole (83%), reported by Paolesse and coworkers [8]. The H₂SO₄/solvent procedure also led to a rather intractable, impure product for Cu[Br₈TPC].

Addition of several equivalents of FeCl₂ or SnCl₂ resulted in dramatic improvement in the demetalation yield for all the complexes studied. Thus, a yield of about 70% could be reliably obtained in nearly all cases. The importance of this finding for the entire corrole field can hardly be exaggerated. A wide variety of functionalized corroles that until now could only be obtained in metal-complexed form should now be available as free bases for re-complexation and further synthetic elaboration. Indeed, the present H₂SO₄/FeCl₂ or H₂SO₄/SnCl₂ method already provides the first simple, reasonably general route to free-base β-octabromo-*meso*-triarylcorroles.

The exact conditions that proved most effective for the different copper corroles studied suggests that the FeCl₂ plays multiple roles in the demetalation process. Almost certainly, the first role of the FeCl, is as a reductant; it reduces the small Cu(III) ion to the larger, much more easily displaced Cu(II) ion. However, the fact that vastly different amounts of FeCl₂ or SnCl₂ – from 5 to 200 equiv – are needed for different copper corroles suggests that a second factor must be involved. As may be seen from a perusal of the Experimental section, relatively electron-rich copper corroles required large quantities (100-200 equiv) of FeCl, or SnCl₂, whereas the more electron-deficient copper corroles needed only a few equivalents of FeCl₂. A plausible explanation for this difference is that the excess FeCl₂ or SnCl₂ protects the more easily oxidized free-base corroles from oxidative breakdown under the demetalation procedure

EXPERIMENTAL

Materials

All reagents and solvents were used as purchased, except pyrrole, which was predried and distilled from CaH₂ at low pressure. Silica gel 60 (0.040-0.063 mm particle size; 230-400 mesh; Merck) was used for flash chromatography.

Instrumentation

Ultraviolet-visible spectra were recorded on an HP 8453 spectrophotometer using dichloromethane as solvent. Proton NMR spectra were recorded on a Mercury Plus Varian spectrometer (400 MHz for 1 H) at room temperature in chloroform-d. Proton chemical shifts (δ) in ppm were referenced to residual chloroform (δ = 7.2 ppm). MALDI-TOF mass spectra were recorded on a Waters Micromass MALDI micro MX Mass Spectrometer using α -cyano-4-hydroxycinnamic acid (CHCA) as the matrix. Satisfactory elemental analyses were obtained in each case from Atlantic Microlabs, Inc.

Synthesis of corrole starting materials

Free-base corroles were synthesized according to Gryko and coworkers [1c]. Copper triarylcorroles and their β -octabromo derivatives were synthesized, as described by Ghosh and coworkers [10].

General procedure for the demetalation of copper corroles

Into a 25 mL or 50 mL round-bottomed flask equipped with a magnetic stirrer, copper corrole (10 mg) and anhydrous FeCl₂ (Sigma-Aldrich) or SnCl₂ (Alfa-Aesar) (5-200 equiv) were introduced. Con-

Table 1. Comparison of demetalation yields (%) under different reaction conditions

Complex	H ₂ SO ₄ , CHCl ₃	$\mathrm{H_2SO_4},\mathrm{CH_2Cl_2}$	H_2SO_4 only	$H_2SO_4 + FeCl_2$	$H_2SO_4 + SnCl_2$
Cu[TPC]	18	18	-	68	77
$Cu[T(p ext{-}OMeP)C]$	-	-	-	75	77
$Cu[T(p-CF_3P)C]$	not attempted	26	37	74	inseparable mixture
$Cu[Br_8TPC]$	inseparable impurities	inseparable impurities	inseparable impurities	79	inseparable mixture
$Cu[Br_8T(p ext{-}OMeP)C]$	35	79	-	81	85
Cu[Br ₈ T(p-CF ₃ P)C]	10	22	33	82	85

centrated H₂SO₄ (95-97%, Merck, 0.8-2.0 mL) was added dropwise and the reaction mixture was alternately stirred/swirled and sonicated for 2 min to 1 h, depending on the particular copper corrole. The progress of the reaction, as measured by the disappearance of the copper corrole, was monitored by UV-vis spectroscopy and by TLC. After apparent consumption of the copper corrole, the reaction mixture was quenched with distilled H₂O and then extracted with CHCl₂. The green organic phase was repeatedly washed with distilled water and then twice with saturated aqueous NaHCO₃. The organic phase was then dried with anhydrous Na₂SO₄, filtered, mixed with about 0.5 g silica and evaporated under vacuum. The residue thus obtained was chromatographed on a silica gel column with n-hexane/CH₂Cl₂ as eluent to give the free-base corrole as the second or third band (small quantities of unreacted copper corrole was usually the first band). Spectroscopic data for free-base and copper triphenylcorrole, meso-tris(4methoxyphenyl)corrole, meso-tris(4-trifluoromethylphenyl)corrole, β-octabromo-meso-triphenylcorrole were in agreement with those reported previously [10]. Additional details for each demetalation experiment are provided below.

Demetalation of copper 5,10,15-triphenylcorrole. Into a 25 mL round-bottomed flask containing the corrole (10 mg) and FeCl₂ (200 equiv), concentrated H₂SO₄ (0.8 mL) was added dropwise, with stirring. The resulting suspension was stirred for 3 min. After work-up of the reaction mixture (as described above), the green residue obtained was chromatographed on a silica gel column, first with 7:3 n-hexane/CH₂Cl₂ to elute unreacted Cu[TPC] (1.4) mg) as the first band and then with 2:3 n-hexane/ CH₂Cl₂ to elute free-base meso-triphenylcorrole (6.1 mg). Yield: 68%. UV-vis (CH₂Cl₂): λ_{max} , nm (log ε , M⁻¹.cm⁻¹) 417 (5.13), 578 (4.20), 620 (4.11), 651 (4.08). MS (MALDI-TOF, major isotopomer): m/z $[M]^+$ 526.13 (expt.), 526.21 (calcd.). For the SnCl₂/ H₂SO₄ demetalation, the corrole (10 mg), SnCl₂ (100 equiv) and H₂SO₄ (1 mL) were stirred and sonicated, alternately, for 5 min. After work-up and purification, Cu[TPC] (1.2 mg) and H₂[TPC] (6.9 mg) were obtained. Yield of H₃[TPC]: 77%.

Demetalation of copper 5,10,15-tris(4-methoxy-phenyl)corrole. The reaction conditions and reaction time were exactly as in the above case. The green residue obtained at the end of the work-up phase was chromatographed on silica gel with 2:3 *n*-hexane/ CH₂Cl₂ to afford the free-base *meso*-tris(4-methoxy-phenyl)corrole. Yield: 75%. UV-vis (CH₂Cl₂): λ_{max} , nm (log ε, M⁻¹.cm⁻¹) 419 (4.52), 577 (3.63), 624 (3.61), 655 (3.58). MS (MALDI-TOF, major isoto-pomer): m/z [M]⁺ 616.33 (expt.), 616.24 (calcd.). The SnCl₂/H₂SO₄ demetalation was performed exactly as with FeCl₂/H₂SO₄. After work-up and purification,

the yield of the free-base was 77%.

Demetalation of copper 5,10,15-tris(4-trifluoromethylphenyl)corrole. To the copper corrole (10 mg) and FeCl₂ (5 equiv) in a 50 mL round-bottomed flask, concentrated H₂SO₄ (2.0 mL) was added. The suspension was stirred for 1 h. After work-up of the reaction mixture, the green residue obtained was chromatographed on silica gel with 2:1 *n*-hexane/CH₂Cl₂ to afford free-base meso-tris(4-trifluoromethylphenyl)corrole. Yield: 69%. UV-vis (CH₂Cl₂): λ_{max} , nm (log ϵ , M⁻¹.cm⁻¹) 418 (4.63), 580 (3.84), 617 (3.71), 647 (3.61). MS (MALDI-TOF, major isotopomer): m/z [M]+ 730.30 (expt.), 730.18 (calcd.). On a larger scale, the copper complex (60 mg), FeCl₂ (5 equiv) and concentrated H₂SO₄ (3 mL) were introduced in that order into a 50 mL round-bottomed flask. The mixture was stirred and sonicated alternately for 1 h. Work-up and purification as described above gave 41 mg (74%) of the free-base. The SnCl₂/H₂SO₄ demetalation was performed exactly as with FeCl₂/H₂SO₄. After work-up and purification, however, an inseparable mixture of compounds was obtained.

Demetalation of copper β-octabromo-meso-tri**phenylcorrole.** To the copper corrole (10 mg) and FeCl₂ (5 equiv) in a 50 mL round-bottomed flask, concentrated H₂SO₄ (1.0 mL) was added in a dropwise manner. The suspension was sonicated and stirred alternately for 50 min. After work-up, the green residue obtained was chromatographed on silica gel with 1:1 n-hexane/CH₂Cl₂. Unreacted copper corrole was obtained as the first band. The eluent was then changed to neat CH₂Cl₂ or CHCl₃ to yield free-base β-octabromo-*meso*-triphenylcorrole as the last band. After solvent removal, the green product was crystallized from 1:1 CHCl₃/n-hexane to afford 5.3 mg of the pure free base. Yield: 55%. UV-vis (CH₂Cl₂): λ_{max} , nm (log ϵ , M⁻¹.cm⁻¹) 444 (4.84), 553 (3.80), 593 (3.85), 703 (3.88). MS (MALDI-TOF, major isotopomer): m/z [M + H]⁺ 1158.76 (expt.), 1158.49 (calcd.). On a larger scale, the copper complex (64 mg), FeCl₂ (5 equiv) and concentrated H₂SO₄ (2 mL) were introduced in that order into a 50 mL roundbottomed flask. The mixture was stirred and sonicated alternately for 2 h. Work-up and purification as described above gave 48 mg (79%) of the free base. The SnCl₂/H₂SO₄ demetalation was performed exactly as with FeCl₂/H₂SO₄. However, work-up and attempted purification led only to an inseparable mixture of compounds.

Demetalation of copper β**-octabromo-***meso***-tris-**(**4-methoxyphenyl)corrole.** To the copper corrole (10 mg) and FeCl₂ (100 equiv) in a 50 mL round-botto-med flask, concentrated H₂SO₄ (1.0 mL) was added in a dropwise manner. The suspension was sonicated and stirred alternately for 20 min. After work-up of the reaction mixture, the green residue obtained was

chromatographed on silica gel with 2:3 n-hexane/ CH₂Cl₂, yielding the green free-base β-octabromomeso-tris(4-methoxyphenyl)corrole (7.7 mg). Yield: 81%. UV-vis (CH₂Cl₂): λ_{max} , nm (log ϵ , M⁻¹.cm⁻¹) 450 (4.41), 601(3.55), 715 (3.72). ¹H NMR: δ, ppm 7.85-7.75 (4H, 5,15-o or m and 2H, 10-o or m, Ph; overlapping doublets); 7.25-7.10 (4H, 5,15- m or o and 2H, 10- m or o, Ph); 3.99 (s, 6H, 5,15-p-OCH₃, Ph); 3.98 (s, 3H, 10- p-OCH₃, Ph). MS (MALDI-TOF, major isotopomer): m/z [M + H]⁺ 1248.76 (expt.), 1248.53 (calcd.). Elemental analysis: 38.50% C (38.30% calcd.), 1.94% H (calcd. 1.88%), 4.49% N (calcd. 4.43%). For the SnCl₂/H₂SO₄ demetalation, the corrole (10mg), SnCl₂ (100 equiv) and H₂SO₄ (1 mL) were stirred and sonicated alternately for 20 min. After work-up and purification, 8.2 mg of the free base was obtained. Yield: 85%.

Demetalation of copper β-octabromo-meso-tris-(4-trifluoromethylphenyl)corrole. To the copper corrole (10 mg) and FeCl₂ (5 equiv) in a 50 mL round-bottomed flask, concentrated H₂SO₄ (2.0 mL) was added dropwise. The mixture was stirred and sonicated alternately for 1 h. After work-up of the reaction mixture, the green residue obtained was chromatographed on silica gel with 3:2 n-hexane/ CH₂Cl₂ to give green free-base β-octabromo-mesotris(4-trifluoromethylphenyl)corrole. Yield: 82%. UV-vis (CH₂Cl₂): λ_{max} , nm (log ϵ , M⁻¹.cm⁻¹) 447 (4.86), 597(5.04), 697 (3.97). ¹H NMR: δ 8.08-8.00 (4H, 5,15- o or m and 2H, 10-o or m, Ph); 7.96-7.86 (4H, 5,15- m or o and 2H, 10- m or o, Ph). MS (MALDI-TOF, major isotopomer): m/z [M]+ 1361.63 (expt.), 1361.45 (calcd.). Demetalation with SnCl₂/ H₂SO₄ was performed exactly as with FeCl₂/H₂SO₄. After work-up and purification, the yield of the free base was 85%.

CONCLUSION

In summary, reducing conditions, as afforded by an excess of FeCl₂, in concert with concentrated H₂SO₄, provide a reasonably general and convenient method for the demetalation of copper corroles. The added FeCl₂ results in sharp increases in the yield of the free base corrole as well as in fewer impurities, relative to H₂SO₄ alone. Thanks to the new method,

free-base β -octabromo-*meso*-triarylcorroles, otherwise rather inaccessible, are now obtainable with comparative ease.

Supporting information

Details of analytical data (7 pages) are given in the supplementary material. This material is available at http://www.u-bourgogne.fr/jpp/.

REFERENCES

- a) Gross Z, Galili N and Saltsman I. Angew. Chem. Int. Ed. 1999; 38: 1427-1429. b) Paolesse R, Jaquinod L, Nurco DJ, Mini S, Sagone F, Boschi T and Smith K. M. Chem. Comm. 1999; 1307-1308. c) Koszarna B and Gryko DT. J. Org. Chem. 2006; 71: 3707-3717.
- Reviews: a) Ghosh A. Angew. Chem., Int. Ed. 2004; 43: 1918-1931. b) Gryko DT. Eur. J. Inorg. Chem. 2002; 1735-1743.
- 3. Gross Z and Gray HB. *Comments Inorg. Chem.* 2006; **27**: 61-72.
- Aviv I and Gross Z. Chem. Comm. 2007; 1987-1999.
- Fuhrhop J-H and Smith KM. In *Porphyrins and Metalloporphyrins* Smith KM. (Ed.) Elsevier: Amsterdam, 1975; pp 757-910.
- Bröring M and Hell C. Chem. Comm. 2001; 2336-2337.
- Brückner C, Barta CA, Brinas RP and Bauer AK. *Inorg. Chem.* 2003; 42: 1673-1680.
- 8. Mandoj F, Nardis S, Pomarico G and Paolesse R. *J. Porphyrins Phthalocyanines* 2008; **12**: 19-26.
- Selected references on copper corroles: a) Steene E, Dey A and Ghosh A. J. Am. Chem. Soc. 2003;
 125: 16300-16309. b) Ou Z, Shao J, Zhao H, Ohkubo K and Wasbotten IH, Fukuzumi S, Ghosh A and Kadish KM. J. Porphyrins Phthalocyanines 2004, 8: 1236-1247. c) Brückner C, Brinas RP and Bauer JAK. Inorg. Chem. 2003, 42: 4495-4497. d) Luobeznova I, Simkhovich L, Goldberg I and Gross Z. Eur. J. Inorg. Chem. 2004, 8: 1724-1732.
- 10. Wasbotten IH, Wondimagegn T and Ghosh A. *J. Am. Chem. Soc.* 2002; **124**: 8104-8116.

Reductive demetalation of copper corroles: first simple route to free-base $\beta\text{-}octabromocorroles$

Can Capar, Kolle Ekaney Thomas and Abhik Ghosh*

Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway

Table of contents

Proton NMR spectra	S2
Ultraviolet-visible spectra	S4
Mass spectra	S5
Elemental analysis	S 7

Proton NMR spectra (a) 5,15-o or -m, 4H and 10-o or -m, 2H 5,15 -m or -o, 4H and 10 -m or -o, 2H CHCI (b)

8.2

8.10

Figure S1. ¹H NMR spectra of $Br_8T(p-CF_3P)C$: (a) 1D ¹H NMR, and (b) the ¹H - ¹H COSY

F1 (ppm)

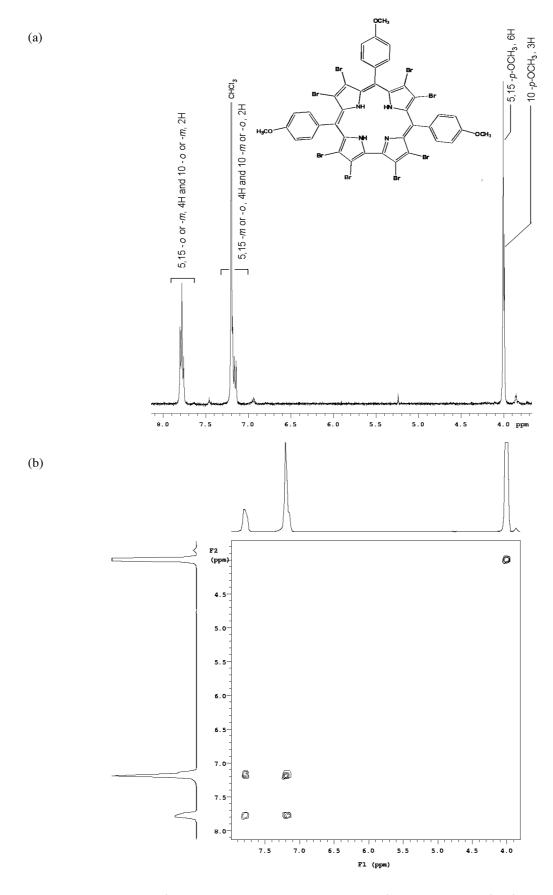
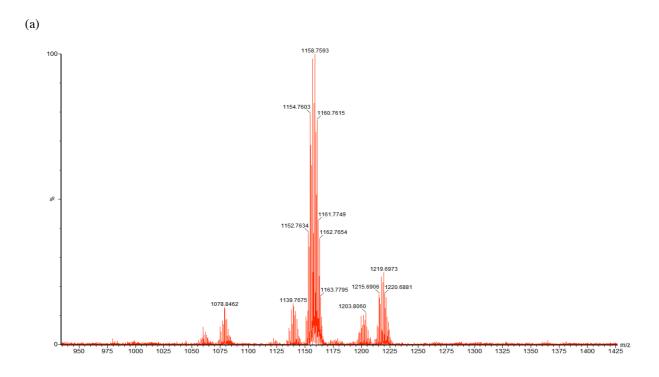



Figure S2. 1 H NMR spectra of Br $_{8}$ T(p-OCH $_{3}$ P)C: (a) 1D 1 H NMR, and (b) the 1 H - 1 H COSY

Figure S3. Ultraviolet-visible spectra of β -octabromo triaryl free base corroles

Mass spectra

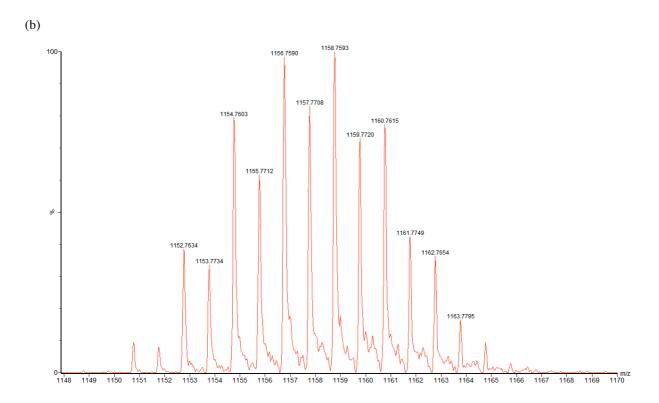
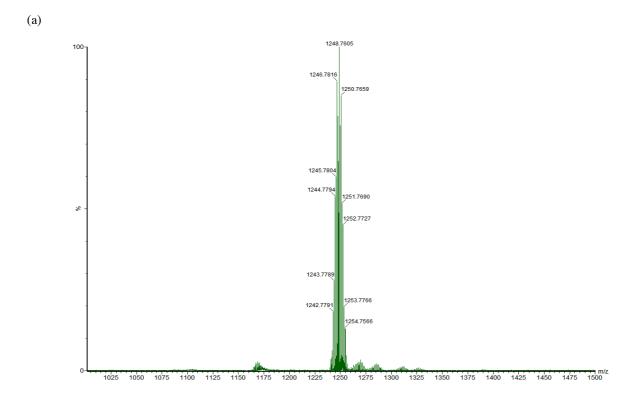



Figure S4. Mass spectra of Br₈TPC: (a) the full range, and (b) an expanded view of isotopomers

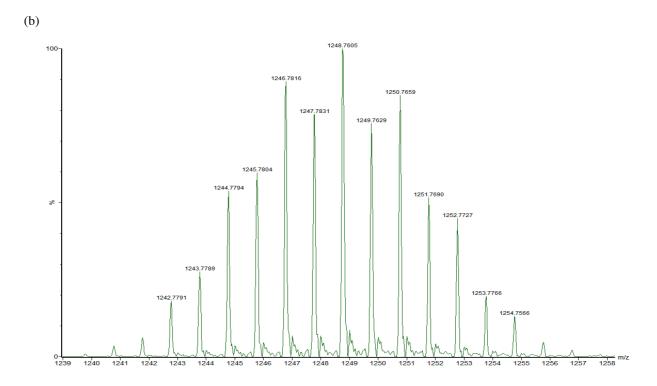


Figure S5. Mass spectra of $Br_8T(p\text{-OMeP})C$]: (a) the full range, and (b) an expanded view of isotopomers

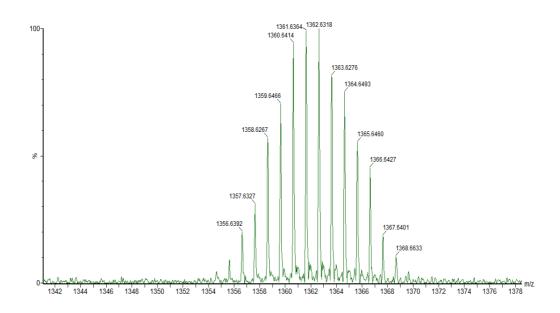


Figure S6. Expanded view of the mass spectrum of $Br_8T(p-CF_3P)C$ showing the various isotopomers

Elemental analysis

ATLANTIC MICROLAB, INC. SUBMITTER Sample No. Company / School _ P.O. Box 2288 Norcross, Georgia 30091 (770) 242-0082 www.atlanticmicrolab.com PROFESSOR/SUPERVISOR: NAME Kolle Ekaney Thomas DATE 08-08-08 P.O. #: Element Theory Single X Duplicate Found Elements 38.30 Present: H, N, Br. O 38,20 Analyze HN 1.88 for: 1.94 Hygroscopic [Explosive 4.43 B.P. 4.49 To be dried: Yes 🛛 Temp. Com tempyac. _Time FAX Service □ EMAIL Service Thomas. Koile @ Chem. uit.no FAX#/EMAIL Rush Service Phone Service (SEE CURRENT PRICE LIST Phone No. +4777644060 47 97560780 AUG 11 2008 **Date Received** Date Completed Remarks:

Figure S7. Elemental composition of Br₈T(p-OMeP)C

Copyright of the works in this Journal is vested with World Scientific Publishing. The article is allowed for individual use only and may not be copied, further disseminated, or hosted on any other third party website or repository without the copyright holder's written permission.