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Abstract
This article presents a three-dimensional constitutive model to replicate the dynamic response of blast-
loaded fibre–metal laminates made of 2024-0 aluminium alloy and woven composite (glass fibre–reinforced 
polypropylene). Simulation of the dynamic response is challenging when extreme localised loads are of 
concern and requires reliable material constitutive models as well as accurate modelling techniques. It is well 
known that back layers in a fibre–metal laminate provide structural support for front layers; thus, proper 
modelling of constituent failure and degradation is essential to understanding structural damage and failure. 
The improved developed model to analyse damage initiation, progression and failure of the composite is 
implemented in finite element code ABAQUS, and a good correlation is observed with experimental results 
for displacements of the back and front faces as presented by other researchers. The model was also able to 
predict accurately the tearing impulses. Finally, the concepts of the ‘efficiency of the charge’ and ‘effectiveness 
of the target’ are proposed in the context of localised blast loading on a structure. Dimensionless parameters 
are introduced to quantify these parameters.
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Introduction
Fibre–metal laminates (FMLs) are a class of hybrid materials that have attracted attention and 
interest due to their improved impact resistance and fatigue behaviour. A number of research works 
have been conducted comparing FMLs to monolithic metallic plates under dynamic loads 
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(Karagiozova et al., 2010) which signify different aspects behaviour and requirements of model-
ling and experimentation on this class of structures. Glare, an FML patented by a joint venture of 
Aluminium Company of America (ALCOA) and Akzo Nobel N.V., has been used in commercial 
applications in Airbus 380 (Wang, 2009). It comprises thin aluminium 2024-T3 sheets and a unidi-
rectional or a biaxial glass fibre–reinforced epoxy composite interleaved in a periodic structure 
through the thickness (Langdon et al., 2007a; Vlot, 1996; Vo et al., 2012, 2013).

Fleisher (1996) studied blast resistance of light luggage containers based on Glare and reported the 
capacity to withstand a bomb blast greater than that of the Lockerbie air disaster. The FML container 
tested with a Lockerbie-type explosion shows the enormous potential of glare in the design of Blast-
Resistant Aircraft Baggage Containers for in-service aircraft use (Fleisher, 1196; Vo et al., 2012, 2013).

More recently, comprehensive investigations on the blast resistance of FMLs have been carried 
out at the Impact Research Centre of the University of Liverpool and the Blast, Impact & 
Survivability Research Unit (BISRU) of the University of Cape Town. In a set of the experiments 
(Langdon et al., 2007a, 2007b; Lemanski et al., 2006, 2007), FMLs composed of 2024-0 alumin-
ium alloy and glass fibre–reinforced polypropylene (GFPP) subjected to localised blast loading 
were investigated. The test sample consisted of an FML based on 12 different configurations, hav-
ing total laminate thickness of 2–15 mm. Failure modes in this work were characterised as Mode I 
failure: large inelastic deformation of the back face of the panel (furthest away from the blast), 
Mode II failure: complete tearing of the back face and Mode II*: transition between the two failure 
modes – this occurs at threshold impulses. It was observed that thicker panels exhibit smaller dis-
placements for a given impulse than thinner panels, and that the Mode I non-dimensional displace-
ment of both the front and back faces are linearly related to the non-dimensional impulse. It was 
also shown that thinner panels exhibit behaviour closer to that of a monolithic plate. As the panel 
thickness increases, behaviour deviates from the monolithic plate response, that is, debonding and 
delamination become more pronounced. Further numerical studies for Mode I failure show that 
when expressed in terms of non-dimensional parameters, the difference between the mean dis-
placements of the front and back faces falls within one plate thickness, following a linear trend, and 
the threshold impulse for the onset of tearing for Mode II failure was shown to be linearly depend-
ent on panel thickness (Langdon et al., 2007a; Vo et al., 2012, 2013).

Karagiozova et al. (2010) studied the response of FMLs to localised blast loading in order to 
interpret the deformation mechanisms due to highly localised pressure pulses causing permanent 
deformations and damage observed. They went on to scrutinise the influence of the loading and 
material parameters on the final deformation characteristics examined. In addition, a comparison 
between the responses of relatively thin FML panels, monolithic aluminium alloy plates of equiva-
lent mass and a foam-core panel to localised blast were also presented in their work (Karagiozova 
et al., 2010). Modelling parameters of GFPP and adhesives used in this work were derived from the 
work of Karagovizova et al. (2010a).

As observed by Vo et al. (2012, 2013), experimental modelling and subsequent optimisation are 
quite expensive and there is need for predictive capabilities through finite element (FE) models 
able to depict the behaviour of FMLs a priori rather than as post-test corroboration tools. As virtual 
testing proves that valuable attempts in this line have been made to model FMLs by, for example, 
Vo et al. (2012, 2013). However, the focus of this study is to introduce additional parameters that 
would increase the confidence of the analyst in modelling FMLs as well as proposing a robust 
constitutive model to be used in blast loading scenarios usually characterised and accompanied by 
occurrence of damage and fracture.

Composite laminates composed of fibre-reinforced plies are integral parts of FMLs. Thus, a thor-
ough modelling of composites is an integral part of modelling FMLs. Failure and damage in laminated 
structures (composites) can be studied using micro-mechanical approach that considers failure and 
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damage at the consistent level, mini-mechanical approach which focuses on the representative volumet-
ric element (RVE) and statistical homogeneity and meso-mechanical approach which looks primarily 
into delamination or a fully macro-mechanical approach. A Continuum Damage Mechanics (CDM) 
approach in which material properties of the composite are homogenised and failure and damage are 
studied at the ply/lamina level (Batra et al., 2012) through several damage parameters is adopted in this 
work. It is important to note that damage studied at constituent level is both computationally expensive 
for practical structures and experimentally immoderate, if at all possible. Furthermore, extensive char-
acterisation is required to determine material parameters in the damage model.

One common approach for studying composites is to use a micromechanics approach to deduce 
effective properties of a ply and CDM to study failure and damage at laminar level. CDM theories 
capture effects of microscopic damage using the thermodynamics-based theory of internal variables 
(Coleman and Gurtin, 1967). Ladeveze and LeDantec (1992) used this approach to degrade elastic 
properties of the composite due to fibre breakage and matrix cracking and plasticity theory to 
account for permanent deformations induced under shear loading. Hassan and Batra (2008) used 
three internal variables to characterise damage due to fibre breakage, matrix cracking and fibre/
matrix debonding. In their work, delamination between adjacent plies was analysed using a failure 
surface quadratic (and thus convex) in transverse normal and the transverse shear stresses. Puck and 
Schürmann (1998) generalised Hashin’s (1980) stress-based failure criteria and proposed a tech-
nique to degrade elastic parameters of the lamina subsequent to the initiation of a failure mode. Xiao 
et al. (2007) validated experimental quasi-static punch-shear test results carried out on plain weave 
S-2 glass/SC-15 epoxy composite laminates. The numerical modelling was carried out using a mate-
rial model called MAT162, which was incorporated into LS-DYNA. MAT162 uses damage mechan-
ics principles for progressive damage and material degradation. In their work, the calibrated material 
properties have been used to simulate plates of other thicknesses, and the simulated results show 
good agreement with experimental results. Among the earlier works on composite degradation is the 
work of Matzenmiller et al. (1995). They proposed that when one of the Hashin failure criteria is 
satisfied at a point in the composite structure, damage ensues at that point and it is depicted by intro-
ducing damage variables for fibre breakage in tension and compression, matrix cracking in tension 
and compression and in-plane shear. It is shown that the evolution of these internal variables depends 
upon the values of stresses in Hashin’s failure criteria which are expressed in terms of stress invari-
ants for a transversely isotropic body and strength parameters for the composite (Batra et al., 2012).

This work follows the philosophy of Matzenmiller as adopted also by Batra et al. (2012). In 
Batra and his team’s work, Matzenmiller damage evolution criteria are used to study three- 
dimensional (3D) deformations of a 16-ply laminate subjected to normal incidence impact by a 
slow-moving rigid sphere, and the effective elastic–plastic properties of the composite were 
derived using Paley and Aboudi’s (1992) method of cells but with the continuity of shear tractions 
across cell boundaries relaxed. A user-defined subroutine (VUMAT) was developed which updates 
stresses as its main duty. It has to deal with material degradation to enable accurate stress calcula-
tions. The subroutine takes as input from the commercial FE software ABAQUS values of six 
strain components at an integration point of a generic FE, then computes based on intact constitu-
tive coefficients stresses in each ply using the constituent level properties, computes effective 
stresses at integration points, checks for Hashin’s failure criteria, computes damage if necessary, 
modifies stresses due to the induced damage and supplies them back to ABAQUS. As the proce-
dure is explicit, there is no need for iterations to update the constitutive model at every increment 
and the base state for each increment is that of the previous increment. The constitutive tensor is 
only updated subsequent to calculation of stresses at the end of each increment.

Donadon et al. (2008) used a smear crack approach to develop a failure model for predicting 
damage in 3D deformations of a composite structure.



4 International Journal of Protective Structures 

Iannucci and colleagues (2008, 2006) have worked extensively on the progressive failure of 
woven composites. Iannucci (2006) proposed a simple damage mechanics-based progressive fail-
ure model for thin woven carbon composites under impact loads (i.e. ballistic damage, bird strike 
and fragmentation attacked). This model can be appreciated when one considers the difficulty in 
characterising material constants for existing stress-based scalar functions-based techniques of 
modelling composite failure. The proposed approach is based on an unconventional thermody-
namic maximum energy dissipation approach, which entails controlling damage evolution and 
hence energy dissipation per second, rather than damage. The method was implemented into 
explicit dynamic FE code, DYNA3D.

An energy-based damage mechanics approach was also postulated by Iannucci and Willows 
(2006; 2007) for woven composite materials. Five damage variables were introduced for in-plane 
damage per ply. The damage variables were directly related to stiffness degradation within the 
composite lamina and ultimately within the laminate. The evolution of damage was controlled by 
a series of damage–strain equations. This allows the total energy dissipated for each damage mode 
to be set as a material parameter. This approach was implemented into both the LLNL and LS ver-
sions of DYNA3D for plane stress (shell) elements.

The principle of smeared cracking approach highlighted by Donadon et al. (2007a, 2007b, 2008) 
and Bažant and Oh (1983) was used in conjunction with some assumptions to ensure its validity in 
this work. The fundamental principle of smeared crack approach, used in CDM, assumes that the 
criteria for crack propagation and the prediction of the direction of propagation are based on failure 
criteria expressed in terms of stresses and strains and the stress intensity factors. In this approach, 
the cracked material is assumed to remain a continuum, and the mechanical properties (stiffness and 
strength) are modified to account for the effect of cracking, according to the evolving states of 
stresses and strains. Thus, re-meshing is in effect not needed (Cervera and Chiumenti, 2006), and 
volumetric model crack density is linked to a global modal damage parameter at the element level.

Although it is possible to model composites without course for re-meshing using the extended finite 
element method (XFEM), this method is beyond the scope of this study. XFEM is a fracture mechan-
ics-based approach which allows for crack propagation without re-meshing at the expense of tracking 
the crack front through the FE mesh and progressively enriching the displacement field with functions 
that represent displacement jumps across the crack and the developed singular fields at the tip of an 
advancing crack (Belytschko and Black, 1999; Moës and Belytschko, 2002; Sukumar et al., 2000).

Donadon et al. (2008b) and Bažant and Oh (1983) related volumetric energy, defined as area 
underneath the stress–strain curve to the fracture energy of the composite material (which depends 
upon modal stress–displacement curves) in question. This method assumes a strain-softening con-
stitutive law for modelling the gradual stiffness reduction due to micro-cracking process within the 
cohesive or process zone of the material and translates this damage width to the FE domain. Thus, 
the fracture energy, that is, energy dissipated per unit area within a fully failed element can be writ-
ten in terms of the specific energy by multiplying the specific energy by a geometric quantity 
defined as characteristic length; for example, for a unidirectional stress state, it should have the 
direction aligned with the loading direction and at most times, equals the side of the element.

This article presents an improved numerical modelling for predicting the response of blast-
loaded FMLs. A simplified model is presented to analyse the damage initiation, damage progres-
sion and failure of the 3D solid woven GFPP material within the FMLs. The response of the GFPP 
significantly influences the overall response of the FMLs. The simplified model for the GFPP 
incorporates strain rate effects and an objectivity algorithm for strain softening to control energy 
dissipation associated with each failure mode regardless of mesh refinement and topology. This is 
done within the framework of CDM and using thermodynamically consistent damage variables. 
Cracking is treated as an irreversible thermodynamic process, and mesh objectivity and inclusion 
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of strain rate effects in 3D are the improvements upon previous works in the literature and encom-
pass the novel aspects of this work. To ensure the appropriateness of the model proposed in this 
work, the following assumptions are made: (a) the crack growth direction in the modelled compos-
ite is parallel to the edge of the FEs and (b) the composite meshes are structured. Experimental and 
numerical results are compared and discussed, and in all cases, good correlation is observed.

Geometry and modelling
Various 400 mm × 400 mm panels of FMLs were manufactured and tested under localised blast at the 
University of Cape Town from 0.025 in thick sheets of 2024-0 aluminium alloy and a woven glass–
glass fibre/propylene composite. The FML panels tested had exposed areas of 300 mm × 300 mm 
unanimously and were labelled AXTYZ-#, where A = aluminium, X = number of aluminium layers, 
T = GFPP, Y = number of blocks of GFPP, Z = number of plies of GFPP per block and # indicates the 
panel number (Karagiozova et al., 2010; Langdon et al., 2007b; Nurick et al., 2009).

Due to the symmetrical in-plane architecture of the panel, only one-quarter of the panel was 
modelled in ABAQUS 6.12 with appropriate boundary conditions, that is, symmetry and fully 
clamped on internal and external edges, respectively. The FML is modelled as a four-part structure, 
that is, comprising aluminium alloy, composite, interface adhesive layers (cohesive layers repre-
senting the adhesive between composite and aluminium alloy) and laminate adhesive layers (cohe-
sive layers representing the adhesive layers between plies of composite). In this work, we introduce 
a laminate adhesive layer between every two consecutive plies to reduce computational costs while 
retaining accuracy. Figure 1 illustrates the through-thickness structure of the FML. The aluminium 
part is meshed using linear brick elements, that is, C3D8R elements, which are eight-noded, linear 
hexahedral elements with reduced integration formulation and hourglass control. The adhesive 
layers in the composite and interface between composite and aluminium are modelled with 3D 
cohesive element with direct traction-separation formulation (COH3D8).

Material modelling

Composite modelling
CDM has been adopted in this work which assumes a linear elastic orthotropic response up to the 
point of damage initiation. Modified Hashin’s damage initiation criteria must be satisfied for dam-
age to initiate as this model is adopted. These damage criteria are similar to the ones proposed by 
Xiao et al. (2007) for multi-axially loaded composites. The initial elastic constants of the undam-
aged material are the elastic moduli E1, E2 and E3; shear moduli G12, G23 and G31 and Poisson’s 
coefficients υ12, υ23 and υ31, where 1, 2 and 3 denote local axes of the material in the direct in-plane 
fill (warp), transverse in-plane (weft) and out-of-plane directions, respectively.

Figure 1. Schematic representation of through-thickness architecture in an FML plate.
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The constitutive relation for undamaged composite ply is therefore

σ ε= D0  (1)

or by defining

C D0 0
1= −  (2)

ε σ= C0  (3)

where σ is the stress tensor with respect to the material principal axes, D0  is the constitutive matrix, 
and the compliance matrix C D0 0

1= −  is expressed as follows in this system of coordinates
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The components of the stress tensors σ and ε are, respectively
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It is obvious that any rotation of the axes would result in a corresponding change in constitutive 
matrix followed by affine transformation of the coordinates, that is, a transformation which is both 
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where

T = − + + + + +1 12 21 13 31 23 32 23 12 31 13 21 32υ υ υ υ υ υ υ υ υ υ υ υ  (6)

Composite material properties. The mechanical properties of composite shown in Table 1 are measur-
able using standard test procedures (see Karagiozova et al., 2010; Nurick et al., 2009; Paley and 
Aboudi, 1992). These encompass simple tensile and compressive tests as well as in-plane shear tests 
and variety of their combinations when convex failure hypersurfaces are relevant. However, values 
for fracture energies of composites are not readily available in most cases. Donodan et al. (2007b) 
have highlighted various procedures for measuring modal fracture energies. The directional strengths 
of the tested composites (GFPP) were obtained from the work of Karagiozova et al. (2010). In order 
to determine the fracture energy associated with each fracture mode, tests can be undertaken using 
three different pre-cracked geometries, that is, Overhead Compact Tension (OCT) (tension/com-
pression), double edge notch (DEN) (tension) and four-point-bending specimens. Procedures and 
techniques employed for the determination of these parameters were highlighted by Donadon et al. 
(2007b). Due to lack of availability of values for intra-laminar fracture energies in open literature, 
values presented in Table 2 are calibrated to validate the experimental results for the test samples.

Elastic damage energy and dissipation. Using a strain-equivalent damage mechanics formulation, a 
damage elastic compliance matrix S is assumed with the general form
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 (7)

Table 1. Mechanical properties of GFPP (Karagiozova et al., 2010; Vo et al., 2012, 2013).

E1 (GPa) E2 (GPa) E3 (GPa) v12 v23 v31 G12 (GPa) G23 (GPa) G31 (GPa)

13 13 4.8 0.1 0.3 0.3 1.72 1.72 1.69

GFPP: glass fibre–reinforced polypropylene.

Table 2. Intra-laminar fracture energies.

Gf
t
11  (intra-laminar fracture in tension in direction 1, warp) 30 kJ/m2

Gf
c
22  (intra-laminar fracture in tension in weft direction 2, weft) 30 kJ/m2

Gf
t
11  (intra-laminar fracture in compression in direction 1, warp) 15 kJ/m2

Gf
c
22  (intra-laminar fracture in compression in direction 2, weft) 15 kJ/m2

Gf
c
33  (intra-laminar fracture through-thickness direction) 10 kJ/m2

Gf
s
12  (in-plane shear intra-laminar fracture) 9 kJ/m2

Gf
s
23  (out-plane shear intra-laminar fracture) 9 kJ/m2

Gf
s
31  (out-plane shear intra-laminar fracture) 9 kJ/m2
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The above compliance matrix has six scalar damage parameters d1, d2, d3, d4, d5 and d6. 
Intrinsic to this formulation is the assumption that symmetry of the compliance matrix is pre-
served throughout the analysis and is never violated. These six damage parameters have values 
between 0 and 1 corresponding to intact (virgin) and fully damaged (fractured) material, respec-
tively. Values of d1, d2 and d3 are associated with damage in the warp, weft and through-thick-
ness directions, respectively, while d4, d5 and d6 correspond to the in-plane and out-of-plane 
shear failures. Parameters d1–d6 can be viewed as invariant functions that represent physical 
parameters. Note there are no additional damage parameters to model independent degradation 
in Poisson’s ratios. The general damage mechanics formulation is based on an internal energy 
function ϕ for an orthotropic solid. The function ϕ is a scalar field function shown in the rela-
tionship in equation (8)

ϕ σ σ= =1
2

1
2

σσ σσT S Sijkl ij kl
 (8)

We introduce thermodynamic forces (Y = Y1, Y2, Y3, Y4, Y5 and Y6) which act as driving forces for 
damage development. We show that the strain tensor ε and the thermodynamic forces Y can be 
derived from the internal energy function as
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The variable Yi is referred to as damage energy rates in particular failure modes. It can be 
inferred, as we will see later that

d f Y Y Y Y Y Yi i= ( )1 2 3 4 5 6, , , , and  (11)

where fi (f1, f2, f3, f4, f5 and f6) is to be determined from a multi-axial failure or interaction 
between damage states. Further model assumptions are as follows. (a) The six damage modes 
in all stress directions are decoupled and determined by Y1, Y2, Y3, Y4, Y5 and Y6. This assump-
tion was made by A.F. Johnson (2001) in modelling two-dimensional (2D) plane elements for 
reinforced composites. (b) Ply material is non-healing, thus on unloading, subsequent to being 
damaged, the damage parameter remains constant until a larger damaging load is applied; in 
other words, each damage parameter is an absolutely ascending function of time irrespective of 
loading history and multi-axial pattern of damage. Thus, the evolution function depends on the 
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maximum values of Yi attained. (c) The inelastic behaviour of the matrix is ignored and was 
found in this particular case not to affect the correlation between the experiments and the 
numerical models.

In order to implement assumption (b), we introduce a parameter Yi  related to maximum value 
of damage forces reached during the previous loading history, that is

Y t Yi i( ) = ( )( )max whereτ τ t⩽

Thus, imagining an elastic domain without damage at the outset of loading and subsequent 
evolution to a lower than unity value of the modal damage initiation parameter and full separation 
or cut-off at an upper damage threshold, we deduce that
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In this model, we assume nonlinear (exponential) forms for function f, that is, for d1, d2, d3, d4, 
d5 and d6. Thus, the evolution equations of a 3D composite element requires the relation between 
di and ( ),Y Yi i− 0  where i = 1, 2, 3, 4, 5 and 6 as shown in the equation above. In the above equation, 
the threshold parameters, defined as Y10, Y20, Y30, Y40, Y50, Y60, Y1f, Y2f, Y3f, Y4f, Y5f and Y6f, determine 
the bounds for the damage parameters.

Damage initiation criteria. As mentioned earlier, the composite is assumed to behave elastically in 
an orthotropic manner until the onset of damage. The modified Hashin criteria take into considera-
tion more modes of failure than the traditional one and are applicable to woven as well as unidirec-
tional fibrous composites. This is shown in equation (13a) to (13h) which determine the point of 
damage initiation. Damage initiates in any of the failure modes when rm = 1.

Fill and warp fibre tensile/shear failure mode. The failure surface that characterises this mode is 
given by the quadratic interaction between the associated axial and through-thickness shear strains; 
that is, for fill direction (direction 1)
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For warp direction (direction 2)
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where the sign <x> is equal to x for positive values of x and is 0 otherwise. For the woven 
composite plies, 1, 2 and 3 represent in-plane fill (direction 1), in-plane warp (direction 2), and 
out-of-plane (direction 3) directions, respectively. E and G are tensile and shear moduli, respec-
tively. S1T and S2T are tensile strengths in the fill and warp directions. S1FS and S2FS are fibre shear 
strengths in 1–3 and 2–3 directions, ε1 and ε2 are failure tensile strains in a and b directions, ε31 
and ε23 are shear strains in 1–3 and 2–3 planes. We assume that S1FS = SFS and S2FS = SFS*S2T/S1T, 
where SFS is the fibre shear strength in Table 3.

Fibre compressive failure mode. The in-plane compressive damage in directions 1 and 2 are given 
by the following failure criterion

For fill direction (direction 1)
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For warp direction (direction 2)
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where S1C and S2C are in-plane compressive strengths in directions 1 and 2, respectively.

Fibre crush failure mode. The crush damage because of high through-thickness compressive 
pressure from blast waves can be modelled with the hypersurface of equation (13e)

f
E
SFC

5
2 3 3

2

( ) =
⎡

⎣
⎢

⎤

⎦
⎥

ε  (13e)

where SFC is the fibre crush strength.

Fibre in-plane shear failure mode (planes 1 and 2). A woven layer can damage under in-plane 
shear stress without occurrence of fibre breakage. The in-plane matrix damage mode is given by
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where S12 is the layer shear strength due to matrix shear failure.

Table 3. Strength of composite (GFPP) (Vo et al., 2013).

S1T (MPa) S2T (MPa) S1C (MPa) S2C (MPa) S3T (MPa) SFC (MPa) SFS (MPa)

300 300 200 200 300 200 140

S12 (MPa) S23 (MPa) S31 (MPa)  

140 140 140  
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Fibre out-of-plane shear failure mode (planes 2 and 3). The in-plane matrix damage mode is given 
by
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S
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where S23 is the corresponding layer shear strength due to matrix shear failure.

Fibre in-plane shear failure mode (planes 1–3). The in-plane matrix damage mode is given by
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where S31 is the corresponding layer shear strength due to matrix shear failure.

Strain rate effect. The effect of strain rate on the strength values of composite failure modes is 
modelled by multiplying the associated strength values {S0} by a scale factor
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where Crate is the dimensionless strain rate constant, and {S0} is the available strength value of 
{SRT} at the reference strain rate �ε0

11= −s . The values of the strain rate used for the different 
strength values of the GFPP in this work were obtained from Vo et al. (2012, 2013; Al-Ani and 
Habibi, 2013). In this work Crate = 3.5.

It has been observed that the through-thickness elastic modulus of GFPP used in this work is 
strain rate dependent. A through-thickness elastic modulus of 4.8 GPa used was extracted from an 
experiment under a strain rate of 103s−1, while the static through-thickness elastic modulus was 
found to be half of the measured value under such strain rate. However, E1 and E2 for GFPP were 
observed to be strain rate independent (Karagiozova et al., 2010).

Damage progression criteria. The evolution function for the damage proposed in the relationship of 
equation (12) is empirically determined following a procedure similar to the one adopted by John-
son (2001) and Matzenmiller et al. (1995) (Batra et al., 2012). The damage evolution at a material 
point is defined in terms of an internal variable Qm (m = 1, 2, 3, 4, 5, 6, 7, 8) associated with failure 
index fm by the empirical relationship in equation (13). The threshold values of the failure indexes, 
fm, (represented as f0) in this context are analogous to the terms Y10, Y20, Y30, Y40, Y50, Y60. The eight 
failure modes showed by the modified Hashin criteria in equation (13) determine the value of the 
failure index f0.The value Hm measures the rate of damage evolution
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Equation (16) shows how the various failure modes (internal variable, Qm) affects the properties 
of the composite in all directions (i.e. the values of di)
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 (16)

In the relationship above, we see that more than one failure index, Qm, affects the various indi-
vidual values of failure parameter, di. Fibre damage in either the fill or warp directions results in 
the reduction in stiffness in the loading direction and in the related shear direction. For failure in 
shear direction, Q5 influences all six components of the damage vector, di. Notice that Q5 is related 
to fibre crushing mode, that is, as a resultant of high through-thickness compressive stress as 
shown in equation (13e).

In this model, we degrade elastic properties as damage evolves, and the damaged and undam-
aged constitutive equations are checked and updated in the model per increment. The irreversibility 
of the internal variables is accounted for by requiring that dQm = 0 whenever drm ⩽ 0, where drm 
represents an increment in rm for an increment in the applied load.

Fracture energy (energy release rate) and mesh objectivity. Equation (16) proposed above defines the 
softening evolution in composites after the damage is initiated. The finite area under the, that is, 
individual stress–displacement curve (i.e. each representing an individual damage mode) repre-
sents the energy dissipated for each mode. For validity of this proposed model, we assume that the 
crack growth direction is parallel to one edge of the FE, and the composite meshes are structured.

The specific energy dissipated per unit volume is
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It is convenient to express the effective stress damage evolution as

σ r S d r r r rm o( ) = − ( )( )1 ⩽  (18)

In equation (17), Em corresponds to corresponding shear or elastic modulus, and Sm is the effec-
tive strength of the composite in the particular direction in question factoring in rate dependency.

Thus, the rate of mechanical dissipation is valid if the damage indexes increase monotonically, thus
� �D Yd= 0⩾  (19)

We propose from the above analysis a value for Hm as
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 (20)

where Gm is the specific fracture energy corresponding to each damage mode, gm is the energy dis-
sipated per unit volume, lelm is the characteristic length of the FE, Sm is the effective strength of the 
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composite in the particular direction in question factoring in rate dependency and d(r) depicts that 
the damage parameter as a function of r, where r0 corresponds to the point of damage initiation.

The value Hm measures the brittleness of the FE. As observed by Cervera and Chiumenti (2006), 
in an FE analysis, the state variables of the local model are computed at the integration points in 
terms of the local stress or strain history. Thus, the characteristic length lelm is related to the volume 
or area of the FE. This implies that for a simple beam element, for instance, the characteristic 
length can be taken as the size of the element. If we restrict the configuration of our elements in 
this model as equilateral, we will have for equilateral plane triangular element with area Ae, and we 
will have the characteristic length as equation (21a). In addition, for equilateral tetrahedral and 
cubic elements of volume Ve, we have the characteristic length as shown, respectively, by equa-
tions (21b) and (21c) as follows
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 (21a)

l Velm e
*3 12

2
= ⎛
⎝⎜

⎞
⎠⎟

 (21b)

l Velm e
*3 =  (21c)

Aluminium constitutive model
The aluminium component of the FML was modelled using the famous Johnson–Cook plasticity 
failure model, which is a special type of Mises plasticity model with analytical forms of the harden-
ing law and rate dependency. Its suitability for high-strain rate deformation of many materials 
(including most metals) makes it an attractive option in the development of this model. In using 
this model, adiabatic transient response is usually assumed. Johnson–Cook’s hardening model (a 
type of isotropic hardening) is explained below.

The strain rate assumption of the Johnson–Cook material model postulates that
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where σ  is the dynamic yield stress, that is, yield stress at non-zero strain rate; �ε pl  is the equiva-
lent plastic strain rate; �ε0  and C are material parameters at or below the transition temperature, 
θtransition; σ ε θ0 ( ),pl  is the static yield stress; and R pl( )�ε  is the ratio of the yield stress at non-zero 
strain rate to the static yield stress (such that R( ) . ).�ε0 1 0=  Thus, the yield stress is
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The effective plastic strain ε pl  (PEEQ) is defined as

ε ε ε εpl pl
t

pl pl dt= + ∫0
0

2
3
� �:  (24)
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where ε pl
0

 is the initial plastic strain and is usually taken as 0. The effective stress σ  is defined 
based on the J2-plasticty model as follows

σ = 3
2
σ σij ij

 (25)

The Johnson–Cook failure model is used in conjunction with its plasticity model in the numeri-
cal modelling of failure of the aluminium metal sheets. The failure mechanism is based on the 
value of the effective (or equivalent) plastic strain at element integration points. Fracture occurs in 
the aluminium sheet when the damage parameter ω exceeds 1.0. The evolution of ω is given by the 
accumulated incremental effective plastic strains divided by the current stain at fracture

ω
ε

=∑∆ε pl

f
pl

 (26)

where ∆ε pl  is an increment of the equivalent plastic strain; ε f
pl  is the strain at failure, ε f

pl  is 
assumed to be dependent on a non-dimensional plastic strain rate; � �ε εpl / 0  is a dimensionless 
pressure–deviatoric stress ratio, p/q (where p is the pressure stress (hydrostatic component of stress 
tensor corresponding to the spherical, purely dilatational or irrotational part of the deformation) 
and q is the Mises stress (related to the second invariant of the stress deviatoric tensor J2 represent-
ing equivoluminal distortion)); and the non-dimensional temperature, θ� , defined earlier in 
Johnson–Cook’s hardening model. The dependencies are assumed separable and are of the form
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where d1–d5 are non-dimensional failure parameters measured at or below the transition tempera-
ture. It is important to note that the failure parameter d3 is reported as being negative in some litera-
ture. However, ABAQUS’ general expression for strain at fracture expects this parameter to be 
positive. It is worthy of mentioning that failure to properly account for the sign of d3 will result in 
an inaccurate response. Choosing a value for the fracture energy, which is used as a data parameter 
for the damage evolution law, completes the setting of the fracture model. Elements are deleted by 
default upon reaching maximum degradation according to the usual rules of ABAQUS progressive 
damage framework. Table 2 shows the values of the plasticity and failure parameters used for Al 
2024-0 in this work.

Cohesive elements and interface simulation
The constitutive behaviour of the adhesive layer in this work is described in terms of direct traction 
versus separation model implemented in ABAQUS (usually preferable for bonded interface where 
the thickness of the adhesive is negligible and the path of fracture lies essentially within the adhe-
sive) (Luo et al., 2012). This means that the variations of stress and strain through the thickness of 
the adhesive are disregarded. This usually assumes an initial linear elastic model followed by the 
initiation and evolution of the damage. The nominal stress vector is related to the nominal strain 
vector across the interface with an elastic constitutive matrix. The nominal stresses are the force 
components divided by the original area (similar to the second Piola–Kirchhoff stress) at each 
integration point, while the nominal strains are the separations divided by the original thickness at 
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each integration point (similar to the Green–Lagrange strain). However, the default choice of the 
constitutive thickness in terms of traction separation is 1.0 (irrespective of the thickness of the 
adhesive layer). Thus, the diagonal terms of elastic matrix shown in equation 30 are
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where tn represents the normal traction, and ts and tt are the two shear tractions (i.e. in the first and 
second shear directions). The term ρc is the actual density of the cohesive element, and ρ is the 
inputted density. The parameter tc in equation (28a) denotes the constitutive thickness and should 
not be confused with a traction. The elasticity matrix in equation (28b) provides a fully coupled 
behaviour between all components of the traction vector and the separation vector (strain vector). 
Note the off-diagonal terms in the matrix can be set to 0 if the uncoupled behaviour between stress 
and strain is desired. This is the case for the model used in this work.

As shown by the graph of typical traction–separation response in Figure 2, the damage initiation 
refers to the beginning of degradation in material constitutive response at a material point. The 
damage initiation in damage models begins when the stress and/or strains meet some damage ini-
tiation criteria, in this case, a quadratic nominal stress criterion as shown in equation (29)
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where t t tn s t
0 and, 0 0  represent the peak values of the nominal stress when the deformation is either 

purely normal to the interface or purely in the first or the second shear direction, respectively. 
Equation (30) shows the dependency of the fracture energy on the mode mix, where α = 1. This law 
states that failure under mixed-mode conditions is governed by a power interaction of the energies 
required to cause failure in the individual (normal and two shears) modes.
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where the mixed-mode fracture energy is Gc = Gn + Gs + Gt when the above equation is satisfied. In the 
expression, the quantities Gn, Gs and Gt refer to the work done by the traction and its conjugate rela-
tive displacement in the normal, the first and the second shear directions, respectively. The specified 

Table 4. Mechanical properties of aluminium (Al 2024-0) (Vo et al., 2013).

Al 2024-0 ρ (kg/m3) E (GPa) A (MPa) B (MPa) n C ε0 (s−1)

2700 73.4 85 325 0.4 0.001 0.0083

 UTS (MPa) d1 d2 d3 d4 d5

 186 0.13 0.13 1.5 0.011 0
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quantities G G Gn
c

s
c

t
c, and  refer to the critical fracture energies required to cause failure in the normal, 

the first and the second shear direction, respectively. In this work, the thickness of the interface adhe-
sive between aluminium and GFPP is taken as 0.001 mm, and the thickness of adhesive between the 
GFPP plies is taken as 0.0005 mm. The interface and laminate adhesives are assumed to have the 
same mechanical properties in this model. The properties of the cohesive layer are shown in Table 5.

Localised blast
The simulation of the dynamic response in localised blast-loaded FMLs is of importance owing to 
the differences between the response modes to this type of loading and global blasts. The appar-
ently peculiar nature of this kind of loads renders the dynamic solution, damage pattern, thresholds 
and critical conditions intrinsically different. When localised blast loads are applied to plates, it is 
normal practice to idealise the localised blast as pressure loading relating to impulse obtained from 
actual experiment. For localised blast at the centre of a plate, the pressure loading is a function of 
time and distance from the centre of the plate (Karagiozova et al., 2010).

However, for FMLs, like for other plated systems, the response to localised blast includes two 
regimes: one associated with the initial through-thickness compression phase, the subsequent 
reflected tensile from the back face, and the other related to the overall response. These character-
istics make the time history of localised blast load very important.

This work has been validated by the experimental results generated by other researchers at the 
University of Cape Town, the loading comprises a disk of 8-g explosive (cylindrical charge) with 

Figure 2. Traction–separation response of cohesive element (the parameter δ is the modal separation 
(difference in top and bottom displacements)).

Table 5. Properties of cohesive layer.

Elastic and inertial properties Damage initiation Damage evolution

ρc (kg/m3) En (GPa) Es (GPa) Et (GPa) σn (MPa) σs (MPa) σt (MPa) Gn (J/m2) σs (MPa) σt (MPa)

920 2.05 0.72 0.72 140 300 300 2000 3000 3000
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a diameter of d0 = 30 mm and a leader of 1 g mass which was placed at the centre of the panel. 
Results from AUTODYN simulation show that the pulse is well described by an exponentially 
decaying function exp (−2t/t0) in time with t0 = 0.008 ms (Karagiozova et al., 2010). The spatial 
distribution of the loading shows that the leader influences the shape of the pressure pulse by pro-
ducing a variable pressure within the area bounded by the disk of explosive, r ⩽ d0/2 (Karagiozova 
et al., 2010), where d0 denotes the diameter of the charge. Figure 3 shows the temporal and spatial 
distributions of the localised blast load.

The pressure function, P (r, t) used in this work is

P r t p r p t,( ) = ( ) ( )1 2  (31)

where

Figure 3. (a) Temporal pressure–time history at a generic fixed position x0 and (b) spatial pressure–time 
history at a generic time t0.
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In the above equation, r0 = 15 mm which is the radius of the explosive disc used in the experiments, 
(k) = (m−1) is an exponential decay constant, which models the pressure distribution over the exposed area 
of the plate, rb < L/2, where L is the length of the panel, and t0 is the characteristic decay time for the pulse 
(Karagiozova et al., 2010). The decay constant, k, depends on the ratio d0/L through the relationship
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The range d0/L was restricted by the experimental configurations used; however, the above 
expression is still valid for current configuration, d0/L = 0.1. Thus, k ≈ 114 m−1. The total impulse 
imparted to the plate is given by the expression

I P r t rdrdt
rb

= ( )∫∫2
0 0

π
∞

,  (34)

Figure 4 shows the spatial distribution of local blast on the centre of the FML plate. Table 6 
shows the values of calculated peak pulse, P0. It must be noted that the spatial distribution of the 
load is an axisymmetric function.

Results and discussion
A subroutine (VDLOAD) was developed to depict the localised blast load illustrated in equa-
tions (32) to (34). The loads are applied to the developed FML model, and the results are 

Figure 4. Panel shows distribution of applied localised blast load.
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compared with the experimental results presented by Langdon et al. (2007a). The significant 
back face deflection was observed as the first response mode of the structures in the numerical 
models. This can be attributed to the through-thickness-reflected tensile wave propagation in 
the FML as the early time response, scabbing or spalling (regime I of response). Figure 5(b) 

Table 6. Computed peak pulse pressure.

Lay-ups No. of layers Thickness (mm) Impulse (N s) Pressure, P0 (MPa)

A2T14-2 6 3.36 5.89 741.5
A2T18-3 10 5.35 6.17 775.1
A2T18-4 5.6 7.94 1000.1
A3T22-2 7 4.09 7.57 948.2
A3T22-4 4.13 7.7 975.1
A3T24-5 11 6.08 10.58 1326.3
A3T24-7 6.27 3.76 471
A3T24-8 6.06 7.85 984
A3T26-1 15 8.49 7.8 980
A3T26-3 8.1 9.54 1196
A3T26-4 8.41 11.29 1415.5
A3T28-4 19 9.84 12.43 1560.1
A3T28-5 9.82 10.34 1296.2

Figure 5. (a) Photograph showing the back faces of the FML panels form experiment for A2T18-3 
(Langdon et al., 2007a), (b) numerical simulation for FML panel A2T18-3 for 1 mm × 1 mm mesh at 0.15 ms 
and (c) displacement time history in the middle (front face) for A2T18-4.
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shows large localised back face deflection with no visible damage in the composites. This can 
be compared to the diamond-shaped deflected back face of panel A2T14-2 shown in Figure 
5(a). Figure 5(c) shows the displacement time history at the midpoint of the plate. This is obvi-
ously the point of maximum deflection.

At increased blast loads, the numerical model in Figure 6(a) and (b) shows large plastic defor-
mation and back face delamination. The displacements of the back face and middle start to diverge 
and more pronounced debonding is observed. Figure 6(c) shows the displacement time history in 
the middle of the plate.

At increased blast loads, the numerical model in Figure 7(b) and (c) captures the tearing 
and eventual perforation of panel A2T14-1 as shown in Figure 7(a). Figure 7(b) shows the 
numerical simulation of the FML with a mesh size of 1 mm × 1 mm and corresponding soften-
ing modulus, while Figure 7(c) shows a mesh size of 1.5 mm × 1.5 mm. Both figures show an 
average of 75% damage in warp direction in the composite patches close the centre of the 
panel. Figure 7(a) and (b) shows the failure of the front and back faces of panel A3T24-3 
which compares favourably the experimental results in Figure 7(a). Both the 1 mm × 1 mm 
mesh and 1.5 mm × 1.5 mm mesh were able to capture the failure in the composites with 
adequate softening modulus. Figure 8(a) and (b) shows similar results as the case depicted in 
Figure 7.

A good correlation is observed for the maximum displacements of the back and front face pan-
els between the numerical simulation and experimental models of the FML panels. The displace-
ments of the FML panels correlated well as shown in Table 7.

Figure 6. (a) Photograph showing the back faces of the FML panels form experiment for panel A3T28-
4 (Langdon et al., 2007a), (b) numerical simulation for FML panel A2T28-4 for 1.5 mm × 1.5 mm mesh at 
0.15 ms and (c) displacement time history in the middle (front face).
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Efficiency of the charge and effectiveness of the target
The efficiency of localised blast on the target can be represented in a non-dimensional form for 
correlation studies and investigation into the effect of such charges on the target. The equations of 
spatial and temporal distributions of the above localised blast load on the FML can be rewritten as 
follows

Figure 7. (a) Photograph showing the back faces of the FML panels form experiment for A2T14-1 
(Langdon et al., 2007a), (b) numerical simulation for FML panel A2T14-1 for 1 mm × 1 mm mesh at 0.01 ms 
and (c) numerical simulation for FML panel A2T14-1 for 1.5 mm × 1.5 mm mesh at 0.01 ms.
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Thus, for r R< 0 ,  it can be shown that the total impulse I r tr R d< 0
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In addition, for R r0 < < ∞,  it can be shown that the total impulse, I r tR r d0 < <∞ ( ),  is

lim
t

R r d

bR

br b
d

I r t
P

b

P R
b

P e

b e

P

be→ < <∞+
( ) = + − −

0

0
2

0 0 0
2

0
0

02 2 2 2
,

π π π π
rr t

t

bR

br

d

de

b

R
b

e
b e

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= + − −

→

−

+
lim
0

2
0

2

1

2 2 2 0

ω

ω

π π π 22
0

π
be

P tbr d

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 (37)

Figure 8. (a) Photograph showing the back faces of the FML panels form experiment for A3T24-3 
(Langdon et al., 2007a) and (b) numerical simulation for FML panel A2T24-3 for 1.5 mm × 1.5 mm mesh at 
0.01 ms.

Table 7. Comparison of displacement of FML panels.

Panel Mass PE 
4 (g)

Mean 
thickness 
in (mm)

Impulse 
(N s)

Experimental 
back face 
deflection

Experimental 
front face 
deflection

Numerical 
back face 
deflection

Numerical 
front face 
deflection

AT14-1 2.5 1.01 3.38 N/A N/A N/A N/A
A2T18-4 2.8 5.60 7.94 16.3 9.1 16.0 8.1
A3T28-4 5.0 9.84 12.43 26.7 4.1 26 4.9
A2T24-3 5.3 1.74 6.06 N/A N/A N/A N/A

FML: fibre–metal laminate; PE: plastic explosive.
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Introducing non-dimensional parameters, it follows that
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where η is referred to as the efficiency of the charge, and Ir is the non-dimensional total impulse on 
the FML plate. After simplification, η can be written as
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It can be shown that for the configuration studied, the efficiency of the charge is 99.5%. This 
indicates that in these scenarios, the full impulse of the charge is taken by the system. Effectiveness 
of the target, on the other hand, in a particular localised blast scenario can be defined as the ratio 
of the impulse corresponding to a particular damage level (most frequently, the tearing threshold 
damage) to the total impulse delivered to it in that blast scenario, that is

ξ
λ

= ( )
I
I

c

r

 (40)

where the effectiveness of the target is denoted by ξ ,  Ic is the impulse corresponding to a threshold 
damage level and the denominator is already defined. If the threshold corresponds to perforation, 
then this relation would determine how efficient the target is, that is, if ξ >1,  then the target is fully 
functional and efficient. On the other hand, if ξ <1,  the target will perforate and cannot withstand 
the impulse exerted to it. The lower the efficiency parameter, the higher is the degree of damage 
and extent of perforation. One final remark, however, must be made with regard to the definitions 
above. These definitions only hold if the load is fully characterised by the total impulse which is 
equivalent to assuming impulsive response regime for the structure. In any such sort of scenario, 
the specific pulse loading time history can be disregarded and total impulse rendered only the rel-
evant loading parameter.

Conclusion
Several aspects of the study presented in this article are validated against the experimental data 
for localised blast-loaded FMLs. Thus, using numerical simulations, one is provided by a cost-
effective, predictive and efficient way of virtual testing and preliminary study for the response 
of FMLs without having to go through the rigours of blast testing physical panel prototypes. 
The response of FMLs has been found to be highly dependent on the thickness of the loaded 
plate and the characteristics of underlying layers. Thus, it is of crucial significance that in the 
behaviour of FMLs, highly nonlinear transient dynamic phenomena (i.e. the large plastic defor-
mation, debonding, delamination, tearing and failure of the constituent components of the 
plate) be captured in order to be able to describe the full response of the FML in such a loading 
environment.

Layers at the back in a typical FML support layers at the front providing the reason why the 
back face easily debonds from the rest of the plate when loaded. Thus, the failure of the 



24 International Journal of Protective Structures 

intermediate composites in the FMLs needs to be adequately captured in order to be able to 
predict the health of the top aluminium plates. If the composite layers are modelled improperly 
and do not fail when they ought to fail as observed in the experiments, the maximum deflection 
of the system would be predicted incorrectly and thus, the overall response of the system ren-
dered under-predicted. As a result of this, subsequent tearing of the aluminium plate might not 
be captured in the model. The developed model captures the state/health of the aluminium and 
composite in the FML and the maximum displacements of the back and front faces.

The concepts of charge efficiency and target effectiveness are defined and relevant equations 
are derived. These are important as far as defensive shields are concerned.

One final remark regarding the constitutive models used in this work is in order. While several 
nonlinear phenomena have been considered and the corresponding material models are incorpo-
rated, the hydrodynamic equations of state (EoSs) have not been used for the target. The loading is 
obtained as a result of a full fluid–structure interaction (FSI) simulation in AUTODYN; however, 
material EoSs such as those of Rankine–Hugoniot or Mie–Grüneisen are not included (Cheng 
et al., 2007; Hanstrom and Lazor, 2000). Such models, while necessary to simulate high-rate phe-
nomena as ballistic perforation are of little use for charge sizes and stand-offs of this study. A more 
comprehensive study would be needed to show with certainty the little relevance of these EoSs in 
a blast loading scenario replicated here as well as to give bounds of relevance on charge sizes, 
stand-offs or related dimensionless parameters.

Since the constitutive models incorporate strain rate effects in metal and composite parts and an 
objectivity algorithm for strain softening to control energy dissipation associated with each failure 
mode regardless of mesh refinement and topology, the confidence of the analyst in determining the 
response of the intermediate composite layers as well as the global response is improved.
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