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Abstract

In this dissertation, I investigate practical and theoretical issues surrounding the
use of natural language processing technology in the context of Russian Computer-
Assisted Language-Learning, with particular emphasis on morphological analysis.

In Part I, I present linguistic and practical issues surrounding the development
and evaluation of two foundational technologies: a two-level morphological ana-
lyzer, and a constraint grammar to contextually disambiguate homonymy in the an-
alyzer’s output. The analyzer was specially designed for L2 learner applications—
with stress annotation and rule-based morphosyntactic disambiguation—and it is
competitive with state-of-the-art Russian analyzers. The constraint grammar is de-
signed to have high recall, allowing an L2-learner application to base decisions on
all possible readings, and not just the single most likely reading. The constraint
grammar resolves 44% of the ambiguity output by the morphological analyzer.
A voting setup combining the constraint grammar with a trigram hidden markov
model tagger demonstrates how a high-recall grammar can boost performance of
probabilistic taggers, which are better suited to capturing highly idiosyncratic facts
about collocational tendencies.

In Part I, I present linguistic, theoretical, practical issues surrounding the ap-
plication of the morphological analyzer and constraint grammar to three real-life
computer-assisted language-learning tasks: automatic stress annotation, automatic
grammar exercise generation from authentic texts, and automatic evaluation of text
readability. The automatic stress placement task is vital for Russian language-
learning applications. The morphological analyzer and constraint grammar yield
state-of-the-art results, resolving 42% of stress ambiguity in a corpus of running
text.

In order to demonstrate the value of a high-recall constraint grammar, I de-
veloped Russian grammar activities for the VIEW platform, a system for provid-
ing automatic Visual Input Enhancement of Web documents. This system allows
teachers and learners to automatically generate grammatical highlighting, identifi-
cation activities, multiple-choice activities, and fill-in-the-blank activities, enabling
them to study grammar using texts that are interesting or relevant to them. I show

Xvii



Xviii ABSTRACT

that the morphological analysis described above is instrumental not only for gener-
ating exercises, but also for providing adaptive feedback, a feature which typically
requires encoding specific learner language features.

A final test-case for morphological analysis in Russian language-learning is
automatic readability assessment, which can help learners and teachers find texts
at appropriate reading levels. I show that features based on morphology are among
the most informative for this task.
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Preface

Although the structure and formatting of this dissertation conform to established
norms in linguistics and computer science, there is one notable exception. The
first has to do with the transliteration—or romanization—of cyrillic characters.
The customary transliteration system in linguistics scholarship is the aptly named
scholarly or scientific transliteration scheme, which I follow throughout the disser-
tation, except in Chapter 2, which discusses at length many rules in the two-level
morphology formalism. This formalism, as an instance of finite-state modeling,
is inherently concerned with one-to-one mappings of characters, but the scholarly
transliteration system incorporates several correspondences in which cyrillic char-
acters are represented as digraphs in the latin alphabet. This makes visual repre-
sentations of fixed-width alignments of one-to-one mappings cumbersome, if not
completely illegible. Therefore, all discussion of two-level rules, which is limited
to Chapter 2, makes use of the ISO9 transliteration system which exhibits a strict
one-to-one mapping of characters. Both systems are given in Table 1.

0O B r I XK 3 WM ¥ K JO M H O I

Scholarly a b v g d Z z 1 j k I m n o p

ISO9 a b v gd e €& 2 z 1 j k I mn o p
p ¢ 1Ty & 9 m m b Bl b 3 0 o
Scholarly r s t uwu f x ¢ ¢ § & " y ' & ju ja
ISO9 r s t u f h ¢ § § "y ' e 0 a

Table 1: Comparison of Scholarly and ISO9 transliteration systems

Although ISO9 may seem foreign to trained Slavicists, the differences between
the two systems are not extensive, and the diacritics used in ISO9 are intuitive
enough that reading should not be difficult.

Authorship Because of the broad scope of the dissertation, some of the research
reported herein was completed in collaboration with researchers with specializa-
tion in relevant disciplines, or with required programming skills. Such cases are
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indicated by a footnote at the beginning of the chapter. For those chapters reporting
research to which others contributed, I primarily use first-person plural pronouns.
However, there are some specific contexts in which the plural would have been
distracting, cumbersome or confusing. For example, when summarizing chapters
consecutively, I use singular pronouns throughout, even though the research re-
ported in one or more of the chapters was completed in cooperation with others.
The use of singular pronouns is in no way meant to diminish the contributions of
my collaborators.

Chapter independence One other result of having a broad scope is that differ-
ent chapters in the dissertation will be interesting to different audiences. For this
reason, each chapter is written to stand alone, to a certain degree, without nec-
essarily requiring the reader to be familiar with preceding chapters. This means
that sometimes information is repeated in more than one chapter. For those who
read the chapters sequentially, this may have the unintended effect of making the
dissertation more memorable.
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Chapter 1

Introduction

1.1 Introduction

This dissertation focuses on the linguistic and computational analysis of Russian
in the context of language learning. Among major world languages, Russian has
relatively rich morphology—both derivational and inflectional—and experienced
Russian instructors consider morphological complexity to be the most prominent
source of difficulty for Russian second language learners (Leaver et al., 2004, p.
126-127).

To address this difficulty, computer-assisted language learning tools can be
used to deliver mechanical drills, asking learners to supply a particular morpho-
logical form when given the base form. However, more and more empirical studies
of language acquisition provide evidence that such mechanical drilling exercises
are not as effective as communicative focus-on-form activities in which the learn-
ers focus on target grammatical structures incidental to a real communicative task
(Wong and Van Patten, 2003, 2004, and citations therein). This idea has met re-
sistance among Russian practitioners on the grounds that Russian is a more diffi-
cult language, and therefore requires different methods for full acquisition (Leaver
etal., 2004). However, to this point, no empirical studies have demonstrated advan-
tages to the traditional drilling approach with Russian. To the contrary, Comer and
deBenedette (2011) showed that learners studying a morphologically difficult set
of constructions' showed more complete acquisition when using focus-on-form ex-
ercises. One group conducted mechanical production exercises and another group
was given activities that asked students to “interpret the grammatical forms in the
input and map those forms to destinational or locational meanings.” Learners in

'The constructions investigated surrounded the use of prepositional versus accusative case when
expressing location versus destination following the prepositions v ‘in(to)’ and na ‘on(to)’, which
includes five potential surface inflections.
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the group with mechanical drilling did not show significant learning gains in in-
terpreting these constructions, and overgeneralized the destinational construction
when producing these constructions. On the other hand, the group combining form
and meaning showed significant gains in interpretation and production of both con-
structions, even though they were not required to produce the form throughout the
entire treatment. This is only one study, but it casts doubt on the notion that Russian
morphology requires mechanical drilling for acquisition.

Creating focus-on-form exercises for morphological constructions can be time-
intensive, which can be a deterrent to instructors. However, research in natural
language processing has established a variety of robust approaches to automatic
morphological analysis, which opens the possibility of generating such activities
automatically.

The intersection of computer-assisted language learning and natural language
processing has a relatively short history, gaining real traction only two decades
ago (Nerbonne, 2003). The research presented in this dissertation is most relevant
for what Meurers (2012) refers to as Authentic Text Intelligent Computer-Assisted
Language Learning (ATICALL). ATICALL is primarily concerned with tools for
selecting, enhancing, or adapting authentic texts for language learners, as opposed
to analyzing learner language, which is an important component of intelligent tu-
toring systems, automated scoring, and learner corpora processing.

In terms of intended functionality, the technology described herein is intended
to support selection and enhancement of Russian authentic texts. As such, these
technologies are designed to process authentic native-Russian texts, with linguistic
and computational focus on morphology. They are distinguished from other state-
of-the-art morphological analyzers by the combination of two capabilities that are
crucial for Russian language-learning applications: analysis/generation of stressed
wordforms, and high-recall?> morphosyntactic disambiguation.

ATICALL is inherently interdisciplinary, relying on contributions from com-
putational linguistics, second language acquisition, theoretical linguistics, instruc-
tional design, and others. This variety of research methods and topics in the field
is reflected in the broad scope which is taken in the dissertation. As described
in more detail in Section 1.2 below, I present research on morphological analy-
sis, morphosyntactic disambiguation, automatic word stress annotation, dynamic
grammar excercise generation, and automatic L2 readability classification of texts.
Although these topics may seem disparate, they are all tied together by their con-
nection to one central theme, which is the provision of language processing tools
to support the selection and enhancement of authentic Russian texts. The current
chapter serves as a broad introduction to this core idea, leaving more specific in-

The term “high-recall” disambiguation refers to the goal of never removing correct morphosyn-
tactic readings.
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troductory remarks to each chapter.

Russian Russian grammar books are dominated by morphology-centered themes,
such as inflectional paradigms, case governance, and modifier agreement. Rus-
sian’s inflectional morphology is predominantly fusional, which means that a sin-
gle inflectional affix denotes a complex of morphosyntactic values. The typical
noun paradigm has twelve cells: six cases, singular and plural, with lexically spec-
ified gender. Modifier paradigms have as many as 30 cells, including attributive
forms, predicative forms (short-forms), and comparatives. Verbs have four past
tense forms, six non-past forms, imperatives, verbal adverbs, and participles, yield-
ing as many as 121 cells (Janda and Lyashevskaya, 2011, p. 719). Because mor-
phology plays such a central role in Russian language learning, this dissertation is
focused primarily on technologies that can automatically process and manipulate
morphological structures.

Natural language processing methods The choice of natural language process-
ing methods in this dissertation was motivated by the nature of the language-
learning applications described herein. Approaches to natural language processing
can be divided into two overarching categories. Rule-based approaches are built by
linguists who formalize linguistic generalizations. On the other hand, probabilistic
approaches rely on machine-learning of models based on large gold-standard cor-
pora. Probabilistic methods have become popular for a variety of reasons, but they
pose some problems for computer-assisted language learning applications. First,
the output of a probabilistic model can be unpredictable. Errors are caused by
mysterious interactions in the training data, and errors can only be corrected by
getting more and/or better data to train on, and even then improved results are not
guaranteed. On the other hand, rule-based approaches are rationally deterministic,
and errors can be manually corrected. The rational foundation of rule-based ap-
proaches allows you to build a system with intuitionistic/epistemic logic, in which
you “know whether you know”. This is important in computer-assisted language
learning applications, because it allows you to avoid tokens which the system can-
not draw sure conclusions about. Natural language processing systems are not per-
fect, and errors have the potential to confuse or even discourage learners. Whereas
a probabilistic model blindly gives the most probable output, a rule-based model
can be tuned to only give output that is certain, allowing it to fail gracefully.
Another reason to prefer rule-based approaches for the research presented in
this dissertation is the need to not only analyze, but also to generate wordforms for
a number of grammar exercises. As discussed in Chapter 4, one unique require-
ment of Russian language learners is explicit annotation of stress position, which
is missing from most state-of-the-art Russian morphological engines. In order to
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fill this need, I designed a finite-state transducer using the two-level formalism
(Koskenniemi, 1983), which allowed for efficient encoding of shifting stress pat-
terns, as described in Chapter 2 below.

Pedagogical foundations The interventions developed in this dissertation are
based on modern research in second language acquisition theory. One of the most
broadly accepted ideas in second language acquisition is that extensive exposure to
meaningful, comprehensible input is essential to successfully acquire a second lan-
guage (Long, 1981, 1983; Krashen and Terrell, 1983; Swain, 1985, 2005; Robinson
etal., 2012).

Although Krashen has taken a radical position that only input is necessary for
acquisition (Krashen, 1977, 1985), other theoreticians have suggested that input is
not sufficient. Schmidt (1990, 2010) argued for the Noticing Hypothesis, which is
the claim that a learner must consciously notice language categories and forms—
such as inflectional morphology—in order to acquire those forms. Sharwood Smith
(Sharwood Smith, 1981, 1991, 1993) developed the concept of input enhance-
ment?, which is “the manipulation of selected (usually linguistic) features of the
input deemed important by the language teachers or teaching materials creators
with the specific aim of speeding up [L2] development.” (Sharwood Smith, 2014,
p- 38). As suggested by his definition, input enhancement can take many forms,
but the type of input enhancement most relevant to this dissertation is visual input
enhancement, which consists of highlighting parts of a text in order to heighten
learners’ awareness of a given grammatical feature (Polio, 2007; Sharwood Smith,
2014). Empirical evaluations of the effects of visual input enhancement have had
mixed results (Lee and Huang, 2008; Leow, 2009, and citations therein), with pos-
itive, neutral, and negative effects reported for both learning grammatical forms
and comprehending the target texts. Clearly, more research is needed to under-
stand these divergent results.

The applications discussed in this dissertation are based on the concepts of
input enhancement and noticing. Although these concepts can supply a rational
theoretical foundation for the ATICALL enterprise, they have not received suf-
ficient empirical support. Computer applications such as those presented in this
dissertation have the potential to supply a structured testbed for future research of
input enhancement and the noticing hypothesis.

3 Also called “Consciousness Raising” in the earlier works.
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1.2 Structure of the dissertation

The dissertation is divided into two main parts. Part I is devoted to the concep-
tual issues surrounding the development of foundational natural language process-
ing tools for Russian: morphological analysis and context-based morphosyntac-
tic disambiguation. Part II focuses on higher-level tasks that take advantage of
these tools: automatic word stress annotation, automatic generation of grammar
exercises within authentic texts, and automatic classification of texts according to
second-language reading level.

In Chapter 2, I present a new morphological analyzer, based on the Grammati-
cal dictionary of Russian (Zaliznjak, 1977). The analyzer is built using a two-level
formalism, where each wordform is given an “underlying” form that is then trans-
formed into an actual surface form by means of 29 rules. By using context-based
rules to capture morphophonological and orthographic generalizations, I signifi-
cantly reduce the complexity of the lexicon. I give a thorough description of many
of these rules, and demonstrate that the new morphological analyzer is competitive
with existing, free state-of-the-art analyzers.

In Chapter 3, I present work on a Russian constraint grammar, tuned to have
high recall, i.e., remove readings conservatively, always avoiding removing correct
readings. Russian has widespread homonymy, and the constraint grammar removes
readings from tokens in running text based on the surrounding context. The con-
straint grammar contains 299 rules, which are ranked in groups according to their
reliability. I evaluate the grammar against a gold corpus, and give both a quanti-
tative and qualitative breakdown of its performance. I also combine the grammar
with a probabilistic trigram tagger and show that the combination outperforms each
individual tagger, even with less training data.

In Chapter 4, I present research addressing the automatic word stress annota-
tion task, which is an essential language-learning application of the morphological
analyzer and constraint grammar. Russian has a number of complex stress patterns
that are assigned lexically. Because word stress is not marked in standard Rus-
sian orthography, mastering these complex stress patterns is difficult for language
learners. Support for determining word stress position facilitates ICALL activities
that can help learners to practice word stress placement with authentic texts. Based
on the output of the morphological analyzer and constraint grammar, I evaluate a
number of algorithms against a gold corpus of stress-annotated running text, with
state-of-the-art results.

Chapter 5 presents a higher-level application of the morphological analyzer and
constraint grammar: dynamic generation of grammar exercises in online texts. In
this chapter, I describe issues surrounding the development of Russian grammar
activities on the VIEW platform, demonstrating the utility of the morphological
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analysis tools for such applications. I also demonstrate the possibility of generat-
ing adaptive feedback based on this native-language NLP, thereby invalidating the
common assumption that adaptive feedback to learner responses is only possible
with learner-language NLP.

The last study of the dissertation, presented in Chapter 6, explores the use of
my morphological analysis tools in the automatic second-language readability clas-
sification task. The ability to automatically identify a Russian text’s L2 readability
level is a natural complement to the automatic grammar generation described in
the previous chapter, since it allows teachers and learners to find appropriate texts
more easily. In this chapter, I describe work to collect a gold corpus of Russian
L2 readability, as well as building probabilistic classifiers to automatically rate the
readability of unseen documents.

Finally, in Chapter 7, I summarize the conclusions of these studies, and outline
ways in which future research can build on these results.



Part 1

Linguistic analysis and
computational linguistic methods






Chapter 2

A new finite-state morphological
analyzer of Russian

This chapter describes UDAR, a new Finite-State Transducer Russian morpholog-
ical analyzer/generator designed for language-learning applications, particularly
those that deal with stressed wordforms. UDAR is written in the lexc and twolc
languages and can be compiled using xfst or hfst. I give an explanation of the struc-
ture of the transducer, including a description of its morphosyntactic tags, lexicon
structure, and two-level rules. I also evaluate its performance in comparison with
state-of-the-art Russian morphological engines. The chapter concludes with a brief
description of potential applications that this technology supports.

2.1 Introduction

The present chapter is a description and evaluation of UDAR,! a new Russian mor-
phological analyzer/generator designed specifically for use in free and open-source
intelligent computer-assisted language learning applications. Compared to other
major world languages, Russian has a relatively extensive morphology, exhibiting
both complex fusional inflection, and productive derivational morphology. Many
part-of-speech tagging resources exist for Russian.> However, almost none of the
existing resources fulfill all of the requirements of free and open-source language-
learning applications, most notably because they lack the ability to mark stress.
Russian word stress is difficult for a variety of reasons. First, word stress is
almost never marked in written Russian, the only common exceptions being texts

'UDAR is an abbreviated form of udarénie ‘word stress’, and it is also a recursive acronym:
“UDAR Does Accented Russian.”

“Throughout this dissertation, T use the term part-of-speech tagging to refer to detailed part-of-
speech tagging, with morphosyntactic tags specifying number, gender, aspect, etc.

11
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for beginning readers and foreign language learners.> Second, because Russian

has strong vowel reduction, it is impossible to determine a word’s pronunciation
without first knowing where (or whether) a word is stressed. In this way, Russian is
similar to Arabic and Hebrew, since vowel qualities are underspecified in the stan-
dard orthography. Third, word stress distinguishes between minimal pairs, and can
therefore be seen as being phonemic. Stress can distinguish between wordforms
of a single lexeme (e.g. déla ‘matter.SG-GEN’ vs. deld ‘matter.PL-NOM/ACC’),
wordforms of different lexemes with identical morphosyntax (e.g. zdmok ‘cas-
tle.SG-NOM’ vs. zamok ‘lock.SG-NOM’), and wordforms of different lexemes with
differing morphosyntax (e.g. dordga ‘road.N-SG-NOM’ vs. dorogd ‘dear.ADJ-SG-
FEM-PRED’ ). Fourth, Russian has complex patterns of shifting stress which cannot
be deduced from stem shape. In other words, it is impossible to reliably predict the
stress position on unknown wordforms, especially for language learners. Because
most existing morphological engines are designed to analyze and process the (un-
stressed) standard language, they are unsuitable for one of the primary needs of
language learners, as well as other applications with relation to phonetic realiza-
tion and written text, such as text-to-speech, speech recognition, etc.

This chapter has the following structure. Section 2.2 gives an overview of ex-
isting Russian part-of-speech taggers, including a brief description of the highly
influential Grammatical dictionary of Russian (Zaliznjak, 1977), which serves as
the basis of virtually all lexicon-based morphological engines of Russian, including
UDAR. Section 2.3 gives an overview of the structure of UDAR, including exam-
ples of how particular properties of Russian orthography and morphophonology
are handled with the two-level formalism. I also give an overview of UDAR’s mor-
phophonological tags, and briefly highlight the different ‘flavors’—or variants—of
the transducer. Section 2.4 compares the speed, coverage, and accuracy of UDAR
with available morphological transducers. Section 2.5 describes potential appli-
cations of UDAR, including some which have already been implemented. Sec-
tion 2.6 contains some concluding remarks and some notes about future research
with UDAR.

2.2 Background of Russian part-of-speech tagging

Russian is characterized by fusional morphology with relatively extensive inflec-
tion. The prototypical noun paradigm has 12 cells (six cases, singular and plural).*

3Standard Russian does mark stress on words with ambiguous stress—stress that a native reader
would be unable to determine from context. However, such circumstances are relatively rare.

4Some subsets of nouns have one or more additional forms: 1) an alternative genitive form, used
primarily in partitive constructions, 2) a special locative case, used exclusively with the prepositions v
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The prototypical adjective paradigm has 34 cells, inflecting for seven cases (count-
ing two variants of the accusative case: inanimate and animate), three singular
genders and plural, as well as comparative and predicative forms. Verbal mor-
phology includes inflection for gender and number in the past tense, person and
number in the nonpast (present or future), imperatives, verbal adverbs, and four
types of participle. In addition, transitive imperfective verbs can be inflected for
the passive voice using the suffix -sd. Including the adjectival inflection of the par-
ticiples, many verbs have as many as 121 paradigm cells (Janda and Lyashevskaya,
2011, p. 721).

Approaches to Russian part-of-speech tagging have historically gravitated to-
ward rule- and lexicon-based methods. This approach is greatly facilitated by the
existence of Zaliznjak’s Grammatical dictionary of Russian (Zaliznjak, 1977), a
forward-minded dictionary which assigns a set of inflectional codes to more than
100 000 words. For example, the noun avtomdt ‘automaton, sub-machine gun’ is
assigned the code m 1a, where M indicates masculine inanimate gender and de-
clension class 1; the number 1 indicates a non-palatalized paired consonant stem;
and the latin letter a indicates fixed stress on the stem. Another example is the
verb blagodarit' ‘to thank’, whose code is ac  4b. The ues indicates that the verb
is imperfective and transitive.> The 4 indicates the so-called -i- conjugation, and
the b indicates fixed stress on the ending. These two examples are very straight-
forward, but many other symbols are used to mark exceptions and collocational
idiosyncrasies, where necessary. In this way, Zaliznjak achieved a fine-grained and
impressively accurate formal description of Russian morphology, with quite broad
coverage.

With such a rich resource at their disposal, computational linguists have been
able to make Russian morphological engines, using Zaliznjak’s dictionary as a
template. In the following paragraphs, I discuss the most prominent Russian part-
of-speech taggers that have been described in scientific publications, ignoring those
that are not freely available or are proprietary. Almost all of these analyzers are
ultimately based on Zaliznjak’s dictionary, with varying degress of completeness.

RUSTWOL

One of the earliest approaches to Russian morphology described in the scientific lit-
erature was RUSTWOL (Vilkki, 1997, 2005), which is strikingly similar to UDAR,

‘in’ and na ‘on’, and 3) a vocative form of nouns referring to persons. In addition, a given paradigm
cell may have more than one possible wordform. For instance, many nouns have more than one
nominative plural or genitive plural, each with particular semantic connotations, e.g. syny ‘son.PL-
NoM(fig.)’ vs. synov'd ‘son.PL-NOM(lit.)’.

5Zaliznjak explicitly marks intransitive verbs with ur. Any verb without this code can potentially
be transitive.
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since it also uses a two-level morphology. However, it does not include stressed
wordforms. RUSTWOL was used to annotate the HANCO corpus (Kopotev and
Mustajoki, 2003). RUSTWOL is now developed commercially by Lingsoft, and is
no longer open-source.

StarLing

StarLing is a DOS/Windows program primarily designed for work in typological
linguistics, but it also includes a morphological engine for analyzing and gener-
ating Russian wordforms (Krylov and Starostin, 2003).5 It was first released in
2000. StarLing is free, and it processes stressed wordforms, but it is not open-
source, with stable versions only available for the Windows operating system. This
makes it unsuitable for use on most web servers, which predominantly use Linux
operating systems.

Dialing/AOT

The Dialing Project (1999-2001) aimed to build a Russian-to-English machine
translation system (Nozhov, 2003). The results of the project are open-source
and freely available,” including a morphological analyzer/generator with stressed
wordforms. However, Nozhov (2003, p.112) reports that the analyzer processes
words at a rate of 200 megabytes per hour, which is too slow for interactive language-
learning applications.

It should be noted that the OpenCorpora project,® which aims to be a free and
open alternative to the Russian National Corpus,’ took its original lexicon from
Dialing/AOT, and then modified and expanded it according to its needs for cor-
pus annotation (Boxarov et al., 2013). The OpenCorpora lexicon does not contain
stress markings. The lexicon from OpenCorpora is used for evaluation in Sec-
tion 2.4 below.

Pymorphy2

Pymorphy2!? is a Russian transducer built in python, with optional C++ extensions
for increased processing speed (Korobov, 2015). Pymorphy2 does not process

SStarLing can be downloaded from http://starling.rinet.ru/downl.php. Its
Russian morphological analysis can be accessed online at http://starling.rinet.ru/
morpho.php?lan=en.

"http://www.aot.ru

8http: //Www.opencorpora.org

‘http://www.ruscorpora.ru

Ohttp://www.github.com/kmike/pymorphy?2
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stressed wordforms, since its lexicon is taken directly from OpenCorpora, which
did not retain the stress annotation of AOT.!'! It includes unknown word guessing
and frequency-based weighting of readings.

Mystem

Mystem is a Russian morphological analyzer/generator developed by one of the
founders of the Russian technology giant Yandex (Segalovich, 2003). It is dis-
tributed freely, and although it is not open-source, it is included for discussion here
because of its importance for Russian linguistics research. Specifically, mystem
was used to annotate most of the Russian National Corpus. It includes unknown
word guessing, and the most recent version (mystem3) offers morphosyntactic dis-
ambiguation.

Mocky

Recently, work has been done to apply probablistic language models to Russian
part-of-speech tagging. Most notably, Sharoff et al. (2008a) developed a positional
tagset for Russian, based on the MULTEXT-East specifications (Erjavec, 2004),
and converted a portion of the Russian National Corpus to the new tagset. Three
probabilistic taggers were then trained on these data: TnT (Brants, 2000), TreeTag-
ger (Schmid, 2004), and SVM Tagger (Giménez and Marquez, 2004). Although
their reported tagging results are very good (>95% with TnT), these models can-
not be used in many language-learning applications because they cannot be used to
generate wordforms, and they are blind to stress marking. One notable extension of
this work is Sharoff and Nivre (2011), which resulted in a freely available language
model for syntactic parsing using MaltParser (Hall et al., 2009).!?

Summary

Table 2.1 provides a simple summary of the Russian morphological analyzers dis-
cussed above, as well as the target features of UDAR, which will be discussed
below. The columns show the year of first formal publication (a plus sign indicates
that the system is still under active development), platforms or operating systems
on which the system is designed, whether the system can intelligently analyze or
generate stressed wordforms, whether the system is free and open-source, whether

"An earlier version of pymorphy (https://bitbucket.org/kmike/pymorphy/ was
based directly on the AOT lexicon, with stress annotation. However, pymorphy1 operated at very
low speeds (a few hundred words per second), which is too slow for most interactive applications.

2More information about these resources can be found at http: //corpus.leeds.ac.uk/
mocky/
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the system can generate wordforms, and whether the system can disambiguate mul-
tiple readings of a token based on sentential context.

year platform/OS stress FOSS gen. disamb.
RUSTWOL 1997  unknown - - + -
StarLing 2003  DOS/Windows + - + -
DiaLing/AOT 2003  Windows/Linux + + + -
pymorphy2 2008+ python (any OS) - + + -
mystem3 2003+ all major OSes - - + +
mocky 2008  Linux/Win/Mac - + - +
UDAR 2015+ Linux/Mac/Win + + + +

Table 2.1: Comparison of existing Russian morphological analyzers. FOSS = free and
open-source software; gen. = can generate wordforms; disamb. = can disambiguate word-
forms with more than one reading based on sentential context

2.3 UDAR

The resources discussed in the previous section have left a gap in the possibilities
for analyzing and generating Russian. None of them provide the possibility of an-
alyzing and generating stressed wordforms in free, open-source language-learning
applications, with the possibility of disambiguating a tokens readings based on con-
text. UDAR was designed to fill this gap. In the following sections, I give a brief
description of UDAR, including its lexicon structure, phonological/orthographic
rules, and morphosyntactic tags.

2.3.1 Lexc and Twolc

This section contains a very simple explanation of finite-state transducers, as well
as the two-level formalisms used to write UDAR: the 1exc language for creating
the lexical network of underlying forms and the twolc language for realizing
orthographic and morphophonological rules on the underlying forms to produce
well-formed surface forms.'3 For a more comprehensive introduction to 1exc and
twolc, please see Beesley and Karttunen (2003).

The 1lexc and twolc source files can be compiled using both Xerox Finite-
State Tools (XFST) (Beesley and Karttunen, 2003) and Helsinki Finite-State Trans-

3Note that the term morphophonological is used here in a loose sense. The engineering question
of which phenomena are handled in 1exc and which in twolc may or may not have any direct
relation to the traditional categories of linguistic theory.
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Figure 2.1: Finite-state transducer network

ducer Technology (HFST) (Linden et al., 201 1).'* The lexicon of UDAR is taken
primarily from Zaliznjak (1977), by way of a digital copy of the 2001 edition.'3
The 2001 edition of the dictionary includes an appendix of proper names which
was also included in the lexicon. I also added all lexemes from Grishina and
Lyashevskaya (2008), a list of words extracted from the Russian National Cor-
pus that are not found in Zaliznjak’s dictionary. These lexemes are annotated with
Zaliznjak-style morphological codes.

Finite-state transducers

A finite-state transducer (FST) is a finite-state automaton in which each transition
from state to state consists of an input-output pair. Figure 2.1 shows the behavior
of a very simple FST with an English example. This FST converts the string swam
to its lemma swim. The transducer traverses the input string one character at a
time. If it encounters the input s—w—-a-m, then it will output swim. Any other
sequence of input strings will result in no output.

The transducer in Figure 2.1 can be represented in 1exc as shown in (1).

(D) swam:swim # ;

The input is on the left of the colon, the output is to the right of the colon, the
pound sign signals the end of the word, and the semicolon marks the end of the
entry. Only a slight modification to this transducer will turn it into a tagger, as in

(2):
2) swam:swim+Pst # ;

When the transducer compiled from the 1exc code in (2) encounters the string
swam, it will output the lemma-tag pair swim+Pst. Additionally, because of
their closure properties, finite-state transducers can be reversed, so that our tagger
can become a wordform generator. When given the input swim+Pst, the reversed

“XFST and HFST are both free (i.e. gratis), but HFST is open-source, and has more exten-
sive functionality than XFST. Currently, XFST can be found at http://fsmbook.com and HFST at
http://kitwiki.csc.fi/twiki/bin/view/KitWiki/HfstHome.

15T am indebted to Andrej Zaliznjak and Elena Grishina for their kindness in making this text
available for academic purposes.
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FST will output the past tense form swam.

In order to create more complex paradigms, lexc uses continuation classes,
labelled LEXICON, to define which continuations—usually endings—belong to
which lexemes. If the line of code ends in a LEXICON name instead of a #, then
that line is continued by every line contained in that LEXICON. For example, the
lexc code given in (3) and (4) result in identical lexical networks.

3) work+Inf:work # ;
work+Pres+Sgl:work # ;
work+Pres+Sg3:works # ;
work+Past :worked # ;
be+Inf:be # ;
be+Pres+Sgl:am # ;
be+Pres+Sg3:is # ;
be+Past+Sg:was # ;

@ work:work RegularVerb ;
be: BE ;

LEXICON RegularVerb
+Inf: # ;
+Pres+Sgl: # ;
+Pres+Sg3:s # ;
+Past:ed # ;

LEXICON BE
+Inf:be # ;
+Pres+Sgl:am # ;
+Pres+Sg3:is # ;
+Past+Sg:was # ;

The obvious advantage of using continuation classes, as shown in (4), is that the
full paradigm of new regular verbs can be added with only one line of code, as in

(5).

(®)] walk:walk RegularVerb ;
talk:talk RegularVerb ;

Returning back to Russian, there are times when morphophonological alternations
and orthographic rules cause surface-level spelling differences that would require
multiplying the number of continuation classes. For example, the nominative plu-
ral ending for many nouns is -y as in stol~stoly ‘table~tables’. However, stems
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endings in a velar (g, k or x) cannot be followed by -y, but rather have the ending
-1, as in mal'Cik~mal'Ciki ‘boy~boys’. Rather than write a new continuation class in
lexc, one can generate ill-formed surface forms that can be corrected by a second
layer representing orthographic and morphophonological rules of the language. In
this case, we can use lexc to generate the form mal'¢iky, and then write a rule
that changes all endings in -ky to -ki. This possibility was made computationally
feasible by a ingenious approach developed by Koskenniemi (1983), commonly re-
ferred to as a ‘two-level morphology.” The twolc language is an implementation
of a two-level morphology.

Encoding a language’s morphology as a finite-state machine has several ben-
efits. Finite-state machines are mathematically elegant, and algorithms have been
developed to efficiently combine and modify them. They are computationally effi-
cient, capable of being minimized with extremely high compression rates. A finite-
state machine can scale up to hundreds of thousands of states and arcs, allowing
for models with millions of words. Furthermore, the lookup process is language-
independent, which means that the lexical and grammatical facts of Russian are
kept distinct from the language-independent functions of the morphological en-
gine. Another way of saying this is that the source files for a given language are
declarative.

Finite-state machines have been used to perform tokenization, syllabification,
morphological analysis, spell-checking, word-to-number mapping, lookup words
in simple dictionaries (e.g. crossword or Scrabble), text-to-speech, automatic speech
recognition, and optical character recognition/correction.

2.3.2 Structure of nominals: lexc and twolc

With that minimal introduction to 1exc and twolc, I will now present some of the
most salient features of the structure of UDAR’s lexicon. It should be stressed that
the following techniques for modeling Russian are not intended to satisfy any lin-
guistic theory. The decisions underlying the underlying word structure produced by
lexc and the operations of the orthographic/(morpho-)phonological rules within
the two-level formalism are usually informed by formal linguistic descriptions of
Russian, but ultimately these decisions are a matter of engineering, and not theory.

One connection to theoretical linguistics that pervades all two-level rules is
the relation to source- and product-oriented generalizations (Bybee, 2003). Rules
that reference the upper side of two-level characters are essentially making source-
oriented generalizations, whereas rules that refer to the lower side of two-level
characters are making product-oriented generalizations.

Unfortunately, supplying a complete overview of the structure of Russian is
outside the scope of this chapter. I do provide basic explanations and examples of
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forms that are being modeled, but only those properties that are relevant to consid-
erations of designing the model are explained. The implications of the model are
only discussed when they have relevance to linguistic theory.

Stem shape

A prominent feature of Russian phonology is consonant palatalization (commonly
referred to as hardness vs. softness). Russian orthography marks consonant hard-
ness or softness by two parallel sets of vowels (and other symbols), so that hard
consonants are followed by one set, and soft consonants the other. Table 2.2 shows
singular forms of two lexemes: rabota ‘work’(hard ¢) and mild ‘mile’ (soft 1).'® The
underlying forms, as they are generated by 1exc, are given in parentheses.

‘work’ ‘mile’
NOM | rabota (rabota>a) | mild (mild>a)
ACC | rabotu (rabota>u) | mild (milda>u)
GEN | raboty (rabota>y) | mili (milé>y)

Table 2.2: Two nouns of the same declension class with different stem palatalization. The
underlying 1exc forms are in parentheses.

The stem boundary, >, is added in 1lexc as a frame of reference for twolc
rules. The stem boundary is always deleted. Additionally, any vowel, soft sign
('), or j directly preceding the stem boundary is also deleted. The letter deleted
before the stem boundary serves as a reference for whether or how to transform the
ending itself. As can be seen in Table 2.2, both raborta and mild belong to the same
continuation class, i.e. both have identical endings in the 1exc output. However,
because they have different classes of vowels deleted before the stem boundary,
their endings are realized differently.

Table 2.3 shows the correspondences defined by the relevant t wolc rules. This
table is read by comparing each character on the so-called upper side (underlying
form) with the corresponding character on the so-called lower side (surface form).
If a character is deleted, then it appears as either an underscore ( _ ) or zero (0 ) on
the lower side.!” The first example, rabota>a, shows that twolc deletes the a
and >.

1%For two-level rules, I use ISO9 transliteration from Cyrillic to Latin, as it exhibits one-to-one
mappings of letters, rather than digraphs which exist in most other transliteration systems. The
ISO9 transliteration system is given in the Foreword. The Foreword also contains the Scholarly
transliteration system, which I use in contexts other than two-level rules.

"In twolc, a removed character is represented by a zero, but I sometimes use underscores to
improve horizontal readability.
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rabota rabotu raboty
‘work.SG-NOM’  ‘work.SG-ACC’ ‘work.SG-GEN’

upper rabota>a rabota>u rabota>y

lower rabot_ a rabot__u rabot__y
mild milii mili
‘mile.SG-NOM’  ‘mile.SG-ACC’  ‘mile.SG-GEN’

upper milé>a milé>u milé>y

lower mil__ & mil_ 0 mil i

Table 2.3: Upper- and lower-side correspondences for nominal palatalization

All two-level rules operate simultaneously, so the context of each rule must re-
fer to both the upper and lower side of each symbol. The twolc formalism treats
each pair of upper/lower characters as one unit, separated by a colon, so in the
first column of Table 2.3 is represented as
"r:r a:a b:b o:0 t:t a:0 >:0 a:a". The fourth column is represented
as "m:m i:1 1:1 &:0 >:0 a:4&". This notation can be abbreviated when
both sides are identical, so m:m can be simply be written as m. Likewise, one side
can be underspecified, so a: a, a: &, and any other declared symbols that include
a on the upper side can be written as a :. There are two relevant twolc rules for
these examples. The first is responsible for deleting the vowel, soft sign, or j before
the >. This is formalized in Example (6)."® This rule changes a:a to a: 0 (and
a:4to a:0, etc.) if they are followed by the deleted stem boundary symbol > : 0.

(6) Vx:0 <=> _ >:0
where Vx in ((a &d o é e 3 ')

The second twolc rule changes the vowel in the ending to match the palatalization
of the final consonant of the stem. More formally, this rule changes a:a to a:a
when preceded by the sequence 4: 0 >: 0, as shown in Example (7). An expanded
version of this rule deals with all the relevant vowels.

(7 a:d <=> 4:0 >:0

'8For the sake of readability, many of the twolc rules given in this dissertation are significantly
simplified from the actual rules in UDAR’s source files. I also remove unnecessary twolc syntax,
such as escaping characters, and end of line markers (;).
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Spelling rules

As briefly mentioned above, velars (g, k and x), hushers (7, §, § and ¢), and ¢
each have particular constraints on which vowel letters they can be followed by.
Zaliznjak’s grammatical dictionary defines seven codes to indicate which sets of
vowels should be used in inflectional endings. However, since these codes are
perfectly aligned with phonological contexts, I discarded Zaliznjak’s stem codes,
replacing them with twolc rules. Examples are given in Table 2.4.

knigi Xorosij Xxorosem xozu

‘books’ ‘good.NOM’  ‘good.LOC’ ‘I walk’
upper kniga>y xoros$>yj xoros$>om xo0z>T
lower knig__ i xoro$_ij xoroS_em xoZ_u

Table 2.4: Upper- and lower-side correspondences for ‘spelling rules’

Fleeting vowels

Many Russian stems have vowels that appear only in specific morphophonological
environments, primarily with a zero inflectional ending, or more broadly, when the
inflectional ending does not begin with a vowel. Such vowels are specified in the
stem, immediately preceded by a special symbol (here, for simplicity, F), which is
always deleted. Examples are given in Table 2.5.

okno okon zemle zemel'

‘window.NOM’  ‘windows.GEN’  ‘earth.LOC’ ‘earths.GEN’
upper okFono>o okFono> zemFeléd>e zemFeld>'
lower ok__n__ o ok_on___ zem__ 1 e zem_el_ '

Table 2.5: Upper- and lower-side correspondences for fleeting vowels

The basic rule for removing fleeting vowels of this type is simple: delete the
fleeting vowel if it is followed by an inflectional ending that begins with a vowel
on the lower side. This rule is given in Example (8), which says to delete a vowel
if it is immediately after F', followed by one or more letters (Letter is previously
defined in the source code), followed by a deleted vowel, j, or soft sign, followed
by a deleted stem boundary, followed by any symbol with a vowel on the lower
side.

(8) Vx:0 <=> F:0 _ Letter+ [V:0]73:0]"':0] >:0 :V
where Vx in ( a e & 1 o &4 )
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This formulation of the rule is robust with less canonical instances of fleeting vow-
els. For example, liibov'ii ‘love.INST’, does not delete the fleeting vowel because
the first symbol after the stem boundary is the soft sign .

There are some important benefits to specifying the vowel quality and stress
of all fleeting vowels. Although the vowel quality of most fleeting vowels is
predictable—o/é/e, depending on the context—there are several exceptions, such
as zadc ‘hare’, which has a fleeting 4. Similarly, the rules given by Zaliznjak for
placing stress on fleeting vowels are generally robust, but there are many excep-
tions, such as zemld~zemél', for which the rules predict the form zémel'. Since the
quality and stress of fleeting vowels is specified for every lexeme, such instances
do not pose a problem.

Some additional rules are needed to properly describe instances in which j or
" directly border the fleeting vowel. Take kopejka~kopeek ‘kopeck’, for example.
When the fleeting vowel is deleted, the letter j is present, but when the fleeting
vowel is present, the letter j is deleted.!” Table 2.6 shows the correspondences of
these examples.

kopejka kopeek

‘kopeck.SG-NOM’  ‘kopeck.PL-GEN’
upper kopejFeka>a kopejFeka>
lower kopej__k__ a kope_ _ek_

Table 2.6: Upper- and lower-side correspondences for fleeting vowels in the lexeme kope-
Jjka ‘kopeck’

A formal description of this relation is given in (9), which says to delete j if
it immediately precedes F followed by a symbol that is a vowel on both the upper
and lower sides (i.e. not deleted).

) j:0 <=> _ F:0 V

A nearly identical situation arises with a number of words in which a soft sign is
present when the fleeting vowel is deleted, but the soft sign is removed when the
fleeting vowel is present. Table 2.7 gives examples of such words.

The formal description of these correspondences is almost identical to (9), as
shown in (10).

(10) ':0 <=> _ F:0 V

A similar circumstance arises with many nouns with fleeting vowels whose stems
end with a phonetic yod, orthographically represented as j, ', or as part of a com-

“The phonetic yod is still implied by the letter e following a vowel.
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led l'da

‘ice.SG-NOM’  ‘ice.SG-GEN’
upper 1'Fé&d 1'Féd>a
lower 1 &d 1' d a

Table 2.7: Upper- and lower-side correspondences for fleeting vowels in the lexeme /éd

I3 s

1ce

plex vowel, depending on the environment. Russian orthography is such that after
vowels, a phonetic yod is represented as j, unless it is followed by another vowel,
in which case it is represented by the following vowel letter, such as with kope-
Jjka~kopeek in Table 2.6 above. After consonants, yod is represented by '. For
lexemes in which this environment alternates—such as those given in Table 2.8
below—the lexc lexicon gives the underlying form with j, and this is changed to
"when necessary.

muravej murav'il kop'é kopij

‘ant.SG-NOM’  ‘ant.SG-DAT’ ‘spear.SG-NOM’  ‘spear.PL-GEN’
upper muravFe] muravFej>u kopFijé>o kopFijé>
lower murav_e] murav__'_0 kop_ '_ & kop_1ij_

Table 2.8: Upper- and lower-side correspondences for fleeting vowels in yod stems, such
as muravej ‘ant’ and kop'é ‘spear’

A formal description of this relation is given in (11), which says to change j to
"when it is preceded by a consonant, then F, then a deleted vowel, and when it is
optionally followed by a deleted e, &, or d, followed by a deleted stem boundary,
followed by any symbol with a vowel on the lower side (i.e. not deleted).

(11D J:' <=> C: F:0 V:0 _ ([e:0]&:014:0]) >:0 :V

At this point, some of the underlying forms are beginning to look very different
from the actual surface representations. This raises the question of how far one
should go to capture regularities in the language with two-level rules, as opposed
to simply creating new continuation classes in lexc to generate forms that are
already well-formed. This is mostly a matter of preference, but I have generally
used the following guideline. If a form deviates in a way that can be captured
by systematic rules, then I encode that deviation in two-level rules, as long as
the necessary information could be easily extracted from Zaliznjak’s dictionary.
The alternative, which is to capture stem alternations using a much larger set of
continuation classes, is certainly viable, and has, in fact, been implemented (e.g.
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Vilkki, 1997, 2005).

Adjusting noun inflectional endings

In nouns with stems ending in -ij—such as kafeterij ‘cafeteria’, povtorenie ‘rep-
etition’, or Rossid ‘Russia’—there is a regular inflectional deviation from other
nouns. In such words, any inflectional ending that is an underlying e is realized as
an i, as shown in Table 2.9.

kafeterii povtorenii Rossii
‘cafeteria.SG-LOC’  ‘repetition.SG-LOC’  ‘Russia.SG-LOC/DAT’
upper kafeterij>e povtorenie>e Rossié>e
lower kafeteri_ 1 povtoreni_ i Rossi_ i

Table 2.9: Upper- and lower-side correspondences for e-inflection in i-stems: kafeterij
‘cafeteria’, povtorenie ‘repetition’, and Rossid ‘Russia’

This is formally expressed using the twolc statement given in (12), which
states that e changes to i when it is preceded by i, followed by a deleted j, ¢, e, or
a, followed by a deleted stem boundary.

(12) e:i <=> 1 [J:0]&:0]e:0/48:0] >:0 _

Word stress

One of the primary motivations for developing UDAR was to have a working trans-
ducer with stressed wordforms. This section will demonstrate how this is achieved.
Discussion of previous rules deliberately ignored word stress for the sake of sim-
plicity. However, from this point on, it should be remembered that the UDAR’s
two-level rules treat stressed and unstressed vowels as separate entities. For exam-
ple, a rule that refers to a cannot be assumed to also refer to d, neither can 4 be
assumed to refer to d, etc.

Russian has several complex patterns of shifting stress, which would pose a
serious complication for a system limited to continuation classes. Table 2.10 illus-
trates one of these stress patterns.

Representing such patterns of shifting stress in the 1exc language would re-
quire a continuation class specific to the final string of letters of each lexeme (e.g.
-uka). Example (13) shows the 1exc code that would be needed for the nominative
and accusative singular forms of ruka.

(13) a. ruka:r UKA_f’ ;
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SG PL
NOM | rukd  ruki
ACC | riku  riki
GEN | ruki  rik
LOC | ruké  rukdx
DAT | ruké  rukdm
INS rukoj  rukdmi

Table 2.10: Shifting stress pattern of ruka ‘hand’

b. LEXICON UKA_f’
+Nom:uka # ;
+Acc:uku # ;

The entry in (13-a) can only specify the r of the stem, since the following letter
varies between u and . The continuation class in (13-b) then completes the stem
and also adds the ending. The necessity to create continuation classes specific to the
final string of letters would likely require thousands more continuation classes than
an FST without stress. However, because of the particulars of Russian’s system
of stress, twolc provides the means for an elegant solution. With only a small
handful of exceptions, a Russian lexeme can have a maximum of three positions of
stress in any of its forms: a stem vowel, a fleeting vowel at the end of the stem, and
a vowel in the ending.

The lexc code of UDAR marks the stress on all vowels in the stem that are
stressed in one form or another. Each inflection class then has multiple variants
of lexc continuation classes for possible stress patterns. What this means is that
the presence or absence of stress in the ending of an underlying form is definitive,
whereas stress marked on the stem should only be realized if the ending is not
stressed. This alternative to (13) would result in the following wordforms (simpli-
fied for demonstration): ruk>4 and ruk>u. The twolc rule then removes all
but the rightmost stress: ruk& and ruku. A full-fledged example of this is shown
in Table 2.11, using sestrd ‘sister.SG-NOM’, sestry ‘sister.SG-GEN’ and séstry ‘sis-
ter.PL-NOM/ACC’. Note that stress is usually marked with an acute accent ( *), but
in the case of the letter ¢ it is marked with an umlaut/diaeresis diacritic ( ).2°

In the example of sestra, the stress is removed from the first € because the final
a is stressed. The fleeting vowel is deleted according to the fleeting vowel rule
discussed previously. In the example of séstry, the ending is unstressed and the

The orthography and phonology of & are closely connected. When ¢& is unstressed, it is written
and pronounced exactly like e. In Contemporary Standard Russian, ¢ is typically written without the
diacritic, even when it is stressed.
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sestra séstry sestér
‘sister.SG-NOM’  ‘sister.PL-NOM’  ‘sister.PL-ACC/GEN’
upper séstFErd>4 séstFérd>y séstFéra>
lower sest r & sést__r vy sest_&r

Table 2.11: Upper- and lower-side correspondences for word stress, example word sestra
‘sister’

fleeting ¢ is deleted, so the stress on the first &€ remains. In the example of sestér,
there is a zero ending (which by definition cannot take stress), which means that
the fleeting vowel is realized in the surface form. And since the fleeting vowel is
stressed, the stress is removed from the first €. The examples given in Table 2.11
show how two-level rules can be used to generate forms with correct stress place-
ment, all based on the same underlying stem.

There are a handful of lexemes that cannot be represented within this system,
most notably the multisyllable-stemmed feminine nouns with Zaliznjak’s code £/,
such as golova ‘head’ and skovoroda ‘frying pan’. When the stress falls on the
stem of such words, it is on the first syllable, except the genitive plural, which is
stressed on the last syllable of the stem. Since they can have stress on more than
one syllable in the stem, they violate one of the enabling assumptions of the two-
level rule described above. Likewise, a very small number of other nouns violate
this assumption in other ways. The lexeme ozero ‘lake’ is stressed on the the first
syllable throughout the singular, but the second syllable through the plural. This
alternation of stress position within the stem is exceptional. All such forms are
generated by using additional continuation classes in the 1exc code.

Genitive plural of nouns

The inflectional ending of the genitive plural of nouns is morphophonologically
conditioned, and can be one of three possibilities: -ov/-év/-ev, zero/-'/j, or -ej. Each
of these possibilities will be discussed in more detail below. All declension classes
follow the same rules for determining which inflection appears, so rather than mul-
tiply continuation classes, I captured this regularity using two-level rules. The
lexc code assigns only one genitive plural ending: -ov (or 6v, if stressed). When
necessary, this ending is transformed into the appropriate allomorph, as demon-
strated in the following tables. The general approach echoes that of Halle (1994),
who claims that all declension classes have the same genitive plural inflection: the
back yer (-1). Halle’s work claims that the allomorphy in genitive plural inflections
is actually a complex form of phonologically determined allomorphy.

Lexemes with exceptional genitive plural endings—of which there are many—



28 CHAPTER 2. NEW MORPHOLOGICAL ANALYZER

are simply hard-coded in the 1exc code. Regarding nouns with gaps in the gen-
itive plural, such as mect *’dreams.GEN-PL’, I simply follow the codes given in
Zaliznjak’s dictionary. In this particular case, mect is given the +Prb tag, which
indicates that it is problematic.

The genitive plural endings -ov/-év/-ev appear on nouns whose nominative sin-
gular ends in a consonant.?! Table 2.12 shows nouns with the inflection -ov. Any
changes to the vowel in the ending of these nouns are due to palatalization and
spelling rules, the rules for which have already been discussed in Table 2.3 and
Table 2.4 above.

polov murav'év tortov zdjcev

‘floor.PL-GEN’  ‘ant.PL-GEN’ ‘cake.PL-GEN’  ‘hare.PL-GEN’
upper pol>ov muravFéj>ov tdrt>ov zajFac>ov
lower pol_o6v murav___'_év tdért_ov z&j__c_ev

Table 2.12: Upper- and lower-side correspondences for genitive plural inflection -ov/-év/-
ev

Table 2.13 shows examples of nouns whose genitive plural inflectional ending
is zero. Most nouns with a vowel in the nominative singular ending belong to this
category.

dél zddnij nedél’ podusek
upper délo>6v zdanie>ov nedFéla>ov poduSFeka>ov
lower dél zddni__ j_ ned_él1_ ' podud_ek

Table 2.13: Upper- and lower-side correspondences for genitive plural zero ending

In all such lexemes, the final v in the -ov sequence on the upper side is deleted.
However, the o can change in three different ways. If the stem ends in a hard
consonant, then the o is simply deleted, as in the case of del and podusek. If the
stem ends in a vowel, then the o is changed to a j, as in zdanij. If the stem ends in
a soft consonant, then the o is changed to a ', which marks softness in the absence
of a vowel. These relations are formalized in the following rules. The rules for
simple deletion are given in (14), which is divided into two parts for legibility. The
expression in (14-a) states that o and ¢ are deleted when they are preceded by a
velar (g/k/x) or a so-called paired consonant (those consonants with phonemic hard
and soft variants), followed by a deleted a, d, o or o, followed by a deleted stem

2 For nouns lacking a nominative singular—such as pluralia tantum—a hypothesized stem is spec-
ified in 1exc so that the appropriate genitive plural is produced. For example, nausniki ‘headphones’
is assigned the stem naus$nik, which yields the genitive plural nausnikov.
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boundary, and when they are followed by a deleted v. The expression in (14-b)
states that o and ¢ are deleted when they are preceded by a husher (Z/5/5/¢) or c,
followed by a deleted a, d, e or d, followed by a deleted stem boundary, and when
they are followed by a deleted v. The only difference between (14-a) and (14-b) is
that the deleted vowels before the stem boundary include o and e, respectively. This
is a trivial fact that is the result of spelling rules, as discussed above in Table 2.4:
an underlying unstressed o after hushers and c is spelled e.

(14) [0:0]6:0] <=>
a. [glklx|blv]dlz|limIn|lplrls|t]|£f]
[a:0]4:0]0:0]6:0]1 >:0 _ v:0
b. [Z|3]|8|¢&|c] [a:014:0|e:0]6:0] >:0 _ v:0

The rule for changing o to j is given in (15), which states that o0 and 6 change to j
when they are preceded by a vowel, followed by a deleted d, a4, e, é or &, and when
followed by a deleted v.

(15) [0:§]6:F] <=> V: [4:0]4:0|e:0[&:0]8:0] _ v:0

The rule for changing o to 'is given in (16), which states that o and ¢ change to '
when they are preceded by a paired consonant, followed by a deleted a, d, e or J,
followed by a deleted stem boundary, and when they are followed by a deleted v.

(16) [o:'[6:'] <=> [b|vid|z|lim|n|plrls|t]|f]
[4:0]4:0|e:01]é:01&:0] _ v:0

In addition to the more canonical rules given in (14), (15) and (16), there are a few
exceptional contexts in which o is deleted. Examples of these exceptional contexts
are given in Table 2.14.

bdsen seméj sekvoj

‘tower.PL-GEN’  ‘family.PL-GEN’  ‘sequoia.PL-GEN’
upper ba&Fend>ov sémFéja>ov sekvdja>ov
lower bas_en_ ~  sem_éj_ sekvdé_

Table 2.14: Upper- and lower-side correspondences for genitive plural zero ending for

ra

basna ‘tower’, sem'd ‘family’, and sekvojd ‘sequoia’

In the first example, bdsen, we would expect the o to be changed to ', according
to the rule in (16). However, in the context expressed in (17-a), the stem-final n
becomes hard in the genitive plural. This rule states that o and ¢ are deleted when
they are preceded by a deleted F, followed by a vowel that is not deleted, followed
by an n, followed by a deleted d, followed by a deleted stem boundary, and when



30 CHAPTER 2. NEW MORPHOLOGICAL ANALYZER

they are followed by a deleted v.2% It should be noted that this context overlaps with
the rule given in (16), which requires that rule to be rewritten to avoid a conflict
between the two. For the sake of simplicity, the revised rule is not given here, but
it can be found in the two1c source code.?’

The final two rules in (17) are more straightforward. In fact, they are not excep-
tional in any way, other than that they are simply not canonical cases of zero gen-
itive plural endings. The behavior of sem'd ‘family’ (rule given in (17-b)) follows
directly from the fleeting vowel rules given above in (8) and (11). The behavior of
sekvojd ‘sequoia’ (rule given in (17-c)) is only unusual because it represents a very
small number of foreign borrowings that maintain the sequence V' j V in many of
its surface forms. However, in the genitive plural, it behaves as expected, simply
dropping the final vowel.

a7 [0:0]6:0] <=>
a. F:0 V: n 4:0 >:0 _ v:0
b. F:0 V: 7: [4:0]4:0]e:0(&:0] >:0 _ v:0
c. \F:0V (F:0V: ) j [4:0/4:0]e:0]&:0] >:0 _
v:0

Finally, we turn to the -¢j inflection for genitive plural nouns. This inflectional
ending is found in lexemes whose stem ends in either a husher (Z/§/§/¢) or soft
paired consonant, marked by a soft sign ( ") or one of the following soft-indicating
vowels: d, e, or é&. There are two special cases of this rule. If the nominative
singular of the lexeme ends in a consonant, then -ej is used regardless of stress
position. On the other hand, if the nominative singular of the lexeme ends in a
vowel, then -¢j is used only if the gentive plural ending is stressed. Examples of
such words are given in 2.15.

Part of the change from -ov to -¢j is already covered by the palatalization and
spelling rules covered above, which changes an unstressed o to e after hushers and
soft consonants. This change can be seen in the example of mdtcej. However, a
new rule is needed to change 6 to €, as shown in (18). The first rule states that 0
changes to ¢ when it is preceded by a husher, followed by a deleted a, 4, e, 6, or '
followed by a deleted stem boundary, and when followed by a v that changes toaj.
The second rules states that 6 changes to é when preceded by a paired consonant,
followed by a deleted e, ¢, ¢, d, a4, or ', followed by a deleted stem boundary, and
when followed by a v that changes to a j.

2In Zaliznjak’s dictionary, this context is signified by the code :x 2 xa.
BCurrently at https://victorio.uit.no/langtech/trunk/langs/rus/src/
phonology/rus-phon.twolc
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konéj mdtcej
‘horse.PL-GEN’ ‘match.PL-GEN’
upper kén'>ov maté>ov
lower kon_ é7 matc_e
levséj moréj
‘left-hander.PL-GEN’  ‘sea.PL-GEN’
upper levia>ov mére>ov
lower levd_ &7 mor__é7

Table 2.15: Upper- and lower-side correspondences for genitive plural -ej ending for kon'
‘horse’, matc¢ ‘match’, levsa ‘left-hander’, and more ‘sea’

(18) 6:é& <=>
a. [Z|S|8]¢] ([a:0]14:0]e:016:01':0]) >:0 _ v:j
b. [blvidlz|limIn|plrlis|t]f]
[e:0]é:0]&:014:01&4:0]"':0] >:0 _ v:j

Since the two rules in (18) are both dependent on the presence of the v: J pair,
these rules are only applied in the context in which the rules given in (19), which
express the contexts in which v changes to j. The contexts are identical, but divided
differently. Rule (19-a)—which covers the form matcej from Table 2.15—states
that v changes to j when preceded by a husher, optionally followed by a deleted
soft sign, followed by a deleted stem boundary, followed by an o or ¢ on the upper
side. Rule (19-b)—which covers the form konej from Table 2.15—states that v
changes to j when preceded by a paired consonant, followed by a deleted soft sign,
followed by a deleted stem boundary, followed by an o or ¢ on the upper side. The
rule given in (19-c)—which covers the wordform levsa from Table 2.15—states
that v changes to j when preceded by a husher, followed by a deleted a, d, e or
0, followed by a deleted stem boundary, followed by an 6 on the upper side. And
lastly, rule (19-d)—which covers the wordform more from Table 2.15—states that
v changes to j when preceded by a paired consonant, followed by a deleted e, é, ¢,
a or d, followed by a deleted stem boundary, followed by an 6 on the upper side.

(19) v <=>
a. [S18]1C]1 (':0) >:0 [o:]d:] _
b. [vidlz|llmin|plr|s|t|f] ':0 >:0 [o:|0:] _
C. >:0 6 _
d.

[vidliz|llm|n|plrls|t]£f]

[Z

[b

[Z]3]8]|C] [a:0]4:0]e:0]6:0]
[b

[e:0]€:0[&:0(4:0[4:0] >:0 &:
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Comparative adjectives

Short form comparative adjectives have some features that are effectively encoded
as two-level rules. The comparative is distinguished by the inflectional ending
-ee (or ée, if stressed). For example, novyj ‘new’ has the comparative novée ‘(is)
newer’. However, adjectives with velar stems undergo the following changes in
the comparative. The final velar—g, k or x—mutates to Z, ¢ or §, respectively,
and the inflection ending is truncated to an unstressed e. If the underlying (upper-
side) ending is stressed, then the stress shifts left to the last syllable of the stem.
Examples of the comparative are given in Table 2.16.

staree stréZe *odinéce tise

‘old.COMP’  ‘strict. COMP’  ‘single.COMP’  ‘quiet.COMP’
upper star>ée strég>ée odindk>ee tix>ée
lower star_ ée stréz_e odind&_ e tid e

Table 2.16: Upper- and lower-side correspondences for comparative adjectives

Several rules are needed to render these wordforms correctly. The rule given in
(20) defines the mutation from velar to husher. It states that g changes to Z, k to ¢,
and x to §, when they are followed by a deleted stem boundary, followed by a e or
¢é on the upper side, followed by a e on the upper side.

(20) [g:Z]k:C|x:8] <=> >:0 [e:|é:] e:

The deletion of the final ¢** is expressed in rule (21), which states that e is deleted
when it is preceded by a velar on the upper side, followed by a deleted stem bound-
ary, followed by a e or ¢ on the upper side.

21D e:0 <=> [g:lk:|x:] >:0 [e:]|é:]

Finally, in adjectives whose comparatives are assigned a stressed ending, such as
stroZe and tise, it is necessary to destress the first e in the inflectional ending. This is
defined by the rule given in (22), which states that é becomes e when it is preceded
by a velar on the upper side, followed by a deleted stem boundary, and when it is

followed by a e on the upper side.
(22) é:e <=> [g:lk:|x:] >:0 e:

In addition to the forms given in Table 2.16, adjectives also have a so-called atten-

**In fact, the 1exc outputs two comparative endings: -ee and -¢j. The latter is used in rapid speech
or poetry, and it is ignored in the present discussion for the sake of simplicity. The rule to remove
the j is virtually identical to the rule in (21).



2.3. UDAR 33

uated comparative,?> which is not included in Zaliznjak’s description of compara-
tives (Zaliznjak, 1977, p. 58). The attenuated comparative is identical to the stan-
dard comparative, but with the prefix po- added, e.g. postarée, postréze, or potise.
Attenuated comparatives can be used adverbially (23-a), predicatively (23-b), or
attributively (23-c).?°

(23) a. V Rossii igraiit c¢ut'  pobystree, cem v Grecil.

In Russia play.3PL slightly fast. CMPR-ATTEN than in Greece
‘In Russia, they play just a little faster than in Greece.’

b. Eto poxuZe tvoix problem.
This worse.ATTEN your.GEN problems.GEN
“This is a little worse than your problems.’

c. Zdes'resali ladi poumnee tebd.
Here resolve.PAST people.NOM smart.CMPR-ATTEN you.GEN
“This was resolved by people a little smarter than you.’

The formation of such comparatives is problematic for the left-to-right nature of
lexicon construction in 1exc, because the prefix is only present in this one cell of
the paradigm. However, this is easily resolved with the use of a two-level rule. 1
declare two archiphonemes—P and A— that are prepended to the entire adjective
lexicon. By default, P and A are always deleted, so they have been ignored in the
descriptions of all other nominal rules in this chapter for the sake of simplicity.
However, the rules governing these archiphonemes are given here. P and A are
realized as p and o, respectively, whenever the wordform ends with a P, as well.
Examples are given in Table 2.17.

novée ponovée
‘newer’ ‘a little newer’
upper PAndév>ée PAndv>éeP

lower nov_ée ponov_ée_

Table 2.17: Upper- and lower-side correspondences for comparatives with prefix po-

The rules needed to realize P and A as surface letters are given in (24). The first
rule states that P changes to p when it is at the beginning of the word and followed
by A on the upper side, followed by any sequence of any symbols, followed by an
upper-side e or j, followed by a deleted P at the end of the word.

2 Sometimes these forms are also referred to as “prefixed” comparatives.

A more thorough investigation of the semantics and syntax of atten-
vated comparatives is available in Boguslavsky and Iomdin (2009), or at
http://rusgram.ru/CpaBHUTe/IbHAS _CTEIeHb Ha _ IIO-.
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24) a. P:p <=> .#. _ A: 2% [e:|]J:]1 P:0 .#.
: _ 2% [e:]j:] P:0 .#.

o
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Masculine short-form adjectives

Most Russian adjectives have four so-called short-forms: masculine, neuter, femi-
nine and plural. These four forms are primarily used predicatively. The inflectional
endings of these four forms are basically the same an the canonical noun endings
for each singular gender and plural: zero for masculine, -o for neuter, -a for femi-
nine, and -y for plural. The actual surface realizations of these endings can change
according to palatalization and spelling rules discussed previously, and for the most
part, these changes are already captured by rules given above. However, in order
to avoid complicating existing rules unnecessarily, I created a new symbol Z to
render the zero ending of the masculine short-form. Examples of the masculine
short-form are given in Table 2.18.

nov izlisen sin' dlinnoséj

‘new’ ‘excessive’ ‘blue’ ‘long-necked’
upper ndév>Z  izlisFen'>Z sin'>Z dlinnos$éj>Z
lower név___ izlid_en_  sin__ ' dlinno8é_ j

Table 2.18: Upper- and lower-side correspondences for masculine short-form adjectives

The first example, nov is very straightforward, and its pattern is described in
rule (25-a). This rule states that Z is deleted when it is preceded by a velar, husher,
paired consonant or j, followed immediately by a deleted stem boundary. The
second example, izliSen, is very similar to the example of basnd discussed in Ta-
ble 2.14 and rule (17-a), above. Its changes are expressed in rule (25-b), which
states that Z is deleted when it is preceded by a deleted F, followed by a vowel,
followed by an n, followed by a deleted soft sign, followed by a deleted stem
boundary. This is exceptional because in such lexemes, the 7 is soft in every form
except the masculine short-form.

(25) 2:0 <=>

a. glklxlz|s|§[clclblvidliz|limIn|lplrlis|t|f]|]]

TV o=

:0 _
b. :0 Ve n ":0 >:0 _

The third example, sin’, is what we typically expect of a soft stem, and its changes
are expressed in the rules in (26), which collectively define all soft paired consonant
adjective stems other than the one captured in (25-b). Rule (26-a) captures every
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paired consonant other than n. Rules (26-b) and (26-c) capture contexts with n
that differ from (25-b). More specifically, (26-b) captures contexts in which the
preceding vowel is not a fleeting vowel—such as sin' ‘blue’ above—and (26-c)
defines contexts when 7 is preceded by a consonant. Currently, only one lexeme in
the lexicon is captured by this rule: verxnij~verxn' ‘upper’.

(26) Z:'<=>
a. [blv|dlz|l|mlplrls|t|f] ":0 >:0 _
b. \F:0 V.n ":0 >:0 _
c. Cn '":0 >:0 _

The last example in Table 2.18—dlinnosej ‘long-necked’— represents a very small
set of adjectives whose stems do not contain a fleeting vowel, and the last letter is
Jj- Currently, only seven lexemes are covered by this rule, all of them based on the
root SEJ ‘NECK’. Rule (27) states that 7 changes to j when it is preceded by any
character other than F, followed by a vowel, followed by a j on the upper side,
followed by a deleted stem boundary.

(27) Z:3 <=> \F:0 V j: >:0

The preceding discussion has introduced the two-level formalism as implemented
in the lexc and twolc languages. I have also given an overview of the most
relevant two-level rules governing the structure of Russian nominals, including
stem palatalization and stress placement. In the following section, I discuss some
of the two-level rules specific to Russian verbs.

2.3.3 Structure of verbs: lexc and twolc

There are two prevailing approaches to formal descriptions of Russian verb conju-
gation: the one-stem system and the two-stem system.?’ The two-stem approach
asserts that each verb has two separate surface stems between which no regular
relation is assumed. One stem is used to form the infinitive and past, and the other
is used to form present, future and imperative forms. The one-stem system, on the
other hand, posits an underlying stem from which the two separate stems can be
derived. UDAR is primarily based on Zaliznjak’s Grammatical dictionary of Rus-
sian, which favors a two-stem system, so UDAR’s verbal lexicon is also structured
according to a two-stem system.

Note that for the sake of simplicity in the two-level rules, a different symbol
is used to mark the stem boundary for verbal morphology ( < ), as opposed to the
nominal stem boundary symbol ( > ). The stem boundary symbols merely serve

Y For a discussion of these two systems, see Chvany (1990) or Nesset (2008, ch. 5).
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as a trigger for the application of a certain set of rules, so using a separate sym-
bol for verbs removes the need to write the rules to accommodate one another (i.e.
avoiding overlapping contexts). In reality, these rules are not strictly limited to
either nominals or verbs. There are instances where the ‘nominal’ stem boundary
> is used within the verbal system to trigger the application of some rules dis-
cussed above. For example, the verb fancevat’ ‘dance’ has the upper-side form
tanc>ova<t ', which takes advantage of the spelling rules defined for nominals
in order to unify its continuation class with verbs like cuvstvovat’ ‘feel’. In terms
of linguistics, one could say that the so-called nominal rules also apply in word
formation.

Stem alternations

Russian exhibits stem-final consonant alternations in certain forms of the nonpast
conjugations and related verb forms. There are two different types of stem alter-
nations in Russian verbs: stems ending in a labial gain an epenthetic /, and certain
other consonant letters change to a husher, as shown in (28). Note that two conso-
nants’ alternation patterns are nondeterministic: d alternates with both # and #d,?
and ¢ alternates with both § and ¢. In order to render these alternations, I declare
two archiphonemes D and T to stand in for d and ¢ in stems with the respective Zd
and § alternations.

xskstTtkb v m p £

(28) g dbD
Z Z Z $§§ 8§ 8§ ¢ ¢ bl vl ml pl f1

S
S

N< N

d

The 1exc code marks where alternations should occur by means of a special sym-
bol (abbreviated here as M, for simplicity).?’ In the case of labial stems, the M is
converted to an /. With the archiphoneme D, the M changes to a d. For the re-
maining consonants listed in (28), the M is deleted and the preceding consonant is
converted to its corresponding husher. Examples of this are given in Table 2.19.

lablii pldcet isi
‘(D) love’  “cries’ ‘(I) seek’

upper 1GbM<
lower 1Gbl_

plakM<et iskM<u

pladc¢__et 1_5_ 0

[« N PN

Table 2.19: Upper- and lower-side correspondences for verbal stem mutations

The d~Zd alternation only occurs in the past passive participle.
M stands for ‘mutation’.
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The first example in Table 2.19, liiblii, is an example of a labial stem that gains
an epenthetic /. This is described in rule (29), which states that M changes to [ after
labial consonants.

(29) M:1 <=> [blplv]|f|m]

Further, the second example, pldcet, is one in which the stem-final consonant alter-
nates with a husher. This type of alternation is captured by the rules in (30)-(32).
Rule (30) simply states that each of the listed alternations occurs when followed
by the symbol M on the upper side.

(30) [g:2|d:Z|D:Z2|z:Z2|s:8|x:8|T:8] <=> M:

However, the rules for ¢ and k are slightly different because there are two possibil-
ities, based on their context. The clusters st and sk alternate with §, while every
other context of ¢ and k alternate with ¢. The alternation in verbs like placet from
Table 2.19 is covered by rule (31), which states that # and k change to ¢ when they
are preceded by anything other than an s on the upper side, and when they are
followed by a deleted M.

3D [t:&|k:&] <=> \s: _ M:0

The complementary context is expressed in rule (32), which captures the stem
alternation of iSu from Table 2.19. It simply states that r and k change to § when
preceded by an upper-side s and followed by a deleted M.

(32) [t:8|k:8] <=> s: _ M:0

One other stem alternation makes use of the symbol M, but without deleting it. As
mentioned earlier, a small number of verbs with a stem in d alternate with Zd in
the past passive participle. This alternation is achieved by changing the M to a d, as
shown in Table 2.20.

ubeidénnyj
‘convinced’

upper ubeDMEnn>yj
lower ubeZdénn_yj

Table 2.20: Upper- and lower-side correspondences for past passive participle stem alter-

nations to -Zd-

In this alternation, there are two changes. The D is changed to Z by rule (30),
above. It should be noted that the M symbol in that rule is not given its maximal
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specification M: 0 precisely because of the situation presented here, in which the M
is not deleted. In participles such as ubeZdennyj, the M is changed to d, as declared
in rule (33), which simply states that M changes to d when it is preceded by a D and
followed by either e or ¢ on the upper side, followed by an n, optionally followed
by another n, followed by a deleted nominal stem boundary. This sequence is a
unique signature of the -i- conjugation’s past passive participle, both long- and
short-form.

(33) M:d <=> D _ [e:]|&€:] n (n) >:0

One other kind of stem alternation should be mentioned here. A closed class of
Russian verbs have stems ending in g and k, such as moc’ ‘be able / can’ and pec”’
‘bake’. Their non-past inflections are shown in example (34).

(34) a. ‘can.SG-1’ mogi
‘can.SG-2’ moZes’
‘can.SG-3’ mdZet
‘can.PL-1" moZem
‘can.PL-2’ mdZete
‘can.PL-3’" mdgut

b. ‘bake.SG-1’ pekii
‘bake.SG-2’ pecés’
‘bake.SG-3’ pecét
‘bake.PL-1" pecém
‘bake.PL-2’ pecéte
‘bake.PL-3’ pekiit

In such verbs, the letters g and k change to 7 and ¢ when they are followed by e
or é. This alternation can be encoded easily without the help of a special symbol,
which allows these verbs to use the same lexc continuation class as other verbs
belonging to the -e- conjugation. Two examples of this alternation are given in
Table 2.21.

moZem pecém

‘(we)can’ ‘(we) bake’
upper még<em  pék<Em
lower mdéZ_em ped_ém

Table 2.21: Upper- and lower-side correspondences for verbal stem mutations of moc¢’ and
pec'
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The rule for this alternation are given in (35), which states that g changes to 7
and k to ¢, when they are preceded directly by anything other than a ¢, and followed
by a deleted verbal stem boundary, followed by either a e or ¢ on the upper side.

(35) [g:z]k:&] <=> \t <:0 [e:]é&:]

The reason that there is a constraint to not have a ¢ immediately preceding is be-
cause of verbs based on the stem tkat' ‘weave’, which do not exhibit this stem
alternation, e.g. tkém ‘(we) weave’. Too broad a constraint, such as disallowing all
consonants, would be too limiting, since there are examples like /gat’ ‘lie’, which
do exhibit this alternation, e.g. [Zém ‘(we) lie’. Unfortunately, there are not enough
verbs of this stem type to clearly establish phonetic categories of consonants that
do allow the alternation, so the rule merely rules out the only known exception.>’

Vowels in nonpast endings

There are a number of vowel letter adjustments in the verbal non-past inflectional
endings that are easily and efficiently realized using two-level rules. Among the
motivations for these rules are both actual morphophonological constraints, as well
as normative orthographic rules (which are the remnant of historical phonological
constraints, and which actually contradict modern phonology).?! Ultimately, these
two-level rules are designed to model orthographically well-formed words, so the
descriptions of the following rules should be understood as descriptions of the
orthography, and not necessarily of morphophonology.

The first rule is concerned with the realization of # and 4 in verbal endings. This
rule applies to the first person singular and the third person plural forms of verbs
belonging to the -i- conjugation. It is that # and & change to u and a, respectively,
when they follow a husher. Examples of this are given in Table 2.22.

slysu slysat xoZu

‘(D hear’ “(they) hear’ ‘(I) walk’
upper slysS<d slysS<at x6dM<t
lower slysS_u sly$_at X0Z__ 1

Table 2.22: Upper- and lower-side correspondences for 4 and d in verbal endings

3This exception could also be modeled by using special continuation classes for tkat' in lexc.
However, this rule is both simpler to implement, and it is at least potentially a valid description from
a theoretical point of view.

3'Hist0rically, the hushers (2, §, §, and ¢) and ¢ were all palatalized, but 7, § and ¢ have since
become non-palatalized. Despite this phonetic difference, and its phonological consequences, these
consonant letters are treated the same orthographically.
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All three forms given in Table 2.22 are covered by the same rule. Because
of the stem alternations discussed in the previous section, the rule must declare a
lower-side husher, i.e., it is a product-oriented generalization. The rule, given in
(36), states that #, i, 4, and d change to u, i, a, and d, respectively, when they are
preceded by a husher on the lower side, optionally followed by a deleted symbol
M, followed by a deleted verbal stem boundary.

(36)  [G:ulf:Gl&a:aléd:a] <=> [:%]:5]:8]:8] (M:0) <:0 _
The second rule also applies to the spelling of the first person singular and third
person plural inflectional endings, but with verbs in the -e- conjugation. As shown
above, the 1exc code assigns the -ii ending to the first person singular of -i- con-
jugation verbs. However, 1exc assigns the -u ending to verbs of the -e- conjuga-
tion. This creates an underlying phonological distinction between the two classes
of verbs, allowing two-level rules to target only one class at a time. Not only is
this convenient from an engineering perspective, it is a reflection of the historical
factors that led to the differences in stem palatalization between the verb classes.

In -e- conjugation stems ending with a paired consonant, the first-person sin-
gular and third-person plural forms have a hard stem (i.e. the ending begins with
-u, and the remaining forms in the paradigm are soft (their endings all begin with
¢ or -e). However, there are three contexts in which the first-person singular and
third-person plural forms have endings beginning in -i. Examples of these contexts
are shown in Table 2.23. The first context is when the stem ends in a phonetic yod.
Most commonly, this is when the stem ends in an orthographic vowel—such as in
lati ‘(1) bark’—but it also occurs in five verbal roots containing a fleeting vowel:
bit" ‘hit’, vit' ‘wind’, lit' ‘pour’, pit’ ‘drink’, and $it' ‘sew’. The second context
is when the stem ends in an /, as shown in posiii ‘(I) will send’. The last context
is verbs based on two roots— borot' and porot'—such as borot'sa ‘wrestle/fight’.
This last category is realized by the use of a special symbol (here R, for simplicity),
which always changes to r in the lower side.

ldi pliit poslii boriis'

‘(D bark’  ‘(they) drink’  “(I) will send”  “(I) wrestle’
upper la<u pFéj<uat pdsl<u boR<us'!
lower 1la_t p_'_ﬁt poél_ﬁ bor_{s"

Table 2.23: Upper- and lower-side correspondences for u in verbal endings

The rules for these contexts are given in (37).

(37) [u:t|Ga:4] <=>
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a. V <:0 _

b. F:0 V: j <:0
C. 1 <:0 _

d R:r <:0 _

Rule (37-a) covers the example laii from Table 2.23, and states that these changes
occur when preceded by a vowel followed by a deleted verbal stem boundary.

Rule (37-b) covers the example p'it, and it states the these changes occur when
the vowels are preceded by a deleted F, followed by an upper-side vowel, followed
by an upper-side j, followed by a deleted verbal stem boundary. The yod after a
fleeting vowel exhibits the same correspondences as those in Table 2.8 above. This
type of verbal stem is also discussed in the section on imperatives below.

Rule (37-c) covers the example poslit from Table 2.23, and it states that these
changes occur when preceded by a lower-side /, followed by a deleted verbal stem
boundary. It is important that the [ is specified as lower-side, so that it will cap-
ture labial stem alternations, such as dremlii ‘(I) snooze’ and kolebliitsa ‘(they)
fluctuate’.

Lastly, rule (37-d) covers the example boriis’ from Table 2.23, and it states that
these changes occur when preceded by an R that changes to an r, followed by a
deleted verbal stem boundary.

Imperatives

Russian imperatives pose a similar problem to that of the genitive plural discussed
above. The realization of imperative inflectional endings is conditioned by stem
shape and stress position, which cuts across the categories created by the current
continuation classes in the 1exc source code. Rather than multiply the number of
continuation classes, I handle these inflections with twolc rules. This approach
simplifies future lexc code maintenance by reducing the likelihood of manual
miscategorization of new lexemes.

There are several different contexts that determine the realization of the im-
perative ending. One of the most import factors is stress placement, which the
lexc code distinguishes by using two separate symbols, U for the unstressed end-
ing and S for the stressed ending. The other important consideration is the mor-
phophonological shape of the stem, including which letter or letters are stem-final,
and whether the stressed prefix vy- is present. The relevant environments are listed
in Table 2.24.

To begin, I will explain how the stressed imperative ending S is realized, since
its rules are more straightforward. Examples are shown in Table 2.25.

The first example in Table 2.25, pej, comes from the five j-stem roots with a
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Stem Unstressed ending  Stressed ending
U S

CCorCC i [

K i 1

g - [

j _ _

C ' i

-vy-C i n/a

A J J

Table 2.24: Realization of imperative endings

péj spi Stoj doi

‘drink!”  ‘sleep!” ‘stand!” ‘milk!’
upper pFéj<S sp<S sté<s  do<i
lower p_éj_  sp_1i sté_j do_i

Table 2.25: Upper- and lower-side correspondences for imperatives with the stressed end-
ing S

fleeting vowel discussed in the previous section.>> Since these verbs are phono-
logically unique, their ending can be encoded as a two-level rule, instead of as an
exceptional ending, as Zaliznjak suggests. The rule is simple, as shown in (38),
which states that S is deleted when it is preceded by a j, followed by a deleted ver-
bal stem boundary. The right context specifies possible sequences that can follow
the base imperative inflection, and it will be discussed more below.

(38) S:0 <=> j <:0 _ (te) (s [&:]1"])

The second example in Table 2.25, spi, represents verbs with stems that end in any
consonant other than j. Rule (39) declares the relations of such verbs. This rule
states that S changes to 7 when it is preceded by any consonant other than j on the
lower side, optionally followed by an upper-side M, followed by a deleted verbal
stem boundary.

(39)  S:i <=> [:C - :3] M:) <:0 _ (te) (s [a:1'])

The third example in Table 2.25, stoj, represents verbs with stems ending in a
vowel. In these verbs, the imperative ending is a j. This change is defined in
rule (40), which states that S changes to j when preceded by a lower-side vowel,

32Zaliznjak designates these verbs with code 11.
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followed by a deleted verbal stem boundary.
(40) S:j <=> :V<:0 _ (te) (s [&a:]"'])

The final example in Table 2.25, doi, represents a group of verbs whose imperative
inflectional endings are encoded directly in 1exc, because they do not follow the
general rule.3* This group is comprised of vowel-final stems of declension type 4b
or 4c, and their imperative ending is the stressed -7.

In the following paragraphs, I explain the rules associated with the unstressed
imperative ending U. The first examples are given in Table 2.26. The rule for
changing U to j—as in the example of duj—is identical to rule (40) above. Like-
wise, rule (38) above also applies to deleting U in stems with j, as in the example

of vypej.

dij vypej lig

‘blow!”  ‘drink!’ ‘lie down!’
upper du<uU vypFej<U l§g<U
lower dua_j vyp_ej_ lég_

Table 2.26: Upper- and lower-side correspondences for imperatives with the unstressed
ending U: duj, vypej, and ldg

The third example in Table 2.26 is interesting from a linguistic point of view.
As will be shown later, the stem shape of ldg would typically result in a soft sign
ending in the imperative: /dg'. However, Russian velars are such that they cannot
be soft except before a front vowel, so the soft sign is not allowed in this context.
This particular lexeme and its prefixed derivatives are the only velar stems with
an unstressed imperative ending, so most descriptions of Russian treat it as an
exception. However, especially because the difference is linguistically motivated,
I prefered to encode this fact in a two-level rule, shown in (41), which states that
U is deleted when preceded by d, followed by g, followed by a deleted verbal stem
boundary.

(41) U:0 <=> 4 g <:0 _ (te) (s [&:]'])

The remaining rules provide coverage for unstressed imperative endings on stems
that end in consonant, of which there are four categories. An example of each
category is given in Table 2.27.

331t would be possible to distinguish these stems from other vowel-letter stems phonologically
by adding a j to the stems of other verbs, e.g. stoj<sS instead of sto<S. However, this would
complicate the whole verbal system too much to outweigh the addition of a handful of continuation
classes.
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pomni morsi vybegi otvét’'

‘remember!”  ‘wrinkle up!” ‘runout!”  ‘answer!’
upper pdoémn<U mérs<u vybeg<U otvét<U
lower pdémn_i mérs i vybeg_1i otvét_'

Table 2.27: Upper- and lower-side correspondences for imperatives with the unstressed
ending U: pémni, morsi, vybegi, otvét'

Stems that end in two consecutive consonants—including both the sequence
CC and C'C—have the imperative ending -i, as shown in the example pomni. Like-
wise, stems that end in the letter § —which was historically a complex consonant
/$t/—also has the imperative ending -i, as shown in the example mor3i. These rules
are defined in (42). Rule (42-a) covers forms like pomni, stating that U changes to i
when it is preceded by a lower-side consonant, optionally followed by a lower-side
soft sign, followed by any consonant other than j on the lower side, optionally fol-
lowed by a deleted M, followed by a deleted verbal stem boundary. The consonant
Jj is excluded here for two equally sufficient reasons. First, Russian orthography
does not allow j immediately after another consonant. Second, including j would
create a conflict with the U: 0 version of rule (38) above.

42) U:1 <=>
a. :C (") :C-:3j] (M:0) <:0 _ (t e)
:0 _ (te) (s [&:]'])

Rule (42-b) covers forms like morsi, stating that U changes to i when it is preceded
by a lower-side §, optionally followed by a deleted M, followed by a deleted verbal
stem boundary. Specifying the § as lower-side is important here because it could
be the result of a stem alternation, which would not have § on the upper side.

The third example in Table 2.27, vybegi, represents a large group of perfective
verbs with the stressed prefix vy-, whose stems end in a single consonant. One
way of understanding the ending of these imperatives is by means of cascading
phonological rules. Their base form, without the prefix vy-, would have a stressed
imperative ending, and so their imperatives end in -7, e.g. begi ‘run!’. Then, a
later phonological process adds the prefix vy- which takes the stress away from the
ending.

Identifying whether the string vy is a prefix or not is not trivial. If it is un-
stressed, then it can be safely ruled out. Likewise, if it does not occur at the begin-
ning of the word, it might not be a prefix. However, there are instances of prefix
stacking, in which the vy is buried under another prefix, namely pere- ‘re-’, po-
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‘DISTRIBUTIVE’, or samo- ‘self-’, as in perevyberi ‘re-choose!’, povyrubi ‘com-
pletely cut down a number of (trees)!’, and samovyrazis' ‘express yourself!’. There
are also instances in which a word initial vy- is not a prefix, as in vys'sd ‘tower!’.
This last group cannot be distinguished orthographically, so they must be distin-
guished by means of archiphonemes or special 1exc continuation classes. The
rule covering verbs such as vybegi is given in (43). This rule states that U changes
to i when it is preceded by a sequence that optionally begins with either po, pere,
or samo, followed by v, followed by y, followed by a sequence of any number of
any symbols, followed by either a) a vowel, followed by any consonant other than
g or j, or b) any vowel other than & or d, followed by g, either of these optionally
followed by a deleted M, followed by a deleted verbal stem boundary.

43) U:ti <=> ([ po | pere| samol] ) vy?
[[:V [ :C - [ :g | 3 111 | [[:V - [:4]:4]]
(M:0) <:0 _ (te) (s [

Another class of verbs with the prefix vy- has the imperative inflection -i. This
group is made up of vowel-final stems of declension class 4a (stem-stressed im-
perative), such as vydoi ‘milk dry!’. In essence, these verbs are exactly same as
doi in Table 2.25, except that that the prefix vy- has pulled the stress to the stem. As
in the case of doi, the imperative endings of verbs like vydoi are encoded explicitly
in the 1exc code without the help of two-level rules.

The last example in Table 2.27, otvet', is the most canonical and straightfor-
ward, but because of the many exceptions already discussed, the two-level rule
for expressing its relations must be written to avoid overlap. This rule is given in
(44). The first part of the rule excludes stems with the prefix vy- and the second
part of the rule excludes single-consonant stems with specific consonants that have
been discussed previously. The rule states that U changes to ' when it is preceded
by any sequence of any symbols except for the sequence of po or pere or samo
followed by v followed by ¥ itself followed by any sequence of any symbols, this
entire sequence being followed by a lower-side vowel, followed by any lower-side
consonant other than §, g or j, optionally followed by a deleted M, followed by a
deleted verbal stem boundary.

> 2%x=[(
C - [:8
')

(44) U: '<=
VAR
(s I

[ po |l pere | samol]) vy 2]
[:g]:3]1]1 (M:0) <:0 _ ( t e)

W

The only remaining piece of imperative inflection is the reflexive ending, which is
realized as -sd after consonants, and s’ after vowels. Because the inflectional ending
of imperatives can be realized as a vowel, consonant, or nothing, the reflexive
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ending must be adjusted accordingly.>* Examples of this are given in Table 2.28.

molis’ pro8djsa sprac'sa
‘pray!’ ‘farewell!’ ‘hide!’

upper mdl<Ssd prod8a<Usad spratM<Usa
lower mol_is' pro8a_jsd sprac_ 'sa

Table 2.28: Upper- and lower-side correspondences for imperatives with the reflexive suf-
fixes

By default, -sd will remain -sd, so the only context in which a change is nec-
essary is when the imperative inflectional ending is realized as -i (or 7), as in the
example of molis' in Table 2.28. This is accomplished by rule (45), which simply
states that @ changes to ' when it is preceded by a deleted verbal stem boundary,
followed by i or 7, followed by s.

45) <:0 [:1]:1] s

Verbal prefix fleeting vowels and voicing assimilation

There are a number of verbal prefixes in Russian that have fleeting vowels, but these
vowels follow rules that are different from the type discussed in the nominal section
above. The letters o and ¢ are the only prefixal fleeting vowels, and they occur in
the following prefixes: vo-, nado-, obo-, oto-, podo-, predo-, so-, vzo-, vozo-, izo-,
nizo-, and razo-. It would be impossible to reliably identify these prefixes based
only on orthography, so their fleeting vowels were represented with archiphonemes
to be certain that the applicable two-level rules do not operate in unwanted contexts.
The stressed fleeting vowel is represented here as O, and the unstressed fleeting
vowel is represented as N. By default, they are realized as ¢ and o, respectively.
They are deleted, however, when followed by a single consonant followed by a
vowel. Examples are given in Table 2.29.

obgonit razob'ét razbit'

‘(he) will outrun’  ‘(he) will break it up’  ‘to break up’
upper obOgdén<it razNbFéj<ét razNbFéj<s
lower ob_gén_it razob__ ' &t raz_b_éj_

Table 2.29: Upper- and lower-side correspondences for fleeting vowels in verbal prefixes

3*Note that this adjustment only applies to the singular imperative. The plural imperative is itself
suffixed with -te, which ends with a vowel, so the reflexive suffix is always realized as -s'. Therefore,
the reflexive suffix of plural imperatives is already generated as such in 1exc.
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In the first example, obgonit, the fleeting vowel O is deleted because the fleeting
vowel is followed by the sequence, -go-. However, in the second example, razob'¢t,
the fleeting vowel N is not deleted because it is followed by the sequence -b'-. In
the third example, razbej, the fleeting vowel is deleted because it is followed by the
sequence -bé-. This rule is expressed in (46), which states that O and N are deleted
when followed by a consonant, optionally followed by a deleted F, followed by a
lower-side vowel.

(46) [0:0|N:0] <=> _ C (F:0) :V

A subset of the prefixes with fleeting vowels have one other change that is modeled
using a two-level rule. The final z in vz-, voz-, iz-, niz-, and raz- changes to s when
it is followed by an unvoiced consonant, as demonstrated in Table 2.30.

)
Y1 A

razos'i rassil

‘(D will rip/unseam’  ‘(he) ripped/unseamed’
upper razNSFéj<a razNsi<l
lower razod_ ' 4 ras_3i_1

Table 2.30: Upper- and lower-side correspondences for devoicing of z in verbal prefixes

The rule governing this change is given in (47), which states that z changes to
s when it is preceded by v, vo, i, ni, or ra, and when it is followed by a deleted O or
N, followed by an unvoiced consonant on the lower side, followed optionally by a
deleted F, followed by a lower-side vowel.

47 z:s <=> [v]|vo|vd:|i|i:|ni|ni:|ralrd:] _
[0:0[N:0] [:kl:pl:s|:t]:f|l:x|:c|:C|:8]:8] (F:0)
Y4

Limitations of UDAR

The foundation of UDAR—as with almost all computational models of Russian—
is Zaliznjak’s Grammatical dictionary of Russian. Because of this, to the extent
that UDAR is an accurate representation of the Grammatical dictionary, any lim-
itations of the dictionary are inherited in the model. The most obvious example
is missing lexemes. For example, the Grammatical dictionary contains no abbre-
viations or acronyms. It also has only a representative lexicon of proper nouns.
Significant work is needed to improve coverage of these types of words.

Some paradigmatic insufficiencies have already been amended, such as the
attenuated comparatives discussed above. Some other missing features have been
identified, but have not yet been implemented. For example, productive affixes,
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such as synthetic superlatives with the suffix -¢jsij and/or the prefix nai-—as in
interesnejsij ‘the most interesting’ or naiprekrasnejsij ‘the very most wonderful’—
are only modeled lexically in the Grammatical Dictionary, if at all. In order to
expand the model to include these and other forms, some linguistic research is
needed to ensure accurate implementations.

Also, the vocative form of personal names are not currently implemented in
UDAR. Most vocatives can be generated using the same structure and rules as the
genitive plural, but these forms do not always coincide; the vocative form does not
have fleeting vowels, whereas the genitive plural does.

Similarly, as a more-or-less prescriptive enterprise, the Grammatical dictionary
was not intended to model non-standard forms. This includes dialectal wordforms—
such as the imperative /dz" ‘lie down!” (compare Table 2.26 above)—as well as
common mispellings and deliberate substandard language.®> For applications that
require analysis of non-standard Russian, UDAR will require expansion of both
the lexicon and the rules.

There are a few systematic phenomena in Russian morphology that are not eas-
ily captured using a two-level morphology, especially affixation of various kinds.
Some simple prefixation is easily performed using archiphonemes with a deleted
trigger in relevant suffixes, as shown with attenuated comparatives in Table 2.17
above. However, more complicated cases of affixation are problematic, especially
prefixation and suffixation in the verbal system.

One of the most prominent features of the Russian verbal system is aspectual
pairs (or clusters), distinguished by prefixes and suffixes. For example, the sim-
plex imperfective verb smotret' ‘l100k.IPFV’ is semantically paired with the perfec-
tive verb posmotret' ‘look.PFV’. Some Russian part-of-speech taggers—including
my stem— actually treat such pairs as a single lemma, so that posmotret' is seen as
the perfective inflection of smotret’. Such an approach makes the assumption that
these pairings can be established objectively (Janda, 2007). However, problematic
cases are more a rule than an exception. For example, mystem analyzes the per-
fective verb procitaet ‘read.PFV-FUT-3SG’ as an inflection of the verb procityvat’,
even though major Russian dictionaries list ¢itat’ as the preferred counterpart. This
example illustrates one of the most widespread causes of confusion about what
constitutes a pair.

3For example, the so-called dzyk padonkov (ak.a. padonkaffskij or olbanskij jezyg) has become
commonplace in informal communication on the Internet. This practice distorts standard orthogra-
phy, while still maintaining a phonetically viable representation of Russian. For example, the stan-
dard privét ‘hi’, is frequently rendered as preved, which, because of vowel reduction and word-final
devoicing, should be pronounced the same.
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2.3.4 Morphosyntactic tags

In this section, I define the morphosyntactic tags and other tags used in UDAR.
Since UDAR is still under development, these tags will likely continue to evolve.
Many tags are taken either directly or indirectly from the codes given in Zaliznjak
(1977). For example, the code Mo means “masculine, animate”, which translates
directly into corresponding morphosyntactic tags.

In addition, the tags used in UDAR are also influenced by conventions of the
Giellatekno and Divvun research groups>®, as well as the Apertium open-source
machine-translation project.’’

The primary part-of-speech tags are given in Table 2.31. Although most part-
of-speech categories may seem to be well-defined, there are instances that are
more difficult to determine. For example, virtually all determiners—code mc-11
in Zaliznjak—can be used substantively, i.e. as pronouns. In such cases, UDAR
generates both readings.

Tag Meaning

A adjective

Abbr | abbreviation

Adv | adv

CC coord. conjunction
CS subord. conjunction

Det determiner
Interj | interjection
N noun

Num | numeral
Paren | parenthetical
Pcle | particle

Po postposition
Pr preposition
Pron | pronoun

\" verb

Table 2.31: Part-of-speech tags used in UDAR

Zaliznjak does not distinguish between types of conjunctions, using only one
code, coros, for all conjunctions. However, there are obvious benefits to distin-
guishing between different kinds of conjunctions, especially when it comes to iden-

3giellatekno.uit.no and divvun.no
37apertium.org
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tifying clause boundaries for syntactic parsing. For this reason, I have divided the
conjunctions into two categories, coordinating and subordinating.

The particle category is used by many lexicographers of Russian as a miscel-
laneous category, with lexemes of wildly different syntactic behavior receiving the
same tag. Efforts are being made to sort the particles into more meaningful cate-
gories (Endresen et al., 2016).

The sub-part-of-speech tags used in UDAR are given in Table 2.32. Most of
these tags are not derived from Zaliznjak, but were deemed useful for morphosyn-
tactic disambiguation and syntactic parsing. In other words, most of these tags are
used to mark sets of words whose syntactic roles are somehow distinct from their
general part-of-speech category. In some cases, creating these categories multiplies
wordforms. For example, the pronoun kto ‘who’ can be used as an interrogative
and a relativizer, much like English. I elected to generate two distinct readings for
this lemma: Pron Interr and Pron Rel.

Tag Meaning

All ‘all’

Coll collective (numeral)
Def definite

Dem | demonstrative
Indef | indefinite
Interr | interrogative
Neg negative

Pers | personal

Pos possessive
Prent | percent

Prop | proper

Recip | reciprocal
Refl | reflexive

Rel relative

Table 2.32: Sub-part-of-speech tags used in UDAR

The nominal morphosyntactic tags in UDAR are given in Table 2.33. Since
Russian does not generally have gender in the plural, the MFN tag appears on plural
modifiers to show that they can agree with nouns of any gender. The MFN tag also
appears on a number of pluralia tantum, since there is no way to establish their
gender in the singular.

The Sem/Alt tag is used for all inanimate proper nouns, such as place names,
organizations and other entities. In the future, it may be beneficial to use more
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specific tags.

The Count tag is used to distinguish plural genitive noun forms that are used
with specific quantifiers: desjat’ celovek ‘ten people’ vs. mnogo ljudej ‘lots of
people’.

Tag Meaning

Fem feminine

Msc masculine

Neu neuter

MFN any/unknown gender
Inan inanimate

Anim animate

Anln either animacy

Sem/Ant | first name

Sem/Pat | patronymic

Sem/Sur | surname

Sem/Alt | place names, organizations, etc.

Sg singular

Pl plural

Nom nominative
Acc accusative
Gen genitive

Loc locative (prepositional)
Dat dative

Ins instrumental
Loc2 locative2
Gen2 genitive2
Voc vocative
Count count

Ord ordinal
Cmpar comparative
Pred predicative

Cmpnd | compound

Table 2.33: Nominal tags used in UDAR

The verbal morphosyntactic tags of UDAR are given in Table 2.34. One point
worth discussing is the tags related to the deverbals: PrsAct, PrsPss, PstAct
and PstPss. The verbal adverbs—such as otkryvaja ‘while opening’ or vyigrav
‘having won’—are tagged with PrsAct Adv and PstAct Adv, respectively.
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Participles—such as polucivsij ‘which received’—are tagged with the appropriate
deverbal tag combined with the appropriate nominal tags for adjectival inflection,

e.g. PstAct Msc AnIn Sg Nom.

Tag Meaning

Impf  imperfective

Perf perfective

v intransitive

TV transitive

Inf infinitive

Imp imperative

Pst past

Prs present

Fut future

Sgl 1st person singular

Sg2 2nd person singular
Sg3 3rd person singular
PI1 1st person plural
P12 2nd person plural
P13 3rd person plural
PrsAct present active
PrsPss  present passive
PstAct past active

PstPss  past passive

Pass passive

Imprs  impersonal

Table 2.34: Verbal morphosyntactic tags used in UDAR

Finally, a set of tags is used to mark features that are not morphosyntactic,
but regard points of usage, register, or sandhi. For example, the tags Fac and
Prb tag wordforms as being facultative or problematic, as indicated in Zaliznjak
(1977). Other tags, such as Use /Obs and Use/Ant, show that a form is obsolete
or antiquated. The POb 7 tag is used for third-person personal pronouns with an
epenthetic n, i.e. when they are the objects of prepositions: ix ‘them.ACC’ vs.
za nix ‘for them.ACC’. The Leng and E11id tags are used to mark forms that are
longer or shorter than the canonical form, such as novoj~novoju ‘new.FEM-SG-INS’
or novee~novej ‘new.COMP’.

The tag Err/Sub indicates that a form is nonstandard. This tag makes it pos-
sible to analyze nonstandard forms, such as maxaes’, and by generating the same
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lemma-tag sequence without the Err/Sub tag, one can convert it to a standard
form, e.g. mases’.

2.3.5 Flavors of the FST

FSTs have closure properties which make it simple to filter and modify entries us-
ing regular expressions and operations such as union, subtraction and composition.
XFST and HFST have functions built in to facilitate these operations. This makes
it possible to easily create various “flavors” of UDAR, specific to a particular need.

For example, in order to generate unstressed wordforms, one option would be
to generate the stressed wordform with the raw UDAR generator FST, and then
remove the stress marks in post-processing. However, this approach increases the
computational load of the generation process. A more efficient approach is to com-
pose UDAR with an FST that converts stressed vowels to unstressed vowels. The
resulting FST generates unstressed wordforms directly, without the need for post-
processing. Likewise, the raw UDAR analyzer FST can be composed with an FST
that makes stressed vowels optional. The resulting FST is maximally flexible, rec-
ognizing both stressed and unstressed wordforms.

Likewise, tags like Err/Sub and Prb mark nonstandard forms. By filter-
ing out readings with such tags, it is possible to make FSTs that only analyze or
generate normative wordforms.

2.4 Evaluation

In order to evaluate the coverage and speed of UDAR, I compared it with other
morphological transducers and related resources that were readily available: mys-
tem3, pymorphy2, and the OpenCorpora lexicon, which is the source of pymor-
phy2’s lexicon. We can expect UDAR’s performance to be weaker than mystem3
and pymorphy?2 for multiple reasons. Yandex is a large technology company, and
has likely put significant resources into developing mystem3, one of its founda-
tional NLP technologies. Likewise, pymorphy2 has benefited significantly from
the OpenCorpora project, which has led to an expanded lexicon with more cover-
age than Zaliznjak’s original dictionary. However, UDAR occupies a unique posi-
tion as a Russian transducer that handles stress, and the following tests demonstrate
that its performance is at least comparable to these other resources.

In general, one of the most difficult parts of comparing and evaluating rule-
based part-of-speech taggers is that there is no standard for tag names, categories,
or order, so establishing equivalence of tag strings is not always straightforward.
This is certainly true of Russian part-of-speech taggers. Since all of the prominent
existing morphological engines are based on Zaliznjak’s grammatical dictionary,
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mystem3 UDAR
tokens missing | 17721987 34 853 902
tokens tagged | 236348 025 295 962 831
tot tokens 254070012 330 816 733
% tagged 93.0% 89.5%

Table 2.35: Coverage of wikipedia lexicon by UDAR and mystem3.

it is reasonable to assume that the paradigms of the analysers will be equivalent,
even if the particulars of their tagging conventions differ. In fact, an informal
comparison of their outputs indicates that they are effectively the same. Because
of this, no attempt was made to translate between the tagsets of each analyzer.

2.4.1 Coverage

I employed two different approaches to evaluate UDAR’s coverage. First, I directly
compared UDAR’s lexicon with the lexicon of the OpenCorpora project. This was
achieved by using UDAR to analyze each surface form of OpenCorpora’s lexicon,
and counting the number of forms for which no analysis was returned. OpenCor-
pora has 4 909 850 wordforms in its lexicon and 3 394 466 are recognized by
UDAR, which is a coverage of 69%. As a reference point, mystem3 recognizes
4 768 520 wordforms from the OpenCorpora lexicon, which is 97% coverage.
Unfortunately, because mystem is not open-source, it is not possible to test the
coverage of UDAR and pymorphy2 on mystem3’s lexicon. Even so, these results
indicate that UDAR’s lexicon is much smaller than both pymorphy2 and mystem3.

A second, more practical method for testing lexicon coverage is on unrestricted
text. This was achieved by analyzing a dump of the Russian wikipedia and counting
the number of unknown tokens in the output. The results of this test are shown in
Table 2.35. Notice that the tokenization of mystem3 and UDAR are significantly
different. This is primarily due to the fact that UDAR treats punctuation marks as
tokens. On this test, UDAR covered 89.5% of the corpus and mystem3 covered
93.0%.

2.4.2 Speed

For some applications, the speed of the morphological analyzer is important, es-
pecially in live, interactive applications. The speed of UDAR was compared with
other taggers by processing the surface forms of the OpenCorpora lexicon. Results
are given in Table 2.36.
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‘ time (sec.) rate (words/sec.)

UDAR (xfst) 92.507 59 290
UDAR (hfst) 94.878 57 808
mystem3 66.809 82 095
pymorphy2 1310.808 4184

Table 2.36: Speed comparison processing the OpenCorpora lexicon list (5 484 696 tokens)

Both UDAR and mystem3 perform on an order of magnitude faster than py-
morphy2. However, most likely there are ways to trim overhead from pymorphy2’s
processes to increase its speed. In any case, the results in Table 2.36 show that
UDAR is a very fast transducer, though not the fastest. This makes UDAR suitable
for interactive applications that require processing large amounts of data in short
time spans.

2.5 Potential applications

The previous section has shown that UDAR is a very fast analyzer, even if it is not
the fastest. UDAR also achieves a reasonably high coverage of wordforms found
in the wikipedia corpus. This makes it a good alternative to other existing taggers,
especially if there is a need for processing stressed wordforms. In this section, I
outline a few possible applications for which UDAR is particularly well-suited.

It should be noted that UDAR is being developed in conjunction with a con-
straint grammar in the tradition of Karlsson (1990), which removes readings that
are not warranted by the syntactic context. This constraint grammar is continually
under development and is already removing 43% of extra readings from UDAR’s
output (Tyers and Reynolds, 2015). When it comes to disambiguation of word-
forms that have marked stress, UDAR has the added benefit that it does not output
readings that contradict that stress position in the input. For example, the surface
form sestry ‘sister’ is ambiguous between SG-GEN (sestry) and PL-NOM (séstry),
and pymorphy2, mystem3 and UDAR all output both readings. But with the input
sestry—which is unambiguously SG-GEN—mystem3 outputs the same two read-
ings and pymorphy?2 treats it as an unknown token, whereas UDAR outputs only
the SG-GEN reading. This type of ambiguity can be found in about 7.5% of tokens
in running text (Reynolds and Tyers, 2015).

Stress annotation

UDAR can be used to mark stress in running text. This is achieved by piping
the results of the UDAR analysis transducer into the UDAR generator transducer,
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along with a decision heuristic for wordforms with more than one possible stress
position. A recent study found that in combination with the constraint grammar
mentioned above, UDAR achieves up to 96.15% accuracy (Reynolds and Tyers,
2015).%8

Computer-Assisted Language Learning

Another application for a stress-aware morphological engine is computer-assisted
language learning, especially in interactive applications. For example, Reynolds
et al. (2014) implemented an intelligent web app and Firefox extension to allow
learners to transform webpages into interactive grammar workbooks on various
grammatical topics, such as word stress, verb conjugation, noun declension, etc.
In that application, UDAR and its companion constraint grammar are used to ana-
lyze the text on a webpage. This information is used to select relevant tokens for
grammatical activities. In addition, one of the available activities for each topic is
multiple-choice. For this activity, the learner needs alternatives to the original form
in the text, and UDAR is used to intelligently generate distractor wordforms from
the same lemma. In this context, UDAR is used both to analyze and to generate
Russian wordforms for the learner.

Spell-checking

It is possible to create spellcheckers from two-level morphologies, such as UDAR.
And since UDAR explicitly models stress position of each wordform, this leads to
the possibility of stress-sensitive spellcheckers. Such a spellchecker could be used
by language teachers to check texts that they have prepared for their students. It
could also be used by learners to help write texts with marked stress.

Machine translation

Finally, because UDAR was built with tags compatible to the Apertium project,
UDAR can easily become a component in a machine translation pipeline. As a
major world language, resources already exist for machine translation of Russian
to other major languages, but Russian serves as a regional Lingua Franca for many
minority languages, including many of the Turkic languages already included in the
Apertium project. An open-source morphological analyzer such as UDAR could
therefore help facilitate the use of Russian as a pivot language for minority lan-
guages of the region.

38 Accuracy of 93.21% was achieved with less than 0.5% error. Higher accuracies were achieved
by using guessing algorithms of various kinds, with higher error rates.
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2.6 Conclusions and future work

This chapter has introduced UDAR, the only large-scale free and open-source Rus-
sian morphological engine designed to process stressed wordforms. I outlined
some of the strategies employed in the lexc/twolc source code to model Rus-
sian morphology/orthography. UDAR’s performance was evaluated against other
existing Russian morphological engines. Although UDAR does not outperform
mystem3’s coverage or speed, it does have reasonably good lexicon coverage and
very fast speed. Its performance is very adequate for modern applications that deal
with stressed wordforms.

Future work will improve the coverage of UDAR, especially by importing lex-
emes from OpenCorpora’s lexicon. In addition, steps will be taken to implement
guessing algorithms for unknown wordforms, such as hf st —guess.

Another possibility that has not been widely explored in computational mor-
phology is the use of weighted transducers. We intend to experiment with adding
weights to UDAR to improve its accuracy.

Finally, since UDAR occupies a specialized place as a morphological engine
for language learners, an obvious extension of UDAR is learner-language analysis.
Implementing a learner error taxonomy, such as in Dickinson (2010), to the lexc
source code of UDAR would allow for compiling a learner-language version of
UDAR. With a learner-language flavor of UDAR in place, it would also become
possible to generate a learner-language spell-checker, as discussed in Section 2.5
above.
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Chapter 3

Morphosyntactic disambiguation
and dependency annotation!

This chapter presents preliminary work on a constraint-grammar based disam-
biguator for Russian. Russian is a Slavic language with a high degree of both
in-category and out-category homonymy in the inflectional system. The pipeline
consists of the finite-state morphological analyzer introduced in Chapter 2 and the
constraint grammar described in the present chapter. The constraint grammar is
tuned to be high recall (over 0.99) at the expense of lower precision.

3.1 Introduction

This chapter presents a preliminary constraint grammar for Russian. The main ob-
jective of this research is to produce a high-recall grammar to serve as input into
other natural language processing tasks. High recall means that the grammar is
intended to remove only those readings that can be ruled out with high confidence,
leaving ambiguity that is difficult or impossible to resolve based on morphosyntac-
tic and syntactic context. For example, the simple sentence in example (1), has two
tokens with ambiguous readings.

(1) Ona sxodila v park.
She went.IPFV/PFV to park.SG-NOM/ACC.
‘She went to the park’

'The research presented in this chapter was carried out in collaboration with Francis Tyers. It is a
modified version of Tyers and Reynolds (2015). Many of the constraint grammar rules and much of
the experimental methodology were conceptualized cooperatively, but Dr. Tyers deserves full credit
for the implementation of the actual constraint grammar rules.

59
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The token sxodila can be imperfective (meaning ‘go down’), or perfective (mean-
ing ‘make a quick trip there and back’). The question of which reading to select
cannot be resolved without understanding the broader narrative, so our grammar
does not attempt to resolve this ambiguity. On the other hand, the token park has
two readings as output from the morphological analyzer: SG-NOM or SG-ACC.
The preposition v ‘in/to’ can govern ACC or LOC, but not NOM,? so the SG-NOM
reading can be removed with high confidence.

There are two reasons to maintain high recall. First, one of the primary ap-
plications for this constraint grammar is computer-assisted language learning. In
this domain, erroneous analyses can lead to significant frustration for learners. So
with regard to disambiguation, developing intelligent computer-assisted language
learning applications requires a kind of intuitionistic or epistemic logic where the
developer can base control flow operations not just on the most probable read-
ings, but on the relative certainty of those readings. For instance, if a program that
automatically generates grammatical exercises were to process example (1), the re-
liability of the program’s output would depend on the nature of its morphological
analysis input. A traditional part-of-speech tagger would output a single reading
for each token. If the tagger happened to guess wrong on the aspect of sxodila,
then the language-learning program would blindly make erroneous exercises based
on faulty input. On the other hand, if the program receives input that maintains the
ambiguity, then the program “knows whether it knows”, and it can avoid generat-
ing exercises on tokens where the relevant tags are uncertain. This kind of logic is
only possible with a tagger that is capable of giving ambiguous output.

A second reason for maintaining high recall in our constraint grammar is that
it is frequently the case that competing readings can be distinguished only by con-
sidering idiosyncratic collocational information. Writing rules to capture each of
these idiosyncrasies would be very complicated and time-consuming. For such
cases, we expect that using a voting setup, in which a probabilistic model chooses
between readings that remain after our rules are applied, would be both both more
effective and simpler to implement than a host of low-coverage rules. A high-recall
constraint grammar follows the maxim “Don’t guess if you know”, after which a
a probabilistic model can be used to effectively capture most-likely tags based on
usage data.

The chapter is laid out as follows: Section 3.2 presents a review of related
work in Russian morphological disambiguation; Section 3.3 gives an overview of
ambiguity in Russian; Section 3.4 describes our analysis pipeline; Section 3.5 gives

*In fact, the preposition v can govern NOM, in phrases such as pojti v professora ‘become a
professor; lit. go among professors’, but this use of the preposition is limited to plural animate
nouns, so the word park cannot be in NOM in the example discussed above. Some scholars prefer to
call this Acc2, as is done in the Russian National Corpus.
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an account of our development process; Section 3.6 presents an evaluation of the
system; and 3.7 presents conclusions, as well as an outlook for continuing research
and development of our grammar.

3.2 Related work

As explained in Chapter 2, state-of-the-art morphological analysis in Russian is
primarily based on finite-state technology (Nozhov, 2003; Segalovich, 2003).3 Al-
most without exception, all large-scale morphological analyzers of Russian are ul-
timately based on the Grammatical Dictionary of Russian (Zaliznjak, 1977). This
dictionary gives fine-grained morphological specifications for more than 100 000
words, including inflectional endings, morphophonemic alternations, stress pat-
terns, exceptions, and idiosyncratic collocations. The morphological analyzer used
in the present chapter is also based on Zaliznjak’s dictionary.* This finite-state
transducer (FST) generates all possible morphosyntactic readings of each word-
form, regardless of their frequency or probability. Because Russian is a relatively
highly inflected language, broad coverage is important, but widespread homonymy
leads to the generation of many spurious readings, as discussed in Section 3.3 be-
low. Because of this, one of the foundational steps in Russian natural language
processing is homonym disambiguation.’

Two main approaches to Russian have been discussed by researchers: rule-
based and probability-based. Rule-based approaches to Russian have a long tradi-
tion. For instance, the well-known ETAP system (Cinman and Sizov, 2000, e.g.)—
which has been in development since the 1960s—generates all possible syntactic
dependencies, after which infelicitous trees are removed on the basis of semantics,
case goverment, and/or morphosyntactic agreement. This process is repeated iter-
atively, until only globally felicitous trees remain. Similarly, the Synan system—
which is part of the Dialing project published at http://www.aot . ru—can
perform morphosyntactic disambiguation indirectly by means of syntactic rules,
not including semantics, case goverment, or long-distance dependencies. Synan
successfully removes approximately 30% of lexical and morphosyntactic ambigu-
ity in the input text (Sokirko and Toldova, 2004).

$Machine-learning approaches have also been successfully applied to Russian, most notably by
Sharoff et al. (2008a).

*Our transducer is implemented using a two-level morphology (Koskenniemi, 1984), and can be
compiled using either xfst (Beesley and Karttunen, 2003) or hfst (Linden et al., 2011). For more
information, please refer to Chapter 2.

5In the Russian-language research literature, this is referred to as snjatije omonimii "removal of
homonymy’ or snjatie leksiceskoj i morfologiceskoj neodnoznacnosti ‘removal of lexical and mor-
phological ambiguity’.
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The goal of systems such as ETAP and Synan is to give a syntactic analysis,
and their processing speed is strongly tied to the degree of morphosyntactic and
lexical ambiguity in the input. Disambiguation—which is not the primary purpose
of these systems—is performed very slowly, and at least in the case of Synan, not
completely.

The other overall approach to lexical and morphosyntactic disambiguation is
the use of probabilistic models which output only a single most likely reading. Pop-
ular probabilistic methods have been applied to Russian, such as Hidden Markov
Models (Sokirko and Toldova, 2004; Sharoff et al., 2008a), but other approaches
have been developed specifically for Russian as well. For instance, Zelenkov et al.
(2005) relies on estimates for the “difficulty of choosing the lemma” which is based
on hypothesized distances between parts of speech and distances between certain
morphosyntactic values, such as case.

Probabilistic approaches have been reported to have high accuracy: Sokirko
and Toldova (2004) report 97.8%; Sharoff et al. (2008a) report 95.28%; and Ze-
lenkov et al. (2005) report 97.42%. Although these results are relatively high, prob-
abilistic models cannot maintain the intuitionistic/epistemic logic that we need for
our target application of intelligent computer-assisted language learning. In other
words, probabilistic models do not “know whether they know”, and cannot allow
the application designer to keep track of what the system can deduce with near-
certainty.

Constraint grammar (CG) is a paradigm of natural language processing in
which linguist-written context-dependent rules are compiled to systematically re-
move readings from running text (Karlsson, 1990; Karlsson et al., 1995). Con-
straint grammars can process text faster than ETAP and Synan, and because they
are rule-based, they can be tuned to high recall to allow for epistemic logic in
designing language-learning applications. The CG paradigm has been success-
fully applied to languages from many different language families: Basque, Breton,
Catalan, Croatian, Danish, English, Esperanto, Faroese, Finnish, French, German,
Greenlandic, Irish, Irish Gaelic, Italian, Komi, Norwegian (Bokmal and Nynorsk),
Portuguese, Lule Sami, North Sami, Spanish, Swedish, Swahili, and Welsh. To
our knowledge, the only CG developed for a Slavic language is the Croatian CG
developed by Peradin and Snajder (2012), which achieves 88% precision and 98%
recall for morphosyntactic analysis.

3.3 Ambiguity in Russian

Different kinds of ambiguity are resolved by different means. There are two ma-
jor kinds of ambiguity that are relevant to detailed part-of-speech tagging. Lexical
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ambiguity refers to instances where a given token can belong to more than one lex-
eme. Morphosyntactic ambiguity occurs in tokens that have more than one possible
set of morphosyntactic tags. These two categories of ambiguity are not mutually
exclusive, and consequently, we find three different categories of ambiguity: in-
traparadigmatic ambiguity (purely morphsyntactic), morphosyntactically congru-
ent lexical ambiguity (purely lexical), and morphosyntactically incongruent lexical
ambiguity (both morphosyntactic and lexical). The following examples make use
of word stress ambiguity to illustrate each kind of underlying ambiguity, but it
should be noted that most lexical and morphosyntactic ambiguity does not result
in stress position variation.® Intraparadigmatic ambiguity refers to homographic
wordforms belonging to the same lexeme, as shown in (2).

2) Intraparadigmatic homographs

a. téla ‘body.SG-GEN’
b.  teld ‘body.PL-NOM’

The remaining two types of ambiguity occur between lexemes. Morphosyntac-
tically incongruent lexical ambiguity occurs between homographs that belong to
separate lexemes, and whose morphosyntactic values are different, as shown in

3).

3) Morphosyntactically incongruent homographs

a. ndSej ‘our.F-SG-GEN/DAT/LOC/INS’
naséj ‘sew on.IMP-2SG’

b. dordga ‘road. N-F-SG-NOM’
dorogd ‘dear.ADJ-F-SG-PRED’

Morphosyntactically congruent lexical ambiguity occurs between homographs that
belong to separate lexemes, and whose morphosyntactic values are identical, as
shown in (4).

4) Morphosyntactically congruent homographs

a. zdmok ‘castle.SG-NOM’
zamok ‘lock.SG-NOM’
b.  zdmkov ‘castle. PL-GEN’
zamkov ‘lock. PL-GEN’
c. etc. ...

SWritten standard Russian does not typically indicate stress position, but knowing stress position
is essential for pronunciation. A recent study by Reynolds and Tyers (2015) found that about 7.5% of
tokens with stress ambiguity could have their stress position resolved indirectly by resolving lexical
and/or morphosyntactic ambiguity.
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Note that a given token can exhibit more than one kind of ambiguity. For example,
the wordform zamkov has the readings given in (5). The ambiguity between (5-a)
and (5-b) is morphosyntactically congruent, and the ambiguity between (5-a)/(5-b)
and (5-c) is morphosyntactically incongruent.

(5) a. zamok' N-MSC-INAN-PL-GEN
b.  zamok? N-MSC-INAN-PL-GEN
c. zamkovyj.ADJ-MSC-SG-PRED

Table 3.1 shows the prevalence of each kind of ambiguity in the corpus of Russian
presented in section 3.6.1 below. The first column shows the proportion of all to-
kens that have each kind of ambiguity. The second column shows what proportion
of ambiguous tokens exhibit each kind of ambiguity. Note that these proportions do
not sum to 100%, since a given token may exhibit more than one kind of ambiguity.

Type all tokens ambiguous tokens
Intraparadigmatic 59.0% 90.9%
MS-incongruent lexical 27.7% 42.7%
MS-congruent lexical 1.2% 1.8%

Table 3.1: Frequency of different types of morphosyntactic ambiguity in unrestricted text

These data show that almost 59% of all tokens in Russian running text ex-
hibit intraparadigmatic ambiguity, and 27.7% of all tokens exhibit lexical ambi-
guity that is morphosyntactically incongruent. These results show that most mor-
phosyntactic ambiguity in unrestricted Russian text is rooted in intraparadigmatic
and morphosyntactically incongruent lexical ambiguity. Detailed part-of-speech
tagging with morphosyntactic analysis can help disambiguate these forms. On
the other hand, morphosyntactically congruent lexical ambiguity represents only a
very small percentage of ambiguous wordforms, and it can be resolved most read-
ily by means of word sense disambiguation, as opposed to detailed part-of-speech
tagging. Because of this difference, we leave morphosyntactically congruent lexi-
cal ambiguity to future work.

3.4 Analysis pipeline

In the following section, I give a brief description of the morphological analyzer on
which our constraint grammar is based. For a more complete description, please
refer to Chapter 2.
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3.4.1 Morphological analyzer

The morphological transducer used in this study is primarily based on Zalizn-
jak’s Grammatical dictionary of Russian (Zaliznjak, 1977), including the 2001
version’s appendix of proper nouns. It also includes neologisms from Grishina
and Lyashevskaya’s Grammatical dictionary of new Russian words (Grishina and
Lyashevskaya, 2008), which is intended to be a supplement to Zaliznjak’s dictio-
nary with words found in the Russian National Corpus.” Example (6) gives some
examples of the FST’s output.

(6) a. konelnyj<adj><m><nn><sg><nom>
“finite’
b. avtomat<n><m><nn><sg><nom>
‘automaton, sub-machine gun’

3.4.2 Disambiguation rules

Our grammar is implemented using the vislcg3 constraint grammar parser (http:
//beta.visl.sdu.dk/cg3.html). The constraint grammar is composed of
299 rules which are divided into four categories: Safe, Safe heuristic, Heuristic,
and Syntax labeling. The distribution of rules is shown in Table 3.2, and each
category is discussed below.

SELECT REMOVE MAP

Safe 16 34 -
Safe heuristic 89 76 -
Heuristic 26 52 -
Syntax labeling - - 6

Table 3.2: The distribution of rules in reliability categories and syntactic role labeling.

Safe rules should represent real constraints in the language. Examples might be
that a preposition cannot directly precede a finite verb or that a noun cannot be in
the prepositional case without a preceding preposition. If exceptions to safe rules
can be found, they should be quite rare, as well as being unacceptable or strange
to some native speakers. In order to be considered safe, a rule must fire correctly
100% of the time in our development sample, as described in Section 3.5 below.

Safe heuristic rules should deal with highly frequent tendencies in the lan-
guage. In order for a rule to be considered a safe heuristic, it must fire correctly at
least 98% of the time in our development sample. For example: remove a genitive

"http://dict.ruslang.ru/gram.php
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reading of a noun/adjective/pronoun at the beginning of a sentence if the word is
capitalized and there is no verb governing the genitive found to the right and there
is also no negated verb to the right. This rule relies on the fact that if the genitive is
in first position in the sentence it cannot modify anything before it, and no prepo-
sition can be governing it. This kind of rule often relies on completeness of sets, in
this case the set of verbs that can take a genitive complement.

Heuristic rules are those which we do not consider linguistic constraints, but
express ad-hoc preferences, often dealing with extremely rare readings on high-
frequency tokens. For example: remove the verbal adverb reading of takaja, which
could be the feminine singular nominative of takoj ‘such’ or the verbal adverb of
takat' ‘express agreement by saying fak’. Heuristic rules are, for the most part, a
matter of practical engineering, as opposed to language modeling. Native Russian
speakers can usually formulate counterexamples to the Heuristic rules with ease,
but in actual usage such counterexamples should be relatively rare. Given a large
hand-annotated corpus we believe that most of the heuristic rules would be better
replaced with information learned from the corpus through stochastic methods.

Finally, the syntactic role-labeling rules are prerequisite for generating a de-
pendency parse of a sentence. For example, the label for objects of prepositions
@P<- is added to readings of tokens that come immediately after prepositions. So
far, only a few labels have been assigned, and the rules have not been well devel-
oped. In this study we do not evaluate the performance of our grammar’s rules for
syntactic role labeling.

3.5 Development process

A common approach taken when writing constraint grammar rules is to apply the
existing rule set to a new text, write new rules to deal with the ambiguities, then
apply the rules to a hand-annotated corpus to see how often the rule disambiguated
correctly (Voutilainen, 2004).

Due to the lack of a hand-annotated corpus compatible with our morphological
analyzer, we adopted a slightly modified technique. We picked random texts from
the Russian Wikipedia,® ran them through the morphological analyzer, wrote rules,
and then ran the rules on the whole Wikipedia corpus. For each rule, we collected
around 100 example applications and checked them. If a rule selected the appro-
priate reading in all cases, we included it in the safe rule set, if it removed a valid
reading in less than three cases, then we included it in the safe heuristic rule set.

8The Russian Wikipedia was chosen as a testing corpus as it is the largest, freely licensed corpus
of Russian available on the internet. Encyclopedic text is, of course, not representative of all genres
of Russian text.
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Otherwise we either discarded the rule or included it in the heuristic rule set.

3.6 Evaluation

In order to demonstrate how our evaluation metrics are calculated, an example sen-
tence is given in Figure 3.1: “B nosibpe 1994 rona B Tanzanwu mnavasa padbory
Mexaynapoaubiii TpubyHas mo Pyamme.” ‘The work of the International Tri-
bunal for Rwanda started in Tanzania in November 1994.” Numbers given after
SELECT: or REMOVE : refer to the source code line numbers of rules according
to which the action was taken. The terms SELECT and REMOVE refer to the type
of rule; a semicolon at the beginning of the line indicates that a reading is removed
by the CG. A SELECT rule removes all but the selected reading(s). Each of the
rules which are relevant to Figure 3.1 are presented in Figure 3.2 with English
translations.

In this sentence, there are 13 tokens (including punctuation) and 23 readings,
so the input ambiguity before running the constraint grammar is 1.77 readings per
word. The constraint grammar removes 5 readings (indicated by a semicolon at the
beginning of the line), so the output ambiguity is 1.38 readings per word.

Precision, recall and accuracy are computed on the basis of four types of out-
come: true positive, false positive, true negative, and false negative. Here positive
means that a reading is not removed by the CG, and negative means that a reading
is removed by the CG. Every reading in the CG output that is in the gold-standard
reading(s) for that token is a true positive (TP), and every reading in the CG output
that is not in the gold-standard reading(s) for that token is a false positive (FP).
Similarly, every reading that is removed by the CG and is not found in the gold-
standard reading(s) for that token is a true negative (TN), and every reading that is
removed by the CG and is found in the gold-standard reading(s) for that token is a
false negative (FN).

Precision is computed as TPIL%’ which yields the percentage of readings re-
maining in the CG output that are found in the gold standard. The precision score
penalizes the failure to remove incorrect readings. In Figure 3.1, the CG output
contains 18 readings, 13 of which are correct, so precision is 0.72. Recall is com-
puted as TPZ%, which yields the percentage of readings in the gold standard that
remain in the CG output. The recall score penalizes removing readings that are cor-
rect. In Figure 3.1, the CG contains the correct reading for all 13 tokens, so recall
is 1.0. Accuracy is computed as 7 +I€I€i’?% 7~ Which yields the percentage of
readings in the morphological analyzer’s output that were treated correctly by the
CG. In Figure 3.1, of 23 original readings, 13 readings were retained correctly, and
5 readings were removed correctly, so the accuracy is %‘55 = 0.78.
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n <B> n
"B" pr

" <HOsTOpE>"
"HOAOPL" N m nn sSg prp

"<1994>"
"1994" num
"<roma>"
"ron" n m nn sg gen SELECT:r462
; "ronr" n m nn pl nom fac SELECT:r462
"<B> n
"B" pr
" <Tamzanmm>"

"Tamzanua" np al £ nn pl acc

"Tamzanus" np al £ nn sg prp
; "Tamzaruss" np al f nn pl nom REMOVE:r424
; "Tanzanusa" np al f nn sg dat REMOVE:r433
; "Tamzanuga" np al f nn sg gen REMOVE:r433
" <pavaj>"

"magasao" n nt nn pl gen

"Hagatp" vblex perf tv past m sg
; "HauaTth" vblex perf iv past m sg REMOVE:r769

"<pabory>"
"pabora" n f nn sg acc

" <Mex 1yHAPOTHBII> "

"MeKyHapoJHbIH" adj m an sg nom
"MeXIyHapoJaHBIH" adj m nn sg acc

" <Tpubynana>"

"rpubyHaJg" n m nn sg acc
"TpubyHas" n m nn sg nom

"<mo>"
"HO" pr
"<Pyamme>"
"Pyauma" np al f nn sg prp
"Pyagma" np al f nn sg dat
"<.>"

sent

Figure 3.1: Example output from the morphological analyzer and constraint grammar
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Safe:
(462) SELECT Gen IF (0 Year) (-1 Num LINK -1 Months LINK -1
Pr/V);

* Select genitive reading of ‘rona’ if there is a numeral immediately to the left, before
that there is a month and before that there is the preposition ‘B’.

(424) REMOVE Nom IF (-1C Pr) ;

* Remove nominative case if there is a word which can only be a preposition imme-
diately to the left.

(433) REMOVE NGDAIP - Acc - Prp - Loc IF (-1Cx Pr/V OR Pr/Na
BARRIER (x) — Adv - Comp - DetIndecl - ModAcc - ModPrp);

* Remove all cases apart from accusative, prepositional and locative if ‘B’ or ‘ua’ are
found to the left and are unambiguous. The barrier is anything that cannot be found
inside a noun phrase.

Safe heuristic:
(769) REMOVE IV IF (O TV OR IV) (1C Acc) (NOT 1 AccAdv);

* Remove an intransitive reading of a verb if the next word can only be accusative and
is not in the set of nouns which can be used adverbially in accusative.

Figure 3.2: Constraint grammar rules relevant to Figure 3.1
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Domain Tokens | Precision | Recall | F-score | Ambig. solved
Wikipedia 7,857 0.506 | 0.996 0.671 44.92%
Literature 1,652 0.473 | 0.984 0.638 42.95%
News 642 0471 | 0.990 0.638 41.60%
Average 10,150 0.498 | 0.994 0.663 44.39%

Table 3.3: Results for the test corpora

3.6.1 Corpus

In order to evaluate the grammar we hand-annotated 10,150 words of Russian
text from Wikipedia articles, public domain literature and freely-available news
sources. The annotated texts are available online under the CC-BY-SA licence.® We
chose to annotate our own texts as opposed to using a well-known hand-annotated
corpus such as the Russian National Corpus (RNC) for two main reasons: the first
was that the RNC is not freely available; the second was that the standards for
tokenization, part-of-speech and morphological description are different from our
morphological analyzer.

Hand-annotation proceeded as follows: The text was first passed through the
morphological analyzer, and then a human annotator read through the output of
the morphological analyzer, removing readings which were not appropriate in the
context. This annotated text was then checked by a second annotator.

Table 3.3 gives a quantitative evaluation of the performance of our CG on the
test corpus. The F-score is a harmonic average of precision and recall.

3.6.2 Qualitative evaluation

In this section, I give a qualitative evaluation of errors made by the CG. The errors
reported below were sorted into categories for the sake of discussion.

Incomplete linguistics In some cases a rule did not take into account grammati-
cal possibilities in the language. Consider, for example, the simple rule and coun-
terexample given in (7). The rule in (7-a) removes the determiner reading if the to-
ken is followed immediately by the word ne ‘not’. However, example (7-b) shows
a postposed determiner followed by ne. The sentence is perfectly grammatical,
but the rule does not take into account the flexible word order that is possible in
Russian. and (8).

*https://svn.code.sf.net/p/apertium/svn/languages/apertium-rus/
texts/
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7 a. REMOVE Det IF (0 Det OR Pron) (1C Ne) ;
b. ...amoZet byt'i ran'Se, i fakt étot ne raz poraZal menja . ..
‘...and maybe even earlier, and this fact surprised me several times

B

Another example of a rule that was badly conceived from a linguistic point of view
is given in (8-a). Here the rule removes the determiner reading if followed by
a comma and a conjunction. However, this rules does not take into account the
possibility of interposed parentheticals, such as the one in example (8-b).

(8) a. REMOVE Det IF (0 Det OR Pron) (1 Cm LINK 1 CC OR
Cs) ;
b.  No kakie, odnako Ze, dva raznye sozdanija, tocno obe s dvux raznyx
planet!
‘But what, exactly , two different creatures, truly both from two dif-
ferent planets!’

Bad linguistics In some cases a rule was simply incorrectly specified. For ex-
ample, the rule in (9-a) was designed to solve the ambiguity between short-form
neuter adjectives and adverbs. However there is no reason why we should prefer
an adverb over an adjective after an adverb, as in example (9-b). The rule’s context
was too broad, so the corrected rule should have the Adv removed from position
-1C.

9) a. REMOVE A + Short IF (-1C Fin OR Adv OR A) (0C Short
OR Adv) ;
b. ...Potomu ¢to sovsem neprijatno prosnut'sja v grobu pod zemleju.
‘...because (it is) really unpleasant to wake up in a coffin under the
ground.’

Incomplete barrier Some rules suffered from incomplete barriers, which is some-
thing that would benefit from a more systematic treatment. For example, the rule
in (10-a) removes the nominative reading of élektrificirovannye because the prepo-
sition v is found in the preceding context. The barrier for the rule can be updated
to capture tokens such as 71960-x.

(10) a. REMOVE NGDAIP - Acc - Prp - Loc IF (-1C* Pr/V OR
Pr/Na BARRIER (*) — Adv - Comp - DetIndecl - ModAcc
- ModPrp) ;
b. V 1960-x elektrificirovannye vysokoskorostnye Zeleznye dorogi po-
Javilis' v Japonii i nekotoryx drugix stranax.
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‘In the 1960’s electrified high-speed railways appeared in Japan and
some other countries.’

Incomplete sets In some cases the rule was a good generalization, but made
use of a set which was incomplete. An example of this is given in (11-a), which
removes dative case readings for several reasons, one of them being that there is no
verb that governs the dative case in the sentence.

(11) a. REMOVE Dat IF (NOT 0 Prn/Sebe) (NOT 0 Anim OR Cog
OR Ant) (NOT 0 Pron) (NOT 1x V/Dat) (NOT -1 V/Dat)
(NOT -1+ Prep/Dat) (NOT -1C A + Dat) ;
b.  Vsvjazi s etim ortodoksal'nosti stali protivopostavljat' eres'.
‘In connection with this, heresy began to be seen in opposition to
orthodoxy.’

Here the rule fails for the simple reason that the set V/Dat does not contain the
verb protivopostavljat' ‘opposed to” which takes a dative argument. A more com-
plete set would lead to correct results.'?

Rule interaction Some rules failed because of unexpected interactions with other
rules. The rule in (12-b) removes transitive readings if there are no accusatives in
the sentence. The strong accusative rule in (12-a) below removes accusative read-
ings if there is an intransitive verb preceding.

(12) a. REMOVE Acc IF (-1C Fin + IV) (NOT 0 AccAdv) ;
b. REMOVE TV - Pass IF (NOT 1% Acc) (NOT -1x Acc)
7
c.  Ona smotrit vezde, no ne moZet ego najti.
She looks around, but she cannot find him.

When the rules in (12-b) and (12-a) are applied to the sentence in (12-c), the in-
teraction of these rules leads to the removal of correct readings. In this sentence,
moZet ‘can’ is tagged as intransitive, so rule (12-a) fires, removing the accusative
reading of ego ‘him’. Once the accusative reading is removed, rule (12-b) erro-
neously removes the transitive reading from najti ‘find’.

Difficult linguistics Russian participles inflect for number and case, and like all
modifiers, they must agree with the noun they modify. However, participles can

9The rule could also be made slightly more safe with regard to unkown words by capturing the
generalization that verbs with the prefix protiv- ‘anti-, against-" tend to govern dative. Some research
is needed to determine the reliability of that generalization.
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also be used as substantives, so dealing with participles can be difficult in cases
where the participle is in the same case as the case that it governs. Example (13-a)
shows a rule that removes intransitive readings when the token is followed by an
accusative.

However, example (13-b) shows a case in which this rule fails. In this example,
Vanju i Masu ‘Vanja.ACC and Masha.ACC’ are the object of vidit ‘sees’ and the
participle igrajuscix ‘playing.PL-ACC’ is modifying Vanju i Masu. However, the
syntactic structure of the sentence technically allows for another the possibility that
is only ruled out by real-world semantic knowledge. In this alternate interpretation,
igrajuscix ‘those who play’ is the object of vidit ‘sees’, whereas Vanju i Masu
‘Vanja and Masha’ is the direct object of igrajuscix: ‘Mama sees the people who
are playing Vanja and Masha.’

(13) a. REMOVE IV IF (0 TV OR IV) (1C Acc) (NOT 1 AccAdv)
b.  Ix mama vnutri doma s koskoj, ona smotrit v okno i vidit igrajuscix
Vanju i Masu.
‘Their mother is inside the house with the cat, she looks through the
window and sees Vanja.SG-ACC and Masha.SG-ACC playing.PL-
ACC’

This kind of error would ideally be resolved with semantic knowledge, but in the
interest of maintaining high recall, the rule can be modified to exclude contexts
that exhibit this kind of clear dependency ambiguity.

3.6.3 Task-based evaluation

The constraint grammar described in this chapter has been applied to the task of au-
tomatic word stress placement, as described more fully in Chapter 4 and Reynolds
and Tyers (2015). This task is especially relevant for Russian language learners,
because vowels are pronounced differently depending on their position relative to
stress position. For example, the word moloké ‘milk’ is pronounced /molakao/,
where each instance of the letter o corresponds to a different vowel sound. Russian
also has complicated patterns of shifting stress, which are difficult for learners to
master.

Stress can be placed in running text by sending it through our morphological
analyzer and constraint grammar, and then sending the constraint grammar output
back to a morphological wordform generator. Out of all the wordforms in running
text for which our morphological analyzer/generator (without the CG) outputs mul-
tiple stress positions, almost 99% can be disambiguated morphosyntactically, so a
constraint grammar can theoretically resolve most stress ambiguity indirectly. The
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results of Reynolds and Tyers (2015) show that our constraint grammar overcomes
about 42% of the ambiguity relevant to stress ambiguity in unrestricted text. A
more detailed explanation of the experiment can be found in Chapter 4.

3.6.4 Combining with a statistical tagger

Given that just over half of all ambiguity remains after running our preliminary
constraint grammar and that for many applications unambiguous output is neces-
sary, we decided to experiment with combining the constraint grammar with a sta-
tistical tagger to resolve remaining ambiguity. Similar approaches have been taken
by previous researchers with Basque (Ezeiza et al., 1998), Czech (Hajic¢ et al., 2001,
2007), Norwegian (Johannessen et al., 2011, 2012), Spanish (Hulden and Francom,
2012), and Turkish (Oflazer and Tiir, 1996).

We follow the voting method described by Hulden and Francom (2012). We
used the freely available hunpos part-of-speech tagger (Halacsy et al., 2007),
which is an open-source clone of the well-known TnT part-of-speech tagger (Brants,
2000). We performed 10-fold cross validation using our evaluation corpus, taking
10% for testing and 90% for training, and experimented with three configurations:

* HMM (Hidden Markov Model): the hunpos part-of-speech tagger with its
default options

* HMM+Morph: as with HMM but incorporating the output of our morphologi-
cal analyzer (see section 3.4.1) as a full form lexicon.

* HMM+Morph+CG: we submitted the output from HMM+Morph and the con-
straint grammar to a voting procedure, whereby if the constraint grammar
left one valid reading, we chose that, otherwise if the constraint grammar left
a word with more than one reading, we chose the result from the HMM+Morph
tagger.

As can be seen from Figure 3.3, incorporating the constraint grammar improves
the performance of the HMM tagger, an improvement of nearly 5% in accuracy,
similar to that reported by Hulden and Francom (2012) for the same amount of
training data. In Figure 3.3, it appears that the HMM alone is much more dependent
on training corpus size than the voting setup, which improves very little between a
training corpus size of 5,000 and 9,000.

Our constraint grammar also has a much lower precision as a result of the am-
biguity remaining in the output. Similarly, the final accuracy is below the state of
the art for Russian. For instance, Sharoff et al. (2008a) report a maximum accuracy
of 95.28% using the TnT tagger. Note, however, that this model was trained on a
much larger corpus — over five million tokens — which is not freely available.
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Figure 3.3: Learning curve for three tagging setups: hunpos with no lexicon; hunpos
with a lexicon; and hunpos with a lexicon and the Russian constraint grammar in a voting
set up.

3.7 Conclusions and Outlook

This chapter has presented a preliminary constraint grammar for Russian, where
rules have been sorted into a reliability hierachy based on observations of perfor-
mance on a non-gold-standard corpus. The constraint grammar is high recall (over
0.99) and improves the performance of a trigram HMM-based tagger. It also shows
state-of-the-art performance for the stress-placement task.

It is worth noting that although Russian has a great deal of non-free resources,
this chapter presents a method which is promising for smaller or lesser-resourced
Slavic languages such as Sorbian, Rusyn or Belarusian. Instead of hand-annotating
a large quantity of text, it may be more efficient to work on grammatical resources
— such as a morphological analyzer and constraint grammar — and use them
alongside a smaller quantity of high-quality annotated text.

We have a number of plans for future work, the first of which is increasing
the precision of the grammar without decreasing recall. Second, we also plan to
fully implement syntactic function labeling, which can then feed into dependency
parsing. For the dependency parser we plan to adapt the Giellatekno dependency
grammar of Antonsen et al. (2010), which describes porting a North Sami depen-
dency grammar to four other languages.

Our development workflow could also be improved. For example, during the
testing of each rule we could save the correct decisions of the grammar. This would
give us a partially-disambiguated development corpus, which could be gradually
used to build up a corpus for regression testing to ensure that new rules added do
not invalidate the correct decisions of previously written rules. This corpus could
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potentially also be used as a gold-standard corpus, although testing methodologies
would need to take into account the fact that the corpus was selected using a non-
random process.
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Chapter 4

Automatic stress placement in
unrestricted text!

We evaluate the effectiveness of finite-state tools we developed for automatically
annotating word stress in Russian unrestricted text, i.e. running text. This task is
relevant for computer-assisted language learning and text-to-speech. To our knowl-
edge, this is the first study to empirically evaluate the results of this task. Given
an adequate lexicon with specified stress, the primary obstacle for correct stress
placement is disambiguating homographic wordforms. The baseline performance
of this task is 90.07%, (known words only, no morphosyntactic disambiguation).
Using a constraint grammar to disambiguate homographs, we achieve 93.21% ac-
curacy with minimal errors. For applications with a higher threshold for errors,
we achieved 96.15% accuracy by incorporating frequency-based guessing and a
simple algorithm for guessing the stress position on unknown words. These results
highlight the need for morphosyntactic disambiguation in the word stress place-
ment task for Russian, and set a standard for future research on this task.

4.1 Introduction

Lexical stress and its attendant vowel reduction are a prominent feature of spoken
Russian; the incorrect placement of stress can render speech almost incomprehen-
sible. This is because Russian word stress is phonemic, i.e. many wordforms are
distinguished from one another only by stress position. Half of the vowel letters
in Russian change their pronunciation significantly, depending on their position

'The research in this chapter was carried out in collaboration with Francis Tyers. It is a modified
version of Reynolds and Tyers (2015). Most of the work is my own, but Dr. Tyers wrote the first
version of the script to perform basic stress annotation.

79
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relative to the stress. For example the word dogovérom ‘contract.SG-INS’ is pro-
nounced /dagavorom/, with the letter o realized as three different vowel sounds.
Determining these vowel qualities is impossible without specifying the stress po-
sition, but standard written Russian does not typically mark word stress.” Without
information about lexical stress position, correctly converting written Russian text
to speech is impossible.

Determining stress position is a problem both for humans (e.g. foreign lan-
guage learners) and computers (e.g. text-to-speech). This can be the cause of
considerable difficulty for learners, since the inflecting word classes include com-
plex patterns of shifting stress, and a lexeme’s stress pattern cannot be predicted
from surface forms.

Stress position ambiguity corresponds to multiple kinds of lexical and mor-
phosyntactic ambiguity. We identify three different types of relations between
word stress ambiguity and morphosyntactic ambiguity. First, intraparadigmatic
stress ambiguity refers to homographic wordforms belonging to the same lexeme,
as shown in (1).3

@)) Intraparadigmatic homographs

a. téla ‘body.sG.Gen’
b. teld ‘body.pr. NoM’

The remaining two types of stress ambiguity occur between lexemes. Morphosyn-
tactically incongruent lexical ambiguity occurs between homographs that belong
to separate lexemes, and whose morphosyntactic values are different, as shown in

).

2) Morphosyntactically incongruent homographs

a.  ndsej ‘OUr.F.SG-GEN/LOC/DAT/INS
naséj ‘sew on.Mp-2sG’°

b.  dordga ‘road.N.p.sg-NoMm
dorogd ‘dear.Apj.F.SG-PRED’

Morphosyntactically congruent lexical ambiguity occurs between homographs that
belong to separate lexemes, and whose morphosyntactic values are identical, as
shown in (3). This kind of ambiguity is relatively rare, and resolving this ambiguity
is best achieved by means of technologies such as word sense disambiguation.

Texts intended for native speakers sometimes mark stress on words that cannot be disambiguated
through context. Theoretically, a perfect word stress placement system could help an author identify
tokens which should be stressed for natives: any token that cannot be disambiguated by syntactic or
semantic means should be marked for stress.

*Throughout this chapter, cyrillic is transliterated using the scientific transliteration scheme.
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3) Morphosyntactically congruent homographs

a. zdmok ‘castle.sg.NoM’
zamok ‘IOCk.SG_NQM’

b. zdmkov ‘castle.p; .GEN’
zamkov ‘IOCk-PL—GEN’

It should be noted that most morphosyntactic ambiguity in unrestricted text does
not result in stress ambiguity. For example, novyj ‘new’ (and every other adjective)
has identical forms for F-SG-GEN, F-SG-LOC, F-SG-DAT and F-SG-INS: novoj.
Likewise, the form vypej has multiple possible readings (including ‘drink.pvp’,
‘bittern.p-gen’), but they all have the same stress position: vypej. We refer to this
as stress-irrelevant morphosyntactic ambiguity, since all readings have the same
stress placement.

In the case of unrestricted text in Russian, most stress placement ambiguity is
rooted in intraparadigmatic and morphosyntactically incongruent lexical ambigu-
ity. Detailed part-of-speech tagging with morphosyntactic analysis can help deter-
mine the stress of these forms, since each alternative stress placement is tied to a
different tag sequence. In this study we focus on the role of detailed part-of-speech
tagging in improving automatic stress placement. We leave morphosyntactically
congruent stress ambiguity to future work because it is by far the least common
type of stress ambiguity (less than 1% of tokens in running text), and disambiguat-
ing morphosyntactically congruent stress requires fundamentally different technol-
ogy from the other approaches of this study.

4.1.1 Background and task definition

Automatic stress placement in Russian is similar to diacritic restoration, a task
which has received increasing interest over the last 20 years. Missing diacritics
can complicate many NLP tasks, such as text-to-speech, since generally speaking,
diacritics disambiguate otherwise homographic wordforms. For example, speak-
ers of Czech may type emails and other communications without standard diacrit-
ics. In order to generate speech from these texts, they must first be normalized by
restoring diacritics.

A slightly different situation arises with languages whose standard orthogra-
phy is underspecified, like vowel quality in Arabic or Hebrew. For such languages,
the “restoration” of vowel diacritics results in text that is overspecified with regard
to standard orthography. For languages with inherently ambiguous orthography,
it may be more precise to refer to this as “diacritic enhancement’, since it pro-
duces text that is less ambiguous than the standard language. In this sense, Russian
orthography is similar to Arabic and Hebrew, since its vowel qualities are also
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underspecified in standard orthography.

Many studies of Russian text-to-speech and automatic speech recognition make
note of the difficulties caused by the shortcomings of their stress-marking resources
(e.g. Krivnova, 1998). Text-to-speech technology must deal with the inherent am-
biguity of Russian stress placement, and many articles mention disambiguation of
one kind or another, but to our knowledge no studies have empirically evaluated
the success of their approaches.

Several studies have investigated methods for predicting stress position on un-
known words. For example, Xomicevic et al. (2008) developed a set of heuristics
for guessing stress placement on unknown words in Russian. More recently, Hall
and Sproat (2013) trained a maximum entropy model on a dictionary of Russian
words, and evaluated on wordlists containing ‘known” and ‘unknown’ wordforms.*
Their model achieved 98.7% accuracy on known words, and 83.9% accuracy on un-
known words. Note that the task of training and evaluating on wordlists is different
from that of placing stress in running text. Since many of the most problematic
stress ambiguities in Russian occur in high-frequency wordforms, evaluations of
wordform lists encounter stress ambiguity seven times less frequently than in run-
ning text (see discussion in Section 4.4). Hall and Sproat (2013) do not make use
of morphosyntactic information in their model.

So far, the implicit target application of the few studies related to automatic
stress placement in Russian has been text-to-speech and automatic speech recog-
nition. However, the target application of our stress annotator is in a different
domain: language learning. Since standard Russian does not mark word stress,
learners are frequently unable to pronounce unknown words correctly without ref-
erencing a dictionary or similar resources. In the context of language learning,
marking stress incorrectly is arguably worse than not marking it at all. Because of
this, we designed our stress annotator to be adjustable according to various con-
fidence thresholds. For language-learning applications, we want the annotator to
abstain from marking stress on words that it is unable to resolve with high confi-
dence.

4.1.2 Stress corpus

Russian texts with marked word stress are relatively rare, except in materials for
second language learners, which are predominantly proprietary. Our gold-standard
corpus was collected from free texts on Russian language-learning websites. This

“Hall and Sproat (2013) randomly selected their training and test data from a list of wordforms,
and so a number of lexemes had wordforms in both the training and test data. Wordforms in the test
data whose sibling wordforms from the same lexeme were in the training set were categorized as
‘known’ wordforms.
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small corpus (7689 tokens) is representative of texts that learners of Russian are
likely to encounter in their studies. These texts include excerpts from well-known
literary works, as well as dialogs, prose, and individual sentences that were written
for learners.

Unfortunately, the general practice for marking stress in Russian is to not
mark stress on monosyllabic tokens, effectively assuming that all monosyllabics
are stressed. However, this approach is not well-motivated. Many words—both
monosyllabic and multisyllabic—are unstressed, especially among prepositions,
conjunctions, and particles. Furthermore, there are many high-frequency monosyl-
labic homographs that can be either stressed or unstressed, depending on their part
of speech, or their appearance in particular collocations. For example, the token
Cto is stressed when it means ‘what’ and unstressed in the conjunction potomu ¢to
‘because’. For such words, one cannot simply assume that they are stressed on the
basis of their syllable count.

Based on these considerations, we built our tools to mark stress on every word,
both monosyllabic and multisyllabic. However, because our gold-standard corpus
texts do not mark stress on monosyllabic words, we cannot evaluate our annotation
of those words.

Similarly, some compound Russian words have secondary stress, but this is
rarely marked, if at all, even in educational materials. Therefore, even though our
tools are built to mark secondary stress, we cannot evaluate secondary stress marks,
since they are absent in our gold-standard corpus.

In order to test our word stress placement system, we removed all stress marks
from the gold-standard corpus, then marked stress on the unstressed version using
our tools, and then compared with the stress-marked version in the gold standard.

4.2 Automatic stress placement

State-of-the-art morphological analysis in Russian is based on finite-state technol-
ogy (Nozhov, 2003; Segalovich, 2003). As described in Chapter 2, I developed
free and open-source finite-state tools capable of analyzing and generating stressed
wordforms. This morphological analyzer is described in detail in Chapter 2, but in
short, it is a Finite-State Transducer® (FST), and based on the well-known Gram-
matical Dictionary of Russian (Zaliznjak, 1977). The FST outputs all possible
morphosyntactic readings of each wordform, and our Constraint Grammar® (Karls-
son, 1990; Karlsson et al., 1995) then removes some readings based on syntactic

>Using two-level morphology (Koskenniemi, 1983, 1984), implemented in both xfst (Beesley and
Karttunen, 2003) and hfst (Linden et al., 2011)
Implemented using vislcg3 constraint grammar parser (http://beta.visl.sdu.dk/cg3.html).
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context. The constraint grammar is described in more detail in Chapter 3.

The ultimate success of our stress placement system depends on the perfor-
mance of the constraint grammar. Ideally, the constraint grammar would success-
fully remove all but the correct reading for each token, but in practice some tokens
still have more than one reading remaining. Therefore, we also evaluate various
approaches to deal with the remaining ambiguity, as described below. Table 4.1
shows two possible sets of readings for the token kosti, as well as the output of
each approach described below. The token kosti can belong to the lexeme kost’
‘bone’, or the verb kostit', a less common word meaning ‘chew out’. The first col-
umn exhibits stress ambiguity between the noun readings and the imperative verb
reading. The second column shows a similar set of readings, after the constraint
grammar has removed the imperative verb reading. This results in only stress-
irrelevant ambiguity.

Readings: KocTb-N-F-SG-GEN  kdsti KocThb-N-F-SG-GEN  kdsti
kKocTh-N-F-SG-DAT  kdsti KocTh-N-F-SG-DAT  kdsti
kocTuTh- V-IPFV-IMP kosti

bare kosti kosti
safe kosti kosti
randReading | kosti (p=0.67) or kosti (p=0.33) kosti
freqgReading kosti kosti

Table 4.1: Example output of each stress placement approach, given a particular set of
readings for the token kosti

The bare approach is to not mark stress on words with more than one reading.
Since both sets of readings in Table 4.1 have more than one reading, bare does not
output a stressed form.

The safe approach is to mark stress only on tokens whose morphosyntactic
ambiguity is stress-irrelevant. In Table 4.1, the first column has readings that result
in two different stress positions, so safe does not output a stressed form. However,
in the second column, both readings have the same stress position, so safe outputs
that stress position.

The randReading approach is to randomly select one of the available read-
ings. In the first column of Table 4.1, a random selection means that kdsti is twice
as likely as kosti, since two readings give kdsti and one reading yields kosti. The
second column of Table 4.1 contains stress-irrelevant ambiguity, so a random se-
lection of a reading has the same result as the safe approach.

The freqReading approach is to select the reading that is most frequent, with
frequency data taken from a separate hand-disambiguated corpus. If none of the
readings are found in the corpus, then freqgReading selects the reading with the
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tag sequence (lemma removed) that is most frequent in our corpus. If the tag se-
quence is not found in our frequency list, then fregReading backs off to the
randReading algorithm. In the first column of Table 4.1, freqReading selects
kosti because the tag sequence N-F-SG-GEN is more frequent than the other al-
ternatives. Note that for tokens with stress-irrelevant ambiguity (e.g. the second
column of Table 4.1), randReading and fregReading produce the same result
as the safe method.

So far, the approaches discussed are dependent on the availability of readings
from the FST. The focus of our study is on disambiguation of known words, but we
also wanted to guess the stress of unknown tokens in order to establish some kind of
accuracy maximum for applications that are more tolerant of higher error rates. To
this end, we selected a simple guessing method for unknown words. A recent study
by Lavitskaya and Kabak (2014) concludes that Russian has default final stress in
consonant-final words, and penultimate stress in vowel-final words.” Based on
this conclusion, the guessSy11 method places the stress on the last vowel that is
followed by a consonant.® This method is applied to unknown wordforms in two
approaches, randReading+guessSyll and fregReading+guessSyll, which
are otherwise identical to randReading and fregReading, respectively. For
known tokens, these methods select either a random reading or the most frequent
(respectively), but for unknown tokens, they use the guesssy11 approach.

For our baseline, we take the output of our morphological analyzer (without
the constraint grammar) in combination with the bare, safe, randReading,
fregReading, randReading+guessSyll, and freqReading+guessSyll ap-
proaches. We also compare our outcomes with the RussianGram® plugin for the
Google Chrome web browser. RussianGram is not open-source, so we can only
guess what technologies support the service. In any case, it provides a meaningful
reference point for the success of each of the methods described above.

4.3 Results

We evaluated all multisyllabic words with marked stress in the gold-standard cor-
pus (N = 4048). Since our approach is lexicon-based, some of our results should
be interpreted with respect to how many of the stressed wordforms in the gold-
standard corpus can be found in the output of the morphological analyzer. We refer

"There is some disagreement over how to define default stress in Russian, cf. Crosswhite et al.
(2003).

8 Although this approach is simplistic, unknown words are not the central focus of this study.
More sophisticated heuristics and machine-learning approaches to unknown words are discussed in
Section 4.4.

*http://russiangram.com/
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to this measure as recall.'% Out of 4048 tokens, 3949 were found in the FST, which
is equal to 97.55%. This number represents the upper bound for methods relying on
the FST. Higher scores are only achievable by expanding the FST’s lexicon or by
using syllable-guessing algorithms. After running the constraint grammar, recall
was 97.35%, a reduction of 0.20%. This is presumably the result of the grammar
removing a small number of valid readings.

Results were compiled for each of the 13 approaches discussed above: without
the constraint grammar (noCG) X 6 approaches, with the constraint grammar (CG) X
6 approaches, and RussianGram (RussianGram). Results are given in Table 4.2.
Each token was categorized as either an accurate output, or one of two categories
of failures: errors and abstentions. If the stress tool outputs a stressed wordform,
and it is incorrect, then it is counted as an ‘error’ (err). If the stress tool outputs an
unstressed wordform, then it is counted as an ‘abstention’ (abs). Abstentions can
be the result of either unknown wordforms, or known wordforms with no stress
specified in our lexicon.

approach | acc% ert% abs% ‘ totTry% totFail%

noCG+bare | 3043 0.17 69.39 30.61 69.57

noCG+safe | 90.07 049 9.44 90.56 9.93

noCG+randReading | 94.34 3.36  2.30 97.70 5.66
noCG+freqReading | 95.53 2.59 1.88 98.12 4.47
noCG+randReading+guessSyll | 94.99 405 0.96 99.04 5.01
noCG+freqgReading+guessSyll | 95.83 346 0.72 99.28 4.17
CG+bare | 4578 0.44 53.78 46.22 54.22

CG+safe | 93.21 0.74 6.05 93.95 6.79

CG+randReading | 95.50 2.59 1.90 98.10 4.50
CG+freqReading | 95.73 240 1.88 98.12 4.27
CG+randReading+guessSyll | 9592 333 0.74 99.26 4.08
CG+fregReading+guessSyll | 96.15 3.14  0.72 99.28 3.85
RussianGram | 90.09 0.79 9.12 90.88 9.91

Table 4.2: Results of stress placement task evaluation

The two right-most columns in Table 4.2 combine values of the basic cate-
gories. The term ‘totTry’ (‘total attempted’) refers to the sum of the accuracy and

°Our method of computing recall assumes that if even one reading is output by the FST, then
all possible readings are present. If the token kosti were in our corpus, and its correct reading were
the verbal imperative, as shown in Table 4.1, and if the FST hypothetically did not contain this
reading, then our method for computing recall would assume that the token was found in the FST,
even though a correct alternative exists. We have not attempted to formally estimate how frequently
this assumption fails, but we expect such cases to be rare.
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error rate. This number represents the proportion of tokens for which our system
outputs a stressed wordform. In the case of noCG+bare, the acc% (30.43) and
err% (0.17) sum to the totTry% value of 30.61. The term ‘totFail’ (‘total failures’)
refers to the sum of error rate and abstention rate, which is the proportion of to-
kens for which the system failed to output the correct stressed form. In the case
of noCG+bare, the err% (0.17) and abs% (69.39) sum to the totFail% value of of
69.57 (rounded).

The noCG+bare approach achieves a baseline accuracy of 30.43%, so roughly
two thirds of the tokens in our corpus are morphosyntactically ambiguous. The
error rate of 0.17% primarily represents forms whose stress position varies from
speaker to speaker (e.g. zavilis’ vs. zavilis’ ‘they crinkled’), or errors in the gold-

standard corpus (e.g. *verim ‘we believe’, which should be vérim).

The noCG+safe approach achieves a 60% improvement in accuracy (90.07%),
which means that 89.39% of morphosyntactic ambiguity on our corpus is stress-
irrelevant. Notably, the RussianGram web service achieves results that are very
similar to the noCG+safe approach.

Since the ceiling recall for the FST is 97.55%, and since the noCG+safe ap-
proach achieves 90.07%, the maximum improvement that a constraint grammar
could theoretically achieve is 7.48%. A comparison of noCG+safe and CG+safe
reveals an improvement of 3.14%, which is about 42% of the way to the ceiling
recall.

The CG+randReading and CG+fregReading approaches are also limited by
the 97.55% ceiling from the FST, and their accuracies achieve improvements of
2.29% and 2.52%, respectively, over CG+safe. However, these gains come at the
cost of error rates as much as 3.5 times higher than CG+safe: +1.85% and +1.66%,
respectively. It is not surprising that CG+fregReading has higher accuracy and
a lower error rate than CG+randReading, since frequency-based guesses are by
definition more likely to be correct than random guesses. The frequency data were
taken from a very small corpus, and it is likely that frequency from a larger corpus
would yield even better results.

The guesssSyll approach was designed to make a guess on every wordform
that is not found in the FST, which would ideally result in an abstention rate of 0%.
However, the abstention rates of approximately 0.7% are a manifestation of the
fact that some words in the FST, especially proper nouns, have not been assigned
stress. Because the FST outputs a form — albeit unstressed — the guessSyl1l
algorithm is not called. This means that guessSy11 is only guessing on about
2% of the tokens. The improvement on overall accuracy from CG+fregReading
to CG+fregReading+guessSyll is 0.42%, which means that the guessSyl1
method guess was accurate 21% of the time.
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4.4 Discussion

One of the main points of this chapter is to highlight the importance of syntactic
context in the Russian word stress placement task. If your intended application has
a low tolerance for error, the noCG+safe approach represents the highest accu-
racy that is possible without leveraging syntactic information for disambiguation
(90.07%). In other words, a system that is blind to morphosyntax and contex-
tual disambiguation cannot significantly outperform noCG+safe. It would appear
that this is the method used by RussianGram, since its results are so similar to
noCG+safe. Indeed, this result can be achieved most efficiently without any part-
of-speech tagging, through simple dictionary lookup.

We noted in Section 4.1.1 that Hall and Sproat (2013) achieved 98.7% accuracy
on stress placement for individual wordforms in a list (i.e. without syntax). This
result is 8.63% higher than noCG+safe, but it is also a fundamentally different
task. Based on the surface forms in our FST — which is based on the same dictio-
nary used for Hall and Sproat (2013) — we calculate that only 29 518 (1.05%) of the
2 804 492 wordforms contained in our FST are stress-ambiguous.'! In our corpus
of unrestricted text, at least 7.5% of the tokens are stress-ambiguous. Therefore,
stress ambiguity is more than seven times more prevalent in our corpus of unre-
stricted text than it is in our wordform dictionary. Since the task of word stress
placement is virtually always performed on running text, it seems prudent to make
use of surrounding contextual information. The experiment described in this chap-
ter demonstrates that a constraint grammar can effectively improve the accuracy of
a stress placement system without significantly raising the error rate. Our Russian
constraint grammar is under continual development, so we expect higher accuracy
in the future.

We are unaware of any other empirical evaluations of Russian word stress
placement in unrestricted text. The results of our experiment are promising, but
many questions remain unanswered. The experiment was limited by properties
of the gold-standard corpus, including its size, genre distribution, and quality. Our
gold-standard corpus represents a broad variety of text genres, which makes our re-
sults more generalizable, but a larger corpus would allow for evaluating each genre
individually. For example, the vast majority of Russian words with shifting stress
are of Slavic origin, so we expect a genre such as technical writing to have a lower
proportion of words with stress ambiguity, since it contains a higher proportion of
borrowed words, calques, and neologisms with simple stress patterns.

In addition to genre, it is also likely that text complexity affects the difficulty of

"'These stress-ambiguous wordforms have an average of 2.01 possible stress positions, so a perfect
stress placement tool has a 50/50 chance of getting them right. This means that a perfect stress
placement tool could achieve 99.48% on their task.
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the stress placement task. The distribution of different kinds of syntactic construc-
tions varies with text complexity (Vajjala and Meurers, 2012), and so we expect
that the effectiveness of the constraint grammar will be affected by those differ-
ences.

The resources needed for machine-learning approaches to this task — such as
a large corpus of Russian unrestricted text with marked stress — are simply not
available at this time. Even so, lexicon- and rule-based approaches have some ad-
vantages over machine-learning approaches. For example, we are able to abstain
from marking stress on tokens whose morphosyntactic ambiguity cannot be ade-
quately resolved by linguistically motivated rules. In language-learning applica-
tions, this reduces the likelihood of learners being exposed to incorrect wordforms,
and accepting them as authoritative. Such circumstances can lead to considerable
frustration and lack of trust in the learning tool. However, in error-tolerant ap-
plications, machine-learning does seem well-suited to placing stress on unknown
words, since morphosyntactic analysis is problematic.

The syllable-guessing algorithm guessSy11 used in this experiment was overly
simplistic, and so it was not surprising that it was only moderately successful. More
rigorous rule-based approaches have been suggested in other studies (Church, 1985;
Williams, 1987; Xomicevic et al., 2008). For example, Xomicevic et al. (2008) at-
tempt to parse the unknown token by matching known prefixes and suffixes.

Other studies have applied machine-learning to the task of guessing stress of
unknown words (Pearson et al., 2000; Webster, 2004; Dou et al., 2009; Hall and
Sproat, 2013). For example, Hall and Sproat (2013) achieve an accuracy of 83.9%
with unknown words. Unfortunately, their model was trained on a full list of Rus-
sian words, which is not representative of the words that would be unknown to a
system like ours. However, their approach could be modified to make a guesser
that is tuned to the ‘clean-up’ task in our application. Most of the complicated
word stress patterns are closed classes which we expect our analyzer to cover with
100% accuracy.'> By excluding closed classes of words from the training data,
and including word classes that are likely to be similar to unknown tokens, such as
those with productive derivational affixes, we might be able to outperform a model
that is trained on a full wordlist.

4.5 Conclusions

We have demonstrated the effectiveness of using a constraint grammar to improve
the results of a Russian word stress placement task in unrestricted text by resolving

The growing number of masculine nouns with shifting stress (déktor~doktord
‘doctor’~‘doctors’) is one exception to this generalization.
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42% of the stress ambiguity in our gold-standard corpus. We showed that stress
ambiguity is seven times more prevalent in our corpus of running text than it is
in our lexicon, suggesting the importance of context-based disambiguation for this
task. As with any lexicon- and rule-based system, the lexicon and rules can be ex-
panded and improved, but our initial results are promising, especially considering
the short timespan over which our tools were developed.

As this is the first empirical study of its kind, we also discussed some method-
ological limitations, as well as possible improvements for subsequent research.
These include collecting stressed corpora of varying text complexity and/or genre,
as well as implementing and/or adapting established word stress-guessing methods
for unknown words.

The motivation for developing technology to automatically annotate Russian
word stress in this study was to make it possible for language learners to have
access to information about word stress in texts that have not been hand-annotated
by a teacher or publisher. The following chapter introduces an application that was
developed to facilitate this and other functionalities for teachers and learners.



Chapter 5

Visual Input Enhancement of the
Web!

In this chapter, we explore the challenges and opportunities which arise in devel-
oping automatic visual input enhancement activities for Russian with a focus on
target selection and adaptive feedback. Russian, a language with a rich fusional
morphology, has many syntactically relevant forms that are not transparent to the
language learner. This makes it a good candidate for visual input enhancement
(VIE). VIE essentially supports incidental focus on form by increasing the salience
of language forms to support noticing by the learner. The freely available VIEW
system (Meurers et al., 2010) was designed to automatically generate VIE activi-
ties from any web content. We extend VIEW to include several Russian grammar
topics and discuss connected research issues regarding target selection, ambigu-
ity management, prompt generation, and distractor generation. We show that the
same information and techniques used for target selection can often be repurposed
for adaptive feedback. Authentic Text ICALL (ATICALL) systems incorporating
only native-language processing technology—without the learner-language pro-
cessing technology that is characteristic of Intelligent Language Tutoring Systems
(ILTS)—thus can support some forms of adaptive feedback. This demonstrates
that ATICALL and ILTS represent a spectrum of possibilities rather than two cate-
gorically distinct enterprises.

'The research presented in this chapter was carried out in collaboration with Eduard Schaf, java
programmer and undergraduate student, as well as Prof. Detmar Meurers, who helped to edit, revise,
and even coauthor some passages in the article on which this chapter is based (Reynolds et al., 2014).
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5.1 Introduction

Intelligent Computer-Assisted Language Learning (ICALL) has been characterized
(Meurers, 2012) as consisting of two distinct areas, Intelligent Language Tutoring
Systems (ILTS) and Authentic Text ICALL (ATICALL). In the former, researchers
have focused on the challenge of analyzing learner language and providing adap-
tive feedback. Analyzing learner language requires language models that incor-
porate expected learner errors of various kinds, including lexical, morphological
and syntactic. Learner-language models can be used in ICALL settings, as well
as in automated scoring, and the analysis and annotation of learner corpora. On
the other hand, ATICALL research employs standard Natural Language Process-
ing (NLP) tools developed for analyzing native language to identify and enhance
authentic texts in the target language. The use of native-language NLP tools fa-
cilitates the search for and enhancement of reading material, identifying relevant
examples of grammatical structures in native-language corpora, and generating ex-
ercises, games, and tests from authentic materials.

While the choice of NLP may seem to result in categorically different function-
ality in some respects, in this chapter we want to show that it is possible to achieve
very similar functionality with both approaches. We describe how an ATICALL
system can incorporate a feature typical of ILTS: adaptive feedback to learner re-
sponses. The same technology used to generate grammar exercises can be extended
to provide adaptive feedback to learners. The idea is explored using language ac-
tivities for Russian, a language with a rich, fusional morphology that is challenging
for second language learners. We showcase four of the Russian activities that we
developed on top of the freely available VIEW platform (Meurers et al., 2010).

Russian Morphological Analysis Most Russian grammar books focus primarily
on morphology, a serious challenge to most learners. Russian has a highly fusional
morphology, with nominal inflection for six cases, two numbers, and three gen-
ders. There are three noun declension paradigms (i.e., inflection classes), each
containing 12 forms. Adjectival modifiers have at least 24 forms. Russian verbs
represent a relatively extensive inflectional system, similar to other Indo-European
languages. Including participial declension, verbs can have more than a hundred
paradigm cells. A related difficulty is that Russian stress is phonemic, differentiat-
ing both lexical and inflectional homographs. This causes difficulties for learners,
since there is a complex system of lexically specified stress placement, yet stress is
almost never marked in the written language.

In order to build an ATICALL system for Russian, we needed a fast, broad-
coverage morphological engine to both analyze and generate word forms (with
marked lexical stress). A Russian finite-state morphological analyzer was developed—
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as described in Chapter 2—using the two-level formalism (Koskenniemi, 1983).
The transducer was originally based on Zaliznjak (1977) (= 120 000 words), which
is the foundation for most Russian computational morphologies. Additional words,
especially proper nouns, are continually being added. Since Russian has system-
atic syncretism and widespread homonymy, a constraint grammar (Karlsson et al.,
1995) implemented in the freely available CG3 system? is used to disambiguate
multiple readings. The grammar is also under continual development. A descrip-
tion and evaluation of the grammar is given in Chapter 3. Our constraint gram-
mar is tuned to achieve high recall, which means that it should only remove read-
ings that can be ruled out with very high confidence. The benefit of this bias is
that downstream processes can operate with an intuitionistic/epistemic logic, ef-
fectively allowing the system to “know whether it knows” that a given reading is
reliable.

Most state-of-the-art part of speech taggers for Russian are based on finite-
state transducers, including AOT/Dialing (Nozhov, 2003), and mystem (Segalovich,
2003). The benefits of a rule-based approach to Russian morphology is even more
pronounced in ATICALL applications. Finite-state methods make it possible to
provide efficient and robust computational analyses with wide empirical coverage,
while keeping a clear conceptual distinction between the linguistic system and its
usage. Finite-state methods also have several characteristics that make them es-
pecially well suited for ICALL. A constraint grammar-based analysis can “know
whether it knows”, which allows an ATICALL system to focus only on targets that
are clearly identifiable. Since finite-state tools provide an actual linguistic model
of the language being analyzed, it is possible to identify and increase the salience
of linguistic characteristics known to be relevant in language learning. A good case
in point is stress placement, which is lexical, yet requires syntactic disambiguation.
The lexicon of the finite-state analyzer provides effective access to subsets of data
for certain grammar topics (e.g., retrieve all words with a particular stress pattern),
since this information is modeled in the analyzer’s source files. Furthermore, mis-
takes and errors in the system can be diagnosed and corrected. This is especially
important in ICALL, where low precision in the analysis leads to unreliable output
easily confusing and frustrating learners. And, importantly in the context of AT-
ICALL involving activities with distractors, a finite-state morphological analyzer
can simply be reversed to become a generator.

Visual Input Enhancement Researchers in second language acquisition agree
that comprehensible input is necessary for language learning. The Noticing Hy-
pothesis (Schmidt, 1990) extends this claim to say that noticing of grammatical

http://beta.visl.sdu.dk/cg3.html
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categories and relations also is required for successful second language acqui-
sition. Based on the Noticing Hypothesis and related work on Consciousness
Raising (Rutherford and Sharwood Smith, 1985) and Input Enhancement (Shar-
wood Smith, 1993, p. 176), researchers have investigated Visual Input Enhance-
ment (VIE) to encourage learners to notice the grammatical forms in comprehensi-
ble input. VIE refers to the graphical enhancement of written text to draw attention
to targeted grammatical structures. Various modes of enhancement have been sug-
gested, such as font manipulation (e.g., bold, italic, color), capitalization, and other
notations (e.g., underlining, circling). Such textual enhancements are intended to
increase the likelihood that the learner will notice the target grammatical form in
its grammatical and functional context of use.

Visual Input Enhancement of the Web (VIEW) is an ATICALL system de-
signed to automatically generate learning activities from user-selected texts on the
web. A description of the system architecture can be found in Meurers et al. (2010).
VIEW includes four activity types to guide the learner from recognition via prac-
tice to production. The highlight activity adds color to target wordforms. The click
activity allows the learner to identify target wordforms in the text. The multiple-
choice activity provides controlled practice, allowing the learner to choose the cor-
rect form from a multiple-choice list. The practice activity asks learners to type
the wordforms themselves. The activities can be accessed as a web application on
a webpage or through a toolbar provided as a Firefox web browser Add-on. Activ-
ities have previously been developed for English, German, and Spanish. The open-
source research prototype is available at http://purl.org/icall/view.

The following issues were considered in developing the activities for Russian:

1. Learner needs: What are the needs of the learner?

2. Technological feasibility: Can the target construction be reliably identified
using NLP?

3. Target selection: Which tokens of the target construction should be focused
on?

4. Prompt generation: What kind of prompt can sufficiently constrain the learner
productions for practice? (cf. Amaral and Meurers, 2011, sec. 3.1)

5. Generation of distractors for multiple-choice activities: What forms can or
should serve as distractors? How does Second Language Acquisition (SLA)
research help us with this, and how does the systematicity of the linguistic
system allow us to generate distractors?

6. Feedback: What kind of feedback does the learner receive for (in)correct
answers, under a perspective conceiving of feedback as scaffolding guiding
the learner in their Zone of Proximal Development (Vygotsky, 1986)?
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Related work To our knowledge, only two other Russian ICALL projects have
been reported in the literature. One set of studies has been dedicated to a Rus-
sian intelligent language tutoring system, the Boltun project®>. One of the Boltun
project’s goals is to develop learner-language NLP resources (Dickinson and Her-
ring, 2008a,b; Dickinson, 2010). In this respect, it is not directly relevant to the
research presented in this chapter.

Another project, KLIOS, was a learning management system developed specif-
ically for Russian foreign language learning (Gorisev et al., 2013). KLIOS appar-
ently makes use of the existing general-purpose tagger pymorphy2* and parser AB-
BYY Compreno’, but it does not appear to incorporate any ATICALL elements.
The native-language NLP tools are used to analyze learner language in responses
to hand-written exercises. Unfortunately, the KLIOS project has been suspended.

Goal and Structure of the Paper The goal of this chapter is to explore the
ability of authentic text ICALL systems to provide adaptive feedback to learn-
ers. In doing so, we also demonstrate some features of the Russian VIEW system
that we are currently developing, for which a prototype can be found at http:
//purl.org/icall/rusVIEW. In Section 5.2, we introduce exercises for
four separate target grammatical topics: Stress, Noun Declension, Aspect, and Par-
ticiples. For each topic, we discuss the pedagogical motivation for the exercises,
as well as relevant practical and theoretical issues that arose during development.
Special attention is given to factors involved in target selection since these fac-
tors become relevant in the subsequent discussion. In Section 5.3, we show how
the same technology and strategies used in target selection can be used to provide
adaptive feedback. Section 5.4 summarizes the contributions of the chapter and
considers options for evaluating the approach.

5.2 Key topics for Russian learners

The following grammar topics are generally difficult for learners, relatively ubiq-
uitous in Russian text, and they allow us to exemplify central issues in visual input
enhancement and the computational modeling it is built on. Section 5.2.1 intro-
duces a basic example, highlighting the morphological analysis in a noun declen-
sion activity. The discussion of target selection for this activity illustrates the need
to distinguish between grammatically and referentially determined morphosyntac-
tic properties. Section 5.2.2 discusses activities for word stress, where target selec-

*http://cl.indiana.edu/~boltundevelopment
4https ://pymorphy2.readthedocs.org
Shttp://www.abbyy.ru/isearch/compreno
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tion is primarily lexical, but is also concerned with managing the ambiguity that
arises in rule-based morphologies. Section 5.2.3 outlines verbal aspect activities,
where target selection is complicated by limitations in determining whether the
learner should be able to deduce the aspect of each token. Section 5.2.4 presents
activities for participles, which demonstrate a more complicated use of wordform
generation for providing prompts to guide learners’ responses in multiple-choice
and cloze activities.

In contrast to Intelligent Tutoring Systems, ATICALL systems such as VIEW
and reading support tools such as Glosser-RuG (Nerbonne et al., 1998), COM-
PASS (Breidt and Feldweg, 1997), REAP®, or ALPHEIOS’ focus on the analysis
of authentic native text. Where input enhancement and reading support turns into
exercise generation, such as the multiple-choice and cloze activities of VIEW, the
feedback currently provided by the system is very limited. If a response is correct,
then it turns green. If a response is incorrect, it turns red. VIEW does not attempt
to reveal why a response is correct or incorrect. One goal of this study was to
determine to what extent we can provide more informative adaptive feedback.

In the following subsections, we consider the degree to which the feedback that
learners receive in an ATICALL environment can be enhanced without developing
new NLP tools for learner language analysis. For the feedback methods discussed
below, enriched feedback can be provided using only the information already used
in the target selection and distractor generation processes. In other words, the
information used to select a given token is generally the same information that is
needed to provide enriched feedback beyond a simple correct/incorrect indicator.

5.2.1 Noun declension

The relatively extensive nominal inflection system is one of the first major hurdles
for most Russian learners. Learners whose L1 does not have similar noun declen-
sion frequently seem to ignore inflectional endings. A visual input enhancement
activity has the potential to boost learning by raising awareness of those endings.
We developed numerous activities targeting specific case distinctions known to
be difficult, including a highlight activity that highlights all of the nouns in a given
case; a click activity, where learners are asked to find and click nouns in a given
case; a multiple choice activity, where learners can select from all the forms of a
given noun; and a practice activity, in which learners must type the noun in full.
In this chapter, we focus on describing the multiple-choice activity developed for
all cases, since that activity makes it possible to illustrate both the underlying NLP
and some points regarding target selection. When learners select this activity for a

*http://reap.cs.cmu.edu
"nttp://alpheios.net
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web page, VIEW replaces some nouns in the text with dropdown boxes containing
the original noun in all of its case forms as options.

Target selection As a rule, each noun declension paradigm has 12 cells (six
cases, singular and plural), but some forms are syncretic. For example, prototypical
masculine nouns have ten unique forms, feminine and neuter nouns have nine, and
the soft-consonant feminine nouns have only seven unique forms. Although our
constraint grammar is able to disambiguate many syncretic forms, some ambiguity
still remains in the output for many tokens. One might expect that ambiguity in the
analysis would complicate target selection, but this is only true if the analysis is
ambiguous with regard to number. This is because a number ambiguity may be a
referential ambiguity that usually cannot be resolved by checking contextual clues,
as illustrated in (1).

(D He saw the (dancer/dancers).

Without additional context, such as a picture, this would be a confusing exercise
given that both dancer and dancers are grammatically correct. Given this potential
difficulty, we do not select tokens for which number is grammatically ambiguous.

Distractor generation After selecting targets that are unambiguously singular or
plural, generating distractors is very straightforward. Let us assume that a given
target KoBép kovér 'rug’ results in the two morphological analyses in (2).

(2) a. koBép+N+Msc+Inan+Sg+Nom
b. koBép+N+Msc+Inan+Sg+Acc

To generate the distractors, we strip the case tag and generate all six cases from that
base by adding the tags (+Nom, +Acc, +Gen, +Loc, +Dat, +Ins). For the example
at hand, this generates the following respective forms: KoBép kovér, KoBép kovér,
KOBpa kovra, KoBpe kovre, KoBpy kovru, KoBpoM kovrom. Because the original
token was singular, all of the generated wordforms are also singular. It is worth
noting that generating wordforms in this way would not be possible with stochastic
part-of-speech taggers, such as those developed by Sharoff et al. (2008a).

The generated forms are combined with the original token, and a set of unique
wordforms is supplied to the learners as options in the multiple-choice activity.
Currently, all six cases are used as distractors every time, but insights from SLA
theory and future research should make it possible to identify those subsets of
distractors most facilitating learning given a specific target.
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Feedback Feedback for noun declension activities can be based on dependency
relations established by a native-language syntactic parser. For example, in the
phrase On obycno sidel rjadom s mamoj ‘He usually sat next to (his) mother.INS’,
the word mamoj is in the instrumental case because it is the object of the prepo-
sition s. This fact is explicitly represented in a dependency tree, since the prepo-
sition s directly dominates mamoj. The ATICALL system can consult the parse
tree to prepare relevant feedback. If a learner selects the wrong case for this tar-
get, then the preposition s is highlighted to show the learner why it should be in
instrumental. As in tutoring systems, miniature lessons could be prepared for spe-
cific syntactic constructions to provide related information. For example, with this
preposition, the learner could be presented with the following: “s can govern three
different cases depending on its meanings: INS=‘with’, GEN=‘(down) from’, and
ACC=‘approximately’. (Use with ACC is rare.)”

This type of feedback is relevant, informative, and can easily be linked to
specific syntactic constructions. Effective adaptive feedback in such a multiple-
choice activity thus does not depend on learner-language NLP. The native-language
NLP—both syntactic analyses and distractor generation—is providing effective
feedback capabilities.

5.2.2 Stress

Five out of 10 of the Russian vowel letters are pronounced differently, dependent
on stress position, namely a, o, s, e, and €. Learners must know the stress position
in order to know how to pronounce a written word. However, Russian stress pat-
terns are specified lexically and cannot be predicted reliably from stem shape. Fur-
thermore, many high-frequency lexemes have complex patterns of shifting stress,
which means that many homographic forms of the same lexeme have different
stress positions. This makes mastering the correct pronunciation of some words a
difficult task for learners.

Four different activities were developed for stress. Unlike most ‘highlight’ ac-
tivities in VIEW, the stress highlight activity does not make use of color, but simply
adds a stress mark above every known stressed vowel in the text. For the ‘click’
activity, every vowel in the text becomes clickable: stressed vowels turn green and
receive a stress mark; unstressed vowels turn red. The ‘multiple-choice’ activity
selects some targets and learners try to identify the correctly stressed variant. The
conventional use of the ‘practice’ activity is not well motivated for stress, since
the entire set of possible responses is already represented in the ‘multiple-choice’
activity. Furthermore, typing stress marks is cuambersome for most users. Because
of this, the ‘practice’ activity was replaced by an activity in which stressed vowels
are highlighted when the cursor hovers over the token. In this section, we discuss
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issues of target selection and distractor generation for the multiple-choice activity.

Target selection For many tokens, our constraint grammar is unable to com-
pletely disambiguate all of the readings of a given token. In such cases, the token
can still be targeted if the remaining morphological ambiguity is immaterial with
regard to stress. For example, the token guby can have three difference readings,
given in (3), below. The nominative and accusative forms in (3-a) have the same
stress position (on the stem), and the genitive form in (3-b) has the stress on the
ending. If, for the sake of explanation, the constraint grammar removed the genitive
reading, then the token could be used as a target even with remaining morphosyn-
tactic ambiguity, since both of the remaining readings would have the same stress
position. The fact that the form stressed on the first syllable in (3-a) is ambiguous
between accusative or nominative is not relevant for our purposes; what matters is
that it can be distinguished from the genitive form in (3-b).

3) a. TYyOBI
gtiby
ryba+N+Fem+Inan+Pl+Nom or +N+Fem-+Inan+Pl+Acc
b. rybsl
guby
ryba+N+Fem+Inan+Sg+Gen

Choosing targets for multiple-choice and practice activities is an interesting peda-
gogical issue, since almost every multisyllabic token is a potential target. Although
there are many high-frequency words with difficult stress patterns, the overwhelm-
ing majority of Russian words have fixed stress. This means that if the program
randomly selects targets for the multiple-choice and practice activities, many of the
targets will not be pedagogically effective.

Stress patterns in Russian are specified lexically, and our solution to the target
selection problem is also lexical. We compiled a stress activity target list consisting
of lemmas that have shifting stress based on our morphological analyzer (chapter
2). For nouns, this includes Zaliznjak’s stress indices c, d, e, and f. In addition, we
also include masculine nouns with index b (end-stressed), such as kon’ ‘stallion’. In
theory, end-stressed masculine nouns have fixed stress on the ending, but because
the nominative singular has no ending, the stress falls on the stem, which means
that at a surface level, the stress position does move. For adjectives, only short-form
adjectives are targeted, since long-form adjectives do not ever have shifting stress.
We also target one other large class of words: cognate words whose stress position
in different in English and Russian. For example, compare English rddiator and
Russian radidtor.
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Proper nouns pose special problems for stress placement. Those proper nouns
for in which stress position can vary by referent—such as the surnames Ivdnov and
Ivanév—are not targeted because identifying the referent cannot be achieved reli-
ably with existing technology. However, proper nouns for which a single standard
stress position can be defined—such as Rossija ‘Russia’ or Ukraina ‘Ukraine’—are
added to the stress activity target list.

Distractor generation Generating distractors for the multiple-choice stress ac-
tivity is currently done by simply giving every possible stress position. For words
with four or fewer syllables, this approach is very reasonable, but for longer words,
it may not be ideal to have so many options to choose from. For longer words, dis-
tractors would ideally mimic likely incorrect responses that learners would make
on a parallel cloze test. In other words, the distractors should represent the kinds
of mistakes that learners typically make. More research is needed to determine,
but one possible source of information could be gained by logging user interac-
tion with the system. It is possible that an analysis of learners’ incorrect responses
might yield patterns that could be exploited for generating more focused distrac-
tors, especially for longer words.

Feedback In the multiple-choice and practice activities for stress, targets are se-
lected according to the stress activity target list introduced above, which is ex-
tracted from the morphological analyzer’s source files, which are in turn based on
Zaliznjak (1977). In Zaliznjak’s dictionary, every word is assigned a code sig-
nifying which stress pattern it belongs to. We combined this information with
frequency data from the Russian National Corpus in order to select an exemplar
for each stress type. Based on this information, a tooltip is displayed that shows
the exemplar and its paradigm when a learner gives an incorrect response. In this
way, the learner is able to associate the targeted token with a word that is hope-
fully more familiar. This type of feedback supports both top-down and bottom-up
learning, since it relies on an abstract connection to a concrete example.

5.2.3 Aspect

Most Russian verbs are either imperfective or perfective. For example, the English
verb ‘to say/tell’ corresponds to the two Russian verbs govorit’ (impf) and skazat’
(perf). Imperfective verbs are generally used to express duration, process, or rep-
etition. Perfective verbs are generally used for unique events, and they typically
imply completion. An imperfective verb and a perfective verb that share the same
lexical meaning are referred to as an aspectual pair. The choice of whether to use
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one aspect or the other is frequently dependent on context, as we discuss in more
detail in a corpus study below.

Russian has a productive system of aspectual derivation, by which so-called
aspectual pairs are formed. Although some verb pairs have no derivational relation
(like govorit’ / skazat’), most verb pairs have one of the following two relations.?
Example (4-a) exhibits an aspectual pair in which the perfective verb is decompos-
able as a prefixed form of the imperfective. Example (4-b) exhibits an aspectual
pair in which the imperfective verb can theoretically be decomposed as a suffixed
form of the perfective verb.

4) a. IMPF: simplex verb ; PERF: prefix + simplex verb
smotret ‘to watch.IMPF’ / po-smotret ‘to watch.PERF’
b. IMPF: (perfective stem) + suffix ; PERF: prefix + simplex verb
(ras-smatr)-ivat ‘to examine. IMPF’ / ras-smotret ‘to examine. PERF’

Verbal aspect is arguably the single most challenging grammar topic for learners
of Russian. The distinction between imperfective and perfective verbs is difficult
for beginners to grasp, and even very advanced learners struggle to master the finer
points. A set of ATICALL activities on aspect enables learners to focus on how
aspect is used in context, which is crucial for mastering Russian.

Target selection Since aspect in Russian is lexical, target selection also takes a
lexical approach. One problem in selecting targets for a multiple-choice activity is
that not all verbs belong to an aspectual pair, which makes generating distractors
problematic. For instance, the perfective verb ocutit'sja ‘find oneself at a loca-
tion” does not have an imperfective counterpart. Since distractors should ideally be
equivalent in every respect other than aspect, we select only verbs that belong to an
aspectual pair.” The list of paired verbs is compiled from three sources: 1) pairings
such as (4-a) above are taken from the Exploring Emptiness database!?, 2) pair-
ings such as (4-b) above are taken from Zaliznjak (1977), and 3) pairings without
a derivational relationship (of which there are few) are extracted from electronic
dictionaries.

Choice of verbal aspect is generally a matter of construal, i.e., how the speaker
is structuring the discourse, and some verb tokens could be grammatically correct
with either aspect. Consider the English examples John saw Mary and John had

8For a more complete discussion of aspectual derivation, see Janda and Lyashevskaya (2011).

The notion of aspectual pairs has been shown to be somewhat problematic by Kuznetsova (2013),
who proposes that many verbs actually form aspectual clusters. However, from a pedagogical point
of view, the concept of an aspectual pair is itself robust enough to serve as the basis for learning
materials.

Onttp://emptyprefixes.uit.no
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seen Mary. Even though they are likely to be used in different circumstances, both
sentences are grammatically well-formed. Likewise, in Russian there are cases that
allow either aspect. Meurers et al. (2010) suggested that lexical cues for English
aspect and tense could be automatically identified by NLP. Indeed, many Russian
textbooks and grammars also indicate contexts in which one aspect or the other is
impossible, or at least very unlikely. In order to identify contexts which constrain
the expression of one aspect or the other, Russian grammar books were consulted,
resulting in the following lexical cues.

o) Contexts in which perfective aspect is impossible/unlikely:

a. Infinitive complement of byt ‘to be’ (analytic future construction)

b. Infinitive complement of certain verbs (especially phrasal verbs, such
as ‘begin’, ‘continue’, “finish’, etc.)

c.  With certain adverbials denoting duration and repetition

(6) Contexts in which imperfective aspect is impossible/unlikely:

a. Infinitive complement of certain verbs (e.g., ‘forget’ and ‘succeed’)
b.  With certain adverbials denoting unexpectedness, immediacy, etc.

A corpus study was conducted to test the usefulness of these features in an ATI-
CALL application. The goal of the study was to determine the precision of the
features, as well as their coverage, or recall. Precision was calculated as the per-
centage of verbs found adjacent to the appropriate lexical cues listed in (5) and (6)
whose aspect was accurately predicted by that lexical cue. Recall was calculated as
the percentage of all verbs whose aspect is correctly predicted by an adjacent lexi-
cal cue. In practical terms, for the purposes of our Russian aspect activities, preci-
sion tells us whether the learner ought to know which aspect is required, which is
useful for target selection. Recall tells us what percentage of verbs actually appear
together with these lexical cues, and whose aspect is correctly predicted by them.

The study included two corpora, each investigated separately. The Russian
National Corpus'! (230 M tokens) is a tagged corpus with diverse genres. The
annotation in the RNC frequently contains ambiguities, but since the aspect of
Russian verbs is rarely ambiguous and the aspect of the contextual features is irrel-
evant, ambiguous readings should not significantly affect our outcomes. Since the
RNC does not include syntactic relations, we rely on collocation of these lexical
cues with verbs. SynTagRus!? (860 K tokens) is a morphologically disambiguated
and syntactically annotated dependency treebank of Russian. Because dependency
relations are defined, identifying adverbial relations and verbal complements is

http://www.ruscorpora.ru/en/index.html
Phttp://www.ruscorpora.ru/search-syntax.html
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straightforward. The results are given in Table 5.1.

RNC SynTagRus
Precision  0.95 0.98
Recall  0.03 0.02

Table 5.1: Results of the corpus study of lexical cues for aspect

The precision of these lexical cues is very high, meaning that when lexical
cues are present, the verb is of the predicted aspect. This is expected, since known
counterexamples such as (7) are uncommon.

7 Hacrogmuit 1pyr Bcerjia cKakeT — IIpaBy.
Nastojascij drug vsegda skaZet pravdu.
True friend always will-tell.PF truth
‘A true friend will always tell the truth.’

Given that Russian allows variable word order, it is surprising that collocation in
the RNC is nearly as reliable as dependency relations in this task. Apparently these
lexical cues have a very strong tendency to appear adjacent to the verbs that they
modify or are in a construction with.

Unfortunately the recall of the lexical cues is extremely low. It correctly pre-
dicted the aspect of only one out of 50-60 verbs. Although future work is needed to
explore these phenomena more thoroughly, these results seem to indicate that ver-
bal aspect in Russian is predominantly determined suprasententially, with lexical
cues playing only a very minor role.

For language learning, this result has several implications. First, it shows that
learners can place their confidence in lexical cues, but these cues will not get them
very far. Yet in Russian textbooks, more space is often dedicated to these lexical
cues than to discourse considerations. This means that some learners may not be
getting enough instruction on strategies that help in the majority of cases. Second,
for the purposes of target selection, the Russian VIEW system can rely on lexical
cues of aspect with some confidence. If a token is adjacent to the appropriate cues,
then a learner should be expected to know the aspect of that token. However, since
the lexical cues are so sparse, the system cannot make an intelligent decision for
the overwhelming majority of verb tokens. One potential solution would be to
implement machine-learning approaches to predict the distribution of each aspect
more accurately. However, even though such models might make more accurate
predictions, there is no guarantee that its output would reflect what a human second
language learner should be capable of distinguishing.

If it is true that context-based rules cannot provide adequate coverage of as-
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pectual usage, then this implies that Russian verbal aspect is acquired through se-
mantic bootstrapping. As learners are exposed to verbs of both aspects, real-world
knowledge and expectations form the foundation upon which aspectual categories
are built in their minds. Therefore, it may not be feasible for an ATICALL system
to predict how or whether the learner can be expected to know the aspect of a given
target. However, this does not mean that the system cannot provide a significant
benefit to the learner by facilitating focus-on-form exercises, albeit blindly. For
now, our system selects any paired verbs as targets, giving preference to forms that
appear adjacent to our lexical cues.

Distractor generation Distractors for the multiple-choice activity are generated
by replacing the lemma with its aspectual partner, and replacing the aspectual tag,
as shown in (8).

®) a. Original: untars+V+Impf+TV+Pst+Msc+Sg
b. Distractor: npountarb+V+Perf+TV+Pst+Msc+Sg

Feedback As we discussed in above, determining why a given aspect is required
in a given context is rarely possible with current technology. However, some tokens
do have a clear lexical cue, which is used both to promote their selection as targets,
and can also be used as corrective feedback. For example, given the sentence On
obycno sidel rjadom s mamoj. ‘He usually sat.IMPF next to (his) mother’, if the
learner selects the perfective verb, then the adverb cue obycno can be highlighted
to show the learner why perfective is not appropriate. The information needed to
give enhanced feedback is the same information used in target selection.

5.2.4 Participles

Russian has four kinds of adjectival participles, which are used both attributively
and as relativizers. Their formation, meaning, and usage are not usually introduced
to learners until more advanced levels. Although they are not used frequently in
spoken Russian, participles are very common in written Russian, especially in high
registers, such as literature, official documents, news, and technical writing. In
these domains, participles figure prominently in the structure of complex sentences.
Many learners without parallel forms in their L1 struggle with Russian participles.
All of these things make participles an excellent candidate for ATICALL visual
input enhancement.

Target selection The four participles are present active, present passive, past
active, and past passive. The passive participles are generally only formed from
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transitive verbs. Present participles are only formed from imperfective verbs, and
past participles are typically formed from perfective verbs. The result of this is that
not all verbs (or rather, verb pairs) can form every kind of participle. In order to
select only those verbs from which a full ‘paradigm’ of distractors can be formed,
we limit target selection to transitive verbs that are members of aspectual pairs (as
described in section 5.2.3). We also do not target participles that have a possible
lexicalized adjective reading, such as ozernrit odetyj ‘dressed’, or participles in the
short-form.

Prompt generation Multiple-choice and cloze activities require a prompt for
learners to know which kind of participle is being elicited. One way to do this is
to rephrase the participle using the relative determiner koTopsrit kotoryj ‘which’.
For example, the present active participle gpemmomnuit dremljuscij ‘slumbering’
can be rephrased as koropsiit apemser kotoryj dremlet ‘which/who slumbers’.
Fortunately, it is possible to perform this rephrasing automatically, based solely on
the tags of the original token. We refer to the resulting paraphrase as a relative-
rephrase. This is demonstrated in (9) and (10), where (a) gives an example of a
participle in context, (b) gives the participle’s grammar tags assigned by the tag-
ger, and (c) provides the relative-rephrase and its readings. The bolded tags in (b)
and (c) indicate the tags that are extracted from the participle reading in order to
generate the relative-rephrase. The tags in (c) that are not bolded are the same for
every participle of that category.

9 Present Active

a. pazjykKa ecTb I'po0, 3aK/I0Yaomuil B cebe MOJIOBHHY CEp/Ia
separationis  tomb which-imprisons in itself half of-heart
‘separation is a tomb which imprisons half of one’s heart.’
zakJjodaomuii: 3aka09aTb+V+Impf+TV+PrsAct+Msc+Sg+Nom

C. KOTOpBIi 3akmodaer ‘which imprisons’
kotopblii+Pron+Rel+Msc+Sg+Nom
zaxo4arb+V+Impf+TV+Prs+Sg3

(10) Past Passive

a. Pacceannoe MOJTIAHIE
which-was-scattered silence
‘scattered silence’
paccesaTb+V+Perf+TV+PstPss+Neu+Sg+Nom
c. koropoe paccesau ‘Which (they) scattered’
kotopbiit+Pron+Rel+Neu+Sg+Acc
paccesitb+V+Perf+TV+Pst+MFN-+PI
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The given relative-rephrasing of passive participle in (10) is a zero person con-
struction (Heompee/IEHHO-TUYIHOE TIpeioykenue), in which there is no explicit
subject, and the verb shows third-person plural agreement. Although this rephras-
ing is not always the best possible rewording of the passive, it is the alternative that
works best in a wide variety of circumstances.

This method of prompt generation takes advantage of the systematicity of
grammatical relations in Russian. It works because all of the morphosyntactic
information needed to form the relative-rephrase is already present in the original
participle’s morphosyntactic tags.

Feedback Recall that the participle activities discussed above have a prompt pro-
vided in the form of a kotoryj ‘which/who’ relative-rephrase of the participle. It was
shown that the morphosyntactic properties of the participle correspond directly to
the morphosyntactic properties of the relative-rephrase. These very same relations
can be leveraged to provide feedback to the learner.

For example, let us say that the original token was a past active participle
napisavsij ‘who wrote’ with the relative-rephrase hint (kotoryj napisal). If the
sented with feedback such as: “The word you selected means kotoryj piset. Pay
attention to the tense of napisal.” This feedback is tailored to the learner’s response,
and encourages the learner to compare the functional meanings of the relevant mor-
phological forms. In this case, the strategy used for prompt generation facilitates
customized feedback.

5.3 Feedback

Overall, the four examples sketched above show that the provision of specific types
of adaptive feedback is a meaningful and natural extension of an ATICALL sys-
tem such as VIEW, using the same NLP techniques employed in analysis, target
selection and distractor generation. However, the nature of the feedback based
on native-language NLP can potentially differ from feedback based on learner-
language NLP.

Since the publication of Truscott (1996), which claims that grammar correction
in L2 writing impedes learning, several researchers have investigated the effects of
feedback, with many studies finding a useful distinction between indirect, metalin-
guistic, and indirect feedback (Ellis, 2009). Indirect feedback is when the teacher
indicates that an error was made, but does not actually correct it. Metalinguistic
feedback is when the teacher indicates that a mistake was made, together with some
kind of explicit comment about the nature of the error. Direct feedback is when the
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teacher provides the learner with the correct form. The distinction between the
different kinds of corrective feedback aligns well with the different kinds of infor-
mation that are available from native-language and learner-language NLP.

From the standpoint of ATICALL activities (with native-language NLP), both
indirect and direct feedback are straightforward to generate automatically, since
the correct form is known to the system by virtue of being the original text from
which the exercise was generated. If a learner’s response does not match the form
in the original text, the ATICALL system can simply indicate that the response is
incorrect (indirect feedback), or show the presumed correct form from the original
text (direct feedback). However, as we have demonstrated above, native-language
NLP makes it possible to give metalinguistic feedback, based on the morphological
and syntactic analyses of the original text.

One the other hand, intelligent language tutoring systems (with learner-language
NLP) are well attuned to learner errors, since the NLP is primarily designed to
process and diagnose errors typical of language learners. Just as with ATICALL
applications, an ILTS can give indirect feedback to incorrect responses by simply
indicating that there is an error. An ILTS can also give metalinguistic feedback,
based on the diagnostic abilities of its learner-language NLP. For example, a Rus-
sian learner may type the word pisjut instead of pisut ‘(they) write’, forgetting to
apply a spelling rule that ju changes to u after 5. The learner-language NLP would
typically diagnose this error as a spelling-rule error, and can give metalinguistic
feedback based on the that information. In the case of direct feedback, an ILTS
must wrestle with the additional complication of identifying what the correct form
should be in the first place, but assuming that it can do so successfully, an ILTS can
give direct feedback as well.

To summarize, both ATICALL and ILTS can give both indirect and direct feed-
back to learners, although in the case of direct feedback, an ILTS must overcome
the challenge of determining what the correct form should be. However, with re-
gard to metalinguistic feedback, the kinds of feedback that can be facilitated by
native-language NLP and learner-language NLP are qualitatively different. Native-
language NLP can facilitate metalinguistic feedback that describes the expected
correct response, whereas learner-language NLP is generally more attuned to pro-
viding metalinguistic feedback that is focused on the kind of error the learner made.
This distinction is one that, to our knowledge, has not been made in any studies
of corrective feedback. On the contrary, most studies assume that metalinguistic
feedback is error-focused (e.g. Lyster and Ranta, 1997; Ellis, 2009). Given the
controversy that currently exists over the effectiveness of different kinds of cor-
rective feedback, future research may benefit from recognizing the distinction we
have identified in two separate categories of metalinguistic corrective feedback.
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5.4 Conclusions and Outlook

We reported practical and theoretical issues related to developing automatic visual
input enhancement for Russian, with a focus on including adaptive feedback in
such an ATICALL system. The selected topics demonstrate the challenges that a
morphology-rich language brings with it and how a rule-based morphological anal-
ysis can be used to tackle them. In addition to providing the means for effective
disambiguation, the finite-state approach makes it possible to generate wordforms
for distractors, prompts (participles), and stressed wordforms. It also makes it
possible to employ an epistemic/intuitionistic logic to select target tokens based on
both practical and pedagogical considerations. The system is self-aware, in a sense,
and knows whether it knows enough information about each token. For example,
tokens for which the constraint grammar could not sufficiently disambiguate mor-
phosyntactic readings can be avoided. Furthermore, where possible, targets are
selected according to their pedagogical value, rather than purely random selection.

We also characterized certain types of adaptive feedback, which typically asso-
ciated with intelligent language tutoring systems, that can be added in an ATICALL
environment using the same information that is used for target selection and dis-
tractor generation. This refines the perspective distinguishing two subdisciplines of
ICALL (Meurers, 2012), while keeping a clear distinction on the processing side
between analyzing learner language and analyzing native language for learners.

In terms of future work, the crucial next step is to empirically evaluate the
approach and the specific parameterization (activities, enhancement methods, dis-
tractors, and feedback used) in terms of learner uptake and attitudes, and more gen-
erally, learning gains. While identifying a real-life educational context in which the
tool can be integrated meaningfully is a complex undertaking, the computational
approach presented in this chapter should readily support a controlled study with
different intervention groups and a standard pretest-posttest-delayed posttest de-
sign. The foundational hypotheses upon which visual input enhancement is built
have not been empirically evaluated to a sufficient degree (Lee and Huang, 2008),
so evaluating learner outcomes is needed not only to establish the system’s ef-
fectiveness, but also to validate the theories upon which it is based. As already
suggested in Meurers et al. (2010), an ATICALL platform such as VIEW should
make it possible to push intervention studies to a level where effects could be more
readily established than in the very controlled but small laboratory settings.'? This
seems particularly relevant since there are many parameters that need to be ex-
plored, e.g., which kind of visual input enhancement works for which kind of
learners and for which kind of linguistic targets presented in which contexts. We

In a similar vein, Presson et al. (2013) discuss the potential of experimental computer-assisted
language learning tools for SLA research.
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are also interested in exploring which kind of distractors (and how many) are op-
timal for which activities or learner levels. Finally, while it is beyond the current
analysis we perform, we plan to investigate different ways of measuring noticing
through computer interaction behaviors, and test their correlation with individual
learner characteristics and learning outcomes.

On the computational side, although we have evaluated the performance of
the NLP components used in the approach in terms of precision, recall, and speed
(Tyers and Reynolds, 2015), we believe that it is also important to evaluate its per-
formance for the specific parts of speech and morphological properties that are at
issue in a given activity. For the activities discussed in this chapter, this includes
nouns for the noun declension activity, infinitive and indicative verbs for the aspect
activity, participles for the participles activity, and all parts of speech for the stress
activity. The performance should also be tested on different genres and reading
levels, since those distinctions will affect NLP performance. Ideally, the perfor-
mance should be analyzed on a corpus that is characteristic of the material that the
learners or their teachers select as the basis for generating activities — which is only
possible in an interdisciplinary approach including both NLP research and real-life
teaching and learning contexts.

In terms of making an ATICALL system useful in real life, an important chal-
lenge arises from the fact that many texts do not contain enough of the relevant sorts
of targets or contextual cues. This, for example, was apparent in the corpus study
related to verbal aspect. The texts a learner chooses for enhancement and activity
generation thus should be filtered in a way ensuring a sufficient number of targets
in the texts. To address that need, we plan to further develop grammar-aware search
engines (Ott and Meurers, 2010) supporting the selection of appropriate materials.
The first steps toward this end are presented in the following chapter, in which I
present research on automatically classifying Russian texts according to L2 read-
ability levels.
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Chapter 6

Automatic classification of
document readability on the basis
of morphological analysis

6.1 Introduction

Reading is one of the core skills in both first and second language learning, and
it is arguably the most important means of accessing information in the modern
world. Modern second language pedagogy typically includes reading as a major
component of foreign language instruction. Over the years, there has been some
debate regarding the use of authentic materials versus contrived materials, where
authentic materials are defined as “A stretch of real language, produced by a real
speaker or writer for a real audience and designed to convey a real message of
some sort” (Morrow, 1977, p. 13).! Many empirical studies have demonstrated
advantages to using authentic materials, including increased linguistic, pragmatic,
and discourse competence (Gilmore, 2007, citations in §3). However, Gilmore
notes that “Finding appropriate authentic texts and designing tasks for them can,
in itself, be an extremely time-consuming process.” Finding appropriate texts is
difficult because “appropriate” has several important connotations. An appropriate
text should arguably be interesting, linguistically relevant, authentic, recent, and at
the appropriate reading level.

Sometimes teachers select texts only from books or collections that are known
to be at the appropriate reading level. This frequently results in texts that are not
relevant, interesting, or current. Another strategy is to search on the internet for

'The definition of authenticity is itself a matter of disagreement (Gilmore, 2007, §2), but Mor-
row’s definition is both well-accepted and objective.
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texts on a relevant topic, selecting whichever text is closest to the appropriate
reading level, or modifying a text to make it accessible. The second strategy is
time-consuming and difficult, since most of the texts returned on an internet search
query are inappropriate for beginning learners. Tools to automatically identify a
given text’s complexity would help remove one of the most time-consuming steps
of text selection, allowing teachers to focus on pedagogical aspects of text selec-
tion. Furthermore, these tools would also make it possible for learners to find
appropriate texts for themselves.

A thorough conceptual and historical overview of readability research can be
found in Vajjala (2015, §2.2). The last decade has seen a rise in research on read-
ability classification, primarily focused on English, but also including French, Ger-
man, Italian, Portuguese, and Swedish (Roll et al., 2007; Vor der Briick et al., 2008;
Aluisio et al., 2010; Francois and Watrin, 2011; Dell’Orletta et al., 2011; Hancke
et al., 2012; Pilan et al., 2015). Broadly speaking, these languages have limited
morphology in comparison with Russian, which has comparatively rich morphol-
ogy among major world languages. It is therefore not surprising that morphology
has received little attention in studies of automatic readability classification. One
important exception is Hancke et al. (2012) which examines lexical, syntactic and
morphological features with a two-level corpus of German magazine articles. In
their study, morphological features are collectively the most predictive category
of features. Furthermore, when combining feature categories in groups of two
or three, the highest performing combinations included the morphology category,
which I interpret to mean that the morphology category of features encodes infor-
mation that is not found in other categories. If morphological features figure so
prominently in German readability classification, then there is good reason to ex-
pect that they will be similarly informative for Russian second-language readability
classification.

Studies of automatic readability assessment based on machine learning rely
on training corpora consisting of texts that have been rated by humans, whether
teachers, publishers, or students. Even for humans, readability assessment is a
very difficult task. The fact that many popular word processors include automatic
readability assessment tools indicates that humans are frequently unsure about how
difficult their own writing is. Therefore, there is some reason to doubt the validity
of human ratings in a readability corpus. However, without superior alternatives,
most readability researchers use human ratings as the gold standard, without ex-
amining their validity.

This chapter explores to what extent textual features based on morphological
analysis—as made available by the Russian morphological analyzer described in
Chapters 2 and 3—can lead to successful readability classification of Russian texts
for language learning. More specifically, I train classifiers to assign a text to one of
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six CEFR proficiency levels: Al, A2, B1, B2, C1 and C2. I also examine the inter-
nal validity of the ratings in my gold standard corpus in order to estimate how well
the resulting classifier models can be applied to new, unseen texts. In Section 6.2,
I give an overview of previous research on readability, including some work on
Russian. The corpora collected for use in this study are described in Section 6.3.
The features extracted for machine learning are outlined in Section 6.4. Results
are discussed in Section 6.5, and conclusions and outlook for future research are
presented in Section 6.7.

6.2 Background

The history of empirical readability assessment began as early as 1880 (DuBay,
2006), with methods as simple as counting sentence length by hand. Today, re-
search on readability is dominated by machine-learning approaches that automat-
ically extract complex features based on surface wordforms, part-of-speech anal-
ysis, syntactic parses, and models of lexical difficulty. In this section, I give an
abbreviated history of the various approaches to readability assessment, including
the kinds of textual features that have received attention. Although some propri-
etary solutions are relevant here, I focus primarily on work that has resulted in
publically available knowledge and resources.

6.2.1 History of evaluating text complexity

The earliest approaches to readability analysis consisted of developing readability
formulas, which combined a small number of easily countable features, such as
average sentence length, and average word length (Kincaid et al., 1975; Coleman
and Liau, 1975). For example, the well-known Flesch-Kincaid Reading Grade
formula is computed as:

6.1

506,835 1.015< total words ) B 84.6<toml syllables)

total sentences total words

The constants in the formula are weights intended to yield a result that indi-
cates the US grade level for which the text is appropriate. These weights have been
adapted for specific genres and languages. Although formulas for computing read-
ability have been criticized for being overly simplistic, they were quickly adopted
and remain in widespread use today.” An early extension of these simple ‘count-
ing’ formulas was to additionally rely on lists of words deemed “easy”, primarily

The Flesch Reading Ease test and the Flesch-Kincaid Grade Level test are implemented in the
proofing tools of many major word processors.
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based on their frequency, or polling of young learners (Dale and Chall, 1948; Chall
and Dale, 1995; Stenner, 1996). A higher proportion of words belonging to these
lists resulted in lower readability measures, and vice versa.

With the recent growth of natural language processing techniques, it has be-
come possible to extract information about the lexical and/or syntactic structure
of a text, and automatically train readability models using machine-learning tech-
niques. Some of the earliest attempts at this built unigram language models based
on American textbooks, and estimated a text’s reading level by testing how well
it was described by each unigram model (Si and Callan, 2001; Collins-Thompson
and Callan, 2004). This approach was extended in the REAP project? to include a
number of grammatical features as well (Heilman et al., 2007, 2008a,b).

Over time, readability researchers have increasingly taken inspiration from var-
ious subfields of linguistics to identify features for modeling readability, including
syntax (Schwarm and Ostendorf, 2005; Petersen and Ostendorf, 2009), discourse
(Feng, 2010; Feng et al., 2010), textual coherence (Graesser et al., 2004; Cross-
ley et al., 2007a,b, 2008), and second language acquisition (Vajjala and Meurers,
2012). The present study expands this enterprise by examining the contribution of
morphological features as a measure of textual complexity.

6.2.2 Automatic readability assessment of Russian texts

The history of readability assessment of Russian texts takes a very similar trajec-
tory to the work related above. Early work was based on developing formulas based
on simple countable features. For example, Mikk (1974) hypothesized that the
more abstract a text is, the more difficult it is to understand. Mikk proposed count-
ing the number of tokens that refer to abstract ideas, based primarily on derivational
suffixes. Other researchers adapted readability formula for English to Russian by
adjusting weights, or introducing other features. For instance, Oborneva (2005,
2006a,b) adapted the Flesch Reading Ease formula for the Russian language by
means of adjustment coefficients. She compares the average length of syllables in
English and Russian words and percentage of multi-syllable words in dictionaries
for these languages. Mizernov and Gras¢enko (2015) compared 12 different tradi-
tional readability formulas, and created an application for comparing their output.

Some researchers have tried to be more objective about defining readability, by
obtaining data from expert raters, or from other experimental means. For example,
Petrova and Okladnikova (2009); Okladnikova (2010) studied the readability of
testing materials. They performed a regression analysis of test items rated accord-
ing to difficulty by expert raters against a number of features. Most of the features

*http://reap.cs.cmu.edu
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discussed in the paper are not relevant for the present study, since they are specific
to a testing domain, and therefore do not apply to running text.

Likewise, Spakovskij (2003, 2008) conducted a series of experiments in order
to automatically evaluate the difficulty of texts in chemistry textbooks. Students
were given texts from chemistry textbooks, along with exercises to test their un-
derstanding. The students were asked to rate the difficulty of the text; their per-
formance on the exercises, and the time required to complete the entire task, were
recorded. Eighty-three textual features were extracted—some manually and others
automatically—based on lexical properties, morphological categories, typographic
layout, and syntactic complexity. Based on the results from linear regression mod-
els using subsets of these features, three factors were judged to be the most infor-
mative as a group: percentage of words with more than 8 letters, percentage of
tokens that were formal terminology, and the number of symbols in chemical reac-
tions. These three factors were then combined in a formula using the weights from
the regression models to predict the difficulty of textbook sections.

Ivanov (2013) calculated the Pearson product-moment correlation coefficient
for 45 factors, using a corpus of 88 works of literature recommended for children
between 4th and 11th grades. 10 factors yielded significant correlations: num-
ber of short-form adjectives, number of verbs in personal forms, Flesch-Kincaid
Reading Level, Flesch Reading Ease for Russian (Oborneva, 2005, 2006a,b), num-
ber of subordinating conjunctions, Coleman-Liau Index, number of coordinating
conjunctions, number of abstract words, and the number of pronouns.

Filippova, Krioni and Nikin (Nikin et al., 2007; Krioni et al., 2008; Filippova,
2010) published a number of works reporting on development of an application
designed to help readers and authors to gain access to information derived from
complexity measures of a given text. The author module is relevant to the current
discussion. The program automatically extracts a number of features from the text
and highlights/annotates the text so that the author can reduce the complexity of
the text. These features were not evaluated against a gold standard corpus, but they
propose some features that are worth consideration, as listed below:

1. number of definitions (identified by 10 constructions such as “X is Y”,“is
7, ”, “signifies”, etc.)

called”, “means”, “represents”,
2. number of abstract words (14 derivational affixes)
3. number of sentences containing long words

4. number of participles and verbal adverbs

5. ratio of sentences containing participles and verbal adverbs
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6. number of complex sentences (simple and complex conjunctions)

Kotlyarov (2015) reports preliminary results of some pilot testing of a small
number of text complexity features inspired by Cukovskij (2009) and Gal’ (2014),
who offer guidelines for avoiding “official-ese”, a tendency to overcomplicate texts
that the writer deems important. These features include, semi-auxiliary verbs,*
participles, verbal adverbs, chains of interdependent oblique noun phrases (espe-
cially long chains of genitives), passive voice, less common words, sentence length
and number of subordinate clauses. Preliminary results showed highest correlation
with “complex verb forms™ and chains of genitives. Kotlyarov does not clearly
state what these features correlate with, but it appears that the Flesch Reading Ease
score is taken as a gold standard.

Russian text complexity for language learners

The experiments reported in this chapter are concerned with text complexity for
language learners. Although we can expect many of the factors of text complexity
to be the same for both native speakers and learners, there are certainly other factors
that differ, especially since learners generally have more limited vocabularies, as
well as limited knowledge of the target languages’ syntactic and morphological
constructions. Only a handful of studies have investigated Russian readability for
language learners, and they are briefly described below.

Wadotowska-Lesner (2011) investigated the effect of three factors on readabil-
ity of Russian texts by native-Polish learners: syntactic complexity (measured as
sentence length in words), lexical difficulty (measured as non-repeating words and
words whose Polish translations are similar), and lexical complexity (measured as
the number of tokens with 3 or more syllables). These data were collected for
three texts and compared with both ratings and qualitative evaluations of 59 stu-
dents who read the texts. Not surprisingly, their evaluations support the conclusion
that all three factors are important contributors to readability.

Sharoff et al. (2008b) considered a number of features for comparison between
two subcorpora: original texts published in quality online newspapers, and the
Russian BBC website, which they judged to be significantly easier for native En-
glish students. They investigate 11 features: token frequency (top 1000/2000/3000
words), average sentence length, average word length in syllables, Flesch Reading
Ease, coverage by more frequent part-of-speech trigrams, and the average number
of conjunctions, verbs, passive verbs, modal verbs, prepositions, or punctuation

*Kotlyarov does not explain what he means by the term semi-auxiliary, which is not a standard
term in Russian linguistics.
By “complex verb forms”, Kotlyarov seems to mean verbal adverbs and participles.
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marks per sentence. A principle component analysis of these features supported
the intuition that texts with a higher number of less frequent words, conjunctions,
prepositions, and longer sentences tend to be more difficult for language learners.

Recently, Karpov et al. (2014) performed a series of experiments using several
different kinds of machine-learning models to automatically classify Russian text
complexity, as well as single-sentence complexity. They collected a small corpus
of texts (described in Section 6.3.1 below), with texts at 4 of the CEFR levels:®
Al, A2, B1, and C2. They extracted 25 features from these texts, including the
following:

1. Document length in words

2. Document length in letters

3. Average sentence length in words

4. Average sentence length in syllables

5. Average sentence length in letters

6. Average word length in syllables

7. Average word length in letters

8. Percentage of words with [V or more syllables (3 < N <6)

9. Percentage of words with NV or more letters (5 < N < 13)
10. Percentage of words not in active vocabulary of CEFR level A1, A2, or Bl
11. Occurrence of part of speech X, where...

* X € {NOUN, ADJF, ADJS, COMP, VERB, INFN, PRTF, PRTS,
GRND, NUMR, ADVB, NPRO, PRED, PREP, CONJ, PRCL, INTJ}

Using these features in Classification Tree, SVM, and Logistic Regression
models for binary classification (A1-C2, A2-C2, and B1-C2), they report achieving
accuracy close to 100%. It is not clear why Karpov et al. divide their binary classi-
fiers in this way, as opposed to stepwise combinations, such as A1-A2, A2-B1, and
B1-C2. There is no real utility in making binary distinctions that skip intervening
levels. In a four-way classication task, they report that their results were lower,
but they only provide precision, recall, and accuracy metrics for the B1 readabil-
ity level during four-way classification, which were as high as 99%. Despite the

SCEFR levels are introduced in Section 6.3.
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strangely selective reporting in their article, I made efforts to replicate their re-
sults. However, the copy of the corpus that I received from them has about half as
many documents at the Al level as are reported in the paper. The authors could
not provide an explanation for the discrepancy. With the given data, my attempts
at replicating their study yielded lower results.

Karpov et al. (2014) also performed an Information Gain Ratio analysis, re-
vealing that the top-ten most informative features were the three features regarding
vocabulary coverage, followed by percentage of words with 7/8/9/10 or more let-
ters, as well as average sentence length in syllables, average word length in letters,
and percentage of words with 5 or more syllables. Notably, the features based on
part of speech, which is the closest they have to morphology, are missing from the
top ten.

Summary Section 6.2.2 has presented an overview of the published research
connected with automatic assessment of Russian text complexity. Although many
of these studies investigated textual properties that can serve as inspiration for the
present study, only one other study (Karpov et al., 2014) has investigated features
for classifying Russian texts according to L2 reading levels. Surprisingly, that
study included virtually no morphological features. Karpov et al. (2014) was lim-
ited by the fact that it covered only four out of six CEFR levels with no more
than 60 data points per level. Furthermore, irregularities in their reporting make it
difficult to draw firm conclusions from their work.

6.3 Corpora

All of the corpora used in this study are based on the same scale for rating readabil-
ity, the Common European Framework of Reference for Languages (CEFR). The
six common reference levels of CEFR can be divided into three levels — Basic user
(A), Independent user (B), and Proficient user (C)—each of which is subdivided
into two levels—1 and 2. This yields the following six levels in ascending order:
Al, A2, B1,B2,Cl, and C2.

Multiple corpora were used in this study, each of which is described in its
own subsection below. In addition to increasing the number of data points for
machine learning, using a variety of corpora has one important benefit. Assuming
that the criteria used to determine the readability of texts differ between corpora,
the likelihood of overfitting can be reduced by training on more than one corpus.
On the other hand, it opens the possibility that each corpus’ readability ratings

"There is no consensus on how the CEFR levels align with other language evaluation scales, such
as the ACTFL and ILR used in the United States.
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are not well aligned; one corpus’ Bl rating might be closer to another corpus’
B2 rating, etc. However, the validity of each corpus’ ratings can be confirmed by
comparing the output of models trained on various subsets of the corpora. This is
especially important for corpora from less authoratative sources.

In the following sections, I give a brief overview of the sources and profiles
of each of the corpora used in this study, the final section giving a summary of
all the corpora together. Some of the corpora used in this study are proprietary,
and so they cannot be published online. However, they can be shared privately for
research purposes, and I welcome any such inquiries. With the exception of the
two corpora taken from Karpov et al. (2014), all of the corpora were created and
used for the first time in this study.

Many of the texts in these corpora come from pedagogical sources that include
‘back matter’ (i.e. glosses, questions, exercises, and attributions). Several of the
machine-learning features discussed below would be affected significantly by in-
cluding the back matter in the corpus. For example, the back matter is very likely
to repeat tokens from the main text, which would affect features like the type-token
ratio. For this reason, the back matter was not included in the corpus.

6.3.1 CIE corpus

The authors of Karpov et al. (2014) were kind enough to share with me the corpus
used in their study. The corpus contains 195 documents, which can be subdivided
into two subcorpora. The first subcorpus includes texts created by teachers for
learners of Russian. These texts are taken from a collection of materials kept in an
open repository at http://texts.cie. ru, which is maintained by the Center
for International Education at Lomonosov Moscow State University. There are 28
texts at level Al, 57 texts at level A2, and 60 texts at level B1. Note that Karpov
et al. report having 52 documents at the Al level, whereas the corpus I received
from them contains only 28. The repository at texts.cie. ru also contains only
28 documents at the A1 level. The authors were unable to provide a reason for this
discrepancy.

6.3.2 news corpus

The second subcorpus used by Karpov et al. (2014) consists of 50 original news
articles for native readers. These texts were all rated as level C2, although it is
unclear to what extent these news articles were checked by hand to confirm their
reading difficulty.
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6.3.3 LingQ corpus

The LingQ corpus is a corpus of texts from http://www.lingqg.com, a com-
mercial language-learning website that includes lessons uploaded by member en-
thusiasts. Using the website’s Application Program Interface, I downloaded all
3744 Russian lessons, after which each lesson was cleaned or removed by hand.
The decision to delete all or part of a lesson’s text was ultimately subjective, but
I based my decisions on the following criteria. First, authorship attributions and
dates, such as “(nanucano u npounrtano Esreanem40, 2015) ‘written and read
by Evgenij40, 2015°, were removed. Second, texts that consisted of lists of vo-
cabulary, phrases, incomplete sentences, or fragments were deleted. Third, all
back matter, such as glosses, exercises, or questions about the text were removed.
Fourth, meta-linguistic explanations or commentaries were removed. Fifth, some
of the texts were clearly copy/pasted from other resources, leaving footnote or
other artifacts, such as ‘[1]’. These artifacts were removed. Lastly— and most sub-
jectively —any text that seemed like it could not reasonably be used as a text for
classroom or individual study was discarded.

The final corpus contains 3481 texts: 323 at level Al, 653 at A2, 716 at B1,
832 at B2, 609 at C1, and 348 at C2. The reading level of each text was determined
by the member who uploaded each lesson, so the validity of the ratings is depen-
dent upon the expertise of the person who posted the lesson. Because there were
possible discrepancies between how members rated their texts, I created a subcor-
pus of only those texts that were uploaded and rated by members who uploaded at
least 50 lessons spread across at least three different reading levels. I refer to these
contributors as ‘experts’. Table 6.1 gives a summary of the contributions of those
who met these criteria.

username levels courses lessons notes

evgueny40 6 62 1585 Native Russian, professional teacher
LingQ_Support 6 76 645 official website contributor(s?)

Ress 6 17 155 no profile

mikola 5 11 90 no profile

Solena 4 4 60 Native Russian

Polk00 4 4 59 Native Russian

_MissTake_ 3 13 444 Native French

keke_eo 3 5 124 Native English

lomsa 3 16 107 Native Russian

Table 6.1: Contributions of LingQ ‘expert” Russian contributors

The first two contributors listed in Table 6.1 together represent more than half
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of all the Russian lessons on LingQ, and both contributed to all six reading lev-
els. Because their contributions were significantly higher than the other experts, 1
separated each of them into unique subcorpora, which I will refer to as ‘Evgenij’
and ‘LQsupp’. This results in four LingQ subcorpora: Evgenij (contributions of
evgueny40), LQsupp (contributions of LingQ_support), Expert (contributions of
remaining experts listed in Table 6.1), and 1q (contributions of the remaining 54
non-experts). The distribution of each LingQ subcorpus across levels is given in
Table 6.2.

username | Total | Al A2 Bl B2 Cl1 C2
Evgenij 1387 | 169 516 446 173 58 25
LQsupp 618 |61 42 51 292 106 66
Expert 1021 | 73 68 159 298 387 36
g 455 |20 27 60 69 58 221
Total 3481 | 323 653 716 832 609 348

Table 6.2: LingQ subcorpora distribution of documents by level

The words per document for each of these subcorpora is given in Table 6.3. In

general, document length increases with higher CEFR levels, but there is a surpris-
ing trend for C2 texts to be shorter than C1 texts.

username | Total | A1 A2 Bl B2 Cl C2
Evgenij 267 | 60 56 295 581 1376 779
LQsupp 1692 | 102 150 285 2797 1288 988
Expert 2130 | 74 151 262 352 5036 1771
Iq 645 151 210 438 775 1825 448
Total 1116 | 77 78 299 1293 3729 711

Table 6.3: LingQ subcorpora distribution of words per document by level

6.3.4 Red Kalinka corpus (RK)

The Red Kalinka corpus is a collection of 99 texts taken from 13 books in the
“Russian books with audio” series available at http://www.redkalinka.
com. These books include stories, dialogues, texts about Russian culture, and
business dialogues. There are 40 texts at level Al, 18 texts at level A2, 17 texts at
level B1, 18 texts at level B2, 6 texts at level C1, and no texts and level C2.

Texts were extracted from the original pdf files and preprocessed to remove
artifacts of the pdf format, such as missing whitespace, erratic placement of stress
marks, converting combining diacritics to standard cyrillic characters, etc.
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6.3.5 TORFL corpus

The Test of Russian as a Foreign Language (TORFL) is a set of standardized tests
administered by the Russian Ministry of Education and Science. Passing the test
at certain levels qualifies an individual for citizenship, entrance into institutions
of higher education, receipt of college degrees, work in language-oriented profes-
sions, and receipt of college degrees in fields related to the Russian language. Each
of level is clearly defined with particular competencies and required vocabulary.
Because of the rigor with which these texts were created, the validity of their rat-
ings can be expected to be the strongest of the corpora used in this study.

Each TORFL test includes sections directed at reading comprehension, with
texts and questions. The TORFL corpus is a collection of such texts that I extracted
from official practice tests for the TORFL. The corpus contains 168 texts, fairly
evenly distributed across all six CEFR levels: 31 at level Al, and 36, 36, 26, 28,
and 11 at the subsequent levels.

6.3.6 Zlatoust corpus (Zlat.)

The Zlatoust Publishing House, which has exclusive rights to publishing official
materials for the TORFL, also publishes a series of readers for language learners
at the lower CEFR levels. The Zlatoust corpus (sometimes abbreviated as Zlat,
below) is a collection of texts extracted from a large portion of the books in this
series of readers. Each book has been assigned to a given reading level, and I make
the assumption that all of the chapters or sections within a given book are of the
same reading level. This assumption seems to be warranted, since the books are
clearly designed to be read one chapter at a time. With 746 documents, the Zlatoust
corpus is the second largest corpus included in this study. The distribution between
reading levels is very uneven, with 66 documents at level A2, 553 at level B1, and
127 at level B2. As with all other corpora, back matter was removed from each
text.

6.3.7 Summary and the Combined corpus (Comb.)

The distribution of documents per level are given in Table 6.4. The Combined
distribution reflects a micro-trend of having the most documents at level B1 or
B2, the Red Kalinka corpus being the only exception to the trend. The LingQ
corpus is by far the largest at every level, with only Zlatoust level B1 on the same
order of magnitude. Excluding the LingQ corpus, level C1 and C2 have the fewest
document, with only 34 and 61, respectively.

Table 6.5 shows the average document length (in words) per level in each of
the corpora. The overall average document size is 916 words, with a standard
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Total | Al A2 BI B2 Cl 2

CIE 145 |28 57 60 - - -

news 50 - - - - - 50

LingQ | 3481 | 323 653 716 832 609 348

RK 99 40 18 17 18 6 -

TORFL | 168 |31 36 36 26 28 11

Zlat. 746 | — 66 553 127 - -

Comb. | 4689 | 422 830 1382 1003 643 409

Table 6.4: Distribution of documents per level for each corpus

deviation of 1740. Within each corpus, average document length tends to increase
with each level. The CIE, TORFL and Zlatoust corpora are the clearest examples
of this trend, whereas the other corpora have one or two departures from the trend.

Total | A1 A2 Bl B2 C1 C2
CIE 362 | 175 369 444 - - -
news 186 | - - - - - 186
LingQ | 1116 |77 78 299 1293 3729 711
RK 263 161 297 441 278 294 —
TORFL | 242 | 87 220 249 281 297 493
Zlat 381 | — 203 372 516 - -
Comb. | 916 |92 119 335 1150 3548 641

Table 6.5: Average words per document for each level of each corpus

The overall distribution of document length is shown in Figure 6.1, where the x-
axis is all documents ranked by document length and the y-axis is document length.
The shortest document contains 7 words, and the longest document contains over
9000 words. Of the 857 documents with word length over the average of 916, 820
are in LingQ, 27 are in the Zlatoust corpus, 7 are in TORFL, and 3 are in the CIE

corpus.

6.4 Features

In the following sections, I give an overview of the features used in this study, both
the rationale for their inclusion, as well as details regarding their operationalization
and implementation. I combine features used in previous research with some novel

features based on morphological analysis.

One of the primary research questions of this study is to determine what kind
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Figure 6.1: Distribution of document length in words
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of information is most informative for the automatic readability classification task
for Russian. This question can be asked in two different ways: 1) What kinds
of natural language processing technology yield the most useful information?; 2)
What level of linguistic complexity is most predictive of second language readabil-
ity (lexicon, morphology, syntax, etc.)? The first question yields clear categories
based on whether frequency lists, vocabulary lists, sentence boundary detection,
lemmatization, part-of-speech tagging, morphological analysis, or syntactic pars-
ing. However, from a linguistic point of view, these factors are not necessarily
very interesting. On the other hand, the second question is intended to yield an
answer that is relevant to linguistic theory of language complexity, but determin-
ing whether a given feature belongs to the lexicon, morphology, or syntax is not
always straightforward. For example, many of the features that have traditionally
been used in readability analysis are normalized by sentences. For instance, the av-
erage number of syllables per sentence is sometimes used as a measure of lexical
difficulty, or short-term memory chunking capacity. However, since the sentence
is a syntactic construct, such features at least partially reflect syntactic complex-
ity. Because such features can exhibit a mixture of possible sources of processing
complexity, categorizing the features according to theoretical linguistic categories
is somewhat problematic.
However, in general, each feature is primarily intended to indicate one main
source of complexity. Even if average syllables per sentence can potentially reflect
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a degree of syntactic complexity, it is hardly a reliable indicator of syntactic com-
plexity. For the purposes of this study, I assume that each feature has one primary
linguistic domain that it is reflective of, and I categorize it accordingly. It should be
remembered, however, that these categories are not as discrete as they may appear.

I divide features into the following categories: lexical, morphological, syntac-
tic, and semantic.

6.4.1 Lexical features (LEX)

The lexical features (LEX) are divided into three subcategories: lexical variability
(LEXV), lexical complexity (LEXC), and lexical familiarity (LEXF).

Lexical variability (LEXYV)

As the name suggests, the lexical variability category (LEXV) contains features
that are intended to measure the variety of lexemes found in a document. One of
the most basic measures of lexical variability is the type-token ratio, which is the
number of unique wordforms divided by the number of tokens in a text. However,
because the simple type-token ratio is dependent on document length, several met-
rics have been proposed as more robust variations of the type-token ratio. For ex-
ample, Vajjala and Meurers (2012) applied the metrics of Lu (2012, and references
therein) to the readability classification task. I use these same measures here, which
include the simple TTR (T'/N), Root TTR (T'/+/N), Corrected TTR (T'/v/2N),
Bilogarithmic TTR (log T’/ log N), and the Uber Index (log? T'/ log(N/T)). For
all of these metrics, a higher score signifies higher concentrations of unique tokens,
which indicates more difficult readability levels.

Abbr. Formula Explanation

TTR T/N Type-token ratio

RTTR T/VN Root type-token ratio

CTTR T/ V2N Corrected type-token ratio
BTTR logT/log N Bilogarithmic type-token ratio
Uberlnd  log? T/ log(N/T) Uber index

TiemTR Tiem/N Lemma type-token ratio
CTiemTR  Tjen/N Content lemma type-token ratio

Table 6.6: Lexical variability features (LEXV)
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Lexical complexity (LEXC)

Lexical complexity includes multiple concepts. One is the degree to which indi-
vidual words can be parsed into component morphemes. This is a reflection of
the derivational or agglutinative structure of words. Another measure of lexical
complexity is word length, which reflects the difficulty of chunking and storing
words in short-term memory. Depending on the particulars of a given language or
the development level of a given learner, lexical complexity can either inhibit or
enhance comprehension. For example, the word neftepererabatyvajuscij (zavod)
‘oil-refining (factory)’ is overwhelming for a beginning learner, but an advanced
learner who has never seen this word can easily deduce its meaning by recognizing
its component morphemes: nefte-pere-rabat-yva-juscij ‘oil-re-work-IMPF-ing’.

I computed the following features to capture variation in lexical complexity.
Regarding word length, features were computed for characters, syllables, and mor-
phemes. For each of these three, both an average and a maximum were computed.
In addition, all six of these features were computed for both all words, and for
content words only.® Russian orthography is such that almost all vowels are syl-
labic, so syllable counts are, in fact, vowel counts. Exceptions to this generaliza-
tion are rare enough that this simplification should be quite reliable. The features
for word length in morphemes were computed on the basis of Tixonov’s Morpho-
orthographic dictionary (Tixonov, 2002), which contains parses for about 100 000
words. All words that are not found in the dictionary were ignored.

In addition to average and maximum word lengths, I also followed Karpov et al.
(2014) in calculating word length bands, such as the proportion of words with five
or more characters. These bands are calculated for 5-13 characters (9 features)
and 3-6 syllables (4 features). All 13 of these features were calculated both for all
words and for content words only.

Lexical familiarity (LEXF)

A number of features were computed to attempt to capture the degree to which
the words of a text are familiar to readers of various levels. These features model
the development of learners’ vocabulary from level to level. Unlike the features
for lexical variability and lexical complexity, which are primarily based on surface
structure, the features for lexical familiarity are primarily based on abstracted facts
about given surface forms, typically by referencing a frequency list or lexicon of
some kind.

The first set of lexical familiarity features are derived from the official “Lexical

8The following parts of speech were considered content words: adjectives, adverbs, nouns and
verbs.
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Abbr. Formula Explanation

WL har char/N Average word length (characters)

CWLhar charcont /Neont Average content word length (characters)

maxWLgpar max(char) /N Maximum word length (characters)

CmaxWLchyr max(char),,,,/Neont ~ Maximum content word length (charac-
ters)

WLgyn1 vowel /N Average word length (syllables)

CWLgy1 vowelcont /Neont Average content word length (syllables)

maxWLgyp max(vowel)/N Maximum word length (syllables)

CmaxWLgy  max(vowel),,,.,/Neont Maximum content word length (sylla-
bles)

WL morph morph/N Average word length (morphemes)

maxWLporph  max(morph)/N Maximum word length (morphemes)

Numnchar Nenharsn/N Words with n or more characters (5 >
n > 13)

CNumnchar Nehar>n/N Content words with n or more characters
b>n>13)

Numnyy Neyi>n /N Words with n or more syllables (3 > n >
6)

CNumnyyj Nsyiisn/N Content words with n or more syllables

B=>n2>6)

Table 6.7: Lexical complexity features (LEXC)
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Minimum” lists published by Zlatoust for learners preparing for the TORFL exam-
inations. The lexical minimum lists are compiled for the four lowest levels (Al,
A2,B1, and B2), where each list contains the words that should be mastered for the
tests at each level. These lists can be seen as prescriptive vocabulary for language
learners. Following Karpov et al. (2014), I computed features for the proportion of
words above a given reading level.?

The second set of lexical familiarity features are taken from the Kelly Project
(Kilgarriff et al., 2014), which is a “corpus-based vocabulary list” for language
learners. Whereas the prescriptive lexical minimum lists define what a language
learner should be familiar with, the Kelly Project is a descriptive approach to the
question, compiling lists for all six CEFR levels based primarily on word fre-
quency. The complete methodology for deriving these lists is described in the
article cited above. Just like the features based on the lexical minimum, I com-
puted the proportion of words over each of the six CEFR levels.

The third set of lexical familiarity features are based on raw frequency lists,
both lemma frequency and token frequency. Lemma frequency data were taken
from LjaSevskaja and Sarov (2009) (available digitally athttp://dict.ruslang.
ru/freq.php), which is based on data from the Russian National Corpus. The
token frequency data were taken directly from the Russian National Corpus web-
page at http://ruscorpora.ru/corpora-freqg.html. For both kinds
of frequency, I used both raw frequency and frequency rank data.'® For each of the
four kinds of frequency data, I computed average, median, minimum, and standard
deviation. Once again, all of these features were calculated for all words and for
content words only.

6.4.2 Morphological features (MORPH)

Morphological features are primarily based on morphosyntactic values, as output
by our morphological analyzer. These features are given in Table 6.9. The first
three sets of features reflect simple counts of whether a morphosyntactic tag is
present or what proportion of tokens receive each morphosyntactic tag. The first
set of features expresses whether a given morphosyntactic tag is present in the
document. A second set of features, expresses the ratio of tokens with each mor-
phosyntactic tag, normalized by token count. A third set of features, the value-
feature ratio (VFR), was calculated as the number of tokens that express a mor-

None of the documents in Karpov et al. were at the B2 level, so they used only the three lowest
lexical minimum lists. Because my data span all six reading levels, I use all four lists.

9The frequency rank data were such that items with the same frequency were ranked differently
merely because of alphabetic sorting. To avoid this bias, I also computed features based on ranking
in which all items of the same frequency share the same rank.
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Abbr. Formula Explanation

OverX_Im Nj,>x/N Words over lexical minimum level X
(A1> X >B2)

OverX_kp Niey>x/N  Words over Kelly Project level X (A1>
X >C2)

LFmean Mean lemma frequency

LFned Median lemma frequency

LFnin Minimum lemma frequency

LFqddev Std deviation lemma frequency

LFRhean Mean lemma frequency rank

CLFean Mean content lemma frequency

CLFed Median content lemma frequency

CLFyin Minimum content lemma frequency

CLFsddev Std deviation content lemma frequency

CLFRpean Average content lemma frequency rank

Table 6.8: Lexical familiarity features (LEXF)

phosyntactic value (e.g. past), normalized by the number of tokens that express the
corresponding morphosyntactic feature (e.g. tense).

In the early stages of learning Russian, learners do not have a knowledge of all
six cases, so I hypothesized that texts at the lowest reading levels may be distin-
guished by a limited number of cases. Therefore, the case-coverage feature (CC)
expresses the number of cases found in a document. Similarly, two subcases in
Russian, partitive genitive and locative, are generally rare, but are highly overrep-
resented in texts written for beginners who are being introduced to these subcases.
Therefore, the subcase-coverage feature (SCC) gives the number of subcases found
in the document.

Following Nikin et al. (2007); Krioni et al. (2008); Filippova (2010), I cal-
culated a feature to measure the proportion of abstract words. This was done by
using a regular expression to test lemmas for the presence of a number of abstract
derivational suffixes. This feature is normalized to the number of tokens in the
document.

Sentence length-based features (SENT)

The SENT category consists of features that include in their computation some form
of sentence length, including the traditional readability formulas. Even though
sentence length is technically a syntactic feature, the following features were not
included in the SYNT category for a number of reasons. From a linguistic point
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Abbr. Formula Explanation

XPres boolean MS tag X present

VTRX Nx/N Value-token ratio (e.g., Nyom/N)
VFRX Nx/N.ux  Value-feature ratio (e.g., Nyom/NcAsE)
CC Case coverage (values: 0-6)

SCC Sub-case coverage (values: 0-3)

Abstr Napstract/N  Proportion abstract words

Table 6.9: Morphological features (MORPH)

of view, sentence length is only a superficial indication of syntactic complexity.
The two are usually correlated, to be sure, but sentences of equal length can be
dramatically differ in syntactic complexity.

Keeping SENT and SYNT categories separate has both linguistic and technical
benefits, since it also makes a distinction between features that can be extracted
with or without different kinds of natural language processing technology. The
features in SENT can be extracted using sentence boundary detection and morpho-
logical analysis. The features in the SYNT category are extracted using the output
of a syntactic dependency parser.

The SENT features include words per sentence, syllables per sentence, letters
per sentence, coordinating conjunctions per sentence, and subordinating conjunc-
tions per sentence. In addition, I also compute the number of unique morphosyn-
tactic readings per sentence, which I call the reading type frequency. Finally, the
SENT category also includes the traditional readability formulas: Russian Flesch
Reading Ease (Oborneva, 2006a), Flesch Reading Ease, Flesch-Kincaid Grade
Level, and the Coleman-Liau Index. All these features are summarized in Ta-
ble 6.10.

6.4.3 Syntactic features (SYNT)

Syntactic features for this study were primarily based on the output of the hunpos!!
trigram part-of-speech tagger, which served as input to the maltparser!? syn-
tactic dependency parser, both trained on the SynTagRus'? treebank. Using

maltoptimizer,'* I found that the best-performing algorithm was Nivre Ea-
ger, which achieved a labeled attachment score of %81.29 with cross-validation of
SynTagRus. This level of accuracy is high enough to reliably serve as the basis for

Uhttps://code.google.com/p/hunpos/

12http: //www.maltparser.org/
Bhttp://ruscorpora.ru/instruction-syntax.html
Yhttp://nil.fdi.ucm.es/maltoptimizer/index.html
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Abbr.  Formula Explanation

SLword  IN/Nsent Sentence length in words

SLsyu Nsyu/Nsent Sentence length in syllables

SLchar  Nehar /Nsent Sentence length in letters

CC/S  Neoord/Nsent Ne of coord. conj. per sentence

SC/S Nsubord/Nsent Ne of subord. conj. per sentence
Tread/’S  Tread/Nsent Reading type frequency per sentence

FRER  206.836 — (1.3 %« WLgy) — (60.1 * SLyora) Flesch Reading Ease (Russ.)
FRE 206.835 — (1.015 * WLgy1) — (84.6 * SLyora) Flesch Reading Ease
FKGL —15.59 4 (11.8 % WLgy11) + (0.39 * SLyora) Flesch-Kincaid Grade Level
CLI —15.8 4 (5.88 * WLgyi1) — (29.6/SLyora) Coleman-Liau Index

Table 6.10: Features calculated on the basis of sentence length (SENT)

feature extraction.

Researchers of automatic readability classification and closely related tasks
have used a number of syntactic dependency features which I also implement
here (Yannakoudakis et al., 2011; Dell’Orletta et al., 2011; Vor der Briick and
Hartrumpf, 2007; Vor der Briick et al., 2008). These include features based on
dependency lengths (the number of tokens intervening between a dependent and
its head), as well as the number of dependents belonging to particular parts of
speech, in particular nouns and verbs. In addition, I also include features based on
dependency tree depth (the path length from root to leaves).

For each sentence, I recorded the average and maximum of four values: de-
pendency length, tree depth, number of verbal dependents, and number of noun
dependents. Then for each document, I compute the average and maximum of
each of these properties. The average is an arithmetic average of every instance of
the property in the document. The maximum, on the other hand, represents only
one instance—usually only part of a sentence—that is the most complex in the doc-
ument. These two metrics have inherent weaknesses. The arithmetic average has a
tendency to wash out differences between datasets, and the maximum is frequently
expected to be an outlier—and therefore not representative of the document as a
whole. Therefore, in addition to the average and maximum, I compute two addi-
tional features for each property: the maximum of the sentence-level averages, and
the average of the sentence-level maximums. The maximum of averages tells us
the level of complexity of the sentence which is on average the most complex in
the document. The average of maximums gives us the average complexity of only
the most complex part of each sentence.
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Abbr. Explanation

DLavg Average of each sentence’s average dependency length

DLmax Maximum dependency length

max(DLavg) Maximum of all sentences’ average dependency lengths
avg(DLmax) Average of all sentences’ maximum dependency lengths

TDavg Average of each sentence’s average tree depth

TDmax Maximum dependency length

max(TDavg) Maximum of all sentences’ average tree depth

avg(TDmax) Average of all sentences’ maximum tree depths

VDavg Average of all sentences’ average number of verb dependents
VDmax Maximum number of verb dependents

max(VDavg) Maximum of all sentences’ average number of verb dependents
avg(VDmax) Average of all sentences’ maximum number of verb dependents
NDavg Average of all sentences’ average number of noun dependents
NDmax Maximum number of noun dependents

max(NDavg) Maximum of all sentences’ average number of noun dependents
avg(NDmax) Average of all sentences’ maximum number of noun dependents

Table 6.11: Syntactic features (SYNT)

6.4.4 Discourse/content features (DISC)

The final category of features is the discourse/content features (DISC). These fea-
tures are intended to capture the broader difficulty of understanding the text as a
whole, rather than the difficulty of processing the linguistic structure of particular
words or sentences. One set of features are based on definitions, an idea taken di-
rectly from Krioni et al. (2008), which defines a number of words and phralses15
that are used to introduce or define new terms in a text. As features, I include
definitions per token and definitions per sentence.

Another set of features is adapted from the work of Brown et al. (2007, 2008),
who show that propositional density—a fundamental measurement in the study of
discourse comprehension—can be accurately measured purely on the basis of En-
glish part-of-speech counts. More specifically, adjectives, adverbs, prepositions,
conjunctions, determiners (except articles), modals (if negated), and verbs (except
auxiliary and linking verbs) all count as logical propositions. Although the psycho-
logical research on propositional density is primarily supported by English data, it

« LT3 ” ”

5Krioni et al. list the following constructions: — eto”, est’ -

“nazyvaetsja”, “nazyvajutsja”’, “ponimaetsja”, “ponimajutsja’, “predstavljaet soboj”, “predstavija-
7 sCitaet(sja)”,

9 <

o(bo)znacajut”,

CLINTS

jut soboj”, “o(bo)znacaet”, opredeljaet(sja)”, “opredeljajut(sja)”,

“ox

and “scitajut(sja)”.
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is reasonable to assume that a similar approach in Russian can yield a meaningful
measure of discursive complexity. Brown et al. propose a number of adjustments
based on analytical syntactic constructions in English grammar that do not exist in
Russian, so my implementation of the approach with Russian is even simpler than
their original proposal, based purely on part-of-speech counts, with no exceptions.

One other feature is based on the intuition that reading dialogic texts is gener-
ally easier than reading prose. This feature is computed as the number of dialog
symbols'® per token.

Abbr.  Formula Explanation
DTR  Nges/N Definitions per token
D/S Naer/Nsent  Definitions per sentence

PDyok Proposition density per token
PDgent Proposition density per sentence
Dial Dialog punctuations per token

Table 6.12: Discourse features (DISC)

6.4.5 Summary of features

As outlined in the preceding sections, this study makes use of 179 features. Many
of the features are inspired by previous research of readability, both for Russian and
for other languages. The distribution of these features across categories is shown
in Table 6.13.

Category Number of features

Disc 6
LExC 42
LEXF 38
LEXV 7
MORPH 60
SENT 10
SYNT 16
Total 179

Table 6.13: Distribution of features across categories

'SIn Russian, -, —, and : are used to mark turns in a dialog.
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6.5 Results

The machine-learning and evaluation for this study were performed using the weka
data mining software. For the sake of consistency and comparability, I wanted
to select one classifier algorithm to use throughout the study. I performed ten-
fold cross-validation using a variety of models and using different combinations
of subcorpora. The Random Forest model was consistently among the highest-
performing models, and so it was selected as the classifier algorithm for the study.!”
All results reported below are achieved using the Random Forest algorithm with
default parameters. Unless otherwise specified, evaluation was performed using
ten-fold crossvalidation.

The basic results are given in Table 6.14. Precision is a measure of how many
of the documents predicted to be at a given readability level are actually at that
level, mathematically expressed as true positives divided by true and false posi-
tives. Recall measures how many of the documents at a given readability level
are predicted correctly, mathematically expressed as true positives divided by true
positives and false negatives. The two metrics are calculated for each reading level
and a weighted average is reported for the classifier as a whole. The F-score is a
harmonic mean of precision and recall. Adjacent accuracy is the same as weighted
recall, except that it considers predictions that are off by one category as correct.
For example, a B2 document is counted as being correctly classified if the clas-
sifier predicts B1, B2, or C1. The baseline performance achieved by predicting
the mode reading level (B1)—using weka’s ZeroR classifier—is precision 0.097
and recall 0.312 (F-score 0.149). The OneR classifier, which is based on only
the most informative feature (corrected type-token ratio), achieves precision 0.487
and recall 0.497 (F-score 0.471). The Random Forest classifier, trained on the full
Combined corpus with all 179 features, achieves precision 0.69 and recall 0.677
(F-score 0.671) on ten-fold cross-validation.

Classifier Precision Recall F-score
ZeroR 0.097 0.312 0.149
OneR 0.487 0.497 0.471

RandomForest 0.690 0.677 0.671

Table 6.14: Baseline and RandomForest results with Combined corpus

An F-score of 0.671 is a modest result, and in order to see where the classifier
is going wrong, I give a confusion matrix in Table 6.15, which shows the predic-

Other classifiers that consistently performed well were NNge (nearest-neighbor with non-nested
generalized exemplars), FT (Functional Trees), MultilayerPerceptron, and SMO (sequential minimal
optimization for support vector machine).
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tions of the RandomForest classifier. The rows represent the actual reading level
as specified in the gold standard, whereas the columns represent the reading level
predicted by the classifier. Correct classifications appear along the diagonal. Ta-
ble 6.15 shows that the majority of misclassifications are only off by one level, and
indeed the adjacent accuracy is 0.919, which means that less than 10% of the doc-
uments are more than one level away from the gold standard. When one considers
the hetergeneous nature of the corpus, coming from many different sources, and
representing many different genres, this result is actually suprisingly high. In the
following section, I take a closer look at the quality of the corpus as a whole, as
well as individual subcorpora.

Al A2 Bl B2 Cl1 C(C2 <-—classified as
Al 234 120 48 0 0 0
A2 41 553 192 17 0
Bl 16 76 1130 90 5
B2 1 57 311 478 83
C1 1 20 66 98 394
C2 0 3 40 58 9 78

N B~ O

Table 6.15: Confusion matrix for RandomForest, all features, Combined corpus

As shown in Section 6.3.7, the documents in the Combined corpus vary signif-
icantly with regard to document length and document distribution across reading
levels. It is well known that features such as type-token ratio are significantly af-
fected by document length, and as I will discuss later, the type-token ratio features
are among the most informative of my feature set. This means that a skew in type-
token ratios could significantly change classification outcomes.

In order to control whether document length adversely affects classification
accuracy, I truncated each document to the sentence boundary nearest the 300-
word mark, and recalculated each document’s features. The 300-word limit leaves
a proportion of documents with fewer than 300 words, so the corpus is not truly
leveled. However, since there are documents that consist of fewer than 10 words,
leveling the entire corpus to such a small size would certainly throw away too much
information to expect any gains. This resulted in precision 0.635 and recall 0.624
(F-score 0.615), which is almost 6% lower than using full documents.

The reading level with the fewest documents is C2, with 409 documents. There-
fore, to control for document distribution, I computed features for a corpus that
included only 409 randomly selected documents at each level. This also resulted in
slightly less accurate predictions: precision 0.675 and recall 0.662 (F-score 0.655).

These results indicate that removing data in order to balance document length
or distribution will not lead to improved predictions. Therefore, for the remainder
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of the study, I do not attempt to balance the corpus using either of these methods.

6.5.1 Corpus evaluation

This study introduces several new readability gold-standard corpora, and before
one can begin to evaluate the effectiveness of readability classification models in
much detail, it is important to establish the quality of the gold-standard corpora
themselves, including the inter-corpus validity of reading levels. In this section,
I explore both the internal consistency of each individual corpus, as well as the
accuracy with which a model trained on one subcorpus can predict the readability
of other subcorpora.

To begin, we look at a train-test matrix containing F-scores for each of the
subcorpora, given in Table 6.16.!% Rows show the training corpus and columns
show the test corpus. Along the diagonal—where the training and test corpus is
the same—ten-fold cross validation is used. It is important to note that in all other
cases where an apparent overlap exists between training and test corpus, the larger
of the two corpora has the overlapping instances removed. For example, when
the training corpus is LingQ, and the test corpus is the Combined corpus (which
contains LingQ), the classifier is trained on LingQ and tested on the Combined
corpus with LingQ removed.

Two corpora are grayed out—CIE and Zlat.—because they contain documents
at only three levels, so the probability of correct classifications is much higher.
This makes the results with these two corpora less comparable with the results of
the remaining corpora. The Red Kalinka is not grayed out, even though it does not
have documents at the C2 level, so its comparability is also dimished, although to
a lesser degree.

The results along the diagonal in Table 6.16 show that in general, each sub-
corpus achieves a higher F-score in ten-fold cross-validation than the Combined
corpus. [ interpret this result to mean that for the most part, each subcorpus is
more consistent internally than the Combined corpus, which should be expected.
This trend has two surprising exceptions. The CIE corpus achieves only 0.608 and
the TORFL corpus only 0.501.

The fact that the CIE corpus achieves such a low F-score is surprising because
it contains documents at only three different levels, so we should expect its results
to be higher than the other subcorpora. Assuming that the features used in this
study capture the essential properties of readability, this indicates that the ratings
in the CIE corpus are internally inconsistent.

8The news corpus was included in the Comb. training and test corpora, but it could not be
considered independently because all of its documents are on the C2 level.
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Comb. LingQ RK  CIE TORFL Zlat. Evgenij LQsupp Expert Iq
Comb. 0.671 0.193 0.426 0.383 0.204  0.649 0.310 0.313  0.203 0.178
LingQ 0.487 0.682 0.411 0415 0.254 0.653 0.234 0.321  0.222 0.184
RK 0.177  0.134 0.849 0.397 0.270 0.528 0.190 0.139  0.094 0.151
CIE 0452 0502 0.574 0.608 0.643 0.219 0.530 0.533  0.430 0.492
TORFL 0.226 0.230 0417 0.594 0.501 0.208 0.296 0.091  0.288 0.096
Zlat. 0.279 0.277 0.228 0.000 0.343  0.798 0.328 0.280 0.187 0.386
Evgenij 0355 0.289 0.171 0.371 0.216 0.689 0.735 0401 0.228 0.174
LQsupp 0.243  0.258 0.402 0.348 0.236 0.498 0.272 0.794 0.248 0.164
Expert 0.253 0.245 0.405 0.329 0.207 0.245 0.219 0.333  0.788 0.213
Iq 0.304 0.275 0.156 0.299 0.084 0.639 0.226 0.361  0.311 0.768

Table 6.16: Train-test matrix for all subcorpora, showing F-scores from RandomForest with all features

The fact that the TORFL corpus achieves such a low F-score is especially sur-
prising because its documents come from the most authoritative source of any of
the corpora: the official TORFL proficiency tests. This seems to be the result of
the conspicuous fact that these texts come from tests, which means that the test
writers can easily adjust the difficulty of the task to adjust for an overly difficult
text. The readability of a document is directly related to what the reader is expected
to do with that document. In the general case, the reader is expected to read and
understand the text as a whole. However, in the case of the TORFL corpus, each
text is accompanied by tasks that determine which parts of the text a learner must
understand, which can lower the required reading aptitude.

As for the cross-validation performance of other subcorpora, the Red Kalinka
corpus achieves the highest F-score (0.849), with an adjacent accuracy of 0.98.
The LingQ corpus achieves a slightly higher F-score than the Combined corpus,
but each of its subcorpora (Evgenij, LQsupp, Expert, and 1q) individually achieves
significant gains over the Combined and LingQ corpora.

Perhaps the most striking pattern in Table 6.16 is the sharp drop in F-scores
between intra-corpus cross-validation and inter-corpus training/testing. Whereas
most of the cross-validation cells along the diagonal are near or above 0.700, very
few of the cells that train on one corpus and test on another score higher than 0.400.
Indeed, many of these subcorpus combinations’ F-scores are at or near the ZeroR

baseline.

The fact that the trained models do not perform well on external texts could
be indicative of many things. It may be that overfitting is responsible for the drop
in performance. If the model is too specific, then it will not generalize well to
new data. However, overfitting is not a likely cause here, since the Random Forest
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algorithm was specifically designed to overcome the tendency of Random Trees to
overfit (Breiman, 2001). Other possible causes include the possibility that either
the validity of classes between subcorpora is low or misaligned, or the features
that are informative for one dataset are not informative for other datasets. The
information carried by each feature will be explored in more detail below, but first
we take up the question of inter-corpus validity.

Validity of ratings between corpora

There is little guarantee that the humans assigning reading levels to each of these
documents did so according to externally verifiable criteria. For those documents
that come from institutions—such as Red Kalinka, Zlatoust, or LQsupp—it is rea-
sonable to expect that each document’s readability was determined in some me-
thodical way. However, even if these ratings were assigned in a methodical way,
the alignment of readability levels between subcorpora is far from certain. Based
on the same results from which Table 6.16 was derived, I also computed a Spear-
man rank correlation coefficient, which assesses how well the relationship between
the actual level and predicted level can be described using a monotonic function.
A high correlation means that both sets preserve the same order of elements when
they are sorted according to reading level. For example, a classifier that consis-
tently predicts one level too high would have a perfect Spearman correlation of
1.0, even though its accuracy is 0.0. Likewise, a classifier that always predicts one
level too low, would have a perfect negative Spearman correlation of -1.0, even
though its accuracy is 0.0. The results are given in Table 6.17.

Comb. LingQ RK CIE TORFL Zlatoust Evgenij LQsupp Expert Iq

Comb. 0.796 0559 0.737 0.549 0.432 0.307 0.680 0.398  0.653 0.196
LingQ 0390 0.834 0.661 0.535 0.427 0.289 0.631 0419 0.632 0.239

RK 0.458 0574 0932 0.504 0.384 0.129 0.604 0.565 0415 0.583
CIE 0.487 0505 0.577 0.585 0.647 0.107 0.560 0.501  0.270 0.535
TORFL  0.513 0.507 0.497 0.542 0.610 0.158 0.496 0.258  0.385 0.250
Zlatoust 173 196 240 nan .320 0.596 119 358 -0.086 423

Evgenij 0.589 0.588 0.524 0.533 0.460 0.262 0.844 0431 0.691 0.264
LQsupp 0.524 0.649 0.635 0.458 0.435 0.249 0.699 0.805 0445 0.267
Expert 0.536 0.638 0.628 0.071 0.369 0.108 0.558 0.446  0.833 0.106
Iq 0.316  0.295 0.420 0.278 0.287 0.263 0.428 0.501 0.044 0.741

Table 6.17: Train-test matrix for all subcorpora, showing Spearman’s Rho from RandomForest with all features

As expected, the Red Kalinka corpus has the highest rank correlation on cross-
validation (0.932). The two lowest rank correlations on cross-validation are CIE
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and Zlatoust, both of which have only three levels. It may be that with only three
possible ranks, establishing correlation is more difficult. Also, as expected, the
TORFL corpus has lower correlation on cross-validation. Otherwise, the remain-
ing corpora have correlations approaching or above 0.800, which indicates a rea-
sonable level of internal consistency.

As for inter-corpus correlation, overall, Zlatoust has the worst correlation with
other corpora, with an average 0.26 correlation as predictor, and 0.247 correlation
when predicted by models trained on other corpora. The 1q corpus also has lower
correlations, with an average of 0.36 correlation, both as predictor and predicted.
For all other subcorpora, the average of their correlations with other subcorpora
ranges from 0.400 to 0.547.1°

One other way to compare reading level alignment between subcorpora is to
compute the difference between the average of the predicted classes and the aver-
age actual class. In other words, on average, does a given model predict higher or
lower than the actual reading level? These data are shown in Table 6.18. Positive
values indicate that on average the model predicts higher than the actual rating, and
negative values lower.

Comb. LingQ RK CIE TORFL Zlatoust Evgenij LQsupp Expert
Comb. -0.112 -0.730 0.071  0.586 0.030  -0.142 0.078  -0.261 -0.639
LingQ -0.078 -0.107 0.000 0.517 -0.274 0.046 0.333  -0.160 -0.569
RK -0.794  -0991 -0.071 0.145 -0.484 0279  -0.669  -1.038 -1.409
CIE -0.369 -0.267 -0.080 0.014 0.262  -0.656 -0.359 -0.156 0.023
TORFL -0.871 -0.861 -0.566 -0.255 -0.274 -0.881 -0.719  -0.908 -1.025
Zlatoust -0.069 -0.129 -0.038 0.487 0.235 -0.087 0.192  -0.569 -0.501
Evgenij -0.391 -0.588 0.303 0.559  -0.375 -0.092  -0.085 -0.484 -0.651
LQsupp 0.154 0.011 0.010 0.524 -0.048 0.283 0.228  -0.100 -0.284
Expert 0.352 0316 0.747 0.455 0.012 0.736 0.433 0.053  0.007
Iq 1.132 1.099 0.545 0.697 1.810 0.013 1.678 0.733  0.535

Iq
-1.207
-1.042
-1.107
-0.374
-1.980
-0.327
-1.323
-0.802
-0.890

0.268

Table 6.18: Train-test matrix for all subcorpora, showing difference between predicted and actual average reading

level from RandomForest with all features

The cells along the diagonal in Table 6.18 show that small differences between

predicted and actual averages are possible even when training and testing on the
same corpus. For example, on cross-validation TORFL predicts -0.274 and 1q pre-

This would seem to indicate that removing Zlatoust and/or lq from the Combined corpus would
result in a higher F-score. Removing 1q from the Combined corpus yields only a very slight improve-
ment to the F-score (0.673), which is most likely statistically equivalent with the full Combined cor-
pus (0.671). The other options—removing Zlatoust or removing both Zlatoust and 1lg—both result in
lower F-scores.
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dicts +0.268. Such small differences are not necessarily meaningful, but there are
some trends in this table that are noteworthy. The models trained on the 1q corpus
predict, on average, almost an entire step higher (0.851) than the actual reading
levels. At the same time, models trained on other subcorpora predict 1q data, on
average, almost an entire step lower (-0.8784). This is strong evidence that 1q’s
reading levels do not align with other subcorpora. The Expert corpus has a similar
trend, but to a lesser degree in both directions (0.2221 and -0.4513). The CIE cor-
pus exhibits the trend of the same magnitude as Expert, but in the opposite direction
(-0.1962 and 0.3729). Models trained on the Red Kalinka and TORFL subcorpora
predict other subcorpora low (-0.6139 and -0.834, respectively).

Summary of corpus evaluation The main purpose of evaluating the differences
between subcorpora is to establish stability for further evaluation of learning curves
and features. For instance, the distribution of documents from various subcorpora
across levels in the Combined corpus is not consistent; at any given reading level
some subcorpora are overrepresented, while other are lacking altogether. When
evaluating the feature set at different levels, it is impossible, then, to determine
whether the observed effects are an outcome of level variation or subcorpus vari-
ation. In order to minimize the conflation of variables, it is desirable to limit the
data to the subcorpus or subcorpora that are the most consistent and valid.

According to almost every metric discussed above, the Red Kalinka corpus gets
the best results. It gets the highest F-score on cross-validation, and it has the highest
rank correlation with itself on cross-validation. It has the highest average rank
correlation when predicted by models trained on other corpora, and its average rank
correlation as training corpus is less than 0.020 below the highest. Unfortunately,
the Red Kalinka corpus does not have any documents at the C2 level, which may
itself be a partial explanation for why its metrics are consistently higher than those
of the other subcorpora.

Determining the next best subcorpus is not as straightforward, but according
to the metric presented above, both Evgenij and LQsupp are relatively consistent
and valid, and they come from sources that are reputable. The author of the Ev-
genij corpus is a professional Russian teacher and LQsupp corpus comes for the
official contributor to Russian on the LingQ website. Based on my own subjective
impressions of each subcorpus during data cleaning and preprocessing, I believe
that the Evgenij corpus contains many texts that are not prototypical of the kinds
of authentic texts that would be used in an ATICALL environment. Therefore, for
evaluation of the feature set used in this study, I will use the LQsupp subcorpus as
the gold-standard corpus.
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6.5.2 Binary classifiers

Evaluation was performed with binary classifiers, in which the datasets contain
only two adjacent readability levels. Since the Combined corpus has six levels,
there are five binary classifier pairs: A1-A2, A2-B1, B1-B2, B2-C1, C1-C2. The
results of the cross-validation evalution of these classifiers is given in Table 6.19.

Al-A2 A2-B1 BI1-B2 B2-C1 Cl1-C2

Combined precision  0.821  0.857 0.817 0.833 0.894
recall 0.821 0.857 0.811 0.831 0.897

F-score 0.812 0.855 0.806 0.826 0.892

Red Kalinka precision 0967 0943 0.832  0.837 -

recall 0966 0943 0.829 0.792 -
F-score 0965 0943 0.828 0.730 -
LQsupp precision 0911 0.806 0955 0914 0.926
recall 0903 0.806 0956 0915 0.924

F-score 0901 0806 0954 0912 0.924

Table 6.19: Evalution metrics for binary classifiers: RandomForest, Combined corpus, all
features

As expected, because the binary classifiers’ are more specialized, with less data
noise and fewer levels to choose between, their accuracy is much higher.

One potentially interesting difference between binary classifiers at different
levels is their learning curves, or in other words, the amount of training data needed
to achieve similar results. I hypothesize that the binary classifiers at lower levels
need less data, because texts for beginners have limited possibilities for how they
can vary without increasing complexity. Texts at higher reading levels, however,
can vary in many different ways. To adapt Tolstoy’s famous opening line to Anna
Karenina, “All [simple texts] are similar to each other, but each [complex text] is
[complex] in its own way.” If this is true, then binary classifiers at higher reading
levels should require more data to reach the upper limit of their classifying accu-
racy. This prediction was tested by controlling the number of documents used in
the training data for each binary classifier, while tracking the F-score on cross-
validation. Results of this experiment are given in Figure 6.2.

The results of this experiment support the hypothesized difference between
binary classifier levels, albeit with some exceptions. The A1-A2 classifier rises
quickly, and begins to level off after seeing about 40 documents. The A2-B1 clas-
sifier rises more gradually, and levels off after seeing about 55 documents. The
B1-B2 classifier rises even more slowly, and does not level off within the scope of
this line chart.
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Figure 6.2: Learning curves of binary classifiers trained on LQsupp subcorpus

100
90
80
70
60 -
50 A2-B1

40 ‘/‘/‘ -&-B1-B2
30 =><B2-C1
20 / —~C1-C2
10

0 T T T T T T T |
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
# of documents in training set

~-A1-A2

F-score

Up to this point, the data confirm my hypothesis that lower levels require less
training data. However, the final two binary classifiers buck this trend, with learn-
ing curves that outperform the simplest binary classifier with very little training
data. One possible explanation for this is that the increasing complexity of CEFR
levels is not linear, meaning that the leap from A1l to A2 is much smaller than the
leap from C1 to C2. In at least one aspect, the increasing rate of change is ex-
plicitly formalized in the official standards for the TORFL tests. For example, the
number of words that a learner should know has the following progression: 750,
1300, 2300, 10 000, 12 000 (7 000 active), 20 000 (8 000 active). This means that
distinguishing B2-C1 and C1-C2 should be easier because the distance between
their respective levels is an order of magnitude larger than the distance between
the respective levels of A1-A2, A2-B1. Furthermore, development of grammar
should be more or less complete by level B2, so that the the number of features
that distinguish C1 from C2 should be smaller than in lower levels, where gram-
mar development is a limiting factor.

In order to test this hypothesis, the following section examines the informative-
ness of various features for both six-level and binary classifiers.

6.6 Feature evaluation
As summarized in Section 6.4.5, this study makes use of 179 features, divided into

7 categories: Disc, LEXC, LExF, LEXV, MORPH, SENT, and SYNT. Many of
the features used in this study are taken from previous research of related topics,
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and some features are proposed for the first time here. To my knowledge, previous
researchers of Russian readability have not included morphological features, so the
results of these features is of particular interest here.

In this section, I explore the extent to which the selected corpora can support
the relevance and impact of these features in Russian second language readability
classification. I also explore which features are most important at which reading
levels.

One rough test for the value of each category of features is to run cross-
validation with models trained on only one category of features. In Table 6.20,
I report the results of this experiment using the Combined corpus.

Category # features precision recall F-score
Disc 6 0.482 0.482 0.477
LEXC 42 0.528 0.532 0.514
LEXF 38 0.581 0.573 0.567
LEXV 7 0.551 0.552 0.546
MORPH 60 0.642  0.627 0.618
SENT 10 0.478 0.479 0.474
SYNT 16 0.518 0.533 0.514
LEXC+LEXF+LEXV 87 0.652 0.645 0.639

Table 6.20: Precision, recall, and F-score for six-level Random Forest models trained on
the Combined corpus

The results in Table 6.20 show that MORPH, has the highest F-score of any
single category, with an F-score just 0.053 below a model trained on all 179 fea-
tures. True comparisons between categories are problematic because the number
of features per category varies significantly. However, even when the all 87 lexical
features are included in the training data, the results are only slightly better than
MoRPH. This supports the conclusion that morphological factors are important for
readability classification.

In order to evaluate how much information is provided by each feature, I use
weka’s InformationGainAttributeEval using the Ranker search method. Feature
evaluation is independent of any classifier algorithm. Table 6.21 shows the top 30
features, ranked by information gain. Note that many of the features not included
in this list still contribute significant information; only 32 features have less than
0.10.

The top half of Table is dominated by LEXV, SYNT, and LEXC features, which
quickly yield to MORPH features in the second half of the list. One striking feature
of this list is how many of the features represent some kind of maximum, especially
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InfoGain feature

0.64915 LEXV_RTTR

0.649 LEXV_CTTR

0.49677  SYNT_maxDepLen
0.4677 SYNT_maxTreeDep
0.46342  SYNT_maxavgTreeDep
0.39759 LEXV_TlemTR
0.38942  SYNT_maxavgDepLen
0.38485 TXT_dialogSymbCount
0.35759 LEXV_TTR

0.35393 LEXC_CmaxWLchar
0.35295 LEXC_maxWLchar
0.35264 LEXC_CmaxWLsyll
0.35264 LEXC_maxWLsyll
0.33922  SYNT_maxVDeps
0.33407 LEXC_maxWLmorph
0.318 MORPH_actvPerV
0.31006 MORPH_pprsPerV
0.3057 MORPH_ppPerV
0.29429  SYNT_maxNDeps
0.2843 MORPH_pasvPerV
0.27739  SYNT_avgmaxTreeDep
0.26979 LEXV_CTlemTR
0.25857  MORPH_CSPerWord
0.25513  MORPH_CSperPOS
0.25288  SYNT_avgmaxDepLen
0.24927  SYNT_maxavgVDeps
0.24638  MORPH_prctlns
0.24595 LEXV_BTTR

0.24454  SENT_CS/S

0.24416  LEXF_prctOverAl_Im

Table 6.21: Top 30 features ranked by information gain, Combined corpus, all levels
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the SYNT and LEXC features. This is a little troubling because a maximum is a
very volatile property of a text. A large text could have only one outlier to be
classified differently. Relying too heavily on maximums could make a model more
error-prone.

Although lexical familiarity seems to be a crucial factor in L2 readability, only
one LEXF feature appears in the top 30. All but two of the LEXF features that are
based on the official Lexical Minimum or the Kelly Project appear near the bottom
of the list, with less than 0.09 information gain. The purely frequency-based LEXF
features, on the other hand, are more informative, with most showing at least 0.16
information gain. Of these, the standard deviation frequency features are the most
informative.

The lexical complexity features have an average information gain of 0.166,
with the highest values coming from various maximum word length features, for
characters, syllables, and morphemes.

The morphology features have an average information gain of 0.157, with the
most informative features including verbal morphology (participle, tense, person,
etc.) and case distribution. The proportion of tokens that are parentheticals was
also a very informative feature, which probably reflects the importance of paren-
theticals in higher level discourse.

The SENT features have an average information gain of 0.144, with subordi-
nating conjunctions per sentence the highest.

The SYNT features have an average information gain of 0.279, with all but two
features above 0.19.

The information gain metric does not account for informational overlap be-
tween features. In order to evaluate the usefulness of each feature as a member
of a feature set, I used the correlation-based feature subset selection algorithm
(CfsSubsetEval) (Hall, 1999), which selects the most predictive subset of features
by minimizing redundant information, based on feature correlation. The results
of CfsSubsetEval for the Combined corpus are given in Table 6.22, with features
presented in alphabetical order.

Out of 179 features, the CfsSubsetEval algorithm selected 32 features. Many
of the features selected for the optimal feature set are also among the top 30 most
informative features in Table 6.21. However, the morphological features, which
had only 7 features among the top 30, now include 14 features, which indicates that
although these features are not as informative, the information that they contribute
is unique.

The fact that the lexical familiarity features based on the lexical minimum vo-
cabulary lists are most useful at the lower levels may indicate that determining
which words a learner should know becomes increasingly difficult at higher levels.

A classifier trained on only these 32 features with the Combined corpus achieved
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LEXC_CmaxWLchar
LEXC_maxWLmorph
LEXF_medContentFreq
LEXF_prctOverAl_Ilm
LEXF_prctOverA2_Im
LEXV_BTTR
LEXV_CTTR
LEXV_RTTR
LEXV_TlemTR
MORPH_ABBRperPOS
MORPH_CSPerWord
MORPH_PARTpresent
MORPH_PRNperPOS
MORPH_PastPerTense
MORPH_ PresPerTense
MORPH_actvPerV
MORPH _indicPerV
MORPH_ppPerV
MORPH_pprsPerV
MORPH_prctlns
MORPH_prctNom
MORPH_prctPrt
MORPH_shrtPerA
SYNT _avgTreeDep
SYNT_avgmaxDepLen
SYNT_avgmaxTreeDep
SYNT_maxDepLen
SYNT_maxTreeDep
SYNT_maxVDeps
SYNT_maxavgDepLen
SYNT_maxavgTreeDep
TXT_dialogSymbCount

Table 6.22: 32 features selected by CfsSubsetEval, Combined corpus, all levels
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precision 0.674 and recall 0.665 (F-score 0.659), which is only 0.01 worse than the
model trained on all 180 features.

6.6.1 Feature evaluation with binary classifiers

In the learning curve experiment in Section 6.5.2 above, we saw that the two binary
classifiers at the highest levels required the least training data. In order to inves-
tigate the cause of this outcome, I performed feature evaluation of binary datasets
using the LQsupp subcorpus, the same corpus used for the learning curve experi-

ment.

Using the correlation-based feature subset selection algorithm, I compared
which features were selected for each binary dataset. The results of this analy-
sis are given in Table 6.23.

Al-A2 A2-Bl B1-B2 B2-C1 C1-C2
DISC_Dial LEXC_maxWLmorph DISC_D/S DISC_Dial LEXC_prctContentLett12plus
DISC_PDtok LEXF_prctOverA2_Im LEXC_maxWLmorph LEXC_prctContentLett4plus LEXC_prctSyll4plus

LEXC_CmaxWLchar
LEXC_prctLett7plus
LEXF_medContentFreq
LEXF_medContentTokFreq
LEXF_prctOverA2_lm
LEXF_stdevFreq
MORPH_Abstr
MORPH_DETperPOS
MORPH_NPperPOS
MORPH_SecondPerPers
MORPH_VBLEXperPOS
MORPH_prctAcc
MORPH_prctDat
SYNT_avgDepLen
TXT_dialogSymbCount

MORPH_NPperPOS
MORPH_actvPerV
MORPH_pprsPerV
MORPH_prctDat
SYNT_avgTreeDep
SYNT_avgmaxDepLen
SYNT_avgmaxNDeps
SYNT_maxDepLen
SYNT_maxavgTreeDep

LEXC_prctContentLett13plus
LEXC_prctContentLett5plus
LEXC_prctLett11plus
LEXF_avgContentFreqRank
LEXF_prctOverA2_kp
LEXF_prctOverB1_kp
LEXF_stdevContentFreqRank
LEXF_stdevFreq
LEXV_CTTR

LEXV_RTTR
MORPH_ADIJperPOS
MORPH_Abstr
MORPH_DETperPOS
MORPH_DETpresent
MORPH_FirstPerPers
MORPH_NUMperPOS
MORPH_PARENperPOS
MORPH_PRperPOS
MORPH_ThirdPerPers
MORPH_VBLEXperPOS
MORPH_actvPerV
MORPH_ppPerV
MORPH_prctDat
SENT_CS/S

SENT_SLchar
SYNT_avgDepLen
SYNT_maxTreeDep
SYNT_maxVDeps
SYNT_maxavgTreeDep

LEXF_avgFreq
LEXF_avgTokFreqRank
LEXF_medContentFreq
LEXF_medTokFreq
LEXF_prctOverB1_kp
LEXF_prctOverC1_kp
LEXV_CTTR
LEXV_RTTR
MORPH_ABBRperPOS
MORPH_FirstPerPers
MORPH_NPperPOS
MORPH_NperPOS
MORPH_ThirdPerPers
MORPH_pretlns
SENT_CLI
SYNT_avgmaxTreeDep

LEXF_medContentFreq
LEXF_medTokFreq
LEXF_prctOverA2_lm
LEXF_stdevFreqRank
MORPH_ADVperPOS
MORPH_FirstPerPers
MORPH_PresPerTense
MORPH_ThirdPerPers
MORPH_VBLEXperPOS
MORPH_infPerV
MORPH_prctAcc
MORPH_prctPrp
SENT_CS/S
SENT_SLsyll
SYNT_maxavgNDeps

Table 6.23: 32 features selected by CfsSubsetEval, Combined corpus, all levels

The most noticeable difference between the selected feature sets is that the

B1-B2 feature set is much larger than the feature sets of other levels. This level
also has the slowest learning curve above, and ultimately achieves lower accuracy.
The two binary datasets at the higher complexity levels are dominated by lexi-
cal familiarity features (especially frequency-based features) and morphological
features. Interestingly, the morphological features are primarily properties that re-
flect differences in register/genre, rather than morphological difficulty for language
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learners. For example, whereas the morphological features of lower levels include
prevalence of participles or passives, which are difficult for language learners, the
morphology features of the higher levels reflect the prevalence of first-person or
third-person verb forms, which do not themselves represent any kind of difficulty
for language learners. The boosted importance of lexical familiarity features, and
the diminished importance of grammatically “difficult” features in the higher bi-
nary datasets is supports the idea that language learning at level C is dominated by
acquiring more specialized vocabulary, and finer points of usage, such as idiomatic
collocations, phrases, and genre distinctions. This type of language development is
more one-dimensional—from the perspective of feature extraction—and is there-
fore easier for our classifier to model with less data.

6.7 Conclusions and Outlook

This chapter has presented new research in automatic classification of Russian texts
according to second language readability. This technology is intended to support
learning activities that enhance student engagement through online authentic mate-
rials (Erbaggio et al., 2010). I collected a new corpus of Russian language-learning
texts classified according to CEFR proficiency levels. The corpus comes from a
broad spectrum of sources, which resulted in a richer and more robust dataset,
while also complicating comparisons between subsets of the data. When training
a model on one subcorpus, and testing on another, the results were consistently
much lower than on cross-validation. This seems to indicate widespread disagree-
ment over how to determine a text’s readability. More consistent human ratings
would result in better model portability between subcorpora. Given such low accu-
racy between subcorpora, it is not clear how well any of the models from this study
will perform on new texts in real-world applications.

This chapter highlights the need to standardize how readability corpora are col-
lected and validated. Despite the fact that readability assessment has been inves-
tigated in a large number of published studies, very little attention has been given
to the prior, fundamental question of how well humans determine a given text’s
readability. The gold standard corpora used in most studies are texts that have been
originally written for a target reading level, adapted for a target reading level, or
categorized post hoc according to reading level. In each of these conditions, the
readability of a text is being determined by a human—possibly with the assistance
of readability formulas or models—and given the complexity of the task, there is
no guarantee that a given human’s ratings are reliable or valid. In fact, the results
of this study suggest the opposite. As models of readability are becoming more
sophisticated, it seems likely that computers can outperform humans at this task,
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given a high-quality gold-standard corpus.

Future research is needed to identify methods to ensure higher quality ratings
for gold standard readability corpora, possibly through post-hoc manual cleaning
based on classifier “errors” or perhaps some other form of supervised bootstrap-
ping. Psycholinguistic methods are well-suited to provide objective insights into
text complexity. For example, two studies have investigated the effect of text com-
plexity on eye tracking measures: (Rayner et al., 2006) and (Vajjala, 2015, ch.
4). Both of these studies identified eye-movement behaviors that correlated signif-
icantly with reported text difficulty, such as fixation count. Although the partici-
pants in these studies were native speakers, I expect that language learners would
exhibit similar reactions to text complexity. This line of research shows promise
for establishing objective grounds for building L2 readability corpora.

Classifier performance A six-level Random Forest classifier achieves an F-score
of 0.671, with adjacent accuracy of 0.919. Binary classifiers with only two adja-
cent reading levels achieve F-scores between 0.806 and 0.892. This is the first
large-scale study of this task with Russian data, and although these results are
promising, there is still room for improvement, both in corpus quality and model-
ing features.

In Section 6.5.2, I found support for the hypothesis that simple texts are similar
to one another and complex texts are complex in their own way by showing that
binary classifiers at lower reading levels required less training data to approach
their upper limit. With each successive binary classifier at progressively higher
reading levels, the learning curve became slower, which I interpret as evidence
that these levels can be difficult in many different ways. The two highest binary
pairings are exceptional because the difference between adjacent levels is greater
the higher you go.

Features Among the most informative individual features used in this study are
type-token ratios (RTTR, CTTR, Tiem TR, TTR), as well as various measures of
maximum syntactic dependency lengths and maximum tree depth. When features
with overlapping information are removed, using correlation-based feature selec-
tion, we have 14 MORPH features, 8 SYNT features, 4 LEXV features, 3 LEXF
features, and 2 LEXC features, and 1 DISC feature. Models trained on only one
category of features also show the importance of morphology in this task, with the
MORPH category achieving a higher F-score than other individual categories.
Although the feature set used in this study had fairly broad coverage, there are
still a number of possible features that could likely improve classifier performance
further. Other researchers have seen good results using features based on semantic
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ambiguity, derived from word nets. Implementing such features would be possible
with the new and growing resources from the Yet Another RussNet project.?”

Another category of features that is absent in this study is language model-
ing, including the possibility of calculating information-theoretic metrics, such as
surprisal, based on those models.

The syntactic features used in this study could be expanded to capture more
nuanced features of the dependency structure. For instance, currently implemented
syntactic features completely ignore the kinds of syntactic relations between words.
In addition, some theoretical work in dependency syntax, such as catenae (Osborne
et al., 2012) and dependency/locality (Gibson, 2000) may serve as the basis for
other potential syntactic features.

Finally, it goes without saying that improving the performance of the morpho-
logical analyzer and constraint grammar on which the morphological features are
based would lead to more precise morphological features that could, in turn, lead
to more accurate classification.

Applications One of the most promising applications of the technology discussed
in this chapter is a grammar-aware search engine or similar information retrieval
framework that can assist both teachers and students to identify texts at the appro-
priate reading level. Such systems have been discussed in the literature (e.g. Ott,
2009), and similar tools can be created for Russian language learning.

Phttp://russianword.net/en/



Chapter 7

Conclusions and outlook

This dissertation is concerned with linguistic and computational analysis of Rus-
sian morphology in the context of language learning. In the preceding chapters, I
have presented ground-breaking research with several interconnected technologies,
all joined by the central task of supporting flexible, intelligent computer applica-
tions to help learners and teachers of Russian to find appropriate authentic texts,
and automatically generate focus-on-form exercises from them. In broad terms,
this dissertation has demonstrated the positive impact that automatic morphologi-
cal analysis can contribute to Russian computer-assisted language learning.

7.1 Summary

In Chapter 2, I discussed both theoretical and practical issues surrounding the de-
velopment of a two-level morphology of Russian. Many of the two-level rules
were inspired by well-known research in the structure of Russian morphology, and
other rules represent innovative approaches, unique to this grammar. The resulting
finite-state morphological analyzer was shown to be competitive with state-of-the-
art Russian morphological analyzers with respect to speed and coverage, while
additionally meeting requirements specific to open language-learning applications;
namely, it is free and open-source, it is designed to be wordstress-aware, and it
serves as input to an efficient morphosyntactic disambiguation utility whose gram-
mar can be designed to have high recall.

Chapter 3 presented a new constraint grammar for Russian. This grammar
is designed to have high recall, which means that it only removes readings that
can be ruled out with very high confidence (>99%). Despite the fact that Russian
is a major world language, the major tagged corpora of Russian are not freely
available. In order to work around this obstacle, we implemented an innovative
development strategy for testing new rules using an untagged corpus, checking by
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hand a sample of instances where the rule fires. This method is promising for
languages with limited resources. We also demonstrated the utility of a high-recall
grammar in a voting setup with a stochastic tagger—in this case a trigram tagger.
This arrangement plays to the strengths of each model, achieving higher accuracy
with less training data.

In Chapter 4, I presented ground-breaking research in automatic word stress
placement. Placing stress in running text is crucial both for Russian language
learners and for text-to-speech. applications. Although many research projects
have reported on various approaches to resolving word stress ambiguity, or guess-
ing the stress of unknown words, this is the first study to quantitatively evaluate
the performance of the approach in running text. Our constraint grammar resolved
42% of the stress ambiguity in our corpus, and in combination with simple guess-
ing strategies for unknown words, it achieved 96.15% accuracy, more than 6%
improvement over the baseline dictionary lookup.

Chapter 5 demonstrated the use of the morphological analysis and disambigua-
tion in an intelligent computer-assisted language learning application: Russian Vi-
sual Input Enhancement of the Web (RusVIEW). From an applied perspective, this
application is perhaps the most exciting result of the dissertation, creating dynamic,
interactive grammar excercises on important grammatical topics from virtually any
online document. The morphological analyzer and constraint grammar facilitate
the development of modules that can reliably target relevant wordforms, in part
because of the high-recall nature of the grammar. The program “knows whether
it knows”, and can target forms that clear the confidence threshold for reliable
grammar exercises. In addition, an important theoretical contribution of Chapter 5
is that it demonstrates the capability of a system based on native-language NLP to
provide adaptive feedback, an ability that is frequently assumed to be possible only
with specialized learner-language NLP.

The opportunities that are afforded by Russian VIEW are exciting, but they also
make another difficulty that learners face more pronounced. How can a learner find
texts that are at the appropriate reading level? The internet is an incomparable re-
source for authentic texts, but the majority of documents that a learner finds are too
complex, which can lead to increased frustration and decreased confidence or mo-
tivation. Chapter 6 lays the foundation for overcoming this hurdle by developing
classifier models to rate documents’ readability according to the standard levels of
the CEFR. I assembled a new Russian L2 readability corpus, and used a Random
Forest classifier with 180 features describing each document’s lexical variability,
lexical familiarity, lexical complexity, morphological complexity/distribution, sen-
tence/syntactic complexity, and discourse complexity. Using cross-validation, the
Combined corpus achieved an F-score of 0.671 and adjacent accuracy of 0.919,
whereas individual subcorpora achieved F-scores between 0.501 and 0.849 and ad-
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jacent accuracy between 0.810 and 1.000.

With regard to which features are most important for readability classification, I
showed that the morphology-based features provided by the technology developed
in Chapters 2 and 3 are among the most informative (Karpov et al., 2014, cf.), and
that among classifiers trained on only one category of features, the model trained on
only morphological features outperformed the remaining categories. This supports
the common-sense notion that morphology is one of the most difficult domains for
Russian language learners, and it demonstrates the value of morphological analysis
in Russian ATICALL applications.

7.2 Resources

Several resources were created in conjunction with this dissertation research, in-
cluding NLP tools, corpora, and language-learning tools. The most notable re-
sources from this dissertation are listed below. Unless otherwise noted, they are
freely available and/or open source.

7.2.1 NLP tools

1. A Russian morphological analyzer/generator built as a two-level finite-state
transducer. The transducer contains more than 100 000 lexemes with more
than 2 000 000 surface-form/reading pairs. The wordforms in the transducer
are marked with lexical stress, making it well-suited to language-learning
applications.

2. A constraint grammar for Russian, designed to have high recall. The gram-
mar contains 299 rules which remove 49% of ambiguity in running text.

7.2.2 Corpora

1. A small corpus of Russian with hand-disambiguated morphosyntactic anno-
tation (about 10 000 tokens)

2. Corpus of Russian with marked lexical stress (7689 tokens). The corpus is
representative of texts that learners of Russian are likely to encounter in their
studies, including dialogs, prose, individual sentences that were written for
learners, and excerpts from well-known literary works.

3. Second language readability corpus of Russian, with 4.3 million tokens and
4689 documents classified by the six CEFR aptitude levels: Al, A2, BI,
B2, C1, C2. This corpus is by far the largest and most diverse corpus of its
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kind for Russian. Many of the documents in the corpus are copyrighted, so
it cannot be published openly. However, researchers who are interested in
using the corpus for non-commercial purposes should contact me.

7.2.3 Language-learning tools

1. Russian activities on the VIEW framework, including the following gram-
mar topics: noun inflection, adjective inflection, verb inflection, verbal as-
pect, participle formation, and word stress.

7.3 Outlook

Because this dissertation took a breadth-first approach to the issues surrounding
Russian ICALL, the depth of each of these topics has not been explored completely,
and much work remains to be done in each of these domains. In this section, I
outline ways in which I anticipate building on the foundation that has been set by
the research reported herein.

To begin with, the work of improving and maintaining the tools for morpholog-
ical analysis and disambiguation will require continued research, including basic
lexicography, developing new methods for guessing unknown wordforms, and im-
proving the performance of our constraint grammar. Especially as the constraint
grammar becomes more complete, these technologies can feed into higher-level
analyses, such as syntactic parsing.

The word stress annotation project reported in Chapter 4 set a standard for em-
pirical evaluation of the task, but was limited by many factors, including the size
and quality of the gold corpus. Because this is a core function in Russian ATI-
CALL, I plan to continue research on this task. In terms of experimental method-
ology, a much larger corpus has been collected and will soon be corrected by hand.
Work is also continuing on improving the performance each component of the
morphological analysis, morphosyntactic disambiguation, and unknown wordform
guessing.

Many of the issues that arise during ICALL research are relevant to linguistic
theory, and providing theoretically sound solutions to these questions can feed back
into higher-quality ICALL products. For example, in developing a verbal aspect
activity for Russian VIEW, the question arose how and whether particular tokens
are constrained with respect to their aspect. In other words, how often is a verb’s
aspect determined by its syntactic context, and how often is it variable. The results
of the corpus study reported in Chapter 5 seem to indicate that aspect is much more
variable than I initially expected. Empirical linguistics research of this issue can
therefore help determine which tokens in a text should be targeted for grammar
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excercises, since verb tokens whose aspect is determined by context result in more
reliable exercises that will not confuse a learner.

Finally, the opportunities made possible by Russian VIEW are inspired by the-
ories in second language acquisition research which have yet to find sufficient sup-
port in empirical research, such as learning outcomes, increased motivation, etc.
Because of the structured environment that VIEW creates, it is also an excellent
testbed for these theories. In future research, I intend to implement these activities
in structured experiments that may shed light on the efficacy of this approach.

7.4 Conclusion

This dissertation has resulted in the availability of free and open-source resources
for Russian morphological analysis and disambiguation, with special emphasis
on properties that are desirable for computer-assisted language-learning applica-
tions. Based on these technologies, I have established an empirical benchmark for
automatic word stress annotation. I also developed intelligent computer-assisted
language-learning activities on the VIEW platform, demonstrating their utility in
this domain. Finally, I have laid the foundation for automatically classifying texts
according to L2 reading level, which can save teachers time in identifying appro-
priate texts for their students, as well as increasing learner autonomy by allowing
them to discover their texts for extracurricular reading and study.

The studies presented in this dissertation demonstrate the importance of Rus-
sian morphological analysis in computer-assisted language learning applications,
and each study has also laid the foundation for continuing research in this sphere.
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