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Abstract

This thesis focuses on how absorption properties of molecules are influenced
by their environment and how this can be calculated accurately. Calcula-
tions have been performed with a polarizable embedding (PE) multiscale
model. The environment is described classically by charges and electric mul-
tipoles for the permanent electrostatics and polarizabilities for polarization
interactions. Density-functional theory (DFT) and approximate singles and
doubles coupled-cluster theory (CC2) are used to describe the electronic
structure of the molecules. The results indicate that the effects of environ-
mental polarization on electronic and vibrational properties are significant
and that the employed PE model is accurate in cases where electrostatic in-
teractions dominate. A large part of the environment needs to be described
explicitly for converged molecular properties, especially since polarization
interactions range over a long distance. However, accurate embedding pa-
rameters for the electrostatic and polarization interactions are important
mainly for the closest environment of a chromophore. This enables a reduc-
tion of the computational cost of obtaining embedding potentials without
sacrificing accuracy. For localized properties, PE is to be preferred over a
cluster approach because the latter is severely limited by the possible size
of the molecular system. For calculation of two-photon absorption (TPA),
DFT and CC2 give qualitatively but not quantitatively similar results. Fi-
nally, it is shown that the comparison between calculated TPA cross sections
and other experimental or theoretical work is challenging. The presented
works contribute to the realistic description of a molecular environment with
the accurate prediction of molecular properties in chemical environments as

ultimate goal.
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Introduction

The goal of theoretical chemistry is to develop methods for the calculation
of molecular properties and to apply these to chemically relevant problems.
In general, these properties can be energies, structures or the response of
the molecule to some sort of perturbation. In this work, the emphasis lies
on the absorption of light by a molecule. A molecule can absorb photons
with a specific energy, leading to a change in the electronic structure of
the molecule: an electronic excitation. The specific energies at which this
happens are called excitation energies and are intrinsic properties of the
molecule. Since the most intense absorption of many organic molecules is
in the ultraviolet or visible region of the electromagnetic spectrum, this
process is often referred to as UV-VIS absorption. In the most simple
case, one photon carries the energy needed to excite a molecule. In the
context of this thesis, this process is referred to as one-photon absorption
(OPA). Electronic excitations can also be accomplished by the simultaneous
absorption of two photons that together carry exactly enough energy to
excite the molecule. This process is called two-photon absorption (TPA).
The calculation of excitation energies and the intensity of OPA and TPA
processes is central in this thesis.

Theoretical chemistry is closely related to other parts of chemistry. A
theoretical method that is accurate enough to reproduce experimentally
measured quantities can be used to predict the properties of other molecules
that have not been synthesized (yet). For instance, when calculations on
fluorescent proteins can reproduce certain experimental trends in excitation
energies that result from structural differences in the proteins (Paper I), the
same models can be used to predict the effect of a mutation on the excitation
energy of a similar protein. In addition to predictions, calculations can give
microscopic and mechanistic insights that are challenging or impossible to



obtain from experiments. This can be illustrated by theoretical calculations
on the yellow fluorescent protein, where the intensity of TPA is found to be
enhanced as a result of intermolecular charge-transfer transitions (Paper
V). This highlights the role of theoretical chemistry as a complement to
experimental work.

Choosing the right quantum-mechanical (QM) method for the calcula-
tion of a property is crucial to obtain a result with reasonable accuracy. As
an example, density-functional theory (DFT) can give a good estimate of the
intensity of an OPA process, while the absolute value of the TPA intensity
can significantly deviate from more accurate methods (Paper VI).

However, the properties of a molecule are not only determined by the
molecule’s structure, but also by its environment, which should thus also
be included in the calculations. One of the many examples where the en-
vironment tunes molecular properties is the vibrational frequency of the
carbonyl group in acetophenone. This frequency depends critically on the
electric field generated by its environment and thus varies in different sol-
vents (Paper VII).

It is often necessary to use a molecular system of thousands of atoms to
describe the influence of the environment on the properties of a molecule.
A central problem in theoretical chemistry is to describe this molecular
environment in an accurate way while keeping the computational cost man-
ageable. One of the ways to do this is to describe the molecule by QM
methods and its environment by more approximate and cheaper classical
methods. Such a multiscale model is used in this thesis. It is often a rather
small part of the total molecular system for which the properties need to
be calculated. This is the case for an active site in a protein or a solute
in an organic solvent and can be illustrated by the electronic excitation in
the green fluorescent protein (GFP). Description of only the chromophore
by QM methods is accurate enough as long as electrostatic and polarization
effects in the rest of the protein are accounted for (Paper II). Paper IV
describes how the molecular environment can be represented in an accurate
way using classical parameters while keeping the computational cost low.

The required accuracy in the description of the molecular environment
depends not only on the specific question and specific property under
study, but also on the type of environment. As an example, the molecular
system that is modeled in a calculation needs to be larger in a protein



than in a homogeneous solvent (Paper III). An additional challenge of
large molecular systems is that also dynamic effects need to be taken into
account. In this thesis, molecular properties are calculated in a sequential
approach: first, molecular structures are obtained from e.g. a molecular
dynamics (MD) simulation at a given temperature. Second, the properties

of one or more of these structures are calculated.

The aim of this thesis is the accurate calculation of molecular proper-
ties in realistic environments. The emphasis is on the representation of the
molecular environment rather than on the methods to calculate the molec-
ular properties. With the exception of Paper VI, all papers are concerned
with molecules in an explicit environment. The types of molecular environ-
ments considered are homogeneous solvents and proteins and the molecular
properties are mainly restricted to absorption properties. The introductory
chapters do not only serve as a background to the papers but also as an
introduction to the computational procedure to calculate molecular prop-
erties of chemical systems. The text is written with a master student in
Chemistry in mind and should as such be useful for a PhD student entering
the field.

Different aspects of the calculation of molecular properties in realistic
environments are discussed in the introductory chapters: methods to calcu-
late the molecular properties (Chapter 1), methods to include a molecular
environment in the calculations (Chapter 2), the modeling of the molecular
structure (Chapter 3) and a classical parametrization of the environment,
which we call an embedding potential (Chapter 4). Chapter 5 contains a
short summary of the work, the main limitations in the used methods and
a perspective on possible directions for future research.






Chapter 1

Electronic structure theory

The goal of this chapter is to introduce the QM methods used in this thesis to
calculate molecular properties of closed-shell molecules and discuss some of
the different factors determining the accuracy of such calculations. Section
1.1 will introduce important concepts from molecular quantum mechanics:
the Schrodinger equation, Hartree-Fock (HF') theory, correlation methods
and the calculation of molecular properties. Section 1.2 will introduce DFT
and in particular different types of exchange—correlation functionals.



6 Chapter 1. Electronic structure theory

1.1 Molecular quantum mechanics

The central idea in molecular quantum mechanics is that the energy and
properties of a system are determined by a wave function ¥. Section
1.1.1 will introduce the most fundamental equation in wave-function the-
ory, namely the Schrodinger equation, as well as the important concepts of
the Born—Oppenheimer approximation and the variational principle. Sec-
tion 1.1.2 will introduce HF theory, basis sets and self-consistent field (SCF)
theory. Section 1.1.3 will introduce ways to include electron correlation with
particular emphasis on coupled-cluster (CC) theory.

1.1.1 The Schrodinger equation

The energy of a molecular system E can be obtained by acting on the
wave function with the Hamiltonian operator H and solving the resulting
eigenvalue problem, as stated by the time-independent Schédinger equation,

HY = EW. (1.1)

The total Hamiltonian of a molecular system may be written as'

H:Tn‘i‘Te‘i‘Vne‘i‘%e‘FVnn (1-2)

and contains the kinetic energy of the nuclei (7;,) and the electrons (7),
the attraction between nuclei and electrons (Vje) and the repulsion between
electrons (Vee) and between nuclei (Vpy,). Two approximations are made at
this point: relativistic effects are neglected and the nuclei are treated as
point charges. These approximations are unproblematic for the molecular

systems treated in this work. The operators for the kinetic energy are given
1

as
N 2
\Y
T,=-> L (1.3)
=1 2ma
n V2
T, = — — (1.4)
o 2

with m; the mass of nucleus I, N the number of nuclei and n the number
of electrons and

0? 02 0?
2 [ — —_— [E—
Vi= Ox? + oy? + 022

7 i [

(1.5)



1.1. Molecular quantum mechanics 7

Egs. 1.3 and 1.4 are given in Hartree atomic units,? in which the magnitude
of the electronic mass, elementary charge, reduced Planck constant and
Coulomb constant are set to one. These units will be used throughout
this thesis unless otherwise specified. The kinetic energy operator T' with
V2 (Eq. 1.5) makes the Schrédinger equation in Eq. 1.1 a second-order
differential equation.

The nucleus—electron attraction and electron—electron repulsion are
given as

n

N
Vae = ZZ ‘Tz R]‘ (16)

i=11=1

1 n n
Vem3 2 Yot
i=1j=1

(1.7)
- r]|

with Z; the charge of nucleus I and |r;—R;| the distance between electron
7 and nucleus I.

The mass of a particle appears in the denominator of the kinetic en-
ergy operators in Egs. 1.3 and 1.4 (me=1). This means that the kinetic
energy of electrons (me= 9.1-1073! kg) is around 1.8-10° times higher than
the kinetic energy of protons and neutrons (m= 1.7-10727 kg). Thus, the
electrons move much faster than the nuclei. This naturally leads to the
Born—Oppenheimer approximation, which states that the motion of elec-
trons and nuclei can be separated due to their different masses.* The im-
plication of the Born—Oppenheimer approximation is that every nuclear
geometry has its associated electronic energy, giving rise to the concept of
the potential energy surface. The electronic wave function is thus a function
of the electronic coordinates while depending parametrically on the nuclear
coordinates: W.(r;R). The electronic Hamiltonian can be written in the

Born-Oppenheimer approximation as*

He = Te+vne+‘/ee+vnn- (18)

The nucleus—nucleus attraction Vj,, is a constant given a particular nuclear
geometry.

The electronic Schrédinger equation can only be solved exactly for a
system with one electron. In all other cases, approximations and numerical
methods are needed to find the wave function ¥. One useful tool to find
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the best approximation to the exact ground-state wave function W is the
variational theorem,® stating that any trial wave function has an energy
equal to or higher than the ground-state energy. Thus, when parametrizing
the wave function and minimizing the energy with respect to the set of
parameters, one can converge towards the exact wave function.

1.1.2 Hartree—Fock theory

The variation theorem does not specify what the wave function should look
like, thus any mathematically convenient form can in principle be chosen.
One way to write the many-electron wave function ¥, is as a product of

one-electron wave functions 1;,

W, = P193...90,, (1.9)

which is known as a Hartree product.® The Hartree product turns out to be
a bad choice for the wave function because it violates the Pauli exclusion
principle: the wave function must change sign when the coordinates of two
electrons are interchanged.® A solution to this—originally introduced by

Slater ™—is to write the wave function as a determinant,

Yi(r1)  Yo(r1) . Ynl(r)
1 i(re) aba(re) o n(r2)
Yi(rn) 2(rn) o Un(ra)

which is the wave function used in HF theory.

Py = (1.10)

Each of the one-electron wave functions v; in Eq. 1.10 can be written as
a linear combination of basis functions Yo,

M
Vi = CiaXas (1.11)
a=1

with M the total number of basis functions. The coefficients ¢;, in Eq. 1.11
are called molecular orbital (MO) coefficients and are the parameters that
can be minimized in a variational procedure. The basis functions are math-
ematical objects and the expansion in Eq. 1.11 is exact for an infinite num-
ber of basis functions. In practice, however, the choice of basis functions is
guided by computational efficiency of integral calculations and convergence
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of the properties with the number of basis functions.! These requirements
are fulfilled by Gaussian functions placed on the nuclei, which are used
throughout this thesis.

Fock was the first to combine Hartree’s SCF procedure? with Slater’s
determinantal wave function.” In this way, electron i can be described by a
one-electron operator F; (called the Fock operator), which depends on the
mean field of all other electrons j#i. The Fock operator contains a kinetic
operator, nuclear attraction as well as Coulomb and exchange operators J;;
and Kj;j, respectively, !

Z\m RI’+Z i — Kij) (1.12)

71>

with J;; and K;; leading to two-electron integrals over the basis functions
Xa and X35

Jij ://Xa(l)X/3(2).iWXa(l)Xﬁ(2)d’md’r‘j, (1.13)

K= [ [xaxe@)— e @ (dradry. (L)

The Coulomb operator represents the classical repulsion between two elec-
trons. The non-classical exchange operator arises from the antisymmetry
requirement of the wave function. Comparing Eqgs. 1.8 and 1.12, one notes
that the Coulomb and exchange operators .J;; and Kj;; together make up the
electron—electron repulsion V.. This procedure leads to the HF equations,

B Z “Jri — RI| + Z ij Vi = €ithi, (1.15)

from which the one-electron functions ; can be obtained. A problem, how-
ever, is that the Fock operator depends on all one-electron functions through
the Coulomb and exchange terms. In other words, all one-electron functions
1j with j#i are needed to calculate 1;, meaning that a self-consistent field
procedure? is needed. Starting from an initial guess, new one-electron func-
tions v; are calculated every step using the HF equations in Eq. 1.15. This
procedure continues until the change (measured by some suitable criterion)
from one iteration to another is below a certain threshold. At that point
the wave function is said to be converged.
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1.1.3 Correlation methods

In the HF approach, electrons move in the mean field generated by all other
electrons. In reality, however, the motion of the electrons is correlated. This
section describes methods that go beyond the HF approach by introducing
explicit electron correlation.

The HF equations allow for the calculation of the one-electron functions
1, from which the total energy may be calculated. This procedure gives
the lowest energy possible for one determinant ®ygp given the basis set. To
obtain a further lowering of the energy, additional Slater determinants ®
can be added with associated coefficients a;,

W = ag®Pyp + a1 P1 + aoPs + ... (116)

While the basis set determines the quality of the one-electron wave
functions, the number and type of determinants in Eq. 1.16 (also called the
many-electron basis) determines the quality of the description of electron
correlation.® The expansion in Eq. 1.16 allows for systematic improvement
of the wave function, which is an important advantage of wave-function
methods over DFT (Section 1.2).

In the HF Slater determinant ®yp in Eq. 1.10, the electrons are placed
in the orbitals with the lowest energies. For closed-shell systems around
the equilibrium geometry, there is usually only one way of doing this. At a
geometry further from equilibrium, other configurations may start to play
a role, giving rise to non-dynamical (also called static) correlation.® This
can be dealt with by including more than one ground-state configuration in
Eq. 1.16 and optimizing simultaneously the coefficients of the determinants
a; in Eq. 1.16 and the MO coefficients ¢;, in Eq. 1.11 for a given determinant.
This approach is called multi-configuration SCF (MC-SCF).?

The remaining part of the correlation is called dynamical correlation®

and is related to the Tiirj term in the electron—electron repulsion Ve
(Eq. 1.7), which becomes singular for r;=7;. There is, however, no rigid

separation possible between static and dynamical correlation.®

A systematic way to construct new determinants in Eq. 1.16 is to
excite electrons from occupied to virtual orbitals starting from the HF
determinant ®pr. Exciting one electron gives rise to a singly-excited Slater
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determinant (single excitations), exciting two electrons simultaneously
gives rise to doubly-excited Slater determinants (double excitations), etc.
If all possible excitations (up to n-fold excitations with n the number of
electrons) are taken into account, the method is called full configuration
interaction (full CI). Given the quick increase in the number of Slater
determinants with the number of electrons n, full CI is not feasible but for
the smallest systems. Truncation of the excitations at some order—such
as CISD with all single and double excitations—leads to a variational
procedure that however suffers from the lack of size-consistency, i.e., the
sum of the energy of two separate calculations on fragments A and B is
not equal to the energy of system A+B.!

In CC theory,'? the additional Slater determinants in Eq. 1.16 are ob-

tained by operating with an exponential operator T on the HF wave func-
tion ®pp as'®
Voo =eT®yp (1.17)
1 1
= (1+T+2T2+6T3+...> byp (1.18)

with the cluster operator T defined as
T=T;+Ty+..+T,. (1.19)

The k-electron excitation operator T} excites k electrons from occupied
(occ) orbitals i, j to virtual (virt) orbitals a, b according to '’

occ virt
T 1®ur = Y Y P, (1.20)
7 a
occ virt
To®ur = Y Y 1P, (1.21)
1<j a<b

with the coefficients t usually referred to as amplitudes. Eqs. 1.20 and 1.21
generate single excitations ®{ and double excitations <I>?Jb. The amplitudes
t are determined from the CC equations, which arise by inserting Eq. 1.17
in the Schrédinger equation and projecting on excited-state determinants. !
The CC energy can be obtained by inserting Eq. 1.17 in the Schrédinger
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equation (Eq. 1.1) and projecting onto the HF determinant,

(®up|HeT |®ur) = Ecc(®ur|e™ ®gr)
— Eoc, (1.22)

assuming intermediate normalization.

The excitation operators define a large number of new Slater determi-
nants. To reduce the number of excited Slater determinants, a common
approximation (also used in Paper II, Paper V and Paper VI) is the
frozen core approrimation, in which only valence electrons are excited. This
reduces the sum over the occupied orbitals. A further approximation (in-
vestigated also in Paper II) is the reduced virtual space approach, in which
the highest virtual orbitals (given by some threshold on the energy) are also
neglected. This reduces the sum over the virtual orbitals.

In the exact treatment, the cluster operator contains all possible excita-
tions, meaning that the sum in Eq. 1.19 is up to T, with n the number of
electrons. The cluster operator T is truncated at a given order in practical
CC calculations, allowing for systematic improvement of the wave func-
tion. In coupled-cluster singles and doubles (CCSD), the cluster operator
is T=T1+4T9, giving an exponential operator

1 1
T =1+T)+To+ in +ToT) + ET:{’ +... (1.23)

doubles triples

It is clear from Eq. 1.23 that CCSD contains not only single (T;) and
double (T3 + 1T%) excitations, but also triple excitations (and quadruple
excitations, etc.) that arise from a combination of T; and Ty (so-called
disconnected triples®). The definition of the exponential operator makes
truncated CC methods size-consistent, which is an advantage over CI meth-
ods. A disadvantage of CC theory is that it is not a variational method.

The approximate coupled-cluster singles and doubles model (CC2)!!
is derived from CCSD by including only some of the contributions from
double excitations and expressing the coeflicients t‘;}’ in Eq. 1.21 in terms of
the coefficients ¢ in Eq. 1.20. The reduced number of amplitudes leads to
a more favourable scaling with the number of basis functions in comparison
to CCSD, allowing much larger molecular systems to be treated such as
those in Paper II (OPA; N<161) and Paper V (TPA; N=62) with N
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the number of atoms. The advantage of CC2 over DFT (Section 1.2)—
which is computationally more efficient and thus allows for larger molecular

systems—is that it systematically improvable.

1.1.4 Molecular properties

The optimized wave function ¥ from e.g. HF theory (Section 1.1.2) can
be used to calculate the energy and properties of a molecular system. We
will in this section focus on the calculation of molecular properties from a
variational wave function for exact-state theory. Similar strategies can be
used for non-variational methods.!?

For a normalized wave function, the energy can be obtained as the ex-
pectation value of the Hamiltonian operator by multiplying the Schrodinger
equation (Eq. 1.1) on the left with ¥* and inserting the normalization con-
dition (¥|¥)=1,

E = (O|H|®). (1.24)

Many static molecular properties can be calculated from the response of the
energy or wave function to some perturbation.!® This perturbation can be
e.g. an external static (electric or magnetic) field or a geometrical distortion
of the molecule. Molecular properties can be formulated as derivatives of
the energy with respect to a perturbation evaluated at zero perturbation
strength.'® The assumption is that the change in energy as a result of the
perturbation is small in comparison to the total energy, so that the energy
can be written as a Taylor expansion. For a general perturbation parameter
A we can write
OE 1 (0’E 2

E()) = E(\=0) + (6A>H Ao <W>Azo N (1.25)

where F(A=0) is the energy of the unperturbed system and (%—f) and

A=0
(‘ngg)Aio correspond to molecular properties that are first and second order

in the energy, respectively.
We first consider the example of a nuclear displacement dex=x—xg as

perturbation, which gives'3

OF 1 (0°E 5
E(z) = E(x0) + ((%:)mo dx + 5 <8$2>x0 dz*+ ..., (1.26)
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where x is one of the Cartesian coordinates x, y or z for a given nucleus.
The first-order change in the energy with a nuclear displacement is called

9z = @f)m (1.27)

along Cartesian coordinate x and contains the negative force acting on a

the gradient

nucleus in that direction. Thus, the force F, on that nucleus is given as

oF
F =—q =—[=— 1.28
=0=-(5). (1.28)
when evaluated at a reference geometry z=x(. All 3N components (with N
the number of atoms) of the molecular gradient are zero at the equilibrium
geometry, which is a criterion used in geometry optimization (Section 3.2).

The second-order change in the energy with a nuclear displacement is

O*E
zo

The molecular Hessian has (3N )2 components with NV the number of atoms

called the Hessian

and is symmetric (Hyy=H,,;). The gradient and Hessian play a role in e.g.
geometry optimizations (Section 3.2).
When the perturbation A is a static electric field along Cartesian coor-

dinate z, F,, Eq. 1.25 becomes®

OF 1 (0°E 9
E(F,;) = E(F,=0) + (8Fx>Fx:0 Fot+g <3F3>F By F24 ... (1.30)

The energy of molecules with a permanent dipole moment p and polar-
izability a will be lowered as a result of the applied electric field and can
be described phenomenologically as

1
E(F,) = B(Fy=0) — i, F, — §0¢sz§ - (1.31)

Comparison of Egs. 1.30 and 1.31 gives expressions for the components of
the permanent molecular dipole moment g,

oF
L= , 1.32
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and the components of the electric dipole-dipole polarizability «,

82E>
Qpe = — | = . (1.33)

The permanent dipole moment is thus the first-order change in energy as
a result of applying an electric field. The dipole moment will also change
as a result of the applied electric field. The difference is referred to as the
induced dipole moment. Induced dipole moments and polarizabilities play
in important role in the polarizable embedding (PE) method used in this
thesis (Section 2.2).

There are different ways to calculate the energy and the derivatives.
The derivative may be calculated either analytically or numerically.
The analytical approach requires a differentiable form of the energy
expression and is often associated with considerable programming effort.
The advantages—especially for the molecular gradient, where there are
3N perturbations—include greater speed and precision over the numerical
approach. '3 In numerical differentiation, the energy is calculated explicitly
for the perturbed molecular system. This requires calculations at many
displaced molecular coordinates in the case of the gradient. The derivative
can then be calculated by e.g. finite difference. The analytical molecular
gradient is available within the PE framework as described in Paper VII.

The dependence of the Hamiltonian on the perturbation can be written
as

H=HO £ AqD 4 N2H3 (1.34)

where H® is the unperturbed Hamiltonian (Eq. 1.2) and H®) and #®
are first and second order perturbation Hamiltonians. Knowledge of H®)
and H? is crucial because they allow the calculation of the energy of the
perturbed system from knowledge of the unperturbed system.?

The first-order derivative of the energy can be obtained by differentiation

of Eq. 1.24,
OE /0w oM o
& = <5AW‘I’>+<‘I’3A|‘I’>+<‘I’W|3A>' (1.35)
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The first and third terms on the right-hand side are the same for real
wave functions.! The wave-function can depend on the perturbation through
the basis functions y and through wave function coefficients c¢'—e.g. MO

coefficients (Eq. 1.11)—and can be written as

ov  9v oy 0¥ Oc
e :&aJr%a (1.36)

The basis functions x do not depend on the perturbation parameter
for electric perturbations ( 7x=0), so the first term on the right-hand side
in Eq. 1.36 is zero in that case. Moreover the energy is minimized with
respect to all coefficients ¢ (%—%:O) for variational wave functions, so that
Eq. 1.36 reduces to zero. Eq. 1.35 then reduces to the Hellmann—Feynman

theorem %1%

OFE _ (@ |
EXN

which thus only holds for variational wave functions. Letting the pertur-

\\1;> (1.37)

bation strength go to zero (A > A?), we see that the first-order energy
derivative can be obtained as the expectation value of H() as

OF
(m)A — (WHO W), (1.38)

Thus, knowledge of the unperturbed wave function ¥ can be used to
compute first-order properties, i.e., first-order derivatives of the energy.
More generally, there is a 2n+1 rule stating that a property (energy deriva-
tive) to order 2n+1 requires the n’th derivative of the wave function.1%16
This derivation does not hold for non-variational wave functions, but a sim-
ilar rule can still be used with a Lagrangian approach. 216

A component of the permanent electric dipole moment can be calculated
using the Hellmann—Feynman theorem as an expectation value over the

dipole moment operator in the unperturbed system,?®
Ha = *<lIl|:ux|\Il> (1'39)
using®

HO = —p (1.40)
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with H) defined in Eq. 1.34. Components of the electric dipole-dipole
polarization tensor (Eq. 1.33) can be obtained in exact-state theory with
HD from Eq. 1.40 and H(P=0 as®

_22 <O|Ma’f><f|lu'b‘0>’ (141)
70 wof

Agh =
which is a sum over excited states f with excitation energies wor=FEy — E;.

Until this moment, we have focused on time-independent perturbations
such as nuclear displacements and static electric fields. Absorption proper-
ties result from the interaction between a molecule and an oscillating elec-
tromagnetic field. This requires the use of the time-dependent Schrodinger

equation,®

HP(t) = Zg\Il(t) (1.42)
ot
The calculation of molecular properties as derivatives of the energy can-
not straightforwardly be applied here because of energy exchange between
the molecule and the field.!” An alternative is offered by response theory, '8
which is based on time-dependent perturbation theory. Since the magni-
tude of the applied electromagnetic radiation is much smaller than the local
molecular electric field even for strong lasers, perturbation theory can be
applied. 7
The starting point for time-dependent perturbation theory is the time-
dependent Schrédinger equation where the Hamiltonian H consists of a
time-independent part H(?) and a time-dependent perturbation H® (t),

H=HO +HD(@). (1.43)

The time-dependent perturbation can be expressed using frequency compo-

nents V¥ as!8

+o0o .
HO (1) = / V¥e . (1.44)

In order to calculate molecular properties, the expectation value of a time-
independent operator A over a time-dependent wave function is expanded
in orders of the perturbation as

At = ¢ A[DO + (¢ A)D + (AP + .., (1.45)
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where we write |t) for the time-dependent wave function ¥(¢) and where
(T ()] AT ) D=(TD ()| AT (1)) + () ATD(1)), etc. The first term

in the expansion is equal to the expectation value of the unperturbed system

over the time-independent wave function 7

A1) = (W] A|D). (1.46)

The terms that are first and second order in the perturbation can be written

as Fourier transforms in terms of so-called response functions,®
(A = [(A V) e (1.47)
1 .
(t At = 5 / / (A VS V) e @102t gy iy (1.48)

where ((A; V¥)), and ((A; V¥, V*2)),, o, are the linear and quadratic re-
sponse functions, respectively.

The linear response function for electric dipole perturbations determines

absorption properties and can in exact-state theory be written as'®

, _ (Olpal £)(f1p0]0) — (Olpral £) (S |120]0)

(s ) = 3 (el ol DU1l0))
f#0 of of

where |0) is used for the ground state W, | f) for an excited state ¥y and

(1.49)

wof=FEy — Ey as previously. The linear response function in Eq. 1.49 is thus
expressed in terms of eigenstates of the unperturbed system and is also called
the frequency-dependent polarizability. '® Eq. 1.49 reduces to the frequency-
independent polarizability in Eq. 1.41 for wg=0. Thus, response theory can
also be used to calculate time-independent molecular properties. '8

The linear response function in Eq. 1.49 has a pole for w=wqy, i.e., the
response function diverges at the excitation energies wyy of the molecule.
Thus, excitation energies can be calculated from the poles of the linear
response function. Transition moments for absorption processes can be
calculated from residues of the response functions. The residue of the linear

response function at w=wyy is defined as 18

lim (w — wor) ({La: 1)) w (1.50)

wW—rwWor

and gives the intensity of the OPA process as (0|uq|f)(f|tal0). From this,
the OPA transition moment S, can be formulated as

Sa = (0lpal f)- (1.51)
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The single residue of the quadratic response function can be obtained in a

similar way as'®

m (w1 — wor/2){(ta; Hay b)) wr wo (1.52)

w1 —>wOf/2

and can be used to derive the TPA transition moment S, as

T <<oma\n><n|ﬁb|f> . <0|ub|n><n|na|f>) (153)

o Won — Wof/2 Won — Wor/2

for the degenerate case wi=wo=wys/2. Here, (n|p.|f) is a difference dipole
moment for n=f ({f|ualf) — (0|pal0)) and a transition moment between
two excited states if n#£f.

Response theory is used in this thesis to calculate excitation energies
and one- and two-photon absorption strengths. Response theory gives cal-
culated transition moments S, and S, for a particular orientation of the
molecule. Experiments, however, are carried out in isotropic samples, i.e.,
comprising molecules in many different orientations. Rotational averaging
over all possible orientations is thus necessary for a meaningful comparison
between calculated and measured values. The rotationally averaged one-
and two-photon transition strengths (4) can be obtained from the transi-

tion moments S, and Sg;, (with complex conjugates S, and S,) as'®
1 _
OPM = 238,85, 1.54
(07 = 3 Z : (1.54)
1 _ _
<5TPA> =1 (QSabSab + SaaSbb) , (1.55)
15 s

with a and b Cartesian coordinates x, y or z.
The dimensionless oscillator strength f is often used for the OPA prob-

ability and can be calculated from the rotationally averaged OPA transition

5OPA>

strength ( and the excitation energy w as

f=2w- (6OFA). (1.56)

The TPA cross section o'F2 in centimetre—gram-—second units can be
obtained from the TPA strength (§TPA) in Eq. 1.55 as

Nm3aadw?
TPA = SO ) (5T, (1.57)

o
C
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where N is an integer value (see Paper VI for the choice of N), « is the fine
structure constant, ag the bohr radius, w the photon energy, ¢ the speed of
light and g(w) the lineshape function describing spectral broadening effects.

1.2 Density-functional theory

In DFT, it is the electron density p rather than the wave function ¥ that
is used to compute the energy and properties of a system. Important mile-
stones in the development of DFT are the Hohenberg-Kohn theorems?"
(Section 1.2.1) and Kohn-Sham (KS) theory?! (Section 1.2.2). A critical
factor in DFT calculations is the exchange—correlation functional, which is

discussed in Section 1.2.3.

1.2.1 The Hohenberg—Kohn theorems

The idea behind DFT is to express the electronic energy E[p(r)] as a func-
tional of the electron density p(r). The energy functional can be written as
a sum of the kinetic energy T'[p], the electron—electron Coulomb repulsion
J|p], the electron—electron exchange repulsion K[p] and the external energy
Eext[p] as?

Elp] =Tp] + J[p] + K[p] + Eext[p]- (1.58)

The external energy Eext[p] contains the nuclear—electron attraction through
the interaction of the electron density with the external potential vext(7),

Eoxt|p] = /pvext(r)dr (1.59)
with the external potential due to the nuclear—electron attraction given as

N
A
Vext (1) = Z Y = - (1.60)

summing over all nuclei I.
Apart from this nuclear—electron attraction in Eext[p] (Eq. 1.59), only
the electron—electron repulsion J[p] can be expressed exactly in the electron

2///)\7'1 d ridr;. (1.61)

density p as?’
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Attempts to express the kinetic energy and exchange energy as function-
als of the electron density have been made since the 1920s, but with little
success in chemistry because early models were not able to predict molecular
binding.?? The proof that the electronic energy can be uniquely determined
by the electron density was given in 1964 by Hohenberg and Kohn.?° They
proved that it is impossible for two different external potentials to describe
the same electron density, concluding that the electron density uniquely de-
termines the Hamiltonian, the electronic energy and indeed all properties
of a molecular system. Furthermore, Hohenberg and Kohn established a
variational principle for the electron density, which gives a procedure to
choose the best electron density by evaluating its energy. This is done by
introducing a Lagrange multiplier u, which ensures that the integral over
the electron density sums up to the total number of electrons n in the sys-
tem. The electron density with the lowest energy can then be found using
the functional derivative

ijﬂd—uvﬁﬁ—ﬂ}z& (1.62)

which leads to the Euler-Lagrange equation??

oF
MU = Vext + (Sip]’ (163)

with vext defined in Eq. 1.60 and F'[p] the universal functional containing

contributions from the kinetic energy and electron—electron interaction,?°

Flp] =Tlp] + J[p] + K[p]. (1.64)

1.2.2 Kohn—Sham DFT

The Hohenberg-Kohn theorems state that the electron density can be used
to determine the energy and properties of a molecular system, but does
not give a form for the energy functional E[p]. An approach to calculate
the electron density was formulated in 1965 by Kohn and Sham.?! They
proposed to substitute the exact but unknown kinetic energy functional
T'[p] with the known kinetic energy functional for a system of non-interacting
particles, Ts[p]. The relatively small correction to the kinetic energy (1'[p] —
Ts[p]) is then taken together with the exchange and the correlation parts
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in the exchange—correlation functional Ey.[p].?! The energy functional E[p]
may then be written as

E[p] = TS [p] + J[p] + Eext [p] + Exc [p] (165)

Kohn and Sham introduced one-electron functions 1; called KS orbitals
from which the electron density can be calculated as

=3 il (1.66)

i=1

where the sum is over all occupied KS orbitals i. The kinetic energy of the
non-interacting system can be calculated exactly using KS orbitals as

Tulo) = S (il — £ V) (167

i=1

The KS orbitals can be obtained by solving the KS equations, 2!

l_ + / — d’)"J + Uext('r'z) + 'ch(rz) wl(rl) = 51'1/11'(7'1'), (1'68)
|7 TJ|

with the exchange—correlation potential vy.[p] defined as a functional deriva-

tive

0 Exe [P]
Sp

Uxelp] = (1.69)
Note the similarity between the HF equations in Eq. 1.15 and the KS equa-
tions in Eq. 1.68. The three last terms on the left-hand side of Eq. 1.68 are
collectively referred to as the effective potential or the KS potential,

Vegt(T5) = / Mdrj + Vext (T3) + Vxe(T4)- (1.70)

The KS approach thus gives a practical way of calculating the electron den-
sity from the KS orbitals similar to the calculation of HF orbitals (Section
1.1.2). First, a set of KS orbitals is chosen as an initial guess. Next, a
new set of KS orbitals is obtained by solving Eq. 1.68 using an appropriate
exchange—correlation functional Ey.[p]. This SCF procedure is repeated un-
til convergence. The optimized electron density can then be calculated from
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the occupied KS orbitals using Eq. 1.66. If the exact form of the exchange—
correlation functional Ey.[p] were known, the KS approach would give the
exact electronic energy including electron correlation. Various approxima-
tions to Exc[p] have been proposed and the quest towards an exact density
functional is an important area of research in theoretical chemistry. The
density functionals that are most important to the work in this thesis will
be presented in the next section.

1.2.3 Exchange—correlation functionals

Whereas a systematic way of improving DFT calculations to an exact limit
does not exist, there is a range of different exchange—correlation functionals
available. The choice of the density functional depends on e.g. the type
of calculation and the desired accuracy. This section discusses the local
density approximation (Section 1.2.3.1), the generalized gradient approxi-
mation (Section 1.2.3.2), hybrid functionals (Section 1.2.3.3) and long-range
corrected functionals (Section 1.2.3.4).

1.2.3.1 Local density approximation

In the local density approximation (LDA), the exchange—correlation func-
tional is chosen to depend only on the electronic density without taking its
derivatives into account. The reason for this choice is that one can obtain
an exact solution when choosing a uniform electron gas as a model system.
The most common LDA approach is SVWN, which means using Slater’s X,
approach (S) for the exchange energy?® in combination with the correlation
energy of Vosko, Wilk and Nusair (VWN).24 Dirac obtained the exchange

energy for a uniform electron gas,?’
ELPA[] = / pY3dr (1.71)
with Cy = —%(%)1/ 3. In Slater’s original formulation of the X, approach,?3

the correlation part was neglected and Dirac’s exchange energy was scaled
to approximate the correlation energy. The VWN correlation functional
was obtained using quantum Monte Carlo by subtraction of the kinetic and
exchange energies from the total energies and interpolation from different
densities to an analytical form.?* LDA overestimates correlation energies
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and therefore also bonding energies,?? which makes it necessary to go
beyond LDA for most chemical purposes.

1.2.3.2 Generalized gradient approximation

The generalized gradient approximation (GGA) adds information about the
density gradient at a particular point to the functional by introducing the

dimensionless reduced density gradient,??:26

_ v

T = —7. 1.72
e 172

Perdew and Wang (PW86)2% modified the LDA exchange functional to in-
clude x with different exponents and three constants a, b and ¢,??

)1/15

EPWS6[ ;) — pLDA[)) (1 + az? + ba’ + ca® ; (1.73)

with x defined in Eq. 1.72. A popular GGA exchange functional is Becke’s
one-parameter functional known as B88,2”

2
B88 1 _ [ 4/3 B
Bl /p (Cx 1 + 605 - arcsinh(x)) ar, (1.74)

which yields an electron density with the proper asymptotic limit. The
single parameter § was obtained by fitting to exchange energies of noble
gas atoms.?” When comparing the B88 exchange functional with Eq. 1.71,
one can see that it is made up of EFPA[p] plus a correction that can be
called AEDS8,

Lee, Yang and Parr (LYP) proposed a GGA correlation functional with
four parameters that were determined by fitting to the helium atom.?® The
B88 exchange and LYP correlation functionals are semi-empirical in the
sense that they have parameters that are fit to experimental data. Al-
ternatively, a functional can be ab initio by satisfying theoretically exact
conditions. 22

Also higher-order derivatives of the density can be introduced in the
density functional, giving rise to what is known as a meta-GGA functional.
This is usually accompanied by a large increase in the number of semi-

empirical parameters. 22
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1.2.3.3 Hybrid exchange—correlation functionals

The performance of GGA functionals can be greatly improved by intro-
ducing a fraction of exact (i.e., HF) exchange (Eq. 1.14), giving rise to
hybrid functionals. The most common way to do this is using Becke’s three-

parameter (B3) form,?’

EB3 = B2 4 (1 — q) ELPA 4+ pAEDSS 1 EIPA 4 (AEGGA (1.75)

In Becke’s original work,2? the PW91 correlation energy was used and the
parameters were optimized to a=0.2, b=0.72 and ¢=0.81. The combination
of Becke’s three-parameter expression with the PW91 correlation functional
is called B3PW91. Better known is the modification B3LYP by Stephens
et al.,?0 which uses the LYP correlation energy as ESGA together with
the same parameters a, b and c¢. Hybrid functionals typically give good
geometries and perform well for most molecular properties.® Thus, B3LYP is
in this thesis used for geometry optimizations in Paper I, Paper II, Paper
III, Paper V and Paper VII, for frequency calculations in Paper VII,
for electrostatic potentials (ESPs) in Paper IV and to calculate localized
embedding parameters (see Chapter 4).

1.2.3.4 Long-range corrected functionals

Hybrid functionals are successful in describing short-range interactions be-
tween electrons, which is good enough for many molecular properties.
For some properties, however, it is also important to describe long-range
electron—electron interactions correctly. This can be done by including more
exact exchange for long-range interactions using so-called range separation,
in which the fraction of exact exchange gradually increases with distance at
the cost of LDA exchange. A popular way to do this is proposed by Yanai et
al.,3" in which the Coulomb repulsion operator is split up in a short-range
and a long-range part,

1 _ 1 —[a+ B -erf(u|r; —rj])] n a+ B -erf(u|r; —rj|) (176)
ri =7l [ri — 74 |ri — 7l
short range long range

The parameter « controls the amount of short-range exact exchange and
a4+ is the amount of exact exchange at infinite separation. The original
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CAM-B3LYP functional by Yanai et al. has a=0.19, 3=0.46 and ©=0.33.3
Introducing range separation gives a much better performance for excita-
tion energy calculations involving charge-transfer transitions.3? This is the
reason the CAM-B3LYP functional is used to describe charge-transfer tran-
sitions in Paper I, Paper III, Paper IV, Paper V and Paper VI



Chapter 2

Embedding methods

Chapter 1 has described how QM methods can be used to calculate molec-
ular properties. The molecular systems that are treated in this thesis—
proteins and organic molecules in homogeneous solvents—are however far
too large to be described by QM methods at the level of accuracy needed
for molecular property calculations. A solution to this problem is given
by so-called focused embedding models: the central molecule or molecular
fragment is described with an electronic structure method while its environ-
ment is described at a lower level of theory. The goal of this chapter is to
introduce different embedding methods (Section 2.1) and in particular the
PE model that is used in this thesis (Section 2.2). The PE model allows
for mutual polarization between the central molecule and its environment
and is therefore well-suited to describe the response of the environment to
an electronic excitation in a chromophore.

27



28 Chapter 2. Embedding methods

2.1 Overview of embedding methods

The environment of a molecule or molecular fragment can be incorporated
in a calculation in different ways. The environment can either be described
explicitly by its atomic coordinates or implicitly as a dielectric medium. A
prominent example of an implicit embedding method is the polarizable con-
tinuum model (PCM),33 which is also used in Paper VII. Only the atomic
coordinates of the molecule of interest are needed for molecular property
calculations with implicit embedding methods. This usually requires a ge-
ometry optimization of the molecule, a procedure that is described in Sec-
tion 3.2. The molecular modeling for explicit embedding methods is much
more involved since the atomic coordinates of the whole molecular environ-
ment are needed. Chapter 3 describes some strategies to do this. In this
chapter, we focus on explicit methods to incorporate the effect a molecular
environment in a QM calculation.

In a so-called cluster approach, an enlarged molecular system is treated
with one QM method. Alternatively, the environment can be incorporated
classically®® (quantum mechanics/molecular mechanics; QM/MM) or using
another QM description (QM/QM).3> The cluster approach is in principle
the most exact. However, it is limited to rather small molecular systems
due to the unfavourable scaling of QM methods with system size. It is
demonstrated in Paper II for CC2 calculations on the GFP chromophore
that the size of a molecular cluster is by far not large enough to sufficiently
incorporate the complete effect of a protein environment. Thus, a lower-
level approach is needed to describe the rest of the environment. In this
thesis, molecular properties are calculated for a relatively small molecule
in a large environment that affects the properties of the central molecule,
making QM/MM methods a good choice. QM/MM methods are used in
Paper I, Paper II, Paper III, Paper IV, Paper V and Paper VII.

The total energy of the system, Eqni/nm, can be partitioned in contri-

butions from the QM and classical regions as well as an interaction term,3*

Eqmmm = Eqm + Evv + Equm-mu- (2.1)

Expressions for the energy of the QM region, Eqn, have been described in
Chapter 1. The energy of the classical environment, Fnpy, may be described
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by force fields methods (Chapter 3). However, when the geometry of the
classical region is frozen, Fynv is a constant and can be disregarded. The
interaction energy between the QM and classical regions, Eqm v, is the

main focus of this chapter. In general, it can be written as36

Eqyvaamv = E&‘irﬁMM + Egle—MM + Eé(%\/{VYMM, (2.2)

where Egﬁ‘ﬁMM contains interactions between bonded atoms, EngMM
contains classical electrostatic and polarization interactions and the van der
Waals (vdW) term E&{XYMM contains dispersion and exchange-repulsion
interactions. Different ways to describe the intermolecular interactions
give rise to different embedding methods. Intermolecular interactions can
be divided into classical (electrostatic and polarization) and non-classical
(dispersion and exchange-repulsion) interactions.3” The main contribution
to the exchange-repulsion interaction comes from the Pauli antisymmetry
requirement.®® This contribution is not included in all QM/MM schemes
due to its non-classical and short-range character. Instead, the non-classical
term in Eq. 2.2 is often neglected or treated classically, in which case it does
not affect the electronic structure of the QM region and enters only at the
energy level.?® Different choices for Eg‘ﬁﬁMM and E&leMM are discussed
below.

The easiest way to treat the bonding between the QM and classical
regions (E(gcf\‘}}ﬂlMM in Eq. 2.2) is to avoid having a covalent bond through
the boundary, in which case the interaction energy in Eq. 2.2 only contains
electrostatic and vdW terms. This is why QM/MM calculations on
solute—solvent systems are less problematic than calculations on proteins
with a covalently bound region of interest. The location of the boundary
should be chosen such that the perturbation of the chemical system is
minimal. This means that the cut should be far enough away from the
region of interest and preferably in a single bond. In the backbone of a
protein, for instance, it is better to cut around a C, than across an amide
bond. Popular approaches to treat a covalent QM—-MM boundary are the
link atom approach and frozen orbitals.?%3? In the link atom approach,
hydrogen atoms that are not part of the molecular system are introduced
as caps to the QM region to avoid dangling bonds. This introduces an
extra charge very close to some of the atoms in the classical region, which
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could easily cause overpolarization. One of the solutions to this is deleting
or redistributing the electrostatic parameters in the affected part of the
classical region.?® The link atom approach is used in the PE model by
Olsen et al.*%*! and is therefore used in the PE calculations in Paper I,
Paper II and Paper III. In the frozen orbital approach, the QM region
is capped with an orbital that is kept frozen and localized to keep the link
with the classical region stable. Even though the frozen orbital approach
is theoretically more sound, it requires different orbitals for different
chemical species and QM methods, requiring heavy parametrization and
making it more challenging to implement and use.3® Parameters for all 20
amino acids are available?? in the frozen orbital approach by Friesner and
co-workers, 3 enabling its use in the QM/MM geometry optimizations in
Paper I, Paper 11, Paper III and Paper V.

The electrostatic part of the QM—-MM interaction (EngMM in Eq. 2.2)
is the most important part because electrostatic interactions extend over a
much longer range than bonded or vdW terms. In the simplest treatment,
known as mechanical embedding,3® the energy of the interaction is calculated
classically at the same level as the energy of the classical region, Ey, in
Eq. 2.1. While this does affect the total energy of a system, it does not
change the electronic structure of the QM region and is therefore of no
consequence for the calculation of molecular properties.

The electronic charge distribution of the environment can also be directly
included in the Hamiltonian in what is called electrostatic embedding,3

o7
Eduny = — ZZ |+ZZ|R;]_IR| (2.3)

zlsl‘rl R, I=1s=1

The first term contains the interaction between all electrons with position
r; and with charge —1 in the QM region and all sites with position R
and charge ¢; in the environment. This term is a one-electron operator
in the Hamiltonian. The second term contains the interaction between all
nuclei with position Ry and charge Z; in the QM region and all sites in the
environment. This term is a constant given a particular geometry.
Electrostatic embedding (Eq. 2.3) allows for the charge distribution of
the environment to polarize (i.e., affect the charge distribution of) the QM
region but not the other way around. In polarizable embedding, the environ-
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ment is also polarized by the QM region by adding additional polarization
interactions.?® A PE approach may have permanent electrostatic interac-
tions that are described in a similar way to those from electrostatic em-
bedding in Eq. 2.3. However, the charges used may well be different since
polarization effects are often included implicitly in electronic embedding
by scaling the charges (see Section 4.2). In others words, there should be
a consistent treatment of permanent electrostatic and polarizable interac-
tions. The importance of polarization was already emphasized in the first
QM/MM study by Warshel and Levitt.3*

An example of a mechanical embedding approach is the original formu-
lation of the ONIOM scheme.3> ONIOM is a so-called subtractive scheme, 36
meaning that the total QM/MM energy is calculated not by adding a term
Eqvvv (Eq. 2.1), but instead adding the difference between the classical
energy of the total system and the classical energy of subsystem I to the
QM energy of the central subsystem,

Equmm = Egu + Eiy — Baws (2.4)
A clear advantage of a subtractive scheme is that there is no need for an
explicit description of the QM—MM boundary. A disadvantage, however, is
that even though the energy of the central region is modified to take into
account its environment (and can thus be used in a geometry optimization),
the electron density and hence most molecular properties are not affected.
A modification of the ONIOM scheme has been presented that includes
also the charge distribution of the environment in the Hamiltonian,** which
allows for the calculation of molecular properties through electrostatic em-
bedding.

An accurate and in principle exact way to incorporate the electrostatic
environment is to describe it in terms of its frozen electron density, which is
the central idea in frozen density embedding.*> With a density-based descrip-
tion of the environment also short-range exchange-repulsion effects can be
described at a QM level. Polarization between different subsystems can be
introduced by optimizing not only the density of the central subsystem but
also the density of other fragments in the environment in so-called freeze-
thaw-cycles.*647 This treatment, however, quickly becomes very expensive
when increasing the number of subsystems. Therefore, ground-state gas-

phase densities are often used for at least part of the molecular system.*®
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Frozen density embedding potentials can also be constructed separately for
ground and excited states with so-called state-specific embedding potentials,
which allow for the description of differential polarization effects between
two different electronic states.*”

Other PE approaches include the polarization effects classically. One of
the ways to do this is by using induced dipoles, which respond to the electric
field from the surrounding and create an additional electric field themselves.
Examples of this approach are the discrete reaction field by Jensen, van
Duijnen and Snijders,?° the PE model by Olsen et al.*#! (Section 2.2) and
the MMpol model by Curutchet et al.?!

In the effective fragment potential approach, classical electrostatic and
polarization as well as non-classical exchange—repulsion effects from a frag-
ment in the environment are modeled by effective potentials that are in-
cluded in the Hamiltonian as one-electron operators.®? These potentials
also allow for the treatment of covalent bonds by frozen orbitals in a buffer
region around the central subsystem. %2

Frozen density embedding can be considered a QM/QM (or rather
DFT/DFT) method since the environment is described by its electron den-
sity. The subtractive scheme used in the ONIOM method (Eq. 2.4) can
also be used as a QM/QM method with the higher-level QM method used
to calculate the energy of subsystem I (E(SM-high) and the lower-level QM
method to calculate the energy of both subsystem I (EéM_low) and the total
molecular system (E(tflf/[_low). The effective fragment potential approach and
the PE method discussed in the next section are strictly speaking QM /MM
methods since they use classical parameters, which can however be derived
from QM methods.

2.2 Polarizable embedding

In the PE method by Olsen et al.,%%4! the environment is represented by
a collection of classical sites that carry electric multipoles to represent the
permanent electrostatics in addition to polarizabilities, which allow for po-
larization through the use of induced dipoles. Many-body polarization ef-
fects are included trough an SCF optimization of the induced dipoles, in
which the classical region polarizes the QM region as well as the other way

around.
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The total energy of the embedded molecule is written as a sum of the
energy of the isolated QM region, Eqwm, and the energy contribution from
the interaction between the QM region and its environment, Eqw pE,

FE = EQM + EQMfPE- (25)

Upon comparison with the more general Eq. 2.1, we note that Eqwm pr
is the part of Eqm mm that affects the embedded molecule and that the
energy of the classical environment FEypy is not evaluated because it does
not affect the energy and properties of the QM region. Any choice of QM
method can in principle be used and the PE method has been implemented
for HF,4? SOPPA,53 DFT,* CC2, CCSD and CCSDR(3),%* RI-CC2% and
MC-SCF.% The interaction energy between the QM region and its sur-
roundings can further be divided into different contributions,

Equm pE = Fes + Eing + ELj, (2.6)

where Fqs and FEj,q are the electrostatic interaction energies of the quantum
region with the permanent and induced charge distributions of the environ-
ment, respectively. Fpj is the Lennard—Jones (LJ) interaction energy, which
is an approximation to the dispersion and exchange-repulsion contributions.

For practical purposes, the electrostatic interaction energy FEes can be
divided into the interaction energy of the static multipoles in the environ-
ment with the nuclear (Eyun) and electronic (Emyle) coordinates of the
QM region,

Ees = mul,n + Emul,ea (27)

where E 1 n depends on the nuclear point charges and Ey,y) e on the electron
density of the QM region. In this thesis, the permanent multipoles include
charges ¢, dipoles g and quadrupoles Q. The interaction energy between
the permanent multipoles in the environment and the nuclear charges in the
QM region is a sum over all nuclei in the QM region and all classical sites,

mul n — Z ZI Z |:T]5 qs — T[(S)aﬂs at 2T[(5 abQS ab (28)
= s=1

with ps 4 and Qg g Cartesian components of the dipole and quadrupole on

site s and using Einstein’s summation convention over repeated Cartesian
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(k)

indices a and b. The interaction tensor T of order k has one component
for charges (k=0), three for dipoles (k=1) and nine for quadrupoles (k=2).

Its components are given as’®
1
79 = 2.9
Is ’R[ _ Rs’ 9 ( )
1 1
T =V, R (2.10)
@ _ 1
Tls,ab =V,Vy R, _R.| (2.11)

For the origin of the interaction tensor, see Section 4.1.1.1 on the electric
multipole expansion.
The expression for the interaction between the permanent multipoles

and the electrons i is similar,

1
Emule = ZZ [ls qs — tls lalbs.a 2tzs ast ab (2.12)

i=1s=1

with a sum over all electrons instead of over all nuclei and

/Twpm (2.13)

) given in Eq. 2.9.

with p the electron density and the interaction tensor T(
The total electrostatic energy Fes in the PE model is equivalent to Eq. 2.3
for simple point-charge electrostatic embedding when Eqs. 2.8 and 2.12 are

truncated at k=0.

The induction energy (Einq in Eq. 2.6) includes the polarization of the
environment by itself and by the QM region. This polarization is truncated
at first order in the current version of the PE model, leading to°

Eina = —5 Z l’l’md rnul + FZ + Ffl) ’ (214)

ind

where p*“ contains the z-, y and z-components of the induced dipole on

site s in the environment. F? F; and F,, contain the z-, y and z-

mul’
components of the electric field at site s due to the multipole moments in
the environment and the electrons and nuclei in the QM region, respec-

tively. This linear response to the field F does not necessarily hold for high
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electric fields. In principle, one can use hyperpolarizabilities to describe
the quadratic response to the field and higher-order polarizabilities for even
higher responses, but this is not made use of in the current version of the

PE model. The induced dipole u*® on site s can be calculated as

i = aFy, (2.15)

with as being the anisotropic dipole—dipole polarizability of site s, which is
a symmetric 3 X 3 matrix with six unique components. One can in principle
extend the description to include also dipole-quadrupole polarizabilities®”
to improve the description of the linear response to the electric field. F{ ; in
Eq. 2.15 is the total electric field at site s, containing contributions from the
electrons and nuclei in the QM region and the static multipoles and other

induced dipoles in the environment,
Fi.=F.+F, +F, ,+Fiq (2.16)

Alternatively, the induced dipole at site s can be calculated from a scalar
isotropic polarizability o5 as

p = o Fiy. (2.17)

Since the induced dipole at every site s depends on the total electric field
at site s, F; (see Egs. 2.15 and 2.17), which in turn depends on the induced
dipoles on other sites (Eq. 2.16), the induced dipoles need to be obtained
from an SCF procedure.?? The problem can then be rewritten as a matrix—
vector equation to calculate all induced dipoles in the environment, pting,

as 40

Mind = B (qul + Fe + Fn) s (218)

where ping is a vector containing all 35 induced dipoles and B the classical
linear response matrix with dimension 3S x 35, which is defined as*®

- 2 2) \ 1
R A, (0
2 _ 2
B = _Tgl) gl . _Tgs) (2.19)

2 2 —
B S
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and contains the polarizabilities as at all sites and the interaction tensors
between all pairs of induced dipoles ngz-) with TZ(-]].C) defined in Eq. 2.9. The
optimized set of induced dipoles depends on the electron density or wave
function of the QM region through F, in Eq. 2.18.

The LJ interaction energy (Ep; in Eq. 2.6) can be calculated as a 12-6
potential as®®

S

Ery=)Y. i €rs K'RITRS’)H —2 (IRITERSIﬂ : (2.20)

s=11=1

where the summation runs over all interactions between QM nuclei and
classical sites and where €5 is the well depth, rjs is the equilibrium bond
length and R; and Ry are the coordinates of the atoms in the QM and
classical region, respectively. The parameters € and r need to be specified
for every atom in the QM region and classical regions. The interaction
parameters €75 and rys in Eq. 2.20 are computed by Berthelot’s combination
rule® for €7, and Lorentz’ combination rule® for ry,

€ij = \/€i€;, (2.21)

i+
_ 2.22
: 222

Tijg =

The LJ energy in Eq. 2.20 depends only on nuclear coordinates and is
therefore of no importance to the calculation of the electron density and
hence to molecular properties calculated from it.4? It does, however, play a
role in geometry optimization using the PE model (Paper VII). It is im-
portant to bear in mind that the LJ energy is a rather crude approximation
to the real exchange-repulsion and dispersion effects of the environment,
as also discussed in Paper VII. A much better description is given in
polarizable density embedding (PDE), in which the electrostatic part of
the closest environment is described by an exact ground-state electron
density. %! This allows not only for density-based non-electrostatic repul-
sion, but also for an improvement of the electrostatic interaction energy Feg.

The QM-PE contribution can be included in the KS equations (Eq. 1.68)
by adding an operator vqm-pE to the effective potential (Eq. 1.70) with all
terms that depend on the electron density. Alternatively, a similar term can
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be introduced in the HF equations in Eq. 1.15. Thus, vqwm pg includes the
electronic part of the electrostatic interaction (Eq. 2.12) and the interaction
through induced dipoles, both of which enter as a one-electron operator
in the Hamiltonian. The nuclear part of the electrostatic interaction
(Eq. 2.8) and the LJ interaction (Eq. 2.20) are independent of the electron
density and therefore not included in vqm-pe. The electron density (or,
equivalently, wave function) is then optimized in an SCF procedure. The
induced dipoles are optimized at every step, ensuring mutual polarization
between the QM region and its environment.

In order to evaluate the different energy contributions to FEqwm pr
(Eq. 2.6), the classical region needs to be defined using a set of parame-
ters, collectively referred to as the embedding potential. The coordinates of
all sites are required for all energy contributions. Electric multipoles of order
k<K are needed in the calculation of the electrostatic energy Fes in Eqgs. 2.8
and 2.12. Polarizabilities a are needed for the calculation of the induced
dipoles and can be either anisotropic (Eq. 2.15) or isotropic (Eq. 2.17). LJ
parameters r and € (for Erjy in Eq. 2.20) for all atoms are only required if
nuclear displacements are involved, e.g. in a geometry optimization (Paper
VII). In this thesis, the parameters are put exclusively on atoms in the
classical region, whereas it is also possible to place parameters on e.g. bond
midpoints. 4% The collection of sites s does not need to be the same for the
different contributions. It is therefore possible to place polarizabilities only
on a subset S1<S of the atoms in the classical region (Paper III) or to
truncate the electric multipoles at a different order K for different parts of
the classical region (Paper IV). Chapter 4 describes how the parameters
for the classical region can be obtained.






Chapter 3

Molecular modeling

Molecular modeling in the context of this thesis is understood as all steps
required to obtain the molecular structures used in the calculation of molec-
ular properties. For QM /MM calculations, this includes both the central
subsystem and the classical region around it. This chapter aims to describe
the methods used for molecular modeling in this thesis and will therefore
focus on proteins (Paper I, Paper II, Paper III and Paper V) and small
molecules in solvents (Paper III, Paper IV and Paper VII) using exam-
ples from those works. Since molecular properties are as a rule very sensitive
to the particular geometry of the molecule under study, comparison between
different methods is best done with ezxactly the same molecular structure.
Thus, the molecular structures in (part of) Paper II and Paper VI—
where the performance of different theoretical methods is compared—are
taken from other works. Section 3.1 describes the evaluation of the forces
acting on a molecular system using classical force fields. These forces are
fundamental in both energy minimizations and MD simulations, which will
be treated in Sections 3.2 and 3.3, respectively. Section 3.4 describes the
extra steps required to prepare the molecular structure of a protein starting
from a crystal structure.

39
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3.1 Classical force fields

The set of forces acting on each atom in a molecular system plays an im-
portant role in molecular modeling, in particular to minimize the energy
of a structure (Section 3.2) and to propagate a molecular system in time
(Section 3.3). The forces can be obtained by evaluating the molecular gra-
dient, which is the first-order change of the energy with respect to a nuclear
displacement (Section 1.1.4). The energy expression can be evaluated in
different ways. The QM calculation of the energy has been described in
Chapter 1 and is the most accurate. For large molecular systems such as
the proteins or solute—solvent systems, it quickly becomes too expensive to
take into account the electronic structure. An alternative and much faster
way of evaluating the energy of and forces on a molecular system is given
by molecular force fields. The two methods can also be combined using the
QM /MM calculations described in Chapter 2.

A force field is a mathematical expression for the energy of a molecular
system as a function of the nuclear coordinates, E(R), together with a set
of parameters to describe the interactions between the atoms. Thus, all
electronic effects are neglected, making force fields purely classical. The
dependence of the energy on R is not shown explicitly in the following. A
fundamental basis of force fields is the empirical observation that interaction
between similar atoms can be described with similar parameters, .e., the
parameters are transferable. This means that a limited set of parameters
can describe a large set of molecules. The functional expression of most
common force fields is pairwise additive, meaning that the total energy is
obtained by summing over interaction between pairs of atoms.

Every force field for molecules contains at least an expression for bond
stretching, angle bending, dihedral torsion, electrostatic and vdW interac-

tions,
E = Ebond + Eangle + Edihedral + Eel + EVdW . (31)
—_———
bonded terms non-bonded terms

Specific force fields may have extra terms such as a hydrogen bonding
energy.%2 Hydrogen bonding can however also be modeled by appropriate
parametrization of the other non-bonded terms. The forces can be obtained
by differentiation of Eq. 3.1 with respect to the nuclear coordinates R
as shown in Eq. 1.28. The most common functional form of each of the
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terms in Eq. 3.1 is discussed below with reference to three common force
fields: OPLS,%365 AMBERS%® and CHARMM.%? The OPLS force field is
partially based on the AMBER force field and was originally introduced for
liquid simulations,%3:%% which is why it is used for the solute-solvent MD
simulations in Paper III, Paper IV and Paper VII. The CHARMM
force field is used for GFP in Paper I because a parametrization of GFP

was available for that force field.6”

The bond stretching and angle bending energies Eponqg and Eapgle are
usually modeled as harmonic potentials,

1
Erond = Y 3k (R — Ro)? (3.2)
bonds
1
Eangle = Z §k9 (9 - 90)2 (33)
angles

with k; and ky being force constants, R and 6 the bond length and angle
as calculated from the structure, and Ry and 6y the equilibrium bond
length and angle. The ‘equilibrium’ values for Ry and 6y do not necessarily
represent the bond length and angle at the equilibrium structure, but in-
stead constitute a set of parameters that leads to the equilibrium structure
when used in combination with the rest of the force field.! The harmonic
approximation is simple, but not valid at larger displacements. Indeed,
bond breaking cannot be described when the energy increases quadratically
with the distance between two atoms. Improvement is possible to give
the right dissociation energy (the energy at infinite separation) in a
Morse potential, which adds one more parameter. Most common force
fields such as AMBER, OPLS and CHARMM, however, use harmonic
potentials because they are computationally more efficient and because dis-

placements from the equilibrium geometry are small at room temperature. 52

The dihedral energy often requires periodicity to be included in the en-
ergy expression. For instance, rotating one methyl group in ethane around
the dihedral gives three minima (and three maxima) in the energy at 120°
separation. Periodicity may be accomplished by a sum of cosine func-
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tions, 62.66

N
Eghedal = 3 =3 [1 %V, cos (nw)] (3.4)

dihedrals 2 n=1
with w the dihedral angle and V,, the barrier for rotating around the
dihedral with periodicity @. The Fourier series in Eq. 3.4 is in principle
able to describe any torsional profile exactly using an unlimited number of
terms N. In practice, however, the number of terms is limited and the fit is
far from exact. The dihedral potentials in AMBER, OPLS and CHARMM
are all variations of Eq. 3.4. The number and type of terms n to include
depends on the type of dihedral to be modeled. For instance, the dihedral
term in ethane can be modeled with N=3 and V;=0 and Vo=0 to give a
periodicity of 120°. Proper dihedrals consist of four atoms that are linked
through bonds. Alternatively, improper dihedrals may be defined in a
similar manner to impose a penalty on non-planar geometries around a
sp2-hybridized atom.?? Improper dihedrals are used with the OPLS force
field in Paper III, Paper IV and Paper VII to keep the geometries of
several aromatic molecules (uracil, acetophenone, benzene, phenol, toluene)
planar. In CHARMM (and hence in Paper I), improper dihedrals are

defined as harmonic potentials. 92

The electrostatic energy E, between nuclei I and J is usually modeled
as a Coulomb interaction between their partial charges q; and ¢y,

q14J

Jo R LU
el EIRI_RJ”

(3.5)

with € an effective dielectric constant. The total electrostatic energy is
obtained by summing over all pairs of atoms, thus neglecting many-body
polarization effects.?? The partial charges are often determined by fitting
to the electrostatic potential (ESP) of equilibrium geometries as explained
in Chapter 4. Average polarization effects are usually included implicitly
through increased values for the partial charges. The partial charges often
sum up to zero for a molecular fragment (a so-called charge group), which
allows for transferability of the parameters from one molecule to another.
For instance, the partial charges in para-nitroaniline (PNA) in Paper IV
sum up to zero separately for the nitro group, the amine group and each
CH group as shown in Figure 3.1.
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Figure 3.1. The molecular structure of PNA with the charge groups used
in Paper IV shown in black shapes. Carbon atoms are shown in cyan,
nitrogen in blue, oxygen in red and hydrogen in white. The molecular
structure is made with VMD. 68

The charges that are obtained in this way can be improved upon for a
specific molecule at the cost of the transferability of the parameters.

The vdW energy Eyqw between atoms I and J is usually modeled as an
LJ potential (cf. Eq. 2.20),%®

[ ( rrJ >12_2< Ty )6 (3.6)

with €7 defined in Eq. 2.21 and r;; defined either as in Eq. 2.22 or as
rrg=+/T1rj. The LJ potential has the correct R~ scaling for the attractive
part, while the repulsive part scales as (R~%)? for computational efficiency.
Improvements on the repulsive part lead to more parameters and higher
computational cost, but can also lead to improvements for systems where
the contribution of the vdW energy is high.! The LJ parameters in the
OPLS force field were developed by evaluating macroscopic characteristics,
namely the density and enthalpy of vaporization of organic molecules from
Monte Carlo simulations.®® This successful approach was later taken over
in the AMBER force field. %6

The total non-bonded energy can be calculated by summing Eqs. 3.5 and
3.6 over all atom pairs in the molecular system. Interactions between bonded
atoms (1,2-interactions) and between atoms two bonds away from each other
(1,3-interactions) are excluded from this sum, since their interactions are
already described by Fiona (Eq. 3.2) and Eangle (Eq. 3.3). 1,4-interactions
are usually scaled down by a factor between 0.5 and 1.1



44 Chapter 3. Molecular modeling

For all but the smallest systems, the non-bonded interactions use most of
the computational time in the energy calculation.3? Indeed, the number of
bonded interactions in a molecular system scales more or less linearly with
the number of atoms, while the number of non-bonded interactions increases
roughly quadratically.? To overcome this scaling problem and to allow for
large molecular systems to be used, the non-bonded interactions are only
calculated explicitly up to a certain threshold. Figure 3.2 shows the decay
of a Coulomb interaction between two charges (R™!) and of the London
dispersion interaction between two induced dipoles (R~%) at a distance R.
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Figure 3.2. Decay of Coulomb and London dispersion interactions as a
function of the distance between two particles R.

It is clear that the truncation of electrostatic interactions at a distance
of 10 or 15 A leads to a severe error, while the London dispersion interaction
(and thus also the repulsive part of the vdW interaction, which decays even
more quickly) is effectively zero at those points. This is the reason why only
electrostatic interactions need to be treated beyond the non-bonded cut-off.
This can for instance be done with the particle mesh Ewald approach,%
which scales more favourably than the explicit calculation of all atom pairs.
It is important to avoid calculating the distance between all atom pairs every
time the energy is evaluated. Indeed, if the distances between all atom pairs
needed to be calculated at every step to check whether they are inside or
outside the non-bonded threshold, having this threshold would hardly speed
up to calculation. A solution to this is the Verlet neighbour list, which
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stores all atom pairs that are within or just outside the non-bonded cut-off
and which is updated after a number of steps.”® Only distances between
pairs of atoms in the neighbour list are evaluated at every step, leading
to a significant decrease of the number of interactions to calculate. The
choice of the correct update frequency is the key to accurate and efficient
calculation of non-bonded interactions.3? Efficient calculation of the energy
is important because energy minimization (Section 3.2) or MD (Section 3.3)
require a large number of energy evaluations.

3.2 Energy minimization

The potential energy of a molecular system can be reduced by displacing
the atomic coordinates along the force acting on each nucleus. The energy
can be expression in different ways, such as with QM methods (Chapter 1)
or using molecular force fields (Section 3.1). This section discusses different
algorithms to displace the molecular structure to minimize the potential
energy. In the context of this thesis, the minimization algorithms can be
divided into classical minimization to prepare a molecular system for an
MD simulation (Section 3.2.1) and QM geometry optimization to obtain an
equilibrium structure for a QM calculation (Section 3.2.2).

3.2.1 Classical energy minimization

The goal of classical energy minimization is often to reduce the potential
energy of a starting structure before performing an MD simulation using
the same force field that will be used in the MD simulation. The starting
structure might have specific bond lengths, angles or dihedrals that lead
to a high energy for the given force field parametrization. Since kinetic
energy will be introduced in the subsequent molecular energy simulation at
a finite temperature—leading to a redistribution of the energy over kinetic
and potential energy—it is not important to reach an absolute minimum in
the potential energy.

The simplest way to achieve a lowering of the energy is to take a step
along the negative molecular gradient, i.e., following the force acting on each
nucleus. This approach of minimizing the energy is known as the steepest
descent method. The force vector F of length 3N contains one value for
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each of the Cartesian components for each atom in the molecular system
(Eq. 1.28). One way to do the minimization is to take one step with a
certain step size and then re-evaluate the force again. The step size can
either be fixed or changed depending on the force vector. Another way to
do the minimization is to evaluate the energy for different step sizes and
take the step that leads to the lowest energy, in which case the approach is
referred to as a line search. Figure 3.3 shows the energy per molecule in a
box of 1000 ethanol molecules during a steepest descent minimization (blue
line) as a function of the step. The step size in the example is 5 pm for the
direction with the largest force and scaled according to the magnitude of
the force for all other coordinates.”
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Figure 3.3. Potential energy per molecule in a box of 1000 ethanol
molecules during classical minimization with 20 steps steepest descent (in
blue) followed by 80 steps conjugate gradient (in red) or 100 steps of con-
jugate gradient (red, dashed). The energy of the starting structure is set
to 0 kJ/mol.

Figure 3.3 illustrates how the steepest descent algorithm is very efficient
in minimizing the energy in the first steps (far from the minimum, i.e., in
the global region), but slows down after a while (closer to the minimum, i.e.,
in the local region). Indeed, the energy flattens out already after 7 steps in
the example in Figure 3.3. Every step in the steepest descent is partially
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reverting the previous since the direction is chosen again for every step.!
Different algorithms can solve this problem. One of the simplest approaches
is the conjugate gradient approach, in which the direction of the step is
taken by considering not only the gradient of the current step, but also
the gradient of the previous one. Figure 3.3 illustrates how the conjugate
gradient algorithm (red line) is able to minimize the energy further from the
point where the steepest descent algorithm almost has a stationary energy.
However, using the conjugate gradient method from the starting point far
from the minimum (red dashed line) leads to a much slower convergence
compared to starting with the steepest descent method (blue line), which is
why a combination of the two has been chosen for the classical minimization
of solvent systems in Paper III, Paper IV and Paper VII: 20 steps of
steepest descent followed by 1000 steps of conjugate gradient.

3.2.2 QM geometry optimization

The goal of QM energy minimizations is often to find the structure with
the lowest energy (the equilibrium structure), i.e., performing a geometry
optimization. In contrast to the classical energy minimization described in
the previous section, it is for this purpose also required to test whether the
potential energy is in a minimum. These requirements are that the first
derivative of the energy is zero and that the second derivative is positive
with respect to all nuclear displacements, "2

Gz = (Zf) — 0, (3.7)

9’E
H,, = ((%2) >0 (3.8)

for all Cartesian components = of the molecular gradient g and molecular
Hessian H (Section 1.1.4). The molecular gradient g is a vector of length 3N
with NV the number of atoms in the region to be optimized. The molecular
Hessian in Eq. 3.8 is a second-order tensor of dimensions 3N x 3N. Thus, to
find the equilibrium geometry it is necessary to calculate both the molecular
gradient and (an approximation to) the Hessian. The number of negative
eigenvalues of the Hessian is referred to as the Hessian index and is zero for
a minimum of the potential energy.



48 Chapter 3. Molecular modeling

In analogy to the molecular gradient, the Hessian can be calculated
analytically or numerically. In Paper VII, the Hessian (and from it the
vibrational frequencies) is calculated numerically from an analytical gradi-
ent using atomic displacements of 0.01 a.u. This is rather expensive since it
requires 3N calculations on displaced nuclear geometries in both directions.

The Newton—Raphson method uses the gradient g and the Hessian H
to determine a step towards the mimimum energy structure. First, a local
second-order model of the energy is constructed,

E(x) = E(xo) + gdx + %H(dx)Q, (3.9)

which expands the energy around xg using a displacement vector dx=x—x,
the molecular gradient g and diagonalized Hessian H at xq. Since the change

in the local second-order model is zero at the minimum,
gdx + %H(dx)2 =0, (3.10)
and a step towards the minimum of the local model is given by
dx = —gH ™, (3.11)

where dx contains the displacement of all nuclear coordinates. A step using
Eq. 3.11 is referred to as a Newton step. Since the real function is not a
second-order function, several steps are needed to approach the minimum.
The Newton—Raphson method is unbound, meaning there is no upper limit
to the step size. This is a particular problem when one of the Hessian eigen-
values is close to zero, causing a large step in one direction.! A maximum
displacement known as the trust radius is usually set so that the second-
order approximation in Eq. 3.9 is reasonable. 73

Alternatively, an approximate Hessian can be used instead of the exact
Hessian, in which case the method is referred to as quasi-Newton optimiza-
tion. This is much faster in practise and is therefore used in most geometry
optimizations including those in Paper VII and in all other QM /MM geom-
etry optimizations in this thesis. The Hessian at step ¢+1 is approximated
using the approximate Hessian at step ¢, the gradient difference between
and i+1 and the size of the step between i and i+1.7> A common algorithm
to do this is the Broyden-Fletcher-Goldfarb-Shanno scheme,” which en-
sures that the quadratic model has a minimum.”? Quasi-Newton methods
require an initial Hessian, which can be the exact Hessian or an initial guess.
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The geometry optimization usually continues until some convergence cri-
teria are met. This is usually done by setting a lower limit to the change in
energy, step size or norm of the gradient. In the geometry optimization in
Paper VII, two out of three of these criteria should be met for the opti-
mization to end. Figure 3.4 shows the potential energy and Hessian index
of a molecule of PNA in water in the course of a PE geometry optimization.
In the first part of the optimization (the global region), the energy quickly
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Figure 3.4. Potential energy and Hessian index of a molecule of PNA
during a PE geometry optimization in a frozen water box. The energy of
the optimized structure is set to 0 kJ/mol.

decreases and the Hessian index reduces to to zero. Another 15 to 20 steps
are needed to locate the exact minimum to satisfy the chosen convergence
criteria (the local region). An optimization algorithm should be efficient in
both parts of the optimization.”

For a molecule without environment, the equilibrium structure is usually
used to calculate a molecular property. This is also the strategy used in Pa-
per VI. For a molecule in an environment, however, the choice of whether
to do geometry optimization is less straightforward, especially when temper-
ature effects are introduced through an MD simulation. Indeed, geometry
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optimization of (a part of) the molecular system leads to a reduction of the
energy and thus the temperature effects are (partially) lost in the optimized
region. This is illustrated in Paper I, where the broadening of the absorp-
tion peak in the calculated spectrum of fluorescent proteins is reduced by a
factor of three as a result of geometry optimization of the chromophore in
the presence of the frozen protein. In the calculation of vibrational proper-
ties such as in Paper VII, however, geometry optimization is necessary for
the Hessian index to be zero, which allows for the calculation of vibrational
frequencies. For optical properties, the requirements are less harsh and
QM/MM geometry optimization is only necessary when the starting struc-
ture of the central subsystem is not good enough for the calculation of the
molecular property. This is investigated in Paper I, where trends between
different fluorescent proteins are not well reproduced on unoptimized crystal
structures, clearly indicating that these structures are not good enough for
QM/MM calculations. Also, structural changes as a result of QM /MM ge-
ometry optimization of MD snapshots are small for e.g. GFP—for which the
force field was tailor-made—and larger for e.g. BFP—which is not as well
described by the force field used. We note that QM /MM MD can partially
resolve these issues because it allows for temperature effects in a simulation
while simultaneously allowing the structure to be in a minimum of the QM
potential energy landscape.

3.3 Molecular dynamics

In an energy minimization (Section 3.2), the potential energy is reduced by
displacing the nuclear coordinates in an appropriate direction. This is useful
to find one structure with a low energy, but not to find multiple structures
to sample a larger energy landscape or indeed to overcome barriers to locate
another low-energy region. This is however possible by molecular dynamics,
in which also kinetic energy and thus temperature is added to the simulation.

It is not possible to simulate a macroscopic system to sample all possible
configurations at once due to the size of such as system. Indeed, the molec-
ular systems used in this thesis have a dimension on the order of tens of
nanometers, which is a factor of 107 smaller than the size of a typical sample
in a laboratory (the volume is then smaller by a factor of 10%!). In other

words, it is not possible to obtain an ensemble average from one molecular
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structure. MD provides an alternative way to sample the most important
conformations, i.e., the most important part of phase space. The ergodic
hypothesis states that the time average of a property of a representative
system is equal to its ensemble average.%3? This is the basic idea of an MD
simulation: a representative microscopic system is propagated in time using
Newton’s equation of motion to sample phase space. The ergodic hypoth-
esis implies that all possible conformations of a molecular system (i.e., the
complete phase space) can be sampled regardless of the starting point.® In
practice, however, the total time of a molecular simulation is limited by the
computational time and resources available for the calculation, leading to
a statistical error that can be estimated from the calculated properties in
addition to an unknown systematic error in the calculation related to how
representative the sampling is.! The ergodic hypothesis can be applied to
any property, which is the basis of the sequential approach (MD followed by
property calculations) used in this thesis. It is important to realize that the
statistical error in the calculated property—estimated for instance by the
standard error of a number of values obtained from different structures—
only relates to the number of structures used and not to the systematic error
of the calculations. The systematic error is related to the method used to
calculate the property and the quality of the underlying structures and may
well be much larger than the statistical error.

The same principles of MD may be applied regardless of how the forces
on the atoms are calculated. The forces may be calculated by QM methods
to give rise to ab-initio MD. Alternatively, the forces on a part of the system
may be calculated using a combination of QM and classical methods (cf.
Chapter 2) while using classical forces on the rest of the system, giving rise
to QM/MM MD. The MD simulations in this thesis have all been performed
using classical force fields (Section 3.1).

Apart from the forces on the nuclei, an MD simulation also needs a way
to propagate the coordinates of the nuclei in time using Newton’s equations
(Section 3.3.1) and a molecular system in equilibrium as the starting point
(Section 3.3.2).
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3.3.1 Integration of Newton’s equations

Newton’s second equation of motion can be used to calculate the accelera-
tion a; on atom I from the force F; acting on the atom,

d2X[ N F[
a2 m’

aj = (3.12)

with aj, x; and Fj; vectors containing x-, y- and z-components. Thus,
the change in position of the atoms can be obtained by integration of the
force F;. Using an analytical expression for Fy, the positions of the atoms
can in principle be propagated in time. However, this procedure gives a
many-body problem that cannot be solved analytically for real systems. 3

The practical alternative is given by numerical integration with a finite
time step At, within which the forces are assumed to be constant. Positions
and velocities at time t + At can be calculated using a Taylor expansion
that is usually truncated at second order. Different algorithms exist to
do this, differing among other things in the memory requirements and the
conservation of physical properties such as energy and momentum.3° One
common way to do this is the Velocity Verlet algorithm,

x@+¢u):x@y+wwAt+%a@an% (3.13)

a(t) +a(t + At)
2

v(t + At) = v(t) + At, (3.14)

in which the next positions are calculated from the positions x(t), velocities
v(t) and accelerations a(t) at time ¢ in the first step (Eq. 3.13). The next
acceleration a(t+At) can then be calculated from the old positions x(¢) and
the new positions x(t+At) by numerical differentiation using Newton’s sec-
ond law (Eq. 3.12) in the second step. The next velocities can be calculated
from the velocities v(t) at time ¢ and the acceleration at time ¢ and t+At
in the third step (Eq. 3.14).

An alternative scheme is the leap-frog algorithm,”® in which the posi-
tions are calculated at time ¢, t+At, t+2At, etc., while the velocities are
calculated at time t+%At, t+%At, t+%At, etc. The leap-frog algorithm is
the standard algorithm used in the GROMACS MD software”” and is used
for the MD simulations in Paper III, Paper IV and Paper VII.

The choice of the time step is crucial for the MD simulation. A time
step that is too short leads to a slow propagation in time and hence a poor
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sampling. A time step that is too long leads to atoms coming too close to
each other and to instabilities in the algorithms.?? The time step should be
able to describe all motions in the molecular system. The fastest motion
in most systems is usually the vibration of hydrogen atoms at a frequency
of around 10 Hz. A time step of 1 fs (1071° ) enables the description
of such a vibration in ten steps, which is enough to ensure numerical sta-
bility. Restraining the vibration of hydrogen (such as with the RATTLE
algorithm 7®) allows for a slightly longer time step to be chosen.

The part of the MD procedure requiring most computational effort, how-
ever, is not the integration of Newton’s equation, but the calculation of the
forces. The calculation can thus be accelerated by calculating the forces
between some atoms only every n’th time step. This is the idea behind the
RESPA algorithm, ™ which is used in Paper I to increase the speed of the
MD simulations. Forces between bonded and nearby atoms are evaluated at
every time step, while forces between atom pairs further away are evaluated

every n’th step and are assumed to be constant in between.

3.3.2 Equilibration of the molecular system

The first step in the preparation of an MD simulation is usually a clas-
sical minimization of the potential energy as described in Section 3.2. In
the next step, usually referred to as the equilibration phase, the kinetic en-
ergy is added and the density and other physical properties of the system
are optimized. The goal of the equilibration phase is to evolve from the
starting structure to an equilibrium state, from which a simulation can be
started. Physical properties such as energy, temperature, pressure or struc-
tural properties may be monitored to see whether the system has reached
equilibrium. 3°

To start an MD simulation, the velocities at time t=0 are required to
obtain the new coordinates and new velocities at time t=At (Egs. 3.13 and
3.14). Initial velocities are usually assigned randomly by choosing values
for v;, vy and v, from a Gaussian distribution that is usually referred to as
the Maxwell-Boltzmann distribution,

m  _mvg
Flos) =[5 e 5T, (3.15)

with f(vz) the fraction of molecules with a velocity v, in the z-direction.
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This ensures that the molecular speed v=\/v2 + vZ 4 v2 is distributed ac-
cording to the Maxwell distribution of speed,

L 3.16
= 2kT | .
1) = (o ) me (3.16)
In this way, the kinetic energy is introduced as a function of the chosen
temperature T'. Figure 3.5 shows the distribution of the molecular speed
for molecular ensembles at different temperatures T'.

Fraction

Molecular speed (m/s)

Figure 3.5. Maxwell molecular speed distribution of molecular ensembles
at different temperatures. The plot shows the fraction of molecules with a
certain molecular speed.

Often the initial configuration of the molecular structure does not have
the correct density. The density of the molecular system can be optimized
by allowing the volume V' to change during the equilibration, e.g. by using
the NPT ensemble. The pressure p(t) can be evaluated at every time step
and compared to a reference pressure. The pressure can be adjusted by
rescaling all atomic coordinates and thus also the total volume of the system.
Rescaling all atomic coordinates by adjusting the volume to the target value
leads to the same pressure during the whole simulation and does not allow
the pressure of the system to fluctuate. This fluctuation can be ensured
by coupling the pressure of the system to an external bath at pressure
Pbath Using Berendsen’s pressure coupling scheme.®? In this approach, the
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pressure is not set to its target value at every time step, but changed at a
speed given by a relaxation constant 7, as
dp(t) 1

7l P, (Pbath — p(1)) - (3.17)

The relaxation constant has units of time and can be changed to determine
the strength of the coupling to the bath. Choosing 7, equal to the time
step of the MD simulation is equivalent to instant rescaling of the atomic
coordinates. A higher value for 7, leads to a weaker coupling to the external
bath.3?

Figure 3.6 illustrates how the density of a box of ethanol molecules
adjusts to a value close to the experimental density with two different re-
laxation times 7,.

0.9

density (g/L)

0.2 = computed density with 7= 0.5 ps |
oAl = computed density with 7= 1.0 ps | |

' - - experimental density
O'00 160 260 360 460 500

Simulation time (ps)

Figure 3.6. Density of an ethanol solvent box (described by the OPLS
force field%) during NPT equilibration starting from a low density. The
density is compared to the experimental density of 0.789 g/L at 293 K
(black, dashed).8! The density of the simulation is controlled by coupling
to an external bath8 with a pressure of 1 bar and relaxation constant
0.5 ps (red) and 1.0 ps (blue). The data for 7,=0.5 ps are taken from a
simulation in Paper IV.
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The initial density of the system is much lower than the equilibrium
value, which is reached after around 250 ps with 7,=0.5 ps (red line). Equi-
libration with a weaker coupling (7,=1.0 ps, blue line) leads to a slower
convergence towards the equilibrated density and requires a longer equili-
bration time. Equilibration of the density of the solvent systems in Paper
ITI, Paper IV and Paper VII is done using Berendsen’s approach with
a relaxation constant of 0.5 ps. The density is monitored as illustrated in
Figure 3.6 to ensure that the equilibration time is long enough. Berendsen’s
approach is also one of the ways in which the temperature of the system
can be controlled in an MD simulation.

Before analyzing the trajectory of the MD simulation (e.g. by taking
snapshots or calculating physical properties of the system from the tra-
jectory), it is important to equilibrate the system with exactly the same
settings as in the MD simulation. In other words, the production phase
is preceded by an equilibration phase. In Paper I, a 15 ns NPT run on
fluorescent proteins was preceded by 10 ns of equilibration. In Paper 111,
Paper IV and Paper VII, the NVT production phase on the solvated
molecule was preceded by a 2 ns equilibration in the NVT ensemble that
came after the 500 ps equilibration of the density in the NPT ensemble.

3.4 Protein crystal structures

The previous sections have described how molecular structures can be ob-
tained from energy minimizations (Section 3.2) and MD simulations (Sec-
tion 3.3) from some starting structure. The step of obtaining a high-quality
starting structure is fundamental for accurate molecular property calcu-
lation and this step is more involved for proteins than for solute—solvent
structures. One way to obtain a protein starting structure is to prepare the
protein from a crystal structure from the protein data bank,®? which is the
strategy used for all protein structures in this thesis. This section describes
the main challenges of this approach, many of which are in some way related
to the lack of hydrogen atoms in crystal structures. The most important
steps are illustrated by the preparation of the 1U19 crystal structure® of
bovine rhodopsin that is used in Paper III. Rhodopsin is a transmembrane
protein in rod photoreceptor cells in the eye, which are extremely sensitive
to light. Its chromophore retinal undergoes a cis—trans isomerization when
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light is absorbed, triggering a process responsible for vision.

The protein structures deposited in the protein data bank®? are obtained
by fitting the structure to an electron density map, which in turn is obtained
from X-ray crystallography experiments. The wavelength of X-rays is ap-
proximately of the same order as the dimensions of the atoms in the protein
(approx. 1 A). The most challenging part of X-ray experiments is to obtain
a regular crystal of the protein. The resulting electron density map may be
constructed from the diffraction pattern of the X-ray experiment, i.e., the
way in which the crystal scatters the electromagnetic radiation. The resolu-
tion of the crystal structure gives the minimal distance at which two objects
can clearly be separated and is ultimately determined by the quality of the
crystal.348% A low value thus means a high resolution. The 1U19 crystal
structure has a resolution of 2.2 A. This means that the position of hydrogen
atoms cannot be located in the electron density map and that protonation
states of side chains cannot be determined, which holds for all but the most
accurate X-ray crystal structures.®8% Not all parts of the protein have the
same resolution in the electron density map, however, and the reported res-
olution refers to the part of the protein that has the highest order in the
crystal. The temperature factor of an atom or atom group gives the disorder
of that region of the electron density map with a high value meaning a large
uncertainty in the position.3%35 Structure files from the protein data bank
usually contain the temperature factor (also called B-factor) for all atoms.
The 1U19 crystal structure has high temperature factors (above 100 A?)
on the side of the protein that also contains the C-terminus as shown in
Figure 3.7.

The temperature factors of the atoms on the other side of the protein are
much lower (40 to 50 A2). One should be very careful interpreting structural
characteristics of a part of the protein that is not well-resolved. In the case
of rhodopsin in Paper III, this is not particularly problematic because the
region that is not resolved well is far away from the retinal chromophore,
where the absorption process takes place. The N- and C-termini of the
proteins or certain side chains can be too flexible for the structure to be
determined at all and crystal structures therefore often do not contain all
residues and side groups.

A first step in the preparation of a crystal structure is often selecting
the right molecules in the crystal structure. Sometimes not all crystallized
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Figure 3.7. Structure of chain A of bovine rhodopsin from crystal struc-
ture 1U19.3% The colouring is done according to the temperature factor
(B-factor) of every amino acid with red for low and blue for high values.
The N-terminus is on the left and the C-terminus on the right of the figure.
The figure is made in VMD. 68

molecules are relevant to include. In Paper III, only chain A was selected
from the dimer in the 1U19 crystal structure because the focus was on the
chromophore and its close environment and not on the interaction between
the two monomers.

A next step is the addition of hydrogen atoms, which is not always trivial
since several amino acid residues can have different protonation states and
several things need to be taken into account. In reality, amino acid residues
can be protonated and deprotonated over time. In a classical simulation,
however, the input structure determines the protonation state in the whole
simulation, underlining the importance of a sensible starting structure. The
pKa value of a side chain in solution is a good first approximation of its
protonation state in the protein. Glutamic acid (pKa 4.07) and aspartic
acid (pKa 3.9) are usually charged, but can be protonated in particular
chemical surroundings. Special software can be used to find the most likely
protonation state based on the local surrounding.®¢ Lysine (pKa 10.54) and
tyrosine (pKa 10.46) are rarely deprotonated at a neutral pH, but can in
principle also have different protonation states. By far the most problematic
residue in this respect is histidine (pKa 6.04). Histidine (Figure 3.8) can not
only be positively charged or neutral, but its neutral form can be protonated
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in two different places, either at Ng or at N..

NE2

ND1

Figure 3.8. Histidine residue from a crystal structure with Ns (ND1) and
N. (NE2) indicated. Carbon atoms are shown in cyan, nitrogen in blue
and oxygen in red. The figure is made in VMD. %8

Since histidine residues are often involved in hydrogen-bonding, the crys-
tal structure may contain evidence as to which of the protonation states is
most likely. Examples of this are shown in Figure 3.9.

Figure 3.9. Evidence for a Ns-protonated histidine (left) and a N.-
protonated histidine (right) from the crystal structure of rhodopsin 1U19.83
The distance of the black dashed lines are 2.18 A between His65 ND1 and
Val337 O (left) and 2.92 A between His211 NE2 and Tyr206 OH (right).
Carbon atoms are shown in cyan, nitrogen in blue, oxygen in red and the
protein backbone is shown in grey. The figures are made in VMD. %8
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Cysteine residues (pKa 8.37) are usually protonated, but two cysteine
residues can form a sulphur bridge, in which case hydrogens should not be
added. Sulphur bridges are usually easy to detect in crystal structures as
illustrated for the link between Cys110 and Cys187 in rhodopsin in Fig-
ure 3.10.

Figure 3.10. Evidence for a sulphur bond between Cys110 and Cys187 in
chain A of the crystal structure of rhodopsin 1U1983, linking two different
parts of the protein together. Carbon atoms are shown in cyan, nitrogen in
blue, oxygen in red, sulphur in yellow and the protein backbone is shown
in grey. The figure is made in VMD. %8

It is important to mention the protonation states used in the protein
model, since there is not always consensus on the protonation state and
because it may influence the resulting calculations. Indeed, the protein
environment in rhodopsin or fluorescent proteins (Paper I) tunes the ab-
sorption maximum, thus correct modeling of the electrostatics is fundamen-
tal to reproduce (relative) excitation energies. After adding the hydrogen
atoms, their positions can be optimized using the strategies described in
Section 3.2.1, often with constraints on the positions of the heavy atoms.
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Embedding potentials

For an accurate calculation of the property of a molecule in a molecular
environment, an accurate description of its surroundings is fundamental.
Chapter 2 has described how a molecular environment can be included clas-
sically in the QM calculation of a molecular property. In PE calculations,
the atoms in the environment need to be described at least by their coor-
dinates, a parametrization of their ESP (e.g. in an electric multipole ex-
pansion) and their response to an electric field (with polarizabilities). The
collection of all these parameters is called the embedding potential. Strate-
gies to obtain the coordinates of all these atoms (the molecular structure)
have been described in Chapter 3. This chapter describes how the other pa-
rameters can be obtained. The distinction will be made between two very
different strategies to obtain the parameters: either from QM calculations
on molecules or molecular fragments (Section 4.1), or from a database con-
taining parameters for different atom types (Section 4.2). This is followed
by a discussion of the accuracy (Section 4.3) and the computational cost
(Section 4.4) of the different procedures. The emphasis is on embedding
potentials for solvents (used in Paper III, Paper VII and Paper IV)
and proteins (used in Paper I, Paper II and Paper III).
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4.1 QM-based parameters

A simple example of an embedding potential of two water molecules is shown
in Figure 4.1. This potential contains the same parameters for all six atoms:
coordinates, atom-based multipoles of order 0 (charges), 1 (dipoles) and 2
(quadrupoles), anisotropic dipole—dipole polarizabilities and an exclusion

list to exclude polarization interactions within each molecule.

@COORDINATES ORDER 2

6 6

AA 1 -4.157 0.092 -0.221 -4.874 0.024 -3.632
0 29.816 29.141 25.136 1 2 -0.419 0.011 0.143 -0.454 0.038 -0.052
H 29.526 29.061 24.226 2 3 -0.125 0.037 -0.206 -0.454 -0.024 -0.347
H 29.006 29.051 25.646 3 4 -3.694 -0.399 -0.042 -4.611 -0.257 -4.359
0 27.286 28.771 26.656 4 5 -0.125 -0.013 -0.201 -0.458 0.013 -0.344
H 26.456 28.821 27.126 5 6 -0.305 -0.140 0.168 -0.331 -0.145 -0.290
H 27.866 28.271 27.226 6 Q@POLARIZABILITIES

@MULTIPOLES ORDER 1 1

ORDER 0 6

6 1 5.309 -0.036 0.068 5.582 -0.012 5.122
1 -0.736 2 1.178 -0.030 0.770 1.646 0.177 3.261
2 0.368 3 2.895 0.126 -1.098 1.653 -0.156 1.566
3 0.368 4 5.127 0.147 0.022 5.466 0.110 5.349
4 -0.739 5 2.886 0.1563 -1.151 1.420 0.351 1.740
5 0.370 6 1.832 -0.654 1.127 2.159 -0.614 2.050
6 0.370 EXCLISTS

ORDER 1 6 3

6 1
1 -0.181 -0.028 -0.066
2 0.073 0.019 0.208
3 0.190 0.021 -0.112
4 -0.042 -0.076 0.175
5 0.188 -0.007 -0.114
6 -0.128 0.116 -0.137

OO W N
[ EYS RTINS
g o N W W

Figure 4.1. Example of an embedding potential of two water molecules.
The embedding potential is based on an atomic electric multipole expansion
up to quadrupoles and anisotropic dipole-dipole polarizabilities.

The goal of this section is to describe how the parameters for the embed-
ding potential can be obtained from QM calculations. The parameters to
reproduce the ESP and the polarizabilities will be treated in Sections 4.1.1
and 4.1.2, respectively, assuming that the classical region consists of sepa-
rate molecules that allow for one QM calculation on each molecule. Section
4.1.3 describes strategies to obtain these parameters for larger molecules,

for which one QM calculation is not possible or not desirable.
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4.1.1 The electrostatic potential

The electrostatic energy in the PE method is calculated as a sum of the
interaction of the classical sites with the nuclei (Eq. 2.8) and the electrons
(Eq. 2.12) in the QM region. The electron density of the QM region thus
interacts with classical multipoles rather than with the electron density of
molecules or fragments in the classical region, for reasons of efficiency. It
is, however, important that the parameters placed on the classical sites
reproduce the ESP of the molecule or fragment in the best possible way.
The potential V (r’) is the force on a unit of positive charge located at r’
and can be calculated from the wave function ¥ as a sum over contributions

from the molecule’s nuclei and electrons,

% 1
Z <’ — RI| /\II (r)’r, _r’\If(I‘)dr (4.1)

or equivalently from the electron density p as

no_ al Zr p(r)
V(r') _; TR —/ e (4.2)

The electric multipoles are classical parameters that are meant to repro-

duce the ESP. They can be obtained in different ways, the most important
ones being a multipole expansion (Section 4.1.1.1) and fitting to the ESP
(Section 4.1.1.2). In the context of this thesis, the former is used to generate
multipoles up to quadrupoles and the latter to generate charges only.

4.1.1.1 The electric multipole expansion

Electric multipoles can easily be calculated for a set of discrete charges as>”

N
= Z qr, (4.3)
tOt Z qITa, (4.4)

= Z arraTh, (4.5)
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where ¢'°* is the total monopole moment (i.e., charge), ut° is a component

of the dipole moment, Q%" is a component of the quadrupole moment, a
and b are the Cartesian coordinates and r, and r, the distance of I from
the origin along coordinate a. The multipoles are thus defined with respect
to an origin (the expansion centre) where only the first non-zero moment
is origin-independent.3®3? In principle, electric multipoles can be generated
up to any order and an infinite expansion gives an exact representation of
the ESP of the set of charges. A truncated multipole expansion is accurate
at long distances because the lowest-order multipoles are the ones with the
slowest decay. Indeed, charge-charge interactions decay as r—', charge-
dipole interactions as =2 and charge-quadrupole interactions as =2 (cf.
Figure 3.2), so at large distances the electric monopole dominates.?® At
short range, truncation of the multipole expansion is less successful. The
expansion breaks down completely when the wave function of two molecules
overlap due to the neglect of exchange-repulsion effects.?®

Representing the ESP of a molecule rather than a set of discrete charges,
however, is more difficult since the electron density is more complicated
than a set of point charges (the ESP can, however, be represented by par-
tial charges, see Section 4.1.1.2). Cartesian components of the molecular
multipole moments can be expressed as a function of the nuclear charges
Zr and electron density p(r) of an n-electron system, again with r, and ry,

relative to an origin, as®

N
:ZZI—n (46)
I

N

plot = Z Zre — /p(r)radr (4.7)
=1
N

tot — Z Zrrary — /p(r)rarbdr (4.8)
=1

with N and n the number of nuclei and electrons, respectively, a and b
Cartesian coordinates and r, and 7 distances along those coordinates.

To simplify the evaluation of Eq. 4.1 and to represent the ESP as a
function of the electric multipoles, it is necessary to expand |r’71—7'\ in a
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Taylor series around the centre r=r( (here truncated at second order) as

11
v’ — 7| - |’ — 7o

0 1
X (),
1 0?2 1
2 v aTbs 4.
SEE (aamitw) 0

[r’ — 7o

where a and b can be the Cartesian coordinates x, y and z. The ESP in

Eq. 4.1 can now be written as a function of the electric multipoles (Eqgs. 4.6
to 4.8) as3®

1
V) =10 + T + ST (410)

using Einstein summation over repeated indices and with the components

of the interaction operator (cf. Eqs. 2.9 to 2.11) written as3®

1

70 _ _ 411

— (411)
1

TW =V 4.12

a a ’I', o I'o‘ ) ( )
1

O v v 4.13
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Eq. 4.1 is now written classically in Eq. 4.10, allowing for a very efficient
evaluation of the ESP of a molecule or fragment.

The use of electric multipoles in a PE calculation requires localization of
the multipoles on e.g. the nuclei of the atoms in the classical region. Partial
charges and multipoles positioned on nuclei are not well-defined physically,
in contrast to molecular multipole moments and the ESP. Thus, the local-
ized properties should represent the total ESP of the molecule or molecular
fragment in the best possible way. A classic approach to obtain localized
partial charges is the approach by Mulliken.®” These charges are based on
an orbital population analysis, where each pair of basis functions is used to
represent a charge distribution. In the Mulliken approach, this charge dis-
tribution is divided equally over the atoms on which the basis functions are
placed (which can be the same atom as well) without taking into account the
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electronegativity of those atoms or the diffuseness of the basis function.87

This leads to a problem with Mulliken charges, namely their high sensi-
tivity to the basis set and the lack of basis set convergence.?® Mulliken’s
approach for localized charges has later been generalized to higher-order
multipoles by Karlstrom.®® Another popular way to localize multipoles is
the distributed multipole analysis (DMA) by Stone,® which is also based
on products of basis functions to define a charge distribution. The DMA
scheme is not limited to bonds or bond midpoints and can be used with any
set of expansion centres.3?

A disadvantage of all these approaches is the sensitivity to the choice of
basis set. The LoProp approach by Gagliardi et al.”% is meant to overcome
this problem by using atomic orbitals as basis functions. A localized basis set
is used to calculate localized values as expectation values in a series of four
consecutive steps. The LoProp approach can be used with bonds or bond
midpoints as expansion centres. An important advantage of the LoProp
approach over other approaches—apart from the reduced sensitivity to the
basis set—is the transferability of the parameters, i.e., the magnitude of

90,91

the multipoles is similar for chemically equivalent atoms. This is an

important prerequisite for the use of electric multipoles in classical force
fields.

In this thesis, the terminology of Olsen, Aidas and Kongsted 4’ is used to
refer to embedding potentials based on electric multipoles with M0 meaning
only electric monopoles (charges), M1 electric monopoles and dipoles, etc.

4.1.1.2 ESP-fitted charges

Another approach to reproduce the molecular ESP in Eq. 4.1 classically is
to define a set of charges that is fit to represent the ESP in the best possible
way.?293 In this way, the resulting charges are much less sensitive to the
basis set than e.g. Mulliken charges. Atomic charges are usually chosen for
this procedure, i.e., charges are placed on nuclei only. Thus, one has to find
a set of atomic charges g7 on nuclei I that minimizes the error between the
QM ESP in Equation 4.1 and the potential generated by this set of atomic
charges®

N

Vi)=Y X (4.14)

o - Ral
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The error of V(r’) is calculated for points on a grid and minimized with
respect to Eq. 4.1 by some fitting procedure to give a set of optimized
charges. Charges obtained in this way are here referred to as M* following
Schwabe et al.9* to distinguish them from electric monopoles derived from
a multipole expansion (MO).

The different schemes to obtain ESP-fitted charges differ mainly in the
choice of the grid on which the ESP is evaluated, the algorithm used for
the fitting and the use of additional constraints,” resulting in very dif-
ferent partial charges in some cases.?” Momany used a simple grid and a
least-squares fitting procedure to derive ESP-fitted charges for formamide,
methanol and formic acid, constraining the total charge to be zero and
the molecular dipole to its experimental value.?? Cox and Williams derived
ESP-fitted charges for 14 small molecules and ions using points on a regular
grid between 1.2 A and 2.2 A from the vdW surface of the molecules and
using a similar iterative least-squares procedure for the fitting.** Singh and
Kollman“® used the least-squares fitting of Cox and Williams but introduced
another grid to evaluate the ESP on. This grid consists of shells at surfaces
defined by the vdW radii times a factor, originally four shells at 1.4, 1.6,
1.8 and 2.0 times the vdW radii.?® Chirlian and Francl used a spherical
grid and introduced a computationally efficient scheme to do the fitting us-
ing a Lagrange multiplier, constraining the total charge to zero.?” Charges
obtained with their method are referred to as CHELP charges. While the
fitting scheme of Chirlian and Francl proved to be efficient, the charges
vary when molecules are re-oriented due to the irregular grid used.?® An
improved procedure—known as CHelpG—was developed by Breneman and
Wiberg using a regular grid with points between the vdW surface and 2.8 A
from any atom and the Lagrange multiplier approach of Chirlian and Francl
for the fitting.”® A more recent scheme by Hu, Lu and Yang (HLY) allows
for ESP fitting of partial charges, higher electric multipoles and atomic po-
larizabilities. This method gives increased numerical stability by using the
entire molecular space for the fitting rather than discrete grid points, with
a weighting function to prioritize the chemically important region between
1.4 and 2.0 times the vdW distance. %

Some of the problems associated with ESP-fitted charges are the confor-
mational dependence of the charges, the low degree of transferability and
the poorly determined charges especially innermost in the molecule, all of



68 Chapter 4. Embedding potentials

which are in some way related to the statistical nature of the fitting pro-
cess. 190 Kollman and co-workers have developed the restrained electrostatic
potential (RESP) fitting procedure for the AMBER force field to overcome
these problems.!?® The RESP approach introduces penalty functions that
reduce the magnitude of the fitted charges. Moreover, it uses a scheme to
ensure chemically equivalent atoms get the same charge. The charges are
determined using a least-squares fitting procedure on the grid defined by

Besler, Merz and Kollman, '

whose fitting procedure is known as MK.
All fitting schemes can in principle be used with constraints on e.g. the
total molecular dipole moment. Moreover, it is rather straightforward to
increase the density of fitting points when doing the fitting procedure. A
technique that is related to ESP-fitting is to fit partial atomic charges to
(calculated or experimental) electric multipoles, which can be more accurate
than standard ESP-fitting schemes especially far away from the molecule.
The quality of the ESP-fitted charges depends crucially on the method used
to calculate the QM ESP, as does the quality of the parameters derived from

an electric multipole expansion.

4.1.2 Polarizabilities

The representation of the ESP as described in the previous section is based
on calculations in vacuo. In reality, the electric charge distribution of molec-
ular fragments in the classical region is influenced by the electric field gen-
erated by other molecular fragments. The linear response of a molecule (or
atom) to an applied electric field is determined by the polarizability, from
which an induced dipole can be calculated using Eq. 2.15. The molecular
polarizability has been defined in Eq. 1.33 as the second-order derivative
of the energy with respect to a perturbing electric field, evaluated at zero
field strength. In this thesis (and in the current version of the PE model)
only dipole—dipole polarizabilities are used, while also dipole—quadrupole
etc. polarizabilities can be formulated.?® The ab-component of the dipole—
dipole polarizability a can be defined as the change in the a-component of
the dipole moment p by the b-component of an applied electric field F with
a and b Cartesian coordinates,®

_ (9ta
Qgp = <8Fb>F:0. (4.15)
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Since the dipole moment p and the electric field F are first-order tensors,
the dipole—dipole polarizability « is a second-order tensor with nine compo-
nents. Due to the symmetry of the polarizability tensor (azy=0tyz, Czz=02z,
Q=0 ), only six components need to be specified (see Figure 4.1): oy,
Qzys Oy Qyy, Oz and a... One can also define an isotropic polarizability
% (also called mean polarizability®), which is calculated from the diagonal
elements of the second-order tensor a as
iso

1
o = 3 (Ogz + Oy + z2) . (4.16)

The use of isotropic polarizabilities is computationally faster because the
calculation of the induced dipole only requires a multiplication of a zeroth-
and first-order tensor (Eq. 2.15: p;,q=a'*° - F), whereas the use of dipole—
dipole polarizabilities requires the multiplication of a second- and first-order
tensor (Eq. 2.17: p;,q=aF). Furthermore, it is more straightforward to use
atomic isotropic polarizabilities when considering the structural variation
of a molecule (Paper IV), as they are rotationally invariant. Embedding
parameters based on isotropic and anisotropic dipole—dipole polarizabilities
are here referred to as P1 and P2, respectively, following Olsen, Aidas and
Kongsted. 40

The localization of polarizabilities to nuclei or bond midpoints is tech-
nically more involved than the localization of electric multipoles, but can
be done using some of the same methods such as LoProp”® and DMA.38
The LoProp approach is used to generate localized polarizabilities for the
embedding potentials in this thesis.

The polarizabilities and induced dipoles introduce many-body effects in
the PE calculations. In this way, they correct for the lack of molecular
environment in the calculation of the electrostatic embedding parameters
of a molecule. It is therefore relevant that polarization interactions are
only calculated for interactions between atoms that were not included in
the same QM calculation of the electrostatic parameters.'%? Every atom
thus has a list of other atoms for which polarization interactions have to be
excluded. This list is called the exclusion list and is part of the section with
polarizabilities in the embedding potential (Figure 4.1).
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4.1.3 Strategies for large molecules

We have so far assumed that a QM calculation can be performed on each
molecule to obtain the embedding parameters, which is what is done for
small (solvent) molecules. Indeed, the largest solvent molecule in Paper
IIT and Paper IV is hexane with 20 atoms, which can easily be treated
by QM methods. The size of biomolecules, however, often does not permit
treatment of the whole molecule in one QM calculation. If this were possible,
one would not need to use multiscale methods to describe its properties. The
model of wild-type GFP in Paper I, Paper II and Paper III contains 3566
atoms excluding the water molecules present in the embedding potential.
Dividing the large molecules into smaller fragments not only makes the QM
calculation of parameters computationally cheaper, but also allows for intra-
molecular polarization effects in the PE calculation. Thus, fragmentation
strategies are needed for large molecules.

One strategy to split the large QM calculation on a protein into parts
is the molecular fractionation with conjugate caps (MFCC) approach by
Zhang and Zhang.'% The MFCC method was originally formulated to calcu-
late the interaction energy between a protein and another smaller molecule
(such as a drug molecule) by ab initio rather than QM/MM methods. In-
stead of calculating the interaction energy between protein and molecule
directly, the interaction energy is calculated as the sum of the interaction
energy of one amino acid residue and the molecule. Each amino acid is cut
out and an appropriate cap is added on both sides. This introduces arti-
ficial interactions between the small molecule and the caps. To correct for
this, interaction energies between the molecule and the caps need to be sub-
tracted from the sum. These calculations are done using a pair of conjugate
caps consisting of the cap on the C-terminus of residue number ¢ and the
cap on the N-terminus of residue i+1. These conjugate caps together form
a small molecule for which the interaction energy with the small molecule M
is calculated. The total ab initio interaction energy thus consists of a sum
of all interactions energies between capped amino acids with the molecule
M minus the interaction energy of the conjugate caps with the molecule M.
The computational cost of this approach scales linearly with the size of the
protein. An additional advantage of this procedure is the easy paralleliza-
tion of the approach. A drawback of the original formulation of MFCC is
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that it does not include many-body effects, i.e., only pairwise interactions
are included.

Soderhjelm and Ryde have applied the MFCC procedure to localized
properties such as multipoles and polarizabilities from a LoProp calcula-

102

tion. 192 The property P* on site k can be calculated from its properties Pik

in the fragment and conjugate cap calculations as
n
PF=3"¢Pf, (4.17)
i=1

in which ¢; is 1 for a normal fragment and —1 for a conjugate cap. The
sum is over all fragments 4 that include site k. This approach allows for the
calculation of localized parameters of a large (fragmented) molecule, which
is why it is used for proteins in Paper I, Paper II and Paper III.

4.2 Parameters from a database

QM-derived embedding parameters (Section 4.1) take into account the spe-
cific orientation of a molecule or molecular fragment and can be very accu-
rate. An alternative way of obtaining atom-based parameters is to extract
them from a database. This approach relies on defining an atom type for
each atom and taking parameters for that atom type from a database. These
databases can be e.g. molecular force fields (Section 3.1) or tailor-made pa-
rameter sets for embedding potentials such as the one in Paper IV.

The division of atoms into atom types varies between different databases.
This is illustrated for the carbon atoms in toluene in Figure 4.2. The OPLS

OPLS Paper IV
Cc2 C3
c2 C1 C4 C1
Cc2 Cc2
Cc2 Cc2 C5 C3
Cc2 C4

Figure 4.2. Atom types of the carbon atoms of toluene in the OPLS force
field (left) and in Paper IV (right).

force field%* distinguishes here between aromatic (opls_145; C2 in Figure
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4.2) and aliphatic (opls_148; C1 in 4.2) carbon atoms. The same atom
types are also used for other hydrocarbons such as the aromatic carbons in
benzene or the aliphatic carbons in hexane. The parameter set from Paper
IV, on the contrary, distinguishes all chemically non-equivalent atoms in
the molecule. Thus, the methyl carbon (C1), its neighbour (C2) and the
atoms in ortho- (C3), meta- (C4) and para-positions (C5) all have their
own atom types and own associated parameters. All these atom types are
different from those used for e.g. benzene and hexane.

Choosing fewer general atom types rather than many specific parameters
has both advantages and disadvantages. An advantage of fewer general pa-
rameters such as in classical force fields is that no new parameters are needed
when a new molecule is used. Indeed, a force field contains atom types for
most functional groups and usually there is a straightforward match. A dis-
advantage is that general parameters cannot take into account the different
chemical environments experienced by similar but non-equivalent atoms.
This is illustrated in Figure 4.3 and Table 4.1 for toluene. Figure 4.3 shows

toluene

RESP charge (a.u.)

C1 H1 C2 C3 H3 C4 H4 C5 H5

Figure 4.3. Variation in calculated B3LYP /aug-cc-pVTZ RESP charges
for toluene. The diagram shows the variation in geometry-specific charges
for 1000 different geometries. The numbering of the carbon atoms is shown
in Figure 4.2 (right). From Paper IV.

the variation in RESP charges of the atoms in toluene for 1000 different
geometries of the molecule. It is clear that the aromatic carbon atoms C2-
C5 have different charges with especially the carbon attached to the methyl
group (C2) differing from the others. The averaged charges are tabulated in
Table 4.1 and compared to the charges for the different atoms in the OPLS
force field, which assigns a charge of —0.115 to all aromatic carbon atoms.
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Table 4.1. Different atom types and charges for the atoms of toluene in
Paper IV and the OPLS force field.%* See Figure 4.2 (right) for the atom

numbering used.

atom Paper IV atom type OPLS

C1 -0.48679  opls_148 -0.065
C2 0.34481 opls_145 -0.115
C3 -0.26155  opls_145 -0.115
C4 -0.10270  opls_145 -0.115
Ch -0.16049  opls_145 -0.115
H1 0.12857 opls_140  0.060
H3 0.13992  opls_146 0.115
H4 0.12153  opls_146 0.115
H5 0.12236  opls_146 0.115

The molecule-specific charges used in Paper IV ensure a more
accurate ESP compared to OPLS with the more general parameters.
The root-mean-square deviation (RMSD) of the ESP at twice the vdW
distance of toluene has been calculated for 10 toluene molecules in Paper
IV. The average RMSD for the averaged B3LYP/aug-cc-pVTZ RESP
charges compared to QM is 2.4 kJ/mol. When the same calculation is done
using the OPLS charges, the result is 4.3 kJ/mol. Thus, molecule-specific
parameters are more accurate at the cost of being less generally applicable.

Isotropic parameters allow for easy transfer between different geome-
tries. It is however also possible to use the same anisotropic parameters
for different molecules as long as the geometry is kept fixed. In this
way, molecular properties for different snapshots can be used in combi-
nation with an MD simulation with fixed molecular geometries. 094,104
B3LYP/aug-cc-pVTZ solvent embedding parameters have been published
for methanol, water, acetonitrile and carbon tetrachloride in Ref. 94
(M2P3) and for methanol, water, dichloromethane and ethanol in Ref. 104
(M2P2). These parameters can be used in embedding potentials as long as
the same geometry is used, but require re-orientation to fit the coordinate

system of every molecule.
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Both Paper IV and the mentioned anisotropic embedding parameter
sets contain electrostatic parameters as well as polarizabilities, whereas the
OPLS, AMBER and CHARMM force fields only contain partial charges.
For water, many more different models exist, both with or without polar-
izabilities.?? These water models can also be used in embedding potentials.
O and H charges are given in Table 4.2 for water models that can be used
in embedding potentials.

Table 4.2. Charges for oxygen and hydrogen atoms in water from
TIP3P 105 SPC196  Ahlstrom %7, Paper IV and CHelpG from Ref. 104.

atom TIP3P SPC Ahlstrom Paper IV CHelpG

O -0.834 -0.82 -0.6690 -0.674 -0.656
H 0.417 041 0.3345 0.337 0.328

TIP3P %5 and SPC'% differ mainly in the structure and have very sim-
ilar charges. Since these two water models do not include polarizabilities,
their charges are higher to include some polarization effects implicitly. The
water model of Ahlstrom et al. is based on the SPC structure but has a
polarizability on oxygen in addition, hence its name polarizable SPC or
PSPC. 197 Its charges (—0.669 for oxygen) are very similar to the ESP-fitted
charges from Paper IV (—0.674 using B3LYP /aug-cc-pVTZ RESP fitting)
and from Schwabe!% (—0.656 using B3LYP /aug-cc-pVTZ CHelpG fitting).
All of these water models can in principle be used in embedding potentials
as long as polarization effects are either treated implicitly (TIP3P or SPC,
electrostatic embedding) or explicitly (Ahlstrom or ESP-fitted charges,
PE) but not both.

Paper IV contains ESP-fitted charges and isotropic polarizabilities
for common solvent molecules. Similar data sets exist for proteins.!98110
Genheden, Soéderhjelm and Ryde have presented transferable ESP-fitted
charges for all common protein residues, '’ building on previous work. 108
The charges are derived using the MK scheme and averaged over different
conformations to remove the conformational dependence. They have shown

that the resulting charges are independent of the specific protein used to de-
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rive them and are thus transferable from one protein to another.%? Séder-
hjelm, Kongsted and Ryde have presented a set of transferable isotropic
polarizabilities for proteins. 0

Some care should be exercised with the exclusion list when using

102 For QM-derived averaged

polarizabilities obtained in different ways.
parameters such as the ones in Paper IV, the same rule applies as dis-
cussed in Section 4.1.2: atoms that are present in the same QM calculation
should be excluded from polarizing each other. Thus, atoms from the same
solvent molecules are excluded since the QM calculations from which the

average parameters were obtained contained one complete solvent molecule.

Finally, also the LJ parameters r and € in an embedding potential can be
obtained from force fields. Since the LJ interaction in Eq. 2.20 is a classical
interaction between atom pairs in the QM and classical region, also the
atoms in the QM region need to be parametrized. One should be careful that
the parameters for the QM and classical region can be used together. 43111 In
Paper VII, compatibility has been ensured by choosing L.J parameters from
the AMBER force field, which have been published for all AMBER atom
types by Cornell et al.% and modified to be used in QM /MM calculations
by Freindorf et al.''! Other sets of LJ parameters for QM /MM calculations
exist as well,*> and there is some evidence that the geometry around the

QM region is sensitive to the choice of LJ parameters.3°

4.3 Accuracy of the parameters

Several possible choices to obtain parameters for an embedding potential
have been discussed in Sections 4.1 and 4.2. The choice of parameters has
profound implications on both the accuracy of the resulting potential (re-
viewed in this section) and on the computational time that is spent on ob-
taining the potential (discussed in Section 4.4). Results from the literature

40,57,94 91,110,112,113 will be discussed

on solute—solvent systems and proteins
separately in Section 4.3.1 and Section 4.3.2, respectively. The focus is here
on the accuracy of potentials that can be used in PE calculations. Where
possible, emphasis is on tests of the ESP rather than other properties be-
cause the ESP enters the PE calculation (Section 2.2) and is thus the most

direct way to assess the accuracy of an embedding potential.
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4.3.1 Solvent systems

Holt and Karlstrom have investigated the effect of dipole—quadrupole po-
larizabilities in addition to dipole—dipole polarizabilities to describe the re-
sponse of small molecules to an applied electric field.?” They found that
the error compared to a QM reference decreases by as much as a factor
of two as a result of including also dipole-quadrupole polarizabilities when
a homogeneous electric field is applied. The difference is smaller but still
present for an inhomogeneous electric field.

Olsen, Aidas and Kongsted have investigated the accuracy of the molecu-
lar ESP of a water molecule generated by different sets of embedding param-
eters compared to a QM reference.*? They found that the LoProp electric
multipole expansion is more or less converged when including quadrupoles
(M2). Adding parameters not only to atoms but also to bond midpoints was
shown to give only a very small increase in accuracy. The ESP generated by

charges only (Ahlstrém’s model 107

or LoProp monopoles, M0) had a larger
error especially when the ESP is evaluated at a surface close to the molecule.
A LoProp electric multipole expansion up to dipoles (M1), however, was
shown to give even larger errors. This unexplained observation—found in

other works as well 94112

—points to a weakness in the LoProp approach,
namely that there is no consistent improvement when increasing the level of
truncation in the multipole expansion. The accuracy of the polarizabilities
was investigated in the same work by calculating the induced ESP of water
caused by an applied electric field and comparing to a QM reference.“? In
this way, it was found that the use of polarizabilities on all atoms is better
than the one molecular polarizability located on the oxygen atom as used
in Ahlstrom’s force field. Going from isotropic (P1) to anisotropic dipole—
dipole polarizabilities (P2) had have a small effect only, explained by the
low anisotropy of water. The accuracy of excitation energies for organic
molecules in water followed the same trends as the accuracy of the ESP of
one water molecule, showing that the M2P2 potential is an accurate choice
for the water molecule and that the minimum requirement is charges and
isotropic polarizabilities. 40

Schwabe et al. extended the analysis of solvent ESPs to include also
acetonitrile, methanol and carbon tetrachloride.? As for the electrostatic

part, the same trend was observed as in Ref. 40: convergence of the LoProp
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multipole expansion at quadrupoles with dipoles performing worse than
monopoles, especially at short distances. Interestingly, ESP-fitted charges
(CHelpG in this case) showed a performance almost as good as the LoProp
M2 parameters with the exception of water. The results in Ref. 94 also
indicate that dipole—dipole polarizabilities lead to a more accurate response
to an applied electric field for acetonitrile and carbon tetrachloride—where
the polarizabilities have large magnitudes—whereas differences are small for
water and methanol.

We have calculated ESP errors for M* and LoProp M2 parameters over
a much broader range of solvents in Paper IV, averaging over different
conformations rather than focusing on a single one. We found that on av-
erage the M2 parameters lead to a more accurate description of the QM
ESP than the ESP-fitted charges when evaluated at a surface at twice the
vdW radii of the solvent atoms. Notable exceptions are formamide and the
chloromethanes—rather isotropic molecules—where the difference in error
between M* and M2 is very small. The effect of using averaged ESP-fitted
charges was also investigated since the transferability of these parameters
can be used to construct embedding potentials without the need for ex-
plicit QM calculations. The use of averaged parameters of course lowers
the accuracy with respect to a geometry-specific QM ESP, but the error as
a result of the averaging was much lower than the error resulting from the
use of M* parameters (rather than M2) for most molecules. Interestingly, a
test on ethanol showed that the error of averaging ESP-fitted charges was
lower for RESP charges (2.43 kJ/mol, averaged over 10 geometries) than
for the other ESP-fitting schemes MK (4.32 kJ/mol), HLY (4.47 kJ/mol)
and CHelpG (6.27 kJ/mol) by comparing the ESP of averaged ESP-fitted
charges to the ESP of geometry-specific ESP-fitted charges. Even though
the additional constraints in RESP introduce a larger error than for other
fitting schemes, the combined result was that averaged RESP charges are
more accurate than averaged ESP-fitted charges with other fitting schemes.
Possibly, even smaller errors can be obtained by carefully testing which
constraints should be used in the ESP-fitting, and which are automatically
taken care of by the averaging procedure. One can also consider to include
more than one geometry in the fitting procedure, thus to obtain one set
of fitted charges by minimizing the error of the ESP of several molecules
simultaneously. Paper IV also contains a test of the averaged isotropic
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polarizabilities by comparing the induced ESP at an applied electric field to
a QM reference. The error for toluene, phenol and benzene was be notably
higher than for the other solvents. This was found to be a result not of the
use of averaged parameters, but of the use of isotropic values. Indeed, also
the (isotropic) ESP-fitted charges were found to give a much larger error
than the (anisotropic) M2 parameters for these three molecules.

Taken together, these results indicate that in general an M2P2 potential
is an accurate choice with isotropic M*P1 potentials as a good alternative
for those molecules that do not have an unusually high anisotropy.

4.3.2 Proteins

The size of proteins makes it necessary to fragment the molecule into smaller
parts (Section 4.1.3), which introduces additional errors and requires addi-
tional tests.

Olsen et al. have investigated the accuracy of amino acid ESPs for dif-
ferent choices of embedding potential. ''? Analysis of four single amino acids
reveals some of the same trends in electrostatic parameters as found for sol-
vents: the LoProp multipole expansion is approximately converged at M2
(with the error decreasing as M1 > MO > M2 > M3) and embedding po-
tentials based on ESP-fitted charges have a moderately (but consistently)
higher error than M2 potentials. For dipeptides, it was found that polar-
ization largely compensates for the error introduced by the fragmentation
scheme with anisotropic polarizabilities giving only slightly lower errors than
isotropic polarizabilities. Calculations on a complete insulin protein showed
that a fragmentation scheme in combination with an M2P2 embedding
potential gives a better protein ESP than potentials based on ESP-fitted
charges with MP2 calculations on the whole protein as reference. Also, a
full-structure B3LYP calculation gave a much larger error (43.9 kJ/mol)
than the M2P2 (4.7 kJ/mol), M2P1 (6.0 kJ/mol) or CAM-B3LYP (7.7
kJ/mol) potentials,'!? which was attributed to the self-interaction error in
KS DFT as described by Jakobsen et al.''4 The numbers show that DFT-
based potentials (M2P2 and M2P1) on a fragmented protein give lower er-
rors than full-structure DFT calculations (B3LYP and CAM-B3LYP), which
is due to the addition of intramolecular polarization effects.

Séderhjelm et al. have looked at the basis set dependence of the error of
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LoProp multipoles for different models of capped amino acids.?! Interest-
ingly, they found that the error is larger for diffuse basis sets than for basis
sets without diffuse functions in comparison to a QM reference calculated
with the same basis set. Thus, while the ESP might be more accurate with
a diffuse basis set, the price to pay is a larger error in the ESP from the mul-
tipole expansion. The observation was explained by the diffuse character of
the resulting wave function (and electron density), for which the multipole
expansion converges at a longer distance.”! In the same study, a multipole
expansion up to quadrupoles was found to be more or less converged for
most molecules, but few non-polar residues needed higher multipoles to be
properly described. At an applied field of 0.01 a.u. in one of the Carte-
sian directions, the error of induced ESPs from LoProp polarizabilities was
comparable or lower than that of a multipole expansion up to quadrupoles,
which seems to indicate that the error in the induced ESP is lower than the
error of the electrostatic ESP for realistic field strengths. !

A systematic study of the ESP gives the most direct way to evaluate
the accuracy of an embedding potential,''? but other studies on molecu-
lar properties can give additional insights.''%!13 Séderhjelm has investi-
gated different polarization models and their influence on the accuracy of
protein-ligand interaction energies.!'®> One interesting conclusion is that
the error in using averaged rather than geometry-specific charges is lower
when (isotropic) polarizabilities are used in addition to the charges, i.e., the
inclusion of polarization leads to better transferability of parameters. The
error of the interaction energies was 50 to 65 % larger when using isotropic
rather than anisotropic polarizabilities. ''? Séderhjelm, Kongsted and Ryde
have studied the conformational dependence of isotropic polarizabilities in
proteins. 110 They found that the magnitude of the isotropic polarizabilities
is converged for the aug-cc-pVTZ basis set, with the aug-cc-pVDZ basis
set having rather small deviations. An important conclusion is that good
transferability can be obtained only when the parameters are assigned based
on specific atoms in specific amino acids instead of averaging over elements
or atom types. !0 In this way, the variation between parameters obtained
from different proteins is small, making this a successful strategy to develop
transferable embedding parameters for proteins.

The reviewed works on embedding parameters on proteins reveal that
the same principles govern the accuracy of embedding parameters for solvent
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molecules and proteins, but that polarizabilities serve an additional role in
proteins, namely compensating for the error introduced by the fragmenta-
tion of the protein. The removal of the anisotropy of the polarizabilities
gives an error that depends on e.g. the molecule and the property of inter-
est, but can be a price worth paying when one is interested in transferable
embedding parameters.

4.4 Computational cost of embedding potentials

Several ways to obtain parameters for an embedding potential have been
introduced in Sections 4.1 and 4.2. The approaches differ both in the accu-
racy (Section 4.3) and in the computational cost of their calculation. The
computational cost of calculating different types of embedding potentials
will be made explicit in this section. In addition, some strategies to reduce
computational cost are discussed.

The cost of taking embedding parameters from databases (Section 4.2)
and building an embedding potential with these is negligible. Indeed, this
is a matter of seconds for embedding potentials of most molecular systems
as long as an efficient script is available. Even if anisotropic parameters
for fixed molecular geometries have to be rotated to match the orientation
of the molecule, 4094104 this is still orders of magnitude faster than an
explicit QM calculations on the molecular fragments. Of course, one should
not forget the computational cost needed to obtain the database parame-

ters as done in Paper IV, but the cost of using these parameters is minimal.

The cost of calculating embedding parameters from QM calculations
depends mainly on the number and the size of the molecules or molecular
fragments and the method used for the QM calculation. For embedding
potentials of homogeneous solvent systems, this is a straightforward multi-
plication of the number of solvent molecules with the average time needed
to calculate the parameters for one molecule given a particular method to
calculate the parameters. Table 4.3 shows the averaged computational time
needed to calculate M2P2 parameters for a solvent molecule relative to the
time needed to calculate this for the smallest solvent molecule in the set,

water.
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Table 4.3. Relative computational time (relative to water) for a
B3LYP/aug-cc-pVDZ calculation to calculate electric multipoles up to
quadrupoles and anisotropic dipole—dipole polarizabilities (M2P2) using
the LoProp approach® in Molcas. %116 The number of atoms (V) in the
molecule and the number of contracted basis functions (# BF) are also
shown. The numbers are averages over 10 different solvent geometries.

solvent N # BF time
water 3 41 1.00
methanol 6 82 6.94
formamide 6 96 10.8
chloroform 5 113 13.0
ethanol 9 123 24.0
dimethyl sulfoxide 10 144  44.9
benzene 12 186 87.3
diethyl ether 15 205 110
toluene 15 233 165
hexane 20 264 226

It is clear that the computational time increases rapidly with the size of
the molecule because of the higher number of basis functions involved in the
calculation. However, one also needs to take into account that the number
of solvent molecules within a threshold R from a QM region decreases with
the size of the solvent molecules. The average number of solvent molecules
within a threshold R for different solvent molecules is plotted in Figure 4.4
for the geometries of acetone in different solvents from Paper III.

A snapshot of acetone (including all solvent molecules that have at least
one atom within a threshold of 15 A) in water has 5.21 times as many
molecules as a snapshot of acetone in hexane (Figure 4.4). One calculation
on hexane takes 226 times longer than one calculation on water (Table 4.3).
Thus, creating an embedding potential for acetone in hexane is in this case
approximately 43 times more expensive than creating an embedding poten-
tial for acetone in water.

The dependence of the computational time on basis set and type of em-
bedding potential are illustrated in Tables 4.4 and 4.5, respectively. The
variation of computational time with basis set (Table 4.4) is significant, in-
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Figure 4.4. Number of solvent molecules with at least one atom within a
distance R (in A) from acetone. N is the number of atoms in the solvent.
The numbers are averages over the 50 snapshots of acetone in different
solvents used in Paper III.

dicating that it is worthwhile to investigate the accuracy of different basis
sets before choosing which one to use to calculate embedding potential pa-
rameters. Indeed, removing the set of augmented functions of aug-cc-pVDZ
saves a factor of 2 to 2.5 in computational time, while going from double-¢
to triple-( gives an increase of a factor of 4 to 5. The dependence of the
computational time on the basis set depends mainly on the number of basis
functions, given by the number and type of all elements in the molecule.
The computational time is more or less independent of the order of
truncating the electric multipoles k£ (Table 4.5). Calculating only electric
multipoles and no polarizabilities, however, makes the LoProp calculation
around 4 times faster. Indeed, the calculation of LoProp polarizabilities

relies on numerical differentiation of multipoles in the presence and absence
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Table 4.4. Relative computational time (relative to aug-cc-pVDZ) for
a B3LYP calculation to calculate electric multipoles up to quadrupoles
and anisotropic dipole-dipole polarizabilities (M2P2) using the LoProp ap-
proach® in Molcas'®!16 for water and methanol. The number of atoms
(N) in the molecule and the number of contracted basis functions (# BF)
are also shown. The numbers are averages over 10 different solvent geome-

tries.
water (N=3) methanol (N=6)
basis set # BF time ‘ basis set # BF time
cc-pVDZ 24 0.50 | cc-pVDZ 48 0.39
aug-cc-pVDZ 41 1.00 | aug-cc-pVDZ 82 1.00
cc-pVTZ 58 1.76 | cc-pVTZ 116 1.86

aug-cc-pVTZ 92 4.14 | aug-cc-pVTZ 184  5.21

of an applied electric field in three Cartesian directions and thus requires six
additional multipole calculations. The generation of embedding potentials
can thus be made much faster when polarizabilities are calculated only for
a subset of sites in the classical region (Paper III). Since the neglect of
polarization in part of the classical region leads to poor results (as shown in
Paper III), it would be interesting to investigate the quality of embedding
potentials with geometry-specific electrostatic parameters in combination
with polarizabilities from a database (such as those from Paper IV).

The computational cost of calculating an embedding potential for a
protein with the MFCC procedure (Section 4.1.3) is less straightforward to
evaluate since the amino acids have different sizes and additional conjugate
cap calculations are required. The largest amino acid—tryptophan—
requires a QM calculation of the capped residue with 35 atoms (assuming
the capping is done as described in Section 4.1.3) and is therefore more
expensive than any of the solvent molecules in Table 4.3. Even the smallest
amino acid—glycine—requires a QM calculation with 18 atoms and 288
basis functions (based on the aug-cc-pVDZ basis set), which is also more
expensive than a calculation on hexane (20 atoms, 264 basis functions with
aug-cc-pVDZ). Calculating the embedding potential for a protein with N
residues with the MFCC procedure also requires the calculation of N—1
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Table 4.5. Relative computational time (relative to M2P2) for a
B3LYP/aug-cc-pVDZ calculation to calculate electric multipoles up to or-
der k with (MkP2) and without (Mk) anisotropic dipole-dipole polariz-
abilities using the LoProp approach® in Molcas!!'®!16 for methanol and
hexane. The numbers are averages over 10 different solvent geometries.

Mk relative time MEkP2 time

methanol
MO 0.22 MOP2 1.00
M1 0.22 M1P2 1.00
M2 0.22 M2P2 1.00
M3 0.22 M3P2 1.01
M4 0.22 M4P2 1.01
hexane
MO 0.27 MOP2 1.00
M1 0.27 M1P2 1.00
M2 0.27 M2P2 1.00
M3 0.27 M3P2 1.00
M4 0.27 M4P2 1.00

conjugate caps. The GFP model used in Paper I, Paper II and Paper
III has 230 residues, thus it requires 230 calculations of capped amino
acids (18 to 35 atoms) and 229 conjugate caps (12 atoms). In addition, the
model contains 142 water molecules (3 atoms), which are however fast to
calculate. This makes the calculation of the embedding potentials of 50
snapshots of seven different proteins in Paper I very costly and motivates
the work to derive general protein embedding parameters.

From the analysis above it is clear that different strategies can be
followed to reduce the cost of generating the embedding potentials:
reducing the size of the classical region, taking embedding parameters
from a database or using a cheaper QM method for the calculation of (a
part of) the parameters. Even though a reduction of the total size of the
molecular system significantly speeds up the calculation of an embedding
potential (¢f. Figure 4.4), one should carefully test up to which distance
the molecular environment influences the molecular properties of the
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QM region (Paper II, Paper III and Paper IV) or use a dielectric
continuum outside the explicit molecular system.''” Paper III has shown
that long-range polarization effects cannot be omitted in the calculation.
However, isotropic solvent-specific polarizabilities suffice for the description
of molecular fragments further away from the central molecule (Paper
IV). The strategies and parameters described in Paper IV are useful to
keep the cost of the calculation of the embedding potentials low without
compromising the accuracy. Indeed, Paper IV shows that accurate
embedding potentials can be obtained by calculating accurate embedding
parameters for the solvent molecules closest to the solvated molecule while
using averaged parameters for the solvent molecules further away. The use
of more approximate parameters for molecules further away—rather than
excluding the molecules from the calculation—has previously been shown
to be successful. 118119 This procedure leads to a dramatic reduction of the
computational cost compared to embedding potentials where all molecules
have geometry-specific parameters, which has been a common procedure for
PE calculations. The averaged parameters also allow for PE calculations
with only averaged parameters—albeit at a reduced accuracy—removing
the need for any QM-based parameters and making the barrier for using
the PE model much lower for new users.

It is important to put the computational time required to calculate an
embedding potential in context and consider the total computational time
required by a procedure to calculate a molecular property. In some cases,
the calculation of the embedding potential makes up only a small percent-
age of the total computational cost of calculating a molecular property. An
example of this is the calculation of a property that in itself is expensive to
calculate (e.g. three-photon absorption) for a relatively large molecule in a
relatively small solvent (e.g. chloroform). In other cases, the calculation of
the embedding potentials constitutes the major part of total computational
resources spent on a given procedure. Examples of this include the calcula-
tion of excitation energies of fluorescent proteins in Paper I and a relatively
inexpensive QM property calculation such as the dipole moment of a small
molecule (PNA, acetone) in a solvent such as dimethyl sulfoxide or propylene
carbonate (Paper IV). In these cases, it is relevant to consider strategies
to obtain the embedding potentials at reduced computational cost.






Chapter 5

Summary and perspective

This chapter presents an overview of the findings of this thesis, as well as its
main methodological shortcomings. Moreover, it is shown how the results
can contribute to the calculation of accurate multiphoton absorption (MPA)
properties in a molecular environment as well as to the calculation of accu-
rate embedding potentials at reduced computational cost. Related to those
topics, a perspective is given on important directions for future research on

the accurate calculation of molecular properties in realistic environments.

87
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The aim of this thesis is the accurate calculation of molecular properties
in realistic environments. It has been shown that the polarization of the
environment has a considerable impact on the calculation of molecular
properties. This is especially the case for properties related to the absorp-
tion of light by a molecule, which causes a reorganization of the charge
distribution in the molecule and induces a change in polarization state
of the environment. For an accurate description of the influence of large
environments on a molecular property, one needs to take into account
electrostatic and polarization interactions. The PE method described
in Section 2.2 is an accurate way of describing these interactions when
electrostatic (including polarization) interactions dominate. For localized
properties such as excitation energies, the PE model is preferred over a
cluster approach, which can only describe a relatively small part of the
environment. For the part of the molecular environment that is further
away from the molecule, less accurate embedding parameters suffice, leading
to a reduction of the cost of obtaining an accurate embedding potential.
Moreover, it is shown that DFT calculations can give qualitatively good
results for TPA, while absolute values for the TPA cross section should be
evaluated with great care.

The main shortcomings of the works presented in this thesis are the qual-
ity of the molecular structures and the neglect of non-electrostatic interac-
tions between the molecule and its environment in the molecular property
calculations. The former can be improved by performing QM /MM or ab
initio rather than classical MD simulations. This also removes the need for
QM/MM geometry optimization (Section 3.2.2), thus keeping all dynami-
cal effects from the conformational sampling at a finite temperature. The
latter is most problematic for apolar solvents (where non-electrostatic ef-
fects are relatively more important) and for molecular systems with explicit
boundaries or charge transfer between the QM and classical regions. Includ-
ing exchange-repulsion interactions can be done by a method like PDE. 6!
Since non-electrostatic interactions are short-range, this is especially impor-
tant for the closest environment of the central subsystem.

Ideally, however, the same (accurate) description of the interactions
between the central subsystem and its environment should be used in both
the sampling of the conformations and the calculation of the molecular
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properties. This would be a considerable improvement over the two-step
approach used in this thesis, namely using one method for the conforma-
tional sampling and another one for the calculation of molecular properties
with a different description of the intermolecular interaction for each of the
two steps. Indeed, the MD simulations in this thesis are done with flexible
molecules described by classical mechanics without polarization, while the
molecular properties are calculated using a mixed quantum and classical
method in a polarizable—but frozen—environment.

The results in this thesis motivate further research to investigate the ac-
curacy of calculated TPA and MPA strengths to enable a comparison with
experiments. Paper VI has shown that the magnitude of TPA strengths
calculated with DFT can significantly deviate from CC calculations, which
is partially attributed to an underestimation of difference dipole moments
by DFT. This is one of the factors that currently limits the comparison of
calculated TPA cross sections of medium- and large-sized molecules with ex-
periments. There is however some evidence that relative trends between dif-
ferent chromophores and between different solvents are correctly reproduced
also by multiscale DFT calculations using the PE method. ' Building on
the work of Hrsak et al.'?%!2! and the work presented in this thesis (Pa-
per V and Paper VI), one could investigate the quality of TPA strengths
calculated with DFT in a polarizable environment. This is made possible
by the recently published implementation of PE with CC2 for TPA.'?! In
particular, it would be interesting to find out whether difference dipole mo-
ments calculated with DFT in a molecular environment are closer to the CC
results than in the gas phase and whether the differences found in Paper VI
are systematic overestimations or average out over different conformations.

In general, the DFT calculations presented in this thesis suffer from an
overestimation of the excitation energies and thus wrong prediction of the
location of absorption peaks in a spectrum. This makes comparison between
calculated and experimental data difficult. The problem is related to the
density functional (CAM-B3LYP), which has been chosen on the basis of
its qualitatively good performance in describing charge-transfer transitions
compared to other density functionals.?? There seems to be no density func-
tional that can reliably describe properties of a wide range of molecules and
protonation states both qualitatively and quantitatively (here: excitation
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energies and intensities). This motivates work in the development of new
improved density functionals, for which a clear demonstration of the current
problems (such as in Paper VI) is helpful. In parallel, benchmark methods
such as CC methods are needed to test the performance of DF'T methods.
One can entirely refrain from using DFT only for small molecular systems.
For larger biomolecular systems, however, DFT will always be able to treat
larger systems at the same expense, or the same systems at a much lower
expense.

Building on the work presented in this thesis, the influence of the molec-
ular environment on MPA properties of (bio)molecules could be investigated
in more detail. 1?2 Paper I, Paper II and Paper III have shown the im-
portance of polarization on the excitation energies of fluorescent proteins.
It has also been shown that the polarization significantly modifies the oscil-
lator strength 237125 and the two-photon absorption cross section. 23124 Tt
is thus likely that also higher-order MPA strengths are critically dependent
on the environment in general and on the polarization of the environment
in particular. A DFT implementation for the calculation of MPA strengths
to arbitrary order has recently been published.?® The extensions to PE 22
and PCM'?7 are work in progress and will enable the investigation of the
effect of the environment on MPA properties.

Several challenges arise in the calculation of higher-order MPA strengths.
While the calculation of MPA strengths with DFT is possible for any num-
ber of photons, 126 not much is known about the accuracy of these numbers.
In fact, transition moments between different excited states become increas-
ingly important for higher-order transition properties and the performance
of DFT for those is not well-described but likely rather poor. This makes
the comparison of calculated and measured MPA cross sections even more
challenging. Currently this is a difficult question to address because of the
lack of reference methods beyond TPA 28 for all but the smallest molecular
systems. 129

Another challenge is related to the size of the QM region and the
location of the QM-MM boundary in MPA calculations. ?? For a localized
property (such as OPA) in a large molecular environment, Paper II
has shown that a polarizable QM /MM method is to be preferred over a
QM cluster model. The electronic transition studied in Paper II is a
transition between two orbitals that are localized on the conjugated system
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of the chromophore. MPA processes, however, are not necessarily localized
properties and have many more contributing orbitals. It is thus difficult
to choose a sensible location for the QM—MM boundary and larger QM
regions are needed for accurate calculations.!?? This motivates further
research into flexible and accurate descriptions of covalent links between
the QM and classical parts in QM/MM calculations, which is one of the
main challenges in the multiscale modeling of biomolecular systems.

Accurate incorporation of the effect of a molecular environment requires
a large number of molecular structures to be taken into account. This re-
quires not only a large number of PE calculations, but also a large number
of embedding potentials. One strategy to reduce the computational cost
of calculating solvent embedding potentials has been presented in Paper
IV: use geometry-specific parameters for the most important part of the
environment and averaged solvent-specific parameters for the rest. One can
also think of other combinations of embedding parameters from QM calcu-
lations and databases. It is shown in Chapter 4 that the computational time
of calculating only electric multipoles is four times less than calculating both
electric multipoles and polarizabilities. This makes it worthwhile to investi-
gate the quality of embedding potentials that consist of QM-based electric
multipoles (Mk) for all classical sites and averaged (isotropic) polarizabil-
ities on all or a part of all classical sites. Given the results in Paper IV,
this is likely a cost-effective strategy for most solvent molecules, with the
exception of anisotropic molecules such as phenol, toluene and benzene. Re-
search in this direction can make accurate QM /MM calculations attractive
for a wider range of users by removing part of the effort and computational
cost to generate an accurate parametrization of the classical part.

The advantage of reducing the cost of calculating embedding potentials
is not necessarily in the reduction of total cost. Rather, one can increase
the quality of the calculations, e.g. by using PDE in the QM /MM calcula-
tion or by increasing the number of MD snapshots to reduce the statistical
error of averaging properties over different structures. Another option is to
investigate possible improvements of the polarization interactions by going
beyond the linear response (using hyperpolarizabilities) or by including also
dipole—quadrupole polarizabilities to improve the description of the linear
response. Thus, one can increase the overall quality of the calculation by
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using a given amount of computational resources in the most efficient way.
This requires more research into the relative importance of factors such
as density-based embedding, non-linear response to an applied field and
non-electrostatic effects. Computational studies such as those presented in
this thesis are fundamental to show how accurate calculations of molecu-
lar properties in realistic molecular environments should be performed to
obtain accurate results.
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